当前位置: 仪器信息网 > 行业主题 > >

断裂强力

仪器信息网断裂强力专题为您整合断裂强力相关的最新文章,在断裂强力专题,您不仅可以免费浏览断裂强力的资讯, 同时您还可以浏览断裂强力的相关资料、解决方案,参与社区断裂强力话题讨论。

断裂强力相关的资讯

  • 玻璃纤维机织物拉伸断裂强力和断裂伸长的测定
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合1kN气动拉伸夹具,根据《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》,进行了玻璃纤维机织物拉伸试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应玻璃纤维机织物拉伸断裂强力和断裂伸长的试验。 关键词:鲲鹏BOYI 2025电子万能材料试验机 玻璃纤维 拉伸试验玻璃纤维布(Glass Fiber) 是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,绝缘层压板以及印刷电路等各个领域。玻璃纤维布的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密度加上纱结构,就决定了玻璃纤维布的物理性质。本应用介绍了使用电子万能材料试验机进行玻璃纤维机织物拉伸断裂强力和断裂伸长试验。鲲鹏电子万能材料试验机配备的气动拉伸夹具,有以下几个特点:首先,夹面采用专用高分子夹面,平整度好,可以避免夹伤试样,避免拉伸过程中出现夹持部位断裂的情况;其次,气动控制可以提供适当且恒定的夹持力,避免拉伸过程中出现滑移的情况;另外,夹具设有对中标识,可以辅助夹持试样,保证夹持后试样的垂直度,避免拉伸过程中出现左右两边受力不均匀的情况。 除夹具外,试验机主机的高精度以及超过1000HZ的采集频率,可以完整的拉伸过程中的所有特征数据,准确识别试样拉伸断裂点,确保给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。本篇报告参照《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》进行试验,标准要求如下: 1.样品要求:Ⅱ型试样、试样宽度25mm、有效长度100mm 2.夹持距离:100mm±1mm 3.拉伸速度:50mm/min±3mm/min 1. 实验部分 1.1仪器与夹具 BOYI 2025-001 电子万能试验机 1kN气动拉伸夹具 90°剥离夹具 Smartest软件 1.2分析条件 试验温度:室温23℃左右 载荷传感器:1kN(0.5级) 加载试验速率:50mm/min 图1 BOYI 2025-001 电子万能试验机 1.3样品及处理本次试验,选取6组国内主流的不同种类的玻璃纤维布,统一切割成GB Ⅱ型试样,宽度约为25mm的长条试样,每组样品分经向和纬向。 2.试验介绍使用BOYI 2025-001电子万能试验机进行试验,设定夹具间距为100mm,将样品分别夹持在上下夹具中,以50mm/min的速率进行试验。测量拉伸过程中的力值以及位移数据,拉伸试样至断裂,记录最终断裂强力及断裂伸长(GB要求精确至1mm),取拉伸过程中第一组纱断裂时的最大强力作为拉伸断裂强力,根据数据计算得出结果,并生成拉伸曲线。图2 测试系统图(主机、夹具) 3.结果与结论 3.1第一组玻璃纤维布试验结果 3.2第二组玻璃纤维布试验结果 3.3第三组玻璃纤维布试验结果 3.4第四组玻璃纤维布试验结果 3.5第五组玻璃纤维布试验结果 3.6第六组玻璃纤维布试验结果 从上上述数据以及断裂后试样状态可以看出,整个测试过程中,拉伸试样夹持良好,断裂部位均在试样中部,满足GB要求(断裂点距离夹口10mm以上),两个方向各5个试样结果平均值非常接近,曲线重合度再现性良好,无较低异常测试值,满足GB要求。从本次试验结果可以体现出鲲鹏BOYI 2025-001 电子万能试验机的高精度及高稳定性。4.结论 综上所述,鲲鹏BOYI 2025-001 电子万能试验机、1kN气动拉伸夹具,可以完全满足GB/T 7689.5-2013 增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得玻璃纤维布各项力学数据,且稳定可靠,这对于玻璃纤维布以及绝缘电路板材、印刷电路板的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 新品推荐——方源仪器多功能电子织物强力机YG026M
    方源仪器多功能电子织物强力机YG026M仪器创新点:1、进口夏普蓝色液晶显示屏(LCD操作面板),全中文菜单提示,,自动化程度高,每一操作步骤都有中文提示不会出现误操作;2、三菱十六位工业级单片机控制,十六位A/D转换器,抗干扰性能强、数据传输快;3、PC机在线控制,动态跟踪试验机工作状态,接收测试数据并实时显示强伸曲线;曲线可以单一显示,也可以叠加显示4、大量存贮测试数据,并可进行数据汇总、分类等处理(测试机);5、随机配备LCD操作面板,使强力机可脱离软件及计算机独立操作并打印测试结果(双向控制);多功能电子织物强力机YG026M适用范围:广泛适用于纺织、印染、服装行业对断裂强力(条样法、抓样法)、断裂伸长率、撕破(单舌、双舌、梯形)强力、弹子顶破强力及弹性材料反复拉伸(弹性变形率、回复率、塑性变形、)、定伸长、定负荷、服装缝口脱开程度、缝线滑移、针织品掖下接缝强力及缝纫线、单纱强力的检测。也可用于拉链、金属、纸张、非织造布、线材、皮革强力和伸长的测试。多功能电子织物强力机YG026M主要特点:仪器特性:1、伺服电机响应时间便于对材料的各项力学性能进行深入分析(如初始模量、屈服点、断裂点、断脱点等);4、相关参数设定均对外开放,使仪器满足不同标准的测试要求(但默认值为标准规定的值);5、可选用气动夹具夹持,传感器、夹持器与机架间均采用标准接口连接,更换方便;6、多项保护:超载、负力值保护,限位保护,过流、过压保护等;7、力值单位:N、Kgf、1b、in、cN 等自由转换。 多功能电子织物强力机YG026M软件功能:①参数设定:测试员姓名、试样名称、批次、编号等参数均可独立设定并打印在测试报告中;②可以输出力值平均值、大值、CV值, 长度平均值、大值、CV值,断裂功,测试结果以报表形式打印输出,也可存盘保存,具有历史数据查询功能;③测试曲线选点放大功能,点击曲线上任一点均可显示强力值与伸长值;④测试数据报告可转换为EXCEL文档保存至PC机中;⑤测试软件包含织物多种强力测试方法,使测试更方便、快捷、准确及实现低成本运行;⑥开放式用户程序,用户可自行编辑相应测试方法(选购件)。注:该机型软件功能终身免费升级。 多功能电子织物强力机YG026M 硬件配置:①大屏幕(夏普5.7英寸)液晶图形显示器,对已得数据大值、小值、平均值、均方差、变异系数均有显示;②日本三菱十六位工业控制单片机、美国AD公司十六位A/D转换器,提高仪器数据处理速度、抗干扰能力强、确保仪器可长时间无故障运行;③日本松下公司伺服驱动器及电机(矢量控制),电机响应时间短,无速度过冲、速度不均等现象;④韩国KNS公司产滚珠丝杆、精密导轨,使用寿命长,噪音低。多木川编码器对仪器定位、伸长精确控制;⑤基础型:提供夹具3套、传感器1套;普天针式打印机1台;计算机1台。 软件配置:①质量专家分析软件1套(光盘); ②程序卡:国标、美标各一套。如您对电子织物强力机感兴趣,可通过仪器信息网400-860-5168转2014 和我们取得联系!
