当前位置: 仪器信息网 > 行业主题 > >

多晶型表征

仪器信息网多晶型表征专题为您整合多晶型表征相关的最新文章,在多晶型表征专题,您不仅可以免费浏览多晶型表征的资讯, 同时您还可以浏览多晶型表征的相关资料、解决方案,参与社区多晶型表征话题讨论。

多晶型表征相关的资讯

  • 使用功率补偿型DSC对药物多晶型进行高分辨表征
    前言物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。许多结晶药物都存在多晶型现象,同一药物的不同晶型在外观、溶解度、熔点、溶出度、生物有效性等方面可能会有显著不同,从而影响药物的稳定性、生物利用度及疗效,此现象在口服固体制剂方面表现得尤为明显。药物多晶型现象是影响药品质量与临床疗效的重要因素之一。因此,对存在多晶型的药物进行研发以及审评时,应对其晶型分析予以特别关注。多晶型药物中的不同晶型的热力学稳定性不同,不稳定晶型的熔融温度可能显著低于热力学稳定的晶型;而一种晶型熔融后可能结晶形成另一种更稳定的晶型。对于很多药物材料来说,多晶型现象的存在是非常重要的,因为在服用药物后,它们对血液循环中有效成分的摄取,以及药物保质期等方面会产生重大影响。同一药物的某种晶型可能比其它晶型更易溶解或摄取,其释放时间也会有所不同,并可以通过一定类型和水平的特定多晶型来进行控制。另外,某些晶型的储存期可能更长;随着时间的变化,易于溶解的晶型可能转变为不易溶解的晶型,从而导致药物活性的改变。中国药典通则《9015药品晶型研究及晶型质量控制指导原则》中明确说明,当固体药物存在多晶型现象,且不同晶型状态对药品的有效性、安全性或对质量可产生影响时,应对原料药物、固体制剂、半固体制剂、混悬剂等中的药物晶型物质状态进行定性或定量控制。在“药品晶型质量控制方法”一节中,明确晶型种类相对鉴别方法为粉末X射线衍生 (PXRD)、红外光谱 (IR)、拉曼光谱 (Raman)、差式扫描量热 (DSC)、热重 (TG)、毛细管熔点 (MP)、光学显微 (LM)、偏光显微 (LM) 和固体核共振 (ssNMR) 等9种方法。其中,TG方法中新增的热重与质谱联用 (TG-MS) 可以实现不同晶型药品在持续加热过程中的失重量和失重成分以及结晶溶剂和其它可挥发性成分的定性、定量分析。中国药典通则《0981结晶性检查法》规定固态药物的结晶性检查可采用偏光显微镜法、粉末X射线衍射法和差示扫描量热法 (DSC)。其中新增的DSC法可实现对晶态物质的尖锐状吸热峰或非晶态物质的弥散状 (或无吸热峰) 特征进行结晶性检查。当相同化合物的不同晶型固体物质状态吸热峰位置存在差异时,亦可采用DSC法进行晶型种类鉴别。DSC 测量的是加热、冷却或等温条件下样品吸收和释放的热流信号。《化学仿制药晶型研究技术指导原则》(试行)结合我国仿制药晶型研究的现状并参考国外监管机构相关指导原则起草制定,阐明仿制药晶型研究过程中的关注点,涉及的晶型包括无水物、水合物、溶剂合物和无定型等。指导原则明确了可使用热分析法 (如DSC和TG) 和光谱法 (如IR和Raman) 作为药物晶型表征方法和晶型确证方法;晶型控制参照《中国药典》相关通则 (《9015药品晶型研究及晶型质量控制指导原则》和《0981结晶性检查法》) 对晶型进行定性和/或定量分析。珀金埃尔默DSC 8500采用独一无二的功率补偿型设计,测量真实的热流信号。相互独立的轻质双炉体设计,使得 DSC 8500既可以提供药物多晶型测定所需要的极高灵敏度,又可以提供非常卓越的信号分辨率。同时,由于功率补偿型DSC的小炉体设计,提供了快速升降温的可能,从而可以在测试中通过快速升温,抑制低温晶型熔融后的重结晶,进而得到真实的各晶型比例。珀金埃尔默DSC产品,除了在药物晶型研究上的优势,在药物分析与研究方面,还具有如下优势:1灵敏度高,可灵敏检测蛋白变性的微量放热;2量热准确度高,特别适合药品纯度检测;3专利的调制技术,可研究晶型的可逆和不可逆转变;4铂金炉体,特别适用于药物的易分解特性;DSC 8500差式扫描量热仪极高的灵敏度,可以检测很弱的晶型转变过程或者含量很低的晶型成分卓越的分辨率,可以更好地分离多种晶型的熔融峰最快的加热和冷却速率 (最高可达750°C/min)使用铂面电阻测温技术 (PRT) 测量样品温度,准确性和重现性优于热电偶非常稳定的基线性能具备StepScan DSC技术,可以直接分离可逆与不可逆的热过程或热转变最大程度遵从21 CFR Part 11法规实验1某药物材料DSC测试测试条件升温速率:3℃min-1/10℃min-1;样品质量:~3mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:90℃~170℃实验2卡马西平多晶型DSC测试图5 不同升温速率下卡马西平DSC测试结果
  • 仪器情报,科学家制备表征新兴高性能多晶薄膜!
    【科学背景】随着材料科学和纳米技术的迅速发展,二维(2D)晶体材料作为一种重要的研究对象,因其独特的结构和性质而引起了科学家的广泛关注。尤其是在柔性电子、光电子以及分离等领域的应用,对于开发具有高强度、韧性和弹性的2D薄膜材料提出了迫切需求。然而,传统的2D晶体材料通常是多晶的,含有许多晶界,这导致其易碎和脆性,严重限制了其在柔性器件中的应用。共价有机框架(COF)作为一种新兴的2D晶体材料引起了人们的关注。COF由有机节点和连接物通过共价键构建而成,具有周期性和多孔结构。然而,现有的COF材料通常以不可加工的粉末形式存在,或者以部分晶化的片状材料或不连续薄膜的形式出现。这些材料存在着脆弱易碎、裂纹沿晶界传播严重等问题,严重限制了它们的应用范围。为了解决这些问题,中山大学郑治坤教授团队提出了使用线性小分子作为牺牲中介来引导2D COF的聚合和结晶的新方法。通过选择亚胺键连接的COF,并利用具有较高反应性的烷基双胺为中介,可以促进COF相邻结晶颗粒在晶界处的纠缠,从而增加薄膜的弹性。此外,选择聚丙烯酸作为聚合物表面活性剂来辅助界面合成,进一步优化了薄膜的制备过程。通过这一研究,研究者们成功地制备出了高度结晶且具有弹性的2D COF薄膜,其力学性能得到了显著改善。【科学图文】在本研究中,为了制备高度结晶且具有弹性的2D COF薄膜,研究人员采取了一系列实验步骤。首先,他们使用了5,10,15,20-四(4-氨基苯基)-21H,23H-卟啉(节点)和2,5-二羟基对苯二甲醛(连接物1)进行反应,形成了2DCOF-1(图1a)。在此过程中,通过在水中添加二乙烯三胺作为中介,以及利用聚丙烯酸在水表面促进节点的积聚和组装,最终得到了具有高度均匀性的2DCOF-1薄膜。傅立叶变换红外和拉曼光谱表明了亚胺键的形成以及节点和连接物的完全消耗。将薄膜沉积到铜网格上后,显微镜观察到除了与镊子接触导致的一个破裂区域外,其他区域均被完全覆盖(图1c)。扫描电子显微镜和原子力显微镜进一步证实了薄膜的结构和均匀性,显示了不同颗粒通过晶界连接而成的结构,晶界呈现出明亮的对比度,而整个薄膜的颗粒和边界形态非常相似。这些结果表明,通过所采取的实验方法,研究人员成功地制备了高度结晶的2DCOF-1薄膜,并且该薄膜具有较高的机械韧性和均一性。图1. 2DCOF-1薄膜的合成方案及形貌。为了了解二维COF薄膜的晶界结构和微观特性,作者首先假设形成了涉及交织结构的晶界,并计算得到了晶胞参数(图2a)。接着,通过广角X射线衍射(GIWAXS)观察到了清晰而多重的反射,表明薄膜具有高结晶度。尤其是在平面方向,反射被很好地索引,并呈现出简单的四方晶格,支持了模拟的交织结构在平面上的周期性。在垂直方向上也观察到了清晰的反射,给出了层间距的信息,进一步证实了交织结构的存在(图2b)。此外,通过缝合畸变校正的高分辨透射电子显微镜(AC-HRTEM)图像,观察到了薄膜的微观结构。图像显示,薄膜由单晶颗粒组成,并通过傅立叶滤波进一步确认了这一结论。这些结果表明,二维COF薄膜具有复杂的晶界结构和高度有序的微观排列,这为其在力学性能和应用方面的研究提供了重要参考(图2c)。图2. 2DCOF-1薄膜的结晶度和晶界结构。作者进行了一系列实验,以探究二维COF薄膜的聚合和结晶过程。首先,通过广角X射线衍射技术监测了反应过程中薄膜的结晶情况。在6小时的反应时间内,观察到了局部结晶的开始信号,但整体呈现无定形状态;而在7小时处,形成了多晶薄膜,反射环明显。随着反应时间的延长,反射的强度逐渐增加,反映了薄膜的整体结晶度逐渐提高。此外,AC-HRTEM提供了微观的图像,显示了不同颗粒重新取向的过程,以及单晶颗粒尺寸的逐渐增大和晶界数量的减少。通过对比实验,发现未使用二乙烯三胺的对照实验中形成了具有层间无序的薄膜,并且薄膜厚度在不同区域间变化较大。而使用其他化合物作为中介的对照实验也证实了交织晶界的形成。这些实验结果揭示了二维COF薄膜的聚合和结晶过程,为理解其形成机制提供了重要线索(图3)。图3. 2D COF-1 薄膜的反应时间依赖性结构分析。图4展示了2DCOF-1薄膜的力学性能。通过在悬浮的薄膜上进行AFM纳米压痕实验,结果显示薄膜具有高韧性和弹性,加载和卸载曲线之间没有明显差异,表明薄膜在铜网上没有滑动。当薄膜被压痕直至破裂时,裂纹迅速扩散并大部分区域反弹回初始位置,表明薄膜存在能量消耗路径,可能是由于交织晶格的来回滑动。与此相反,对照实验显示2DCOF-1-A薄膜遇到严重的裂纹扩展。此外,薄膜的能量损失系数在70%和80%应变时均小于10%,并且在反复加载和卸载周期中保持稳定,表明了薄膜的高稳定性和韧性。通过对六个不同样品的力-位移曲线进行拟合,计算出薄膜的弹性性能和断裂应力,结果显示其平面弹性模量和断裂强度均远高于先前报道的晶体和多孔材料。这些实验结果表明了2DCOF-1薄膜具有优异的力学性能,展示了其作为有机二维COF纯晶膜的潜在应用前景。图4. 2DCOF-1薄膜的机械性能。【科学结论】本研究为克服传统2D晶体脆弱性提供了新思路。通过引入无定形聚合物中常见的交织结构,我们成功地将高强度、高韧性和高弹性引入了亚胺键多晶膜中,实现了这些膜的整体性能的显著提升。这一研究不仅为解决2D晶体材料的脆弱性问题提供了新途径,还揭示了从无定形材料中借鉴结构和性能的潜力。这种方法为多晶材料引入新的特性和应用打开了新的可能性,不仅可以加强现有材料的性能,还有望为新型应用的发展提供有力支持。这一创新将有助于推动材料科学领域的发展,为开发更加功能强大的材料和应用打开了新的前景。参考文献:Yang, Y., Liang, B., Kreie, J. et al. Elastic films of single-crystal two-dimensional covalent organic frameworks. Nature (2024). https://doi.org/10.1038/s41586-024-07505-x
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程: l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性 Ø 无水多晶型体 i. 构建相图和解析相图 ii. 如何寻找最佳晶型(稳定和亚稳态晶型) iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例 iv. 亚稳态晶型在制药业中的应用条件 v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物 i. 识别和表征水合物及溶剂合物 ii. 水合物和溶剂合物在原料药中的应用及如何保存 iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程 Ø 药物多晶型的稳定性及其热动力学研究 Ø 怎样生产并保持你所需要的晶型 Ø 实例分析 i. 混合晶型系统 ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺 iv. 如何应对临床后期出现的晶型转化 主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容: Ø 何时和为何要保护多晶型的知识产权 Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准 Ø 如何开发仿制药的多晶型 主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物 Ø 为什么要开发盐类药物 Ø 如何形成盐类药物 主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容: Ø 什么是共晶体 Ø 共晶体药物在制药中的基本应用 Ø 共晶体的稳定性 Ø 如何筛选药物共晶体及其放大工艺 Ø 在制药产业中形成共晶体的现象及其产生的影响 主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD) Ø 拉曼光谱 Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度 Ø pKa值的确定 Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜 Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六题目: 手性药物的结晶拆分(1小时) 内容: Ø 手性药物结晶拆分的原理及工艺研发的流程和策略 Ø 手性药物结晶拆分在原料药生长中的重要性 Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况 主讲人: 陈敏华博士 培训安排: 时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋 学员人数:20-50人 日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执): 电话:4008210778 传真:021-33678466 邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹 公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233 电话:4008210778 ;传真:021-33678466 电子邮箱:helen.jiang@dksh.com
  • 综述:粉末X射线衍射法在药物多晶型研究中的应用
    p style=" text-align: justify text-indent: 2em " 目前,研究药物多晶型的方法有单晶X射线衍射法(SXRD)、粉末X射线衍射法(PXRD)、红外光谱法(IR)、拉曼光谱法(RM)、差示扫描量热法(DSC)、热重法(TG)、毛细管熔点法(MP)、光学显微法(LM)、偏光显微法(PM)、固态核磁共振(SS-NMR)等。其中,粉末X射线衍射法比其他方法更具有优势,即其是非破坏性的,药物暴露于高温、低温或高湿的环境下也可以进行研究。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202007/uepic/6924c99a-db14-45ce-9a74-0a6982682580.jpg" title=" 摄图网_500655146_医疗药片(企业商用)_副本.jpg" alt=" 摄图网_500655146_医疗药片(企业商用)_副本.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " PXRD的基本原理是一束单色X射线穿过晶体被原子的电子云散射并以不同角度弯曲的过程。每一种药物晶体结构与其粉末X射线衍射图谱一一对应,即使对于含有多成分的固体制剂而言,其中原料药与辅料各自对应的粉末X射线衍射图谱不会发生变化,可作为药物晶型定性判断的依据。定量方面,除了《中华人民共和国药典》(ChP)2015年版四部通则中提及的标准曲线法外,多变量拟合法(又称为全谱拟合法)的应用也越来越广泛,其优势在于只需要提供药物结构信息,无需标样,操作过程简单,测定结果准确等。本文查阅相关文献归纳总结 PXRD 在药物多晶型定性与定量分析等方面的研究应用。 /p p style=" text-align: justify text-indent: 2em " strong 1 粉末X射线衍射法在药物多晶型定性分析的应用 /strong /p p style=" text-align: justify text-indent: 2em " PXRD在药物多晶型定性应用上体现在2个方面:①对原料药多晶型的鉴定。②对固体制剂中原料药的鉴定。对于原料药的鉴定,PXRD直接表征或者其他方法辅助PXRD对原料药进行鉴定;对于固体制剂而言,则需重点考虑赋型剂(辅料)的影响。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/75432a3f-a80f-45ea-bdfa-93fddbf868a6.jpg" title=" 摄图网_400063188_线条科技背景(企业商用)_副本.jpg" alt=" 摄图网_400063188_线条科技背景(企业商用)_副本.jpg" / /p p style=" text-align: justify text-indent: 2em " 1.1 原料药 /p p style=" text-align: justify text-indent: 2em " 1.1.1 PXRD表征并鉴定原料药多晶型PXRD鉴定原料药多晶型是从已有数据库中查到原料药的晶体结构数据并产生相应的模拟图谱,与实测图谱比对,能快速判定该药物的多晶型物是什么。多晶型物相互之间的区分,通过比对实测图谱中衍射峰位置、强度及d值来进行。 /p p style=" text-align: justify text-indent: 2em " 1.1.2 PXRD联合其他方法在药物多晶型上的应用 /p p style=" text-align: justify text-indent: 2em " PXRD鉴定结构相似的多晶型物,所得到的粉末衍射图谱差异较小,难以判定,需结合其他方法鉴定多晶型物。有研究者用同步加速器X射线粉末衍射和透射电镜(TEM)联用的方法证实并区分了罗昔非班(roxifiban)2种多晶型物Ⅰ和Ⅱ。关键在于电子衍射技术的使用,克服了粉末衍射数据在低对称晶体系统中确定宽视差单晶格困难的缺点。有些多晶型物是经过一定处理产生如熔融重结晶,DSC只能对其进行单向测定,不能很好地解释在DSC测定过程中的晶型变化,需借助PXRD对此过程发生的现象进行表征。有研究者用DSC测定灰黄霉素(griseofulvin)多晶型Ⅰ在熔融过程中的变化,PXRD表征此变化中观察到的晶型,最终鉴定出2种新多晶型物Ⅱ和Ⅲ。此外,人工神经网络(ANNs)分析方法的提出为传统分析技术提供了选择,已经应用于各种图谱分析。相关研究者将漫反射傅里叶变换红外光谱(DRIFTS)与PXRD结合并得到相应图谱数据,通过ANNs分析盐酸雷尼替丁晶体(ranitidine-HCl)确定2种多晶型Ⅰ和Ⅱ的纯度。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202007/uepic/665761df-de31-479c-9094-c5452fafd8a2.jpg" title=" 摄图网_401491749_医疗实验(企业商用)_副本.jpg" alt=" 摄图网_401491749_医疗实验(企业商用)_副本.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 1.2 固体制剂 /p p style=" text-align: justify text-indent: 2em " PXRD对固体制剂中原料药多晶型的研究主要考察赋形剂或小分子添加剂对其的影响。这些辅料的晶型多数是无定型的。不同的赋形剂或小分子添加剂影响着固体制剂中原料药的晶型或导致原料药非晶化。原料药与赋形剂或小分子添加剂形成的固体制剂的研磨方式也会使原料药的晶型改变,如低温或室温研磨。但在粉末图谱中原料药衍射峰并未受到赋形剂或小分子添加剂衍射峰的干扰。 /p p style=" text-align: justify text-indent: 2em " strong 2 粉末X射线衍射法在药物多晶型定量分析的应用 /strong /p p style=" text-align: justify text-indent: 2em " 2.1 多变量拟合法 /p p style=" text-align: justify text-indent: 2em " 多变量拟合法是通过峰型函数将理论数据与实测数据拟合,改变峰型参数和结构参数使得理论谱与实测谱不断接近,得到完整的理论衍射谱。多变量拟合法提供较多的物相信息,分析更加完整,故多变量拟合法在药物晶型定量分析上应用更为广泛。 /p p style=" text-align: justify text-indent: 2em " 2.1.1 图谱模式拟合法 /p p style=" text-align: justify text-indent: 2em " X射线粉末衍射图的模式拟合程序是分析定量固体制剂中具有单斜晶体或斜方晶体的药物的潜在有力手段。将X射线粉末衍射数据拟合成解析表达式,通过最小二乘法进行优化, 从而确定体系中每个组分的质量分数。 /p p style=" text-align: justify text-indent: 2em " 2.1.2 化学计量法 /p p style=" text-align: justify text-indent: 2em " 基于化学计量学的PXRD利用全谱图方法,结合布拉格衍射和漫散射分析,从而提高信噪比、灵敏度和选择性。有研究者利用3种化学计量算法(经典最小二乘回归CLS、主成分回归PCR、偏最小二乘回归PLS)预测由2种结晶材料和2种无序材料组成的整合4组分系统中个别组分浓度所建立的校准与传统的衍射-吸收单变量校准进行统计学比较,发现多变量校准增强了线性关系,降低了预测误差,而传统的单变量校准受到峰值失真,变量选择等的影响,其中PLS建模为组分浓度的量化提供了最好的统计结果。 /p p style=" text-align: justify text-indent: 2em " 2.1.3 Rietveld法 /p p style=" text-align: justify text-indent: 2em " Rietveld法是采用步进扫描获取X射线粉末衍射数据的方法,与计算机软件技术相结合, 使衍射数据处理过程简化。经过不断地发展提高了各种传统数据的质量,在其内容上越来越丰富,应用也越来越广泛。 /p p style=" text-align: justify text-indent: 2em " 2.2 标准曲线法 /p p style=" text-align: justify text-indent: 2em " 《中华人民共和国药典》(ChP)2015年版四部通则9015规定通过配制2种或多种晶型比例的混合物,建立混合物中的各种晶型含量与特征峰衍射强度关系的标准曲线,可以实现对原料药的晶型种类和比例的含量测定。 /p p style=" text-align: justify text-indent: 2em " strong 3 小结 /strong /p p style=" text-align: justify text-indent: 2em " 药物多晶型的研究在制药行业中已是关注焦点,本文主要归纳了PXRD对药物多晶型定性和定量方面的应用。PXRD对原料药晶型的表征普遍为粉末图谱对比,这种方法简单、快速,但是结构相似的多晶型物的粉末图谱差异较小,难以区分,需联合其他方法来解决这类问题,并且PXRD也能有效地说明其他方法对多晶型物的测定。所以,联合技术的应用将会成为药物多晶型研究领域的一种发展趋势。不同的赋形剂和小分子添加剂(辅料)或研磨方法均会对固体制剂中的原料药多晶型产生不同的影响,PXRD对原料药多晶型的变化能够直接地通过粉末图谱表达出来,作为判定辅料和原料药的有力手段。多变量拟合法相比标准曲线法能提供更多的物相信息,与计算机软件的结合,使处理数据更加简单化,分析更加完整,逐渐成为药物多晶型定量研究的潜力手段。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(127, 127, 127) " i 文章摘自:夏婉莹,郝英魁,唐辉,傅琳,蒋庆峰.粉末X射线衍射法在药物多晶型研究中的应用[J].中国新药杂志,2019,28(01):40-43. /i /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong 【近期会议推荐】 /strong /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ad9574be-e083-43ad-a522-22d4dbb606cc.jpg" title=" 1125-480.jpg" alt=" 1125-480.jpg" / /p p br/ /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse" align=" center" tbody tr class=" firstRow" td width=" 595" colspan=" 4" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" p span style=" color: rgb(227, 108, 9) " strong “X射线衍射技术及应用进展”主题网络研讨会(07月23日) /strong /span /p /td /tr tr td width=" 90" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 13:30-14:00 /p /td td width=" 195" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 原位X射线衍射技术在材料研究中的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 程国峰 /p /td td width=" 178" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 中国科学院上海硅酸盐研究所研究员 /p /td /tr tr td width=" 95" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 14:00-14:30 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 赛默飞实时XRD系统及其特色应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 居威材 /p /td td width=" 178" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 赛默飞世尔科技(中国)有限公司应用工程师 /p /td /tr tr td width=" 95" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 14:30-15:00 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 高分子材料的X射线衍射表征 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 张吉东 /p /td td width=" 178" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 中国科学院长春应用化学研究所研究员 /p /td /tr tr td width=" 95" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 15:00-15:30 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 单晶X射线衍射技术及其在药物研究中的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 钟家亮 /p /td td width=" 178" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 中国医药工业研究总院副研究员 /p /td /tr tr td width=" 95" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 15:30-16:00 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p X射线衍射技术在药物晶型研究方面的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 周丽娜 /p /td td width=" 178" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 天津大学工程师 /p /td /tr /tbody /table p style=" text-align: center " span style=" color: rgb(227, 108, 9) " strong 点击链接或扫描下方二维码,即可进入报名页面,获得与专家及时交流的机会! /strong /span /p p style=" text-align: justify text-indent: 2em " 1、报名链接: /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/X0723/" target=" _self" https://www.instrument.com.cn/webinar/meetings/X0723/ /a /p p style=" text-align: justify text-indent: 2em " 2、参会报名二维码 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: justify text-indent: 2em " img src=" https://img1.17img.cn/17img/images/202007/pic/15f59e8e-4a82-4c71-865f-8173a9fe0267.jpg" width=" 250" height=" 250" border=" 0" vspace=" 0" title=" " alt=" " style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 250px height: 250px " / /p p br/ /p
