当前位置: 仪器信息网 > 行业主题 > >

多糖类化合物

仪器信息网多糖类化合物专题为您整合多糖类化合物相关的最新文章,在多糖类化合物专题,您不仅可以免费浏览多糖类化合物的资讯, 同时您还可以浏览多糖类化合物的相关资料、解决方案,参与社区多糖类化合物话题讨论。

多糖类化合物相关的论坛

  • 使用GC怎样测定糖类化合物?

    不好意思,小弟是使用LC的,平时的工作就是检测碳水化合物样品,做一些糖类检测方面工作。因新购置一台GC,听说GC也可以测定糖类化合物,但是样品可能需要经过处理才行,特此向各位请教了,GC如何才能测定糖类化合物呢?我知道糖类最好还是使用LC测定,仅仅为了扩展知识而已,还望不吝赐教。

  • 【求助】做聚糖类化合物的高手请指点

    有一些糖类化合物的分子量很大,粘度也很高,样品配制的浓度太稀,做13C做不出来,浓度配得非常大,也做不出来信号,请问这是什么原因?我们的仪器是400MHz的,是不是不适合做分子量太大的化合物。但为什么信号那么差呢?请指点!

  • 国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物

    国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物

    国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物郎 蕾1,刘格林1,2,施超欧3*(华东理工大学化学与分子工程学院 分析测试中心,上海 200237)摘要:使用国产离子色谱系统检测饮料中常见的葡萄糖、果糖、乳糖、蔗糖和麦芽糖,并进行方法学验证。结果表明,5种糖类化合物在各自线性范围内R2不小于0.9990,对葡萄糖、果糖、乳糖、蔗糖和麦芽糖的检出限(RSN=3)分别为3.42 μgL-1、11.4 μgL-1;6.76 μgL-1、22.5 μgL-1;10.1 μgL-1。5种糖类化合物的相对标准偏差均小于2.47%,样品的加标回收率范围在94.13% ~ 114.2%之间,均符合相关检测标准要求,能应用于日常实验室的常规糖分析。为考察国产仪器分析的准确性和评价主要模块的性能,与Thermo ICS-5000+离子色谱安培检测系统和Dionex Ultimate 3000-液相色谱示差检测器系统进行比较,对比结果表明,三者的分析结果一致性良好,其中国产脉冲安培离子色谱系统的检出限和定量限比Thermo仪器高3~4倍,除此之外,国产离子色谱仪器各个模块性能稳定,可满足常规糖类化合物含量的测定,填补国产离子色谱在糖类化合物检测领域的空白。关键词:国产离子色谱仪;国产脉冲安培检测器;饮料;糖类化合物中文分类号:O657.7+5 文献标志码:A Determination of Common Carbohydrate Compounds in Beverages by Ion Chromatography with Pulsed Amperometric Detector Made by MyselfLANG Lei1,LIU Gelin1,2,SHI Chaoou3*(Analysis and Research Center,East China University of Science and Technology,Shanghai 200237)Abstract: Using the self-developed pulse amperometric detector, it is assembled with other domestic instrument components to form a complete set of domestic ion chromatography instruments, and applied to the analysis of glucose, fructose, lactose, sucrose and maltose commonly found in beverages, and methodological verification. The results showed that the R2 of the five carbohydrate compounds was not less than 0.9990 in their respective linear ranges, and the detection limits (RSN=3) for glucose, fructose, lactose, sucrose and maltose were 3.42 μgL-1 and 11.4 μgL-1, respectively. 6.76 μgL-1、22.5 μgL-1;10.1 μgL-1。 The relative standard deviation of the five carbohydrates was less than 2.47%, and the spiked recovery of the samples ranged from 94.13% to 114.2%. All meet the requirements of relevant testing standards and can be applied to daily laboratory testing. And in the full import Thermo ICS-5000+ ion chromatography system and Dionex Ultimate 3000 liquid chromatography difference detector repeated the same experimental process, the comparison results show that the analysis results are consistent, but the domestic amperometer detection limit and quantitative limit is 3 to 4 times higher than the imported instrument, the reason for the exploration is that there is a certain gap between the domestic pump and the inlet pump in the stable output mobile phase. The performance of each module and machine of domestic ion chromatography instrument is stable.Keywords:Domestic ion chromatography Domestic pulse amperometric detector Soft drinks Carbohydrate compounds 糖类是植物和动物的主要能量来源,对生理活动等有着极大影响。食品中常见中的糖主要包括葡萄糖、果糖、乳糖、蔗糖和麦芽糖。目前检测食品中糖的测定方法主要有化学法、酶比色法、酶电极法、高效液相色谱法、气相色谱法,毛细管电泳法和高效阴离子交换色谱法等。其中高效液相色谱法测糖主要包括高效液相色谱-示差折光法、高效液相-蒸发光散射法和高效液相质谱法等。高效液相色谱-示差折光检测法只适用于等度洗脱的测试,且只适用于高浓度含量糖样品的分析,在进行多组分分析时效果不好。高效液相色谱-蒸发光散射法对不挥发的溶质具有较高的检测灵敏度,蒸发发光法不受溶剂成分及温度的影响,能够进行梯度洗脱的测试,适于低聚糖的分析。近年来,该方法主要应用于中药材、烟草、食品中糖含量的测定。高效阴离子交换色谱-脉冲安培(high performance anion exchange chromatography with pulsed amperometric detection,HPAEC-PAD)法采用NaOH为流动相,并添加NaAc。