  • 利用维氏硬度压痕裂纹表征材料的断裂韧度
    可以利用维氏硬度压痕裂纹计算材料的断裂韧度,尤其适合表征硬脆材料的断裂性能。学者提出了很多半经验半定量的关系式。裂纹主要有巴氏(Palmqvist或径向)和中位(Median)裂纹两种形式,有些公式适用于特定的裂纹形式,有些公式对两种(Both)裂纹形式都适用。微米硬度实验设备简单,测试方便,分析直接,不仅在工程实践中有广泛应用,也是评估材料断裂韧度的有效工具。断裂韧度作为衡量材料抵抗裂纹扩展能力的力学性能指标通常用临界应力强度因子KⅠC表示,单位为MPam0.5。字母K为应力场强度因子,反映的是裂纹尖端区域应力场强弱;字母C指的是裂纹扩展的临界情况;下标罗马数字Ⅰ是指裂纹扩展形式为张开型,脆性材料的裂纹扩展类型为Ⅰ型。测量材料KⅠC的方法主要有:山形切口梁法(C. N. B)、单边预裂梁法(S. E. P. B)、表面弯曲裂纹法(S. C. F)、单边切口梁法(S. E. N. B)、单边V形切口梁法(S. E. V. N. B)、短V形切口杆法(S. R)、双扭法(D. T)、双悬臂梁法(D. C. B)、微米划痕法、纳米压痕法和维氏压痕法等。S. R、D. C. B和S. E. P. B法的测试试样难生产、成本高,难以广泛使用;S. E. N. B、S. E. V. N. B和C. N. B法加工试样缺口较困难;D. T法试件的几何尺寸会对测量值产生影响;S. C. F法必须要去除足够深度的表面层来消除残余应力场,才能保证KⅠC不被高估;微米划痕法需要考虑压头的磨损以确保测试结果的准确性;而压痕法具有制备试样简单、测试效率高、以及综合成本低等优点,已被广泛应用于表征陶瓷材料、硬质合金和玻璃材料的断裂韧度。虽然基于Griffith-Irwin平衡断裂力学的压痕法可以反映材料断裂的特征,有效表征材料的断裂韧度,但是使用压痕法确定KⅠC仍然存在不足,依然有争论,比如:诸多半经验半定量的公式在实际应用中受到裂纹模式(径向,中位,横向等)多样复杂的影响,计算的KⅠC结果不可靠;不适用于低泊松比的材料。如何根据不同的材料、不同的压头选择适合的公式和载荷,是当前利用压痕裂纹法表征材料断裂韧度亟需解决的问题。各种依据维氏硬度压痕裂纹长度计算断裂韧度的表达式列于表1,对于不同的裂纹模式有不同的表达式。裂纹主要有两种类型,见图1:一种是基于半椭圆型的中位裂纹(Median crack);另一种是基于半月状的巴氏裂纹(Palmqvist crack)或径向裂纹(Radial crack)。可以基于曲线拟合的方法得到同时适用于两种(Both)裂纹模式的表达式。典型硬脆材料的压痕裂纹见图2,需要测量压痕的接触半径a和裂纹长度c,可以计算得到l=c-a。维氏硬度HV可以由载荷F除以残余压痕面积AV得到:式中,AV考虑了压痕的倾斜表面(sin68°可以由压头形状获得),而不是压痕的投影面积;d (= 2a) 是压痕两个对角线长度的平均值;当F和d的单位分别是mN和μm时,维氏硬度的单位是GPa。值得注意的是工程上使用的维氏硬度没有单位,而且相关标准里面也没有单位,这不利于各种测试方法的比较,无法有效服务于科学研究。可见,即使维氏硬度如此基础、简单、成熟,仍然有待进一步发展。由于仪器化压入的兴起,压入硬度HIT是根据投影面积定义,并且努氏硬度HK也是根据投影面积计算,传统的维氏硬度HV可以通过投影面积转换成梅氏硬度(Meyer hardness)HMV(=2F/d2), 便于各种硬度之间的比较。表1中的维氏硬度HV也可以转换成HMV。表 1 利用维氏硬度HV计算材料的断裂韧度Kc[1]注: ϕ = 3, β2 = 0.059[15], Φ = -1.59-0.34ξ-2.02ξ2+11.23ξ3-24.97ξ4+16.32ξ5, ξ = lg(c/a). E是材料的弹性模量. Hv可以在每个载荷下多次测量取平均值,作为某一载荷下的Hv.图 1 维氏硬度压痕裂纹模式示意图图 2 典型硬脆材料的维氏硬度压痕裂纹[1, 15, 16]作者简介刘明,福州大学机械工程及自动化学院教授,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员,ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学材料科学与工程学院本科、硕士,2012年12月获肯塔基大学(美国)材料科学与工程专业博士学位,法国巴黎高科矿业工程师学校材料研究所博士后,华盛顿州立大学(美国)博士后。2015年4月入职福州大学机械工程及自动化学院机械设计系力学教研室,获评福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn QQ:290716672 微信:hasanzhong参考文献[1] M. Liu, D. Hou, Y. Wang, G. Lakshminarayana, Micromechanical properties of Dy3+ ion-doped (Lu Y1-x)3Al5O12 (x = 0, 1/3, 1/2) single crystals by indentation and scratch tests, Ceramics International, 49 (2023) 4482-4504.[2] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 2 (1983) 221-223.[3] Z. Laiqi, H. Yongan, H. Lei, L. Jun-pin, Determination of empirical equation of fracture toughness for Mo5SiB2 alloy by indentation method, Trans. Mater. Heat Treat., 38 (2017) 178-183.[4] M. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett., 6 (1987) 355-356.[5] D. Shetty, I. Wright, P. Mincer, A. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci., 20 (1985) 1873-1882.[6] B.R. Lawn, M. Swain, Microfracture beneath point indentations in brittle solids, J. Mater. Sci., 10 (1975) 113-122.[7] K. Tanaka, Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model, J. Mater. Sci., 22 (1987) 1501-1508.[8] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture, J. Mater. Sci., 10 (1975) 2016-2024.[9] A.G. EVans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59 (1976) 371-372.[10] K. Niihara, R. Morena, D. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1 (1982) 13-16.[11] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64 (1981) 533-538.[12] C. Terzioglu, Investigation of some physical properties of Gd added Bi-2223 superconductors, J. Alloys Compd., 509 (2011) 87-93.[13] J. Lankford, Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method, J. Mater. Sci. Lett., 1 (1982) 493-495.[14] J.E. Blendell, The origins of internal stresses in polycrystalline Al2O3 and their effects on mechanical properties, Massachusetts Institute of Technology, 1979, pp. 1-47.[15] M. Liu, Z. Xu, R. Fu, Micromechanical and microstructure characterization of BaO-Sm2O3–5TiO2 ceramic with addition of Al2O3, Ceramics International, 48 (2022) 992-1005.[16] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 2013全国MTS断裂测试学术研讨会召开
