当前位置: 仪器信息网 > 行业主题 > >

多西拉敏

仪器信息网多西拉敏专题为您整合多西拉敏相关的最新文章,在多西拉敏专题,您不仅可以免费浏览多西拉敏的资讯, 同时您还可以浏览多西拉敏的相关资料、解决方案,参与社区多西拉敏话题讨论。

多西拉敏相关的资讯

  • Nat. Commun. 复旦大学季敏标教授合作研究:设计出光敏特性的拉曼探针,实现可控开关的受激拉曼散射成像 | 前沿用户报道
    供稿:敖建鹏成果简介2021年5月,复旦大学季敏标课题组与南方科技大学吴长锋课题组合作,在国际期刊 Nature Communications 发表了题为 Switchable stimulated Raman scattering microscopy with photochromic vibrational probes 的论文,通过在二芳基乙烯母体分子中引入炔基,设计出一类具有光敏特性的拉曼探针,实现了可控开关的受激拉曼散射成像。背景介绍在生命科学研究中,直接可视化细胞内大量不同的分子种类对于理解复杂的系统和过程愈渐重要。而对于荧光显微技术而言,由于荧光分子本质上的宽光谱特性,限制了其可分辨标记对象的能力,常称为“多色复用壁垒”。与荧光分子电子跃迁相对,拉曼散射表征的是振动跃迁,谱线宽度较窄,具有优越的化学特异性,目前基于炔基、氰基等拉曼信源开发出的拉曼探针已经实现了超多色复用成像,但成像分辨率依旧受到光学衍射极限的限制。在此研究背景下, 复旦大学季敏标课题组与南方科技大学吴长锋课题组合作通过赋予拉曼信号光敏活性,实现可逆光开关的拉曼振动光学成像,探索具有光敏活性的拉曼探针及其显微技术的应用可行性,为开发具备超多色复用的远场超分辨显微技术突破了关键一环。图文导读受激拉曼散射(SRS)以快速、免标记和本征三维化学组分分析的优点在显微成像领域备受青睐。为了提高成像灵敏度与特异性,基于炔基、氰基的拉曼探针被开发并用于SRS,打破了荧光显微成像中难以逾越的“多色复用壁垒”,展现了这些生物正交拉曼探针对比荧光标记分子所具备的窄峰宽、无漂白、信源尺寸小而对目标分子干扰小等优势。基于化学键振动的拉曼信号具有很好的光稳定性,早期开发的拉曼探针几乎都是“always-on”类型,意味着信号不受外界调控,失去了随机发光、光开关性等性质,直接通过外界光刺激改变拉曼信号几乎是不可能的。为了解决这一难题,课题组将炔基通过化学合成的手段连接到光异构母体分子(二芳基乙烯)上,通过光异构分子对外界光刺激的响应来调控拉曼信号,从而实现对光敏感的拉曼光谱响应。1. 通过化学合成将拉曼探针(炔基,拉曼信号强且峰位处于生物静默区,有利于后续推进至生物体系)引入二芳基乙烯母体分子中;2. 通过自发拉曼及受激拉曼散射技术对紫外与可见光照射下的分子的炔基伸缩振动模式峰位表征;左:自发拉曼;右:受激拉曼3. 将分子匀涂成膜,通过光在薄膜上自由书写/擦除文字信息并以受激拉曼散射显微读出信息;通过紫外光在薄膜上手写的“复旦”字样,并通过SRS对其成像4. 将分子进一步修饰以靶向线粒体,在细胞层面展示光开关性质的受激拉曼散射成像。光控可逆点亮/擦除喂食过光活性分子的HeLa细胞,并通过SRS对其成像受激拉曼散射作为相干模式下的拉曼散射,虽然极大的提高了拉曼信号,使得快速化学成像成为可能,但由于两束光的共振激励(ωp-ωs=Ω)局限在某一个拉曼峰位,相比于自发拉曼而言损失了全光谱信息,因此在对未知物质检测时自发拉曼光谱的测定依旧不可或缺。HORIBA LabRAM HR Evolution的1064nm激发模式很大程度上解决了常用可见光光源激发自身对光敏分子的影响,对我们的实验可靠性论证起到了极大的帮助。HORIBA LabRAM HR Evolution如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望“山重水复疑无路,柳暗花明又一村。”实验过程中课题组抛开固有实验套路,另辟蹊径,最终实现了可控开关的受激拉曼散射成像,不仅为开发具有光开关性质的振动光谱探针提供了新思路,同时为光开关受激拉曼散射显微成像技术的提供可行性基础,拓展了SRS的应用范围,将有望推动超多色复用拉曼显微跨入超分辨时代。文献信息Switchable stimulated Raman scattering microscopy with photochromic vibrational probes文章署名作者:Jianpeng Ao, Xiaofeng Fang, Xianchong Miao, Jiwei Ling, Hyunchul Kang, Sungnam Park, Changfeng Wu & Minbiao Ji文章链接:https://doi.org/10.1038/s41467-021-23407-2扫码查看文献季敏标教授课题组简介季敏标教授课题组主要从事非线性光谱学和显微成像技术研发,并将它们用于生物医学光子学应用研究和新型材料的光电性质基础研究。在生物医学光子学领域主要发展用于肿瘤组织的快速无标记病理检测方法和脂质代谢等生物医学问题;在材料学领域主要研究新型二维材料的超快载流子和声子动力学问题等。
  • 苏州医工所高灵敏增强拉曼传感技术研究取得进展
    高灵敏微量气体传感在环境污染研究、人体挥发性有机物(VOCs)检测中具有重要的现实意义。迄今为止,已有多种分析技术用于气体检测,但多存在成本高、操作复杂、分析过程耗时等缺点。表面增强拉曼散射(SERS)作为有力的痕量分子检测工具,可利用基底的表面等离子体共振和电荷转移效应大幅增强目标分子的拉曼散射信号,具有高灵敏、简单、快捷、无损和特异指纹识别的特点,在气体传感领域具有优势。   近日,中国科学院苏州生物医学工程技术研究所研究员张志强与博士研究生孙姣姣,开发出一种具有超高灵敏性的三维玫瑰花枝状SERS基底(BigAuNP/Au/ZnO/P)。本研究中,科研人员以化学生长与微纳加工相结合的方式,在聚偏二氟乙烯(PVDF)膜上制备了纳米氧化锌(ZnO)-金(Au)三维异质结构,其增强原理在于相邻纳米棒表面的金纳米颗粒(AuNPs)、同一纳米棒表面的相邻AuNPs、金层与AuNPs的结合点三处“热点”区域共同提高了电磁增强效应,Au和ZnO之间的电荷转移产生高密度电荷,形成内部电场,激发了ZnO纳米棒的化学增强效应。   该SERS基底对对巯基苯甲酸(p-MBA)分子的检测限为10-13 M,其增强因子高达2.27×107,并具有良好的均一性和可重复性(RSD 4%)。此外,PVDF膜具有多孔特性,可采用过滤式检测程序提高目标分析物与SERS“热点”的碰撞效率,有利于气体分子的高效富集。   科研人员以腐胺和尸胺两种挥发性有机气体为例,验证了该三维柔性SERS基底在气体传感中的检测性能。通过在SERS基底上修饰p-MBA传感单分子层,利用酰胺反应选择性地捕获腐胺和尸胺,实现了低浓度气体分子的高灵敏定量检测(腐胺检测限:1.26×10-9 M,尸胺检测限:2.5×10-9 M),比同类研究报道的检出限高出2-3个数量级,证明了该SERS传感器在实际气体传感中的应用潜力。   鉴于该三维柔性SERS基底的多孔特性和优异的增强性能,将其与微流体装置和便携式拉曼光谱仪集成,搭建SERS快速检测系统,有望实现气溶胶中细菌、病毒和污染物的高效捕获与富集,发挥该三维基底在气溶胶的高灵敏检测领域的技术优势。   相关研究成果以Ultrasensitive SERS analysis of liquid and gaseous putrescine and cadaverine by a 3D-rosettelike nanostructure-decorated flexible porous substrate为题,发表在Analytical Chemistry上。研究工作得到国家自然科学基金、江苏省重点研发产业前瞻项目、中科院科研仪器装备研制项目等的支持。
  • 布鲁克叩响便携拉曼市场的门铃——访Bruker拉曼和气体分析部经理Armin Gembus博士
    p span style=" font-family: 楷体,楷体_GB2312, SimKai "   随着技术的发展以及实际应用需求的变化,小型化已经成为分析仪器的发展潮流之一,这一点在拉曼光谱仪领域表现的尤其活跃。据SDI报告的数据显示,近年来 /span span style=" font-family: 楷体,楷体_GB2312, SimKai text-decoration: none " a title=" " href=" http://www.instrument.com.cn/zc/34.html" target=" _self" strong 拉曼 /strong /a /span span style=" font-family: 楷体,楷体_GB2312, SimKai " 光谱仪器的市场以两位数在不断增长,而可以“拿出去”、应用到各行各业的便携拉曼光谱仪市场规模更大。资料显示,目前便携拉曼光谱仪器全球市场规模约为2.5亿美元,而且未来的增长更是不可限量。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   正是看好了这样的市场商机,很多厂商已经开始了相关产品的布局。海洋光学、必达泰克、赛默飞等很多厂商都已经推出了便携/手持式的拉曼光谱仪,2014年,TSI、万通等一些厂商也开始涉足便携/手持式拉曼产品,此外,还有不少厂家也在观望中。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   其实,便携/手持拉曼光谱仪的这种发展趋势在近几年的展会中已经表现的非常明显,以Pittcon 2015为例,便携/手持拉曼光谱仪几乎“遍地开花。”其中,Bruker就在Pittcon 2015上发布了该公司首款便携拉曼产品BRAVO,并于2015年七月正式在中国推出。为了让中国的用户更好的了解这款产品,近期仪器信息网编辑采访到了Bruker拉曼和气体分析部门经理Armin Gembus博士,布鲁克(北京)科技有限公司FTIR& amp Raman北方区经理/应用专家王伟陪同。 /span /p p style=" text-align: center " img title=" IMG_6541.jpg" src=" http://img1.17img.cn/17img/images/201507/insimg/ed400d09-f536-44e4-8fd1-7050a6902179.jpg" / & nbsp /p p style=" text-align: center " strong span style=" font-family: 楷体,楷体_GB2312, SimKai " Bruker拉曼和气体分析部门经理Armin Gembus博士 /span /strong /p p    strong 看准市场 Bruker推出首款手持拉曼BRAVO /strong /p p   大家都知道,拉曼最大的优势是无损分析,可以通过玻璃瓶或者包装材料直接获取拉曼信号,而不需要打开包装袋。随着检测技术的成熟,人们对拉曼光谱仪又提出了新的要求,即系统的小型化、便携化、智能化,这在很多行业,尤其是制药行业对原材料的筛选、鉴别方面的需求非常明显。 /p p   Armin Gembus博士介绍到,“虽然现在很难估计便携拉曼在制药行业的市场有多大,但据了解之前已经有不少同类便携拉曼产品卖到了制药行业,总体来说这个市场还是蛮大的。而且,2015版中国药典新增了拉曼光谱法,给用户提供了参考方法,对这个市场具有一定的指导意义,至少用户在选择的时候会减少一些犹豫。” /p p   很多仪器厂商都已经意识到市场对便携/手持拉曼光谱仪的需求越来越大,而且现在市场已经有很多品牌的相关产品,不过,在使用的过程中也还存在一些问题,比如荧光干扰等。对于便携/手持式拉曼光谱仪来说,由于受限于成本、体积、功耗以及使用环境等因素,不能使用实验室中常用的方法进行荧光抑制,从而导致仪器的一些性能并不能满足使用要求,特别是制药行业的要求。这些现状促使Bruker推出手持拉曼BRAVO来满足制药行业的需求,同时,从另一方面来看,Bruker也看中了已经购买该类产品的用户更新换代的需求。 /p p   其实对Bruker而言,选择推出这样一款针对制药行业的便携拉曼也是基于既有客户群体考虑。Armin Gembus博士介绍到,“Bruker在红外、近红外制药行业已经有很多老客户,这些客户群体已经非常成熟,BRAVO的推出可以继续延续这个领域的优势。” /p p    strong “全新一代”手持式拉曼“新”在哪里 /strong /p p   手持式拉曼光谱仪器的技术门槛虽然不高,但是真正做好也很不容易。布鲁克的这款BRAVO产品自称是“新一代”的手持式拉曼光谱,那么到底“新”在哪里? /p p   据Armin Gembus博士介绍,BRAVO的推出给用于原材料鉴定的拉曼分析仪的性能、安全性和易用性赋予了更新更高的标准: /p p   由于物质本身荧光效应的干扰,很多原材料鉴定不可能通过拉曼技术实现。针对这个技术瓶颈,BRAVO采用了SSE sup TM /sup (连续移频激发)专利技术来消除荧光干扰。