当前位置: 仪器信息网 > 行业主题 > >

多氟烷基化合物

仪器信息网多氟烷基化合物专题为您整合多氟烷基化合物相关的最新文章,在多氟烷基化合物专题,您不仅可以免费浏览多氟烷基化合物的资讯, 同时您还可以浏览多氟烷基化合物的相关资料、解决方案,参与社区多氟烷基化合物话题讨论。

多氟烷基化合物相关的论坛

  • 标样c10~C13萘类化合物和C10-C20烷基苯类化合物哪里有卖吗?

    请教一下用紫外分光光度法测白油中的芳烃含量(NB/SH/0966-2017)中的标样c10~C13萘类化合物和C10-C20烷基苯类化合物哪里有卖吗?哪里能买到?C10~C13萘类化合物在285nm波长下的平均吸光系数33.7L/(g.cm)在270nm附近的平均吸光系数30.0L/(g.cm)C10~C20烷基苯类化合物在270nm附近的平均吸光系数3.01L/(g.cm),知道的朋友麻烦告知一下,好吗?谢谢

  • 【分享】食品接触材料中全氟烷基磺酸类化合物的HPLC-MS/MS 测定

    不知有没有用,请参考。研究食品接触材料中全氟烷基磺酸类化合物的检测方法和该类化合物的残留水平。样品采用甲醇超声提取,液相色谱- 质谱联用测定,以C18 为分离柱,甲醇-5mmol/L 乙酸铵溶液为梯度洗脱淋洗液,同位素内标法定量,内标物为13C 标记的PFOS。该方法的检出限为0.5μg/kg,线性范围为0.5~10μg/kg,方法的平均回收率为91.1%~112.8%。结果证明,该方法准确、快速,可成功应用于16 种食品接触材料实样的检测。

  • 烷基化和酰化哪个先做

    sample 有羧基,用烷基化(重氮甲烷或者BF3-甲醇),有醇基,又需要酰化。酰化去除醇基,又会产生羧基,因此提出这个顺序的问题。1)我想当然地认为:应该是先酰化,产生的羧基再做烷基化一并衍生化,不知对不对?是否还有这种可能性:先甲基化,生成的是小分子酯类;再酰化,即使生成醇基,也是低沸点小分子,不影响GC或者GC-MS分析?2)酰化,常规法需要用吡啶,我不知道这个方法是不是稳定,能保持几天?再就是,吡啶是否影响稳定同位素分析?