    仪器信息网讯 由中国力学学会MTS材料试验专业委员会主办、西南交通大学力学与工程学院承办、15个单位协办的2013全国MTS断裂测试学术研讨会于2013年10月17日~19日在西南交通大学犀浦校区举行,来自包括台湾、北京、上海、天津、重庆、广东、浙江、辽宁、云南等17个省、直辖市以及来自美国、法国的79个单位130余名代表出席了会议,其中研究生占15%。   会议由中国力学学会MTS材料试验专委会副主委、西南交通大学力学与工程学院蔡力勋教授和专委会常务副主委王建国研究员担任主席。开幕式由蔡力勋教授主持,西南交通大学副校长蒲云教授致欢迎辞,西南交通大学力学与工程学院院长康国政教授、书记金建明教授到会祝贺,中国力学学会MTS材料试验专业委员会创始人、北京科技大学教授唐俊武先生和专委会常务副主委王建国研究员以及美特斯系统(中国)股份有限公司总裁陈国瑜先生分别致辞祝贺会议顺利召开。台湾龙华科技大学丁鲲副校长到会祝贺,并代表第三届海峡两岸破坏科学与材料试验学术大会主办单位欢迎大陆材料测试领域专家、学者在2014年10月到台湾参加学术交流。   本次会议收到来自全国各地大专院校、科研院所、企业代表的多篇学术论文,印刷了《材料的断裂与测试》论文集(会后部分优秀论文将陆续在中文核心期刊《中国测试》上发表),论文反映了核反应堆、航空、石油化工、高铁等行业安全工程领域的研究成果,大会邀请了包括台湾龙华科技大学丁鲲教授、中国科学院力学所(杭州工业大学)张泰华教授、天津大学千人特聘教授赵玉津先生、中南大学何小元教授等10位学者分别作了反映材料纳米力学、压入力学行为、材料断裂力学、数字图像相关、材料本构关系等方面研究的大会报告,这些报告内容丰富精彩,受到与会代表的热烈欢迎。会议还设了主题为:&ldquo 塑性与断裂I、II&rdquo 和&ldquo 疲劳与破坏&rdquo 的3个分会场,50篇论文作了宣读。会议期间来自六家材料测试技术公司的测试设备为代表作了关于微力疲劳测试、DIC、红外成像测试新技术的现场演示和三学术报告,给代表们留下了深刻印象。   在会议期间,长安大学副校长沙爱民主委主持召开了中国力学学会MTS材料试验专委会委员会会议,王建国常务副主委介绍了专委会近年的工作,会议对2014年将在台湾龙华科技大学召开的第三届海峡两岸材料破坏/断裂学术会议的大陆筹备工作部分、促进六个地区分会学术活动以及促进材料测试领域青年学术交流等专委会今后工作内容展开了讨论。
  • 利用仪器化划入表征材料的断裂韧度
    仪器化划入方法已经成功应用于测试各种材料(包括硬的合金、陶瓷、金属、岩石[1]和软的高分子聚合物、碱硅酸盐凝胶[2]等)的断裂韧度(跨越两个数量级)在材料科学与工程领域具有巨大应用前景,尤其是评估微米级材料或多尺度复合材料(比如碎屑-橡胶混凝土[3]、再生混凝土[4]、水泥[5]、页岩[1, 6, 7],骨头[8]、功能梯度和复合涂层[9])的断裂性能,其诸多优势包括:结果与传统方法(比如单边缺口试样的三点弯曲、紧凑拉伸)测量值一致;重复性好;材料体积小;设备操作、数据分析简单;近乎无损检测(微米级划入测试划入深度一般在十几微米);尤其是试样制备简单,不需要预制缺口或裂纹;测试成本和周期都大大减小[10]。仪器化划入过程的实物图和示意图见图 1[11]。在仪器化划入过程中,利用侧向力和压入深度可以计算出材料的断裂韧度。仪器化划入表征断裂韧度主要有两种理论:一种是线弹性断裂力学(linear elastic fracture mechanics or LEFM);另一种是能量尺寸效应理论(microscopic energetic size effect laws or ESEL)。理论都是假设在压头前端存在沿水平扩展的裂纹,见图 2[12]。这种裂纹模式在直刚刀压头划入石蜡的实验中体现得最好,见图 3[13]。对于直压头:三维裂纹的横截面是长方形。能量释放率可以由J-积分计算,再结合断裂准则,即可以建立利用侧向力和压入深度计算断裂韧度的关系式。图 1 仪器化划入测试实物图及示意图:(a)直钢刀压头划入石蜡;(b)倾斜直钢刀压头划入测试示意图;(c)Rockwell C压头划入薄膜材料;(d)轴对称压头划入示意图(压入深度d,压头尖端圆角半径R,侧向力FT,划痕方向x)图 2 利用轴对称压头划入过程的侧视图(左图)和正视图(右图)。x 是划痕方向,FT 是水平侧向力,FV 是竖直正压力,d 是压入深度,n 是压头与材料接触界面朝材料外侧的单位法向,A 是承载侧向力的面积投影,p 是压头与材料接触界面的周长图 3 石蜡在直钢刀压头仪器化划入过程中压头前端水平扩展的裂纹:(a)实验结果;(b)理想的裂纹形状示意图(具有长方形横截面的三维裂纹,需要裂纹长度l、刀具宽度w、压入深度d 三个尺寸表征)不同的学者提出了不同的分析方法,断裂韧度Kc 可以通过拟合仪器化划入的实验数据获得[10, 14-19]:其中Λ=A/(2P)是名义长度,p 和A 分别是周长和水平投影面积(见图 2),都是压入深度d 的函数[12]。利用线弹性断裂力学可以直接计算出断裂韧度Kc已知压头几何形状可以得到p(d)和A(d),f=2p(d)A(d) 即压头形状函数:对于圆锥压头,f 与d3 成正比;对于圆球压头,f 与d2 成正比。图 4是利用Rockwell C压头划入钢材的结果[20]。示意图见图 4(a)。在划入过程中,施加线性增大的正压力FV,如图 4(b),同时记录侧向力FT 和压入深度d。数据与划痕残余形貌一一对应,形貌见图 4(c),并且可以利用声发射分析断裂过程,如图 4(d)。图 4 利用圆锥压头分析钢材料的断裂韧度:(a)圆锥压头仪器化划入过程示意图(划痕方向沿X 轴,FV 和FT 分别是正压力和侧向力);(b)划入过程中在施加线性加载的正压力的同时记录侧向力;(c)划痕残余形貌;(d)侧向力和压入深度的关系(左轴)和声发射(右轴)当圆锥部分起主导作用时,FT/d3/2趋近于一条水平线,这说明划入过程由断裂机制控制,声发射信号也直接验证了断裂的发生。可见,利用划入方法测试材料的断裂韧度需要适合的加载条件,只有当载荷足够大,断裂机制占主导时才能应用线弹性断裂力学的公式计算断裂韧度,但是过大的载荷会产生很多扩展方向不同的裂纹,使得只有一条裂纹扩展的假设不成立。声发射信号是确定断裂发生的有效手段,可以用于区分断裂的程度(剧烈的断裂会使得声发射信号饱和),寻找适合的加载力范围。FT/d3/2一直在波动,这种锯齿状数据是切削的典型特征,与传统测试(比如紧凑拉伸中只有一个裂纹产生)明显不同,划入过程中会产生很多裂纹,所以有必要对平稳段的数据取平均[21]。仪器化划入方法已经成功应用于各种材料的断裂韧度表征[22, 23],比如:高分子材料(聚碳酸酯PC[18]、改性石墨烯添加的环氧树脂基复合材料[24])、玻璃(熔融石英硅[25]、K9玻璃[26])、金属(紫铜[27, 28])、半导体材料(单晶硅和碳化硅[29])等。表 1比较了部分材料的仪器化划入测试结果与传统方法测试结果,划入法测试与传统方法测试结果大体一致,差异很有可能是由于材料的各向异性和不均匀造成的,因为划入法表征的是表面微观区域的力学性能,传统方法测试的是宏观力学性能。所以划入法可以表征材料断裂韧度的分布,适合于异质复合材料各组织以及界面的力学性能表征,研究不同尺度结构的断裂性能,这些都是先进材料及微纳米器件发展迫切需要解决的关键测试表征技术,尤其在表面微观力学领域有广阔的应用前景。