  • 高分子表征技术专题——X射线晶体结构解析技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!X射线晶体结构解析技术在高分子表征研究中的应用X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer作者:扈健,王梦梵,吴婧华作者机构:青岛科技大学 教育部/山东橡塑重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029作者简介:扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究. 扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究.摘要高分子材料结构具有多尺度的复杂性,解析高分子材料各级微观结构并建立结构与性能之间的关系是高分子研究领域的重要目标和挑战. 对结晶性高分子而言,第一步工作就是对其晶体结构进行表征和解析,X射线衍射法是高分子晶体结构解析中最经典也是最常用的方法. 本文主要介绍X射线衍射等技术在高分子晶体解析中的基本原理和测试表征方法,总结概述近些年来晶体结构解析在高分子领域内的主要进展以及应用. 通过晶体结构解析的方法建立可靠的高分子晶体结构,不仅可以应用于新合成结晶高分子结构的解析,也可以进一步研究高分子各级结构在外场作用下的演变,探明微观结构与宏观性能之间的关系.AbstractBecause of complicated multi-scale structure for the polymer material, studying microscopic structure of polymer and clarifying the relationship between structure and physical property are the major goal and challengein the polymer science. For the crystalline polymer, crystal structure should be analyzed and established at first. X-ray diffraction is the most classical and conventional method for the crystal structure analysis in polymers, which gives the detailed information of molecular chain conformation, chain aggregation in the crystal lattice. This article reviews the main principles and experimental techniques of X-ray diffraction methodology, and also summarizes the progress and application in the polymer field over the past decade. By utilizing X-ray diffraction method, the crystal structure of newly synthesized crystalline polymers can be analyzed, which may help us recognize crystal phase transition and hierarchical structure evolution by the external force, and also study towards the microscopic clarification of structure-property relationship. By combining other techniques such as neutron scattering, electron diffraction, nuclear magnetic resonance, vibrational spectroscopy and computer simulation, the crystal structure of polymers with higher reliability can be established, leading us to the highly quantitative discussion from the molecular level. For this purpose, the study of polymer crystal structure is still on the way, and the contents may be helpful for the beginners and researchers.关键词结晶性高分子  晶体结构  X射线衍射  结构与性能KeywordsCrystalline polymer  Crystal structure  X-ray diffraction method  Structure and property 目前已知的高分子中,大约70%的都是结晶性高分子,它们在日常生活和高端领域有着大量的应用. 结晶性高分子受分子链结构不规整、链缠结和链间相互作用等效应的影响,很难像小分子一样完全结晶,通常也被称作半结晶性高分子[1-3]. 高分子结构具有多尺度复杂性,其各级结构通常包括聚合物链结构、晶体(胞)结构、晶胞堆砌结构、晶区与非晶区堆砌结构以及球晶中片晶结构等,各级结构都有可能影响着高分子相态及形貌,进而影响高分子材料的性能. 而其中,晶体结构的确定是研究结晶性高分子的基础,所以建立高质量的结晶性高分子的晶体结构是非常必要的[4,5].近几十年来,随着各类表征技术和计算机模拟等领域的快速发展,大量的高分子晶体结构被建立或者修正. 确定结晶性高分子在单元晶胞基础上的晶体结构信息,最传统和经典的方法是广角X射线衍射法,并且结合红外光谱、拉曼光谱、核磁共振谱、中子散射以及高分辨电子衍射等技术能够得到更为准确的晶体结构. 这些技术的进步和运用不仅有助于分析聚合物的晶体结构,而且也提供了新方法去研究更为复杂的高分子材料. 基于晶体结构的建立,我们可以研究高分子的各级结构以及在外场作用下各种相态之间的演变规律,对阐明聚合物材料微观结构与物理性能之间的关系都具有重要意义[6,7].1高分子X射线晶体结构解析法X射线是一种波长为埃(1 Å = 10-10 m)级的电磁波,由于其波长的数量级与晶体点阵中原子间距一致,晶体点阵可以成为X射线发生衍射效应的光栅,而衍射图会随晶体点阵的变化而变化,因此X射线适用于晶体结构解析. 从20世纪30年代开始,X射线衍射法对聚合物科学领域的发展就起到了重要的作用,例如通过X射线衍射方法确定了各类合成或天然高分子的纤维周期均为几个Å到几十个Å,这也证明了一根聚合物分子链可以贯穿多个晶胞. 随着近几十年同步辐射技术的应用,拓宽了X射线的波长范围,更短的波长可以使我们获得更多倒易空间的坐标信息,灵敏度更高的探测器可以帮助我们更细致观测相变的动力学以及其他行为. 另外,通过分子模拟软件进行数据分析,建立模型以及能量最小化等已经普遍用于X射线衍射法解析或精修晶体结构. 1.1X射线衍射法基本原理解析晶体结构的衍射原理和方法学主要是20世纪初期建立的,包括布拉格定律、晶体学对称、群论以及从实空间到倒易空间的傅里叶变换等等. 很多书籍对这些方法都有着详尽的描述,这里对几个重要的概念和原理进行简要的概述[8~11].1.1.1Bragg和Polanyi公式Bragg公式:如图1所示,当一束单色X射线非垂直入射晶体后,从晶体中的原子散射出的X射线在一定条件下彼此会发生干涉, 满足下列方程:其中λ为入射光波长,d为晶面间距,θ为入射光与晶面的夹角.Fig. 1Bragg' s condition.Polanyi公式: 如图2(a)所示,当一束波长为λ的X射线垂直入射在一维线性点阵时(例如单轴取向的纤维样品),其等同周期为I, 当满足Polanyi方程公式时,散射出的X射线间会产生强烈的衍射:其中Φm为第m层衍射的仰角. 结晶高分子中分子链排列时以相同结构单元重复出现的周期长度被称为等同周期(identity period)或者纤维周期(fiber period),图2(b)为全同聚丁烯-1的(3/1)螺旋构象,可以利用Polanyi公式从二维X射线纤维图中计算等同周期.Fig. 2(a) Polanyi' s condition (b) Identity period ofit-PB-1.1.1.2倒易空间倒易点阵是根据晶体结构的周期性抽象出来的三维空间坐标,是一种简单实用的数学工具来描述晶体衍射,X射线衍射的图样实际上是晶体倒易点阵的对应而不是正点阵的直接映像. 正点阵与倒易点阵是互易的,倒易晶格中越大的晶面指数(hkl),在实晶格中就对应越小的晶面间距. 如图3(a)所示,假设晶体点阵中的单位矢量为a1,a2和a3,和它对应的倒易点阵的单位矢量为a1*,a2*和a3*,其关系如下式:其中晶胞体积V=a1 × ( a2 × a3),a1*垂直于a2和a3,a2*垂直于a1和a3,a3*垂直于a1和a2,其长度是相应晶面间距的倒数的向量.Fig. 3(a) Relationship between real space and reciprocal space (b) Reciprocal lattice and vector.倒易晶格中的任一点称作倒易点,倒易点阵的阵点与晶体学平面的矢量相关,每一组晶面(hkl)都对应一个倒易点. 从倒易空间原点指向倒易点的矢量被称为倒易矢量Hhkl,如图3(b)所示,其关系如下:其中指标(h,k,l)就是实空间中的晶面指数,h,k,l均为整数. 倒易矢量Hhkl垂直于正点阵中的(hkl)晶面,并且矢量的长度等于其对应晶面间距的倒数|Hhkl|=1/dhkl.1.1.3Ewald球Bragg方程指出,当散射矢量等于某倒易点阵矢量时就具备发生衍射的基础,如果把Bragg方程进行变形可得到公式(5):以1/λ为半径画一个球面,C点为圆心,CP为散射X射线,球面与O点相切,只要倒易点阵与球面相交就可以满足Bragg方程而发生衍射现象,这个反射球就被称为Ewald球,如图4所示.Fig. 4Relationship between Ewald sphere of radius 1/λ and reciprocal lattice. 根据图中的几何关系OP = 1/d,假设O点为倒易空间原点,OP即为倒易散射矢量,P点与倒易空间点阵的交点即为(hkl)晶面指数. 转动晶体的同时倒易点阵亦发生转动,从而会使不同的倒易点与Ewald球的表面相交. Ewald球直径的大小与X射线波长成反比,衍射点数量取决于Ewald球与倒易空间的交点的数目,实验可探测衍射的最小d值取决于Ewald球的直径2/λ,在实际测试中,可以减小入射光波长以增加可观测的衍射点数量.如图5所示,对于单轴取向的样品,拉伸方向平行于c轴方向,而a轴和b轴仍然是随机取向,所以倒易空间的(hkl)点呈同心圆分布,这一系列同心圆与Ewald反射球的交点就构成了一系列的hk0,hk1,hk2… hkl的倒易格子的平面. 通常定义(hk0)层为赤道线方向,沿拉伸方向的(00l)为子午线方向.Fig. 5The relationship among Ewald sphere, circular distribution of reciprocal lattice points and a diffraction pattern on a flat photographic film.1.1.4X射线衍射强度X射线的衍射强度Intensity公式如下:其中K是比例因子,m是多重性因子,p为极化因子,L是Lorentz因子,A是吸光因子,F为结构因子. 其中需要强调的是结构因子F,它是由晶体结构决定的,和晶胞中原子的种类和位置相关.如图6所示,一束平行X射线经过电子A和B分别发生散射,假设A到B的距离为r,S0和S分别为入射和散射单位矢量,其光程差为:其中b即为散射矢量,与图4中OP矢量一致.Fig. 6Sketch of classic scattering experiment.一个原子中的核外电子云呈球形分布,对环绕中心的所有可能实空间矢量的干涉进行积分可以得到一个原子周围的电子产生的相干散射:这个公式就是ρ(r)的傅里叶变换,其中ρ(r)是原子的散射因子.晶体中原子的周期排列决定了晶体中的一切都是周期的,相当于一种周期函数,这种周期函数的实质就是晶胞中的电子密度分布函数,倒易晶格就是实晶格的傅里叶变换. 晶格对X射线的散射为晶格中每个原子散射的加和,每个原子的散射强度是其位置的函数,加和前必须考虑每个原子相对于原点的位相差.r为实空间中的原子位置矢量,设r = xna1 + yna2 + zna3,b为倒易空间的倒易矢量,b = Hhkl = ha1* + ka2* + la3*,根据倒易空间的性质可以得出公式:通过此公式可以看出结构因子和原子坐标位置相关,这也就决定了系统消光现象,也就是说在不同晶系中不是所有衍射点都会出现,可以通过计算结构因子来判断.另外由于衍射强度正比于|Funit cell|2,在晶体计算过程中,衍射峰的绝对强度意义不大,但是衍射峰的相对强度对最后晶体结构的确定影响很大.1.1.5分子链排列方式和空间群一根分子链一般包含内旋转相互作用、非键接原子间相互作用、静电作用、键长伸缩和键角变形作用以及氢键作用等. 在晶格中分子链排列大多遵循2个原则:最稳定的空间螺旋构象以及最密堆砌.晶体学中的空间群是三维周期性的晶体变换成它自身的对称操作(平移,点操作以及这两者的组合)的集合,一共有230种空间群. 空间群是点阵、平移群(滑移面和螺旋轴)和点群的组合. 230个空间群是由14个Bravais点阵与32个晶体点群系统组合而成[12].我们挑选比较简单的空间群操作进行比较直观的说明,如图7所示,若一个右旋向上的分子链(图7(a)中Ru),通过以箭头方向为旋转轴做180°转动,可以得到右旋向下的分子链(图7(a)中Rd),如果空间中只有这一种对称操作,那么这种空间为P2;又若Ru分子链通过镜面对称操作可以得到左旋向上的分子链(图7(b)中Lu),如果空间中只有这一种对称操作,那么这种空间为Pm;若空间群中同时包含以上2种对称操作,且镜面法线方向与对称轴垂直,也就是说在此晶胞内就同时存在右旋向上Ru,右旋向下Rd,左旋向上Lu,左旋向下Ld 4种分子链构象,那么这种空间群为 P2/m,如图7(c)所示.Fig. 7Introduction of different operation in the space group.1.2其他方法简介1.2.1振动光谱法振动光谱法通常包括红外及拉曼光谱,其可以提供分子链构象,晶体对称性等信息[8]. 虽然通过X射线衍射法进行晶体结构解析时可以得到晶区高分子链的构象信息,但无法获知分子间作用力的信息,而有时分子间作用力在晶体结构的形成起到很重要的作用.1.2.2中子衍射法X射线衍射是X射线与电子相互作用,它在不同原子上的散射强度与原子序数成正比,对高分子而言通常都给出主链的信息,而中子衍射法是中子与原子核相互作用,其衍射强度随原子序数的增加不会有序的增大,主要与原子的种类有关,因此中子衍射法可以确定晶体结构中轻元素的位置. 很多力学性能的各向异性通常受侧链的氢原子影响很大,结合X射线衍射和中子衍射法能得到更为准确的晶体结构[13,14].1.2.3电子衍射法电子衍射法可以给出聚合物单晶的形貌信息并且可以得到相应电子衍射图进行结构分析[15]. 但是通常电子衍射法得到衍射点数量较少,而且容易产生次级衍射,样品容易被电子束破坏.1.2.4固体核磁共振谱法固体NMR适用于解析固态高聚物的本体结构、链构象、结晶、相容性以及分子动力学等[16,17]. 谱峰的化学位移(chemical shift)是固体核磁波谱的主要信息,它依赖于分子的局部电子云环境. 电子云结构对分子构象的变化非常灵敏,是研究多晶型的重要依据. 但固体核磁法很难给出晶体的直接结构,常作为X射线衍射法的补充.2X射线衍射测试方法及技巧对于聚合物而言很难培养出0.1 mm以上的单晶,所以测试大多数采用的都是多晶样品. 相较于小分子和低分子量的化合物而言,高分子结晶区的尺寸通常只有几百个Å,晶格内分子链排列不完善,衍射点的数量较少并且衍射点尺寸较宽,大角度范围衍射点强度衰减非常严重,要得到高质量的数据和非常可信的结构解析结果是比较困难的,从样品制备到测试以及后续分析的每一个环节都需要仔细的处理.图8为X射线衍射法解析高分子晶体结构的具体步骤.
  • 瑞士华嘉与晶云药物联合将为中国制药界用户提供药物固态表征领域的一系列高端讲座
    晶云药物科技有限公司(简称晶云)已与华嘉(香港)有限公司—隶属大昌华嘉 (简称华嘉)签订合作协议,将会为华嘉在中国的广大制药界客户,提供药物固态表征领域的一系列高端讲座和培训,以共同推进中国制药界对固态表征仪器在制药界应用和其在药物研发过程中的重要性的了解。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。其中固态表征领域的产品就包括粒度仪,密度计,旋光计,接触角测量仪,BET比表面积测量仪等各种高端进口仪器。 “中国政府正在大力增加制药行业的投资力度,以提高中国在药物研发领域的能力和国际竞争力”,晶云首席执行官陈敏华博士说,“在药物的高级研发方面,中国制药业尚处于起步阶段。导致这个现象的部分原因是国内制药行业在对原料药和制剂的研发认知上,与美国和欧洲的制药行业尚有不小差距。虽然不少中国制药公司有能力购买昂贵的固态表征和其它分析仪器,但他们并不一定懂得如何正确的使用这些仪器,合理的阐释实验数据,并深刻理解其所提供的信息和对药物研发的作用。” 苏州晶云药物科技有限公司是中国首家并且也是目前唯一一家专注于药物晶型研究和提供药物固态信息领域研发方案的技术服务公司。晶云的科研人员拥有丰富的原料药和制剂的研发经验。无论是以研发创新药物为主的全球各大制药公司,还是以生产仿制药(包括原料药和制剂)为主的国内各制药公司,晶云都可以成为其在药物固态研发领域的紧密合作伙伴,为其提供药物固态研发领域的各种解决方案,其中包括药物晶型研究,盐型/多晶型/共晶型筛选,单晶的生长和结构鉴定,结晶工艺的优化,手性药物的结晶提纯,临床前制剂的研发,无定形药物制剂的研发等各个方向。晶云不局限于简单的为客户操作实验和提供实验结果,更重要的是给客户提供一个适合其需求并完全满意的全套研发方案。 晶云技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。晶云即将为华嘉客户提供的讲座和培训不仅包含了药物固态表征技术的基本理论,还将集中讨论如何利用这些仪器解决药物研发生产中碰到的实际问题,并辅以大量的制药行业中的案例分析。晶云和华嘉的一个共同使命就是帮助广大中国制药公司在新药研发领域迅速赶上欧美制药公司水平。相信由两家公司联合举办的讲座和培训将为成为实现这一使命的重要平台。 晶云药物科技有限公司 晶云药物科技有限公司(Crystal Pharmatech)总部设立在苏州工业园区内的生物纳米科技园,在美国新泽西州建有分部。核心团队由中美科学家及管理人员共同组成,拥有在全球前三大制药公司数十年的丰富研发和生产经验。团队利用掌握的核心技术开发出中国在药物晶型研究及提供药物固态信息研发方案的首个高新技术平台,并通过该平台为全球制药公司提供该领域的高级技术研发服务。公司拥有的享有自主知识产权的高新技术和高新仪器,结合团队目前已经完全掌握的该专业领域的核心技术,将保证技术平台不仅可以填补国内在该领域的空白,而且使技术平台处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,主要包括原料药及其中间体的成盐,共晶和多晶的筛选,原料药和制剂的表征和评估,晶型药物结晶工艺流程的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。 想了解更多信息,敬请登陆: http://www.crystalpharmatech.com/ 华嘉(香港)有限公司——隶属大昌华嘉大昌华嘉是一家著名的国际贸易集团,总部位于瑞士的苏黎世。华嘉公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。"科技的市场智慧”是对华嘉公司形象的准确概括。高品质的产品,专业的应用及完善的售后服务,对各种客户文化背景的深刻理解以及娴熟的市场贸易技巧使得客户获得的不仅是经济上的利益,而且是技术上的进步。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 想了解更多信息,敬请登陆:http://www.dksh-instrument.cn/
  • 显微拉曼光谱在测量晶圆(多晶硅薄膜)残余应力上的应用
    在半导体生产过程中,退火、切割、光刻、打线、封装等多个生产工序都会引入应力,而应力分为张应力和压应力;应力也分有益的和有害之分。应变 Si(strained Silicon 或 sSi)是指硅单晶受应力的作用,其晶格结构和晶格常数不同于未应变体硅晶体。应变的存在,使 Si 晶体结构由立方晶体特征向四方晶体结构特征转变,导致其能带结构发生变化,从而最终导致其载流子迁移率发生变化。研究表明,在 Si 单晶中分别引入张应变和压应变,可分别使其电子迁移率和空穴迁移率有显著的提升因而,从 Si CMOS IC 的 90nm 工艺开始,在 Si 器件沟道以及晶圆材料中引入应变,提高了器件沟道迁移率或材料载流子迁移率,从而提升器件和电流的高速性能。多晶硅薄膜是MEMS(micro-electro-mechanical systems)器件中重要的结构材料,通常在单晶硅基底上由沉积方法形成。由于薄膜与基底不同的热膨胀系数、沉积温度、沉积方式、环境条件等众多因素的综合作用,多晶硅薄膜一般都存在大小不一的拉应力或者压应力。作为结构材料多晶硅薄膜的材料力学性能在很大程度上决定了MEMS器件的可靠性和稳定性。而多晶硅薄膜的残余应力对其断裂强度、疲劳强度等力学性能有显著的影响。表面及亚表面损伤还会引起残余应力,残余应力的存在将影响晶圆的强度,引起晶圆的翘曲如图1所示。所以准确测量和表征多晶硅薄膜的残余应力对于生产成熟的MEMS器件具有重要的意义。图 1 翘曲的晶圆片图 2 Si N 致张应变 SOI 工艺原理示意图,随着具有压应力 SiN 淀积在 SOI 晶圆上,顶层 Si 便会因为受到 SiN 薄膜拉伸作用发生张应变应力的测试难度非常大。由于MEMS中的多晶硅薄膜具有明显的小尺度特征,准确测量多晶硅薄膜的残余应力并不是一件容易的事情。目前在对薄膜的残余应力测量中主要采用两种方法:一种是X射线衍射,通过测量薄膜晶体中晶格常数的变化来计算薄膜的残余应力,这种方法可以实现对薄膜微区残余应力的准确测量,但测量范围较小,且对试样的制备具有较高的要求,基本不能实现在线薄膜残余应力测量。另外一种就是显微拉曼谱测量法,该方法具有非接触、无损、宽频谱范围和高空间分辨率等优点。通过测量薄膜在残余应力作用下引起的材料拉曼谱峰的移动可推知薄膜的残余应力分布。该方法可以实现对薄膜试件应力状况的在线监测,是表征薄膜材料尤其是MEMS器件中薄膜材料残余应力的一种重要方法。用于力学测量的一般要具有高水平的波长稳定性的紫外或可见光激发光源,并具备高光谱分辨率(小于 1cm-1)的显微拉曼光谱系统。1. 测量原理1.1. 薄膜残余应力与拉曼谱峰移的关系拉曼谱测量薄膜残余应力的示意图如图2所示。激光器发出的单色激光(带箭头实线)经过带通滤波器和光束分离器以后经物镜汇聚照射到样品表面‚激光光子与薄膜原子相互碰撞造成激光光子的散射。其中发生非弹性碰撞的光束(带箭头虚线)经过光束分离器和反射滤波器后,汇聚到声谱仪上形成薄膜的拉曼谱峰。拉曼散射光谱的产生跟薄膜物质原子本身的振动相关,只有当薄膜物质的原子振动伴随有极化率的变化时,激光的光子才能跟薄膜物质原子发生相互作用而形成拉曼光谱。当薄膜存在拉或压的残余应力时,其原子的键长会相应地伸长或缩短,使薄膜的力常数减小或增大,因而原子的振动频率会减小或增大,拉曼谱的峰值会向低频或高频移动。此时,拉曼峰值频率的移动量与薄膜内部残余应力的大小具有线性关系,即Δδ=ασ或者σ=kΔδ,Δδ是薄膜拉曼峰值的频移量,σ是薄膜的残余应力,k和α称为应力因子。图 3 拉曼测量系统示意图图 4 拉曼光谱测试晶圆的示意图2. 多晶硅薄膜残余应力计算对于单晶硅,激光光子与其作用时存在3种光学振动模式,两种平面内的一种竖直方向上的,这与其晶体结构密切相关。当单晶硅中存在应变时,这几种模式下的光子振动频率可以通过求解特征矩阵方程ΔK- λI = 0获得。其中ΔK是应变条件下光子的力常数改变量(光子变形能)λi(i= 1 ,2,3)是与非扰动频率ω0和扰动频率ωi相关的参量(λi≈ 2ω0(ωi-ω0)),I是3×3单位矩阵。由于光子在多晶硅表面散射方向的随机性和薄膜制造过程的工艺性等许多因素的影响,使得利用拉曼谱法测量多晶硅薄膜的残余应力变得更加复杂。Anastassakis和Liarokapis应用Voigt-Reuss-Hill平均和张量不变性得出与单晶硅形式相同的多晶硅薄膜的光子振动频率特征方程式。此时采用的光子变形能常数分别是K11=-2.12ω02 K12=-1.65ω02 K33=-0.23ω02是光子的非扰动频率。与之相对应的柔度因子分别是S11= 6.20×10-12Pa-1S12=-1.39 ×10-12Pa-1S33= 15.17 ×10-12Pa-1对于桥式多晶硅薄膜残余应力的分析,假定在薄膜两端存在大小相等、方向相反(指向桥中心)的力使薄膜呈拉应力。此时,拉曼谱峰值的频移与应力的关系可以表达为Δω =σ(K11+2 K12)(S11+2 S12)/3ω0代入参量得Δω =-1.6(cm-1GPa-1)σ,即σ=-0.63(cmGPa)Δω (1)其中σ是多晶硅薄膜的残余应力,单位为GPa;Δω是多晶硅薄膜拉曼峰值的频移单位为cm-1。3. 应力的拉曼表征桥式多晶硅薄膜梁沿长度方向的拉曼光谱峰值频移情况如图3所示。无应力多晶硅拉曼谱峰的标准波数是520 cm-1,从图3可以看出,当拉曼光谱的测量点从薄膜的两端向中间靠拢时,多晶硅的峰值波数将沿图中箭头方向移动,即当测量位置接近中部时,多晶硅薄膜的峰值波数将会逐渐达到最小。图中拉曼谱曲线采用洛伦兹函数拟合获得。通过得曲线的洛伦兹峰值的横坐标位置,就可以根据式(1)得到多晶硅薄膜的残余应力分布情况,如图4所示。由于制造过程的偏差,多晶硅薄膜的实际梁长L=213μm。图 10 共聚焦显微拉曼光谱扫描成像仪测得晶圆应力分布,红色的应力越大,蓝色的应力较小。
  • 多晶X射线衍射技术的应用要点
    现代化商用多晶X射线衍射仪具备无损、便捷、测量精度高等很多优点,同时配备有先进的陶瓷光管、高精度的测角仪、高灵敏度的探测器以及各种分析计算软件,因此它的应用范围是非常广泛的,不仅可以实现材料物相的定性表征,还可以对很多参数实现定量化的分析。常规的分析包括:材料的晶型结构分析、点阵参数的测定、物相定量、晶粒尺寸和结晶度计算等,还可以对材料的宏观微观应力以及取向织构进行测定;同时还包括诸如小角散射、薄膜衍射、反射率测定以及微区分析等新的技术。而在X射线衍射分析表征中,样品的制备过程、仪器参数设定以及数据分析这三个步骤往往决定了X射线衍射数据结果的质量。本文主要从这三方面进行阐述,与大家分享下多晶X射线衍射的应用要点。一、样品制备X射线衍射实验的准确性和实验得到的信息质量结果与样品的制备有很大关系,在进行材料的X射线衍射分析时应合理制备样品。样品制备主要分为粉末样品的制备和块状类样品的制备。1. 粉末样品首先要控制它的颗粒粒径,原则上要保证颗粒尺寸适中并且均匀,对于大多数样品来讲可以通过研磨加过筛的方式来实现;而对于受外力易产生晶体结构变化的样品而言,通常采用不研磨直接过筛的方式进行处理。在样品的整个研磨过程中要掌握研磨力度柔和均匀的原则,适中的粒度可以让样品中大部分或全部的晶粒参与衍射,从而可以获得反应样品真实晶体结构信息的实验数据;如果研磨不充分,会造成样品的粒度粗大,从而会引起参与衍射的晶粒数目减少,衍射强度降低,峰形变差,分辨率降低的情况;如果用力过度研磨,对材料的晶体结构会产生不同程度的破坏,衍射强度会降低,同时晶粒细化会带来衍射峰的宽化效应,不利于得到结构清晰的衍射谱图。至于研磨的程度,一般研磨到没有颗粒感,类似面粉的滑腻感即可,也不能研磨的过细。过筛这一步是为了保证样品粒径的均匀性,如果样品颗粒尺寸不够均匀,会产生一定的择优取向。图1是一个矿物样品的分析案例,红色谱图是未经研磨和未经过筛处理的样品,而黑色谱图是样品经过研磨和过筛处理的。从叠加图中可以明显看到:样品经过研磨过筛后,粒径尺寸适中且均匀,这就保证了参与衍射的晶粒数目。在X射线衍射谱结果中,经过处理的样品不论从衍射峰数目、强度、峰型和分辨率都要优于未处理的样品,从而确保了分析结果的真实性。图1 经过处理与未经过处理的矿物样品的叠加X射线衍射谱图在粉末样品的装填方面,需要准备的样品量一般在3g左右,最小不少于5mg。压片方法采用常规的正压法操作,在压片过程中让粉末样品最好能够铺满整个样品槽,关键要让粉末样品压平,如果样品表面不平整、存在凹凸起伏的情况,会导致出射的角度变大或变小,直接引起大角度的某些衍射峰偏移,还会造成入射X射线散射至任意方向,导致探测器接收到的峰值降低。这对于精修分析而言,会造成最终解析的晶体结构常数出现严重错误。压片过程中需要注意的是不要用力压太紧,否则容易影响样品的自由取向。2. 块状类样品从样品形态区分,常见的块状类样品有块状、板片状、圆柱状。在分析过程中需要把握样品的测试面面积、表面洁净度与表面平整程度。测试面的面积通常要大于1cm2,如果面积太小可以将几块样品粘贴在一起进行测试,同时样品的底面要与测试面相平行,从而保证衍射面的水平状态;在测试前,应该尽可能将测试面磨成平面,并进行简单的抛光,这样做不但可以去除金属表面的氧化膜,还可以消除表面的应变层,之后再用超声波清洗去除表面的杂质,保证测试面的平整光滑。二、仪器参数设置1. 扫描参数的设定X射线衍射的扫描方式主要分为步进扫描和连续扫描,步进扫描是将扫描范围按照一定的步进宽度(如常用的0.01度/步或0.02度/步)将整个扫描范围分成若干步,在每一步停留若干秒,并将这若干秒内记录到的总光强度作为该数据点处的强度,一般用于角度范围内的精细扫描,可以获得高质量的衍射数据结果,用于定量分析、线形分析以及精确测定点阵常数、Rietveld全谱拟合精修等应用;而连续扫描是测角仪从起始2θ角度到终止2θ角度进行的匀速扫描,其具备较高的扫描效率。这里面有两个关键参数——步长和扫描速度。步长一般是根据衍射峰的半高宽来决定,最好要小于全谱中最尖锐衍射峰半高宽的1/2。步进扫描的停留时间或者连续扫描的扫描速度要根据步长(数据点间隔)进行设定,要搭配合适,遵循步长小扫速慢,步长大扫速快的原则。否则,在图谱中会出现基线噪声过大和上下波动增大的情况,会把一些可能的弱峰掩盖掉。图2是一个陶瓷样品的分析案例,采用连续扫描模式、5度/分钟的扫描速度分别使用0.01度/步和0.02度/步的步长进行分析测试,可以看出快速扫描速度配合稍大步长的分析效果要好于小步长;下图按照步长小扫速慢,步长大扫速快的原则进行测试,都可以较为准确的表征出晶体的结构信息,特别是慢速扫描的数据质量更高。图2 不同扫描速度与步长匹配得出的X射线衍射谱图对于扫描范围而言,表1列举了一些常见材料的扫描角度范围,对于需要进行精修的衍射数据截止扫描角度一般要到100度或120度。表1 常见材料的扫描角度范围扫描总时间的计算对于衡量总体测试时间成本以及合理选取扫描参数是很有必要的。步进扫描和连续扫描的计算如式(1)、式(2)所示:如从3度到90度使用步进扫描模式采集某样品的衍射谱,步长设定为0.02度/步,停留时间为0.2秒/步,则通过计算可以得到测量总时间为14.5分钟。