能实现糖醇、单糖、双糖、寡糖、低聚糖、多糖以及糖衍生物的分析。其在检测糖时主要使用金电极的脉冲安培检测器,可检测ugL-1级的糖,不需要进行衍生反应和复杂的样品纯化处理,基体干扰少,有着较好的方法重复性和稳定性。但是,目前国内所有文献安培法测糖的报道都使用进口检测器,未见国产安培检测器的应用报道。目前带脉冲安培检测器的进口离子色谱仪器价格昂贵,维护费用高。因此,开发国产带脉冲安培检测器的离子色谱仪十分必要。本实验使用GI5000离子色谱系统包含脉冲安培检测器,对饮料中常见的葡萄糖、果糖、乳糖、蔗糖和麦芽糖的分析,进行了相关的方法学实验,并选取了三种市面上常见的含糖饮料进行了检测。与Thermo ICS-5000+离子色谱安培检测系统和Dionex Ultimate 3000液相色谱示差检测器系统进行比较,以此来验证GI5000离子色谱系统在检测糖类化合物方面的性能,从而填补了国产离子色谱仪器对糖类化合物检测的空白,同时考察了国产自研安培检测器和国产泵与进口仪器的性能差距。 1 试验部分 1.1 仪器与试剂GI5000离子色谱系统:包括GI3000软件、四元梯度泵、自动进样器和GI5250安培检测器(包括自研安培检测池、自研参比电极和自研Au工作电极); Thermo ICS 5000+离子色谱系统,包括变色龙7.2软件、SP-DP单元四元梯度泵、AS-AP自动进样器、DC模块(带安培检测器)。Dionex Ultimate 3000液相色谱系统,包括变色龙6.8软件、四元梯度泵、自动进样器、柱温箱和RI-101型示差折光检测器Millipore-Q A10超纯水系统,AL204电子分析天平。5种糖混合标准储备溶液:1.000 gL-1,称取葡萄糖51.0 mg、果糖50.5 mg、乳糖50.5 mg、蔗糖51.0 mg、麦芽糖51.0 mg于50 mL容量瓶中,加入超纯水充分溶解后定容至刻度,储存于于4 ℃冰箱中冷藏保存,可放置半个月。使用时用超纯水稀释到所需质量浓度。可口可乐溶液:先将可口可乐溶液进行超声处理,用0.22 μm的滤膜进行过滤,称取可乐样品126 mg,加入超纯水稀释50倍。样品溶液:将样品1(脉动饮料)和2(茶π饮料)用0.22μm的滤膜进行过滤,再分别称取496 mg和507 mg于50 ml容量瓶中,加入超纯水定容至刻度,得到浓度为9920 mgL-1和10140mgL-1的两份实际样品溶液。使用时用超纯水稀释到所需质量浓度。50% NaOH(W/W)(电子级) 德国Merck公司;D-无水葡萄糖( D-Glucose anhydrous,≥98%) 上海笛柏化学品有限公司;D-果糖(D-Fructose,≥99%)、蔗糖(sucrose,≥99.5%)、麦芽糖(maltose,≥98%) 上海阿拉丁生化科技股份有限公司;无水乳糖(lactose,≥98%) 上海麦克林生化科技有限公司;可口可乐、实际样品1(脉动)和实际样品2(茶π),均为超市购买;实验用水均采用电阻率不低于18.2 MΩcm的超纯水。所有试剂使用前均使用0.22 μm的滤膜过滤。1.2 色谱条件GI5000离子色谱系统和Thermo ICS-5000+离子色谱系统:Dionex CarboPac PA1色谱柱(250 mm×4 mm),Dionex CarboPac PA1保护柱(50 mm×4 mm);柱温为30℃;流量为1 mlmin-1;进样量为25 μL;流动相为200 mmolNaOH溶液;安培检测器电位波形为糖标准四电位。图1为5 mgL-1 5种糖类化合物混合标准溶液在GI5000离子色谱系统中的色谱图。Dionex Ultimate 3000液相色谱系统:Shodex-SP0810色谱柱(8.0 mm×300 mm);柱温70 ℃;流量为1mlmin-1;进样量为25μL;流动相为超纯水。 https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708218665_5415_3389662_3.jpg!w310x240.jpg 图1 5种糖类混合标准溶液色谱图Fig.1 Chromatogram of mixed solution of 5 sugar standards 2 结果与讨论2.1 GI5000离子色谱系统与Thermo ICS-5000+离子色谱系统灵敏度对比实验显示GI5000离子色谱仪器的噪音稳定在0.12 nC,而Thermo ICS-5000+离子色谱仪器的噪音稳定在0.02 nC,探索了造成这种现象的原因,首先将与检测器相连接的安培池体部件进行了拆卸,对自研Au工作电极进行打磨维护,冲洗了自研参比电极,重新组装后安装在Thermo安培检测器上,用Thermo DP泵进行测试,观察Au工作电极噪音的变化,结果发现噪音值稳定在0.02 nC,与进口安培池体噪音一致,排除了自研安培池体部件对噪音的影响。又将自研安培池体转移至GI5250安培检测器上并与Thermo DP泵串联起来进行测试,噪音值稳定在0.06 nC,说明GI5250安培检测器自身和国产泵较进口仪器存在一定差距,但已符合日常的检测灵敏度的要求。2.2 方法学验证1)标准曲线分别配置质量浓度为0.2、0.5、1.0、2.0、5.0 mgL-1的5种糖类化合物混合标准溶液,以质量浓度(x,mgL-1)为横坐标,以峰面积(y)为纵坐标,绘制标准曲线。各组分的线性范围、线性方程、相关系数、检出限(RSN=3)和定量限(RSN=10)见表1,5种糖类化合物在各自线性范围内线性关系R2不小于0.9990,满足分析方法的要求。Thermo ICS-5000+离子色谱系统对葡萄糖、果糖、乳糖蔗糖和麦芽糖的检出限和定量限分别为1.200 μgL-1、4.010 μgL-1;1.830 μgL-1、6.100 μgL-1;2.960 μgL-1、9.860 μgL-1;6.230 μgL-1、20.78 μgL-1;10.15 μgL-1、33.82 μgL-1。 表1 GI5000离子色谱仪测定5种糖类化合物的线性数据和检出限Table 1 The GI5000 ion chromatograph determines linear data and detection limits for five carbohydrate compounds糖类化合物线性范围/(mgL-1)线性方程相关系数检出限/(μgL-1)定量限/(μgL-1)葡萄糖0.2~5y = 621.5x + 24.910.99983.42011.40果糖0.2~5y = 366.7x + 23.920.99966.75922.53乳糖0.2~5y = 328.0x + 39.460.999010.1233.72蔗糖0.2~5y = 218.1x + 21.340.999320.4368.09麦芽糖0.2~5y = 272.5x + 14.950.999031.37104.6 2)进样重复性取适量的浓度为5 mgL-1的5种糖类化合物混合标准溶液于进样瓶中,分两批分别在GI5000离子色谱系统和Thermo ICS-5000+离子色谱系统上重复进样8次,记录所测得的峰高和峰面积,计算RSD实验结果如表2所示,表明葡萄糖、果糖、乳糖、蔗糖和麦芽糖的峰高和峰面积RSD≤2.47%,结果稳定,与Thermo ICS-5000+离子色谱系统检测结果的RSD几乎一致,说明了GI5000离子色谱系统在重复性方面与进口仪器保持一致,性能良好,实验结果稳定可靠。 表2 5种糖类化合物进样重复性考察结果Table 2 Results of repeated sampling of five sugars糖类化合物GI5000Thermo ICS-5000+峰高RSD/(%)峰面积RSD/(%)峰高RSD/(%)峰面积RSD/(%)葡萄糖0.570.481.411.56果糖0.560.481.982.19果糖0.720.912.172.54蔗糖0.932.471.251.40麦芽糖0.841.780.460.51 3)5种糖类化合物加标回收率测定对可口可乐样品进行加标回收率实验,对于样品中含有的糖类化合物,以其质量分数的80%、100%和120%进行加标,重复进样5次,计算峰面积的RSD,检测结果如表3所示,样品的加标回收率范围在94.13%~114.2%之间,相对标准偏差在0.22%~4.14%。