与许多传统的产品相比,BRAVO可以获取更多种类、更广范围原材料的拉曼信息,可以得到高质量的谱图 双激发波长,只有A4纸一半大小的仪器中集成了双激光器,将光谱范围扩展到3200cm-1,可以很轻松的探索到C-H的伸缩振动,有利于制药行业的定性分析和样品分类,Duo LASER sup TM /sup 双激发波长技术确保整个光谱范围内具有最高的测量灵敏度 智能化的测试头,BRAVO的IntelliTip sup TM /sup 自动识别技术可以保证测量信息被自动保存,如果您已经定义了一个原材料, IntelliTip sup TM /sup 将建议您使用最合适的测试头进行测量,排除了误操作的可能 激光安全达到1M等级,全电子键盘输入,还有特别为医药市场设计的直观、向导式的大智能触摸屏和自动批量扫描模式等都增加了仪器操作的便利性。此外,据介绍,目前这款BRAVO新品已经通过了制药行业的3Q认证。 /p p   手持式仪器追求小型化似乎理所当然,但是据介绍,Bruker未来的便携拉曼有可能会做得比现在大一些,听起来这似乎有点不合潮流。而且,通过Armin Gembus博士的演示我们也发现,BRAVO的触摸屏为7英寸,与其他公司同类产品相比,屏幕也稍微偏大。据王伟介绍,在手机行业有一个发展趋势,手机屏幕越做越大,便于用户的操作,如苹果公司也推出了大屏幕的iphone,甚至ipad。其实,在手持式拉曼仪器方面也存在这样的问题,触摸屏大一些,用户操作起来更直观,更方便,操作体验也会更好一些。 /p p   在采访中,我们发现,与市场上同类仪器相比,BRAVO还有一个很大的不同,它本身不配备专门的谱图库,这是否会增加用户的使用难度或者工作量?对此,Armin Gembus博士介绍到,传统市面上的谱图库并不适合用户的分析工作,因为不同的配置条件下测出的谱图并不是完全一致的。对于BRAVO来说,灵敏度比较高,测量一张谱图仅需几秒,建立一个上百张谱图的数据库只需要半天的时间,而且采集一张将被录入谱库的谱图所需的时间和标准测量模式下的测量时间是相同的,最关键的是这个谱图库完全适合用户的要求。因此,用户不用担心工作量的问题,据悉,目前Bruker的技术人员正在做相关方面的培训。 /p p    strong Bruker布局高中低端俱全的产品线 /strong /p p   一直以来,布鲁克都非常注重高端仪器及科研市场,此次推出的手持式拉曼光谱产品,其所面对的是普通用户的应用市场,这是否代表了布鲁克产品线的新布局? /p p   据Armin Gembus博士介绍,不管是红外还是拉曼,Bruker长期以来一直致力于研发市场(高端市场)的应用,不过近年来,随着市场格局的改变,现在也非常看重常规市场了,目前,Bruker在红外、近红外、拉曼领域已经布局了高、中、低端俱全的产品线。 /p p   “高端主要是研究型的,中端面向做分析的用户,而低端主要是体验型的,要求既实用又好用。” 接着,Armin Gembus博士介绍了Bruker在红外、近红外以及拉曼方面这些年来产品的布局情况: /p p   在红外光谱仪器方面,Bruker有高端的IFS125HR、VERTEX系列红外光谱仪,2007年推出紧凑而智能的便携式傅立叶红外ALPHA,2012年又推出独立的傅立叶红外显微镜LUMOS,主打仪器的全自动化 /p p   对近红外市场而言,Bruker可以为石油、化工、制药、食品、饲料等领域的用户提供完整的解决方案。据介绍,近年来在Bruker的近红外在饲料行业卖出了80多台。除此之外,Bruker还有在线型及工业现场级傅立叶变换近红外光谱仪。2013年,Bruker还推出了便携的近红外光谱仪TANGO。 /p p   在拉曼方面,Bruker在1988年就推出了傅立叶拉曼光谱仪,除此之外还有共聚焦拉曼和共聚焦拉曼显微镜等,除了高端市场之外,现在Bruker又推出了给用户带来全新体验的BRAVO产品,截至目前,Bruker可以为用户提供五款不同的拉曼产品,并将一直致力于更好地为客户服务,继续推出具有高附加值的仪器设备。 /p p style=" text-align: right " 撰稿编辑:叶建 /p
  • 超灵敏荧光检测试剂盒Stellar震撼上市
    ►►►全自动多功能超灵敏荧光Western带来Western Blot技术革新ProteinSimple在全球正式发行Stellar超灵敏荧光检测试剂盒,搭载在全自动多功能超灵敏荧光Western蛋白质分析平台Jess上(Digital Western Blot),提供了自动化高灵敏荧光免疫蛋白检测技术解决方案。该技术方案特别适合细胞信号通路和药理药效研究,对分子量相近的磷酸化蛋白/总蛋白同时检测,实现了一次运行多重蛋白表达分析能力,高灵敏度也实现了复杂样本中低丰度蛋白质的准确定量。传统化学发光及荧光Western Blot方法检测磷酸化蛋白是一项费时费力的工作。为了解决传统技术挑战,克服传统蛋白质印迹众所周知的局限性,ProteinSimple已经开发了全自动多功能蛋白质表达定量分析技术平台,再搭配超灵敏荧光检测技术,可更加简单、高效地完成细胞信号通路研究中磷酸化蛋白检测。►►►Stellar开启自动化荧光Western新纪元Figure 1 Stellar荧光检测灵敏度是通过DNA与检测抗体相连的多个信号放大步骤实现。全自动多功能超灵敏荧光检测试剂盒Stellar使用专利的非酶促寡核苷酸扩增技术不断地将免疫反应信号放大,并且通过 Jess 的 NIR/IR 荧光检测,在低于 1 pg 的检测水平下提供超高的荧光灵敏度,以及出色的重现性和 4-log 动态范围。凭借这一灵敏度的飞跃,Stellar荧光检测可与广泛认可的化学发光检测灵敏度相媲美,并取代了需要50pg检测水平的传统蛋白质印迹成像技术的荧光检测。►►►全自动多功能超灵敏荧光Western技术优势◆化学发光、红外 (IR) 和近红外 (NIR) 荧光通道中使用标准蛋白质印迹抗体的多通道免疫检测,可实现基于通道和基于大小的多重蛋白质表征;◆全自动、超灵敏荧光Western:可从微量样品中(低至 3 μL样本需求)中获得最多的数据,短至 3 小时快速获得结果,定量更精准,重复性更高,省时省力;◆配备同一毛细管中执行两次连续免疫测定RePlex™ 技术,检测更多目的蛋白质或通过总蛋白质含量归一化分析,比使用内参蛋白更可靠;◆解决传统Western blot图片误用或造假问题,Digital Western blot系统软件符合FDA CFR Part 11合规标准,全程追踪记录,原始记录不可篡改。◆科学家广泛认可,全自动Simple Western即Digital Western Blot技术平台已用于近2000篇高影响力文章中,是一项经过验证的技术,权威可靠。Figure 2 Stellar NIR 和 IR 荧光多重检测的AKT总/磷酸化蛋白。来自 Jurkat 细胞(用 calyculin A 处理)的裂解物 (0.2 mg/mL),并使用小鼠抗总 AKT 和兔抗磷酸 AKT 一抗以及 Stellar Mouse IR(绿色条带)和 Stellar Rabbit NIR(红色条带)检测模块进行探测。Stellar NIR / IR 通道能够在同一泳道中多重检测总 AKT 和磷酸化 AKT,并具有出色的重现性( 24 个泳道: pAKT 扫码获取更多资料►►►关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • 霸王茶姬茶多酚过敏?茶叶里面除了这些,还有什么?莱奥来解答
    近来,网友爆出喝完“霸王茶姬”新品茶出现了心慌心悸等不适症状。霸王茶姬客服表示,可能顾客是对茶多酚过敏了。但莱奥认为,更多的是咖啡因含量(含量为31.8mg/100ml)超标导致,值得注意的是,市售很多奶茶都是直接用浓缩茶粉,所以咖啡因含量通常很高。那么,茶叶里面除了含有茶多酚,咖啡因还有什么呢?还有我们常见的农药残留。 在茶叶农残的检测过程中,其提取物较为复杂,对净化过程要求较高,随着发达国家和我国对茶叶农残限量要求的逐步提高,高效率、低检测限成为茶叶农残检测的趋势。本文介绍茶叶基质中常见农残测定的高效前处理解决方案,可采用Leowlab Purifier A48正压固相萃取仪实现茶叶复杂基质高效萃取,搭配Leowlab SmartVap N48全自动氮吹浓缩仪使用,无需样品转移,减少样品的损失 仪器设备前处理仪器设备萃取仪Leowlab Purifier A48正压固相萃取仪浓缩系统Leowlab SmartVap N48全自动氮吹浓缩仪搭配浓缩系统仪器Leowlab NG-MP系列氮吹用氮气发生器分析仪器气相色谱仪配有双火焰光度检测器(FPD磷滤光片)前处理流程图实验方法概要1、称取5g茶叶,加入乙腈提取,加Nacl除水;2、采用Leowlab SmartVap N48全自动氮吹浓缩仪在80℃下,按程序自动将样品氮吹近干;3、加乙腈-甲苯溶解残余物,采用Leowlab Purifier A48正压固相萃取仪进行净化处理;4、将(固相萃取仪配套的)过柱后的收集管直接放至Leowlab SmartVap N48全自动氮吹浓缩仪,80℃水浴,设置程序,自动氮吹近干。5、用1.00ml丙酮复溶样品,涡旋混合,待上机。结论茶叶是比较复杂的基质,在前处理过程,利用半自动正压固相萃取仪代替负压萃取装置,大大减少前处理时间,样品均匀过柱,获得极佳的重复性和回收率;方案特点1、 48个样同时过柱:Leowlab Purifier A48正压固相萃取仪可一次性同时处理48个样品,大大减少实验时间;2、复杂基质,轻松过柱:针对复杂的基质茶叶,正压最大承受压力100psi,远超过负压,轻松更快过柱;2、 很好的重复性和回收率:氮气作为气源,正压过柱,保证每个柱子压力均匀性,保证极佳的回收率;3、 净化到浓缩收集管直接转移:全自动氮吹浓缩仪,接收管体积0-40mL,净化完的接收管可直接转移至Leowlab SmartVap N48全自动氮吹浓缩仪氮吹,减少样品在转移过程中的损失。4、涡旋斜吹技术:Leowlab SmartVap N48采用涡旋剪切气流技术,样品浓缩快速、平和;5、智能化浓缩:Leowlab SmartVap N48气流可自动控制,支持梯度自动控制,优化浓缩进程;6、多种支架可供选择:Leowlab SmartVap N48适应不同直径不同高度的试管、离心管
  • 超灵敏多光谱光声显微镜,具有广泛的生物医学成像潜力
    “光学分辨率”光声显微镜是一种新兴的生物医学成像技术,可用于癌症、糖尿病和中风等多种疾病的研究工作。但是灵敏度不足,一直是其获得更广泛应用的长期障碍。据麦姆斯咨询报道,近期,香港城市大学(CityU)的一支研究团队开发出一种多光谱、超低剂量的光声显微镜(SLD-PAM)系统,该系统的灵敏度极限得到了显著提高,为未来新的生物医学应用和临床转化提供了可能,相关研究成果以“Super-Low-Dose Functional and Molecular Photoacoustic Microscopy”为题发表于Advanced Science期刊。多光谱光声显微镜系统及其灵敏度增强示意图光声显微镜结合了超声波检测和激光诱导光声信号,以创建生物组织的详细图像。当生物组织被脉冲激光照射时会产生超声波,然后超声波被检测并转换为电信号用于成像。与传统的光学显微镜方法相比,这种新颖的技术可以在更大的深度上实现毛细管水平或亚细胞级别的分辨率。然而,灵敏度不足阻碍了该技术的更广泛应用。“高灵敏度对于高质量成像很重要。它有助于检测不强烈吸收光的发色团(通过吸收特定波长的可见光赋予材料颜色的分子)。它还有助于减少光漂白和光毒性,减少对脆弱器官生物组织的干扰,并在宽光谱范围内提供更多可选的低成本、低功率激光器。”香港城市大学生物医学工程系Wang Lidai教授解释道。例如,在眼科检查中,为了更安全和舒适,优选低功率激光器。他补充称,对于药代动力学或血流的长期监测,需要低剂量成像以减轻对组织功能的干扰。为了克服灵敏度挑战,Wang Lidai教授及其研究团队最近开发了一种多光谱、超低剂量的光声显微镜系统,突破了传统光声显微镜的灵敏度极限,将灵敏度显著提高了约33倍。他们通过光声传感器设计的改进,结合用于计算的4D光谱空间滤波器算法,实现了这一突破。研究人员通过使用实验室定制的高数值孔径声透镜、优化光学和声学波束组合器,以及改进光学和声学对准来改进光声传感器的设计。该光声显微镜系统还利用低成本的多波长脉冲激光器,提供从绿光到红光的11种波长。其激光器以高达兆赫的重复频率工作,光谱切换时间为亚微秒级。超低剂量照明下的血管形态提取为了证明光声显微镜系统的重要性和新颖性,该研究团队通过绿光和红光光源的超低脉冲体内动物成像,对其进行了全面的系统测试,并得到了显著的成果。首先,该光声显微镜系统能够实现高质量的体内解剖和功能成像。超低的激光功率和高灵敏度,显著地减少了眼睛和大脑成像的干扰,为临床转化铺平了道路。其次,在不影响图像质量的情况下,该光声显微镜系统较低的激光功率,将光漂白减少了约85%,并能够使用范围更广的分子和纳米探针。此外,该系统成本显著降低,使研究实验室和诊所更能负担得起。Wang Lidai教授说道:“该光声显微镜系统能够在对受试者损伤最小的情况下,对生物组织进行非侵入性成像,为解剖、功能和分子成像提供了一种强大而有前景的工具。我们相信该光声显微镜系统有助于推进光声成像的应用,实现许多新的生物医学应用,并为临床转化铺平新的道路。”接下来,Wang Lidai教授及其研究团队将利用该系统在生物成像中测试更广泛的小分子和基因编码生物标志物。他们还计划在宽光谱中试验更多类型的低功率光源,以开发可穿戴或便携式光声成像显微镜。论文链接:https://doi.org/10.1002/advs.202302486
  • 199万!浙江大学拉曼多通道在线分析系统采购