  • 【原创大赛】浅谈时间对烷基化油中废酸浓度影响-宁波分析测试团队

    [align=center]浅谈时间对烷基化油中废酸浓度影响[/align] 刘朋[b] ([/b]宁波海越新材料有限公司, 浙江 宁波 318003)[b]摘要[/b]:介绍了烷基化油生产过程中硫酸浓度测定方法,摸索了静置时间对分析结果的影响,找出了最佳静置时间,对准确分析废酸浓度有一定指导意义。[b]关键词:[/b]废酸浓度 静置时间[b]前言[/b]宁波海越是首家采用美国鲁姆斯公司CDAlky硫酸催化烷基化技术的全球规模最大、设备、技术最先进的在线装置,生产规模60万吨/年。由于异辛烷不含烯烃和芳烃、不含氧,几乎不含硫,饱和蒸汽压低,RON和MON值高,且差距小,以适当比例添加到汽油中可降低汽油中烯烃和芳烃含量,燃烧后机动车尾气排放的PM2.5大幅下降,它的主要用途是作为高品质汽油添加剂,以提高汽油品质,减少机动车尾气排放。本装置用到硫酸作为催化剂,硫酸浓度的高低,对烷基化油质量和收率有直接影响。硫酸的催化作用最佳,最有利于烷基化主反应的进行,烷基化油的质量和收率都较高 低浓度酸将促进副反应,增加酸耗而且降低烷基化油辛烷值。因为较低的酸浓度会使硫酸的催化作用变差,使部分烯烃和硫酸作用生成硫酸酯。硫酸酯溶于硫酸中,又降低了硫酸浓度,导致了硫酸耗急剧增加,并且降低了烷基化油产率 另一方面,较低的硫酸浓度,使烯烃聚合的副反应加剧,增加了产品中的重质组分,降低了烷基化油辛烷值。酸浓度的分析对装置有指导性意义,因此准确迅速分析废酸就十分必要。[b]一、静置时间对分析结果影响的重要性[/b]由于含烃酸中混有C4-C9有机物,分析酸含量时直接会影响到分析的含量,由于硫酸和烃类溶解度很小,放置后会分层,所以分析硫酸含量一般取下层硫酸分析。本实验主要验证静止时间和分析结果之间关系。[b]二、静置时间对分析结果影响的摸索过程[/b]本化验室分析含烃酸采用传统酸碱滴定方式分析。取新鲜含烃酸A和B分时间段0min、15min、30min、 45min、60min 观察时间对废酸浓度的影响,从而选取合适时间分析。所用仪器及药品:梅特勒-托利多 ME204分析天平 普兰德50ml数字滴定仪 NAOH 0.4905mol/L 酚酞试剂1% 锥形瓶250ml 量筒50ml 去离子水 一次性吸管分析步骤:用量筒量取去离子水50ml于锥形瓶中,吸取废酸称取含烃酸0.4-0.6g精确到0.0001g,加1-2滴酚酞滴定记录消耗体积 计算公式 :C=V(NAOH)*C(NAOH)*4.904/m(酸)分析结果: [table][tr][td][img=,119,70]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] 样品[/td][td=1,3] [align=center]A[/align] [/td][td=1,3] [align=center]B[/align] [/td][/tr][tr][td] [/td][/tr][tr][td]时间 浓度%[/td][/tr][tr][td] [align=center][img=,197,47]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img]0min[/align] [/td][td] [align=center]90.64[/align] [/td][td] [align=center]89.18[/align] [/td][/tr][tr][td] [align=center]15min[/align] [/td][td] [align=center]90.80[/align] [/td][td] [align=center]89.65[/align] [/td][/tr][tr][td] [align=center]30min[/align] [/td][td] [align=center]90.98[/align] [/td][td] [align=center]89.74[/align] [/td][/tr][tr][td] [align=center]45min[/align] [/td][td] [align=center]90.97[/align] [/td][td] [align=center]89.74[/align] [/td][/tr][tr][td] [align=center]60min[/align] [/td][td] [align=center]90.95[/align] [/td][td] [align=center]89.76[/align] [/td][/tr][/table]由实验可得知:刚取来含烃硫酸分析结果不具有代表性,分析结果偏低,随着静止时间变长含烃硫酸浓度有所上升,在静止30min以后结果比较稳定。即分析含烃硫酸最佳分析时间为静止30min以后分析。为了样品及时准确,建议分析含烃废酸在30-50min分析既兼顾数据的准确和时间的快速。[b] 三、结果与讨论[/b]含烃废酸在30-50min分析既兼顾数据的准确和时间的快速,分析结果稳定、准确可靠。

  • 检测工业异辛烷(烷基化油)

    各位有过检测工业异辛烷(烷基化油)的大神吗,想问一下用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测的时候如何做方法呢,现在主要是检测C4C5和C6组分,用什么东西做标样来进行标定呢,方法是面积归一法。望大神指点。