经计算得,可口可乐中葡萄糖质量浓度为41.6 gL-1,果糖质量浓度为54.4 gL-1、乳糖质量浓度为1.5 gL-1、蔗糖质量浓度为4.1 gL-1、麦芽糖质量浓度为1.8 gL-1,总含糖量为103.4 gL-1,可口可乐厂家标注碳水化合物总量为104.6 gL-1,误差1.14%,说明检测结果可靠。图2为可口可乐样品色谱图。 表3 5种糖类化合物加标回收率测定结果Table 3 Determination of the recovery rate of five sugars糖类化合物本底/(mgL-1)加标量/(mgL-1)测得量/(mgL-1)回收率/%相对标准偏差/%葡萄糖1.9551.6003.55399.881.802.0003.89997.200.382.4004.21494.130.22果糖2.1401.6003.69397.803.832.0004.07396.650.252.4004.629103.74.14乳糖1.010.8001.885109.40.191.0002.151114.20.231.2002.353111.90.8蔗糖0.7740.8001.54496.250.971.0001.847107.40.171.2002.043105.80.15麦芽糖0.8920.8001.755107.92.721.0001.915102.30.451.2002.128103.00.75https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708335940_9325_3389662_3.png!w424x327.jpg 图2 可口可乐样品色谱图Fig.2 Coca-Cola sample chromatography 2.3 三种仪器检测结果对比离子色谱法中两种实际样品稀释100倍,液相色谱法中两种实际样品稀释10倍。分别在全进口仪器Thermo ICS 5000+离子色谱系统、GI5000离子色谱系统以及Dionex Ultimate 3000液相色谱仪器上重复进样5针,测试结果如表4所示。 表4 实际样品1和样品2中含糖量测定结果Table 4 Measurement results of sugar content in actual sample 1 and sample 2糖类化合物离子色谱法-Thermo安培离子色谱法-GI5000安培液相色谱法-Dionex示差样品1样品2样品1样品2样品1样品2含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)葡萄糖15.8723.1016.6222.1816.3322.08果糖19.7131.1919.9029.5021.5730.86乳糖------------蔗糖12.8523.5512.2823.0911.7223.72麦芽糖------------总含糖量/g/L48.4377.8448.8074.7749.6276.66样品1和样品2厂家标注的总含糖量分别为49 gL-1和75 gL-1。如表4所示,全进口仪器Thermo ICS 5000+测得两种样品的总含糖量分别为48.43 gL-1和77.84 gL-1,GI5000离子色谱系统测得两种样品的总含糖量分别为48.80 gL-1和74.77 gL-1。Dionex Ultimate-3000液相色谱示差法测得两种样品的总含糖量分别为49.62 gL-1和76.66 gL-1。三种仪器的所测得的两种实际样品中糖类化合物总量相差5%以内,结果均较为准确,同时也证明了国产离子色谱仪器性能稳定可靠。三台仪器对两种实际样品的分离色谱图如图3和4所示。https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708443314_437_3389662_3.png!w273x210.jpghttps://ng1.17img.cn/bbsfiles/images/2022/12/202212151708496041_6974_3389662_3.png!w273x210.jpg 图3 样品1和样品2中糖分离色谱图Thermo离子色谱仪(左)、国产离子色谱仪(右)Fig.3 Separation chromatograms of sugars in samples 1 and 2 Thermo ion chromatograph (left), domestic ion chromatograph (right)https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708552407_2039_3389662_3.png!w273x210.jpg 图4 液相-示差法测得样品1和样品2中糖分离色谱图Fig.4 Separation chromatogram of sugar in sample 1 and sample 2 by liquid-differential method 3 讨论与结论 通过将GI5250安培检测器和进口仪器相互串联等实验得到GI5000离子色谱系统的检出限和定量限约为全进口仪器的3~4倍,其原因是GI5250安培检测器自身性能与进口检测器存在差距,并且进口泵在稳定输出流动相上优于国产泵。后续需要针对国产安培检测器和泵性能进一步优化。使用GI5000离子色谱系统检测饮料中糖类化合物,进行了方法学测试,对比了全进口Thermo ICS 5000+仪器的检测结果,验证了GI5000离子色谱系统在检测糖类化合物方面的性能。结果显示,5种糖类化合物在0.2~5 mgL-1范围内线性关系良好,检测的线性相关系数均在0.9990以上,重复性RSD≤2.47%,除麦芽糖外,其余四种糖检出限均在0.1 mg L-1以内,麦芽糖检出限为0.105 mgL-1。NY/T 3902-2021标准中葡萄糖的检出限为0.4 mg L-1、果糖和麦芽糖的检出限为1.2 mgL-1、蔗糖的检出限为0.6 mgL-1,表明GI5000离子色谱系统所测得的结果,均能够满足上述相关标准的要求,可满足日常实验室检测需求。以市面上售卖的可口可乐为样品,对5种糖类化合物进行加标回收实验,5种糖类化合物的加标回收率范围为94.13%~114.2%。相对标准偏差在0.22%~4.14%。测得可口可乐中的5种糖类化合物总量为10.34 g/100 g。分别使用全进口仪器Thermo ICS-5000+、GI5000离子色谱系统以及Dionex Ultimate 3000液相色谱仪检测了脉动和茶π饮料中糖类化合物的含量,三种方法检测的结果几乎一致,证明了GI5000离子色谱系统性能的可靠。 参考文献 佚名. 碳水化合物—化学结构. 淀粉与淀粉糖, 2010(2): 36-44. ZHANG Z, KHAN N M, NUNEZ K M, et al. Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Analytical Chemistry, 2012, 84(9): 4104-4110.DOI:10.1021/ac300176z. 岳虹, 赵贞, 刘丽君, 李翠枝, 邵建波.高效液相色谱法测定发酵乳饮料中果糖、葡萄糖、蔗糖、麦芽糖及乳糖含量.乳业科学与技术, 2017, 040(002): 23-26. 樊宏, 陈强. 乳制品中乳糖直接比色测定方法探讨. 中国卫生检验杂志, 2006, 16(3): 296-297. 钟宁, 侯彩云. 三种乳糖检测方法的比较. 食品科技, 2011, 36(7): 263-265. 中华人民共和国卫生部. GB/T 5009.7—2003 食品中还原糖的测定. 