连续扫描的总测量时间根据式(2)计算,但是实际的总测试时长还需要包括光源移动到起始角度的时间。2. X射线光源的参数设置(1)X射线管的管电压和管电流X射线管的工作电压一般为靶材临界激发电压的3~5倍,以铜靶为例,它的Kα能量为8.04KeV,为了获得靶材的有效激发,电压通常设置为40kV,这里需要说明的是,电压一般不能低于20kV,否则就不能对Cu靶的特征X射线进行有效激发。选择管电流时功率不能超过X 射线管的额定功率,较低的管电流可以延长X 射线管的寿命。除非特殊要求,通常X射线管使用的负荷不超过最大允许负荷的80%左右。(2)靶材的选择依据样品元素成分来合理地选择工作靶的种类,应保证样品中最轻元素(原子序数小于等于20的元素除外)的原子序数比靶材元素的原子序数稍大或相等。如果靶材元素的原子序数比样品中的元素原子序数大2~4的话,那么X射线将被大量吸收因而产生严重的荧光现象,不利于衍射的分析效果(比如分析Fe试样,应该尽量使用Co靶或Fe靶,如果采用Ni靶,则背底噪音会很高)。如果采用不同的靶材对相同材料进行分析,所获得的谱图相同吗?使用不同的靶材,首先其特征X射线波长是不同的,而材料晶体结构的晶面间距值是其固有的。根据布拉格方程可知,样品衍射峰的角度决定于实验使用的波长,因此,采用不同靶材测试相同材料所得衍射图谱中衍射峰的位置是不相同的、呈规律性变化的,与靶材的种类是无关的。(3)狭缝的选择狭缝的大小主要依据材料的表征目的以及探测器的类型来进行选择,原则就是在保证强度的情况下提高分辨率。一般的衍射仪配置有三种可变的狭缝(发散狭缝、防散射狭缝和接收狭缝),另外两个索拉狭缝的层间距是固定的。发散狭缝越大,衍射强度越高,但峰型的宽化越明显;防散射狭缝用于限制由于不同原因产生的附加散射进入探测器,有助于降低背景;接收狭缝越小,分辨率越高,强度越低,反之。分析测试时尽量让发散狭缝和防散射狭缝保持一致,接收狭缝尽量小,这样可以提高衍射谱的分辨率和信噪比,从而获得高质量的衍射结果,还可以起到保护探测器的作用。(4)样品放置高度的控制样品的放置高度对于获得高准确度的数据结果是非常重要的,高度的略微偏移都会对实验结果产生影响,具体来讲就是会造成衍射峰的位移以及衍射峰强度的变化。通过图3可以看出:低于正确的高度,衍射峰向左偏移,同时峰强降低;如果是高于正确的高度,衍射峰向右偏移,样品表面与防散射刀片的间隙更小,衍射峰强明显降低。图3 样品的不同放置高度所得到的衍射谱图三、数据分析1.获取的数据信息和物相定性分析首先,从X 射线谱的峰型中可以得到包括峰位、峰强以及峰型轮廓宽度形状的这些信息,通过衍射峰的峰位和峰强可以对物相进行定性定量分析,同时还可以通过计算获得点阵常数和晶体结构的相关结果;通过峰型轮廓宽度形状可以得到样品峰型的展宽,进而可以计算出晶粒尺寸和微观应力。物相定性分析是X射线衍射分析的基础,最重要的环节就是将样品谱图与标准卡片进行比对,以确定样品的物相组成。比对的过程中要遵循以下4点原则:(1)计算材料的晶面间距d值,这是材料晶体结构所固有的;(2)材料低角度的衍射线与标准卡片的匹配情况;(3)重点关注谱图中的强衍射线;(4)要尤为重视特征线。2.衍射谱比对功能的运用将衍射谱进行叠加比对是衍射数据分析中较为常用的一个方法,比如鉴定药物晶型结构的一致性,通常就采用谱图比对的方法进行晶型分析。在《药典》中明确规定判断两个晶态药物晶型状态的一致性,应满足“衍射峰数量相同、衍射峰强弱顺序一致、衍射峰角度误差范围在±0.2°内以及相同角度衍射峰相对峰强度误差在±5%内”这四个条件。以一批送检的降糖药为例,判断其晶型状态的一致性。首先对两种药物进行谱图叠加比对,如图4所示,可知这两个样品满足“衍射峰数量相同和衍射峰强弱顺序一致”这两个条件。图4 药物X射线衍射谱叠加图而后对两个样品进行衍射峰峰位和强度的定量比对,通过计算可以得出:两个样品的峰位一致,符合“二者2θ值衍射峰位置误差范围在±0.2⁰内”的条件;同时相同位置衍射峰的相对峰强度存在偏差,有的甚至超过了15%,因此不符合“相同位置衍射峰的相对峰强度误差在±5%内”的条件。表2 样品衍射峰的峰位和强度比较通过谱图定性比较和衍射峰的定量计算,比对结果满足前三个条件,但是晶粒生长方向存在差异造成相同角度衍射峰相对峰强度的误差超出了《药典》中给定的范围。X射线衍射谱的比对法可以为挑选药物晶型和优化药物生产工艺参数提供帮助。在分析表征过程中,需要根据样品特性以及表征目的把握好样品制备、仪器参数设置以及数据分析这三方面的要点,以获得准确、高质量的X射线衍射数据,充分发挥出多晶X射线衍射的技术优势,为科学研究、技术创新以及材料评价等方面持续提供强有力的数据支撑。附:作者简介黎爽,高级工程师,2008年就职于北科院分析测试研究所至今,主要应用电子显微镜、X射线衍射仪等大型科学工具作为表征手段,从事材料的电子显微分析、晶体结构表征以及相关科研工作。针对新材料的研究表征,建立了多种特色分析技术,涵盖了材料制备和分析测试表征等方向。特色分析技术广泛应用于日常科研工作中,已通过专业领域内多项能力验证和国家司法鉴定能力验证项目考核。
  • 高分子表征技术专题——同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用Characterization of Polymer Materials by Synchrotron Radiation Hard X-ray Scattering Technology: The Development and Application ofin situInstruments作者:赵景云,昱万程,陈威,陈鑫,盛俊芳,李良彬作者机构:中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学 重点实验室,合肥,230026 西南科技大学核废料处理与环境安全国家协同创新中心,绵阳,621010作者简介:昱万程,男,1990年生. 2010年本科毕业于天津工业大学轻化工程专业,2015年博士毕业于中国科学技术大学高分子科学与工程系. 2015~2017年和2017~2020年分别在中国科学技术大学高分子科学与工程系,北京航空航天大学物理系从事博士后研究. 2020年9月至今,任中国科学技术大学国家同步辐射实验室特任副研究员. 主要从事利用同步辐射X射线散射技术结合原位装置在线研究高分子材料加工过程中的多尺度结构演变,同步辐射X射线散射数据高通量处理方法的开发和应用.李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员,兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家杰出青年基金资助. 担任《Macromolecules》副主编,《Polymer Crystallization》《Chinese Journal of Polymer Science》《Journal of Polymer Science》和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究.摘要同步辐射硬X射线散射技术是表征高分子材料晶体结构和其他有序结构的有力手段. 高时空分辨的现代同步辐射光源具备强大的实时、原位、动态和无损表征能力,在高分子材料加工和服役过程中远离平衡态的多尺度结构演变研究方面有着巨大优势. 为了充分发挥这一优势,合理设计同步辐射原位研究装置,实现原位实验过程中的样品环境控制十分关键. 本文通过结合具体的研究案例,首先介绍同步辐射原位实验的设计、原位研究装置的研制、操作技巧和数据处理等整个在线实验流程,帮助读者建立对同步辐射原位实验的基本认识. 最后,选择了若干具有代表性的高分子材料体系和样品环境,简要概述同步辐射硬X射线散射技术在表征复杂加工外场作用下高分子材料多尺度结构演变方面的应用,帮助读者加深对同步辐射原位研究装置及相关实验过程的理解,以期引发读者的思考,积极拓展同步辐射硬X射线散射技术在高分子材料表征中的应用.AbstractThe synchrotron radiation hard X-ray scattering technology is a powerful tool to characterize the crystalline and other ordered structures of polymer materials. For the high temporal and spatial resolutions, modern synchrotron radiation light sources own the powerful capability of real-time,in situ, dynamic and non-destructive characterization. Thus, it gives the synchrotron radiation hard X-ray scattering technology a huge advantage for the study of structural evolutions far away from the equilibrium during the processing and service of polymer materials. To give full play to this advantage, the reasonable design ofin situ instruments and the control of sample environments during the in situ synchrotron radiation experiments are critical. In this review, we first introduce the whole procedures of in situ experiments through a specific research case, including the design of in situ synchrotron radiation experiments, the development of in situ instruments, operation skills and data processing. We hope that the detailed introduction can help the audiences establish a fundamental cognition of the in situ synchrotron radiation experiments.Finally, we select several representative polymer material systems and the corresponding sample environments, and briefly overview the applications of the synchrotron radiation hard X-ray scattering technology in studying the multi-scale structural evolutions of these polymers under complex processing fields. We believe that these applications would inspire the audiences to think and deepen their understanding on the synchrotron radiation in situ experiments by using in situ instruments. Undoubtedly, it is beneficial to further expand the applications of the synchrotron radiation hard X-ray scattering technology on the characterization of polymer materials. 关键词同步辐射硬X射线散射技术  同步辐射原位研究装置  高分子材料加工  多尺度结构演变KeywordsSynchrotron radiation hard X-ray scattering technology  In situ instruments  Processing of polymer materials  Multi-scale structural evolutions 同步辐射是带电粒子以接近光速的速度在沿弧形轨道的磁场中运动时释放的电磁辐射. 对比普通X射线光源,同步辐射X射线光源亮度更高、光谱连续、具有更好的偏振性和准直性,并且可精确计算. 至今,我国经历了三代同步辐射大科学装置的建设、研究和发展,从第一代北京同步辐射装置、第二代合肥同步辐射装置到较为先进的第三代上海同步辐射光源[1]. 目前,我国正在积极建设和规划第四代先进光源,如北京高能同步辐射光源和合肥先进光源[2]. 同步辐射光源是前沿基础科学、工程技术和材料等领域所需的重要研究手段,是国际科学研究竞争的关键资源.同步辐射硬X射线散射技术在高分子结构表征中的应用非常广泛,例如广角X射线散射(WAXS)和小角X射线散射(SAXS)可表征高分子材料在亚纳米至百纳米尺度上的结构信息[3]. 目前,上海光源即将建成我国第一条超小角X射线散射(USAXS)线站,可进一步实现微米尺度的结构探测. 在此基础上与毫秒级分辨的超快探测器联用可以实现高时间分辨. 依托时间分辨的同步辐射WAXS/SAXS/USAXS研究平台,我们将能够同时获取高分子材料在0.1~1000 nm尺度内的结构信息,可以满足半晶高分子材料加工成型过程中多尺度结构快速演化、嵌段共聚物微相分离以及高分子复合材料研究等方面的表征需求.高分子材料制品的服役性能强烈依赖于加工工艺. 即使是相同的高分子原材料,通过不同的加工工艺,所获得的产品性能可能是完全迥异的. 例如:聚乙烯通过吹塑成型可加工成柔韧的包装膜,通过挤出成型则可制成刚韧适中的排水管道,还可通过纺丝加工成超强纤维. 高分子材料的加工参数主要包括加工温度、升降温速率、剪切和拉伸等加工外场的应变速率、应变和压强等. 因此,温度场、流动场等复杂外场、多加工步骤和参数相互耦合是高分子材料加工过程的主要特点[4,5]. 研制与多尺度表征技术联用的在线研究装备是表征高分子材料在加工过程中发生多尺度结构快速演化的重要实验手段. 高分子材料加工与服役在线研究装备类型多样,有小型的剪切和拉伸流变仪,也有模拟实际工业生产的大型原位装备,如原位双向拉伸装置和原位挤出吹塑成膜装置等. 此外,通过发展和集成与同步辐射联用的高分子材料性能表征技术,如用于光学膜的光学双折射检测系统,可建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中搜索最优参数的能力,以期为实际的生产加工提供理论指导.为帮助读者建立对同步辐射在线实验的基本认识,本文将以聚二甲基硅氧烷(PDMS)原位低温拉伸为具体研究实例,详细介绍同步辐射在线装置研制、实验设计和数据处理等相关知识;在此基础上,我们将简要概述本课题组多年来利用自主研制的同步辐射原位在线装置及高分子材料加工过程多尺度结构演变研究中的代表性成果. 以此引发读者的思考和共鸣,进一步扩展同步辐射硬X射线散射技术在高分子材料表征中的应用,取得更多更好的创新研究成果.1同步辐射在线实验研究方法同步辐射在线实验是指利用可与同步辐射光源联用的原位装置,研究复杂外场下的高分子合成或者加工过程中的化学或者物理问题. 在开展同步辐射在线实验前,需根据所要研究的具体科学问题,明确样品控制环境. 在充分考虑同步辐射光束线站的空间限制后,购买或研制原位装置. 样品制备完成后,利用原位装置进行样品的离线预实验. 完成以上准备工作后,在预先申请的机时时间段内,携带样品、原位装置和其他配套设备至同步辐射光束线站进行在线实验. 实验过程中需严格按照线站的规定步骤操作,最后保存好实验数据. 我们课题组长期致力于高分子薄膜加工物理的研究和相关原位研究装置的研制,并取得了系列研究成果. 下面我们以典型的硅橡胶——聚二甲基硅氧烷(polydimethyl-siloxane, PDMS)的同步辐射原位低温拉伸实验为例,详细介绍同步辐射在线实验的具体流程和操作.硅橡胶作为一种可以在低温保持高强度和韧性的弹性体,是高新技术、航天航空和武器装备等领域不可或缺的关键材料. 与天然橡胶等常规橡胶相比,PDMS具有极低的玻璃化转变温度(Tg≈-110 ℃)和结晶温度(Tc≈-65 ℃)[6]. 在拉伸和压缩等服役工况条件下,PDMS发生应变诱导结晶(stain-induced crystallization, SIC),因此其服役温度区间及性能主要受SIC而非玻璃化转变控制. 显然,结晶温度Tc的降低将缩小橡胶态的温度窗口. 已有研究表明,PDMS的应变诱导结晶行为非常复杂,在Tc以上至近Tg的范围内,存在多晶型结构并发生不同晶型间的固-固相转变行为. 在拉伸过程中,PDMS出现了α' ,α,β' 和β 4种晶型 [7],对应的WAXS二维图和方位角一维曲线积分分别如图1(a)和1(b)所示. PDMS复杂多晶型晶体结构直接影响材料的物理性质和宏观力学行为. 只有充分了解PDMS的晶体结构,掌握晶型间的转变规律,才能深入认识和理解材料的性能,实现根据服役条件和需求对材料进行改进和设计的目标. 然而,由于在线低温拉伸等研究条件的限制,PDMS应变诱导结晶行为和晶型间的相互转变的相关研究仍较少,并缺乏基础数据和定量模型. 其中,尚未完全解决的问题主要有以下2个方面:(1) PDMS可形成多种晶型,但所有晶型的晶体结构尚未完全确定;(2) 拉伸可诱导不同晶型发生固-固相转变,但目前对转变路径和机理还缺乏认识. 高时空分辨的同步辐射硬X射线散射技术为解决上述科学问题提供了可能. 我们选择以较低应变速率在低温下拉伸PDMS,实时跟踪拉伸过程中的晶体结构演化和固-固相转变. 在计算实验所需的时间分辨率后,我们选择上海光源(SSRF)BL16B1(小角X射线散射光束线站)进行同步辐射在线实验. BL16B1的技术参数和指标符合软物质材料表征需求,其能量范围为5~20 keV,光子通量达到1011 phs/s @10 keV,时间分辨率达到100 ms,X射线波长 λ=0.124 nm,可探测的空间尺度范围为1~240 nm.Fig. 1(a) The 2D WAXS patterns of polymorphous PDMS (b) The 1D azimuthal intensity curves with the azimuthal angle (ψ) ranging from 0° to 180° of diffraction peaks at 2θ=10.42° (Reprinted with permission from Ref.‍[7] Copyright (2020) American Chemical Society).在明确所要解决的科学问题后,需要解决样品环境的控制问题,即能与同步辐射硬X射线联用的低温原位拉伸装置. 通过调研,我们发现市面上早已有了商业化的低温拉伸设备,如Linkam公司配置液氮制冷系统的拉伸热台TST350以及Instron 3366型万能拉伸机. 然而,这些商业化设备都存在明显的不足,并不能满足我们的实验需求. 例如:TST350虽可实现与同步辐射联用,然而为了使得温度控制均匀并提高升降温速率,其样品空间很小,所能达到的应变空间十分有限,因此很难将具有较高断裂伸长率的橡胶类样品拉伸至大应变乃至断裂;此外,TST350采用按压式夹具,在拉伸过程中存在严重的打滑现象,即样品从夹具处滑脱. Instron 3366型万能拉伸机仅仅可以实现低温拉伸,并不能与同步辐射联用. 因此,我们转而自行研制与同步辐射硬X射线联用的低温原位拉伸装置. 在研制过程中,需要解决的主要难点问题有:(1) 单轴拉伸至断裂,即大应变的实现;(2) 低温环境的实现(室温至-110 ℃);(3) 样品的打滑现象;(4) 考虑上海光源光束线站的空间限制,在尺寸上实现与同步辐射硬X射线的联用. 我们受商业化流变仪(sentmanat extensional rheometer, SER)的启发,在研制时通过伺服电机驱动2个对向旋转的辊夹具对样品施加拉伸(如图2(a)). 如此,样品能以卷绕的方式无限拉长,可以在不增大腔体体积的前提下实现大应变,同时保证样品腔内部温度均一可控. 通过使用安川伺服电机,并配置减速机、运动控制器和MPE720控制系统,装置能够实现较宽的应变速率范围(0.0025~30 s-1). 低温环境的实现参考低温热台和示差扫描量热仪等仪器常用的降温模块,采用液氮降温的方法,使用自增压液氮罐将液氮注入低温腔体. 考虑到PDMS样品不能直接与液氮接触,需要在样品腔外部设计液氮流道. 样品腔采用导热性较好的不锈钢304,流道和样品腔采用一体式加工设计,避免焊接可能带来的缝隙. 我们利用有限元方法模拟了样品腔内温度,结果表明当环境温度为室温时,样品腔内部温度最低能够达到-150 ℃(图2(c)),可以较好地满足实验环境温度要求. 通过将样品腔内抽真空,外部采用吹氮气的方式,可以有效解决窗口结霜的问题,从而避免窗口结霜对X射线散射实验产生不利影响[8,9]. 根据锥形散射计算X射线窗口尺寸,并采用聚酰亚胺薄膜(杜邦公司Kapton系列薄膜)作为窗口材料. 为解决上海光源BL16B1线站的空间限制问题,低温原位拉伸装置的整体设计秉持小型化原则,设计效果图如图2(b)所示. 最终研制的装置实物如图2(d)所示[10].Fig. 2Schematic diagram of uniaxial stretching (a), the design of low-temperature stretching device (b), finite element simulation of temperature distribution in cryogenic chamber (c), physical image of low-temperature uniaxial stretching device combined with synchrotron radiation (d).结合本课题组多年的研究和实践经验,我们想要强调的是,在真正开展同步辐射在线实验前,离线预实验非常重要. 一方面,可以对力学曲线、装置升降温速率、保温时间等进行重复性验证,将在线实验的每个步骤都离线模拟重复,确保在有限的机时内高效执行实验计划;另一方面,在同步辐射光束线站的装置安装和校准需要丰富的操作经验,通过离线预实验,可以充分掌握装置的操作细节和常见问题的解决方法,如此方能在突发情况出现时从容应对. 此外,在进行在线实验时,需严格遵守同步辐射光束线站的管理规定,保障人身安全.同步辐射硬X射线原位实验通常在空气、氮气、溶液等环境中进行,获得的原始WAXS/SAXS数据包含空气等背底的散射. 因此,在原位实验的过程中,除了获得不同实验条件下的样品散射信号外,还需单独获得相应实验条件下的空气等背底散射信号,然后在后续的数据处理过程中扣除这些背底散射. 扣除背底散射通常是在WAXS/SAXS一维积分曲线上进行的,扣除操作恰当与否的判读标准是扣除背底后一维积分曲线的两端基线应保持水平. 同时,也要考虑原位研究装置对散射信号的影响. 为了进行数据的对比分析,通常需要对所获得的数据进行归一化处理.图1(b)为归一化处理后PDMS不同晶型的方位角一维积分曲线. 从图中可以明显看出PDMS 4种不同晶型所对应特征峰的区别:ψα=90°,ψα' =80/100°,ψβ=60°/120°,ψβ' =42°/72°和109°/138°.heng Lirong(郑黎荣).Chinese J Phys(高压物理学报),2020,34(5):3-15.doi:10.11858/gywlxb.202005543Xu Lu(许璐),Bai Liangui(柏莲桂),Yan Tingzi(颜廷姿),Wang Yuzhu(王玉柱),Wang Jie(王劼),Li Liangbin(李良彬).Polymer Bulletin(高分子通报),2010, (10):1-26.doi:10.1021/la904337z4Cui K,Ma Z,Tian N,Su F,Liu D,Li L.Chem Rev,2018,118(4):1840-1886.doi:10.1021/acs.chemrev.7b005005Chen W,Liu D,Li L.Polymer Crystallization,2019,2(2):10043.doi:
  • “结晶技术在医药工业中的应用---多晶型的挑战和应对技术” 为主题的技术研讨培训
    由梅特勒托利多自动化化学部联合上海医工院药物晶体工程研究实验室、上海亿法医药科技有限公司共同举办的&ldquo 结晶技术在医药工业中的应用---多晶型的挑战和应对技术&rdquo 为主题的技术研讨培训会,于2011年6月23 至24日在上海明城大酒店顺利召开。来自上海医工院与和记黄埔医药(上海)有限公司、拜耳技术工程(上海)有限公司、东北制药集团股份有限公司、江苏恒瑞医药有限公司、上海医药集团股份有限公司、上海新先锋药业有限公司、成都康弘药业集团、扬子江药业集团海尼药业有限公司、浙江普洛医药科技有限公司、江苏龙灯化学有限公司以及华东理工大学、华南理工大学、南京理工大学、天津大学、中国科学院上海药物研究所、广州龙沙研究开发中心等在内的40余家企业以及科研院所的技术负责人、研究人员近80人参加了此次研讨培训会。 会上,前Merck高级研究员、梅特勒托利多特邀顾问王建博士、上海亿法医药科技有限公司前总经理顾虹博士、上海医工院药物晶体工程研究实验室任国宾博士、梅特勒托利多自动化化学部刘慧敏博士以及和记黄埔药品注册专员张晓鹏先生作为嘉宾分别就药物多晶型高通量筛选技术、多晶型的分析鉴别技术、多晶型药物结晶工艺优化、PAT技术在多晶型体系结晶过程中的应用、制剂研发过程的多晶型转化问题、多晶型知识产权保护问题以及多晶型药物的注册与申报等方面作了专题报告,得到了大家的积极响应。与会人员还就药物多晶型研究领域以及药物晶体工程等相关问题进行了热烈地探讨和交流。与会代表纷纷表示,感谢主办方为大家提供这样一个学习交流的平台,为大家在多晶型药物研究工作中遇到的实际问题提供了解决思路,同时也获得了行业发展的很多新动向。此外与会代表强烈表示希望主办方继续举办下次培训会,并对下次会议的议题及举办时间进行了讨论。 作为主办方之一,梅特勒托利多公司长期与在晶型研究和结晶领域具有很高学术水平的上海医工院、天津大学等知名企业和研究单位保持良好的合作关系。希望通过培训会的平台,让国内更多制药行业研发人员更好地了解国外先进的质量控制理念和加速研发的相关技术,同时提供量身定做的解决方案,为研发人员解决实际的问题。我们提供PAT工具和解决方案已广泛应用于应用于制药行业的合成或者结晶工艺中,帮助加速开发、优化和控制工艺过程。
  • 你知道吗 | 不同溶剂的多晶型筛选只需一台设备就能搞定!
    随着近日寒潮来袭,南方多地也迎来了2021年冬季首场降雪,而北方人纷纷在朋友圈看南方下雪。但你知道吗?下雪其实是一种结晶现象,雪花的冰晶形状各式各样,其形状很大程度上取决于云层中的温度和湿度。▲图1-雪花的不同形状药物的结晶和雪花类似,影响其结晶的因素包括温度、溶剂、搅拌等。什么是药物晶型?药物的晶型包括药物分子排列不同形成的各种状态,也包括与其他分子共同存在时形成的共晶状态。晶型是药物重要属性之一,因为同一种药物的不同晶型,却具有不同的理化性(如溶解度,溶出速度,稳定性等),从而影响到药品的有效性、安全性和质量,往往药物专利都需要列出药物的晶体形式。结晶过程受多种因素影响,如溶剂的种类与数量、温度、溶液的过饱和度、密度、机械搅拌和杂质等,例如,下图2是不同溶剂下药物的不同晶型形状。因此,高度控制的溶剂蒸发结晶过程在结晶研究中变得尤其重要。▲图2-不同溶剂如丙酮(左),乙酸乙酯(右)的布洛芬晶型可控可重复的多晶型筛选方式多晶型筛选目的是筛选出最适合生产、生物利用度高、利于制剂的优势药物晶型,这个过程可能需要很长时间,因此Genevac公司开发的eXalt™ 结晶工具包结合EZ-24.0浓缩仪或HT系列溶剂蒸发工作站,可以高度控制蒸发结晶过程,协助研究人员进行结晶研究,以可控可重复的方式进行多晶型筛选或者寻找亚稳态或稳定形态。▲GenevacEZ-24.0系列(左)和HT系列(右)溶剂蒸发工作站eXalt™ 高度控制的结晶技术eXalt™ 结晶工具包可以使多种小分子活性物质同时在相同的时间、相同的缓慢速率和相同的条件下从多种不同的溶剂中产生晶体,例如可以将DCM和甲苯置于同一系统中同时蒸发。eXalt™ 结晶工具包可用于沸点为40°C至165°C–即DCM至DMAc的溶剂(如下图4)。根据该沸点范围内不同溶剂的要求,蒸发时间可控制在6小时至72小时或更长的范围内。▲图4-不同溶剂在同一蒸发结晶速率eXalt™ 结晶包(下图5)由一个特殊的样品瓶支架、样品瓶、不同数量和孔径的挡板组成的塔构成。可以在每个样品瓶的顶部放置一定数量挡板的塔,以减缓挥发性溶剂的蒸发速度,从而使各种溶剂以相同的慢速同时蒸发。▲图5-eXalt™ 结晶工具包挡板组成的塔由4个部分组成:一个基础段(包含密封)和三个顶部段(可自由选择)。挡板的尺寸、数量、排列取决于溶剂的不同,选择原则是最易挥发的溶剂挡板孔径小而数量多以使挥发物质的蒸汽缓慢流动,而对不易挥发的溶剂则相反。举个简单的例子,溶剂上的蒸汽浓度为100ppm,首层挡板的蒸汽浓度为50ppm,第二层25ppm,第三层12ppm。▲图6-不同数量挡板构成的塔然后将支架放置在GenevacEZ-24.0系列或者HT系列溶剂蒸发工作站中,设置温度和压力,通过eXalt™ 软件控制。技术特点☆eXalt™ 可控制多种不同溶剂在同一时间、同一速度、同一条件下做蒸发结晶,以确定最合适溶剂晶种和溶剂条件☆仅需少量化合物(≤5mg)即可快速轻松地筛选API☆提供更多控制,消除结晶研究中的一些变量,获得良好的重现性的同时,使缺少经验的工作人员也能轻松使用☆仪器自动操作,实现无人值守☆为经典工艺提供了晶种和溶剂条件应用案例来自日本的一家制药企业,使用GenevaceXalt™ 控制结晶系统方法筛选多晶型[1]。把20种不同溶剂分别制备了3ml的2mg/ml吡罗昔康溶液分别放入不同样品瓶中,使用装有不同数量的挡板盖住,其中六种溶剂的较低挥发性不需要挡板。另外,为了确保在运行结束时完全蒸发,其中三种溶剂还需要减少初始体积(这些溶液的浓度经过校正,每瓶产量为6mg)。然后将完整的支架放入GenevacHT溶剂蒸发工作站,启动exalt程序工作72小时,结晶后使用X射线衍射仪(XRD)进行分析[2]。▲图7-使用eXalt™ 控制结晶形成的晶体的XRD结果▲图8-通过XRD分析确定的多晶型结果显示,eXalt™ 结晶技术允许使用最少的化合物(每瓶6毫克)快速轻松地筛选API。使用20种溶剂对吡罗昔康进行了筛选,仅使用150毫克的化合物就确定了三种多晶型。此外,该方法是非破坏性的,在没有形成晶体的情况下,可以将化合物重新溶解以供进一步使用。参考文献[1]VrecerF,VrbincM,ModenA(2003).CharacterizationofPiroxicamCrystalModifications.InternationalJouralofPharmaceutics,Vol,256(1-2),3-15.[2]MKAP068_ExaltPiroxicamScreeningIssue.GenevacLtd-partofSPscientific,Ipswich,UK.