  • 山葡萄酒中多酚类化合物

    山葡萄酒中多酚类化合物酚类化合物是葡萄酒中的重要生理活性物质,对人体的健康起着重要保健作用。山葡萄酒中的多酚类化合物主要有:花色苷:是一种红色素化合物,有花青素、甲基花青素、牵牛花素、锦葵花素、花翠素、芍药素、栎皮黄素等,其含量是一般葡萄酒的2倍。黄酮类:是一种黄色素化合物,有堪非醇、槲皮素、山奈酚、杨梅素等,其黄铜醇的含量为1.43g/L,是一般葡萄酒的5~10倍。儿茶素类:主要有儿茶素、表儿茶素、表没食子儿茶素等,具有一定的苔味。原花色素类:主要有原花青素、原花翠素、原天竺葵素等。是葡萄籽与皮的主要成份,也是葡萄酒中多酚类化合物含量最多的一类。单宁类:是由花白素的多聚体组成的,有一定的涩味,具有重要的生理功能。山葡萄酒中单宁的含量是一般葡萄酒的2~3倍。白藜芦醇化合物:主要有顺式白藜芦醇、反式白藜芦醇、顺式白藜芦醇糖苷、反式白藜芦醇糖苷、顺式反式白藜芦醇异构体等。这些化合物主要来源于葡萄皮、籽中,是植物体具抗病毒的生理活性物质,也是对人体防治心脑血管疾病的重要药理成份。山葡萄酒中白藜芦醇的含量为5.86~8.20mg/L,高于国际标准,是一般葡萄酒的4~6倍。多酚类化合物是重要的保健功能成份,主要来源葡萄皮、籽中,因此吃葡萄带皮、籽一起吃掉是最有益身体健康的。酶类化合物:主要有超氧化物岐化酶(SOD),是一种自由基清除剂,具有破坏活性氧作用的自卫酶类化合物。山葡萄酒中含量为1.52×104—1.84×104mg/L,虽然含量极微小,但对人体健康有重要作用,也是其它葡萄中不具备的。