表 1 利用仪器化划入方法表征各种材料的断裂韧度(MPa• m1/2)压头(形状尺寸)及方法材料(牌号):划入法测的断裂韧度(传统方法测试值)单位(国家)[参考文献]Rockwell C压头(2θ=120°,R=200 μm),线弹性断裂力学铝合金(AA 2024):34.4±3 (32~37)热塑性聚合物(Delrin Grade 150):2.5±0.2 (2.9±0.5)麻省理工学院(美国)[20] Rockwell C 压头(2θ=120°,R=200 μm),线弹性断裂力学钠钙玻璃:0.71±0.03 (0.70)耐热高硼硅玻璃:0.68±0.02 (0.63)热塑性聚合物(Delrin 150E) :2.75±0.05 (2.8)热塑聚碳酸酯:2.76±0.02 (2.69)铝合金(2024-T4/T351) :28.8±1.3 (26~37)AISI-1045:62.2±2.6 (50)AISI-1144:62.2±2.6 (57~67)Titanium 6Al-4V:77.0±3.4 (75)麻省理工学院(美国)[22]直钢刀压头,线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)石蜡:0.14 (0.15)水泥:0.66~0.67 (0.62-0.66)侏罗纪石灰岩:0.56 (ESEL), 0.34 (LEFM)A-51w:0.82 (ESEL), 0.81 (LEFM)B-4w:0.74 (ESEL), 0.72 (LEFM)B-12w:0.78 (ESEL), 0.78 (LEFM)麻省理工学院(美国)西北大学(美国)伊利诺伊大学厄巴纳-香槟分校(美国)[21]直钢刀压头、Rockwell C线弹性断裂力学水泥(直钢刀压头):0.66±0.05 (0.67)钢材(Rockwell C压头):40±0.2 (50)麻省理工学院(美国)[11]直钢刀压头能量尺寸效应方法水泥:0.66(0.65~0.67)伊利诺伊大学厄巴纳-香槟分校(美国)[23]Rockwell C压头线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)塑料(Delrin):3.26 (LEFM),2.85 (ESEL)聚碳酸酯(Lexan):2.87 (LEFM),2.38 (ESEL)熔融石英硅:0.96 (LEFM),0.96 (ESEL)传统测试结果:塑料(2.8)、聚碳酸酯(2.2)、熔融石英硅(0.8)科罗拉多大学(美国)麻省理工学院(美国)[28]Rockwell C压头能量尺寸效应方法聚缩醛 :3.16 (2.8)石蜡:0.14 (0.14)聚碳酸酯(Lexan 934):2.8 (2.69)铝:32.53 (32)伊利诺伊大学厄巴纳-香槟分校(美国)[40]圆球压头线弹性断裂力学熔融石英硅:0.7 (0.68~0.75)K9玻璃:0.85 (0.82)福州大学(中国)[45,46]Rockwell C压头线弹性断裂力学聚碳酸酯:2.3 (2.2)福州大学(中国)[43]作者简介刘明,福州大学机械工程及自动化学院教授,福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员、ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学本科、硕士,肯塔基大学(美国)博士,法国巴黎高科矿业工程师学校材料研究所博士后、华盛顿州立大学(美国)博士后。主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn 参考文献[1] A.-T. Akono, P. Kabir, Microscopic fracture characterization of gas shale via scratch testing, Mechanics Research Communications, 78 (2016) 86-92.[2] C.V. Johnson, J. Chen, N.P. Hasparyk, P.J.M. Monteiro, A.T. Akono, Fracture properties of the alkali silicate gel using microscopic scratch testing, Cement and Concrete Composites, 79 (2017) 71-75.[3] A.-T. Akono, J. Chen, S. Kaewunruen, Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale, Construction and Building Materials, 175 (2018) 735-745.[4] A.-T. Akono, J. Chen, M. Zhan, S.P. Shah, Basic creep and fracture response of fine recycled aggregate concrete, Construction and Building Materials, 266 (2021) 121107.[5] J. Liu, Q. Zeng, S. Xu, The state-of-art in characterizing the micro/nano-structure and mechanical properties of cement-based materials via scratch test, Construction and Building Materials, 254 (2020) 119255.[6] M.H. Hubler, F.-J. Ulm, Size-Effect Law for Scratch Tests of Axisymmetric Shape, Journal of EngineeringMechanics, 142 (2016).[7] A.-T. Akono, Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing, Journal of Nanomechanics and Micromechanics, 6 (2016) 04016001.[8] A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Reports, 6 (2017) 17-25.[9] H. Farnoush, J. Aghazadeh Mohandesi, H. Cimenoglu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition, J Mech Behav Biomed Mater, 46 (2015) 31-40.[10] A.T. Akono, N.X. Randall, F.J. Ulm, Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals, J. Mater. Res., 27 (2012) 485-493.[11] A.-T. Akono, F.-J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear, 313 (2014) 117-124.[12] A.T. Akono, F.J. Ulm, Fracture scaling relations for scratch tests of axisymmetric shape, J. Mech. Phys. Solids, 60 (2012) 379-390.[13] A.-T. Akono, F.-J. Ulm, Z.P. Bažant, Discussion: Strength-to-fracture scaling in scratching, Eng. Fract. Mech., 119 (2014) 21-28.[14] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in: H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, L. Howarth (Eds.) Advances in Applied Mechanics, Elsevier, 1962, pp. 55-129.[15] H.M. Hubler, F.-J. Ulm, Size-effect law for scratch tests of axisymmetric shape, J. Eng. Mech., 142 (2016) 04016094.[16] A.-T. Akono, Energetic size effect law at the microscopic scale: Application to progressive-load scratch testing, J. Nanomech. Micromech., 6 (2016) 04016001.[17] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter, Wear, 444–445 (2019) 203158.[18] M. Liu, S. Yang, C. Gao, Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading, Polymer Testing, 90 (2020) 106643.[19] M. Liu, Microscratch of copper by a Rockwell C diamond indenter under a constant load, Nanotechnol. Precis. Eng., 4 (2021) 033003.[20] A.T. Akono, P.M. Reis, F.J. Ulm, Scratching as a Fracture Process: From Butter to Steel, Phys. Rev. Lett., 106 (2011) 204302.[21] A.