北京: 中国标准出版社, 2003. Zhang J L, Dai X, Song Z L, Han R, Ma L Z, Fan G C, Luo X L,One-pot enzyme- and indicator-free colorimetric sensing of glucose based on MnO2 nano-oxidizer, Sensors and Actuators B: Chemical, 2020, 304. ZIELINSKI A A F, BRAGA C M, DEMIATE M I, et al. Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stag. Food Science and Technology, 2013, 34(1): 38-43. DOI:10.1590/S0101-20612014005000003. SHANMUGAVELAN P, KIM S Y, KIM J B, et al. Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydrate Research, 2013, 380(20): 112-117. DOI:10.1016/j.carres.2013.06.024. MA C M, SUN Z, CHEN C B, et al. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chemistry, 2014, 145: 784-788. DOI:10.1016/j.foodchem.2013.08.135. WU X D, JIANG W, LU J J, et al. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry. Food Chemistry, 2014, 145: 976-983. DOI:10.1016/j.foodchem.2013.09.019. BAI W D, FANG X D, ZHAO W H, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography.Journal of Food Drug Analysis, 2015, 23: 645-651. DOI:10.1016/j.jfda.2015.04.011. HE J Z, XU Y Y, CHEN H B, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. International Journal of Molecular Medicine, 2016, 17(12): 1-17. DOI:10.3390/ijms17121988. DANIEL D, LOPES F S, SANTOS V B D, et al. Detection of coffee adulteration with soybean and corn by capillary electrophoresistandem mass spectrometry. Food Chemistry, 2018, 243: 305-310. DOI:10.1016/j.foodchem.2017.09.140. 张欢欢, 李疆, 赵珊, 等. 毛细管区带电泳-间接紫外检测法快速测定食品中乳糖、蔗糖、葡萄糖和果糖. 色谱, 2015, 33(8): 816-821. 马海宁, 华玉娟, 屠春燕, 等. 毛细管电泳法分析藏红花植物细胞多糖中单糖组成. 色谱, 2012, 30(3): 304-308. DOI:10.3724/SP.J.1123.2011.11015. LV X Y, GUO Y X, ZHUANG Y P, et al. Optimization and validation of an extraction method and HPAEC-PAD for determination of residual sugar composition in L-lactic acid industrial fermentation broth with a high salt content. Analytical Methods, 2015, 7: 9076-9083. DOI:10.1039/c5ay01703c. WANG X, XU Y, LIAN Z N, et al. A one-step method for the simultaneous determination of five wood monosaccharides and the corresponding aldonic acids in fermentation broth using highperformance anion-exchange chromatography coupled with a pulsed amperometric detector. Journal of Wood Chemistry and Technology, 2013, 34(1): 67-76. DOI:10.1080/02773813.2013.838268. ZHANG Y, WU J R, NI Q H, et al. Multicomponent quantification of astragalus residue fermentation liquor using ion chromatographyintegrated pulsed amperometric detection. Experimental and Therapeutic Medicine, 2017, 14: 1526-1530. DOI:10.3892/.2017.4673. Young C S . Evaporative light scattering detection methodology for carbohydrate analysis by HPLC.. Cereal Foods World, 2002, 47(1):14-16. 梁亚丽, 张彦玲, 何颖娜. 糖类化合物分离分析方法进展. 河北化工, 2006, (06): 42-44. 梁智安, 王成龙, 龙飞. 液相色谱示差折光法测定酒中的总糖和还原糖.食品安全质量检测学报, 2018, 9(09): 2188-2194. 陈琴呜, 刘文英. HPLC—ELSD在中药糖类分析中的应用. 中草药, 2008, 39(6): 955-957. BAI W D, FANG X D, ZHAO W H, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography.Journal of Food Drug Analysis, 2015, 23: 645-651. DOI:10.1016/j.jfda.2015.04.011. HE J Z, XU Y Y, CHEN H B, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. International Journal of Molecular Medicine, 2016, 17(12): 1-17. DOI:10.3390/ijms17121988. INDORF C, BODé S, BOECKX P, et al. Comparison of HPLC methods for the determination of amino sugars in soil hydrolysates. Analytical Letters, 2013, 46: 2145-2164. DOI:10.1080/00032719.2013.796558. 水果、蔬菜及其制品中阿拉伯糖、半乳糖、葡萄糖、果糖、麦芽糖和蔗糖的测定 离子色谱法:NY/T 3902-2021. 2021.