  • 【原创大赛】化妆品中全氟及多氟化合物的快速检测及健康风险评估

    【原创大赛】化妆品中全氟及多氟化合物的快速检测及健康风险评估

    [align=center][b]化妆品中全氟及多氟化合物的快速检测及健康风险评估[/b][/align][b]摘要:[/b]基于在线湍流色谱-串联质谱法,快速检测化妆品中全氟及多氟化合物(PFASs)的赋存水平,并进行健康风险评估。本人在前期工作的基础上(指本人前期投稿的《全自动在线检测尿液中的全氟及多氟化合物》),对检测参数进行了进一步优化。使得所有目标化合物在0.05至50ng/mL的范围内具有良好的线性关系,检出限为0.012-0.18 ng/mL,加标回收率范围为78.1%-117%,精密度为3.7%-18.2%。最后,该方法用于10种化妆品中PFASs的检测和风险评估。[b]1 引言[/b]全氟及多氟化合物(PFASs)是一类人工制造的化学物质,化学通式可表示为F(CF2)xR,根据碳链末端的取代基团不同,主要包括全氟羧酸(PFCAs)和全氟磺酸(PFSAs),全氟膦酸(PFPAs),全氟磺酰化合物(POSF),以及全氟磷酸酯(PAPs)等[1]。PFASs中C-F键具有极高的键能,使其具有很好的热稳定性和化学稳定性,此外,碳氟链还具有疏水疏油的特性。自从PFASs发明以后,由于其性能优异,产量不断增加,并广泛应用于日常生活和工业生产的各个领域,包括纺织品,食品包装材料,地毯和皮革的表面处理,消防泡沫和含氟聚合物生产中的高性能化学品)[2]。化妆品已经成为人们生活中必不可少的日用品,化妆品健康风险如何成为民众关心的主要问题。化妆品质量问题、过敏性问题屡见不鲜,其中有毒有机物的组分是造成健康分析的主要原因[3]。已有研究在化妆品中检出一定浓度的PFASs,但是尚存在检测工序复杂,消耗时间长的缺点。本研究使用在线液相色谱质谱联用的方法(建立在本人前期投稿的《全自动在线检测尿液中的全氟及多氟化合物》一文所建立的方法基础上),快速检测了化妆品中PFASs并对其人体健康风险进行了评估,将有利于了解PFASs的污染现状,更有利于加强对化妆品中有害化合物的监管,降低消费者的健康风险。[b]2 实验部分2.1 材料和仪器[/b]本研究使用的所有天然和同位素标记的PFAS标准品(表1)均购置于惠灵顿实验室(Guelph, Ontario, Canada),所有标准品的纯度均超过98%。乙腈(ACN),甲醇(MeOH)和异丙醇(IPA)均为[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]级溶剂(ThermoFisher Scientific,USA)。醋酸铵(NH4 OAc),( 97%),氢氧化铵(28%),乙酸( 99.8%,HPLC级),甲酸( 98%,HPLC级)和1-甲基哌啶(1-MP, 98%)购置于自Alfa Aesar公司(Ward Hill,MA,USA)。本研究使用的超纯水(18.2 MΩcm)取自Milli-Q Advantage A10系统(Millipore,USA)。液相色谱仪为UltiMate™ 3000(ThermoFisher Scientific,USA),由DGLC-3600RS双梯度快速分离泵,WPS- 3000 TLS自动采样器和带有六通(2P-6P)阀门的TCC-3200柱温箱组成,质谱检测仪为Thermo Quantiva 三重四极杆质谱仪(ThermoFisher Scientific,USA)。整个分析过程由Chromeleon 6.70色谱工作站控制,数据由Xcalibur 3.0软件记录。[align=center][img=,687,567]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011008162247_6158_3875454_3.png!w687x567.jpg[/img][img=,690,666]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011015247514_2300_3875454_3.png!w690x666.jpg[/img][img=,663,377]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011008398102_4160_3875454_3.png!w663x377.jpg[/img][img=,690,594]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011016297924_4243_3875454_3.png!w690x594.jpg[/img][/align][b]2.2 样品收集及前处理[/b]在超市买不同品牌的化妆品(液体型)10种,取0.5 mL样品放置于1.5 mL离心管内,添加2 ng内标,添加0.5mL 0.1%的甲酸乙腈溶液,12000 r• min-1离心15 min,取上层200微升至进样瓶中,待测。[b]2.3 在线检测[/b]仪器初始位置为样品负载位置,如图1(a)所示,样品经自动进样器注入TurboFlow SPE柱(Cyclone-P,1.0×50 mm,ThermoFisher Scientific,USA),左泵的初始流动相为 1.5 mL min-1,100% A,样品加载1.0 min以清理基质杂质。样品净化后,六通阀切换至样品洗脱位置(图1(b)),将TurboFlow柱保留的分析物解吸并洗脱到分析柱(Zorbax Extend C18,3.0×150mm,3.5μm,Agilent Technologies Inc,USA)上以进一步分离和检测,分析泵流速为0.4 mL min-1。然后,六通阀切换至负载位置(图1(a))。为了保证TurboFlow SPE柱的可重复使用性,样品洗脱后,负载泵要用1 mL min-1 MilliQ-水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1)冲洗TurboFlow柱5.5分钟以去除残留的杂质。然后,负载泵的流动相恢复到初始比例以准备下一针样品的进样检测。分析柱温度设定在40℃。加载和分析泵的在线SPE程序和HPLC梯度洗脱条件以及阀切换的时间在表2中列出。[align=center] [img=,564,388]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011009549992_7999_3875454_3.png!w564x388.jpg[/img][/align][align=center][img=,690,414]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011010405402_8677_3875454_3.png!w690x414.jpg[/img][/align]注:a. 1-2:负载位置(0-1 min);b. 1-6: 洗脱位置(1-6 min);c. 负载位置(6-19 min)左泵流动相:A. 0.1% 甲酸水溶液(pH调至4),B. 乙腈和甲醇(体积比1:1),C. 超纯水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1),右泵流动相:A. 2mM醋酸铵缓冲溶液(pH 用氨水调至 10.5), B. ACN和METH(V:V=1:1)的混合溶液中添加5 mM 1-MP,C. 