  • 针对半导体行业的十种半导体材料表征技术研究与应用
    半导体材料作为半导体产业链中的重要支撑,包括以硅、锗等为代表的元素半导体材料和以砷化镓、磷化铟、碳化硅和氮化镓为代表的化合物半导体材料,广泛应用于通讯、计算机、消费电子、汽车电子以及工业应用等众多产业。 半导体材料的发展和进步离不开先进的材料表征技术支撑。HORIBA作为检测及分析技术的领先供应商,可为半导体产业提供多种分析及检测技术。在材料表征技术方面,可为半导体材料研发及QC提供多种分析技术,包括薄膜厚度测量、晶型、应力、器件结温、缺陷、杂质、元素含量以及CMP研磨液粒径表征等;在制程监控环节, HORIBA可提供质量流量控制、化学药液浓度监测、终点检测及光掩模颗粒检测等技术。本次仪器信息网特采访了HORIBA Scientific 科学仪器事业部大客户经理熊洪武先生,请他分享了HORIBA在半导体材料检测方面的技术与解决方案。HORIBA Scientific 科学仪器事业部大客户经理 熊洪武熊洪武先生现任HORIBA Scientific 工业销售经理。进入分析仪器行业10年,负责HORIBA光栅光谱仪技术咨询和系统应用支持多年,对光谱测量系统选择有丰富的经验,具有光致发光光谱、拉曼光谱和荧光光谱等相关技术的应用经验。现主要负责HORIBA科学仪器在半导体等工业领域的应用推广工作。1、 请问贵司面向半导体行业用户推出了哪些仪器产品及相关检测方案?HORIBA针对半导体用户推测了多种检测方案,涉及到半导体的外延薄膜厚度及缺陷,衬底材料晶型,表面残余应力,器件结温,元素含量,多量子阱元素深度剖析以及CMP抛光液粒径分布检测等技术。仪器技术名称在半导体材料中的应用HORIBA仪器特点HORIBA推荐型号椭圆偏振光谱仪薄膜厚度、折射率、消光系数测量SiO2, SiNx等薄膜厚度测量,光刻胶等材料折射率消光系数PEM相调制技术的高稳定性高灵敏度可测量透明基底上的超薄膜UVSEL Plus拉曼光谱仪晶型、应力、温度、载流子浓度以及异物等分析;硅薄膜晶化率、SiC晶型、功率器件结温等,二维材料层数、晶格取向、缺陷以及掺杂等表征高光谱分辨率高空间分辨率宽光谱范围LabRAM Odyssey光致发光光谱仪带边发光/缺陷发光分析外延层质量及均匀性分析可选时间分辨光致发光(TRPL)研究载流子弛豫及扩散模块化结构设计可按需配置高光谱分辨率宽光谱范围SMS低温光致发光光谱仪测量硅单晶中硼、磷、铝、砷的元素含量超高光谱分辨率超低检测下限可提供定量标准曲线PL-D阴极荧光光谱仪缺陷检测,光强成像评价缺陷密度如线位错掺杂、杂质、包含物分析高效光学收集镜模块化光谱仪宽光谱范围探测H-CLUEF-CLUE辉光放电光谱仪元素含量随深度变化剖析LED多量子阱元素含量随深度剖析分析速度快操作简单无需制样GD Profiler 2碳硫分析仪 / 氧氮氢分析仪重掺硅中氧含量测量靶材中碳硫、氧氮氢元素含量测量清扫效率高高检测精度EMIA seriesEMGA series显微X射线荧光异物杂质分析、金属涂层厚度或凸点元素分析,封装布线中的离子迁移、缺陷、短路分析等高空间分辨率半真空模式XGT-9000激光粒度仪 / 纳米粒度仪CMP抛光液粒径分布及Zeta电位测量硅片切削液粒径分布测量全自动检测效率高可提供在线测量方案LA-960V2SZ-100V2离心式纳米粒度分析仪CMP抛光液高分辨率粒度分布测量可捕捉少量的杂质或团聚体高分辨率测量粒径分布制冷功能保持样品恒温CN-3002、 这些仪器主要解决半导体行业中的哪些问题?(相关检测项目在半导体行业中的重要意义)以椭圆偏振光谱仪为例,可以准确测量12寸硅晶圆上SiO2超薄膜的厚度,还为研发ArF光刻胶提供折射率消光系数的测量等,为国产替代材料的研发提供准确的标准工具;而拉曼光谱仪则可为功率半导体研究提供如衬底晶型鉴别,应力大小及分布测量以及功率器件结温测试等,在二维材料方面,由于其独特的特性,有望突破硅基器件面临的“瓶颈”而受到重视,拉曼光谱在二维材料层数、晶格取向、缺陷以及掺杂等表征方面发挥着重要作用;在光致发光(PL)方案中,除了提供常用的常温PL测量材料缺陷及均匀性外,还可以提供低温PL检测硅单晶中低至ppta级的P,B,Al,As元素的浓度,可为电子级多晶硅生产厂商的超低杂质含量检测提供有力手段;在元素表征方面,HORIBA拥有碳硫、氧氮氢分析仪,可为靶材元素分析、硅片中氧含量测量提供高灵敏的检测手段,辉光放电光谱仪(GD-OES)可为多量子阱结构元素深度剖析提供快速测量手段,而显微X射线荧光分析仪,可以为半导体封装过程中的狭窄图案涂层测厚或凸点元素成分分析,以及集成电路封装布线中的离子迁移、缺陷、短路分析等提供高空间分辨率的元素分布检测,同时在半导体生产过程中的异物分析过程中也发挥着不可或缺的作用。3、 贵司的仪器产品和解决方案具有什么优势?(原理、技术、成本、精度等方面的优势)以光谱仪类测量仪器为例,HORIBA是多种焦长光谱仪的供应商,可以覆盖从低到高光谱分辨率的应用需求,比如拉曼光谱仪和光致发光光谱仪拥有多种型号,满足各种光谱分辨率需求的应用。以拉曼光谱测量半导体材料应力和器件结温为例,光谱的峰位变化往往非常小,那么光谱分辨率越高,对峰位的定位就越准确,有助于区分微小的拉曼峰位位移;对低温PL测量硼、磷、铝、砷元素含量,光谱分辨率越高,对相邻的峰就越容易分开,尤其是在测量铝和砷元素浓度时,对光谱分辨率要求非常高,需要采用长焦距光谱仪以达到超高光谱分辨率的要求。4、当前,国内半导体用户是否对某类仪器提出了更高的技术要求(可举例说明)?贵司对此是否有相关应对之策?随着集成电路技术的进步和先进制程节点的推进,CMP工艺在集成电路中使用的使用也越来越多,对CMP材料种类和用来也在增加,并且对CMP抛光液材料也提出了更高的要求,例如对一些金属氧化物的纳米颗粒研磨液中的颗粒粒径分布,采用传统的粒度仪难以进行高精度的测量,而HORIBA推出的离心式纳米颗粒度分析仪CN-300是按粒径大小离心分类后进行测量的,可以一次测量就能得到宽范围的高精度结果,并且由于其高分辨率可以捕获到少量的杂质颗粒,这对应更高要求的CMP研磨液的研发来说极为重要。5、贵司当下比较关注的细分材料领域有哪些,是否会推出相关的仪器产品或解决方案?可以为用户解决什么科研难题? HORIBA科学仪器部门当前比较关注的半导体细分材料领域主要在两个方面:一个是在工业应用中的大硅片、光刻胶以及化合物半导体材料等领域;另外一个是在科研领域,主要包括二维材料等先进材料;我们已经陆续与一批客户进行合作并推出相应的解决方案,可以为用户提供薄膜厚度、分子结构、元素以及材料粒径分布等方面的分析表征解决方案。此外,我们在HORIBA的上海研发中心成立了科学仪器应用方案开发中心,计划针对半导体产业中可能应用到的相关技术与用户进行合作并进行相应的方法开发,为用户提供相应的解决方案。【行业征稿】若您有半导体行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:康编辑word图文投稿邮箱:kangpc@instrument.com.cn微信/电话:15733280108
  • 梅特勒托利多:结晶技术在医药工业中的应用- 多晶型的挑战和应对技术
    为提高结晶技术在医药工业中的应用水平,加强制药行业结晶技术的交流,提升我国晶型药物研发和生产水平,上海医药工业研究院药物晶体工程研究实验室、上海亿法医药科技有限公司以及梅特勒托利多自动化化学部共同举办结晶技术在医药工业中的应用培训会,重点针对多晶型挑战和及其应对技术。 会议将邀请晶型药物研究领域的专家介绍晶型药物研发的热点和难点问题,针对多晶型药物的挑战如何采取有效的应对技术,交流结晶工艺开发和晶型控制的各种关键技术。欢迎广大从事晶型药物研究和结晶工艺开发的化学家、工程师参加。 时间:2011年6月23-24日 地点: 6月23日:上海明城大酒店(上海浦东新区崂山路600号, 步行5分钟地铁2号线世纪大道站) 6月24日:上海亿法医药科技公司(上海浦东秀浦路3188弄(创研智造)88号距离张江高科10分钟车程) 〉〉 我要报名 如需了解更多的课程安排,请下载浏览&ldquo 培训课程安排&rdquo * 如需报名参加和了解更多的详情,请直接点击在线报名或跟会务组联系: 刘慧敏 博士 / 李津 先生 电话:13761558639 / 13916460076 Email:Autochem.MTCS@mt.com / Selina.liu@mt.com 传真:021-61917547 梅特勒托利多 自动化化学 上海市桂平路589号 邮编:200233 顾虹 博士 电话: 13621906280;021- 61212882 Email: eric.gu@eterpharm.com 传真:021- 61212889 上海市南汇区秀浦路3188弄(创研智造)88号,89号上海亿法医药科技
  • 【小贝开讲】粒度表征常用方法、优缺点及高分辨粒度表征的重要性
    课程主题:【小贝开讲】粒度表征常用方法、优缺点及高分辨粒度表征的重要性课程时间:2021-4-9 14:00课程简介:随着科技的发展,关于颗粒粒度的表征方法已从最初简单的筛分,发展到各种原理的检测方法,包括静态激光衍射法、动态激光散射法、离心沉降法、光阻法、电阻感应法、拍照图像法等,这些方法各有优缺点和适用性,对这些方法的了解有助于我们使用合适的工具对我们的产品或中间产物或原料进行有效的研究和质控。 高分辨的粒度表征技术是科学与产品不断发展的必然要求。因为研发人员需要依靠粒度数据做出决策,QC需要及时发现批次间细微的差异。只有高分辨粒度表征技术,才能帮助客户发现关键细节,实现精准表征,获得更加真实的粒度信息。然而,当前很多时候我们都是第一时间使用激光粒度仪,而这其中有时会面临着测试结果遗漏了关键细节的风险。 此次研讨会将对以上内容一一向您做介绍。姚金龙 贝克曼库尔特生命科学研究生毕业后先后在中科院上海有机所,上海高等研究院和某著名颗粒分析厂家工作,2019年正式加入贝克曼库尔特公司。在激光粒度仪,纳米粒度和Zeta电位分析仪、颗粒图像分析仪、纳米可视追踪分析仪和粉体颗粒流变仪等具有5-10年的操作应用经验,负责全国粒度相关产品售前、售后应用技术支持。
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科 作者机构:青岛科技大学 橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractThe performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality, the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example, the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride), special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the β and γ crystal modifications. Therefore, it is of great significance to disclose the structure formation mechanism of polymers at all levels, to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper, we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers, including a brief introduction of the working principle of transmission electron microscopy, special techniques used for sample preparation and for instrument operation to get high-quality experimental data, analysis of the results and correlation of them to different structures.关键词聚合物   透射电子显微镜   样品制备   仪器操作   结构解释 KeywordsPolymer   Transmission electron microscopy   Sample preparation   Instrument operation   Structure explanation  聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性. 首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能. 例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5]. 对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能. 以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90 MPa和10 MPa,分子链高度取向后,模量增加到90 GPa,增幅为3个数量级,强度(3 GPa)也增加了近300% [6]. 另外,有机光电材料的性能也与分子链排列方式密切相关[7~12]. 对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20]. 由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关. 因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据. 经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势. 如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等. 相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42]. 当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59]. 例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775 nm)和c-轴(0.777 nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54]. 透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60]. 例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献. 然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术. 实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察. 为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜. 如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积. 基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰. 另外,考虑到人眼的分辨本领大概为0.1 mm,而光学显微镜的极限分辨率为0.2 μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2 μm放大到人眼能分辨的 0.1 mm. 由此可见,要观察更细微结构需要提高显微镜的分辨率. 根据瑞利准则,光学显微镜的分辨本领可表示为:Fig. 1Sketch illustrating the working principle of optical microscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA = nsinα. 可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1 μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26 × V−−√式表示,根据该公式,100 kV和200 kV电压加速电子束的波长分别为0.00387 nm和0.00274 nm,经相对论修正后变为0.0037 nm和0.00251 nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发. 如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objective lens)以及投影镜(projection lens)均由磁透镜替代了光学显微镜的玻璃透镜. 另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜. 例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig. 2Sketch illustrating the working principle of electron microscope.Fig. 3Sketch shows different electrons generated after interaction of the incident electrons with the atoms in the sample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1 µm的水. 因此,要求电镜观察用样品非常薄,在200 nm以内,最好控制在30~50 nm. 用于高分辨成像的样品需更薄,最好为10 nm左右. 因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性. 一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构. 另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品. 基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法. 下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的. 支撑膜的厚度一般为10 nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现. 如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60 ℃干燥后便可投入使用. 根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5 wt%~1.5 wt%范围内. 对有经验的学者而言,滤纸捞膜法更简洁. 如图4(b)所示,用浓度为0.5 wt%~1.5 wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig. 4Sketch illustrating the ways for preparing nitro cellulose (NC) supporting membrane used in electron microscopy experiments. (a) Sedimentation of the NC membrane on copper grids. (b) Filter paper fishing of copper grids supported by the NC membrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得. 如图5(a)所示,将沉浸于0.1 wt%~0.2 wt% PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig. 5A diagram illustrating the preparation of PVF support film through dipping a clean glass slide into its chloroform solution (a) and then floating the thin PVF layer onto the surface of distilled water (b).2.1.3无定型碳支撑膜制备用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a) 悬浮法. 对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b) 微量喷雾法. 用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集. 为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上. 微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c) 干撒法. 对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.
  • 直播预告!先进高分子材料主题网络会议之高分子表征测试技术专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。高分子表征测试技术专场报告嘉宾简介:南京大学教授 胡文兵 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系,随后留校任讲师。1998-2003年 先后留学德国、美国和荷兰从事博士后研究,2004年任南京大学化学化工学院高分子系教授。主要从事高分子结晶相关的分子理论模拟和超快热分析研究。2005年入选教育部新世纪优秀人才培养计划,2008年获得国家自然科学基金委员会杰出青年科学基金资助,2020年获美国物理学会会士荣誉称号。目前担任Springer Nature 出版集团“软物质和生物物质”系列丛书高级编辑,《高分子学报》副主编,《功能高分子学报》、Chinese Journal of Polymer Science、Polymer Crystallization、Polymer International 和Molecular Simulation 期刊编委。本报告介绍最新发展起来的高速扫描量热技术及其Flash DSC设备,利用高速热流的准直性和样品的小尺度,根据傅里叶热导定律,可较为准确地测量微米厚度高分子薄膜的跨膜热导率。该方法具有材质普适性好和微尺度表征等优点,适应当前热管理系统微型化对高分子材料热导率表征的技术需求。报告题目:Flash DSC表征高分子薄膜材料热导率青岛科技大学教授 闫寿科1985年毕业于曲阜师范学院获学士学位,同年考入中国科学院长春应用化学研究所攻读硕士学位,1988年获理学硕士学位后在中国科学院长春应用化学研究所从事研究工作。1993-1996年在德国多特蒙德大学(Dortmund University)攻读中科院长春应用化学研究所和德国多特蒙德大学联合培养博士学位,获得博士学位后在德国多特蒙德大学化工系以固定研究人员身份从事研究工作。2000年获中国科学院百人计划,于2001年回中国科学院化学研究所工作任研究员、博士生导师。现在北京化工大学材料科学与工程学院/青岛科技大学高分子科学与工程学院从事教学和科研工作,任教授、博士生导师。主要研究方向是聚合物不同层次结构与性能。作为项目负责人承担和完成国家自然科学基金重大仪器、重点、面上、杰出青年以及山东省重大基础等科学基金项目。在Nat. Rev. Mater., Prog. Mater. Sci., Angew. Chem. Int. Ed., J. Am. Chem. Soc., Adv. Mater., Adv. Funct. Mater., Adv. Sci, Nano Energy, Macromolecules 等学术期刊发表论文400余篇、出版专论3章,申请发明专利10项。曾获山东省自然科学二等奖(2016)和云南省科技进步二等奖(2015)。准确揭示调控聚合物不同层次结构形成机制与精准调控技术具有重要学术价值和实际意义,得到广泛关注。透射电镜在聚合物不同层次结构研究发挥了重要作用,本文在简要介绍工作原理的基础上,以科研实例详细介绍其在聚合物晶体结构、形态结构等不同层次结构研究中的应用。报告题目:透射电镜在聚合物不同层次结构研究中的应用吉林大学教授 张文科吉林大学超分子结构与材料国家重点实验室、化学学院教授。分别于1997年和2002年在吉林大学化学学院获学士和博士学位。2001年4月至2002年3月,在德国慕尼黑大学应用物理系博士联合培养。2003年3月至2007年5月先后在英国诺丁汉大学药学院及化学学院从事博士后研究。2007年6月加入吉林大学超分子结构与材料国家重点实验室,并被聘为教授。2015年获得国家杰出青年科学基金资助,2018年入选国家万人计划领军人才。目前主要研究方向为:1)单分子力谱方法学;2)高分子结晶与形变;3)超分子及共价键力化学;4)纳米药物递送。担任中国化学会生物物理化学专业委员会委员。担任Giant, Chinese Journal of Polymer Science, Langmuir及 ACS Macro Letters杂志编委。本次报告将介绍我们研究组近年来在利用基于原子力显微镜技术的单分子力谱以及单分子磁镊方法研究聚合物纳米尺度力学性质以及聚合物高级结构动态演化方面的进展。报告题目:聚合物链的单分子操纵 - 从纳米力学性质到动态结构演变 赛默飞世尔科技(中国)有限公司高级应用工程师 邝江濛邝江濛,博士毕业于英国University of Birmingham地理地质及环境科学系,主要研究方向为利用质谱技术分析环境中的痕量污染物。本科及硕士毕业于清华大学环境学院。2021年加入赛默飞世尔科技(中国)有限公司,负责环境化工领域液相色谱质谱仪的应用支持工作,于质谱分析特别是高分辨质谱分析有着丰富的经验。化工材料, 尤其是高分子聚合材料由于其复杂的分子组成给其表征带来了很大的困难。赛默飞Orbitrap静电场轨道阱超高分辨质谱仪拥有超高的分辨率、准确的质量测定和稳定的质量轴,使得复杂材料的元素组成信息纤毫毕见,是材料表征的有力工具。本报告将简要介绍Orbitrap质谱仪的独特优势及其在材料分析领域的应用。报告题目:赛默飞Orbitrap静电场轨道阱超高分辨质谱在材料分析中的应用 中国科学院长春应用化学研究所研究员 门永锋门永锋,中国科学院长春应用化学研究所研究员,博士生导师。1995年7月毕业于东南大学,获学士学位 1998年7月毕业于中国科学院长春应用化学研究所,获硕士学位;2001年10月毕业于德国弗赖堡大学,获博士学位。2001年10月至2002年3月在弗莱堡大学物理系做研究助理,2002年4月至2004年3月在德国BASF公司做博士后,2004年4月起任职BASF公司Physicist。2005年3月起在长春应用化学研究所工作,现任高分子物理与化学国家重点实验室主任,高分子结构物理课题组组长,主要应用散射(X射线及中子)技术从事高分子结构演化及其与性能关系领域的研究,在高分子结晶机理、晶型选择及转变、力学形变破坏机理等方面取得系列成果。作为课题负责人先后承担了国家自然科学基金重点、杰青、面上等项目、国家重点研发计划项目、企业委托项目多项。发表论文140多篇,申请专利8项,其中授权6项。专业方向为“高分子物理”。曾任Macromolecules及Polymer Crystallization杂志顾问编委、现任Polymer Science杂志编委,中国晶体学会小角散射专业委员会主任、IUPAC Polymer Division Titular Member及其商用聚合物结构与性能委员会主席、中国化学会应用化学学科委员会委员。2014年入选科技部中青年科技创新领军人才,2015年获得国家自然科学杰出青年基金及英国皇家学会牛顿高级学者基金,2016年入选第二批万人计划科技创新领军人才,享受2018年度国务院政府特殊津贴。快速扫描芯片量热仪(FSC)是近年来发展起来的热分析技术,其快速的扫描速率可有效抑制材料升降温过程中的结晶、焓松弛、冷结晶、重结晶等行为,为动力学研究带来极大便利。本报告介绍应用FSC研究热塑性聚氨酯在不同温度下丰富的相分离、结晶及焓松弛等行为。报告题目:热塑性聚氨酯的快速扫描芯片量热仪研究 中国科学技术大学教授级高级工程师 丁延伟丁延伟,博士、中国科学技术大学教授级高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。热分析技术是高分子表征的常规手段之一,作为热分析中最常用的一种分析技术,热重分析技术在与高分子相关的热稳定性、组成分析、热力学和动力学性质研究中发挥着十分重要的作用。在实际应用中,完美的实验方案和科学、规范、准确、合理、全面的曲线解析是决定热重实验成败的关键因素。本报告结合报告人从事热分析的工作经历,对于如何充分发挥热重分析技术在材料分析表征中的作用、拓宽应用范围和数据质量等方面提出了一些建议。报告题目:热重分析技术在高分子科学中应用的常见问题分析西南大学教授 郭鸣明郭鸣明,教授,博士生导师,国家特聘专家,俄罗斯自然科学院美籍院士,南京大学化学系获学士(1982),硕士学位(1985)。复旦大学材料系获博士学位(1987)。先后在德国汉堡大学高分子科学研究所(洪堡学者。1990-1992)、美国纽约大学(1992-1994)从事高分子研究工作,曾任美国阿克伦大学高分子科学和工程学院核磁共振中心主任(1994-2013),中石化北京化工研究院首席专家,中石化高级专家(2013-2018)。现任西南大学化学化工学院教授,博士生导师,(2018至今), 俄罗斯自然科学院院士(2021至今)。发表专利20篇.在国内外学术刊物上发表SCI收录论文140篇, 包括论著章节6篇,综述 7篇。研究方向:高分子化学,高分子物理,核磁共振,碳量子点,新型水溶性非共轭发光聚合物,金属纳米材料,碳纳米材料。新型石墨烯高分子纳米复合物。报告题目:原位核磁共振研究单体和高分子反应动力学和机理 清华大学副系主任/副教授 徐军徐军,博士,长聘副教授,博士生导师。1997 年清华大学化工系本科毕业,2002 年清华大学化工系博士毕业。2002 年毕业后留在清华大学化工系工作,聘为助理研究员。2006 年晋升为副教授。2011年到德国弗莱堡大学物理系Günter Reiter教授研究组进行洪堡学者访问研究。主要研究兴趣包括高分子结晶、生物降解高分子、动态共价高分子等。2011年入选洪堡学者,2012年入选教育部“新世纪优秀人才”,同年获得冯新德高分子奖(Polymer 刊物年度中国最佳文章提名)。理论和实验相结合,揭示了环带球晶的形成机理,测得了几种高分子结晶的次级临界核尺寸。生物降解聚二元酸二元醇酯研究成果在企业实现了万吨级产业化和广泛应用。本报告将介绍普通偏光显微镜、拥有可变偏振方向的PolScope系统以及Müller矩阵显微镜的基本工作原理。并结合具体案例,针对手性高分子环带球晶的形成机理问题,采用几种光学显微镜和原子力显微镜,确证了片晶连续扭转的微观机理。运用Müller矩阵显微镜,揭示了片晶扭转对固体薄膜旋光手性的影响。报告题目:运用先进光学方法研究高分子环带球晶的形成机理 北京大学教授 梁德海1994年获南开大学环境科学系学士学位,同年进入南开大学化学系攻读硕士。2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后。2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年提升为教授。2011年得到教育部新世纪优秀人才计划的支持,2015年Elsevier第九届冯新德高分子奖最佳文章奖获得者。主要研究方向包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究;体内自调控的肺靶向siRNA传递载体研究。光散射技术是高分子领域中重要的表征手段之一,能够测得重均分子量、回转半径、第二维里系数、流体力学半径等重要的物理量。除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为。本报告重点介绍光散射的基本理论、实验技巧以及应用中要注意的事项。报告题目:光散射在高分子溶液表征中的应用 郑州大学教授 张彬张彬,郑州大学材料学院教授,博士生导师。2004年本科毕业于郑州大学计算机信息管理专业,2010年于郑州大学获得材料加工工程专业硕士学位,2014年在德国弗莱堡大学化学系获得博士学位 (施陶丁格大分子研究所荣誉毕业)。2015年3月入职郑州大学,2020年6月受聘为郑州大学学科特聘教授。主要研究方向为高分子薄膜结晶,高分子成型加工中的物理问题,高分子相转变的微观机制。近年来,发表第一作者或通讯作者论文三十余篇(包括13篇Macromolecules,7篇Polymer,1篇高分子学报特约专论和1篇高分子学报特约综述)。原子力显微镜是一种在纳米尺度表征材料相变过程、微观形貌结构与性能的有效工具,在高分子科学领域具有广泛应用。超薄膜中单层片晶可为研究高分子结晶提供合适的模型体系,与原子力显微镜相结合,不但可以在原位、实空间、高分辨的研究高分子成核与片晶生长过程,还有利于研究多晶型高分子复杂的结晶与熔融行为。报告题目:原子力显微镜研究高分子超薄膜结晶会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • “药物晶型研究与药物固态表征专题技术培训会”前期客户邀请工作顺利完成
    晶云药物科技有限公司(简称晶云)已与华嘉(香港)有限公司—隶属大昌华嘉 (简称华嘉)签订合作协议,将会为华嘉在中国的广大制药界客户,提供药物固态表征领域的一系列高端讲座和培训,以共同推进中国制药界对固态表征仪器在制药界应用和其在药物研发过程中的重要性的了解。 目前, 将于3月24-25日在苏州中国人民大学举办的第一期“药物晶型研究与药物固态表征专题培训”已经顺利完成了前期的准备工作,达到了预期目标,在业内引起广泛关注。 为了使本次培训取得最佳效果,学员人数限定为50人,现已全部申请结束。对于本次未能申请成功的学员,或是因时间原因无法参与的学员,我司不日将举办2期培训,敬请期待。 如欲了解详细信息,或预申请参加第二期培训,请致电:4008210778