    根据《中华人民共和国政府采购法》等有关规定,现对拉曼多通道在线分析系统进行其他招标,欢迎合格的供应商前来投标。 项目名称:拉曼多通道在线分析系统项目编号:ZUPC-DY-HW-2022002项目联系方式:项目联系人:杨老师、谢老师项目联系电话:0571-88206325 采购单位联系方式:采购单位:浙江大学采购单位地址:浙江大学紫金港校区东四117室.采购单位联系方式:杨老师、谢老师 0571-88206325 一、采购项目内容拉曼多通道在线分析系统 1套,详见招标文件 二、开标时间:2022年02月21日 13:30 三、其它补充事宜 四、预算金额:预算金额:199.0000000 万元(人民币)
  • 单细胞拉曼光谱技术:自动化拉曼病原药敏快检系统
    多重耐药菌(MDR)和其耐药性的传播已成为全球公共卫生问题。MDR引起的血流感染往往病情较重,快速完成药敏检测并采取有针对性的治疗措施,对降低患者的死亡率至关重要。目前,病原药敏试验耗时很长,导致临床医生主要依赖经验进行治疗。开发一种简单、快速、准确,而且临床广谱适用的药敏表型试验方法一直是临床上的迫切任务。近期,中国科学院青岛生物能源与过程研究所单细胞中心与北京协和医院、青岛大学附属医院和青岛星赛生物等合作,以替加环素治疗败血症为模型,利用重水标记单细胞拉曼光谱技术(D2O-SCRS),建立自动化版本的拉曼病原体药敏快检系统(CAST-R),将常见病原体(血液感染阳性培养瓶内)的药物敏感性实验(AST)的时长缩短至3小时,实现10倍加速,可在培养瓶报阳当天得出药敏结果。  该研究从血培养阳性培养瓶中样本开始,使用CAST-R中自动化液体处理工作站(PLS),一站式完成样品D2O孵育、自动清洗和芯片定位。然后,利用仪器内置的软件(自主研发的算法)实现细胞精准定位与高通量拉曼光谱采集。最后,结合机器学习实现光谱采集过程的自动化和智能化以及光谱的质量控制,得出准确药敏结果。CAST-R可针对血培养阳性培养瓶中的病原体直接进行自动化的药敏试验,速度提高了10倍。青岛能源所单细胞中心前期提出“最小代谢活性抑制浓度(MIC-MA)”这一测量药物敏感性的新概念。在此基础上,该研究引入了“eMIC-MA”概念,以有效排除菌株起始状态和仪器改变对检测结果的影响。通过CAST-R测试100株鲍曼不动杆菌临床分离株对替加环素药敏性,与临床金标准(微量肉汤稀释法;BMD)相比较的基本一致率和分类一致率分别为99%和93%,从而验证CAST-R的准确性和可靠性。进而,针对26例患者血培养阳性培养瓶,测定了常见血流感染菌对替加环素、美罗培南、头孢他啶和氨苄西林/舒巴坦等8种抗生素的药物敏感性,并与BMD结果相比,分类一致率达到93%,验证了CAST-R在血流感染用药上的广谱适用性。相关成果发表在mLife上。研究得到中科院战略性先导科技专项、国家自然科学基金委国家重大科学仪器研制项目、中科院科技服务网络计划区域重点项目、广州生物岛实验室等资助。
  • “高灵敏度拉曼光谱检测系统”通过验收
    2013年8月29日,由四川成都拉曼光电科技有限公司承担的&ldquo 高灵敏度拉曼光谱检测系统&rdquo 项目通过了四川省科学技术厅组织的专家验收。   该项目基于周期金属纳米结构,开展了高灵敏度拉曼光谱检测系统的研究,并建立了相关的仿真计算机模型及探测试验平台,成功开发出&ldquo 高灵敏度拉曼光谱检测系统&rdquo 。   该系统可应用于公共场所的安全防范,拓展了在痕量气体探测方面的应用,为在现场环境下非接触快速痕量检测爆炸物、毒气等危险物品提供了新的思路和解决方案。为人口密集的重要场所的隐藏易燃易爆物品的痕量检测提供操作简单方便、快速响应的高性价比检测系统。该系统不仅可以分散独立便携使用,也可以组网交互式协同使用,从而为机场、地铁车站等重要公共交通枢纽的安全、重要政府机关的安全,以及各类车辆等重要移动目标的安全提供可靠的监测系统。
  • 让操作更简单 赛默飞推出拉曼光谱过程分析仪新品Ramina
    日前,赛默飞宣布发布一款新的拉曼光谱分析仪——Thermo Scientific™ Ramina™ 过程分析仪。该款仪器可以用于生物制药等多个领域的过程监控,其可以提供非破坏性的、连续分析,不需要样品制备,可以在15分钟内快速进行系统设置和部署,几秒钟内生成目标分析物的光谱数据。这个易于使用的系统旨在消除拉曼光谱测量的复杂性,使该技术可用于所有级别的用户体验,同时保持高精度和准确性。其紧凑的系统采用一系列专利探头,最大限度地提高了结果的速度和灵敏度,实现了完全自动化的现场测量,以计算反应容器中的浓度。Ramina 过程分析仪为离线手动或自动湿化学分析提供了一种快速且易于操作的替代方案。相比于传统的拉曼过程监控系统,它的安装和使用更加简单。Ramina 为用户开始收集数据提供了所需的全部设备,包括拉曼光谱仪和光纤探头,以及便携式显示器、鼠标、键盘和激光安全护目镜。工厂校准可确保 Ramina 系统随时能够投入使用,其固态结构确保了长期稳定性。这意味着用户可以进行连续、高精度的测量,而无需频繁校准。同时,大家还可以并联使用多个分析仪来同时监控不同的反应容器,或者在一个反应容器中组合使用多个探头。赛默飞副总裁兼现场和安全仪器总经理Chloe Hansen-Toone表示:“我们很高兴推出Ramina过程分析仪,它提供了一种几乎毫不费力地进行精确现场拉曼测量的方法,使客户能够在需要的时间和地点生成实时数据。这款分析仪小巧便携的设计,以及用户友好的操作,将有助于缩短测量时间,而无需占用太多宝贵的实验室空间。”
  • 拉曼光谱法在16种多环芳烃(PAHs)检测快检解决方案
    多环芳烃(PAHs)是一类广泛存在于环境中的含两个及以上苯环的芳香族有机污染物,具有致癌性、致畸性和致突变性,是人类认识最早的化学致癌物之一。因此,发展并建立一套简单、快速、高灵敏度和实时的痕量多环芳烃定性和定量分析检测技术,对中国这样一个面临严重环境压力的发展中国家具有十分重要的应用价值。基于拉曼光谱法表面增强(SERS)技术的16项多环芳烃检测方法  硫醇类物质通常是一端有巯基,另一端则是长链烷基,特征官能团巯基与金或银贵金属可以形成稳固的Au-S或Ag-S化学键,使硫醇类化合物易于吸附在基底表面。由于硫醇类化合物的分子间范德华作用力可以使其在基底表面有序排列,硫醇类物质一端的长链烷基具有疏水性,而多环芳烃大多是疏水化合物,在水中的溶解度很低,普遍难溶或微溶于水,所以硫醇类物质容易通过亲疏水性使多环芳烃富集至基底表面,实现多环芳烃的SERS检测。  SERS技术克服了拉曼光谱灵敏度低的缺点,被广泛用于结构分析、吸附界面表面状态研究和表面研究等,可以有效分析目标化合物在界面的吸附取向、界面信息和吸附态的变化等,因此适用于痕量物质的检测分析。作为SERS技术中最重要的研究领域之一,活性基底的制备对扩大SERS的研究范围和应用领域起着极为关键的作用。  SERS方法对16种PAHs检测的可行性和普适性,分别展示了300~1800cm-1区间内16种多环芳烃的SERS图谱及其浓度依赖性。特征拉曼谱峰对应的分子振动模式主要来自于PAHs的多环结构相关的面内振动模式,说明PAHs主要以近乎垂直的方式吸附于AgNPs表面。此外,除了苊(Ace)仅有一个位于877cm-1的SERS特征峰,其余每一种多环芳烃都有一系列特征谱峰,峰型尖锐且相互间都有一定的错开,说明可以根据SERS谱图对这16种PAHs进行准确的定性分析,与前人的工作相比,此方法具有一定的普适性,不局限于某些特定的PAHs分子,更适用于对常见PAHs的检测。  结合拉曼光谱仪表面增强技术,整个检测过程简单易操作,所用仪器和试剂价格低廉,能够较好地实现对PAHs的快速检测。
  • 自动化拉曼病原药敏快检新系统研发问世
    多重耐药菌(MDR)和其耐药性的传播已成为全球公共卫生问题,MDR引起的血流感染往往病情较重,快速完成药敏检测并采取有针对性的治疗措施,对于降低患者的死亡率至关重要。但是,目前病原药敏试验耗时很长,导致临床医生主要依赖经验进行治疗。开发一种简单、快速、准确,而且临床广谱适用的药敏表型试验方法一直是临床上的迫切任务。针对这一难题,中科院青岛生物能源与过程研究所单细胞中心与北京协和医院、青岛大学附属医院和青岛星赛生物等单位合作,以替加环素治疗败血症为模型,利用重水标记单细胞拉曼光谱技术(D2O-SCRS),建立了自动化版本的拉曼病原体药敏快检系统(CAST-R),将常见病原体(血液感染阳性培养瓶内)的药物敏感性实验(AST)的时长缩短至3小时,实现了十倍加速,可在培养瓶报阳当天得出药敏结果。该研究成果于近日发表在《微生物》杂志。该工作由北京协和医院检验科教授杨启文和该所单细胞中心研究员徐健共同主持完成。败血症是指病原菌侵入血液循环而引发的急性全身性感染。在引起血流感染的病原体中,鲍曼不动杆菌是最常见的病原体之一。目前,针对多重耐药或泛耐药病原体感染,比如鲍曼不动杆菌或碳青酶烯类耐药肠杆菌目等细菌感染,替加环素往往是针对抗感染治疗的最后一道防线。然而,临床检测病原体对替加环素的药敏性面临诸多难点。首先,替加环素理化性质不稳定,易氧化分解,而且培养基的类型、配制时间、检测方法、不同的菌种以及折点的选择等因素,都对替加环素的体外药敏结果有影响。其次,目前的药敏方法存在较多的难点和操作误区,也不易标准化。在中科院青岛能源所单细胞中心,记者看到,以年轻党员为骨干的“薛鸣球单细胞药敏快检技术攻关突击队”攻坚克难,展开了数轮技术攻关。由生物能源第一党支部单细胞中心的朱鹏飞、任立辉、戴靖以及北京协和医院朱盈等带领的攻关小组,联合青岛星赛生物公司和青岛大学附属医院的研究人员,从血培养阳性培养瓶中样本开始,使用CAST-R中自动化液体处理工作站(PLS)一站式完成样品D2O孵育、自动清洗和芯片定位;然后,利用仪器内置的软件(自主研发的算法)实现细胞精准定位与高通量拉曼光谱采集;最后,结合机器学习实现了光谱采集过程的自动化和智能化以及光谱的质量控制,得出准确药敏结果。CAST-R可针对血培养阳性培养瓶中的病原体直接进行自动化的药敏试验,速度提高了10倍。此前,单细胞中心科研团队提出了“最小代谢活性抑制浓度(MIC-MA)”这一测量药物敏感性的新概念,在此基础上,新的科研工作引入了“eMIC-MA”概念,以有效排除菌株起始状态和仪器改变对检测结果的影响。通过CAST-R测试了100株鲍曼不动杆菌临床分离株对替加环素药敏性,与临床金标准(微量肉汤稀释法;BMD)相比较的基本一致率和分类一致率分别为99%和93%,从而验证了CAST-R的准确性和可靠性。进而,针对26例患者血培养阳性培养瓶,测定了常见血流感染菌对替加环素、美罗培南、头孢他啶和氨苄西林/舒巴坦等8种抗生素的药物敏感性,并与BMD结果相比,分类一致率达到93%,验证了CAST-R在血流感染用药上的广谱适用性。这些结果验证了CAST-R自动化系统的快速、准确和可靠性以及临床适用性,加速了其临床应用。此外,利用单细胞中心前期发明的拉曼分选和测序技术(RACS-Seq)技术(Xu, et al., Small, 2020),CAST-R有望在单细胞精度建立耐药表型和基因型的联系,从而跟踪超级细菌的出现与耐药性的传播。该工作得到了北京协和医院检验科教授徐英春、青岛大学附属医院检验科教授朱元祺和单细胞中心研究员马波等的支持。获得了中科院先导专项、基金委国家重大科学仪器研制项目、中科院STS区域重点项目、广州生物岛实验室等的资助。
  • 智慧农业团队在多尺度稻叶瘟敏感光谱指数构建及遥感监测方面取得重要进展
    近日,农学院智慧农业团队在国际顶级遥感期刊《Remote Sensing of Environment》发表了题为“A disease-specific spectral index tracks Magnaporthe oryzaeinfection in paddy rice from ground to space”的研究论文,报道了他们在多尺度稻叶瘟敏感光谱指数构建,以及小农户田块稻叶瘟发生时空动态遥感监测方面的重要进展。稻瘟病(Magnaporthe oryzae)是威胁全球水稻生产的最具破坏性的真菌病害。现有的稻叶瘟发病信息主要通过田间调查来获取,这种方法不仅费时费力,而且存在代表性差等弊端,难以满足大范围稻瘟病高时效高精度监测的需求。构建适用于叶片和冠层尺度的稻叶瘟敏感光谱指数,对于遏制病害蔓延、病害定损评估、早期病害预测预警至关重要。现有研究多集中在基于机器学习或统计模型的单一尺度稻叶瘟识别和病情指数估算,缺乏对稻叶瘟高度敏感、可适用于叶片(个体)和冠层尺度(群体)的光谱指数。该研究综合分析了从单叶到冠层尺度稻叶瘟侵染引起的光谱响应(图1),基于单波段可分性和特异性光谱响应规律创建了一对稻叶瘟敏感植被指数(RIce Blast Indices, RIBIs),进一步通过光谱指数波段优化方法确定了三波段具体位置(R665, R753和R1102)。利用叶片、近地面冠层和卫星平台获取的多年多试验点实测数据,系统评价了RIBIs在不同尺度对稻叶瘟病害严重程度的估算能力。结果表明,在叶片尺度RIBIred对感染和健康样本的识别表现出最高的分类精度(图2),而在冠层尺度RIBInir则表现出与病情指数最高的相关性(图3)。图1. 稻叶瘟侵染下不同病害严重程度的水稻光谱反射率。A. 单叶尺度不同接种后天数(Days after inoculation, DAI);B. 近地面冠层尺度不同病情指数(Disease index, DI)。图2. RIBIs与传统光谱植被指数在温室(2018和2019)和自然条件下(2020)对健康与感病叶片分类精度的比较。RBVI:前人研究中对稻叶瘟较敏感的植被指数,SVI:类似RIBI的植被指数,TBVI:传统三波段植被指数,OD:其他类型病害指数,CW:叶绿素及水分敏感植被指数。图3. RIBInir和传统指数NDVI在近地面(A和C)及卫星尺度(B和D)与稻叶瘟病情指数DI的相关性。不同颜色散点代表在不同时期和试验点获取的样本。该研究进一步对Sentinel-2卫星影像提取的RIBInir进行时间序列分析和热点分析发现,在时间维度上,基于RIBInir的时间序列能准确追踪小农户田块中稻叶瘟的爆发与恢复态势,而传统植被指数NDVI对自然条件下稻瘟病发生过程的敏感性更差(图4)。空间维度上,RIBInir对稻叶瘟发生区域的刻画更加准确,稻叶瘟时空动态传播规律的与实地调查一致性更好(图5),卫星影像分析结果中表征病害恢复的绿色像素与呈现恢复趋势的黑色调查点吻合度更高。该研究构建了适用于叶片和冠层尺度的稻叶瘟敏感光谱指数,显著提高了对多尺度稻叶瘟发生的识别精度和对病情指数的估算能力;首次提出了基于光谱指数图的小农户田块稻叶瘟爆发热点识别思路,为基于卫星遥感的稻叶瘟传播概率等级划分和病害流行风险评估奠定基础。图4.试验区(以江苏省淮安市唐曹村为例)Sentinel-2影像植被指数的时间序列结果比较(A. RIBInir B. NDVI)。红色星号表示不同水平下的显著性差异。图5.两个典型研究区卫星影像RIBInir和NDVI的热点分析结果(左:江苏省淮安市唐曹村;右:江苏省淮安市太平村)。黑色点代表实地调查点。该研究由南京农业大学国家信息农业工程技术中心完成,农学院博士研究生田龙为论文第一作者,程涛教授为通讯作者。据了解,智慧农业团队在国家自然科学基金等项目,以及现代作物生产省部共建协同创新中心等平台的资助下,瞄准作物病虫害高时效高精度监测预警难题,持续开展了多年温室与田间试验,近两年连续在Remote Sensing of Environment上发表稻叶瘟光谱监测机理与方法方面的创新成果,对于作物病虫害天空地一体化监测预警和作物绿色智慧生产具有重要价值。