-T. Akono, G.A. Bouché, Rebuttal: Shallow and deep scratch tests as powerful alternatives to assess the fracture properties of quasi-brittle materials, Eng. Fract. Mech., 158 (2016) 23-38.[22] 刘明, 李烁, 高诚辉, 利用圆锥压头微米划痕测试材料断裂韧性, 摩擦学学报, 39 (2019) 556-564.[23] 刘明, 李烁, 高诚辉, 利用微米划痕研究TiN涂层的失效机理, 计量学报, 41 (2020) 696-703.[24] S. Li, J. Zhang, M. Liu, R. Wang, L. Wu, Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite, Polymer Bulletin, (2020).[25] M. Liu, Q. Zheng, C. Gao, Sliding of a diamond sphere on fused silica under ramping load, Materials Today Communications, 25 (2020) 101684.[26] M. Liu, J. Wu, C. Gao, Sliding of a diamond sphere on K9 glass under progressive load, Journal of Non-Crystalline Solids, 526 (2019) 119711.[27] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter,Wear, 444-445 (2020) 203158.[28] C. Gao, M. Liu, Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter, Tribology Letters, 67 (2019) 8.[29] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 第二十届全国疲劳与断裂学术会议第二轮通知
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2c60f328-22d8-4bcf-a54b-c65a992a7d3b.jpg" title=" 微信截图_20191204165400.png" alt=" 微信截图_20191204165400.png" / /p p style=" text-align: center " span style=" font-size: 20px " strong 第二十届全国疲劳与断裂学术会议 br/ /strong /span /p p style=" text-align: center " span style=" font-size: 20px " strong 第二轮通知 /strong /span /p p   各有关单位及个人: /p p   疲劳与断裂是服役结构的主要破坏形式。有关数据表明,疲劳、断裂与磨损每年带来的损失约相当于国民经济总产值的4%。因此,世界各国都十分重视疲劳断裂机理及其预防措施的研究。疲劳断裂的研究与应用涉及航空航天、交通运输、建筑建材、冶金矿产、石油化工和交通运输等重要行业和关键领域。为解决材料与结构的安全评价和寿命预测问题,推动我国疲劳断裂领域的理论研究和技术应用,服务国家经济建设和社会发展,加强该领域专家学者交流、研讨与合作,“第二十届全国疲劳与断裂学术会议”将于2020年5月8-11日在重庆保利花园皇冠假日酒店召开。 /p p   全国疲劳与断裂学术会议始于1977年召开的“中国金属学会断裂学科讨论会”和1982年召开的“全国疲劳学术大会”,在各自举行八届以后,1998年合并举办“第九届全国疲劳与断裂学术会议”。此后每两年举办一届,由中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会六学会轮流主办。现将相关事宜通知如下: /p p   strong  一、组织机构 /strong /p p    strong 主办单位 /strong :中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会 /p p    strong 承办单位 /strong :中国航空学会失效分析分会、中国航空学会结构与强度分会、中国航空学会材料工程分会、中国航发北京航空材料研究院 /p p    strong 二、大会组委会: /strong /p p    strong 大会顾问 /strong :李鹤林、陈学东、张统一、杨卫、柯伟、钟群鹏、曹春晓、魏悦广 /p p    strong 大会主席 /strong :林左鸣 /p p    strong 副主席 /strong :王彬文、冯西桥、刘昌奎、李晓刚、张跃、姚俊臣、涂善东、韩恩厚 /p p    strong 学术委员会 /strong /p p   主任:陶春虎 /p p   副主任:王清远、李劲、张哲峰、赵明皞、索涛、董瀚 /p p   委 员:于哲峰、马玉娥、王建山、韦剑飞、古远兴、冯雪、乔利杰、仲政、刘昌奎、刘建华、刘智勇、孙军、苏彬、杜楠、李小武、李玉龙、李振环、李博、李喜德、吴圣川、吴林志、吴欣强、何玉怀、何国球、沈星、张广平、张乐福、张显程、陈长风、范学领、罗光敏、单智伟、施惠基、洪友士、栗付平、高存法、高效伟、陶春虎、曹文泉、康国政、董登科、惠卫军、舒平、谢里阳、鲍蕊、翟同广 /p p    strong 组织委员会 /strong /p p   主任:姚俊臣 /p p   副主任:王生楠、左晓卫、刘昌奎、余策、汤亚南、杜翠薇、尚成嘉、庞建超 /p p   委员:丁波、于宏丽、弓云昭、王清远、叶笃毅、 安向阳、吉林康、朱知寿、刘礼华、刘新灵、何玉怀、张小红、张雷、张福成、陈立佳、尚德广、金海波、周冬冬、胡军、段慧玲、黄玮、常 伟、程学群、曾德长、靳婉平 /p p    strong 注:以上均按姓氏笔画排序 /strong /p p   strong  三、会议地点 /strong /p p   重庆市保利花园皇冠假日酒店 /p p   strong  四、会议时间 /strong /p p   2020年5月8-11日 /p p    strong 五、本届会议的论文征集范围 /strong /p p   1. 疲劳与断裂力学 /p p   2. 疲劳与断裂微观机制 /p p   3. 复杂环境下的材料损伤失效分析 /p p   4. 典型材料与结构的破坏理论研究 /p p   5. 重大装备的疲劳与断裂工程应用 /p p   6. 关键行业的疲劳与断裂工程应用 /p p   7. 材料与结构疲劳断裂的测试表征。 /p p   凡与疲劳和断裂领域相关的研究成果、学术观点、工程经验、应用范例、技术设想及建议等均可以论文应征。应征论文必须论点鲜明、论据充分、数据可靠,计量单位参照《中华人民共和国法定计量单位》中的有关规定。论文内容的保密性由论文作者自行负责,如有必要,须经作者所在单位审核。 /p p   论文摘要请通过会议网站(http://www.ncff2020.com/) 的投稿系统提交,摘要字数限制在1000字以内,摘要提交日期为2019年9月1日-12月30日。通过论文摘要审核的作者将收到组委会发出的录用通知,全文接收的截止日期为2020年2月15日。会议将提供摘要集,供与会者交流。欢迎全国从事相关领域研究和应用的的专家学者、科研人员、工程技术人员、高校师生踊跃投稿,欢迎全国从事相关领域的高等院校、科研院所、企事业单位踊跃参会。 /p p   strong  六、重要时间 /strong /p p   摘要接收截止:2019年12月30日 /p p   全文截止时间:2020年2月15日 /p p   提前注册时间:2020年3月31日 /p p   会议报到时间:2020年5月8日 /p p    strong 七、注册费用 /strong /p p   1.2020年3月31日前注册交费 /p p   正式代表1600元/人,学生1200元/人。 /p p   2.2020年3月31日后注册交费 /p p   正式代表1800元/人,学生1400元/人。 /p p   参会专家学者食宿统一安排,费用自理。 /p p    strong 八、联系方式 /strong /p p   王小玉 010-62496955 sxfx621@163.com /p p   常 伟 010-62497450 /p p   安向阳 010-84924386 anxy@csaa.org.cn /p p br/ img style=" float:right " src=" https://img1.17img.cn/17img/images/201912/uepic/b822e6e4-fcfb-42fd-b7b8-eae6275fcf0f.jpg" title=" 微信截图_20191204165400.png" alt=" 微信截图_20191204165400.png" / /p p br/ /p p br/ /p p br/ /p p br/ /p p br/ /p p br/ /p p br/ /p p br/ /p p    /p p br/ /p