  • 高分子表征技术专题——基于原子力显微镜的单分子力谱技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!基于原子力显微镜的单分子力谱技术在高分子表征中的应用Application of Atomic Force Microscopy (AFM)-based Single-molecule Force Spectroscopy (SMFS) in Polymer Characterization作者:张薇,侯矍,李楠,张文科作者机构:吉林大学超分子结构与材料国家重点实验室,长春,130012作者简介:张文科,男,1973年生. 分别于1997、2002年在吉林大学化学系(学院)获得学士、博士学位,导师为张希教授;2001~2002年于德国慕尼黑大学(LMU)博士联合培养,导师为Hermann E. Gaub教授;2003~2007年于英国诺丁汉大学从事博士后研究. 2007年6月至今,吉林大学超分子结构与材料国家重点实验室教授. 2011年入选教育部“新世纪优秀人才支持计划”;2015年获得国家杰出青年基金资助. 以原子力显微镜及磁镊等技术,从单个分子水平开展超分子作用力及大分子组装结构与组装过程研究,主要研究方向包括:单分子力谱与超分子组装、高分子结晶及力致熔融、核酸-蛋白相互作用、聚合物力化学等.摘要基于原子力显微镜(atomic force microscopy, AFM)的单分子力谱技术以其操作简便、适用面广等优势,成为了单分子领域应用最为广泛的技术之一. 本文阐述了该技术的基础原理与实验技巧,包括仪器构造、工作原理、探针与基底的选择、样品固定、实验操作、单分子信号的获得以及数据处理. 介绍了基于AFM的单分子力谱技术在合成高分子及生物大分子表征中的典型应用及前沿进展. AFM单分子力谱技术将有助于建立合成高分子的链结构、链组成与单链弹性以及链间相互作用与其宏观力学性能间的关联,帮助理解生物大分子的结构、相互作用与其生物功能之间的联系.AbstractAtomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) has been used widely in the investigation of molecular forces because of its friendly user interface (e.g., easy to operate and canwork in liquid, air and high vacuum phase) and worldwide commercialization. This review is aimed to introduce the principle and protocol of AFM-based SMFS including the setup, the working principle, typicalcurves, the choice of AFM tip and substrate, immobilization of samples, manipulation of the device, empirical criteria for single-molecule stretching and data analysis. Recent progresses on the application of AFM-based SMFS in the characterization of synthetic polymers and biopolymers were reviewed. For synthetic polymers, the effects of primary chemical compositions, side groups, tacticity and solvents on the single chain elasticities were discussed. The applications of AFM-SMFS in disclosing the structure of unknown molecule, polymer-interface interactions and polymer interactions in polymer assemblies (e.g., polymer single crystal) were introduced. In addition, the nature of mechanochemical reactions and characterization of supramolecular polymers were realizedvia this technic. For biopolymers, the effects of base-pair number, the force-loading mode (unzipping or shearing) on the stability of short double-stranded DNA (dsDNA) were reviewed. According to this knowledge, the single-molecule cut-and-paste based DNA assembly was then discussed. The typical force fingerprints of long dsDNA, proteins and polysaccharides as well as the force-fingerprint-based investigation of molecular interactions were illustrated. Finally, the application of AFM-SMFS in revealing the intermolecular interactions and the mechanism of virus disassembly as well as the antivirus mechanism of tannin in tobacco mosaic virus were reviewed.Therefore, AFM-based SMFS is essential for revealing the relationship between the conformation/composition of polymer chains and micro/macro-mechanical properties of polymer materials as well as correlating the molecular structure/interaction of biopolymers with their biofunctions. 关键词AFM单分子力谱  合成高分子  生物大分子KeywordsAtomic force microscopy-based single-molecule force spectroscopy  Synthetic polymers  Biopolymers 合成高分子材料自诞生以来,迅速地以其优良的物理、化学及力学性能等在军事、航空航天、医疗及其他民用领域得到了广泛应用. 其力学性能是最基本、最重要的性质之一,同时受到高分子的单链弹性及链间相互作用的影响[1,2]. 因此,建立高分子链一级结构、单链弹性及链间相互作用与材料宏观力学性能间的联系, 对高分子材料的理性设计至关重要. 然而,传统的材料学研究方法,如宏观拉伸实验、X射线晶体衍射、固体核磁及拉曼等技术无论从样品制备到检测均涉及大量分子,体现平均效应,表征宏观力学性能,无法获得单个链或键的性质及行为的相关信息. 此外,传统研究方法也无法连续、动态及精确地体现出单个事件的不同步骤(例如高分子在不良溶剂中的塌缩行为),导致很多重要信息无法获取. 因此,可在纳米尺度精确操纵与测量的单分子技术,例如基于AFM的单分子力谱,被广泛应用于单个分子的结构、功能及其动态行为的研究中[1~5]. 利用该技术,人们获得了溶剂、取代基以及立构规整度等因素对高分子单链弹性的影响,验证并改进了一些经典高分子理论模型[1,6~9]. 该技术还可以研究高分子的构象变化及其在界面的吸附行为,揭示外力诱导下高分子链中化学键类型的变化规律(力化学)[1,10~12]. 同时,该技术还被用于凝聚态(晶体、层层组装薄膜等)中高分子间相互作用的相关研究[13,14].生物大分子(核酸、蛋白质及多糖等)结构与功能的研究对于认识复杂生命过程的本质,了解疾病的发生发展机制以及开发新型药物与生物医用材料至关重要. 因此,AFM单分子力谱技术也被广泛用来研究生物大分子,例如DNA的解链及动态结构变化、蛋白质的折叠与解折叠、生物大分子间的相互作用(病毒的遗传物质与蛋白质外壳的相互作用)等[9,15~20]. 相关研究深化了人们对这些生物分子所参与的生命过程的认识,并为其功能调控奠定了坚实基础.本文将重点评述AFM单分子力谱技术的基础原理、实验技巧以及该技术在合成高分子及天然高分子领域的典型应用及前沿进展.1单分子力谱的基础原理1.1几种典型的单分子力谱技术迄今为止,诞生了许多单分子操纵技术,例如生物膜力学探测技术、玻璃纤维技术、光学镊子(光镊)、磁性珠技术(磁镊)以及AFM单分子力谱技术[9,21~25]. 后3种技术的应用较为广泛. 光镊利用聚焦激光束产生辐射压力形成的光学陷阱来捕获修饰有样品分子的小球,通过移动激光光束控制小球的移动,实现对样品分子的三维操纵,其时间分辨力能够达到10-4 s,被广泛应用于蛋白质折叠及解折叠等研究. 但光镊系统构造复杂,对环境要求极高,有效样品捕获率低以及激光束容易对样品造成光和热损伤等不足亟待解决. 磁镊技术将样品固定在基底与超顺磁性小球之间,利用外加磁场控制磁球,操纵样品分子,例如旋转等 [22]. 因此,磁镊被广泛用于DNA缠绕及解缠绕等研究中. 该技术可以检测低至10-3 pN的力值,也被应用于一些极微小力的测量. 该技术还能同时对多个磁球进行操纵,实现高通量测试. 由于需要通过成像观测磁珠,因而相机的拍摄速度决定了磁镊的时间分辨率,通常在10 -2 s以上. 在众多的单分子力谱技术中,AFM单分子力谱技术的应用最广,理论发展更为成熟 [1~5,9,26,27]. 该技术将样品分子固定在AFM探针与基底之间,通过控制AFM探针的位移来操纵样品分子. 该技术具有较高的时间和空间分辨率,较宽的力学测量范围,可以在真空、水相以及有机相等多种环境下工作,因此被广泛地应用于合成与天然高分子等众多体系中的分子内及分子间相互作用的研究. 综上所述,光镊及磁镊的力学精度稍高,适用于由弱相互作用及熵弹性所控制的力学性质的研究;AFM单分子力谱更适合较强相互作用或者由焓控制的弹性性质的研究. 为了更全面地认识聚合物的结构与力学性质,可以将上述3种单分子力谱技术联合使用.1.2AFM单分子力谱1.2.1仪器构造基于AFM的单分子力谱是AFM的工作模式之一. 因此,其基本构造与AFM相同,主要由位置控制系统(压电陶瓷管)、力学传感系统(AFM探针的微悬臂及其顶端针尖)以及光学检测系统(激光二极管、棱镜、反射镜与四象限光电检测器)三部分组成(图1)[9,21,28,29]. 对压电陶瓷管两端施加电压,可以控制其驱动样品台或AFM探针进行亚纳米精度的位移.z方向的移动用于调整探针与样品间的距离;x,y方向的移动用以调整探针在样品表面的探测位置及范围. 光学检测组件中的激光器将激光照射在微悬臂靠近针尖的一端,再反射到四象限光电检测器上. 当AFM探针受到样品分子的牵拉发生弯曲时,其反射的激光的位置也会随之变化. 据此,可以计算出微悬臂的偏转量,结合微悬臂的弹性系数,可以获得待测样品分子的相关力学信息[3~5].Fig. 1The schematic diagram of AFM-SMFS.1.2.2工作原理实验前,样品分子的一端通过物理吸附、特异性相互作用或化学偶联等方法被固定在基底. 随后,驱动压电陶瓷管使AFM探针逼近待测样品(图2(a)). 如果基底对探针没有长程的吸引或排斥作用,微悬臂将处于松弛状态. 探针与基底接触后,受力向微悬臂上表面方向弯曲,引起二极管的2个象限间的差分信号(pha-b)的变化(图2(a)与2(b),状态2→3). 在此过程中,样品分子会通过化学、物理或特异性作用吸附在探针上,在探针与基底之间形成桥联结构. 随后,探针远离基底并恢复松弛状态(图2(a),4),pha-b也恢复初始数值. 探针继续远离基底,桥联于探针与基底间的样品分子受到拉伸,导致微悬臂向针尖方向偏转(图2(a),5),引起pha-b的增加(图2(b),5). 最后,桥联结构中稳定性最薄弱的部分发生断裂,微悬臂迅速恢复为不受力的松弛状态(图2(a),6),表现为pha-b的突然回落(图2(b),6)[1,9,21,29]. 每个完整的逼近-回缩过程都会产生pha-b对应压电陶瓷管位移的原始曲线(图2(b))[29].Fig. 2(a) Schematic illustration of the basic working principle of AFM-SMFS (b) Original volt-piezo displacement curves (c) Typical force-extension curves.Fig. 3Electron microscopy images of a commercial Si3N4 AFM probe. Fig. 4Molecular immobilization based on (I) physical absorption, (‍Ⅱ) specific binding, (‍Ⅲ) gold-thiol chemistry, (‍Ⅳ) silanization and enzymatic biosynthesis.Fig. 5Immobilization of thiol-labeled DNA based on silanization and bifunctional PEG.Fig. 6Typical curves obtained in constant velocity (a) and force-clamp mode (b), respectively.原始曲线经过校正才能正成为最终的力-拉伸长度曲线(图2(c))[1,2,4,9,21,29]. 将具有弹性的微悬臂看成弹簧,根据胡克定律F=kcΔx(kc为微悬臂弹性系数,Δx为微悬臂偏转量)可以计算出微悬臂受到的作用力,即样品分子内或分子间的作用力.kc通过对微悬臂在远离基底时热振动所获得的能量谱的积分即可获得;Δx利用图2(b)中斜线部分(状态2→3)的斜率(s),即Δx=s-1pha-b就可以计算出. 样品分子的拉伸长度通过从原始数据横坐标记录的压电陶瓷管的位移中扣除Δx获得. 至此,pha-b对应压电陶瓷管位移的原始曲线被成功地转化为样品分子的力-拉伸长度曲线.1.2.3力曲线及其含义AFM针尖逼近和远离样品表面的一个循环中可以获得2条力曲线,称为逼近力曲线与回缩力曲线(图2(c))[1,2,4,9,21]. 逼近力曲线上B区域的形状可以给出样品模量等信息. 例如:当AFM探针接触较软的样品时,受到的排斥力随位移缓慢增加;而接触硬度较大的样品时,受到的排斥力快速增加,B区域的力信号与水平基线之间形成近90°的直角. 对于回缩力曲线,C-D区域可以给出单分子弹性性质、链结构信息以及分子内、分子间相互作用强度等定量信息.2AFM单分子力谱实验技巧2.1探针与基底的选择AFM探针直接影响力学探测的稳定性、精确度及测量范围[1,2,4,9,21,29]. 其材质通常是硅或氮化硅,由针尖、微悬臂及承载微悬臂的基片组成(图3). 针尖通常是四面体形状,最尖端的曲率半径(tip radius)为几个到几十纳米,高度(tip height)通长为3~28 µm. 微悬臂有矩形和三角形2种,长度为7~500 µm,厚度为0.5~7 µm. 其材质及几何尺寸均对共振频率和弹性系数有重要影响,需要根据实验体系来选择探针. 对于弱相互作用体系(例如双链DNA的解拉链)[30],应选择相对柔软,即弹性系数小的探针;而强相互作用体系(例如:共价键强度的测量)[31],则需选择相对坚硬,即弹性系数较大的探针. 值得注意的是,刚性较大的探针在应力松弛时其内部储存的能量释放速度更快,更适于研究多重键的连续打开与形成的动态过程,例如聚酰胺(PA66)单晶中聚合物链在受力熔融过程中的黏滑运动(stick-slip)[32]. 此外,一些公司也生产了许多功能化的AFM探针. 例如:满足基于巯基-金的化学分子偶联的镀金AFM探针;为了增加激光束在微悬臂上表面的反射率,只在上表面蒸镀金属涂层(铝或金等)的探针等. 然而,只存在于微悬臂上表面的镀层,往往导致其上下表面的膨胀系数产生差异,引起热漂移[33]. 为了减小该热漂移,有些探针只在其微悬臂的尖端进行有限的金属蒸镀(例如MLCT-BioDC型号探针). 如需增加时间分辨率,可以选用超短探针[34]. 但超短探针的弹性系数通常较大. 科研人员曾利用离子束刻蚀的方法将微悬臂做成镂空结构,同时保证了时间分辨率和弹性系数[35]. 然而,使用较小尺寸微悬臂时,激光容易“漏射”到样品表面,发生反射,与微悬臂表面的反射光产生干涉,导致力曲线出现大幅度波动. 为了减少这种干涉效应,通常可以采取以下几种策略:(1)减小汇聚到微悬臂表面的激光光点的大小,从而减小漏光;(2)选用横向尺寸较大的微悬臂,增大反射面积;(3)选择透明基片(例如玻璃片)固定样品,降低基片的反射率;(4)适当增加样品平面相对于微悬臂平面的角度,降低反射光的相干性.AFM探针需要被牢固地固定在夹具上,以减少系统漂移. 为了提高微悬臂检测的灵敏度,将激光光斑尽可能地照射在微悬臂的最前端. 仪器调试完毕,让整个系统平衡10~30 min,使微悬臂上下表面材质差异所引起的界面张力达到平衡,减小系统漂移. 如在同一个样品上进行力谱探测的时间较长,且实验前期及后期羧甲基化淀粉以及多聚蛋白质的力学指纹谱是被经常采用的单分子拉伸指示剂. 为此,可以将待测分子与已知指纹图谱的分子进行串联(图7)[49]. 需要注意的是待测体系的力学稳定性要大于内标分子产生力学指纹谱所需的力值.Fig. 7Basic strategy to isolate/identify single chain/molecule pair stretching.2.5力谱数据的分析处理单分子力谱数据可以给出的信息包括长度及力值的定量信息. 为了更精确地描述这些定量信息,通常需要对大量力学信号进行统计分析[1]. 常用的统计方法是将所得数据以柱状图形式呈现,进行高斯拟合,得出最可几值.此外,还可以利用自由连接链模型及蠕虫链模型对数据拟合,获得库恩长度、相关长度或者链段弹性系数等信息[1]. 近年来,这些经典模型不断被修正,应用范围逐渐被拓展[56]. 例如:FJC模型中了增加参数Ksegment,表征高分子链中每一个链段的弹性,被修正为可伸长的FJC模型(eFJC). 该模型中,每一个链段类似弹簧,受力过程中伸长,可以更加精确地描述高分子受力时的弹性行为. 为了更好地描述高分子主链的固有弹性,即本征弹性,由量子力学(QM)计算得到的非线性单链焓弹性模量被整合到WLC、FJC及FRC模型中,得到了QM-WLC、QM-FJC与QM-FRC模型[57]. 在特定情况下,如水环境或真空条件,侧基和环境的非共价相互作用会对高分子链弹性产生影响. 为了得到上述情况下高分子主链的弹性,基于两态(two-states)系统的非共价作用动力学被引入,创建了TSQM-WLC、TSQM-FJC及TSQM-FRC模型. 上述修正模型能够更加精确地定量高分子链的结构及性质[57].一些非平衡态体系,例如受体配体的解离、力诱导下的转变等,力加载速率会影响力-拉伸长度曲线的形状. 因此,可以在较大力加载速率范围内,观察上
  • 欧盟配合中方多晶硅调查
    继欧洲对中国光伏产品展开反倾销调查后,中国当局批评了欧盟成员国实施的上网电价补贴制度。令事情更加复杂的是欧盟最新的普遍优惠制(Generalized Schemeof Preferences)计划。与此同时,一名发言人还评论了中国最近发起的多晶硅反倾销调查。   普惠制取代关税与贸易总协定,欧盟通过该制度对出口到欧盟的产品降低税率和实行零关税,扩大发展制成品和半制成品的出口。   修改后的普惠制将于2014年1月1日开始生效,修订细节显示尽管受益国数量降低到89个,中国依然在“中低收入”合作伙伴之列,这样一来其就可以从特定产品零关税或低关税中获益。   此外,根据优惠关税条件中国企业可以出口到欧盟的类别也扩大至用于生产太阳能产品的物品:碱和碱土金属(不包括钠和镉)、氧化铝(不包括人造金刚砂)、硫酸铵、硝酸钠、未加工铅、未加工镉粉。   外界可能会认为该措施与正在进行的反倾销调查相冲突,欧盟发言人JohnClancy表示:“这两件事情完全是独立的。贸易保护行动是根据世界贸易组织采取的一种法律程序。”“我们改革普惠制的目的是调整该系统使其更好的反映经济体的变化,也是为了给更贫穷国家提供更多的机遇,并从中受益。”   最近欧中太阳能贸易纠纷又有新的进展。11月5日,中国上诉世界贸易组织称欧盟部分成员国的法律规定,如果光伏发电项目的主要零部件原产于欧盟国家或欧洲经济区国家,该项目生产的电力即可获得一定金额或比例的上网电价补贴。中方认为,上述补贴措施违反了世贸组织协定关于国民待遇和最惠国待遇的规定,构成了世贸组织协定禁止的进口替代补贴。欧盟拒绝就此事发表评论,但就最近中国发起的多晶硅反倾销调查进行了说明。   Clancy表示:“欧盟委员会正仔细研究诉讼中提出的补贴指责。我们将在诉讼中全力配合中方以维护我们的利益,与德国和欧洲投资银行等被指责补贴项目相关方展开密切合作。”“同时,我们也希望中国商务部能够充分遵守世界贸易组织协定关于补贴和反补贴措施中的国际贸易规则。”   另外,美国国际贸易委员会(ITC)将于11月7日就美中太阳能贸易纠纷做出终裁。
  • 高分子表征技术专题——扫描电镜技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!扫描电镜技术在高分子表征研究中的应用ApplicationsofScanningElectronMicroscopyinPolymerCharacterization作者:郑鑫,由吉春,朱雨田,李勇进作者机构:杭州师范大学材料与化学化工学院,杭州,311121作者简介:李勇进,男,1973年生.1996年和1999年在同济大学分别获学士和硕士学位,2002年获上海交通大学博士学位.2002~2011年,历任日本产业技术综合研究所JSPS博士后和研究员.2011年加入杭州师范大学,主要从事高分子材料成型加工研究.先后获得高分子成型加工新锐创新奖(2017年)、冯新德高分子奖提名奖(2018年和2020年)、国际高分子加工学会(PPS)的MorandLambla奖(2019年)、浙江省自然科学奖(2020年)等.摘要扫描电子显微镜(scanningelectronmicroscope,SEM)是表征高分子材料微观结构及其组成信息重要的手段之一,具有操作简便、信号电子种类多样且对样品损伤较小等特点.本文系统阐述了SEM的工作原理,通过与透射电子显微镜(transmissionelectronmicroscope,TEM)进行比较,突出了其优势与特色.详细讨论了该技术的测试方法,包括样品制备、仪器参数设定、操作技巧与图像处理,并揭示了获得高质量SEM图像的关键技术.介绍了SEM不同的信号电子成像、SEM与其他仪器联用及SEM原位分析技术在高分子材料表征中的应用与进展.最后,对SEM的发展趋势进行了展望.AbstractScanningelectronmicroscopy(SEM)isoneofthemostimportanttoolsforthecharacterizationofpolymermaterials' microstructureandcomposition.First,itiseasytooperate thentherearevariouselectronicsignalsavailablewhichcontaindifferentsampleinformationforSEMimaging besides,therearelittlesampledamageduringSEMobservation.Inthiswork,theworkingprincipleofSEMwaselucidatedsystematically.Also,acomparisonwasmadebetweenSEMandTEMwithrespecttoworkingprinciple,resolutionandmagnification,viewanddepthoffield,samplepreparation,sampledamageandpollution.Therefore,theadvantagesandfeaturesofSEMwerehighlighted.Inaddition,theexperimentmethodsofSEMwereillustratedindetail,includingsamplepreparation,instrumentparametersettings,operationskillsandimagetreatment.ThekeyfactorswhichdeterminesthequalityofSEMimagewererevealed.ThemainapplicationsofSEMinpolymercharacterizationwereintroduced.Specifically,thesecondaryelectronsimagingwasusedtoinvestigatethemicrostructureofpolymercomposition,compatibilityofpolymerblends,crystalstructureofpolymer,morphologyofpolymerporousmembrane,biocompatibilityofpolymermaterial,self-assemblebehaviorofpolymerandsoon.Besides,thebackscatteredelectrons,characteristicX-ray,transmittanceelectronswerealsousedtorevealthemorphologyandcompositioninformationofpolymersystems.ThecombinationofSEMwithRamanspectrometerandFocusedionbeamandtheinsituSEMtechniqueswereillustrated.Finally,therecenttrendsofSEMdevelopmentwereprospected.关键词扫描电子显微镜  高分子材料  微观结构  组成信息  应用KeywordsScanningelectronmicroscopy  Polymermaterial  Microstructure  Composition  Application 材料的宏观特性是由其组分及微观结构决定的,因此,深入了解材料的微观结构,明确微观结构与宏观特性之间的内在联系对于开发新材料、提升已有材料性能是至关重要的.电子显微镜技术是探测微观世界的重要研究手段之一,在材料的研究和发展历程中发挥了巨大的作用.电子显微镜是在光电子理论的基础上发展起来的,包括扫描电子显微镜(scanningelectronmicroscope,SEM)和透射电子显微镜(transmissionelectronmicroscopy,TEM)两大类.二者在结构、工作原理、对样品的要求等方面有着本质的区别.下文将对其进行详细阐述.由于二者的成像原理不同,所反映出来的样品信息也不尽相同,因此在实际应用中,往往需要二者相互配合,才能揭示材料最真实的微观结构.与TEM相比,SEM具有更大的视野和景深,样品制备相对简单且对样品厚度要求不严格,并且不容易造成样品的损伤和污染,是快速表征材料微观形貌结构的首选技术.自1965年第一台商用扫描电镜问世以来,经过不断的创新、改进和提高,扫描电镜的种类和应用领域也在不断拓展[1].现有的扫描电镜主要包括钨丝/六硼化镧扫描电镜(SEM)、场发射扫描电镜(FESEM)、扫描透射电镜(STEM)、冷冻扫描电镜(Cryo-SEM)、环境扫描电镜(ESEM)等[2].此外,通过配置功能附件,如X射线能谱仪、X射线波谱仪、阴极荧光谱仪、二次离子质谱仪、电子能量损失谱仪、电子背散射衍射仪等,许多扫描电镜除了研究材料微观结构之外,还兼具微区物相分析的功能[3].鉴于扫描电镜在材料微观结构表征中的重要作用,本文将从扫描电镜的结构与工作原理出发,通过与透射电镜进行对比,突出其性能和特点;详细讨论扫描电镜的实验方法与操作技巧,揭示获得高质量扫描电镜图像的关键技术;总结扫描电镜在高分子材料表征中的应用与最新进展;最后,对扫描电镜的发展趋势进行展望.1扫描电镜的结构与特点1.1扫描电镜的结构扫描电镜的内部结构较为复杂,可分为电子光学系统、样品仓、信号电子探测系统、图像显示与记录系统、真空系统这5个主要部分[3].下文将针对这5个主要部分详细展开.扫描电镜实物图及其主要部件如图1所示.Fig.1TheHitachiS-4800cold-fieldemissionSEManditsmaincomponents.1.1.1电子光学系统电子光学系统主要包括电子枪、聚焦透镜、扫描偏转线圈等.其作用是产生用于激发样品产生各种信号的电子束.为了获得较高的信号强度和图像分辨率,通常要求电子束具有较高的亮度、稳定的束流及尽可能小的束斑直径.因此,电子光学系统是扫描电镜中尤为重要的组成部分.电子枪阴极用来提供高能电子束,常见的有钨丝电子枪、六硼化镧电子枪和冷/热场发射电子枪.表1汇总了几种电子枪的性能及相关参数[4].Table1Severalelectrongunsandthemainperformanceparameter.由电子枪阴极发射的电子束初束尺寸通常较大,需通过聚焦透镜将其大幅度缩小方可照射样品并获得较高分辨率的扫描图像.聚焦透镜分为强激磁、短焦距的聚光镜和弱激磁、长焦距的物镜,二者均通过磁场作用改变电子射线的前进方向而使电子束产生汇聚.扫描系统是扫描电镜一个独特的结构,包含扫描发生器、扫描偏转线圈和放大倍率变换器,其作用是使电子束在样品表面和显示屏中作光栅状同步扫描,以获得样品表面形貌信息.这即是扫描电镜的工作原理,可简单总结为“光栅扫描,逐点成像”.下文将对其进行进一步说明.此外,通过改变电子束在样品表面的扫描振幅还可获得不同放大倍数的扫描图像.1.1.2样品仓样品仓位于物镜的下方,用于放置样品和信号探测器.内设样品台,并提供样品在X-横向、Y-纵向、Z-高度3个坐标方向的移动,以及样品绕自身轴旋转R和倾斜T的动作.通过对这5个自由度的选择性控制,可以实现对样品全方位的观察.其中“Z”方向的距离称为工作距离,通常在2~50mm范围内,工作距离越大,观察的视野越大.1.1.3信号电子探测系统信号探测系统包括信号探测器、信号放大和处理装置及显示装置,其作用是探测样品被电子束激发出的各种信号电子,并经放大转换为用以调制图像的信号,最终在荧光屏上显示出反映样品特征的图像.图2给出了电子束激发样品所产生的主要信号电子,包括二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE)、俄歇电子(AS)、阴极荧光(CL)等,及其所反映的样品性能特征的示意图.而不同的信号电子要用不同的探测系统,目前扫描电镜的探测器有电子探测器、阴极荧光探测器和X射线探测器三大类.Fig.2Theoverviewofmainsignalelectronsgeneratedduringtheinteractionbetweenelectronbeamandsample.1.1.4图像显示与记录系统图像显示与记录系统由显像管和照相机组成.显像管的作用是将信号探测系统输出的调制信号转换成图像显示在阴极射线荧光屏上,并由照相机将显像管显示的图像、放大倍率、标尺长度、加速电压等信息拍摄到底片上.1.1.5真空系统为了确保电子光学系统能正常、稳定地工作,防止样品污染,电子枪和镜筒内部都需要严格的真空度.以场发射扫描电镜为例,通常要靠一台机械泵、一台分子泵和一台离子泵联合完成.真空度越高,入射电子的散射越少,电子枪阴极的寿命越长,同时高压电极间放电、打火等风险隐患也会降低.1.2扫描电镜的性能和特点扫描电镜和透视电镜是分析材料微观形貌的2种常用表征手段.为了明确扫描电镜性能和特点,本文将扫描电镜与同为电子显微镜的透射电镜进行全方面比较说明.1.2.1成像原理结合扫描电镜的结构,其成像原理如下:在高压作用下,由电子枪阴极发射出的电子束初束,经聚光镜汇聚成极细的电子束入射到样品表面的某个分析点,与样品原子发生相互作用而激发出各种携带样品特征的信号电子,通过相应的探测器接收这些信号电子,经放大器放大后进行成像,即可分析样品在电子束入射点处的特征.同时,通过扫描线圈驱动入射电子束在样品表面选定区域作从左到右、从上到下的光栅式扫描,实现对选定区域每个分析点的采样,从而产生一幅由点构成的图像.其工作原理如图3(a)所示.扫描电镜是信号电子成像,主要用来观察样品表面形貌的立体(三维)图像.Fig.3SchemeofthestructureandimagingprincipleforSEM(a)andTEM(b).作为电子显微镜的另一大类,透射电镜的总体工作原理与扫描电镜有着显著差别[2].在透射电镜中,由电子枪发射出的电子束初束同样通过聚光镜汇聚成极细的电子束照射在极薄的样品(50~70nm)上.与扫描电镜不同的是,透射电镜通过穿过样品的电子,即透射电子,来反映样品的内部结构信息.携带了样品信息的透射电子经过物镜的汇聚调焦和初级放大后,形成第一幅样品形貌放大像;随后再经过中间镜和投影镜的2次放大,最终形成三级放大像,以图像或衍射谱的形式直接投射到荧光屏上,通过配有电荷耦合器件(chargecoupleddevice,CCD)的相机拍照或直接保存在计算机硬盘中.其工作原理如图3(b)所示.透射电镜是透射成像,用来观察样品在二维平面内的形态和内部结构.1.2.2分辨率和放大倍数分辨率表示对物点的分辨能力,指的是能够清晰地分辨2个物点的最小距离.显微镜的理论分辨率(γ0)可用贝克公式(公式(1))表述.显然,仪器所用光源波长越短,分辨率越高.根据德布罗意公式(公式(2))和能量公式(公式(3)),电子显微镜的电子束波长随加速电压增加而缩短,进而明显提高电子显微镜的分辨率.而仪器的有效放大倍率(M有效)与仪器的理论分辨率是直接相关的.由公式(4)可知,仪器分辨率越高,有效放大倍率越大.当仪器分辨率确定后,其有效放大倍率也随之确定.因此,分辨率才是评价显微镜的核心指标.而我们通常意义上说的放大倍率实际是图像放大倍率,也即屏幕输出比(M)(公式(5)).在超高真空条件下,扫描电镜的水平和垂直分辨率分别可达0.14和0.01nm.放大倍数从10倍到1.5×106倍连续可调;透射电镜的最高分辨率可达0.1nm,放大倍数从几百倍到1.5×106倍连续可调.式中λ为光源波长,n为显微镜内介质的折光率(真空环境时n=1),α为透镜孔径半角.式中h为普朗克常数,m为电子质量,v为电子运动速度.式中e为电子电荷量,U为加速电压.式中γe为人眼分辨率(0.2mm).式中Lm为荧光屏成像区域边长(通常为10cm),Ls为电子束在试样上的扫描区域边长.1.2.3视野和景深视野指的是能看到的被检样品的范围,与分辨率和放大倍率有关;景深指可获得清晰图像的深度范围.扫描电镜的视野(10mm~10μm)比透射电镜(1mm~0.1μm)大得多,景深也比透射电镜大.如图4所示,扫描电镜图像更有立体感,更适合观察样品凹凸不平的细微结构[5].Fig.4TheSEM(a)andTEM(b)imagesforthesamesample(ReprintedwithpermissionfromRef.[5] Copyright(2019)ElsevierLtd.).1.2.4样品制备扫描电镜的样品制备比较简单,对样品的厚度要求不严格,不导电的样品要经过镀膜导电处理(后文将以高分子材料为例,详细介绍扫描电镜样品的制备方法),强磁性样品需消磁后方可观察;而对于透射电镜来说,电子必须穿过样品才能成像,因此样品要很薄,通常要经过特殊的超薄切片进行制备,过程相对复杂.1.2.5样品的损伤和污染在用扫描电镜观察样品时,照射在样品上的束流(10-10~10-12A)、电子束直径(5nm)和加速电压(2kV)都较小,故电子束能量较低.此外,电子束在样品上做光栅状扫描,因此观察过程中对样品的损伤和污染程度较低;而使用透射电镜时,为了使图像有足够的亮度,要用较强的束流(~10-4A)和加速电压(100kV),因此电子束能量较高,且固定照射在样品的某处,因此引起样品的损伤程度较大,易造成样品和镜筒的污染.