  • 莱伯泰科发布莱伯泰科Minilab-i全自动稀释配标仪新品
    ■ 实现实验室自动配标、定量移液、定容等多种功能,无需人工计算■ 超级防腐设计,平台采用防酸碱材质,电器组件隔离式设计并进行特殊防腐处理■ 双注射泵设计,经过权威计量部门校准,保证结果准确有效■ 双Z臂设计,支持移液枪和移液针两种模式。移液针三级清洗,独立清洗外壁,确保无交叉污染■ 可兼容2ml-110ml常规标液储液瓶和离心管,可选控温功能。■ 软件具有数据溯源及权限管理功能,可对标液进行管理,编辑,储存和随时调用,一键生成标液管理记录,符合GLP规范创新点:◆全自动化的实验室液体工作站,智能配制标准系列,定量移液,定容等多种功能,无需人工操作和计算。 ◆创新的双Z臂设计,兼具可以独立运行的移液针和移液枪,满足多种类型的应用需求。 ◆专为无机实验室的强酸性环境设计,采用全塑的操作平台,避免腐蚀和污染。 ◆灵活应用的软件,具有数据溯源、审计追踪和用户权限管理,一键自动生成标液管理记录。 莱伯泰科Minilab-i全自动稀释配标仪
  • 弗拉特利定律:Illumina如何缔造基因革命
    蕾妮· 瓦林特(Renee Valint)的女儿谢尔碧(Shelby)在2000年出生时,看起来虚弱无力,就如同一只耷拉着的布娃娃。谢尔碧学着走路和说话,但学得非常慢,错过了儿童发展的重要阶段。到4岁时,她还只能坐在轮椅上。到五年级时,她开始要用电子语音设备与人交流。绝望无助的蕾妮把女儿从菲尼克斯带到明尼苏达州罗切斯特的梅奥诊所(Mayo Clinic),进行最后一周的检查,并与美国最好的一些医生讨论病情。   &ldquo 他们都把手一摊,说:&lsquo 我们不知道她出了什么问题。&rsquo &rdquo 蕾妮说道,&ldquo 那时,她已经动都动不了了。我给她洗澡,给她喂饭。她甚至无法咀嚼吞咽。我不得不给她喂流质食物,这样她才能够吞下去,不会被噎着。这就像是一场噩梦。真是噩梦。我们没有其他地方可去了。&rdquo   但后来,菲尼克斯转基因组学研究所(Translational Genomics Research Institute)的医生们利用一项新技术&mdash &mdash DNA测序&mdash &mdash 来检查谢尔碧的基因。根据检查结果和其他发现,他们猜测用于帕金森综合症患者的补充多巴胺类药物可能会对她有效果。三个月后,谢尔碧从轮椅上站了起来。第二天,她步行上学,此后再也没有用过轮椅。现在,她喜欢上了跳舞。   像这样的故事正在创造DNA测序仪器市场的爆炸式增长。大型癌症中心把这类设备当作为那些没有其他希望的患者选择治疗药物的标准途径。如今,只需要一小瓶母亲的血液,DNA测序设备就能筛查胎儿的唐氏综合症等疾病和其他健康状况。它们正在取代更加昂贵的老式基因检测方法。   变化正以极快的速度到来。有多快?具有传奇色彩的英特尔(Intel)联合创始人兼董事长戈登· 摩尔(Gordon Moore)在1965年担任研究员时提出了一个愿景,结果推动了上世纪80和90年代的PC革命。摩尔认为,集成电路板上的晶体管数量将每两年翻一番。这不是科学定律,而是意愿&mdash &mdash 它是工程师们奋斗的目标。   但在过去的13年里,DNA测序费用的下降速度是摩尔定律的1,000倍,从每个人类基因组1亿美元降到了仅需1,000美元。   Illumina CEO 杰伊· 弗拉特利   只有一件事情比测序革命的发展速度更加令人惊讶,那就是这场革命的受益者是一家公司&mdash &mdash 位于圣迭戈的Illumina。这场大发展的大部分功劳可以归功于一位企业家,他就是该公司首席执行官杰伊· 弗拉特利(Jay Flatley)。Illumina在八年前成为占据主导地位的DNA测序设备制造商,尽管遭遇了几个资金雄厚的竞争对手发起的挑战,但该公司仍然保持了80%的市场份额。   自从2008年以来,Illumina的销售额和利润双双增长了147%,分别达到了14.2亿和1.25亿美元,股价上涨了617%,市值为230亿美元。   &ldquo 我们有专人对市场规模进行预测。&rdquo 61岁的弗拉特利说,&ldquo 到目前为止,我们做到的所有事情都表明,在我们5或10年的投资期内,如果我们依然是测序市场上的领头羊,那么我们的投资回报将比其他任何公司都要高得多。&rdquo   麦格理证券(Macquarie Securities)预测,DNA测序市场的规模将扩大10倍,达到230亿美元。Illumina正在大规模招兵买马并扩大生产,以使其能够每年生产出价值50亿到100亿美元的DNA测序设备。   &ldquo 一家公司拥有80%到90%的市场份额,而且正在以无人可及的速度推动技术的发展。这种事情非常罕见。&rdquo ARK投资管理公司(ARK Investment Management)首席投资官凯瑟· 伍德(Cathie Wood)说,&ldquo 这只股票还处于萌芽阶段。我知道这听起来有点疯狂,因为该公司市值已经超过200亿美元,但事实确实是这样。&rdquo   Illumina的故事并非源于改良的创意或者独创性的发现,而是坚持不懈、近乎完美的执行。这种执行完全可以追溯到首席执行官弗拉特利设定的调子。他是斯坦福大学培养出来的工业工程师。&ldquo 我不是科学家。&rdquo 弗拉特利说,&ldquo 坦白讲,我加入Illumina不是为了让我们作出科学突破,而是为了让我们打造出优秀的产品并尽快推向市场。&rdquo   弗拉特利这个人和蔼亲切,但少点情趣。他坐在隔间里,因为他不喜欢办公室。他穿着蓝色衬衫,领口敞着。他没有把改变世界这种激动人心的话挂在嘴边。就连他进行首次测序时的基因组也显得如此乏味无趣。最有意思的地方在于,他带有一个家族性寒冷型自身炎症综合征(Familial Cold Autoinflammatory Syndrome)的致病基因,在他身上表现出了这样的症状:他小时候会因为天气寒冷而长皮疹。但由于对执行的专注,他或许是生命科学行业甚至所有行业里最高效的首席执行官之一。   Illumina成立于1998年,当时的公司没有任何产品,就连原型都没有。公司创始人把弗拉特利招致麾下,因为他成功地以3亿美元的价格将他的上一家公司分子动力(Molecular Dynamics)出售。   那时,Illumina不是为人体DNA的每个碱基测序&mdash &mdash 那时每个人的费用高达3.6亿美元&mdash &mdash 而是迅速地对个别基因生成快照。另一家公司昂飞(Affymetrix)利用其DNA微阵列将那个市场占为己有。DNA微阵列又称基因芯片,是带有特定基因配型的微小玻片。这项技术利用了以下事实:DNA的四个碱基&mdash &mdash A(腺嘌呤),G(胞嘧啶),T(鸟嘌呤),C(胸腺嘧啶)&mdash &mdash 以特定方式配对(A和T配对,G和C配对),形成两条反向链。比方说,如果血液中有一条反向序列,它就会粘贴在像Velcro这样的基因芯片上。但Illumina有一个更好的办法:把DNA置于珠子而不是平面拨片之上。珠子的表面面积更大,拥有更好的信噪比,该公司希望藉此获得更加准确的结果。   在基因概念股大热期间,弗拉特利募集了1亿美元。他确保Illumina在其合作伙伴爱普拜斯应用生物系统公司(Applied Biosystems)&ldquo 打瞌睡&rdquo 时拥有后备计划。爱普拜斯是当时处于领先地位的DNA测序设备制造商。弗拉特利还与员工保持私人接触,坚持给每位员工写生日贺卡,直到Illumina在2006年招入第500位员工为止。   他还下大力气确保他招募到合适的人与他共事。他甚至炒掉了联合创始人、首席科学官安东尼· 恰尼克(Anthony Czarnik)。恰尼克说,弗拉特利之所以解雇他,是因为他患有临床抑郁症 他在2002年起诉公司,并赢得了720万美元的赔偿判决(占到当时Illumina年度净亏损的20%)。弗拉特利说,这是他职业生涯的最低谷。   在围绕着人类基因组计划的泡沫破裂后,投资者对基因概念股失去了信心。2003年,经复权调整,曾经高达22美元的Illumina股价跌至1美元以下。但那时,Illumina改进了其设备的化学和光学性能,使其基因芯片的准确性超过了昂飞公司。2006年,Illumina的销售额为1.84亿美元,而昂飞公司为3.55亿美元。第二年,Illumina成为最大的基因芯片制造商。如今,该公司的基因芯片被所有人加以使用,包括养牛的牧场主(处于繁殖目的)和加州山景城的基因检测公司23andMe。昂飞公司则面临亏损,市值仅为6.5亿美元。   但弗拉特利这时候已经对基因芯片的未来产生了质疑。基因芯片始终只是快照,只能用来寻找一个基因的一个特定序列。要是为一个基因甚至一个人的所有碱基进行测序的费用即将降低,这该怎么办呢?康涅狄格州布兰福德的454生命科学公司(454 Life Sciences)已经研发出了一种DNA测序仪,有望以25万美元而不是1亿美元的价格为个人全基因组进行测序。弗拉特利对董事们说,Illumina可以躺在功劳簿上数钱,但衰落终会来临。   他的解决办法是大规模的收购。2007年初,弗拉特利拿出价值6亿美元的股票&mdash &mdash 三倍于Illumina的年销售额&mdash &mdash 收购了Solexa公司。后者拥有一种实验性DNA测序仪,可以将DNA打断成微小的碎片并重组,然后用计算机进行破译。这笔交易是一次突破。到2008年,集成了这种新技术的Illumina设备能够以仅仅10万美元的价格为个人全基因组进行测序。   与此同时,很多资金雄厚的竞争对手,包括销售额达到40亿美元的生命技术公司(Life Technologies)和从私人投资者及公开市场筹集到5.7亿美元的初创企业太平洋生物科学公司(Pacific Biosciences),都试图赶上Illumina,但均以失败告终,甚至连其衣角都没有碰到。生命技术公司的原创技术曾在一段时间内很有竞争力,但未能与时俱进。太平洋生物科学公司点燃了利用激光来进行DNA测序的希望,但这项技术的错误率太高,无法与Illumina的效率相比。   &ldquo 那时,没有任何人能够威胁到他们的领先地位。&rdquo 马萨诸塞州总医院(Massachusetts General Hospital)的遗传学家丹尼尔· 麦克阿瑟(Daniel MacArthur)说,&ldquo 在我所处的领域里,几乎所有变革性的进步都来自于使用Illumina的技术。该公司取得了令人惊人的成就。&rdquo   Illumina的进步是如此之快,以至于常常令对手们猝不及防。弗拉特利回忆起了2010年与454生命科学公司创始人乔纳森· 罗森伯格(Jonathan Rothberg)会面的情景。当时,罗森伯格向他展示了一种基于半导体技术的桌面DNA测序设备,不仅体积更小,而且价格仅为5万美元,只相当于Illumina设备单价的十分之一。(罗森伯格是2011年《福布斯》杂志的封面人物。)弗拉特利问他,谁是他的竞争对手。&ldquo 我们没有竞争对手。&rdquo 罗森伯格对他说,&ldquo 这款产品将使世界意识到这种架构是真的。&rdquo   这听起来很棒,但就在罗森伯格于2010年推出该产品几周后,Illumina便发布了具有价格竞争力的仪器。弗拉特利的团队从2008年开始就一直在研发这款设备,虽然生命技术公司以7.25亿美元的价格收购了罗森伯格的初创公司,但仍然无法跟上Illumina的前进步伐。&ldquo 执行比什么都重要。&rdquo DNA测序关键技术的发明者、现任Illumina首席技术官的莫斯塔法· 罗纳吉(Mostafa Ronaghi)说。   瑞士制药巨头罗氏(Roche)发现Illumina不可战胜,因为罗氏自己的DNA测序业务也沦为可有可无的角色。