  • C18柱子可以分离糖类化合物吗

    [color=#444444]要做多糖的分离,手上只有C18的柱子,可以做吗?用什么条件合适呢?查了资料发现分离纯化糖类最好用凝胶柱和离子交换色谱柱,苦于都没有啊,只能拿C18的先试试了[/color]

  • 山葡萄酒中多酚类化合物

    山葡萄酒中多酚类化合物酚类化合物是葡萄酒中的重要生理活性物质,对人体的健康起着重要保健作用。山葡萄酒中的多酚类化合物主要有:花色苷:是一种红色素化合物,有花青素、甲基花青素、牵牛花素、锦葵花素、花翠素、芍药素、栎皮黄素等,其含量是一般葡萄酒的2倍。黄酮类:是一种黄色素化合物,有堪非醇、槲皮素、山奈酚、杨梅素等,其黄铜醇的含量为1.43g/L,是一般葡萄酒的5~10倍。儿茶素类:主要有儿茶素、表儿茶素、表没食子儿茶素等,具有一定的苔味。原花色素类:主要有原花青素、原花翠素、原天竺葵素等。是葡萄籽与皮的主要成份,也是葡萄酒中多酚类化合物含量最多的一类。单宁类:是由花白素的多聚体组成的,有一定的涩味,具有重要的生理功能。山葡萄酒中单宁的含量是一般葡萄酒的2~3倍。白藜芦醇化合物:主要有顺式白藜芦醇、反式白藜芦醇、顺式白藜芦醇糖苷、反式白藜芦醇糖苷、顺式反式白藜芦醇异构体等。这些化合物主要来源于葡萄皮、籽中,是植物体具抗病毒的生理活性物质,也是对人体防治心脑血管疾病的重要药理成份。山葡萄酒中白藜芦醇的含量为5.86~8.20mg/L,高于国际标准,是一般葡萄酒的4~6倍。多酚类化合物是重要的保健功能成份,主要来源葡萄皮、籽中,因此吃葡萄带皮、籽一起吃掉是最有益身体健康的。酶类化合物:主要有超氧化物岐化酶(SOD),是一种自由基清除剂,具有破坏活性氧作用的自卫酶类化合物。山葡萄酒中含量为1.52×104—1.84×104mg/L,虽然含量极微小,但对人体健康有重要作用,也是其它葡萄中不具备的。

  • 车内硫类化合物和胺类化合物测试

    有没有大神做车内空气全谱分析或者车内硫类和胺类化合物测试的??而且是用热脱附GCMS做的??想咨询这方面的问题,私信我,有偿咨询!!!