超纯水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1)质谱仪使用负离子ESI源多反应监测(MRM)模式进行扫描,母离子和子离子参数如表1所示,待测PFASs采用两个子离子分别作为定性和定量离子,以确保检测方法的准确性。对于PFOS和PFHxS,采用三个扫描离子,分别作为定性、定量和确定性离子,以避免内源性物质共洗脱现象的干扰。MS相关参数设置如下:鞘气,40单位;辅助气,12单位;源电压,2500 V;汽化器温度,350℃ 毛细管温度,400℃;扫描时间0.01秒。[b]2.4 质量保证与质量控制[/b]为防止背景污染的产生,采样、样品前处理以及样品检测过程中均避免使用含氟聚合物材质的器皿或者管路。使用器皿均为聚丙烯材料,并且所有器皿和设备使用前先用甲醇清洗;PFASs测定采用内标法定量,利用一系列浓度的标准溶液(0.05、0. 1、0. 2、0. 5、1、2、5、20、50 ng• mL-1)绘制标准曲线,所有检测物线性相关系数均大于0.99。以信噪比S/N=3时所对应的浓度作为仪器检出限,化妆品中PFASs的检出限范围分别为:0.012-0.18 ng/mL,加标回收率范围为78.1%-117%,精密度为3.7%-18.2%。表明仪器和检测方法适用于实际样品的分析。在样品前处理过程中,每8个样品添加一个程序空白,以保证检测结果的可靠性;每进样检测10次,进一次标准作为质量控制,查看仪器信号漂移,若检测的标准偏离原始检测值± 20%,则重新绘制标准曲线后再定量。[b]2.5 人体通过化妆品摄入PFASs的量及暴露风险评估[/b]人体每人通过化妆品暴露于PFASs的量为:EDI = DCi* Ci/ BW (ng/kg/day) 其中,人均使用化妆品的量DCi约为5 mL/day [4],成人平均体重BW为65kg。危害指数(hazard index,HI)法是最常用的累积风险评估方法,计算公式如下: HQi= EDIi/Reference valuesiHI=∑_(i=1)^n▒ HQi式中:RVi为第 i 种 PFASs的参考限值;EDI为PFASs的每日暴露量,HQi为第i种PAE的危害因子。HQi代表的是单个物质的暴露风险,而 HI 代表的多个物质总的暴露风险。当 HI 和 HQi 的值小于 1 时,说明人群对该物质的暴露水平较低,处于安全的暴露风险;当 HI 和 HQ 的值大于 1、小于 100 时,代表具有一定的潜在暴露风险;而当它们的值大于 100 时,说明暴露风险较高,处于不安全的水平。[b]3. 结果与讨论3.1 化妆品中PFASs的赋存水平[/b]所有目标PFASs中,共有9种化合物的检出率超过40%,我们进行进一步的浓度分析,PFASs 中PFHxS、PFOS和PFOA的浓度是主要的检出物,但是不同品牌的化妆品中PFASs的浓度差别很大,这三种主要PFASs的平均浓度 ± SD分别为4.30±1.84 ng/mL,6.96±6.04 ng/mL,8.97±9.15 ng/mL。每种化妆品中这9种化合物的浓度及浓度比例见图2(a)、(b)。每种化妆品中单体PFASs的浓度存在很大的差异,并且浓度比例也各有不同,这与每种化妆品的成分、功能及制作原料有关。 [align=center][img=,558,674]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011011125640_2049_3875454_3.png!w558x674.jpg[/img][/align][b]3.2 化妆品中PFAS的风险评估[/b]PFOS和PFOA是检出率和检出浓度最高的化合物,也是关注率最高的化合物,目前国际组织也对这两种化合物的每日暴露安全值进行的估算。根据风险评估公式计算人体每日通过化妆品暴露于PFOS和PFOA的量分别为XX,XX,远低于美国[5]、德国[6]、欧盟[7]制定的每日摄入量安全阈值: PFOS 分别为 25、100、150 ng/kg.b.w/day PFOA 分别为 333、100、1500 ng/kg.b.w/day,危害指数远小于 1,表明 PFOS、PFOA 尚未对人体产生较大的风险。但是如果将所有的化合物作为整体,用总浓度进行风险评估,风险值就会高出很多。因此,未来将更加关注该类化合物在化妆品中的赋存及潜在的毒性效应。[align=center][img=,523,306]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011012564222_4058_3875454_3.png!w523x306.jpg[/img][/align]参考文献[1] Sunderland E M, Hu X C, Dassuncao C, et al. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of exposure science & environmental epidemiology, 2019, 29(2): 131-147.[2] Ross I, McDonough J, Miles J, et al. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 2018, 28(2): 101-126.[3] Cousins I T, Herzke D, Goldenman G, et al. The concept of essential use for determining when uses of PFASs can be phased out[J]. Environmental Science: Processes & Impacts, 2019.[4] Ashhami A. Assessment of Extractable Organic Fluorine (EOF) Content and Contribution of Per-and Polyfluoroalkyl Substances (PFASs) in Cosmetic Products[J]. 2017.[5]Roos P H, Angerer J, Dieter H, et al. Perfluorinated compounds (PFC) hit the headlines[J]. Archives of toxicology, 2008, 82(1): 57-59.[6]So M K, Yamashita N, Taniyasu S, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China[J]. Environmental science & technology, 2006, 40(9): 2924-2929.[7]Fromme H, Tittlemier S A, Vö lkel W, et al. Perfluorinated compounds–exposure assessment for the general population in Western countries[J]. International journal of hygiene and environmental health, 2009, 212(3): 239-270.