  • MTS-上海交大疲劳断裂联合实验室成立
    2009年6月9日,MTS&mdash 上海交通大学疲劳断裂联合实验室在上海交通大学闵行校区正式揭牌成立。上海交通大学副校长陈刚、MTS系统公司高级副总裁Alfred Richter, 副总裁David Meier,船舶海洋与建筑工程学院党委书记张卫刚,MTS公司中国区总裁陈国瑜先生,运营总监曹威先生,船舶海洋与建筑工程学院力学系主任许金泉教授等人出席了揭牌仪式。联合实验室的成立不仅意味着MTS和上海交通大学的合作,迈上了一个新的台阶,也意味着双方长期以来的合作,结出了初步成果。   上海交通大学副校长陈刚、MTS系统公司高级副总裁Alfred Richter先生分别代表上海交通大学和MTS致辞,对联合实验室的成立表示祝贺。他们认为上海交通大学在工程力学方面的研究有着悠久的历史,在中国的材料测试领域一直处于领军地位,也是世界材料测试领域的佼佼者,承担着多项国家重大工程任务、国家自然基金项目,为航空航天部门、动力、材料、机械、土木工程、化工、环境和生物等各个领域的研发单位解决很多难题.。MTS公司是全球最大的高科技力学性能测试及模拟系统制造商,是该领域的先驱和领导者。其产品和服务主要应用于科研、产品开发、质量控制等领域,范围涉及试验设备、分析软件和优秀工程解决方案咨询。 在试验机设备方面的生产规模、技术装备、工艺水平均居世界领先水平,其产品得到了广泛的应用和好评。MTS在世界上首创把液压伺服闭环控制概念引入力学测试系统。它的成功经验已使各个领域的研究者缩短了研发进程。MTS在汽车和航空航天领域久负盛名,更有无数的测试系统在各大政府实验室、大学、公司科研机构发挥着重大作用 。自20世纪80年代初进入中国以来,MTS作为技术供应商进入中国市场已逾30年,上海交通大学是MTS公司的长期合作伙伴。在目前全球经济低靡的大环境下,此项投资充分表现了MTS对中国市场的决心和自信和对双方合作的期望,也是MTS中国市场发展五年计划的重要组成部分。联合实验室的建立是双方在高新材料疲劳断裂性能测试方面又一次密切合作,标志着在科学研究领域的合作进一步加深,将进一步发展我们之间的友好合作关系,形成交大与国际知名企业强强合作的科研平台,对学校迈向国际科学技术前沿、提高国际影响力具有重要意义,对MTS公司的技术进步和保持国际领先地位也具有重要的推动作用。我们期待着联合试验室能够成为MTS材料测试系统应用、测试方法、技术上的培训基地,并相信我们可以携手共同成为中国材料测试权威,也必将在MTS试验机用户培训、共同申请科研项目、合作开发新技术新方法等方面,取得互惠互利的双赢成果。
  • 【行业动态】2020年第十二届疲劳与断裂大会完美落幕
    由中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会六学会轮流主办的第十二届疲劳与断裂大会,于2020年8月18-20日,在重庆保利皇冠假日酒店成功举办。 会议作为我国疲劳断裂领域交流、研讨与合作的平台,吸引了130余家单位423人报名参会,共计收到340篇摘要,此外,会议也得到了40余家厂商的大力支持。
  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • 长春机械院应邀出席第十八届全国疲劳与断裂学术会议
    由中国机械工程学会、中国材料研究学会、中国航空学会、中国金属学会、 中国力学学会、中国腐蚀与防护学会等多家组织联合主办的“第十八届全国疲劳与断裂学术会议”将于2016年4月15-17日在河南省郑州市光华大酒店召开。 该会议是国内疲劳与断裂领域最权威,规格最高的学术交流会议,旨在提供一个广泛的学术与技术交流平台,活跃学术氛围,促进学科交流,推动我国疲劳与断裂研究领域学术与应用技术的发展与进步。 会议主题: 疲劳与断裂力学 疲劳与断裂物理 复杂环境下的材料失效与破坏 典型材料与结构的破坏理论研究 重大装备的疲劳与断裂工程应用 航空航天中的疲劳与断裂工程应用 疲劳与断裂理论的其他典型工程应用 长春机械科学研究院作为目前中国工程试验设备领域、规模最大,最具竞争力和影响力的科研院所企业应邀参加此次盛会。并将在现场展示静压支撑伺服油缸、原位仪、高温引伸计、传感器等我院在工程试验领域新产品。 我院副总工程师,国内动态疲劳试验设备领域著名专家张泳将在专题研讨会上介绍当前国内外疲劳试验领域先进技术及发展方向,并与与会专家学者探讨疲劳试验过程中遇到的问题以及解决方案。 全国疲劳与断裂学术会议每两年举办一届,由中国机械工程学会、中国材料研究学会、中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会六学会轮流主办。“第十八届全国疲劳与断裂学术会议”由中国机械工程学会和郑州大学承办。 断裂与疲劳是结构的主要破坏形式,有关数据表明,断裂、疲劳与磨损每年带来的破坏约相当于国民经济总产值的4%。因此,世界各国都十分重视断裂破坏机理的研究、破坏和失效的防范。疲劳断裂的研究与应用领域涉及航空、航天、船舶、机械、土木、建筑、水利工程、微电子、生物医疗器械、交通运输等各个领域。我国正处在快速发展阶段,高楼大厦拔地而起,高速铁路日新月异,重大工程项目不断启动;与此同时,地震、山体滑坡、桥梁和建筑坍塌、压力容器和管道破裂等自然灾害和人为事故时有发生,给科研工作者提出了极大的挑战。 大会顾问(按姓氏拼音为序): 陈学东、方岱宁、甘晓华、洪及鄙、洪友士、柯伟、李鹤林、李应红、王中光、杨卫、余寿文、钟群鹏、张统一 大会主席: 赵振业 大会副主席(按姓氏拼音为序): 冯西桥、韩恩厚、李晓刚、陶春虎、涂善东、赵明皞、张跃 学术委员会主任(按姓氏拼音为序): 方岱宁、洪友士 学术委员会副主任(按姓氏拼音为序): 乔利杰、尚成嘉、王铁军、蔚夺魁、张哲峰 学术委员会委员(按姓氏拼音为序): 白秉哲、蔡力勋、陈 旭、陈跃良、高存法、高玉魁、亢一澜、何国球、洪友士、黄培彦、惠卫军、康国政、李小武、李晓延、李秀程、李玉龙、李振环、吕乐丰、施惠基、宋迎东、苏彬、孙军、王清远、王 翔、魏悦广、 吴林志、谢里阳、许金泉、徐友良、杨晓光、杨旭、于慧臣、曾德长、张广平、张立新、张嘉振、张克实、张俊乾、仲政、庄茁 更多相关内容,敬请持续关注长春机械院官方网站及官网微信平台 【会议时间】2016年4月15-17日 【会议地址】河南省郑州市光华大酒店 【咨询电话】400-965-1118 【现场联系】金祥彬 13604366632
  • 第二十一届全国疲劳与断裂学术会议第一轮通知
    第二十一届全国疲劳与断裂学术会议 第一轮通知各有关单位及个人: “第二十一届全国疲劳与断裂学术会议”将于 2022 年 8 月 下旬在山东省青岛市召开。疲劳与断裂是材料服役的主要失效形 式。疲劳与断裂的研究涉及材料研发、机械制造、现代交通、基 础设施建设、石油化工和航空航天等重要行业和关键领域。 全国疲劳与断裂学术会议始于 1977 年召开的“中国金属学 会断裂学科讨论会”和 1982 年召开的“全国疲劳学术大会”, 在各自举办八届以后,1998 年合并举办“第九届全国疲劳与断裂 学术会议”。此后每两年举办一届,由中国金属学会、中国力学 学会、中国腐蚀与防护学会、中国机械工程学会、中国材料研究 学会、中国航空学会六家学会轮流主办。 全国疲劳与断裂学术会议为解决材料与结构的安全设计、评 价和寿命预测问题,推动我国材料疲劳与断裂领域的理论研究和 技术应用提供了良好的学术交流平台,欢迎相关科技人员积极投 稿并参会。现将相关事宜通知如下: 一、组织机构 主办单位 :中国金属学会、中国力学学会、中国腐蚀与防 护学会、中国机械工程学会、中国材料研究学会、中国航空学会 承办单位 :中国金属学会材料科学分会 大会顾问:刘正义 李鹤林 杨 卫 张统一 陈学东 陈祥宝 赵振业 柯 伟 翁宇庆 郭万林 涂善东 曹春晓 魏悦广 大会主席:张 跃 副主席:冯西桥 刘昌奎 孙 军 李晓刚 韩恩厚 学术委员会 主 任:尚成嘉 副主任:王清远 刘智勇 张哲峰 赵明皞 陶春虎 董 瀚 委 员:于培师 马显锋 王 宠 王建山 王晓钢 王清远 卢 鹉 吉玲康 巩秀芳 有移亮 朱明亮 朱顺鹏 乔利杰 仲 政 任学冲 刘礼华 孙成奇 苏 彬 李小武 李玉龙 李 劲 李金许 李振环 李 博 杨志南 轩福贞 吴圣川 吴林志 吴欣强 何玉怀 张广平 张东方 张显程 张 峥 张 涛 张 鹏 张福成 张聪惠 陈长风 陈 刚 陈 旭 降向冬 赵子华 施惠基 姜 澜 洪友士 姚卫星 栗付平 钱桂安 高存法 高克玮 郭 翔 唐海军 曹文泉 康国政 宿彦京 董超芳 惠卫军 曾德长 温建锋 谢里阳 蔡力勋 廖庆亮 组织委员会 主 任:王新江副主任:左晓卫 汤亚南 杜翠薇 余 策 庞建超 赵 晶 委 员:丁 波 于宏丽 王学敏 刘 辉 李学达 杨 帆 邹成路 张小红 张艳红 张 雷 林伯阳 罗光敏 周冬冬 段慧玲 骆 鸿 魏振伟 注:以上均按姓氏笔画排序 二、会议地点 山东省青岛市 三、会议时间 2022 年 8 月下旬 四、征文主题 1. 