2011年12月,该公司总裁弗朗茨· 胡默(Franz Humer)与弗拉特利会面,明确无误地告诉后者,他将收购Illumina。他说,他更倾向于友好收购。   弗拉特利大吃一惊。最终,他和董事会认为罗氏的57亿美元报价过低。在Illumina首席财务官马克· 斯塔普利(Marc Stapley)上任的第一天,罗氏便展开了敌意收购。&ldquo 我看到那个十年来带领公司不断发展的人坚定不移地说,&lsquo 我们会做那些最有利于股东的事?&rsquo &rdquo 斯塔普利说。   Illumina的银行家们告诉弗拉特利,被罗氏收购只是时间问题:近期收购生物科技领头羊基因泰克(Genentech)的交易证明罗氏从不退缩。但弗拉特利得到了股东们的支持。Illumina第三大股东摩根士丹利(Morgan Stanley)的杰森· 扬(Jason Young)说,他不会出售,无论价格多少。机构股东服务公司(Institutional Shareholder Services)也支持Illumina。最终,罗氏不得不放弃。&ldquo 感谢上帝,我们拥有了不起的支持者,&rdquo 弗拉特利说,&ldquo 在某些方面来说,这是件好事。尽管他们很有钱,但手没有那么长,所以他们早早地放弃了。&rdquo Illumina现在的市值是罗氏所报价格的四倍。   罗氏退缩了,而弗拉特利则向新市场挺进。科学家们发现,通过计算孕妇血液中的DNA标记数量,可以诊断出胎儿异常情况,包括唐氏综合症。2013年1月,Illumina收购了Verinata Health公司。Illumina认为,Verinata Health拥有该领域最宝贵的知识产权。分析师们说,虽然产前血液测试的销售额已经达到3亿美元左右,但在全球范围内有望达到30亿美元。   一年后,Illumina实现了期待已久的里程碑:该公司推出了X10,这款产品能够为个人全基因组进行高精度测序,费用仅为1,000美元,其中包括折旧费。这又是通过在化学成分方面来之不易的渐进式改进实现的。一点点的进步累积起来就是一大步。该产品的价格为100万美元,每次必须购买10台或以上,但这也意味着科学家们可以不再局限于仅仅研究几千名患者的基因组。&ldquo 这些工具使我们可以为一万、两万乃至三万人测序。&rdquo 哈佛-麻省理工博德研究所所长埃里克· 兰德尔(Eric Lander)说。该研究所购买了14台。在一家名叫人类寿命(Human Longevity)的新公司里,克雷格· 文特尔(Craig Venter)购买了20台X10,用来探索衰老的奥秘。亿万富豪陈颂雄(Patrick Soon-Shiong)和在西海岸拥有34家连锁医院的普罗维登斯医疗系统公司(Providence Health System)购买了10台,用于分析他们每年新收治的2.2万名癌症患者的基因。   麦利亚德基因公司(Myriad Genetics)和基因组医疗公司(Genomic Health)等老一辈基因检测公司转而使用Illumina的设备。新来者则希望颠覆这些市场。基因组医疗公司创始人兰迪· 斯科特(Randy Scott)创建的Invitae公司将向患者提供3,000种基因检测中的任何一种(或者所有),统一收费1,500美元。位于旧金山的Counsyl公司正利用X10来提供遗传性癌症基因和潜在疾病的检测。   最大的商机在于癌症检测,这可能成为110亿美元的全球市场。以60岁的希瑟· 弗尔维尔(Heather Follweiler)为例。她在越南和柬埔寨度假期间开始头痛,然后在移动左边身体时出现困难,回家后病情复发。凌晨两点的紧急CAT扫描发现她的脑里有一颗肿瘤,是从其他地方转移而来。医生们摘除了这颗肿瘤。   但后来,弗尔维尔这位退休的金融服务专业人士发现,在她的肠道里又有一颗肿瘤。医生们给她做了手术,但发现肿瘤太大,无法摘除,只能打发她回家。&ldquo 那时我基本上已经放弃了。&rdquo 她说。但她的一位医生把肿瘤样本送到了基础医学公司(Foundation Medicine)。这家得到了比尔· 盖茨(Bill Gates)和谷歌风投(Google Ventures)支持的初创企业,利用Illumina的测序设备来确定236个基因的突变位置,这可以为直接的药物治疗提供帮助。经过检测后,医生让她服用辉瑞(Pfizer)的抗癌药物Xalkori,此后她的的肠道肿瘤不见了,这种状态已经保持了一年多。&ldquo 我觉得自己的身体与两年半前没有什么不同了。&rdquo 她说道。   癌症关系重大,以至于弗拉特利花费数月时间说服美国国家癌症研究所前所长理查德· 克劳斯纳(Richard Klausner)担任Illumina的首席医疗官。在一次聚餐时,克劳斯纳为Illumina的未来勾勒了一幅蓝图。他以为自己只是在提供建议。但最后弗拉特利对他说:&ldquo 这正是我们的目标,可是我无法带领公司实现这个目标,但你可以。&rdquo   克劳斯纳说,下一个重大的机遇将是识别肿瘤细胞或者少量血液里的DNA,这样就能通过血液测试而非CAT扫描对癌症患者病情进行监测(Illumina的客户Sequenta就在对某些血癌做这样的事情)。以后有可能利用血液测试来筛查癌症,从而可以及早发现这种疾病。同时,克劳斯纳正在找机会与医疗保险商合作,以证明与大多数的医疗技术不同,改善的DNA测序诊断率实际上能够减少而不是增加医疗费用。病症的诊断方法常常会沦为大宗商品,但克劳斯纳相信DNA测序不会。   如今,Illumina的竞争对手变得更多了:曾经的合作伙伴、位于英国牛津的牛津纳米孔公司(Oxford Nanopore)一直在宣传如同优盘般大小的测序仪 罗氏以3.5亿美元的价格收购了山景城的另一家初创公司吉尼亚科技(Genia Technologies)。但弗拉特利相信,Illumina的业务(不仅包括设备,还包括处理基因数据的软件)将使该公司难以被击败。   很难不同意他的看法。个人DNA测序的费用如今还不到14年前弗拉特利开始执掌Illumina时的十万分之一。Illumina希望进一步降低费用。首席技术官罗纳吉说,到目前为止,每当测序费用下降五到十倍,市场就会被颠覆一次。他预计,DNA测序设备的价格可能降至1万美元(目前Illumina的中端设备售价为25万美元),这将带来全新的市场和疗法。弗拉特利说:&ldquo 就DNA测序技术在今后三至五年的走向而言,我们的路线图相当激动人心。&rdquo
  • 莱伯泰科MiniLab全自动稀释配标仪解放实验室人员双手
    p    strong 仪器信息网讯 /strong 莱伯泰科MiniLab全自动稀释配标仪用于分析过程中的固液样品配制,液体样品稀释,标准曲线配置,混合标样配置,标准品及质控样等的定量添加,以及其他各类液体处理操作,为后续的GC/MS或LC/MS提供标准样品,标准曲线及样品制备服务。 /p p   它具有多重优势优势:实验室自动配标、样品分装、定量添加等多功能,无需人工计算,软件自动计算配置方案,将技术人员从繁琐的操作中解放出来 双注射泵均经过计量认证,在保证稀释倍数的同时提高精度,确保配标结果的准确性和重现性,不同人员,不同实验室,不同地点都可以得到相同的结果 移液针具有三级全自动清洗功能,自动吹干避免残留夜滴,杜绝一切交叉污染 标液可直接配制到2ml的GC/LC小瓶中,要比用容量瓶更加节省溶剂和成本,且无需转移。如果标液需求量较大,还可以选择更大的10ml/30ml等多规格样品瓶 软件具有数据溯源及权限管理功能,可对标液进行管理、编辑、储存、随时调用,方便一键生成标液管理记录,符合GLP规范。 /p p   该系统在疾病控制,食品安全,农业,环境保护,制药,化工等领域有着广泛的应用。 /p p   更多详情请查看视频: /p p script src=" https://p.bokecc.com/player?vid=B5FABD7BE3E4B4C09C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script /p
  • 徐健团队新成果 基于拉曼组的肿瘤单细胞药敏检测新方法
    肿瘤药敏性检测方法学是抗癌药物评价和筛选的前提,也是临床化疗方案设计的基础。中国科学院青岛生物能源与过程研究所单细胞研究中心开发了基于拉曼组的肿瘤单细胞药敏检测新方法D2O-CANST-R,具有快速、低成本、单细胞器精度、识别耐药细胞、体现抗癌机制、可对接单细胞分选和测序等特色,为癌细胞-药物互作研究、抗癌药物筛选等提供了新手段。  化疗在恶性肿瘤的治疗手段中占重要地位,如使用得当,单纯或辅助化疗即可根治部分肿瘤;对于一些晚期肿瘤,化疗也可用于姑息性治疗。然而,各种肿瘤类型间或不同患者个体间,其药物应激反应均存在显著差异,且化疗过程中耐药细胞的产生会削弱抗癌药物疗效。因此,快速、低成本、可识别耐药细胞、揭示药物应激机制的肿瘤药敏检测方法,对抗癌药物研发和临床精准用药十分重要。  目前,主流的肿瘤药敏检测方法,如比色法、生物发光法、荧光分析法等,通常依赖于终点检测,即区分细胞死活,难以定量、特异性地测量药物对癌细胞的“代谢抑制”程度。同时,基于细胞群体反应的检测手段,难以检测癌细胞群体中极个别的耐药细胞;这些“害群之马”在正常环境下没有生长优势,却耐受高浓度药物,因此可能造成肿瘤死灰复燃,导致临床化疗失败。  针对这一问题,单细胞研究中心科研人员Maryam Hekmatara等以人乳腺癌细胞株(MCF-7)和雷帕霉素的互作为例,开发了重水饲喂单细胞拉曼光谱肿瘤药敏快检技术(D2O-probed CANcer Susceptibility Test Ramanometry;D2O-CANST-R)。结合肿瘤细胞拉曼组采集和多元曲线分辨-交替最小二乘法分析算法(MCR-ALS),研究发现,在1-3天的药物处理后,D2O-CANST-R能特异性地基于“代谢抑制”检测肿瘤药敏性,并能在细胞核、细胞胞质、脂质体等单个细胞器的分辨精度,追踪和区分其中蛋白质与脂质的合成速率和代谢变化,从而揭示药物作用机制。脂质和蛋白质代谢的高度活跃,是肿瘤细胞快速增殖的重要原因,因此,上述能力对于抗癌药物的机制研究和筛选具有重要价值。重水饲喂单细胞拉曼光谱肿瘤药敏快检技术D2O-CANST-R  基于前期单细胞研究中心提出的“拉曼组”(ramanome)和“药物应激拉曼条形码”(Raman Barcode of Cellular response to stresses;RBCS)等概念,科研人员还揭示了真核生物(人乳腺癌细胞和酵母细胞)之间、细胞器之间、药物浓度之间、药物处理时长之间、生物大分子代谢途径之间等,在单细胞精度代谢应激机制上的异同。因此,D2O-CANST-R还具有高时空分辨率、信息量丰富、揭示代谢层面机制等特点。此外,在高剂量雷帕霉素(500或5000×IC50)处理后,仍存在保持较高代谢活性的癌细胞,即耐药细胞。D2O-CANST-R识别肿瘤耐药细胞和测定耐药异质性的能力,对于药物机制研究、抗癌药物评价和筛选等具有重要意义,并具备辅助精准化疗方案设计的潜在能力。  单细胞研究中心前期针对临床抗感染用药,提出了“重水饲喂单细胞拉曼药敏快检”原理,引入了“最小代谢活性抑制浓度”(MIC-MA)这一衡量药敏性的新概念,发明了“单细胞光镊微液滴拉曼分选”(RAGE)和“单细胞微液滴流式拉曼分选”(RADS)等核心器件,研制出“临床单细胞拉曼药敏快检仪”(CAST-R)和单细胞拉曼分选-测序耦合系统(RACS-Seq)等;针对临床样品,证明了单个细菌细胞精度同时测定抗生素药敏表型和高覆盖度基因组的可行性(Xu T, et al, Small, 2020)。该研究是上述单细胞技术体系针对人体细胞与药物互作的拓展,不仅将服务于肿瘤药物研发、肿瘤精准用药等,而且为肿瘤单细胞分选和多组学研究提供了新的技术路线。  相关研究成果发表在《分析化学》(Analytical Chemistry)上。研究工作由青岛能源所研究员徐健主持完成,得到国家重大科学仪器研制项目(国家自然科学基金委员会)和中科院前沿局人才项目等的资助。  论文链接相关介绍:徐健 中国科学院青岛生物能源与过程所研究员、单细胞中心主任 山东省能源生物遗传资源重点实验室主任。2003年华盛顿大学计算机科学硕士和生物化学博士,2003-2004年华盛顿大学基因组科学和系统生物学中心博士后。2004-08年于华盛顿大学基因组研究院任基因组拼装和分析团队负责人。2008年入选中科院“百人计划”并全职加入中科院青岛生物能源与过程所。研究方向为单细胞分析仪器和大数据,及其在微生物组、合成生物学和生物安全等领域的应用。论文发表于Science, Cell Host Microbe, Sci Adv., Nature Commu.等130余篇,被引用10000余次(H-index 43)。获青年拔尖、创新领军人才、国家杰青基金、中国青年科技奖等支持。中国科学院青岛生物能源与过程研究所单细胞中心简介:中国科学院青岛生物能源与过程研究所是由中国科学院、山东省人民政府、青岛市人民政府于2006年7月启动筹建,2009年11月30日通过共建三方验收并纳入中国科学院“知识创新工程”管理序列的国立科研机构。单细胞中心的核心使命是以基因组工程、工具酶开发、先进成像、微流控器件、大数据等为主要方法学支撑,围绕细胞工厂构建、微生物组快检及机制等领域的关键科学和技术瓶颈,开发单细胞分析、分选、测序与培养技术,研制与产业化单细胞分析仪器系列,从国产装备的角度支撑单细胞大数据网络和微生物组天网等原创大数据系统,服务于工业生物技术、大健康、海洋资源挖掘、环境保护与修复、生物安全等应用领域。
  • 小菲课堂|FLIR光学气体热像仪到底有多灵敏?