  • 【转帖】有机氟化合物!

    有机氟化合物organic fluorine compound有机化合物分子中与碳原子连接的氢被氟取代的一类元素有机化合物。分子中全部碳-氢键都转化为碳-氟键的化合物称全氟有机化合物,部分取代的称单氟或多氟有机化合物。由于氟是电负性最大的元素,多氟有机化合物具有化学稳定性、表面活性和优良的耐温性能等特点。有机氟化合物分为以下几类:①含氟烷烃。氟利昂是氟化的甲烷和乙烷,也可以含氯或溴。这类化合物多数为气体或低沸点液体,不燃,化学稳定,耐热,低毒。主要用作制冷剂、喷雾剂等,最常用的是氟利昂-11(CFCl3)和氟利昂-12(CF2Cl2)。这类化合物也是重要的含氟化工原料或溶剂。如二氟氯甲烷用于合成四氟乙烯;1,1,2-三氟三氯乙烷用于合成三氟氯乙烯,也是优良的溶剂。含氟碘代烷如三氟碘甲烷等为重要的合成中间体。一些低分子含氟烷烃和含氟醚具有麻醉作用,并有不燃、低毒的优点,可用作吸入麻醉剂,例如1,1,1-三氟-2-氯-2-溴乙烷(俗称氟烷)已广泛用于临床。②含氟烯烃。以四氟乙烯、偏氟乙烯和三氟氯乙烯等为代表。四氟乙烯为最主要的含氟单体,可以聚合成聚四氟乙烯,或与其他单体共聚合成多种含氟高分子。偏氟乙烯CF2=CH2在空气中的浓度在5.8%~20.3%之间时,遇火可爆炸,主要用于与其他单体共聚合制取含氟弹性体。三氟氯乙烯主要作为单体,用于合成均聚物或共聚物。③含氟芳烃。苯分子中的氢可以通过间接方法部分或全部用氟取代。氟苯为含氟芳烃的代表。多氟苯或全氟苯易与亲核试剂发生取代反应。

  • 【讨论】关于季铵盐化合物的反相色谱分析

    我的一个朋友在做一种季铵盐化合物的分析,用的是ODS水性柱,目前碰到的问题是,没有保留,脱尾,认为化合物极性太强了。我问了一下她是如何作的,她说化合物保密,流动相是水/乙腈,用紫外检测器,发现调节pH值至酸性,峰型有改善。我由于没有做过此类阳离子,所以当时并没有给她什么建议。后来我查了些资料,也想了一下,有些想法,也有些困惑。季铵盐pKa10.7左右,往酸性调pH值,似乎没有保留的是因为化合物呈离子态了。脱尾大概也是这个原因。往碱调pH,12.7,也不现实。似乎都用离子对做季铵盐,用三氟乙酸作对离子。我不清楚她那化合物烷基链多长,如果很短,即使引入对离子,形成了化合物,会不会也没什么保留。三氟乙酸真的是季铵类的“万金油”么?