疲劳与断裂力学; 2. 先进材料疲劳与断裂微观机制; 3. 典型材料与结构的破坏理论研究; 4. 基础零部件用钢的疲劳; 5. 装备全寿命周期损伤失效与寿命预测; 6. 关键行业的疲劳与断裂工程应用; 7. 疲劳-化学耦合失效机理与防控 8. 其他 本次会议接收大摘要投稿,凡与疲劳和断裂领域相关的研究 成果、学术观点、工程经验、应用范例、技术设想及建议等均可 以投大摘要,字数 1000 字以内(格式详见附件),文字简练、 论点鲜明、数据可靠,计量单位参照《中华人民共和国法定计量 单位》中的有关规定。论文内容的保密性由论文作者自行负责。 请访问中国金属学会会议系统(http://hy.csm.org.cn),通 过会议查询找到本会议网站提交摘要。摘要提交截止日期为 2022 年 4 月 30 日。会议将提供摘要集,供与会者交流。 五、联系方式 罗光敏 010-65133925 15011512686 丁 波 010-65133925 13911128844 李东迟 010-65126576 18610877620 刘 辉 13671329595 会议网址:http://hy.csm.org.cn?mid=520&sid=1949 会议网站二维码中国金属学会2021年12月15日第二十一届全国疲劳与断裂学术会议第一轮通知.pdf
  • 三思纵横动态疲劳试验成果将亮相全国疲劳与断裂学术会议
    第十九届全国疲劳与断裂学术会议将于2018年8月15日-17日在辽宁省沈阳市碧桂园玛丽蒂姆酒店进行,本届会议由中国材料研究学会疲劳分会和中国科学院金属研究所联合承办,目前报告340篇,报名参会人数470人。本届会议特别邀请中国科学院院士、上海大学张统一教授、中国科学院金属研究所韩恩厚研究员、中国航发北京航空材料研究院刘新灵研究员、上海大学董瀚教授、成都大学王清远教授和郑州大学赵明皞教授做大会报告。全国疲劳与断裂学术会议始于1977年召开的“中国金属学会断裂学科讨论会”和1982年召开的“全国疲劳学术会议”,在各自举行八届以后,1998年合并举办“第九届全国疲劳与断裂学术会议”。此后每两年举办一届,由中国材料研究学会、中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会、中国机械工程学会六学会轮流主办。三思纵横作为此次会议的赞助方,将在会上作技术发言,同时也将展出新型动态疲劳试验机及相关材料试验机,特邀您共同见证!
  • 第二十届全国疲劳与断裂学术会议圆满落幕,2022青岛再聚!
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong & nbsp 2020年8月19日,“第二十届全国疲劳与断裂学术会议”在重庆 a href=" https://www.instrument.com.cn/news/20200819/557139.shtml" target=" _self" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " 盛大开幕 /span /a 。大会为期两天,吸引了130多家单位,近500人参会。会议旨在解决材料与结构的安全评价和寿命预测问题,推动我国疲劳断裂领域的理论研究和技术应用,服务国家经济建设和社会发展,加强该领域专家学者交流、研讨与合作。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/9f5bde05-398b-47e7-b9d3-a6ec74d35f6e.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 大会现场 /strong /p p style=" text-align: justify text-indent: 2em " 8月20日,安排七个分会场同时进行交流,分别有“疲劳与断裂力学分会场”、“疲劳与断裂微观行为分会场”、“关键行业的疲劳与断裂工程应用分会场”、“典型材料与结构的破坏理论研究分会场”、“材料与结构疲劳断裂的测试表征分会场”、“复杂环境下的材料损伤失效分析分会场”、“重大装备的疲劳与断裂工程应用分会场”等。七个分会场共设有119个报告,其中有25位专家、学者作为特邀报告人分别带来了精彩的报告。 /p p style=" text-align: justify text-indent: 2em " 清华大学工程力学系长江学者、特聘教授冯西桥;中国科学院金属研究所研究员张哲峰;华东理工大学教授张显程;北京科技大学钢铁共性技术协同创新中心首席科学家、中国金属学会外事工作委员会副主任尚成嘉;北京科技大学国家材料腐蚀与防护科学数据中心教授刘智勇;大会副主席、中国航发北京航空材料研究院检测中心副主任刘昌奎;北京航空航天大学航空科学与工程学院常务副院长鲍蕊分别担任分会场主席。 /p p style=" text-align: center text-indent: 0em " & nbsp & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/a029432b-eea0-4f50-b760-d61ae2ec6e7a.jpg" title=" 疲劳与断裂力学分会场.jpg" alt=" 疲劳与断裂力学分会场.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " 疲劳与断裂力学分会场 /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/fab1365e-bcf3-4d39-83ab-5ff7e65f4e1f.jpg" title=" 疲劳与断裂微观行为分会场.jpg" alt=" 疲劳与断裂微观行为分会场.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " 疲劳与断裂微观行为分会场 /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/64d45341-4fc9-47fb-af62-fbbed4ab0c49.jpg" title=" 关键行业的疲劳与断裂工程应用分会场.jpg" alt=" 关键行业的疲劳与断裂工程应用分会场.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " 关键行业的疲劳与断裂工程应用分会场 /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/d0b51a25-5ae6-4444-bced-43f5755d52ed.jpg" title=" 典型材料与结构的破坏理论研究分会场.jpg" alt=" 典型材料与结构的破坏理论研究分会场.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " 典型材料与结构的破坏理论研究分会场 /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/a0953d07-ae8e-4e2d-813b-8c8a369fd61c.jpg" title=" 材料与结构疲劳断裂的测试表征分会场.jpg" alt=" 材料与结构疲劳断裂的测试表征分会场.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " 材料与结构疲劳断裂的测试表征分会场 /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " & nbsp & nbsp /span /strong strong span style=" text-align: justify text-indent: 32px " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/b8fe47fe-6ee7-4dd8-9379-2e610f8ec9c8.jpg" title=" 复杂环境下的材料损伤失效分析分会场.jpg" alt=" 复杂环境下的材料损伤失效分析分会场.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " 复杂环境下的材料损伤失效分析分会场 /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/3133d872-2f34-41ef-b9fc-b74b640bbc02.jpg" title=" 重大装备的疲劳与断裂工程应用分会场.jpg" alt=" 重大装备的疲劳与断裂工程应用分会场.