  • 【第三届原创参赛】环烯醚萜类化合物分离纯化心得体会

    【第三届原创参赛】环烯醚萜类化合物分离纯化心得体会

    维权声明:本文为环烯醚萜原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。环烯醚萜类化合物分离纯化心得体会基本介绍 环烯醚萜(iridoids)为臭蚁二醛(iridodial)的缩醛衍生物。臭蚁二醛是由伊蚊(Iridomyrmex detectus)的防收性分泌物中分得的物质。自1958年的Halpem和Schmid确定的环烯醚萜的基本骨架以来,各国学者对该类化合物作了大量深入的研究。环烯醚萜类化合物具有多种生物活性,近来受到极大关注,发展也很迅速。 环烯醚萜类主要分为:环烯醚萜类、裂环环烯醚萜类、3,4-位无取代的环烯醚萜类、聚合环烯醚萜类等等。本人做的是普通类的环烯醚萜类化合物,且以其苷居多,做的比较浅,下面斗胆一谈,各位看官莫要见笑。提取部分 环烯醚萜苷类化合物在醇(甲醇、乙醇)中溶解度较好,部分苷类在水中溶解度也很好。本人在对某植物进行提取的时候,实际上并非针对这类化合物,采用的是60%的乙醇/水,是为了兼顾各类成分。后来在实验过程中发现,60%的乙醇/水条件下,这类化合物的提取率是很高的。 注释:其实如果要针对性分离,可以将提取液简单处理后进行D101大孔柱色谱,对环烯醚萜类化合物进行富集。萃取部分 提取之后,将药液进行浓缩,至无醇味混悬于水中,然后进行萃取。萃取的过程为:等体积的环己烷、乙酸乙酯、正丁醇分别萃取三次,合并各层提取液浓缩得各层浸膏。就目前实验进展情况来看,环烯醚萜苷类化合物主要集中在正丁醇层,水层也有一部分(我目前还没开始这部分工作)。 注释1:萃取的过程,涉及到溶剂的回收,由于这类化合物在高温下不太稳定,所以用旋转蒸发仪进行减压回收溶剂的时候,温度不能过高,我采用的温度是60度(其实60度已经很高了,但是没办法,不设60度,正丁醇回收不了)。 硅胶柱色谱 正丁醇层进行硅胶柱色谱分离,采用氯仿/甲醇梯度洗脱,样品500g,拌样硅胶1500g,柱床硅胶500g,洗脱梯度为50:1→20:1→10:1→5:1→2:1→1:1→0:1。实验的过程中发现,环烯醚萜类化合物,主要集中在氯仿:甲醇=10:1和5:1部分。 注释1:选择硅胶柱色谱,也是人之常情,此处也可选择D101大孔柱色谱,对这类化合物进行富集; 注释2:选择氯仿/甲醇系统,是因为经过小试,此系统对样品分离较好,最重要的,样品在此系统中成点性很好; 注释3:拌样1500g,柱床500g,你没有看错,我没有写错。书上说,拌样:柱床在1:1-1:10甚至1:20或者1:50,而我这里却是3:1。我可以很负责任地告诉你,没有必要按书上的说法,柱床500g足够了,分离效果一点也不差。以前做另外一个植物,拌样用了3000g,柱床才600g,分离效果也不差,一点问题都没有; 注释4:梯度的选择,建议6-8个。梯度太少,各流分成分可能过于复杂;梯度太多,后续分离麻烦。这种大型硅胶柱色谱,属于平常所说的“粗分”,不宜太多,不宜太少,不然就是给自己找麻烦。http://ng1.17img.cn/bbsfiles/images/2010/10/201010061143_249374_1745326_3.jpgODS柱色谱 包括开放型ODS柱色谱和中低压型ODS柱色谱,其实原理一样,只是规模大小不同而已。 我将5:1洗脱的样品进行中低压ODS柱色谱,采用甲醇/水梯度洗脱,水→10%甲醇/水→20%甲醇/水→30%甲醇/水→50%甲醇/水→甲醇,实验结果表明,ODS柱色谱对此类化合物具有良好的分离效果。 注释1:环烯醚萜苷类化合物一般极性较大,一般集中在10%甲醇/水、20%甲醇/水、30%甲醇/水部分; 注释2:水洗下来的,一般为糖苷类化合物,我从此流分中分离得到几个糖类化合物(题外话); 注释3:ODS柱色谱可以多次进行,反复纯化,利用ODS柱色谱可以得到部分单体化合物;http://ng1.17img.cn/bbsfiles/images/2010/10/201010061144_249375_1745326_3.jpg(注:此图为未合并相同流分前的点板情况)制备液相(反相) 从ODS柱色谱上洗脱的样品,经过分析,可以考虑进行制备液相,半制备液相等等。 事实上,一般而言,PHPLC也是获得环烯醚萜类单体化合物最重要的手段之一。 流动相可采用甲醇/水,若峰形不好,可加入少量乙酸改善(这一招屡试不爽)。 波长的选择,可以使用230nm、240nm都可以(我们有PAD检测器,验证过)。其它一些化合物,由于连上芥子酰基,对羟基香豆酰基,还可以选择320nm的吸收。 色谱柱一般是C18的居多(目前未使用过其它柱子),品牌好像都还行(我们主要使用YMC)。凝胶其它填料 由于分离原理的缘故,使用凝胶对环烯醚萜这一类化合物(分子量相差不大,且结构极为类似)进行分离,前景似乎并不明朗。但是,用凝胶将这一类化合物与其他类型的化合物分离,效果还是很不错的。 其它如大孔树脂,前面提过,用来富集是个不错的选择;聚酰胺,我没有使用过,不过从其分离原理来看,对这类化合物不会很敏感。显色剂的选择 部分环烯醚萜类在254nm紫外下有暗斑,这个很实用; 最常用的是浓硫酸-香草醛显色剂:母核上有羟基取代的显蓝色;母核上无羟基取代显紫红色(非绝对); 其它显色剂如硫酸乙醇、碘等等都可以,我个人偏爱浓-香显色剂。结构测定与解析(简) 环烯醚萜类化合物进行NMR测试,首先氘代甲醇,这个没有任何疑问。 我在一些文献中,也看到一些特例,比如使用重水、氘代DMSO,这些基本可以忽略。 关于结构解析部分,此处不再赘述。

  • 酚类化合物前处理

    各位大神酚类化合物前处理都怎么做的?索氏提取器坐土壤中的酚类化合物条件是多少合适?HJ703-2014这个标准,净化那一步怎么我做的有机相在上层,标准是说在下层,求指点,最好能细致点的

  • 酚类化合物的曲线

    各位大侠,大家做过酚类化合物吗?我的标准曲线做不出来,求救了!你们的标准曲线是什么样的?

  • 哪位有三萜类化合物的综述

    小的现在正在做药用植物中三萜类化合物的分离与鉴定工作,望各位网友能给我提供一些资料。主要用于波谱结构分析的参考与药理活性的分析。我的邮箱scwangtianshan@etang.com或传到论坛里共享。

  • 环己烷羧酸类化合物的GC分析方法

    在实际工作中我们会遇到这类化合物如,对甲基环己甲酸,对乙基环己甲酸等等,这类化合物都存在异构体,感兴趣的朋友,请交流下这类化合物分析的心得!

  • 大气酚类化合物

    固体污染源排气中酚类化合物的测定四氨基安替比林分光光度法中做标准曲线时为什么吸光值会越来越小,请各位同仁前辈解惑

  • 标样c10~C13萘类化合物和C10-C20烷基苯类化合物哪里有卖吗?

    请教一下用紫外分光光度法测白油中的芳烃含量(NB/SH/0966-2017)中的标样c10~C13萘类化合物和C10-C20烷基苯类化合物哪里有卖吗?哪里能买到?C10~C13萘类化合物在285nm波长下的平均吸光系数33.7L/(g.cm)在270nm附近的平均吸光系数30.0L/(g.cm)C10~C20烷基苯类化合物在270nm附近的平均吸光系数3.01L/(g.cm),知道的朋友麻烦告知一下,好吗?谢谢

  • 酚类化合物

    酚类化合物怎么做啊,我的为什么没有橙红色,是黄色。而且我试了一下,不加缓冲溶液,只加标液,显色剂,是橙红色。什么原因?[img]https://ng1.17img.cn/bbsfiles/images/2019/04/201904101027496813_99_3494685_3.png[/img]

  • 【分享】杠柳苷类化合物电喷雾多级质谱裂解行为研究

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=152825]杠柳苷类化合物电喷雾多级质谱裂解行为研究[/url]摘要:采用电喷雾多级质谱技术研究了杠柳苷A和E的质谱裂解行为。在源内诱导碰撞解离谱图中发现,从准分子离子中脱去二取代吡喃酮是杠柳苷A的主要断裂形式之一。从分子中失去不同长度的糖链以及杠柳甙元D环开裂重排失去甲醛(一30 Da)是识别该类化合物的重要依据。通过对杠柳苷A和E的质谱裂解机制和特征碎片进行研究,总结了鉴别该类化合物的方法,并对杠柳根皮中的一个未报道化合物杠柳苷x的结构进行了推测,该方法对研究杠柳中杠柳苷类化合物的分布及结构具有重要参考价值。