综上所述,扫描电镜的性能和特点显著,如成像立体感强,放大倍数范围大、分辨率高,不仅对样品具有普适性,且制样简单,观察时对样品的损伤和污染小,此外还可以通过调节和控制各种影响成像的因素和参数来改善图像质量(详见下文),因此是观察材料显微结构的重要工具.2实验方法与技巧要获得一幅优质的扫描电镜图像,需掌握样品制备技术、熟知操作要点并对图像进行必要的处理.下文将以高分子材料为例,对扫描电镜的实验方法与操作技巧进行阐述.2.1样品制备高分子材料扫描电镜样品的制备方法根据要观察的部位、样品形态及高分子本身的性质有所不同.观察块状或薄膜样品表面时,只需将大小合适的样品表面朝上用导电胶黏贴在样品台上;观察块状或薄膜样品内部结构时,通常要将样品置于液氮中,通过淬断获得维持形貌的断口,然后再将断口朝上用导电胶固定在样品台上进行观察.对于较薄且自支撑性较差的薄膜样品,可带支撑层一起淬断.如将载有纳米纤维膜的锡箔纸,或将纤维膜浸水之后进行淬断,更便于得到其断面.此外,黏贴样品时应尽量保持样品平稳、牢固,减少样品与导电胶之间的缝隙,以增加其导电和导热性.有时,为了分辨高分子复合体系的组分分布情况,还需要对样品进行适当的刻蚀,利用选择性溶剂去除复合体系中的某一相,以暴露更多微观细节[6~8],之后再进行清洗、干燥、黏贴、镀膜等步骤.观察粉末样品时,要保证粉末与样品台粘接牢固,在样品仓抽真空时不会飞溅导致电镜污染.根据粉末样品的尺寸,可选择用干法或湿法来制备扫描样品.其中,干法适用于制备尺寸大于2μm的粉末样品.通常在导电胶上负载薄薄一层粉末样品后,要用洗耳球等从不同方向吹掉粘接不牢固的粉末;湿法适用于制备尺寸在2μm以下的粉末样品.首先选择合适的分散液(如水、乙醇等),将粉末样品通过超声处理均匀地分散在其中,随后用滴管将样品溶液滴加到硅片上,待溶剂挥发后固定在样品台上进行下一步处理.对于导电性好的高分子样品,只要用导电胶将要观察的部位朝上粘接在样品台上即可观察[9,10];而大部分高分子材料都是绝缘的,经过高能电子束的持续扫描,样品表面会产生电荷积累,不仅会排斥入射电子,还会干扰信号电子,影响探测器对信号电子的接收,造成图像晃动、亮度异常、出现明暗相间的条纹等现象.这就是所谓的“荷电效应”[11~13].为了解决这个问题,除了要用导电胶将其粘接在样品台上,还可以选择对其进行镀膜处理以提高样品的导电性[11].通常,5nm的镀膜厚度足以改善样品的导电性.对于具有特殊结构的样品,如表面不致密或者起伏较大的样品,可以适当增加镀膜厚度.常用的镀膜材料有碳膜、金膜、银膜、铂膜等.其中,金膜二次电子产率高、覆盖性好,在中低倍(1.5×104倍)以下观察时较常使用.在进行更高放大倍数、更高分辨率分析时,通常会选择颗粒较小的铂膜或金-铂合金膜.而镀膜可以通过真空镀膜和离子溅射镀膜技术来实现.镀膜层的厚度以能消除荷电效应为准.但是,镀膜会掩盖一些样品的微观形貌细节,使得观察结果产生偏差;此外,对于还要进行能谱分析的样品,镀膜也会对结果产生不利影响.此时,可以选择在低压模式下对样品进行观察(详见3.4节),即使不镀膜也可以观察到细微的结构.当使用常规扫描电镜观察时,磁性样品要预先消磁,所有样品还需要经过彻底的干燥处理后方可观察.2.2实验技巧2.2.1仪器参数样品制备完成后,需要对扫描电镜进行操作,调整相应的参数,获取扫描电镜图像.通常,一幅优质的扫描电镜图像要能够清晰、真实地反映样品的形貌,需具备较高的分辨率、适中的衬度、较高的信噪比、较大的景深等.其中,信噪比指一个电子设备或者电子系统中信号与噪声的比例.当扫描过程中采集的信号电子数量太少时,仪器或测试环境的噪声太大,信噪比太低,会导致显示屏上出现雪花状噪点,从而掩盖了样品图像的细节.而较高的分辨率是高质量扫描电镜图像的首要特征.此外,图像的分辨率、衬度、信噪比、景深等特征之间是相互关联的,通过调整电镜的参数可以改变上述特征发生不同效果的变化.(1)加速电压加速电压升高,束斑尺寸减小,束流增大,有利于提高图像的分辨率和信噪比.此外,升高加速电压还能提高二次电子的发射率,但与此同时,电子束对样品的穿透厚度增加,电子散射增强,这些反而会导致图像模糊、分辨率降低.因此,应根据样品的实际情况进行适合的选择.对于高分子材料来说,由于其耐热性和导电性均不佳,为了避免观察、拍摄过程中样品发生热损伤及荷电效应导致图像不清晰,应适当采取较低的加速电压.(2)束流束流是表征入射电子束电子数量的参数,束流与束斑直径之间的关系可用公式(6)表示:其中,i束流,d是束斑直径,β是电子源的亮度,α是电子探针的照射半角.由此公式可知,当其他参数不变时,束流增大,束斑尺寸也会相应变大,此时分辨率会下降,而由于束流增大有利于激发出更多的信号电子,故信噪比提高.所以,束流对分辨率和信噪比的影响是相反.通常,随着观察的放大倍数增加,图像清晰度所要求的分辨率也要增加,因此可适当减小束流,而信噪比可以通过其他途径,如延长扫描时间等手段来弥补.(3)工作距离工作距离是指物镜最下端到样品的距离,对入射至样品表面的电子束的束斑尺寸有直接影响.缩短工作距离可以减小束斑尺寸,进而提高图像分辨率.然而,缩短工作距离会导致电子束入射半角α增大,因此景深变小,图像立体感变差.因此,要得到高分辨率的图像时,需选择较小的工作距离(5~10mm);而要观察立体形貌时,可选用较长的工作距离(25~35mm),获得较大的景深.(4)物镜光阑物镜是扫描电镜中最靠近样品的聚光镜,多数扫描电镜在物镜上都设有可动光阑,用于遮挡非旁轴的杂散电子并限定聚焦电子束的发散角,同时还兼具调节束斑尺寸的功能.所用的光阑尺寸越小,被遮挡的杂散电子越多,在一定的工作距离下,孔径半角越小,因此景深变大,图像立体感变强,同时束斑尺寸减小,图像分辨率提高.另一方面,光阑孔径小会导致入射电子束束流减小,激发出的信号电子数量减少,导致信噪比变差.因此,对于放大倍率不高的扫描样品,或者需要使用能谱仪对样品微区进行化学组成成分分析时,应选用较大孔径的光阑,获得较大的束流和较高的信噪比.通过上述分析可知,影响扫描电镜图像质量的各个因素之间是有内在联系的,在实际操作过程中,需根据样品的自身性质及拍摄的具体需求选择合适的条件参数.2.2.2操作要点为了获得高质量的扫描电镜图像,除了选择合适的仪器参数,还应掌握正确的操作方法.(1)电子光学系统合轴在扫描电镜中,由电子枪阴极发射的电子束通过聚光镜、物镜及各级光阑,最终汇聚成电子探针照射到样品表面并激发出电子信号.其中,到达样品表面的电子束直接决定了扫描电镜的图像质量.因此,在观察样品前必须使上述各部件的中轴线与镜筒的中轴线重合,使得电子束沿中轴线穿行,将光学系统的像差减到最小,这就是“合轴”‍.合轴主要通过镜筒粗调和电子束微调来实现.镜筒粗调又称机械合轴,一般仪器安装后会由专业的维修工程师进行操作.此外,仪器使用过程中发现光斑偏离过大也需要进行机械合轴.以日立SU8000扫描电镜为例,通过调节对应位置的螺丝和旋钮,依次进行电子枪、聚光镜光阑、物镜光阑、各级聚光镜、像散合轴等,此时屏幕中心应会出现一个既圆又亮的光斑,说明机械合轴完成.随后,还要利用扫描电镜的对中电磁线圈所产生的磁场拖动电子束进行精确合轴,又称电子对中.相较于机械对中,电子对中幅度小、合轴精确度高,一般在完成机械对中的基础上进行.实际使用扫描电镜时,如在调焦或消像散时发现图像位置移动,说明电子束对中出现问题,需对其进行校正.电子对中可通过倾斜(tilt)和平移(shiftX/Y)实现.Tilt用于调整电子束的发射倾斜角度,ShiftX/Y用于电子束平面X、Y方向的移动.在调整过程中注意观察图像的亮度,亮度最大时调整结束.(2)放大倍数和视野选择根据观察要求,选择合理的放大倍数及视野,确保观察部位具有科学意义,通过观察到的样品形貌能够回答要解决的研究问题.此外,所观察的画面和角度要符合传统的美学观点,同时具有良好的构图效果.(3)电子束聚焦和相散消除电子束聚焦和相散消除是电镜操作中最核心的步骤.聚焦是指通过旋转Focus旋钮调节物镜的励磁电流,使其在欠焦、正焦、过焦这3种状态下反复切换,并通过对比图像的清晰度来确认正焦的位置,此时束斑直径最小.调焦过程中电子束在样品表面的变化如图5所示.在过焦和欠焦状态下,图像在相互垂直的方向上出现拉长的现象,且在正焦状态下也不清晰,此时就表明出现了像散.在消除像散时,首先要把图像聚焦到正焦状态,随后通过调节消像散器的X、Y旋钮,辅以调焦操作,并观察图像是否被拉长,再根据实际情况,重复上述过程,直到图像清晰为止.图5也展示了不同聚焦状态下有无像散的电子束斑形状及尺寸.显然,消除像散后正焦时电子束斑尺寸更小,因此此时的图像具有更高的清晰度.Fig.5Theshapeandsizechangeofelectronbeamduringfocusingprocessbeforeandaftertheastigmatismbeingeliminated.(4)衬度和亮度调整图像中最大亮度和最小亮度的比值就是图像的衬度,也称对比度或反差,可通过改变扫描电镜中光电倍增管的电压进行调整.亮度则是通过改变电信号的直流成分进行调节.实际上,反差增强时直流成分也会增加,因此相应地亮度也会提高.在进行扫描电镜观察与拍摄时,应交替调节衬度和亮度,保证图像具有清晰的细节和适当的明暗对比.(5)扫描速度调整扫描速度要结合样品自身的性质与观察要求进行调整.通常情况下,低倍观察时用快速扫描,高倍观察时用慢速扫描.当图像要求高分辨率时常用慢速扫描.对于导热性和导电性较差的高分子材料,为避免热损伤和荷电效应,通常要采用快速扫描.(6)样品台角度调整表面较为光滑的样品通常其形貌衬度较弱,通过调整样品台的角度,可以使更多二次电子离开倾斜的样品表面,提高信号电子的强度(如图6所示),进而改善图像衬度和分辨率[14].Fig.6TheSEescapedfromthehorizontal(a)andtilted(b)sample.(7)图像拍摄在实际观察与拍摄时,通常要先在较低的倍率下对整个样品进行观察,之后选择具有代表性的区域再进行放大.遵循“高倍聚焦、低倍拍照”的原则,在高于所需拍摄放大倍数的状态下(1.2~2倍放大倍数)进行聚焦,后回调至所需放大倍数进行拍照,可获得清晰度更高的图像.此外,为了使SEM图像更具有代表性和准确性,一方面,要对具有代表性的观察区域进行一系列放大倍数的拍摄,此时可按从高倍率到低倍率的顺序进行拍摄,过程中无需反复执行电子束聚焦的步骤,仍可获得高清晰度的图像;另一方面,也要进行多点观察,即对样品不同区域进行观察.2.3图像处理图像处理是指在探测器的后续阶段,通过各种图像处理技术,对图像的衬度、亮度或噪声等进行改善,获得一幅细节更清晰、特征更明显的图像.在此过程中,不应改变样品的原始信息.表2总结了仪器参数和操作要点对图像质量的影响[3,4].Table2TheinfluencefactorsoftheSEMimagesandthecorrespondingadjustment.3扫描电镜在高分子材料表征方面的主要应用总体而言,扫描电镜是一个功能十分强大的测试平台,除了最基本的成像功能之外,通过搭配不同的信号电子探测器,或与其他仪器(如拉曼光谱、单束聚焦离子束系统等)联用,或引入原位分析手段等方法,可以对材料的微观结构、元素、相态等进行分析.3.1不同信号电子在高分子材料表征方面的应用常用于高分子材料表征的信号电子为二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE).其中,SE、BSE和特征X射线对样品厚度没有要求,当高能电子束入射至样品后,这3类信号电子的逃逸深度及大致对应的扫描电镜图像分辨率如图7所示[15].而TE要求样品的厚度在100nm以下,因此需要超薄切片处理,且为了获得足够的衬度,通常要对共混物的其中一个组分进行染色处理.通过在SEM平台搭配不同的信号电子探测器,可以得到不同的SEM成像方式.Fig.7TheescapedepthofSE,BSEandcharacteristicX-rayandtheirapproximateimageresolution.3.1.1二次电子成像高能入射电子与样品原子核外电子相互作用使其发生电离形成自由电子,并克服材料的逸出功,离开样品的信号电子即为二次电子SE,其产额为每个入射电子所激发出的二次电子平均个数.二次电子是扫描电镜中应用最多的信号电子.由于其能量较低且容易损失,只有样品表面或亚表面区域所产生的二次电子才能离开样品到达探测器[16].此外,表面形貌的变化对二次电子产额影响较大,图8展示了不同表面形貌,如尖端、平面、斜面、空洞、颗粒等,对二次电子产额的影响.显然,凸出的尖端、较为倾斜的面以及颗粒在经电子束照射后逃逸的SE较多[17].在成像时,SE产额较多的表面形貌通常更亮.这种由于形貌差异导致的图像亮度不同而获得的图像衬度即为形貌衬度.二次电子提供的形貌衬度是扫描电镜最常用的图像衬度.通过搭配二次电子探测器,可以做如下研究:Fig.8SchemeoftheSEyieldondifferentsurfacemicrostructure.(1)高分子复合材料微观结构以高分子为基体,通过引入增强材料(如各种纤维[18~20]、晶须[21~23]、蒙脱土[24,25]、粒子[26~28]等)作为分散相,可以获得具有优异特性的复合材料.通常,其性能强烈依赖于增强材料的尺寸、分散性等.SEM在开发高性能高分子复合材料中发挥了重要作用.于中振等制备了一种具有良好电磁屏蔽性能的聚苯乙烯(PS)/热还原氧化石墨烯(TGO)/改性Fe3O4纳米粒子的复合材料[29].由扫描电镜图像可以清晰地分辨不同形貌的填料,如改性的零维Fe3O4颗粒结构(图9(a))与二维还原氧化石墨烯(RGO)的片层结构(图9(b)).此外,扫描电镜图像也能反映填料的分散情况.如图9(a),RGO在PS基体中表现出明显的聚集,而从图9(c)可见,TGO和改性的Fe3O4纳米颗粒(Fe3O4-60)在PS基体中可以很好地分散.图9(c)所显示的具有许多小空间的微观结构有利于电磁波的衰减.Fig.9SEMimagesof(a)PS/RGO,(b)PS/Fe3O4-60and(c)PS/TGO/Fe3O4-60composites(ReprintedwithpermissionfromRef.[29] Copyright(2015)ElsevierLtd.).刘欢欢等通过扫描电镜对MWCNTs在PP基体中的分散进行了观察,扫描电镜图像中PP基体和MWCNTs表现出明显的衬度差异(图10(a)),是由于二者不同的形貌造成的[30].在较暗的PP基体中出现了大块较亮的MWCNT团聚体,说明其分散性较差.通过引入马来酸酐接枝PP(MAPP)作为增容剂,同时引入Li-TFSI离子液体帮助MWCNTs分散后,图10(b)的扫描电镜图像呈现均一的衬度和亮度,说明此时MWCNTs在PP基体中的分散性有大幅改善.Fig.10SEMimagessofimpactfracturesurfaceofPP/MWCNTs(a)andPP/MWCNTs/Li-TFSI/MAPP(b)(ReprintedwithpermissionfromRef.[30] Copyright(2019)ElsevierLtd.).(2)高分子共混体系相容性对现有高分子材料进行共混是获得高性能新材料的有效途径.共混体系组分之间的相容性是共混改性的基础,其对共混体系的性能起到了决定性的作用[31].因此,对共混体系相容性的研究十分重要,通常要用多种方法,如DSC、FTIR、NMR、SEM等,从不同角度进行研究分析[32].其中,SEM可以直接反应共混物的相形貌,能粗略、直观表征共混体系的相容程度,因此相较于其他方法应用更为广泛.近年来,李勇进和王亨缇等针对不相容共混体系做了一系列工作,通过设计合成并添加反应性增容剂,制备了众多高性能功能化的高分子共混物[5,33~39].在其工作中,大量运用扫描电镜对增容共混体系的相结构、微区尺寸、两相界面等进行研究,并结合透射电镜与红外等其他表征手段,系统研究了不同反应性增容剂的增容机理.图11(a)的扫描电镜图像中,较大的分散相尺寸以及较差的界面黏附性说明了增容前的共混体系是完全热力学不相容的;加入反应性接枝共聚物作为增容剂后,分散相尺寸明显细化,并形成了双连续的相形貌,同时界面也有显著增强(如图11(b)所示).图11(c)的透射电镜图像同样印证了增容后共混体系相容性得到改善的结论[36].Fig.11(a)SEMimageofpolyvinylidenefluoride(PVDF)/poly(lacticacid)(PLLA)=50/50blendwithoutcompatibilizer SEM(b)andTEM(c)imagesofPVDF/PLLA=50/50blendwithcompatibilizer(ReprintedwithpermissionfromRef.[36] Copyright(2015)AmericanChemicalSociety).(3)高分子的晶态结构晶态和非晶态结构是高分子最重要的2种聚集态,其对材料的性能有着重要的作用.扫描电镜为研究高分子的结晶形态提供了更直观的视角[40~42].为了更清晰地观察晶体及其细微结构,如片晶等,通常要对样品进行选择性的刻蚀,以去除晶体中的无定形区[43~46].Aboulfaraj等用扫描电镜对等规聚丙烯(iPP)的球晶结构进行了详细的研究[46].扫描样品经抛光处理,得到平整、光滑的观察面,随后浸泡在含1.3wt%高锰酸钾、32.9wt%浓H3PO4和65.8wt%浓H2SO4的混合溶液中去除PP球晶中的无定型部分,经清洗、干燥、喷金后用扫描电镜进行观察.从图12(a)~12(d)的SEM图像中可以分辨出衬度明显不同的2种PP的球晶结构,其中暗的是α-球晶而亮的是β-球晶.之所以出现这种对比效果,与电子束照射在不同表面形貌的样品上时二次电子的产额不同有关.首先,α-球晶的片晶沿径向和切向交互贯穿呈互锁结构,因此刻蚀后表面平整,在进行扫描电镜观察时,入射电子的径向扩散很弱;作为对比,β-球晶以弯曲的片晶和束状晶体结构为特征,因此刻蚀后表面较为粗糙,可以产生更多的二次电子供探测器接收.通过调整样品台的旋转角度,可以根据衬度的变化清楚地分辨出PP的2种球晶.不同旋转角度对应不同二次电子的产额,如图12(e)和12(f)所示.Fig.12SEMimagesofPPplateobservedatdifferenttiltangles:(a)0°,(b)20°,(c)40°and(d)60° Schemeofthereflectionoflightraysbytheetchedsectionsofα‍-andβ‍-spherulitesunderconditionsofdirect(e)andlow-angle(f)illumination.(ReprintedwithpermissionfromRef.[46] Copyright(1993)ElsevierLtd.).傅强等用扫描电镜研究了高密度聚乙烯(HDPE)/多壁碳纳米管(MWCNTs)复合材料注塑样品从皮层到芯层的微观结构和晶体结构[44].扫描样品同样经过了刻蚀处理.扫描电镜图像明显揭示了复合材料中的纳米杂化shish-kebab晶体,其中CNTs作为shish,而HDPE的片晶作为kebab(图13).此外,由于注塑成型过程中的剪切梯度和温度梯度的影响,纳米杂化shish-kebab晶体结构沿着复合材料注塑样条厚度方向发生变化.Fig.13SEMmicrophotographofthenanohybridshish-kebabatthelayerof400μmalongthethicknessdirectionintheHDPE/MWCNTscomposite.ThesamplewasetchedbeforeSEMobservation.(ReprintedwithpermissionfromRef.[44] Copyright(2010)ElsevierLtd.).此外,扫描电镜在研究结晶-结晶[45,47~49]、结晶-非晶[50,51]聚合物共混体系中的晶体形态方面也有重要的应用.李勇进等系统研究了聚乳酸(PLLA)/聚甲醛(POM)结晶/结晶聚合物共混体系的结晶形态及结晶动力学,通过用氯仿刻蚀掉共混物中的PLLA组分,利用扫描电镜对POM的结晶形态、PLLA的分布等进行了研究[45].由图14可见明显的聚甲醛环带球晶结构,说明即使在PLLA存在的情况下,POM仍会发生结晶形成连续的晶体框架.此外,在POM的环带球晶中观察到许多周期分布的狭缝孔,说明此处原本是PLLA的聚集区.Fig.14SEMimagesobtainedfromquenched(a),141℃(b)and151℃(c)isothermallycrystallizedPOM/PLLA=50/50blendinwhichthePLLAwasetched.(ReprintedwithpermissionfromRef.[45] Copyright(2015)AmericanChemicalSociety).(4)高分子多孔膜的形貌表征膜分离技术是解决水资源、能源、环境等领域重大问题的有效手段,其核心是分离膜[52,53].高分子多孔膜是一类成本相对较低、应用较为广泛的分离膜,但由于其普遍疏水的特性,在实际应用中容易造成污染,导致膜孔堵塞,通量下降,分离效率降低等问题[54].广大专家学者发展了多种改性方法来提高高分子多孔膜的亲水性及防污性[55~59].扫描电镜在开发高性能多孔膜的过程中发挥了重要的作用.徐志康等利用扫描电镜对比了改性前后PP微孔膜的表面孔形貌变化[60];魏佳等研究了不同Gemini表面活性剂体系对多孔膜污染类型及堵塞指数的影响,并用扫描电镜对膜表面形貌和污损情况进行了观察[61];靳健等用扫描电镜表征了聚酰胺(PA)纳滤膜(NF)表面褶皱结构的形成过程[62].从图15的扫描电镜图像中可以清晰地分辨纤维结构、纳米颗粒结构、孔结构及随着反应时间延长所产生的形貌变化.Fig.15Thepreparationofpolyamide(PA)nanofiltration(NF)membranewithcrumpledstructures:Top-viewSEMimagesofpristinesingle-walledcarbonnanotube(SWCNTs)/polyethersulfone(PES)compositemembrane(a),polydopaminemodifiedMOFZIF-8nanoparticles(PD)/ZIF-8loadedSWCNTs/PEScompositemembrane(b)andmorphologychangeofthemembraneimmersedintowaterindifferenttimeafterinterfacialpolymerizationreactiononPD/ZIF-8nanoparticlesloadedSWCNTs/PEScompositemembrane(c-f)(Thescalebarofimagesis1μm).(ReprintedwithpermissionfromRef.[62] Copyright(2018)SpringerNatureLimited).(5)高分子材料的生物相容性聚醚砜(PES)是一类十分重要且应用十分广泛的生物医用膜材料,表现出优异的化学稳定性、机械性能及成膜性[63].然而,其疏水性极大地限制了其在临床领域的应用.为了提高PES作为血液透析膜的使用性能,赵长生等展开了一系列改性研究,旨在改善PES膜的血液相容性[64~66].通过扫描电镜观察血小板在生物材料表面的黏附情况是评估材料血液相容性的重要手段.由图16所示的扫描电镜图像可见,未改性的PES膜有较多的血小板黏附,说明血液相容性较差;而改性过后的PES膜血小板黏附情况有明显改善,对应了较好的血液相容性[65].Fig.16SEMmicrographsoftheadheredplateletsonsurfacesofPES(a)andmodifiedPESHMPU-2(b)andHMPU-8(c).(ReprintedwithpermissionfromRef.[65] Copyright(2014)ElsevierLtd.).(6)高分子自组装行为高分子自组装可以获得具有特定结构和功能的聚合物超分子体系.利用扫描电镜对其组装结构进行观察是揭示其构效关系的重要手段.ByeongduLee等合成了一系列不同接枝密度的嵌段共聚物,并利用SEM对的自组装形貌进行了研究[67].如图17所示,所合成的聚乳酸-聚苯乙烯嵌段共聚物(PLA-b-PS)自组装成了长程有序的片层状结构,且从扫描电镜图像中可以明显看出,随着接枝密度的降低,其片层尺寸也有明显的减小.SEM观察到的这种标度行为为嵌段共聚物及其材料的设计提供了新的思路.Fig.17SEMimagesofpoly(D,Llactide)‍-b-polystyrene(PLA-b-PS)with(a)z=1.00,(PLA)100-b-(PS)100 (b)z=0.75,(PLA0.75-r-DME0.25)110-b-‍(PS0.75-r-DBE0.25)110 (c)z=0.50,(PLA0.5-r-DME0.5)104-b-‍(PS0.5-r-DBE0.5)104 and(d)z=0.25,(PLA0.25-r-DME0.75)112-b-‍(PS0.25-r-DBE0.75),inwhichthegraftingdensities(z)changedbysubstitutingPLAwithendo,exonorbornenyldimethylester(DME)andPSwithendo,exonorbornenyldi-n-butylester(DBE).(ReprintedwithpermissionfromRef.[67] Copyright(2017)AmericanChemicalSociety).2004年,颜德岳和周永丰等创新性地制备了一类两亲性超支化多臂共聚物,其可以在丙酮溶剂中自组装成宏观多壁螺旋管,首次实现了具有不规整分子结构的超支化聚合物的溶液自组装及分子的宏观自组装[68].在之后的工作中,高超和颜德岳等利用这类两亲性超支化聚合物制备了具有高度有序蜂窝状孔结构的多孔膜,并用SEM对其结构进行了详细研究[69].从图18(a)的扫描电镜中可以明显观察到,几乎所有孔都是规整均匀的六边形孔,孔径宽度为5~6mm.此外,由图18(b)和18(c)可见,每个六边形单元都像一个有六面双层墙壁的巢室.这里应用了2个扫描电镜的观察技巧:图18(b)是将样品台倾斜了45°所观察到的形貌,而观察图18(c)时所使用的加速电压高于20kV,此时被顶层覆盖的下层骨架也可以显示出来.Fig.18RepresentativeSEMimagesofthehoneycombpatternedfilmspreparedfromanamphiphilichyperbranchedpoly(amidoamine)modifiedwithpalmitoylchloride(HPAMAM10KC16)onasiliconwafer(a-c).Thesamplewastilted45°intheimagesof(a)and(b).Theacceleratingvoltagewas20kVfor(c).Thescalebarsare20mm(a),2mm(b),5mm(c).(ReprintedwithpermissionfromRef.[69] Copyright(2007)Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim).3.1.2背散射电子成像高能入射电子受到样品原子核的散射而大角度反射回来的电子称为背散射电子BSE,其产额为样品所激发的背散射电子数与入射电子数的比值.当加速电压大于5kV时,背散射电子产额可用公式(7)表示[3]:其中,φ为样品倾斜角,Z为原子序数.显然,背散射电子的产额随样品倾斜角和原子序数的增加而增加,尤其原子序数越高时,其对应的背散射电子图像越亮[70].这种由于原子序数差异导致的图像衬度称为成分衬度.通过在高分辨扫描电镜平台上搭配背散射电子探测器,不仅可以对高分子材料的总体相形态进行分析[71~73],还可以显示出更细节的片晶结构[74,75].其优势在于,BSE成像既不需要像TEM那样的超薄样品,也不需要像二次电子检测或原子力显微镜成像的高压,仍可以显示出较高的衬度、分辨率和信息量.张立群等用原位动态硫化的方法制备了一种可再生的热塑性硫化橡胶(TPV)作为3D打印材料,该TPV包含一种生物基弹性体PLBSI和聚乳酸PLA[72].SEM-BSE图像清晰了反映了动态硫化过程中共混体系的相态变化,其中PLA是亮相而PLBSI是暗相(如图19所示).此外,Bar等利用SEM-BSE观察了聚丙烯共聚物、乙丙共聚物等样品的片晶结构[75].不同于SE成像时通过形貌衬度观察结晶性高分子的晶体及其片晶结构,BSE成像则是通过成分衬度突出片晶形貌.Fig.19SEM-BSEmicrographsofpoly(lactate/butanediol/sebacate/itaconate)bioelastomers/poly(lacticacid)(PLBSI/PLA)(70/30)thermoplasticvulcanizate(TPV)samplescollectedatA(a),B(b),C(c),D(d),E(e)andF(f)pointintorquecurvewhichvariedwithblendingtime(g)andthechemicalreactionofinsitudynamicalvulcanization(h).(ReprintedwithpermissionfromRef.[72] Copyright(2017)ElsevierLtd.).3.1.3X射线能谱分析高能入射电子作用于样品后,部分入射电子打到核外电子上,使原子的内层(如K层)电子激发并脱离原子,而邻近外层(如L层)电子会填充电离出的电子穴位,同时产生特征X射线,如图20所示.该X射线的能量为邻近壳层的能量差(ΔE=EK-EL=hc/λkα)[3].由于不同原子壳层间的能量差值不同,因此利用能量色散X射线光谱仪(EDX)对特征X射线的能量进行分析,可以研究样品的元素和组成[76~80].需要注意的是,EDX通常用于分析原子序数比硼(B)大,含量在0.1%以上的样品,且加速电压必须大于被测元素线系的临界激发能,加速电压对分析的深度、面积、体积等起到重要影响.此外,EDX又包括3种分析方法:点分析、线扫描分析及面分布分析.其中,点分析是指高能入射电子固定在某个分析点上进行定性或定量的分析,当需要对样品中含量较低的元素进行定量分析时,通常只能选用点分析方法;线扫描可以分析样品中特定元素的浓度随特征显微结构的变化关系,是电子束沿线逐点扫描的结果;面分布分析则是指高能入射电子在某一区域做光栅式扫描得到元素的分布图像,又称Mapping图.背散射电子像可以通过图像衬度粗略反映出所含元素的原子序数差异,而特征X射线的Mapping图则可以精确反映出元素构成及其富集状态.在Mapping图中,不同元素可以用不同颜色进行区分,元素富集程度不同则元素的颜色深度不同,因此可以获得彩色的衬度图像.该衬度为元素衬度.在上述的3种分析方法中,点分析灵敏度最高,面分布分析灵敏度最低,但可以直接观察到相分布、元素分布的情况及均匀性.具体实验中,应根据样品自身特点及分析目的等选择合理的分析方法.图21(a)、21(b)和21(c)~21(e)分别为典型的EDX点、线、面分析结果[78,79].Fig.20ThegenerationmechanismofcharacteristicX-ray.Fig.21PointEDXscanonoutersurfaceoftheglassfiber(a)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) lineEDXscanforCainglassfiber-reinforcedpolymer(GFRP)(b)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) SEMimage(c)andthecorrespondingEDXmappingscanspectraofC(d)andF(e)elementofpoly(acrylicacid)graftedPVDF(G-PVDF)hollowfibermembrane.(ReprintedwithpermissionfromRef.[79] Copyright(2013)ElsevierLtd.).3.1.4透射电子成像当样品厚度低于100nm时,部分高能入射电子可以穿透样品,从样品下表面逃逸,这部分信号电子称为透射电子TE,其携带了样品内部的结构信息.扫描透射电子显微镜(STEM)是一种通过位于样品正下方的TE探测器接收TE信号的新型SEM,它同时具备了TEM信息量丰富和SEM分辨率较高的优势.在高分子材料表征中,可以利用STEM得到样品的内部形貌、化学成分及晶体结构等信息[36,81~85].如图22(a)和22(b)所示,STEM及其EDX元素分析为研究反应性增容体系的内部形貌及增容剂纳米胶束的分布提供了直观的图像[36];图22(c)的STEM图像揭示了嵌段共聚物的微相分离结构[84];此外,STEM还可用于观察聚合物的片晶结构,由于晶区密度高于无定形区密度,这种密度差提供了衍射衬度,故在STEM图像中晶区更明亮而无定形区较暗(图22(d))[83].Fig.22STEMimagesoftheselectivedispersionofnanomicellesinP((S-co-GMA)‍-g-MMA)compatibilizedPVDF/PLLA=50/50blend(a)anditscorrespondingFelementmapping(b),thesamplewasstainedbyRuO4.(ReprintedwithpermissionfromRef.‍[36] Copyright(2015)AmericanChemicalSociety) STEMimage(darkfieldTEMmode)ofpolystyrene-polyisopreneblockcopolymer(PSt-PI-1)(c),inwhichthebrightanddarkpartsareattributedtothePImoietiesWstainedwithOsO4andPStmoieties,respectively(ReprintedwithpermissionfromRef.‍[84] Copyright(2008)TheRoyalSocietyofChemistry) STEMimageofHDPEspecimenshowingdiffractioncontrastoflamellae(d)(ReprintedwithpermissionfromRef.‍[83] Copyright(2009)AmericanChemicalSociety).综上所述,本文对SE、BSE以及特征X射线成像的特点进行了总结,详见表3.Table3Featuresofimagesobtainedfromdifferentsignalelectrons.3.2SEM与其他仪器联用在高分子材料表征方面的应用3.2.1拉曼光谱(Raman)-SEM联用Raman光谱在高分子科学中应用十分广泛,它提供了各种关于化学结构、分子构象、结晶、取向等的定量信息[86].SEM与共聚焦Raman光谱的联用(RISE)是显微镜学一个重要的里程碑.如图23所示,利用RISE既可以获得高分辨率的电镜图像,还能获得关于化学和结构组成的信息[87].此外,在SEM图像中衬度较弱的样品还能通过其光特性的差别突出显示[88].如图24所示,在SEM图像中不明显的PS微球,通过拉曼成像,可以清晰地分辨其位置.此外,由于拉曼信号强度强烈依赖于颗粒数量,因此拉曼成像中颗粒的亮度也反映了颗粒数量.Fig.23(a)SEMimagesofthematrix(M)ofrecycledpolyvinylchloride(PVC)powders(RPP)andtheselectednanoparticles(P1,P2,andP3)onRPPsurface (b)RamanspectraofnanoparticlesonthesurfaceofRPPrecordedwiththeconfocalRaman-in-SEMsystem(532nmlaser)(ReprintedwithpermissionfromRef.