    FLIR光学气体热像仪(OGI),其灵敏度极高,能在数米以外的距离检测细微气体泄漏,从数百米以外的距离检测较大泄漏。还可检测炼、石化、制药、天然气等行业的气体泄漏。它们具体有多厉害呢?用事实说话吧~01高灵敏度模式:蒸汽可视化利用高灵敏度模式(HSM),操作员甚至能发现微小泄漏。高灵敏度模式是一种能够提高红外热像仪热灵敏度的图像相减视频处理技术。HSM功能从后续帧的视频流帧中减去一定百分比的单像素信号(增强了帧之间的差异),使泄漏在最终图像上更清晰突出地显示出来。02“看见”牛呼气拍摄到的热量是来自奶牛呼出的水蒸气吗?NONONO!实际上,我们看到的是呼出的二氧化碳。 光学气体热像仪通过对某一特定波段中的红外吸收进行光谱滤波可视化气体。在4.3μm波长下,水蒸气吸收的能量不如二氧化碳多。例如,当我们(或奶牛)呼气时,滤除4.3um波长的光学气体热像仪所检测到呼出的二氧化碳远多于水蒸气。03特定气体的多方位应用FLIR高分辨率中波段红外热像仪中有冷滤镜,是专门用于观测二氧化碳吸收红外能量。通过下面视频中的实验,可以想象用FLIR光学气体热像仪进行漏点检修,比如用二氧化碳作为追踪气体来检测发电站内的氢气泄漏,或用在氢冷涡轮发电机内,当然也可以给这些热像仪加滤镜来观察其他气体。光学气体(OGI)热像仪利用光谱波长过滤和斯特林冷却器冷温过滤技术可视化甲烷(CH4)、六氟化硫(SF6)、二氧化碳(CO2)等气体和制冷剂的红外吸收。因此,石油和天然气行业有能力建立更安全、更高效的“智能型LDAR”(泄漏检测和维修)计划,让检查人员能更快速地检测瞬时排放和泄漏,立即查明泄漏源并实施修复,从而降低工业排放,更符合法律规定。
  • 美研制出增强拉曼散射传感器 灵敏度提高10亿倍
    据美国物理学家组织网3月22日(北京时间)报道,美国科学家研制出一种超灵敏传感器,可使用其增强的拉曼散射来探测包括癌症信号、炸药等物质,其灵敏度比普通拉曼散射传感器增强了10亿倍。   拉曼散射是指光通过介质时由于入射光与分子运动相互作用而引起光的频率变化,1928年由印度物理学家钱德拉塞卡拉拉曼发现。在拉曼散射中,一束单色光照射到一个物体后,其反射光会包含另外两种频率的光,这两种光的频率仅与该物体的分子组成相关,这就潜在地提供了一种有效识别物质的方法。但由于这种额外的光太微弱,科学家几十年来很难将拉曼散射付诸于实践。   上世纪70年代,科学家研制出表面增强拉曼散射(SERS)技术,可以通过将所鉴别物质放在粗糙的金属表面或金、银小粒子之上来增强拉曼信号。但科学家随后发现,这种增强的拉曼信号仅出现在传感器表面的几个随机点上,很难预测其具体位置,仍然非常微弱。   而普林斯顿大学电子工程系教授斯蒂芬周领导的团队摒弃了以往设计和制造拉曼传感器的方法,研发出一种全新的SERS结构:一块芯片上布满一行行由金属和半导体组成的小柱子。   新传感器获胜的“秘密武器”就是这些小柱子的排列方式:每个柱子上部和底部各有一个由金属制成的中空部分 柱壁上布满直径约为20纳米的金属粒子(等离子体纳米点),金属粒子之间有2纳米左右的空隙。金属粒子和空隙能显著增强拉曼信号 中空部分能捕捉光信号,让光多次而不是仅一次地通过等离子体纳米点,从而也能增强拉曼信号。迄今为止,该芯片的灵敏度比不经过拉曼增强而研制出的传感器高10亿倍,而且其灵敏度非常稳定,能可靠地应用于感应设备中。   除灵敏度大增之外,借助纳米压印技术和纳米粒子自组装技术,新芯片能实现高质量、规模化制造,研究人员已经在4英尺的晶片上制造出这些传感器。   美国海军研究实验室的科学家也在进行相关实验,希望军队也能使用该技术探测化学物质、生物试剂和炸药。
  • 科学家将拉曼效应用于光热显微镜,实现超灵敏振动光谱化学成像
    “我们开创了受激拉曼光热成像[1]这个全新的方向,这是化学成像领域的一个新突破,这项技术未来一定会发展成为能够被广泛应用的产品。”美国波士顿大学程继新教授如是说。图丨程继新(来源:程继新)在这次研究中,程继新团队利用一种新的物理机制,即受激拉曼本质上是一个化学键振动吸收过程,吸收的能量变成热形成焦点局部升温,升温改变焦点周围样品的折射率。由此,他们开发出受激拉曼光热(Stimulated Raman Photothermal,SRP)显微镜。该技术突破了此前受激拉曼散射(Stimulated Raman Scattering,SRS)成像的检测极限,将调制深度提高了 500 倍,极高的调制深度为更高灵敏度的检测奠定了基础。那么,与 SRS 相比,SRP 有哪些不同呢?具体来说,SRS 显微镜直接测量光被吸收后强度的变化,并提供光谱和空间信息;而 SRP 显微镜则是测量由样品热膨胀引起的光散射或由热透镜引起的折射,观察样品本身的温度、折射率等变化,进而提供光谱和空间信息。化学成像技术能够“追踪”细胞中的分子信息,但该领域最大的瓶颈之一是灵敏度。SRS 显微镜在揭示复杂系统中的分子结构、动力学和耦合方面显示出巨大的潜力。然而,由于其较小的调制深度和脉冲激光的散粒噪声,SRS 的灵敏度难以突破毫摩尔级,这导致其无法对低浓度分子的观察及对相关信息的追踪。此外,不可忽视的是,在使用 SRS 成像时,研究人员必须使用高倍物镜来收集信号。如果想得到高分辨成像,就必须将两个高倍物镜挤在一起,这在操作上带来极大的不便。而 SRP 的优势在于操作简单、方便,只需要低倍物镜就能够测量相关信号,且检测物镜和样品之间可以保持一定的距离。由于 SRP 显微镜非常灵敏,可以通过它观测不同的分子、不同的化学键,填补了该领域的数据空白。该技术有望应用于环境科学、材料科学、生命科学等领域,例如环境中微塑料检测、绘画作品成份分析、病毒单颗粒谱学、单细胞和生物组织成像等。一次“因祸得福”的聚会开启了一个新方向该技术背后的科研故事要从一次“因祸得福”的聚会说起。2021 年,在程继新 50 岁生日时,举办了一次课题组聚会,其中的主题之一是篮球比赛。组内成员博士研究生朱一凡在运动时不小心受伤了,因此需要在家休养 2 个月。于是,程教授交给他一个计算方面的任务:在受激拉曼散射成像时,聚焦焦点的温度变化具体是多少?根据朱一凡的模拟结果,在大概 10 微秒的时间里,相关温度上升了 2 至 3 摄氏度,这个结果很快引起了程教授的高度关注。“这个范围的瞬态温度变化不会损害细胞。于是,我们开始探索拉曼效应用于光热显微镜这个全新的方向。”程继新说。图丨SRP 显微镜设计(来源:Science Advances)从计算方面确定了温度升高的数据,那么,如何在实验上证实温度升高呢?研究人员想到,可以用对温度很敏感的荧光染料来做温度计。具体来说,把荧光染料加入样品,在受激拉曼激发的同时进行荧光测量。实验结果证明荧光强度呈下降趋势,以此在实验上确认了受激拉曼导致的温度升高(如下图)。图丨受激拉曼光热效应的理论模拟和实验观察(来源:Science Advances)但是,荧光测试是有标记的测量,而他们更想通过无标记(label-free)的方式测量光热信号。于是,研究人员用“第三束光”测折射率的变化,可以在纯液体中得到同样的信息,而且这种做法不受脉冲激光噪音的影响。最终,他们突破了此前 SRS 成像的检测极限,将调制深度提高 500 倍。组内成员博士研究生殷嘉泽以中红外光热显微镜(Mid-infrared photothermal microscopy)为主要研究方向,于 2021 年发展了一种新方法,用快速模数转换直接提取光热信号[2]。该方法同样适用于 SRP 显微镜,从而有效地提高了其检测灵敏度。图丨生物样品在水溶液环境中的 SRP 成像(来源:Science Advances)此外,组内成员博士研究生戈孝伟为本次开发 SRP 显微镜提供了 SRS 的实验基础。由此可见,研究是一个逐渐积累的过程,并需要团队成员发挥各自的优势,这充分体现了“众人能移万座山”的精神。图 丨相关论文(来源:Science Advances)近日,相关论文以《受激拉曼光热显微镜实现超灵敏化学成像》(Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging)为题发表在 Science Advances [1]。波士顿大学博士研究生朱一凡为该论文第一作者,程继新教授为论文通讯作者。16 年磨一剑1999 年,程继新在香港科技大学从事第一个博士后研究,他选择了一个技术较为成熟的研究方向——超快光谱学(ultrafast spectroscopy)。同年,诺贝尔化学奖颁予飞秒时间分辨的超快光谱学技术。2000 年,他加入国际单分子生物物理化学的奠基人之一、哈佛大学谢晓亮教授(现北京大学李兆基讲席教授)课题组,从事第二个博士后研究。在那里,程继新和其他同事开发了可实现高速振动光谱成像的相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)显微镜。2014 年,诺贝尔化学奖颁予超分辨率荧光显微技术。但是,荧光显微镜不能解决生物成像领域中所有的问题,例如,荧光染料标记会改变胆固醇、氨基酸等小分子的生物功能。因此,生命科学需要无荧光染料标记的分子成像技术。程继新表示,“选键成像很好地解决了分子选择性的问题,其不仅能看到各种分子,又不需要对分子进行荧光染料标记。”梦想很美好,现实却充满挑战。能不能通过发明新技术,去做荧光显微镜做不到事情?“继新”人如其名,从学生时代就喜欢啃“硬骨头”的他,继续探索。博士后研究工作结束后,程继新于 2003 年来到美国普渡大学任教,在那里,他将分子光谱学与生物医学工程融合,致力于化学成像这一新兴领域。2007 年,该课题组报道了一个有趣的发现:由于受激拉曼增益和损耗,一部分能量从光子转移到分子[3]。因为脉冲式的能量吸收可以产生声波,该发现促使其团队开发出受激拉曼光声显微镜(stimulated Raman photoacoustic microscope)。然而,由于当时的光声测量不是很灵敏,他们没测到受激拉曼光声信号。幸运的是,在一个意外的实验中,他们发现了基于泛频激发的光声信号[4],并开发了检测血管内壁胆固醇的振动光声内窥镜。图丨中红外光热选键成像的原理(左)及产品展示图(右)(来源:程继新)为寻找增强化学键成像信号的方法,他们再次调整研究方向。通过“thinking out of the Raman box”,开启了中红外高分辨光热成像这一全新的方向。由于分子振动吸收的能量在皮秒的时间尺度上全部转化为热能,程继新意识到,光热效应可以用来“看”细胞里的化学键。2016 年,他们报道了高灵敏度中红外光热显微镜 (Mid-infrared photothermal microscope),突破性地实现中红外超分辨三维动态成像。通过用可见光来测量光热效应,该技术能够以亚微米分辨率“看见”活细胞中的化学组分,首次使单细胞红外显微成像成为可能[5]。2017 年,程继新加入波士顿大学担任光学中心的 Moustakas 光学及光电子学讲席教授。他的团队致力于精准医学光子学技术的研发,研究覆盖了化学成像、神经调控、光学杀菌等三个方向。其课题组在全球首次通过光声信号来刺激、调节神经细胞(如下图)。最近,他们设计了一种用于无创神经刺激的高精度(0.1 毫米)光致超声器件,并在小鼠模型成功验证,第一次利用非遗传途径进行超高精度的无创神经调节[6]。此外,他们还发明了一种通过光解色素来杀死抗药性超级细菌的方法[7]。图丨光致超声神经刺激工作原理图和横向声场压强分布(来源:程继新)程继新认为,真正原创的工作不是被设计出来的,而是实现了从来没想过会发生的事情。“原创的科学是由直觉推动的,并得益于长期不懈的努力和积累,所谓的‘突破’其实是一个量变到质变的过程。”他总结道。不止于科学技术的创新,在推进技术产业化落地的过程中,更是让他感叹“应用范围超乎了最初的想象”。据悉,程继新拥有 30 多项国际专利,并作为联合创始人或科学顾问参与了多项技术的产业化。2015 年,基于分子振动光声技术,程教授和学生们共同创立了 Vibronix Inc.,该公司致力于振动成像技术研发和医疗设备创新,现位于苏州工业园区。2018 年,作为科学顾问参与建立了光热光谱公司(Photothermal Spectroscopy Corp.)。该公司位于美国加州,基于程教授的中红外光热成像专利开发了一款名为“海市蜃楼(mIRage)”的显微镜,寓意为“信号来自于折射率的变化”。据了解,该产品目前已销往世界各地百余实验室。2019 年,程继新联合创立了 Pulsethera 公司,旨在通过内源发色团的光解作用杀死超级细菌。2022 年,程继新成为法国巴黎 AXORUS 公司的科学顾问,该公司致力于光声神经刺激技术的医学转化。谈及技术的推进产业化落地的经验,程继新表示,在发展某项技术时,可能最开始只聚焦在生命科学领域的某个细分方向,但将技术真正发展为产品,其应用范围之广可能是当初没有想到的。他举例说道:“mIRage 现在被应用在半导体领域,用来检测芯片中的污染。芯片中的污染多数是有机物,因此能够通过化学键成像来检测芯片的质量,这完全超乎了我的想象。”图丨2023 年 8 月,程继新课题组的部分成员合影于首届化学成像 Gordon Research Conference(来源:程继新)回顾三十年的科研之路,程继新认为,最有回味的事情是每个阶段都有新惊喜。化学成像领域每经过大约 8 年就要进行一次技术革新,从 1999 年的 CARS 显微镜到 2008 年的 SRS 显微镜,到 2016 年的中红外高分辨光热成像,再到 2023 年的 SRP 技术。“几年前还觉得是天方夜谭的事情,都通过发明新的技术实现了,由此一步步将领域发展向前推进。”程继新说。下一步,该团队将继续发展无荧光标记的化学成像,进一步提升灵敏度,同时发展深组织的高分辨化学成像技术。他们希望,能够利用高能量的激光器将 SRP 的灵敏度提升到接近于荧光显微镜的微摩尔级别。同时,他们计划尽快将该技术发展为产品。据悉,美国加州的Photothermal Spectroscopy Corp.及中国苏州的威邦震电公司(Vibronix Inc.)正在推进相关的产业化进程。从 2007 年观测到受激拉曼过程的能量转移,到 2023 年报道 SRP 显微镜,对程继新来说,这是一次历经 16 年的科研旅程。在本次的 SRP 论文发表后,他在朋友圈这样写道:“科学很酷,生命短暂。我的下一个 16 年会是什么样呢?”