  • 全氟辛烷磺酰基化合物的国标方法测定(LC/MS)

    全氟辛烷磺酰基化合物的国标方法测定(LC/MS)

    2016年5月17日至19日,第十一届持久性有机污染物国际学术研讨会在西安召开。会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。 全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。 为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。(新闻详情请移步:http://www.instrument.com.cn/news/20160520/191615.shtml) 那么接下来,小编将为大家带来一篇按照国标方法对全氟辛烷磺酰基化合物的液相分析报告,希望能对大家有所帮助。全氟辛烷磺酰基化合物的国标方法测定全氟辛烷磺酰基化合物(PFOS)由于其同时具备疏油、疏水等特性,被广泛应用于生产纺织品、皮革制品、家具和地毯等表面防污处理剂,以及与人们生活接触密切的纸制食品包装材料和不粘锅等近千种产品。http://ng1.17img.cn/bbsfiles/images/2016/05/201605251408_594746_2222981_3.jpg最近研究表明,全氟辛烷磺酰基化合物持久性极强,在自然环境中极难降解,并能够在生物体内高度积累,蓄积水平甚至高于已知的有机氯农药和二噁英等持久性有机污染物的数百倍至数千倍,成为继多氯联苯、有机氯农药和二噁英之后,一种新的持久性的环境污染物。且此物质具有毒性,大量的调查研究发现,PFOS具有遗传毒性、雄性生殖毒性、神经毒性、发育毒性和内分泌干扰作用等多种毒性,被认为是一类具有全身多器脏毒性的环境污染物。本实验按照《食品包装材料中全氟辛烷磺酰基化合物(PFOS)的测定 高效液相色谱-串联质谱法》(GB/T 23243-2009)中的测定方法,使用资生堂 CAPCELL PAK C18 MGIII S5:2.0mm i.d ×150mm色谱柱,对全氟辛烷磺酰基化合物标准品进行了LC-MS测定。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594521_2222981_3.jpg图1MGIII色谱柱GB方法对全氟辛烷磺酰基化合物标准品分析结果http://ng1.17img.cn/bbsfiles/images/2016/05/201605241051_594527_2222981_3.jpg如图1所示,CAPCELL PAK C18 MGIII S5; 2.0mm i.d ×150mm色谱柱在此流动相条件下,对全氟辛烷磺酰基化合物得到了较好的保留,保留时间2.00min,较参考保留时间(1.67min)略长,峰形较好。同时在使用资生堂NASCA自动进样器+NANOSPACE液相系统时,进样0.1 µg /mL浓度(100ppb)标准品后,进样空白溶剂,色谱柱及系统均无残留,如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594522_2222981_3.jpg图2 溶剂空白进样结果在此基础上,绘制标准曲线,全氟辛烷磺酰基化合物在0.002 μg/mL - 0.05μg/mL浓度范围内线性良好,如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594523_2222981_3.jpg图3 MGIII色谱柱分析全氟辛烷磺酰基化合物标准品浓度-峰面积标准曲线图

  • 有毒化合物的种类!

    不同国家地区的分法:美国职业卫生研究所1973年登记的有毒化学物质已达25043种,主要化和毒物可分为: 重金属如Hg,Pb,As,Cd,Cr等。 有机物如有机氯农药,多环芳烃,多氯联苯,氯代苯,亚硝胺类,有机汞等。 欧洲共同体在1975年根据物质的毒性,持久性和生物积累性列出了有害有毒物质的“黑名单”,“黑名单”中不包括那些生物学上无害的物质和易转化为生物学上无害的物质。 1.有机卤化物和可以在环境中形成卤化物的物质 2.有机磷化合物 3.有机锡化合物 4.在水环境中或由于水环境介入而显示致癌治性的物质 5.汞及其化合物 6.镉及其化合物 7.持久性油类和来自石油的烃类 8.可漂浮、悬浮或下沉和妨碍水质的任何持久性物质联邦德国在1980年公布了120种水中有害物质名单,其中毒性最强的有16种,它们是;丙酮氰醇,丙烯腈,砷酸氢二钠,苯,四乙基铅,镉化合物,氰化物,DDT,3-氯环氧丙烷-l,2,乙烯亚胺,水合肼,林丹,硫醇,乙基对硫磷,汞化合物,银化合物。

  • 请教多羟基化合物的核磁: 水峰位置?