[87] Copyright(2020)AmericanChemicalSociety).Fig.24(a,d)SEMimagesof500nmPSbeads,inwhichtheredsquareindicatedselectedregionforRamanimaging (b,e)Ramanimagesoftheindicatedregionsshowingtheintensityofthe1001cm-1bandafterspectralintegrationovertherangefrom970cm-1to1015cm-1,indicatedbytheblackcrossesin(c).(f)ThespatiallyintegratedRamanintensity,shownin(b)and(e),foreverysingleorclusterofpolystyreneparticles.(ReprintedwithpermissionfromRef.[88] Copyright(2016)JohnWiley&Sons,Ltd.).3.2.2聚焦离子束(focusedionbeam,FIB)-SEM联用FIB是一种将离子源产生的离子束经离子枪加速并聚焦后对样品表面进行扫描的技术.与SEM联用成为FIB-SEM双束系统后,通过结合各种附件,如纳米操纵仪、各种探测器和样品台等,FIB-SEM可用于快速制备TEM样品[89,90]和进行微纳加工[90],此外基于其层析重构技术还能实现材料微观结构的三维重建及分析[91~94].图25(a)~25(a' ' )为利用FIB-SEM制备TEM样品的示意图及原位观察得到的样品SEM图像[89,90].FIB-SEM联用为精确定位制样区域,高效制备TEM样品提供了新的方向.图25(b)和25(b' )展示了FIB在聚合物薄膜样品上铣削微米尺寸孔洞的SEM和TEM图像[90].FIB-SEM在材料的精细加工领域表现出明显的优势.图25(c)的SEM图像中,暗相对应较深的孔,亮相对应较浅的孔,而中等亮度区域对应乙基纤维素(EC)固体.在其对应的三维重构图中(图25(c' )),较硬的多孔EC骨架结构是黑色的,而白色的区域表示孔洞结构[91].三维重构是理解晶粒、孔隙及分相等微结构与性能之间关系的重要手段,通常要经过SEM传统的二维成像手段结合FIB连续切片获取不同位置截面信息,再经过图像处理获得二值化数据之后方可进行三维重构.该方法具有较高的空间分辨率,但同时也存在重构范围有限,重构效率低等不足,这也是后续扫描电镜等技术发展的重要方向.Fig.25(a)SchematicoftheShadow-FIBtechniqueforTEMsamplepreparation(ReprintedwithpermissionfromRef.[89] Copyright(2009)MicroscopySocietyofAmerica) SEMimagesofpoly(styrene-b-isoprene)(PS-b-PI)filmonthesiliconwafers(a' )beforeand(a' ' )aftershadowFIBpreparation(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (b)SEMimageof100pAFIB-milledholesinthepoly(styrene-b-methylmethacrylate)(PS-b-PMMA)diblockcopolymersheetand(b' )thecorrespondingBFTEMimageofPS-b-PMMAsheetmilledfor9s(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (c)SEMimageoftheporousnetworkofleachedethylcellulose(EC)/hydroxypropylcellulose(HPC)filmwhichcontained30%HPC(HPC30)and(c' )itscorresponding3DreconstructionsoftheporousstructureofHPC30.(ReprintedwithpermissionfromRef.[91] Copyright(2020)ElsevierLtd.).3.3原位表征技术在高分子材料表征方面的应用通过配置专门的样品台,如制冷台、加热台、拉伸台,可以在电镜样品室内对样品进行诸如加热、制冷、拉伸、压缩或弯曲等操作,并可以用SEM实时观察样品的形貌、成分等的变化.冷冻扫描电镜(Cryo-SEM)是一种集冷冻制样、冷冻传输与电镜观察技术于一体的新型扫描电镜,需配置制冷台.常规的扫描电镜要求高真空环境,因此样品需干燥无挥发组分.而一些特殊样品,如囊泡、凝胶、生物样品等,在干燥过程中会发生结构变化,通过常规扫描电镜无法观察样品的真实结构.Cryo-SEM则弥补了这一不足,适用于含水样品的观察.图26展示了Cryo-SEM在表征高分子囊泡[95]、凝胶[96]与乳胶[97]方面的应用.显然,Cryo-SEM最大限度地保留了样品的原始结构.Fig.26(a)Cryo-SEMimagesofpolymervesiclesarmoredwithpolystyrenelatexspheres(ReprintedwithpermissionfromRef.[95] Copyright(2011)AmericanChemicalSociety) (b)High-pressurefrozen-hydratedpoly(acrylicacid)(PEG-AA)microgels(ReprintedwithpermissionfromRef.[96] Copyright(2021)AmericanChemicalSociety) (c)Plasticallydrawnparticlesfromfrozensuspensionsofpolystyrenelatexwithadiameterof500nm.(ReprintedwithpermissionfromRef.[97] Copyright(2006)AmericanChemicalSociety).加热台常用于分析金属或合金样品的腐蚀、还原或氧化反应[98,99],在高分子材料表征中少有应用.此外,拉伸台在高分子材料表征中较为常用.图27(a)为碳纤维/环氧树脂共混物薄片沿加载方向的破坏情况[100];图27(b)展示了循环荷载的炭黑填充天然橡胶体系的裂纹尖端演变[101].显然,原位分析可以清晰地反映材料性能变化的第一现场.Fig.27(a)InsituSEMimageof:initialfailureinacarbonfiberreinforcedpolymer(HTA/L135i(902/07/902))laminate(ReprintedwithpermissionfromRef.[100] Copyright(2006)ElsevierLtd.) (b)Evolutionofacracktipduringcyclicloadingafter1,10and21insitucycles,respectively.(ReprintedwithpermissionfromRef.‍[101] Copyright(2010)WileyPeriodicals,Inc.).3.4其他扫描电镜技术在高分子材料表征方面的应用高分子材料通常具有较高的电阻值和较差的导热性,当高能入射电子束在样品表面持续扫描时,样品极易发生荷电效应并受到热损伤,这些对扫描电镜的观察均会造成不利影响.因此,在使用常规扫描电镜时,为了消除荷电效应,提高样品的导热性,一般要在样品表面镀上一层导电薄膜.但是,镀膜有时会掩盖样品表面的形貌信息.低压扫描电镜(LV-SEM)通过低能电子束照射样品,能够实现对高分子材料的极表面进行无损伤的测试观察,因此可以反映材料最真实的微观结构[102~104].LV-SEM对样品表面形貌的灵敏度由图28可见.图28(a)和28(b)均是聚氨酯/二氧化硅复合物的扫描电镜图像,其中,图28(a)样品经过了镀碳处理,且是在20kV加速电压下捕捉的;图28(b)未经镀膜处理,观察所用加速电压为1kV[15].显然,在较低的加速电压下,样品表面细节更清晰,而在较高电压下,由于电子束穿透深度更大,因此表面以下的二氧化硅颗粒也显现出来.Fig.28SEMimagesofpolyurethanesamplefilledwithsilicamicroparticlesobservedatdifferentacceleratingvoltages:(a)20kV(carboncoated),(b)1kV(uncoated).(ReprintedwithpermissionfromRef.‍[15] Copyright(2014)DeGruyter).4扫描电镜的发展趋势随着高分子材料科学的发展,扫描电镜及其应用技术也在不断改进.首先,低压成像技术的发展为观察绝缘、耐热差的高分子材料表面的微观结构提供了可能.同时,即使不喷镀导电膜也能清晰成像,因此可以获得更真实、更细节的微观结构.此外,用传统的扫描电镜无法观察的特殊样品也可以利用低压技术成像,如含水高分子材料或生物样品,几乎不需要对样品进行处理.现有水平下,1kV加速电压成像的分辨率也可以达到1~1.8nm[3].如何在超低压下获得更高分辨率的扫描电镜图像是后续扫描电镜发展要解决的问题.其次,如文中介绍,电子束与样品相互作用所产生的信号电子种类较多,每种信号电子都携带了样品大量的特征信息,通过配置不同的功能附件,可以获得高分子样品形貌、结构、化学组成等信息.一方面,对高分子材料来说,很多信号电子所携带的信息未能被充分解析.如背散射电子(BSE),除了直接成像,其对应的衍射(EBSD)技术还可以揭示材料的晶体微区取向和晶体结构等信息.然而由于高分子材料通常结晶度不能达到100%,因此很难通过EBSD进行检测.另一方面,开发功能更强大的扫描电镜附件也是重要的发展方向.此外,扫描电镜的原位分析技术也为高分子材料科学的发展提供了有力支撑,二者的有效结合实现了对材料宏观-微观多层次结构的分析.最后,基于扫描电镜的二维图像进行拼接、重构三维图像几近年来也获得了极大的发展.这种跨多维度的扫描电镜分析技术在高分子材料的表征中目前还存在很大限制.综上,扫描电镜的发展将会为高分子材料提供更为便捷、信息量更丰富、更准确的表征手段.致谢感谢南京大学胡文兵教授在论文修改过程中给予的帮助和指导.参考文献1PeaseRFW.AdvImagElectPhys,2008,150:53-86.doi:10.1016/s1076-5670(07)00002-x2GuoSuzhi(郭素枝).ElectronMicroscopeTechnologyandItsApplication(电子显微镜技术及应用).Xiamen(厦门):XiamenUniversityPress(厦门大学出版社),20083RenXiaoming(任小明).ScanningElectronMicroscope/PrincipleofEnergySpectrumandSpecialAnalysisTechnique(扫描电镜/能谱原理及特殊分析技术).Beijing(北京):ChemicalIndustryPress(化学工业出版社).20204ZhangDatong(张大同).ScanningElectronMicroscopeandX-RayEnergyDispersiveSpectrometerAnalysisTechnics(扫描电镜与能谱仪分析技术).Guangzhou(广州):SouthChinaUniversityofTechnologyPress(华南理工大学出版社).20085WeiB,LinQ,ZhengX,GuX,ZhaoL,LiJ,LiY.Polymer,2019,185:121952.doi:10.1016/j.polymer.2019.1219526ParkJ,EomK,KwonO,WooS.MicroscMicroanal,2001,7(3):276-286.doi:10.1007/s1000500100747ZhengX,LinQ,JiangP,LiY,LiJ.Polymers,2018,10(5):562.doi:10.3390/polym100505628SumitaA,SakataK,HayakawaY,AsaiS,MiyasakaK,TanemuraM.ColloidPolymSci,1992,270(2):134-139.doi:10.1007/bf006521799SainiP,ChoudharyV,DhawanSK.PolymAdvTechnol,2012,23(3):343-349.doi:10.1002/pat.187310LiW,BuschhornST,SchulteK,BauhoferW.Carbon,2011,49(6):1955-1964.doi:10.1016/j.carbon.2010.12.06911EgertonRF,LiP,MalacM.Micron,2004,35(6):399-409.doi:10.1016/j.micron.2004.02.00312HeinLRO,CamposKA,CaltabianoPCRO,KostovKG.Scanning,2013,35(3):196-204.doi:10.1002/sca.2104813RaviM,KumarKK,MohanVM,RaoVN.PolymTest,2014,33:152-160.doi:10.1016/j.polymertesting.2013.12.00214JoyDC.JMicrosc,1987,147(1):51-64.doi:10.1111/j.1365-2818.1987.tb02817.x15ŠloufM,VackováT,LednickýF,WandrolP.Polymersurfacemorphology:characterizationbyelectronmicroscopies.In:PolymerSurfaceCharacterization.Berlin:WalterdeGruyterGmbH&CoKG,2014.169-206.doi:10.1515/9783110288117.16916SeilerH.JApplPhys,1983,54(11):R1-R18.doi:10.1063/1.33284017JoyDC.JMicrosc,1984,136(2):241-258.doi:10.1111/j.1365-2818.1984.tb00532.x18SathishkumarTP,SatheeshkumarS,NaveenJ.JReinfPlastCompos,2014,33(13):1258-1275.doi:10.1177/073168441453079019KarataşMA,GökkayaH.DefTechnol,2018,14(4):318-32620ForintosN,CziganyT.ComposBEng,2019,162:331-343.doi:10.1016/j.compositesb.2018.10.09821WangWenjun(王文俊),WangWeiwei(王维玮),HongXuhong(洪旭辉).ActaPolymericaSinica(高分子学报),2015,(9):1036-1043.doi:10.11777/j.issn1000-3304.2015.1500722FavierV,ChanzyH,CavailléJY.Macromolecules,1995,28(18):6365-6367.doi:10.1021/ma00122a05323ConverseGL,YueW,RoederRK.Biomaterials,2007,28(6):927-935.doi:10.1016/j.biomaterials.2006.10.03124RameshP,PrasadBD,NarayanaKL.Silicon,2020,12(7):1751-1760.doi:10.1007/s12633-019-00275-625YangJintao(杨晋涛),FanHong(范宏),BuZhiyang(卜志扬),LiBogeng(李伯耿).ActaPolymericaSinica(高分子学报),2007,(1):70-74.doi:10.3321/j.issn:1000-3304.2007.01.01326LiShaofan(‍李‍少‍范),WenXiangning(‍温‍向‍宁),JuWeilong(‍鞠‍维‍龙),SuYunlan(‍苏‍允‍兰),WangDujin(‍王‍笃‍金).ActaPolymericaSinica(高分子学报),2021,52(2):146-157.doi:10.11777/j.issn1000-3304.2020.2018927HuangDengjia(黄‍登‍甲),SongYihu(宋‍义‍虎),ZhengQiang(郑‍强).ActaPolymericaSinica(高分子学报),2015,(5):542-549.doi:10.11777/j.issn1000-3304.2015.1436528FuZhiang(傅志昂),WangHengti(王亨缇),DongWenyong(董文勇),LiYongjin(李勇进).ActaPolymericaSinica(高分子学报),2017,(2):334-341.doi:10.11777/j.issn1000-3304.2017.1628829ChenY,WangY,ZhangH,B,LiX,GuiC,X,YuZ,Z.Carbon,2015,82:67-76.doi:10.1016/j.carbon.2014.10.03130LiuH,GuS,CaoH,LiX,JiangX,LiY.ComposBEng,2019,176:107268.doi:10.1016/j.compositesb.2019.10726831SeyniFI,GradyBP.ColloidPolymSci,2021,299(4):585-593.doi:10.1007/s00396-021-04820-x32KrauseS.Polymer-polymercompatibility.In:PolymerBlends.NewYork:AcademicPress,1978.15-113.doi:10.1016/b978-0-12-546801-5.50008-633WangH,YangX,FuZ,ZhaoX,LiY.LiJ.Macromolecules,2017,50(23):9494-9506.doi:10.1021/acs.macromol.7b0214334FuZ,WangH,ZhaoX,LiX,GuX,LiY.JMaterChemA,2019,7(9):4903-4912.doi:10.1039/c8ta12233d35WangH,FuZ,ZhaoX,LiY,LiJ.ACSApplMaterInterfaces,2017,9(16):14358-14370.doi:10.1021/acsami.7b0172836WangH,DongW,LiY.ACSMacroLett,2015,4(12):1398-1403.doi:10.1021/acsmacrolett.5b0076337FuZ,WangH,ZhaoX,HoriuchiS,LiY.Polymer,2017,132:353-361.doi:10.1016/j.polymer.2017.11.00438DongW,HeM,WangH,RenF,ZhangJ,ZhaoX,LiY.ACSSustainChemEng,2015,3(10):2542-2550.doi:10.1021/acssuschemeng.5b0074039WeiB,ChenD,WangH,YouJ,WangL,LiY,ZhangM.Polymer,2019,160:162-169.doi:10.1016/j.polymer.2018.11.04240GanZ,KuwabaraK,AbeH,IwataT,DoiY.PolymDegradStabil,2005,87(1):191-199.doi:10.1016/j.polymdegradstab.2004.08.00741ChenX,DongB,WangB,ShahR,LiCY.Macromolecules,2010,43(23):9918-9927.doi:10.1021/ma101900n42ShahD,MaitiP,GunnE,SchmidtDF,JiangDD,BattCA,GiannelisEP.AdvMater,2004,16(14):1173-1177.doi:10.1002/adma.20030635543AboulfarajM,G' sellC,UlrichB,DahounA.Polymer,1995,36(4):731-742.doi:10.1016/0032-3861(95)93102-r44YangJ,WangK,DengH,ChenF,FuQ.Polymer,2010,51(3):774-782.doi:10.1016/j.polymer.2009.11.05945YeL,ShiX,YeC,ChenZ,ZengM,YouJ,LiY.ACSApplMaterInterfaces,2015,7(12):6946-6954.doi:10.1021/acsami.5b0084846AboulfarajM,UlrichB,DahounA,G' sellC.Polymer,1993,34(23):4817-4825.doi:10.1016/0032-3861(93)90003-s47YeL,QiuJ,WuT,ShiX,LiY.RSCAdv,2014,4(82):43351-43356.doi:10.1039/c4ra06943a48YeC,CaoX,WangH,WangJ,WangT,WangZ,LiY,YouJ.JPolymSci,2020,58(12):1699-1706.doi:10.1002/pol.2019023249YeC,ZhaoJ,YeL,JiangZ,YouJ,LiY.Polymer,2018,142:48-51.doi:10.1016/j.polymer.2018.02.00450WangJ,DingM,ChengX,YeC,LiF,LiY,YouJ.JMembrSci,2020,604:118040.doi:10.1016/j.memsci.2020.11804051WangJ,ChenB,ChengX,LiY,DingM,YouJ.JMembrSci,2021:120065.doi:10.1016/j.memsci.2021.12006552JhaveriJH,MurthyZVP.Desalination,2016,379:137-154.doi:10.1016/j.desal.2015.11.00953YanX,AnguilleS,BendahanM,MoulinP.SepPurifTechnol,2019,222:230-253.doi:10.1016/j.seppur.2019.03.10354RynkowskaE,FatyeyevaK,KujawskiW.RevChemEng,2018,34(3):341-363.doi:10.1515/revce-2016-005455LiJH,ShaoXS,ZhouQ,LiMZ,ZhangQQ.ApplSurfSci,2013,265:663-670.doi:10.1016/j.apsusc.2012.11.07256ZhangX,LiangY,NiC,LiY.MaterSciEngC,2021,118:111411.doi:10.1016/j.msec.2020.11141157XingC,GuanJ,LiY,LiJ.ACSApplMaterInterfaces,2014,6(6):4447-4457.doi:10.1021/am500061v58ZhengX,ChenF,ZhangX,ZhangH,LiY,LiJ.ApplSurfSci,2019,481:1435-1441.doi:10.1016/j.apsusc.2019.03.11159HuMX,YangQ,XuZK.JMembrSci,2006,285(1-2):196-205.doi:10.1016/j.memsci.2006.08.02360YangYF,LiY,LiQL,WanLS,XuZK.JMembrSci,2010,362(1-2):255-264.doi:10.1016/j.memsci.2010.06.04861ZhangW,LiangW,HuangG,WeiJ,DingL,JaffrinMY.RSCAdv,2015,5(60):48484-48491.doi:10.1039/c5ra06063j62WangZ,WangZ,LinS,JinH,GaoS,ZhuY,JinJ.NatCommun,2018,9(1):1-9.doi:10.1038/s41467-018-04467-363HariharanP,SundarrajanS,ArthanareeswaranG,SeshanS,DasDB,IsmailAF.EnvironRes,2021:112045.doi:10.1016/j.envres.2021.11204564NieS,XueJ,LuY,LiuY,WangD,SunS,RanFZhaoC.ColloidSurfaceB,2012,100:116-125.doi:10.1016/j.colsurfb.2012.05.00465MaL,SuB,ChengC,YinZ,QinH,ZhaoJ,SunSZhaoC.JMembrSci,2014,470:90-101.doi:10.1016/j.memsci.2014.07.03066FangB,LingQ,ZhaoW,MaY,BaiP,WeiQ,ZhaoC.JMembrSci,2009,329(1-2):46-55.doi:10.1016/j.memsci.2008.12.00867LinTP,ChangAB,LuoSX,ChenHY,LeeB,GrubbsRH.ACSNano,2017,11(11):11632-11641.doi:10.1021/acsnano.7b0666468YanD,ZhouY,HouJ.Science,2004,303(5654):65-67.doi:10.1126/science.109076369LiuC,GaoC,YanD.AngewChem,2007,119(22):4206-4209.doi:10.1002/ange.20060442970RobinsonVNE.Scanning,1980,3(1):15-26.doi:10.1002/sca.495003010371MurariuM,FerreiraADS,DegéeP,AlexandreM,DuboisP.Polymer,2007,48(9):2613-2618.doi:10.1016/j.polymer.2007.02.06772HuX,KangH,LiY,GengY,WangR,ZhangL.Polymer,2017,108:11-20.doi:10.1016/j.polymer.2016.11.04573GoizuetaG,ChibaT,InoueT.Polymer,1993,34(2):253-256.doi:10.1016/0032-3861(93)90074-k74BlacksonJ,Garcia-MeitinE,DarusM.MicroscMicroanal,2007,13(S02):1062-1063.doi:10.1017/s143192760707604075BarG,TochaE,Garcia-MeitinE,ToddC,BlacksonJ.MacromolSym,2009,282(1):128-135.doi:10.1002/masy.20095081376BoraJ,DekaP,BhuyanP,SarmaKP,HoqueRR.SNApplSci,2021,3(1):1-15.doi:10.1007/s42452-020-04117-877KorolkovIV,GorinYG,YeszhanovAB,KozlovskiyAL,ZdorovetsMV.MaterChemPhys,2018,205:55-63.doi:10.1016/j.matchemphys.2017.11.00678KamalASM,BoulfizaM.JComposConstr,2011,15(4):473-481.doi:10.1061/(asce)cc.1943-5614.000016879ZhangF,ZhangW,YuY,DengB,LiJ,JinJ.JMembrSci,2013,432:25-32.doi:10.1016/j.memsci.2012.12.04180AbdMutalibM,RahmanMA,OthmanMHD,IsmailAF,JaafarJ.Scanningelectronmicroscopy(SEM)andenergy-dispersiveX-ray(EDX)spectroscopy.In:Membranecharacterization.Amsterdam:ElsevierLtd,2017.161-179.doi:10.1016/b978-0-444-63776-5.00009-781GuiseO,StromC,PreschillaN.Polymer,2011,52(5):1278-1285.doi:10.1016/j.polymer.2011.01.03082FortelnýI,ŠloufM,SikoraA,HlavatáD,HašováV,MikešováJ,JacobC.JApplPolymSci,2006,100(4):2803-2816.doi:10.1002/app.2373183LoosJ,SourtyE,LuK,deWithG,BavelS.Macromolecules,2009,42(7):2581-2586.doi:10.1021/ma802658984HiguchiT,TajimaA,YabuH,ShimomuraM.SoftMatter,2008,4(6):1302-1305.doi:10.1039/b800904j85InamotoS,YoshidaA,OtsukaY.MicroscMicroanal,2019,25(S2):1826-1827.doi:10.1017/s143192761900986386ButlerHJ,AshtonL,BirdB,CinqueG,CurtisK,DorneyJ,MartinFL.NatProtoc,2016,11(4):664-687.doi:10.1038/nprot.2016.03687ZhangW,DongZ,ZhuL,HouY,QiuY.ACSNano,2020,14(7):7920-7926.doi:10.1021/acsnano.0c0287888TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.JRamanSpectrosc,2016,47(8):956-962.doi:10.1002/jrs.493189KimS,LiuG,MinorAM.MicroscToday,2009,17(6):20-23.doi:10.1017/s155192950999100390TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.Ultramicroscopy,2011,111(3):191-199.doi:10.1016/j.ultramic.2010.11.02791FagerC,BarmanS,RödingM,OlssonA,LorénN,vonCorswantC,BolinDRootzénH,OlssonE.IntJPharmaceut,2020,587:119622.doi:10.1016/j.ijpharm.2020.11962292ČalkovskýM,MüllerE,MeffertM,FirmanN,MayerF,WegenerM,GerthsenD.MaterCharact,2021,171:110806.doi:10.1016/j.matchar.2020.11080693NeusserG,EpplerS,BowenJ,AllenderCJ,WaltherP,MizaikoffB,KranzC.Nanoscale,2017,9(38):14327-14334.doi:10.1039/c7nr05725c94GhoshS,OhashiH,TabataH,HashimasaY,YamaguchiT.IntJHydrogEnergy,2015,40(45):15663-15671.doi:10.1016/j.ijhydene.2015.09.08095ChenR,PearceDJ,FortunaS,CheungDL,BonSA.JAmChemSoc,2011,133(7):2151-2153.doi:10.1021/ja110359f96LiangJ,XiaoX,ChouTM,LiberaM.AccChemRes,2021,54(10):2386-2396.doi:10.1021/acs.accounts.1c0010997GeH,ZhaoCL,PorzioS,ZhuoL,DavisHT,ScrivenLE.Macromolecules,2006,39(16):5531-5539.doi:10.1021/ma060058j98MotomuraS,SoejimaY,MiyoshiT,HaraT,OmoriT,KainumaR,NishidaM.JElectronMicrosc,2015,65(2):159-168.doi:10.1093/jmicro/dfv36399HeardR,HuberJE,SiviourC,EdwardsG,Williamson-BrownE,DragnevskiK.RevSciInstrum,2020,91(6):063702.doi:10.1063/1.5144981100HobbiebrunkenT,HojoM,AdachiT,DeJongC,FiedlerB.ComposPartA,ApplSciManuf,2006,37(12):2248-2256.doi:10.1016/j.compositesa.2005.12.021101BeurrotS,HuneauB,VerronE.JApplPolymSci,2010,117(3):1260-1269.doi:10.1002/app.31707102JoyDC,JoyCS.Micron,1996,27(3-4):247-263.doi:10.1016/0968-4328(96)00023-6103MohaiyiddinMS,OngHL,OthmanMBH,JulkapliNM,VillagraciaARC,Md.AkilH.PolymCompos,2018,39:E561-E572.doi:10.1002/pc.24712104PrimoGA,ManzanoMFG,RomeroMR,IgarzabalCIA.MaterChemPhys,2015,153:365-375.doi:10.1016/j.matchemphys.2015.01.027原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21377&lang=zhDOI:10.11777/j.issn1000-3304.2021.21377《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • AFM/SEM二合一显微镜全新功能,如何打破可视化磁性表征困境?