  • 表面增强拉曼技术助力挥发性有机小分子的高灵敏检测
    近日,中国科学院苏州生物医学工程技术研究所的宋一之团队与尹焕才团队在高灵敏增强拉曼气体传感方面取得进展。研究团队开发了一种具有超高灵敏性的柔性多孔三维玫瑰花枝状纳米增强基底,可实现气相与液相中有机小分子的高灵敏检测。研究成果发表在Analytical Chemistry上。高灵敏微量气体传感在环境污染研究、人体挥发性有机物(VOCs)检测中具有重要现实意义。迄今为止,已有多种分析技术被用于气体检测,但大多存在成本高、操作复杂、分析过程耗时等缺点。表面增强拉曼散射(SERS)作为一种有力的痕量分子检测工具,可利用基底的表面等离子体共振耦合和电荷转移效应大幅增强目标分子的拉曼散射信号,具有高灵敏、简单、快捷、无损和特异指纹识别的特点,在气体传感领域具有突出的优势。对此,该研究通过化学生长与微纳加工相结合的方式在柔性多孔滤膜上制备了纳米氧化锌金属三维异质结构(图1),并利用酰胺反应选择性地捕获腐胺和尸胺分子,实现了低浓度气体分子的高灵敏定量检测(腐胺检测限:1.26×10-9 M,尸胺检测限:2.5×10-9 M),比同类研究报道的检出限高出2~3个数量级(图2);另外,还实现了在液相中的超高灵敏度定量检测(腐胺检测限:3.2×10-16 M,尸胺检测限:1.6×10-13 M),比同类研究报道的检出限高出6~9个数量级,充分证明了该SERS传感器在液相与气相有机小分子检测的巨大潜力。鉴于该三维柔性SERS基底的多孔特性和优异的增强性能,将其与微流体装置和便携式拉曼光谱仪集成,搭建SERS快速检测系统,有望实现气溶胶中细菌、病毒和污染物的高效捕获与富集,充分发挥该三维基底在气溶胶的高灵敏检测领域的技术优势。研究工作得到国家自然科学基金委、江苏省重点研发产业前瞻项目、中科院科研仪器装备研制项目等项目的经费支持。   论文链接:https://pubs.acs.org/doi/abs/10.1021/acs.analchem.1c05013图1 基于三维玫瑰花枝状SERS传感基底构筑方法及有机气体分子检测策略图2.液相中(a-f)与气相中(g-l)不同浓度腐胺与尸胺的SERS光谱
  • HORIBA科学仪器事业部发布HORIBA LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪新品
    HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。LabRAM Soleil™ 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling™ 和QScan™ 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪LabRAM Soleil™ 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能: √ 占用面积QScan™ 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像 √ XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描) √ 标配低波数拉曼散射(30 cm-1) √ 光致发光(PL)、电致发光、光电流、上转换发光 √ 纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman™ (TERS)、纳米PL和阴极发光专注于您的工作,其它的交给仪器!忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil™ 提供先进的自动化功能,结合EasyImage™ 易成像工作流技术,它大大减少了参数设置上花费的时间,并且极大程度上确保了稳定性和再现性: √ 真正的自动操作系统 √ EasyImage™ :有操作向导,简单快速 √ 自动校准:根据环境条件在几秒钟内自动检查并重新校准 √ SmartID™ : 不用担心使用错误的物镜倍数或者错误的参数 √ 远程维护超快速成像:拉曼成像从未有如此之快!LabRAM Soleil的光学稳定性加上专利保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上: √ SmartSampling™ :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟 √ TurboDrive™ :光栅快速驱动,快至400nm/s √ 4种SWIFT™ 功能 SWIFT™ :普通超快速成像 SWIFT™ XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强) SWIFT™ XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品 Repetitive SWIFT™ :信噪比增强快速成像技术,不断重复以改善信噪比解决各类分析问题从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。 √ 可配置4个内置激光器和6块不同的滤光片 √ 1分钟内可快速切换4块光栅 √ 标准低波数:低至30cm-1 √ 大样品室: 444(H) x 509 (L) x 337 (W) mm √ 具有很高的稳定性,维护操作简单LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能!LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。 √ 先进的多变量分析方法MVAPlus™ :轻松分析百万条光谱,即使是“困难”的样品,也能极大程度地对其中的分子进行鉴别和定量分析。 √ ProtectionPlus确保符合FDA21 CFR Part 11和GMP / GLP的要求 √ ParticuleFinder™ 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类 √ EasyImage™ 自动化的工作流程使得用户只需一键点击即可获得拉曼成像技术指标光学设计高效率全反射式采用超宽带电介质反射镜共焦设计高效率全反射式采用超宽带电介质反射镜共焦针孔自动机械针孔三维空间滤波激光波长可选325nm、532nm、638nm、785nm等激光光路支持6路自动,独立优化控制激光偏转方向采用超宽带电介质反射镜光栅扫描速度400nm/s采用TurboDriveTM 闭环快速直驱光栅技术光栅数量不限支持4块光栅全自动切换低波数拉曼多达6种全自动光谱模式拉曼、PL、ULF、上转换发光等等瑞利滤光片每个滤光片均由计算机控制激光阻挡优化成像多达8种光谱成像技术详情请咨询HORIBA销售工程师激光安全Class1 安全的激光安全等级尺寸898mm x 797mm x 806mm重量120Kg功耗满负荷运转时环保和安全设计1根电源线1根通讯线创新点:LabRAM Soleil™ 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling™ 和QScan™ 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 HORIBA LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪
  • 拉曼光谱技术 为建首个致敏花粉种类预报系统奠基础
    德国研究人员报告说,他们开发了一项新的技术,将方便于植物花粉过敏患者的生活。这为建立首个识别空气中流动的致敏花粉种类的自动、实时预报系统奠定了基础。   研究人员加尼娜• 内普在报告中说,当前的花粉计数和预警是通过在显微镜下用肉眼观察花粉颗粒来识别花粉的种类。这一方法既费时,也不可能让患者知道每小时空气中传播的花粉类别。   研究人员通过一种普通的实验室方法来识别花粉颗粒的结构,就可以区别橡树、枫树和其它植物的花粉。他们利用这种叫拉曼光谱法的技术得到了15种不同树种花粉的化学“标识”。这为实时花粉检测和预警系统的建立打下了基础。
  • 【时事新闻】赛默飞Gemini分析仪连夺2015年“R&D 100”两项大奖
    —— 创新驱动 打造更健康、更清洁、更安全的未来2015年11月23日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日凭借Thermo ScientificTM GeminiTM手持式红外拉曼二合一分析仪 (产品详情:www.thermoscientific.cn/product/gemini-analyzer.html ) 在科技突破性、创新独特性和应用实用性上的卓越表现,从全球上千款科技创新技术中脱颖而出,荣膺2015年“R&D 100分析测试类研发大奖”及“分析测试类编辑选择奖”两项大奖,进一步彰显赛默飞在创新上的不断探索及为客户创造有效价值的强大执行力。“R&D 100”研发大奖被誉为科技领域的“奥斯卡奖”,是国际科技研发领域极为推崇的科技研发奖,而赛默飞目前已有超过50款产品荣获R&D 100研发大奖。Gemini分析仪是赛默飞今年全新推出的创新型手持式光谱分析仪,它开创性地将傅立叶红外光谱和拉曼光谱技术集成到一台手持式仪器中,可帮助公安、安检及多个领域的现场应急人员快速、安全地执行任务,这也是此产品摘得双奖的主要原因。赛默飞中国区总裁江志成先生对于此次得奖十分自豪,他表示:“我们很荣幸获此殊荣,这代表着行业对赛默飞在科技创新上的高度认可。赛默飞中国将持续以公司核心的创新基因为基础,致力于将开创性的科技和研发因地制宜地应用到中国发展当中。”赛默飞秉持创新理念,研发出诸多在生命健康、生物制药、食品安全及环境等领域中广受好评的产品,持续为全球范围内的客户提供行之有效的解决方案和贴心周到的服务。同样,赛默飞在中国市场也是硕果累累:2013年6月,赛默飞在上海成立中国创新中心,为高速发展的亚太市场提供卓越的研发能力及培训服务。2014年,赛默飞在中国市场持续发力,成功推出针对食品安全及环境领域的可移动检测车。今年,赛默飞更是厚积薄发,在刚结束的第十六届北京分析测试学术报告会暨展览会(简称:BCEIA 2015)上推出了十多款新品,目标就是通过源源不断的科技研发投入为整个行业乃至中国创造更健康、更清洁、更安全的未来。-----------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美 元,在50个国家拥有约50,000名员工。我们的 使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发 展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为 了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网 站:www.thermofisher.com