  • 橄榄酚类化合物的分离纯化和结构研究

    [color=#333333]橄榄(Canarium album L.)为我国珍贵的药食两用资源,具有解酒护肝、抗菌消炎、抗病毒和解毒等药理功效,橄榄中酚类化合物是其主要的药效成分,但国内外有关橄榄酚类化合物组成的研究报道不多。本论文对我国橄榄果实中的酚类化合物进行提取、分离和纯化,并对酚类化合物单体的化学结构进行鉴定研究,以明确橄榄酚类的具体组成,对于橄榄资源的深加工利用和橄榄中药的药理研究具有重要的指导意义和应用价值。首先采用化学和仪器分析方法对福建闽侯檀香橄榄果实不同部分的化学组成进行了分析测定,[/color]

  • 【讨论】酚类化合物的分离

    酚类化合物水溶性强,一般分离后极性较大又都在水部位,比如10%甲醇请问除了挥掉甲醇后冻干这个方法外,还有没有除水的方法。因为温度一高就变黄了,所以不方便用悬蒸。

  • 水质 硝基酚类化合物的测定

    [align=right][b]SGLC-GC/MS-020[/b][/align] [b]摘要:[/b]本文建立了12种硝基酚类化合物测定的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]方法。参照HJ 1150-2020中色谱方法,采用色谱柱 SH-I-5SilMS对12种硝基酚类化合物进行分析,岛津[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050NX[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪进行检测。结果表明,12种硝基酚类化合物峰形对称,重现性好,满足标准要求。本方法可为12种硝基酚类化合物的测定提供参考。 [b]关键词:[/b]水质 硝基酚类 SH-I-5SilMS [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url] [b]1. 实验部分 1.1 实验仪器及耗材[/b] 岛津[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050NX[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪; 色谱柱:SH-I-5SilMS(30 m×0.25 mm×0.25μm;P/N:221-75954-30); 纯水机:PR-FP-0120α-MT1(+ 60L水箱 + 取水器); SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05); [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01); SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02); SHIMSEN Pipet PMII-100(P/N:380-00751-04); SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。 [b]1.2 混合标准使用液的制备[/b] 取市售硝基酚类混合标准品适量,用二氯甲烷稀释定容至2.0mg/L,作为混合标准使用液。 [b]1.3 分析条件 GC条件[/b] 毛细管柱:SH-I-5Sil MS(30 m×0.25 mm×0.25μm;P/N:221-75954-30) 程序升温:初始温度50℃,保持5min,以8℃/min升温到250℃,保持4min 载气:He 载气控制模式:恒线速度 流速:1.0ml/min 进样口温度:220 ℃ 进样量:1μL 进样方式:不分流进样 [b]质谱条件[/b] 电离模式:电子轰击电离(EI) 电子轰击能量:70 eV 离子源温度:230 ℃ 接口温度:260 ℃ 溶剂延迟:3min 数据采集模式:SIM 各化合物SIM参数见下表 [img=SHIMSEN Styra HLB]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-020_01.png[/img][font=arial, &][size=12px][/size][/font] [b]2. 实验结果[/b] 按照上述色谱条件(1.3)进行采集,混合标准使用液色谱图如下: [b]混合标准使用液[/b] [img=SHIMSEN Styra HLB]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-020_02.png[/img][font=arial, &][size=12px][/size][/font] [b]重现性数据[/b] [img=SHIMSEN Styra HLB]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-020_03.png[/img] [b]3. 结论[/b] 本文建立了12种硝基酚类化合物测定的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]方法。参照HJ 1150-2020的方法,采用色谱柱SH-I-5SilMS对12种硝基酚类化合物进行分析,岛津[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050NX[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪进行检测。结果表明,12种硝基酚类化合物峰形对称,重现性好,满足标准要求。本方法可为12种硝基酚类化合物的测定提供参考。

  • 硝基苯类化合物前处理

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱仪联用分析硝基苯类化合物液液萃取前处理注意是想,新手上路,大侠们指点迷津

  • 气质联用仪可以测萜烯类化合物么

    [color=#444444]萜烯类化合物可以冷凝么?[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]可以测萜烯类化合物么?[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]只能测可冷凝de挥发性有机化合物么[/color]

  • 水质 苯胺类化合物的测定

    水质 苯胺类化合物的测定HJ822-2017 净化过程中分别用3次洗脱溶液洗脱,三次的洗脱溶液中分别是哪些物质,苯胺在第几次洗脱液中

  • 酚类化合物

    hj638.[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]测酚类化合物,出峰不完全,只有10个,求各位大佬的帮助,用的是赛默飞u3000.怎么设置仪器条件[img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206011036247875_8255_4245459_3.png[/img]