    近年来,科研工作者在研究表面形貌异常复杂的磁性样品时,总会面临空间分辨率不足,需要多维磁结构表征的问题。2024年8月,美国Quantum Design公司在AFM/SEM二合一显微镜-FusionScope的基础上,研发推出了强大的磁性材料表征功能。这一创新技术专注于可视化区域同步磁学测量功能,为需要对复杂样品区域进行空间可视化和磁学同步测量表征的研究课题组提供全方位的技术支持和测样服务。FusionScope 是Quantum Design史无前例的全新技术产品,将扫描电子显微镜(SEM)和原子力显微镜(AFM)技术无缝融合在一台设备上。用户无需将样品从一台显微镜移动到另一台显微镜,也不必使用两个不同的操作系统来分析样品上的同一位置,而是在同一用户界面内、同一位置进行互补性综合测量。FusionScope 配备的多功能探针支持磁力显微镜(MFM),结合原位SEM视野观察,实现了在纳米尺度上进行AFM磁力针尖的MFM表征。这一功能凸显了SEM和AFM结合在磁力显微领域的巨大优势。与传统的AFM技术不同,FusionScope采用了自感应式悬臂梁技术,通过3D打印技术制备表面修饰钴铁层的探针,针尖的曲率半径约为10 nm,能够在纳米尺度上实现高精度的磁性测量。压阻自感探针技术通过悬臂梁背面惠斯通电桥设计电阻,实时反馈电压信号,轻松实现探针进针和SEM扫描同步进行,确保在SEM视野中能够实时观察和精确测量磁性材料的特性。同时FusionScope的MFM探针相比市面上的标准商用探针具有更高的成像分辨率,能够精确呈现样品表面的磁场分布,为磁性材料的研究提供至关重要的数据支持。FusionScope磁学探针及表面钴铁层与商用标准磁学探针对比 本文我们将从 FusionScope 在磁性领域的实际应用出发,详细阐释其在磁性表征领域的强大功能。 1. 不同组分的磁性自旋体纳米棒联合表征通过调整组分比例制备 Ni81Fe19 纳米棒组装体,进行形貌定位扫描并精准关联 AFM 与 SEM 数据,同时实现三种不同结构的磁性结果关联。磁学结果可以清晰分辨不同结构的磁性分布。2. FIB刻蚀钴层的磁学性能表征使用离子束刻蚀技术对钴层进行磁特性表征,分析和评估钴层的磁场强度、磁化曲线和磁畴结构等参数,从而更好地理解其磁性性能。图中所示对用离子束刻蚀(FIB)加工的钴层进行磁特性表征的过程或研究。对通过离子束刻蚀技术制备的钴层的磁性质进行分析和评估。这种研究可能涉及测量钴层的磁场强度、磁化曲线、磁畴结构等参数,以便更好地了解这种材料在磁性方面的性能。 3. 对工业钢材的磁学特性进行表征双相不锈钢是包含奥氏体和铁素体相混合物的一系列不锈钢,与标准钢种相比,可提供更高的机械强度和延展性;使用FusionScope的SEM可以观察和选取双相不锈钢的晶界处,AFM探针根据SEM的信息将探针定位到两个相的晶界处,对样品进行磁结构表征。测量钢材的磁化曲线、磁滞回线、饱和磁感应强度等参数,以便更好地理解工业钢材在磁性方面的性能。这些信息对于评估钢材的质量、磁性应用以及检测方法都具有重要意义。 结合SEM和MFM的FusionScope应用优势: 1. 多维度综合表征☛ 形貌与磁性同时测量:在SEM提供样品高分辨率形貌图像时,MFM可以同时提供磁性信息,实现样品结构和磁性的一体化表征,对于研究磁性材料和器件中的结构-性能关系至关重要。☛ 同步成像:同时获取SEM和MFM图像,能够在精确匹配的同一区域同时观察样品的表面形貌和磁性分布,有助于更深入理解复杂材料和结构的物理性质。2. 高分辨率与深景深结合☛ 高分辨率形貌与磁性成像:SEM提供纳米级分辨率的形貌图像,MFM提供纳米级分辨率的磁性信息。两者结合可以更准确地表征微小磁结构,特别是在需要高景深观察复杂三维结构的场合。☛ 微观尺度下的磁性研究:对于微观结构,如磁畴、磁性颗粒或薄膜,集成系统可以直接关联这些结构的物理形貌与磁性特征,揭示其内部的磁性相互作用。3. 高效分析☛ 时间节省与数据一致性:同时进行SEM和MFM成像,这种集成系统减少了样品转移和不同设备间切换的时间,确保数据一致性,减少环境和操作误差对结果的影响。☛ 复杂样品的全面分析:对于如磁性存储器件、纳米电子器件等复杂样品,可以在一次实验中全面分析其形貌、成分和磁性,显著提升实验效率。4. 应用领域扩展☛ 纳米电子与磁性存储器件研究:对于纳米电子器件、磁性存储器件及其他高科技领域的研究,这种集成系统可以提供从形貌到磁性分布的全方位分析,助力开发和优化新型功能材料和器件。☛ 多物理场研究:在磁场、电场、应力等多种外加场作用下,能够同步观察样品的形貌变化和磁性响应,为研究材料的多物理场耦合行为提供新的手段。5. 增强的用户体验☛ 简化操作流程:用户无需在不同设备之间频繁切换,减少了样品重新对准和环境变化带来的挑战。☛ 改进的分析能力:集成系统提供的数据更加完整、关联性更强,有助于更全面理解样品特性。 FusionScope 的全新磁学测试功能将大幅提升科研人员对磁性样品的表征精度和研究效率,成为研究复杂磁性材料、纳米结构以及多功能器件的强大工具,在多个科学和工程领域展现出巨大的应用潜力。
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) JohnWiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28
  • 2.15亿元多晶硅还原炉订单成交
    近日,双良节能官网发布公告称,继之前中标的新疆大全29,220万及云南通威17,670万项目后,双良节能再获大单,中标新疆东方希望新能源有限公司6万吨/年多晶硅项目多晶硅还原炉设备,金额15,876万元;以及中标青海亚洲硅业半导体有限公司60000t/a电子级多晶硅一期项目多晶硅还原炉设备及撬块,金额5,658.422万元。两大订单合计金额高达2.15亿元。据了解,多晶硅还原炉是发生氢还原反应的场所,是直接产出多晶硅的设备。在多晶硅还原炉内,精制氯硅烷和高纯氢气在1000~1200℃下发生化学气相沉积反应,生成多晶硅沉积在载体硅芯上,随时间增长直径逐渐变大,长成多晶硅棒。新疆东方希望新能源有限公司办公室地址位于古代举世闻名的丝绸之路昌吉,新疆昌吉州准东经济技术开发区,于2016年05月05日在昌吉州工商行政管理局新疆准东经济技术开发区分局注册成立,要经营生产及销售:多晶硅;销售:硅片、铝锭、铝合金、氧化铝、PVC等。亚洲硅业(青海)股份有限公司成立于2006年12月,是全球领先的高纯硅材料供应商,国家高新技术企业。目前拥有19,000吨/年高纯多晶硅及9,000吨/年光纤级四氯化硅生产能力和185MW并网光伏电站。 先后成为国家知识产权优势企业、国家级绿色工厂、国家两化融合贯标试点企业、国家智能光伏试点示范企业、工信部绿色制造和智能制造双项支持企业、工信部工业企业知识产权运用试点企业,建有国家企业技术中心、博士后科研工作站,多晶硅产品进入工信部绿色设计产品名单。公司以数字化研发建成了全球首条全48对棒加压还原炉万吨级单体生产线,该项目获得了青海省科学技术进步一等奖。
  • JAAS封面文章:XPS助力卡林型金矿中“不可见金”定量表征研究取得突破
    图1. 《Journal of Analytical Atomic Spectrometry》封面文章导读卡林型金矿(Carlin-type gold deposit),于20世纪60年代初期在美国西部内华达州的卡林镇被发现,从而得名,其显著特征是金在载金矿物(主要为含砷黄铁矿)中常以晶格金(Au+)和纳米级包体金(Au0)的形式赋存,因金无法直接通过光学显微镜观察而被称为“不可见金”。“不可见金”赋存状态的研究对卡林型金矿的选冶及其微观成因机制有重要的指示意义,然而“不可见金”的定量表征仍然存在较大难点。中国科学院地球化学研究所万泉研究员及其团队采用逐级酸蚀与XPS分析相结合的手段建立了卡林型金矿中金赋存状态的定量表征方法,首次通过XPS分析成功获得了“不可见金”的量化分布规律,相关研究成果以封面文章形式发表于《Journal of Analytical Atomic Spectrometry》期刊。图2. 期刊首页截图及摘要译文分析利器图3. 岛津AXIS Supra+ X射线光电子能谱仪及其五大核心技术- 研究成果概览 -黄铁矿表面通常覆有厚达几百纳米的贫金层(该层主要为FeS2),通过EPMA(电子探针)测试可得到S、As、Au元素分布,如图4,可见Au含量较低且主要存在于黄铁矿中贫金层下的富As区域。图4. 黄铁矿中微量Au的确认及其在富As环带中的分布地质矿产领域中,黄铁矿中Au化学状态的研究对卡林型金矿的选冶及其微观成因机制有重要的指示意义。一般情况下,表面贫金层厚度远大于XPS的检测深度(~10 nm),且其中金含量远低于XPS的元素检出限(~0.1 at%),因此直接测试几乎得不到有效的Au信号,无法进行价态分析。中科院地化所矿床室万泉研究员及其团队以贵州贞丰水银洞金矿样品为例,采用非氧化性酸简单有效地去除了屏蔽XPS金信号的贫金层(位于含砷黄铁矿最外层)以及干扰XPS金信号的含镁矿物(如白云石),首次采用XPS获得了“不可见金”的一系列重要定量数据。图5.酸蚀前样品Py0 (a)和酸蚀后样品Py1 (b)上三个不同位置获得的Au 4f XPS谱图图5(a)中未经酸蚀处理的黄铁矿的Au 4f谱图中存在显著的Mg 2s信号干扰且Au信号极弱,导致Au 4f信号几乎被Mg 2s掩盖。酸蚀后样品中绝大多数含Mg矿物被去除,Au 4f谱峰表现出良好的信噪比(图5(b))。根据Au0 4f7/2的结合能位置可推测出本样品中纳米金颗粒的粒径绝大多数小于6 nm,最小可达到1-2 nm。根据Au 4f谱图分峰拟合的结果可估算出Au0和Au+在样品中的百分占比(图6),其中Au0的百分比变化范围可从31.2%至59.8%,Au的物种和含量在同一样品的不同深度之间有轻微的分布不均。图6. 利用 Py1-Py4的Au 4f XPS光谱分峰拟合估算的Au+和Au0的百分占比该工作获得了卡林型金矿中“不可见金”具有合理统计意义的化学状态,有助于卡林型金矿成矿作用的研究,并且该工作建立的分析方法有望应用于分析低品位金矿石以及其他地质样品。中国科学院地球化学研究所万泉研究员表示:由于样品中金含量低、分布不均且谱峰间存在互相干扰,因此利用XPS表面敏感的特征结合合理的样品表面前处理方法才能得到较好的测试结果,借助岛津XPS仪器高功率的特性,改进测试条件得到了信噪比较好的谱峰数据,成功实现了金价态的定量分析,使得卡林型金矿的研究领域取得了突破性进展,期待今后能与岛津共同开发其他地质相关样品的表征研究。本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn撰稿人:崔园园
  • 网络讲座预告——有机电子学中纳米材料的光谱型椭偏表征
    HORIBA Scientific将于9月11日上午1:30举办&ldquo 有机电子学中纳米材料的光谱型椭偏表征&rdquo 免费网络讲座,欢迎大家届时参加。 有机电子学是一门新兴技术,正广泛应用于有机光伏(OPVs)、有机发光二管(OLEDs)、有机晶体管(OTFTs-传感器)和生物传感器等产品。 HORIBA Scientific邀请了希腊亚历士多德大学有机电子研究组组长Argiris Laskarakis博士作为本次讲座的主讲者。讲座将围绕柔性有机电子器件中的纳米材料的光学表征展开讨论,例如柔性OPVs。此外,还会讨论在Roll-to-Roll(R2R)系统上实现在线椭偏系统、实时分析柔性PET衬底上印刷的纳米薄膜的光学常数和和厚度形貌等内容。 作为拥有有近200年发展历史的光学光谱专家,HORIBA Scientific的椭圆偏振光谱仪可广泛应用于显示(TFT/OLED等)、光学镀膜、半导体、光电子、太阳能、纳米及生物技术等领域。与此同时,HORIBA Scientific也通过此类技术交流会不断与各领域的研究者进行深度合作,始终为科研及工业用户提供先进的检测和分析工具及解决方案。 您可以通过新浪官方微博来关注HORIBA Scientific新的动态,也可以通过以下邮箱与工程师进行技术交流:info-sci.cn@horiba.com
  • 国内唯一多晶硅国家级实验室落户中冶
    国内唯一一家多晶硅行业国家级工程实验室“多晶硅材料制备技术国家工程实验室”于1月22日在中冶恩菲洛阳中硅高科技有限公司设立。   该实验室将针对制约我国高纯多晶硅大规模生产的瓶颈,开展多晶硅产业关键技术攻关,开发研究大规模、低单耗、高品质的高纯多晶硅清洁生产工艺,不断完善提升多晶硅高技术产业化技术体系中的节能技术、环保技术、降耗技术、大规模高品质生产的工艺技术和装备技术。研究制定多晶硅产品(产业)标准及其检测分析相关标准。在事关多晶硅产业发展的战略性和前瞻性的重要技术和装备方面进行超前研究、研发,形成具有国际先进水平的多晶硅生产技术体系。建立“产、学、研”相结合的机制,引领我国多晶硅产业发展的方向。
  • 普析通用公司XD-3型多晶X射线衍射仪获BCEIA金奖
    为期四天的第十二届北京分析测试学术报告会及展览会已圆满结束,普析通用公司的XD-3型多晶X射线衍射仪荣获第十二届BCEIA金奖。 X射线衍射仪是应用面最广的X射线衍射分析仪器。主要用于固态物质的物相分析,晶体结构分析,材料的织构分析,晶粒大小、结晶度、应力等的测定。 XD-2型X射线衍射仪是北京普析通用仪器有限责任公司最新推出的、具有自主知识产权的国产新型衍射仪,填补了国内在立式X射线衍射仪产品上的空白,结束了国内衍射仪产品近十几年来无重大改进的局面。 国家教育部科技成果鉴定中心于2002年12月27日对此成果组织了鉴定,鉴定委员会由中科院院士梁敬魁先生等9位专家、教授组成。鉴定会专家对此产品的研发成功十分称赞。鉴定会的主要鉴定结论如下:“XD2的关键技术指标已达到国外同类设备水平,性能稳定,工作可靠。此外,开发了多个专用软件,使工作效率明显优于装配通用软件的进口设备。鉴定委员会专家认为该产品在常规粉末X射线分析工作中完全可以替代进口产品,建议在国内推广应用。鉴定委员会一致同意通过鉴定。 技术参数 1.测角仪扫描半径:180mm, 扫描方式:θ/2θ或θ/θ, 扫描轴:水平 2.测角仪角度重现性:0.0006度 3.X射线发生器kV、mA稳定度:优于0.01% 4.X射线发生器额定功率:3kW screen.width-300)this.width=screen.width-300"
  • 催化剂表征常用到哪些手段?
    p   催化在化工、能源、环境、材料、生物、制药、分析等领域被广泛应用。催化研究涵盖的领域更是包括了能源催化、环境催化、工业催化、电化学催化、化学合成催化、光催化、单原子催化等领域。90%以上的化学化工工程都是催化反应过程,因此,催化剂的表征与评价研究与应用具有重大的意义。 /p p span    /span 催化剂的表征涉及多种表征技术,如低温物理吸附技术、电镜技术、热分析技术、程序升温分析技术、多晶x射线衍射技术、电子能谱法、分子光谱技术、紫外漫反射光谱技术、核磁共振技术、电子顺磁共振技术、原位技术等。 /p p style=" text-align: center " 常见催化剂表征方法及对应的催化剂特性 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" align=" center" tbody tr style=" height:18px" class=" firstRow" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 表征方法 /span /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 催化剂特性 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/37.html" target=" _self" span style=" font-family:宋体" 原子吸收光谱 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 总组成、表面组成 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/519.html" target=" _self" span style=" font-family:宋体" 俄歇电子谱 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 表面组成 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/191.html" target=" _self" span style=" font-family:宋体" 比表面分析 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 表面积 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/523.html" target=" _self" span style=" font-family:宋体" 化学吸附 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 分散度、酸性 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/72.html" target=" _self" span style=" font-family:宋体" 电子探针微区分析 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 各组分分布 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 扩展 span X /span 光吸收精细结构分析 /span /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 配位、价态 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/31.html" target=" _self" span style=" font-family:宋体" 红外光谱 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 配位、价态、酸性 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 低能电子衍射 /span /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 表面结构 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/538.html" target=" _self" span style=" font-family:宋体" 压汞仪 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 孔隙率 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/828.html" target=" _self" span style=" font-family:宋体" 穆斯堡尔谱 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 配位、价态、分散度 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/43.html" target=" _self" span style=" font-family:宋体" 核磁共振 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 配位、价态 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 物理吸附 /span /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 孔隙率 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/53.html" target=" _self" span style=" font-family:宋体" 扫描电镜 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 晶粒尺寸和形状 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/518.html" target=" _self" span style=" font-family:宋体" 二次离子质谱 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 表面组成 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/list/sort/6.shtml" target=" _self" span style=" font-family:宋体" 热分析 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/list/sort/6.shtml" target=" _self" span style=" font-family:宋体" 物相性质 /span /a /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/1139.html" target=" _self" span style=" font-family:宋体" 透射电镜 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 物相性质、晶粒尺寸和形状、各组分分布、分散度 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/35.html" target=" _self" span style=" font-family:宋体" 紫外吸收光谱 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/35.html" target=" _self" span style=" font-family:宋体" 配位、价态 /span /a /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/70.html" target=" _self" span style=" font-family:宋体" X /span span style=" font-family:宋体" 光电子谱 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 表面组成、电子能级 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p a href=" https://www.instrument.com.cn/zc/73.html" target=" _self" span style=" font-family:宋体" X /span span style=" font-family:宋体" 光衍射 /span /a /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 物相性质、分散度 /span /p /td /tr tr style=" height:18px" td width=" 257" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" X /span span style=" font-family:宋体" 荧光分析 /span /p /td td width=" 299" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p span style=" font-family:宋体" 总组成 /span /p /td /tr /tbody /table p    strong 相关快讯: /strong /p p   仪器信息网联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建),将于2020年5月12日组织召开 a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" strong 首届“ /strong strong 催化剂表征与评价 /strong strong ”主题网络研讨会 /strong /a ,邀请业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国催化领域的研究发展。 /p p span    /span strong 报名方式: /strong /p p   点击下方免费报名链接: /p p    a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" https://www.instrument.com.cn/webinar/meetings/catalyst/ /a /p p style=" text-align: center " span style=" font-family:宋体" a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" img style=" max-width: 100% max-height: 100% width: 500px height: 213px " src=" https://img1.17img.cn/17img/images/202005/uepic/3dcbfe01-9b13-417a-a47a-356647187b1f.jpg" title=" 1125_480.jpg" alt=" 1125_480.jpg" width=" 500" height=" 213" border=" 0" vspace=" 0" / /a /span /p p br/ /p
  • 新材料表征技术研究专题研讨会在京召开
    仪器信息网讯 2011年11月1日,大昌华嘉商业(中国)有限公司(以下简称:大昌华嘉)与清华大学化学系徐柏庆教授课题组联合举办的新材料表征技术研究专题研讨会在清华大学化学馆301报告厅召开;30余位业内的专家学者出席了会议,仪器信息网作为特邀媒体亦参会。 会议现场   本次会议分为上下两场,主题分别为“最新颗粒表征技术研讨会”和“β亚基介孔分子筛的合成,表征及催化学术讲座”。 大昌华嘉公司科技事业部产品经理严秀英女士与樊润先生分别主持会议   大昌华嘉是一家总部位于瑞士的全球性企业,2009年收益总额高达86亿瑞士法郎,在亚太、欧洲和美洲地区的35个国家有560个营业网点,自2002年至今,大昌华嘉在全球已拥有22000名专业员工。其中,大昌华嘉科学仪器部分为市场、销售、维修及应用4个部门,其仪器设备产品主要应用领域包括材料科学、物理性质、化学反应、化学分析和食品分析等。   此外,大昌华嘉目前在中国已有49名员工,并设立了11个办事处,拥有超过20000名中国客户;同时大昌华嘉为众多的中国客户专门在上海建立了应用开发实验室,还积极参与或组织各种相关的会议展览、用户培训等活动。 美国麦奇克有限公司副总裁 Mr. Paul Cloake   Mr. Paul Cloake首先介绍到,自Leeds & Northrup研究所成功推出第一台商用激光粒度分析仪(Microtrac Model 7991)到现在,麦奇克几经坎坷,但是公司一直致力于颗粒表征方面的科技创新和仪器开发。2000年,Microtrac正式成立Microtrac Inc.;2003年,公司隆重推出Microtrac S3500系列激光粒分析仪;2004年推出全新设计的干粉递送系统Turbotrac;2005年,Microtrac S3500系列仪器全面升级;2007年,公司在仪器中引进Zetatrac和蓝波技术等。   随后,Mr.Paul Cloake主要谈到了激光散射技术的原理和最新的技术进展,并特别提到了采用三激光技术的激光粒分析仪S3500、S3500SI及其相应的图像分析软件。S3500系列激光粒分析仪采用固定位置的三激光固体光源设计及“Bluewave” 技术,配合双接受透镜,可以实时大角度的接受颗粒的衍射/散射光信号(0-165度),信号稳定,重复性好。在S3500的基础上,2011年麦奇克公司推出了S3500SI激光粒度粒形分析仪,实现了一台仪器具有两种技术(静态激光衍射法和动态图像分析法)能同时测量12种粒径和14种粒形的参数。   最后,Mr.Paul Cloake还讲到,麦奇克公司凭借其在激光衍射/散射技术和颗粒表征方面的独到见解,开发了最新一代Nanotrac Wave 纳米粒度及Zeta电位分析仪。该款仪器采用先进的“Y”型光纤探针光路设计和先进的动态光背散射技术,融纳米颗粒的力度分布和Zeta电位测量于一体,操作简单,测量迅速,结果准确可靠,重现性好。 Mr. Paul Cloake 给大家介绍仪器的操作及维护技巧   研讨会下半场,日本Gifu大学的Yoshihiro SUGI教授和日本拜尔公司的Keita Tsuji博士分别给参会人员作了有关介孔分子筛的合成、表征和催化及吸附技术最新进展等方面的精彩报告。 日本Gifu大学 Yoshihiro SUGI 教授   Yoshihiro SUGI教授从微孔、介孔材料谈起,介绍了不同材料的划分区域及其相关的应用情况,并向大家展示了不同种类分子筛的孔径大小和结构模型。随后介绍了以CTMABr和TEAOH为模板合成具有β沸石结构单元的介孔硅铝分子筛的过程,并对所合成的材料进行了X射线衍射(XRD)、核磁(NMR)、透射电镜(TEM)、傅立叶红外光谱(FT-IR)等多方面的性能表征,结果表明,所合成的材料具有很好的耐热性及稳定的机械加工性能等优良的特性。最后Yoshihiro SUGI教授通过维他命E的合成形象说明了介孔材料在催化方面所表现出的高活性和高选择性。 日本拜尔有限公司 Keita Tsuji 博士   日本拜尔成立于1988年,是一家研究生产容量法/重量法气体吸附分析仪的专业制造厂商。其产品主要包括比表面和孔隙分析仪、化学吸附仪、金属分散度分析仪等一系列高品质的仪器。   Keita Tsuji博士结合日本拜尔多款表面吸附产品,在报告中介绍了表面吸附技术的最新进展。例如,日本拜尔BELSORP-max是一款高性能容量法气体吸附仪,可以实现原位脱气功能,在极宽的压力范围内对被测多孔材料进行吸附/脱附等温线分析。同时,针对近年来低温吸附要求越来越多的情况,日本拜尔开发的BELCryo低温控制系统,配合BELSORP系列吸附仪器的使用,可以将相关的应用领域延伸至极低的温度范围,为吸附表征打开了一扇通往低温方向的大门。   此外,Keita Tsuji博士重点讲到,日本拜尔吸附仪产品与X射线衍射技术(XRD)相结合可实现结构和数据两方面信息的同时检测;还有如果BELCAT 系列程序升温化学吸附仪选配CATCryo低温控制装置,可以增加低温化学吸附功能,控温范围能从-100℃到1100℃。 与会代表与Keita Tsuji 博士沟通交流
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制