  • 莱伯泰科MiniLab全自动稀释配标仪培训班圆满结束
    为满足用户需求,完成大家的试用意愿,莱伯泰科于本周举办了MiniLab全自动稀释配标仪培训班,并圆满结束。本次培训分为两个部分,一是仪器培训,帮助大家了解我们的产品,进行实地考察,并且进行了现场操作,以便于用户对我们的产品进行更加充分的了解。而我们之所以敢这样做就是因为我们对我们自己产品有着充足的信心,实事也确实如此,用户在使用完我们的仪器之后纷纷给予好评,对我们的产品甚是满意。并且在参观我们实验室的过程中,各位老师对我们其他产品也产生了极大兴趣。培训结束之后我们为大家组织了一场颐和园游玩活动,意在让大家领略一下北京的风土人情及文化底蕴,让大家放松一下心情。 MiniLab全自动稀释配标仪在配标方面可以说堪称完美,废话不多说,让事实说话,请看数据:以上数据是本次培训过程中有我们过来参加培训的老师所做出的结果,相关性基本上都在0.99992以上,甚至部分数据相关性达到了1,由此可见其配标功能的强大! MiniLab全自动稀释配标仪优势:1、实验室自动配标、样品分装、定量添加等多功能,无需人工计算,软件自动计算配置方案,将我们的技术人员从繁琐的操作中解放出来;2、双注射泵均经过计量认证,在保证稀释倍数的同时提高精度,确保配标结果的准确性和重现性,不同人员,不同实验室,不同地点都可以得到相同的结果;3、移液针具有三级全自动清洗功能,自动吹干避免残留夜滴,杜绝一切交叉污染;4、标液可直接配制到2ml的GC/LC小瓶中,要比用容量瓶更加节省溶剂和成本,且无需转移。如果标液需求量较大,还可以选择更大的10ml/30ml等多规格样品瓶;5、软件具有数据溯源及权限管理功能,可对标液进行管理、编辑、储存、随时调用,方便一键生成标液管理记录,符合GLP规范。
  • “高灵敏度手持式拉曼光谱探测仪制造”项目通过验收
    p   1月23日,北京理工大学材料学院刘吉平教授主持的中央在京高校重大成果转化项目“高灵敏度手持式拉曼光谱探测仪制造”顺利通过结题验收。刘吉平代表项目组从项目立项背景、项目实施、科研创新、转化应用等情况向与会专家进行详细汇报,并现场展示了手持拉曼光谱探测仪,项目成果得到与会专家的高度认可。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/a4762005-11a1-49d4-a7b7-8868c39547c3.jpg" title=" 微信图片_20180129232942.jpg" / /p p style=" text-align: center " 上图 第五代拉曼光谱探测仪样机及其应用 /p p   该项目于2014年获得北京市教委中央在京高校重大科研成果转化项目的支持。刘吉平率领团队经过近4年技术攻关,研发了一系列具有自主知识产权的软硬件技术与装备。研制的探测仪整机具有重量轻、便携性好等优点,能够快速完成爆炸物、胶体物质、毒品、有毒气体和粉末的探测,可广泛用于地铁、机场、国家机关等重要场所和重大活动的安检。 /p p   通过与北京华泰诺安探测技术有限公司合作,推进产业化进程,已经建立了一套年产2000台的生产装配线,应用前景广阔。先后向公安、海关一线提供拉曼光谱探测仪1600余台,从2016年8月至今,该项目成果已在北京地铁4号线安检中得到应用,并完成了十九大、“一带一路”峰会、厦门金砖国家会议等重大活动的安保任务,产生了较大的社会效益和经济效益。 /p
  • Illumina收购HLA分型解决方案供应商Conexio Genomics
    2016年1月26日,Illumina宣布,公司已经收购了澳洲的HLA分型解决方案供应商Conexio Genomics,交易的具体条款没有披露。  Illumina在2015年3月首次与Conexio合作提供TruSight HLA解决方案。此次收购将使Illumina开发NGS-based移植手术诊断化验产品技术。  “Conexio产品和人员的加入将巩固我们的HLA能力,并证明Illumina对HLA和移植科学领域的持续承诺,”Illumina的HLA的市场开发联席董事Alex Lindell在声明中说。  Conexio的 NGS开发项目将并入Illumina的现有业务单元。
  • 3小时检出! 科学家利用单细胞拉曼光谱-重水标记技术开发出快速药敏检测方法(FRAST)
    世卫组织专家估计,到2050年,由于抗生素耐药导致的死亡人数可能从目前估计的每年70万人增加到每年1000万人,世界生产总值的损失将达到100万亿美元。导致耐药菌出现和蔓延的一个主要原因是在治疗感染类疾病时存在滥用和过度使用抗生素的情况。目前病原菌感染在临床的检验流程如图1所示,往往需要3-7天才能从病人标本中分析出病原菌鉴定和抗生素药敏的结果。快速检测感染细菌的药敏特性对确保有效抗生素的使用和减少对广谱药物的需求起着关键作用。那么如何准确且快速的判断感染细菌的药敏特性呢? 近日,中国科学院苏州生物医学工程技术研究所的宋一之、复旦大学附属华山医院的王明贵和英国牛津大学的Wei Huang联合团队利用单细胞拉曼光谱-重水标记联用技术开发了一种适用于血液和尿液标本的快速药敏检测方法(FRAST),该方法将尿液和血液标本的药敏检测时间由3-4天分别缩短为3小时和21小时。 图1. 传统尿液和血液样本的药敏检测时间与FRAST的比较 FRAST方法基于拉曼光谱——重水标记联用技术,其主要原理为,细菌可通过重水(氘代水)培养可实现氘元素的标记,使拉曼光谱中的碳-氘峰成为单细胞水平细菌代谢活动的标记物。在抗生素作用下,易感菌代谢活性会受到抑制,而耐药菌则不受影响并产生明显的碳-氘峰,因此可以克服临床微生物试验对长时间培养的要求,使快速药敏成为可能。 FRAST方法的具体流程如图2所示。对于尿液感染标本,首先进行离心收集细菌,然后在共聚焦显微拉曼系统下对细菌观察并进行拉曼指纹图谱的采集,这一过程可判断尿液中是否有菌及菌量,同时将采集到的图谱利用机器学习模型与革兰氏阴性菌和阳性菌的数据库进行比对,准确预测样品中细菌的革兰氏阴阳性并以此选择合适的药敏板。将尿液加入到药敏板并作用1h后加入重水,待重水标记1h后离心洗涤样品并采集拉曼信号,通过对抗生素作用下的C-D峰的强度的统计计算读取最小抑菌浓度(MIC)。对于血液标本,则是在血培养瓶内进行培养,血培养瓶报阳后用同样的方法采集拉曼光谱并计算MIC值。 图2. FRAST用于临床尿液样本和血液样本的药敏试验流程图 在该研究中,团队对包含质控菌株和临床原始标本在内的超过3000个样本采集了6万余张单细胞拉曼光谱,并与临床金标准(微量肉汤稀释法或临床自动药敏系统)进行了对比,结果显示FRAST方法对革兰氏染色结果的预测准确率为100%(图3),药敏结果与金标准总体一致率大于88%。与其他基于Raman-DIP的病原菌药敏研究相比,该研究国际首次证明单细胞拉曼与重水标记结合可用于分析真实的尿液或血液标本中病原菌的耐药性,而且基于拉曼的革兰氏染色预测方法的整合使得FRAST成为相对独立完整的测试方法,临床医生可以无需其他手段辅助,完成“从样本到报告”的快速诊断。与近年来发展较快的耐药分子诊断技术相比,FRAST药敏是基于抗生素对细菌作用的表型,因此该结果不会因未知的耐药机制或基因表达调控影响而产生对药敏的误判。 图3. FRAST方法可以准确预测病原菌的革兰氏染色分类结果 这一成果近期发表在Analytical Chemistry上,论文标题为Development of a Fast Raman-Assisted Antibiotic Susceptibility Test (FRAST) for the Antibiotic Resistance Analysis of Clinical Urine and Blood Samples。该研究得到了科技部重点研发计划、中科院科研仪器设备研制等项目资助。 论文链接:https://pubs.acs.org/doi/10.1021/acs.analchem.0c04709
  • DecagonAquaLab Series 4 DUO同时测量水分活度和水分含量
    一机两用 一举两得 目前,水分活度和水分含量的测量依据不同技术分别利用不同仪器来完成。如将两者的测量过程合二为一,既省时又省力。美国 Decagon 公司的最新产品 AquaLab Series 4TE 经过验证可以实现上述目标。 要想通过测量水分活度来得出水分含量数据,就需要很好的掌握两者之间的关系。这种关系我们称之为吸湿等温线,它与被测产品性状有关,不同产品有着特定的吸湿等温线,较为复杂。吸湿等温线必许通过测量在不同水分活度下的水分含量来绘制。美国Decagon公司的AquaSorp动态吸湿(解湿)等温线绘制仪通过强大的数据处理能力可以快速绘制出吸湿(解湿)等温线。绘制好的吸湿(解湿)等温线可以安装到AquaLab Series 4 DUO 中,于是就可以利用AquaLab Series 4 DUO测出的水分活度值间接的得到样品的水分含量。 AquaLab Series 4 DUO 水活度仪/水分活度仪 的性能优势 *一机两用(可同时测量水分活度和水分含量) *测试速度快,小于5min *无需烘箱等大功率设备 *无损检测,对样品没有破坏(对于价值高的珍贵样品尤为合适) *重复性好,相对标准偏差小 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 昆明一河流受污染变“牛奶”河 村民称水味辛辣
    2013年3月20日,云南昆明东川区拖布卡镇格勒村大田坝,村民刘得平来小江挑水。他明知道小江水已经受到污染不能使用,但断水半月的他家没有别的选择。 3月21日,一位村民拿着两瓶水,里面是小江水和普通矿泉水的对比。 3月21日,昆明东川汤丹镇洒海村。两股不同颜色的江水汇合,乳白色的水是小江的受污染水源。 3月20日,云南昆明东川区拖布卡镇格勒村小河边组,三个孩子在河滩上玩耍。 小江上游,一个正在往河水中排污的排污口。   在云南省昆明市东川区,流经着这样一条河,沿岸的村民称其为“牛奶河”。当地工矿业排放的尾矿水,直接注入了这条河流中,使其变成了牛奶般的白色。沿岸村庄的灌溉和饮用水受到极大影响……   辛辣的河水   2013年3月20日,云南省昆明市东川区拖布卡镇格勒村大田坝。村民刘得平从离家2公里多的小江中,挑了10多担水倒入自家的水窖中。   他家住在山坡上,半个月的干旱,家里已经断水了,刘得平不得已挑了小江的水回去,准备用来喝。   刘得平告诉记者,这个水直接喝不得,需要沉淀3天以上才能将上面一层取出来用。但这水怎么弄都脱不了一股辛辣的味道。   面对同样情形的,还有72岁的魏大爷。他家住在拖布卡镇的格勒村。   魏大爷看着乳白色的江水灌入他的花生地里,也是没有办法的选择。他说,用这样的水庄稼长不好,产量低,容易病虫害。浇完水的地面上,会起一层白色的不知名粉末。   魏大爷家中的水窖里还有些存水,但如果再有个把月不下雨,他也要开始喝小江水了。   一江两色的“奇观”   东川区开采铜矿的历史悠久,新中国成立后,东川成为云南重要的工矿区,小江里的尾矿水就来自沿岸大大小小数十家矿业企业。   村民说,2012年举办泥石流汽车拉力赛,当地政府让选矿、洗矿企业停产数日,那些天,小江河水都是清亮的。   污染已经持续了很多年。近两年,持续的干旱让雨水变得稀少,小江里的白色河水变成了岸边居民饮用水的无奈选择。   这些带着白色黏稠尾矿水的小江,流经70多公里,最终在昭通市巧家县蒙姑乡、四川省会东县野牛坪乡、东川拖布卡镇格勒村三地交界处,汇入金沙江。   两江交汇处,金沙江的一侧呈现自然的土黄色,而小江一侧是乳白色。一条河道里出现了泾渭分明的“两色水”,最后再融为一起,流向远处。   亟待整治   按当地环保部门的说法,直接向小江排放尾矿水是不允许的,一经发现将“强制规范,高限处罚。”   岸边的农民们已经对这些尾矿水了如指掌,他们会选择浓度小些时取一些水回家。他们甚至能从江水颜色的变化,判断出这些受污染的河水刺鼻的程度。   不仅是东川人,邻县巧家县的部分乡镇也在被污染之列。   这里原来是比较适合种植的河谷地带,沙地产的西瓜在云南省小有名气。瓜农李先生说,由于污染,他的西瓜已经连续3年亏钱了,他不打算再种了,除非污染情况得到改善。   李先生说,自己亏点钱不算啥,对于这条河的污染和治理,他很担忧。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制