  • [分享]多糖类手性固定相在色谱中的应用

    多糖类手性固定相在色谱中的应用郑 芸 方积年(中国科学院上海生命科学院上海药物研究所,上海201203)摘要 手性色谱技术是最重要的手性分离方法之一,它不仅可以快速地分析对映体纯度,也可以用于大量制备光学异构体。设计和发展高效的固定相是手性色谱技术的核心。在诸多的手性固定相中,多糖类手性固定相因品种繁多、耐用而被广泛应用。本文综述了多糖类手性固定相在高效液相色谱、模拟移动床色谱、超临界流体色谱及膜分离中的应用。共引用文献52篇。关键词 多糖,手性固定相,色谱,评述1 引 言  近20年来,用色谱方法分离手性化合物取得了显著进展,已广泛应用于许多领域,如药物化学、不对称合成和生物分析等,不仅可以测定光学纯度,也可用于大量制备光学异构体。  手性色谱技术的核心是设计和制备适用范围广的手性固定相(chiral stationary phase,CSP)。至今已制备出大量用于色谱的CSP,其中120多种已商品化。CSP可分为两大类:一类是由小分子固定在硅胶载体上构成(刷型或Pirkle型),另一类是用光学聚合物固定在载体上制成,多孔胶状的聚合物也可直接用作CSP。其中Okamoto等发展的多糖类固定相是非常有用的分离工具,它们种类繁多、耐用而且负荷量大。其它广泛使用的手性固定相有衍生化的酒石酸CSP(Kromasil—TBB) ]、a1一酸性糖蛋白、Pirkle固定相、环糊精、聚丙烯酰胺和大环抗生素,如万古霉素、teicoplanin和瑞斯托菌素以及最新的用分子印记技术及仿生传感技术发展的CSP 。  多糖,如纤维素和淀粉是自然界大量存在的有光学活性的生物聚合物。它们具有良好的精细结构,能拆分异构体,包括氨基酸衍生物和联苯衍生物的阻转异构体,但它们的手性识别能力不强,适用面也很窄,只能用于毛细管电泳(CE)分析中。半合成的经过改性的多糖适用范围则大大扩展,可用于LC、CE、SFC、TLC、膜分离及萃取中,既可用于分析也可用于制备。经研究发现,多糖类衍生物的手性识别能力与单糖残基的性质、连接位置和连接形式有关。2 高效液相色谱(HPLC)  多糖类手性固定相在HPLC中的应用相当广泛,常见的商品化多糖类手性固定相及应用实例可参考相关文献。纤维素类多糖为刚性的线形结构,而淀粉类多糖具有螺旋形结构。据报道有84%的小分子外消旋化合物可用Chiralcel OJ、Chiralcel OD、Chiralpak AD、Chiralpak AS分离 。用HPLC分析对映体时,除了常用的UV或示差折光指数检测器,还可使用专门检测手性物质的旋光检测器和圆二色散检测器。这也是HPLC比[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和NMR光谱等其它分析方法的优越之处。  为提高手性分离效果以利于检测,还可以对样品进行适当的衍生化。Fukushima 用荧光试剂DBD—PZ([4.[(N,N—dimethylamino)一sulfony1]-7一piperazino-2,1,3-benzoxadiazole])和DBD—COHz(4[[(N—hydrazinoformy1)methy1]一N—methy1]amino-7一[N,N一(dimethylamino)sulfony1]-2,1,3-benzoxadiazole)对(RS)-2一芳基丙酸类化合物进行了衍生化,并发现衍生物洗脱顺序发生改变。3 动态高效液相色谱(DHPLC)  新发展的手性DHPLC方法 可用于研究高温时立体化学稳定的手性化合物,它可得到一系列受温度控制的平顶或峰形曲线,从而可以考察对映体互变的动态过程、动力学数据及对映体互变的能垒。一般在CSP上用色谱方法分离外消旋混合物,最多可以得到收率50% 的两种纯的光学异构体。而在DHPLC中,利用CSP来达到对映体互变平衡,从而使分离和平衡合二为一,理论上可以从外消旋混合物中以100%收率得到一种纯的光学异构体。它的基本原理是外消旋混合物立体化学稳定在较低温度时对映体互变过程被抑制,而较高温度发生对映体互变。实验中让外消旋混合物先通过一个低温CSP柱子,将先洗脱出来的组分(A)继续通人第二个高温CSP柱子,收集后洗脱组分(B)。(A)进入第二个柱子后停留足够长时间达到对映体互变平衡,再继续洗脱,得到(A)和(B)。如果进行多次循环平衡、过柱,则可得到纯的对映体(B)。如Lorenz等用DHPLC分离一螺环化合物,该化合物可通过螺环处的C—O 键开环和闭环进行对映体互变。将它依次通过0℃和40℃ 的两根Chiralcel OD柱,平衡2h,即可得到32% ee(enantiomerie excess,ee)的(+)一对映体。4 模拟移动床色谱(SMB)  至今批次处理色谱在应用中仍占主导地位,但大规模制备需要大量CSP。CSP价格昂贵,而且产品的浓度低,洗脱液消耗量大,难以回收。SMB可以节省90% 的流动相并得到更高的产率。在批次处理色谱中被分离组分在流动相的驱动力下移动,固定相只有一小部分起作用。在移动床色谱中,不仅流动相发生移动,固定相也要向相反方向移动,易洗脱的化合物(萃余液)随流动相移动,难洗脱的化合物(萃取液)随固定相移动。整个固定相的分离能力被持续利用,明显地提高了系统产率。但就技术而言很难移动固定相,因此采用模拟方式,SMB的环状柱子实际上是用许多小柱依次连接而成,有规律地改变进样口和出样口,可以达到和固定相移动相同的效果。SMB技术起于20世纪60年代UOP(Universal Oil Products,Des Plaines,IL,USA)从C8 中分离对二甲苯,后来该技术被广泛用于制药工业,以获得光学纯药物。其中应用于SMB的CSP约有70%是多糖类CSP。如Nagamatsu等用SMB方法替代以前的非对映体结晶的方法,用稍做改性的Chiralcel OF(cellulose 4-chlorophenyl carbamate)分离了一种制药工业的中间体喹啉甲瓦龙酸酯。Francotte等的研究还发现,SMB对于难溶的化合物,如formoterol尤为有用。而且可调节不同参数如进样率和萃取率来达到最佳纯度和产率。

  • 分析葡萄酒酚类化合物

    葡萄酒酚类化合物分为两大类:非类黄酮(羟基肉桂酸、羟基苯甲酸和二苯乙烯)和类黄酮(花青素、黄酮-3-醇和黄酮醇)。这些次生代谢产物对葡萄酒的苦味、色泽、涩味、香气等主要感官参数都有重要影响,而这些都是影响消费者接受度和喜好度的最重要因素。许多研究表明,影响葡萄酒中酚类化合物存在的主要因素之一是葡萄品种。因此,用特定的葡萄品种酿造的葡萄酒通常是根据感官品质来描述的,这至少可以部分反映其品种来源。

  • 气相在分析类化合物时怎么办

    如果要分析一类化合物 比如塑化剂 ,总共有18种化合物, 用GC-MS,刚拿到手怎么确定程序升温的过程,是不是要每一个化合物要单独进一针,确定其保留时间,离子碎片啊

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制