    我从事表面活性剂方面的研究,对某些多羟基化合物,经常会有结净水的存在,请问1在氘代氯仿或其它氘代试剂中,水峰的位置是否会有一定的值或者规律?多谢

  • 测定废水中三硝基化合物时不稳定

    在测定水中总硝基化合物是,[b]GB4918-85中加完[/b]十六烷基吡啶和乙二氨基乙醇后没有规定显色时间,我们加完后定容直接测定是否正确。测定过程中发现溶液从澄清变得浑浊。吸光度不断上升,是什么原因引起的,请教各位老师;

  • 手性化合物分离

    有做手性化合物分离的大佬吗?提供些手性化合物分离思路呗?感觉手性化合物分析起来不容易(要分离的化合物种类比较多,有多环类的,有氨基酸,多肽等)。

  • 液质有特别多杂峰 化合物不出峰

    液质有特别多杂峰 化合物不出峰

    [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]有特别多杂峰 化合物不出峰是怎么回事[img]https://ng1.17img.cn/bbsfiles/images/2019/10/201910291624356048_3545_4031315_3.jpg[/img]

  • 光学纯的化合物在不同色谱条件下会出现多组峰吗?

    [color=#444444]最近在做一个化合物(前列素类似物),结构中含三个手性中心和两条烷基链,反向液相方法(C18柱)检测纯度达到99.8%,供参考的反向手性液相方法检测纯度达99%。但是,换用正向手性液相方法检测,出现有裂峰但没有完全分离的四个峰。不明白为什么在正向和反向两种条件下,同一批产品的光学纯度相差这么大?是产品本身有问题,还是光学纯的化合物在不同条件下可能出现多组峰?请大神赐教!![/color]

  • 天然气用有机硫化合物加臭剂的要求和测试方法

    用于天然气加臭的加臭剂应满足以下要求a) 加臭剂应有一种强烈的臭味 b) 臭味应独特,并与其他常出现的臭味不易混淆 c) 臭味应是令人不愉快的,但不太讨厌的气味。当天然气与不同比例的空气稀释时,臭味特征应保持一致 d) 在加臭剂加人的浓度范围内,加臭的天然气不能有毒或有刺激性,并且加臭剂的加人不能导致产生显著量的有害燃烧产物。。) 加臭剂应是挥发性的,并应在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]和储存过程中足够稳定 加臭剂不能在燃烧器和安全装置上产生沉积物 。许多国家的经验表明,沸点低于130℃的硫醚类和硫醇类的有机硫化合物能地满足这些基本要求。由于伯硫醇易氧化为二硫化合物,其臭味强度非常低,因而硫醇基加臭剂主要应含仲硫醇和叔硫醇。加臭剂:一种具有强烈气味的有机化合物或混合物。当以很低的浓度加人天然气中,使天然气有一种特殊的、通常令人不渝快的警示性臭味,以便泄漏的天然气在低于其爆炸下限浓度时即被察觉。注 目前 工业上使用的加臭剂为以下几类物质:a) 烷基硫化合物(烷基硫醚类):1) 对称的硫化合物,如C HS-S-C H5 2) 不对称的硫化合物,如 CH,-S-C,H , b) 环状硫化合物(环状硫醚类),如 C,H aS C) 烷基硫醇类:1) 伯硫醇类 ,如 C,H ,-S H 2) 仲硫醇类 ,如 (CH3)2CH-SH 3) 叔硫醇类 ,如(CH,) ,C -SH色谱操作条件:用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法测定加臭剂的组成。色谱柱为长50m 、内径0.2m的甲基硅酮毛细管柱,载气为氢气或氦气,流量为1.8mL/min,分流比为1:30。起始炉温为35℃.恒温10min后,以70℃/min的速度升温至250℃,并维持在此温度。色谱仪的选择:硫化合物或非硫化合物(稀释剂或杂质)可用非硫专用型检测器进行测定,如火焰离子化检测器(FID)或热导检测器(TCD) 各种硫化合物的响应因子应用纯组分制备的校准混合物测定。未能定性的杂质浓度应以正己烷的响应因子进行计算其他具有相当的或更好的组分分离和检测效果的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]方法均可使用。但是,在有争议的情况下,应使用上述方法可另外使用一个硫专用型检测器以区分硫组分和非硫组分

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制