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /span /strong /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 32px " 重大装备的疲劳与断裂工程应用分会场 /span /strong /p p style=" text-align: justify text-indent: 2em " 全国疲劳与断裂学术会议每两年举办一届,由中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会六学会轮流主办。本届会议由中国航空学会轮值,8月19日晚,学会进行了轮值主办交旗仪式,2022年第二十一届全国疲劳与断裂学术会议将由中国金属学会轮值,并定于山东青岛举行。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/a33be4d9-625f-47b8-8937-ae6986e12337.jpg" title=" 会议交接仪式.jpg" alt=" 会议交接仪式.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国航空学会学术交流部部长余策(左)和中国金属学会学术交流部部长丁波(右)进行轮值主办交旗仪式 /strong /p p style=" text-align: justify text-indent: 2em " 本次会议共得到了40余家厂商的大力支持,凯尔测控、朗杰测控、力试科仪、QuantumDesign、MTS、欧兰科技、三思纵横、中机试验等厂商参展。 /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0967cb1a-7631-4ea5-a2ff-531e76e9e27f.jpg" title=" 未命名_meitu_3.jpg" alt=" 未命名_meitu_3.jpg" / /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/bafe61aa-08a3-4dfe-bbfb-0cf760200e82.jpg" title=" IMG_4131_meitu_1.jpg" alt=" IMG_4131_meitu_1.jpg" / /p p style=" text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c7647e0e-96b0-4726-9139-f804b8655bcf.jpg" title=" 未命名_meitu_2.jpg" alt=" 未命名_meitu_2.jpg" / /p p style=" text-indent: 0em text-align: center " strong 展商掠影 /strong br/ /p p br/ /p
  • 于兆斌先生:动态断裂仪器化冲击技术在材料测试及新品种开发中的应用
    仪器信息网讯 为提高广大试验机用户的应用水平,并促进用专家、用户、厂商之间的相互交流,2012年5月16日,在CISILE 2012召开期间,由中国仪器仪表行业协会试验机分会与仪器信息网主办、北京材料分析测试服务联盟与我要测网协办的“第一届中国试验机技术论坛”在中国国际展览中心综合楼二楼204会议室成功举办。   如下为钢研纳克检测技术有限公司试验机产品经理于兆斌先生所作报告的精彩内容:   钢研纳克检测技术有限公司试验机产品经理于兆斌先生   报告题目:动态断裂仪器化冲击技术在材料测试及新品种开发中的应用   报告伊始,于兆斌先生介绍到,北京纳克分析仪器有限公司是中国钢研集团全资子公司,注册资金6000万人民币,是一家以冶金和材料检测仪器、标准样品的研制和销售为主的专业公司,在2012年1月正式更名为钢研纳克检测技术有限公司。其产品涉及试验机系列、硬度仪系列、金属原位分析仪、火花光谱仪、ICP光谱、碳硫氧氮氢分析仪、飞行时间质谱炉气分析系统、无损检测仪、在线检测系统和标准样品等。   此外,于兆斌先生还非常自豪地说到,钢研纳克在国内已经设有27个办事处,服务网络几乎遍及全国;钢研纳克作为主要起草单位,已参与制定了8个与试验机相关的标准;十一五期间,钢研纳克取得14项科研成果,获得了14个奖项与11项专利,制修订4项国际标准;此外,钢研纳克在永丰还建立了产业基地,设有仪器化冲击试验机生产车间、光谱调试车间、气体调试车间等。   目前,钢研纳克公司推出基于光学引伸计的新型微机控制材料试验机,该产品采用CCD动态摄像方式,实现了非接触式实时测量微小形变与全程测量,同时还可测量轴向和横向变形、自动计算材料延伸率等。这台新型微机控制材料试验机完全符合最新拉伸标准GB228-2010,解决了细丝、薄带、脆性等样品试验中形变测量不准确的技术难题。   接下来,于兆斌先生着重介绍了动态断裂仪器化冲击技术在材料测试及新品种开发中的应用。最后指出,要发展我国重要工程的相关规范,包括动态断裂分析在内的安全评估至关重要。因为普通冲击试验不能反映断裂过程,不能满足工程需要,而仪器化冲击试验机则能够完整地反映试样的断裂过程,如钢研纳克推出的NI系列冲击试验机产品便是可供用户选择的产品之一。   会议现场
  • 三思纵横赞助全国疲劳与断裂学术会议成功举行
    2018年8月15日至17日,第十九届全国疲劳与断裂学术会议在辽宁省沈阳市碧桂园玛丽蒂姆酒店顺利召开。本届会议由中国材料研究学会、中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会和中国机械工程学会共同主办。 三思纵横赞助参会,并在会上作技术发言,与与会代表围绕疲劳与断裂的相关主题进行了广泛而深入的交流。同时展出新型动态疲劳试验机及相关材料试验机,也得到专家的一致认可,多家知名企业向三思纵横的工作人员咨询产品的相关性能。! 本次会议总计有210个单位765人报名参会,收到355篇摘要,包括6篇大会报告。本次会议共有来自各研究所、高校、重点企事业单位600余位专家学者参加了此次学术会议,围绕疲劳与断裂的相关主题进行了广泛而深入的交流。与会代表围绕材料疲劳损伤微观机制、关键行业重点装备工程应用、先进测试方法等进行了介绍,并就解决材料与结构安全评价和寿命预测等问题展开了广泛深入的研讨。 三思纵横副总经理刘杰先生在会议上分析近年来动态疲劳试验机的技术创新及相关应用,围绕动态疲劳试验机在军工、航空航天、理化检测等相关材料试验应用做了深入探讨。这些年来,三思纵横分别为上海宝钢、沪东造船集团、西北橡胶等许多国内知名的军工单位提供了不同试验需求的动态疲劳试验机,加深了动态疲劳试验机市场应用,为相关企业实现较为理想的经济效益及社会效益做出较大贡献。 疲劳与断裂是一个周期长、出名慢甚至难出名的研究方向,但是做好这一传统而又重要的研究方向有助于中国制造业核心竞争力的本质提升!三思纵横将与行业专家一同努力,共同解决在该领域发达国家卡中国脖子的关键问题!助力中国工业全面追赶并超越发达国家!
  • 光催化烷基叔胺C(SP3)-N键断裂生成烷基仲胺和相应烯烃
    1. 文章信息标题:Photocatalytic cleavage of C(sp3)-N bond in trialkylamines to dialkylamines and olefinsDOI: 10.1002/cssc.202201119文章链接https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.2022011193. 期刊信息期刊名:chemsuschemISSN:1864-56312020年影响因子:9.14分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:化学4. 作者信息:翟建新(第一作者),周宝文(第一通讯作者);吴海虹(第二通讯);何鸣元(第三通讯作者)韩布兴(第四通讯作者)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,300-800范围)文章简介:发展一种无毒绿色的C-N键断裂的方法具有重要意义。我们制备了一种2D-Bi2WO6@1D-LaPO4异质结光催化剂,其可以对不同的三烷基胺进行光催化C(sp3)-N键断裂生成二级胺和对应烯烃。一系列结果表明,磷酸镧的引入能够与钨酸铋结合形成独特的“热”电子转移机制,从而改变载流子行为促进三烷基胺的C(sp3)-N键断裂;同时该现象也有别于常见以三级胺为牺牲试剂进行光催化二氧化碳还原的工作,通过GC-MS等手段表明烯烃的来源是三烷基胺而非二氧化碳。我们一致认为本文的创新之处有以下几点:首次将2D-Bi2WO6@1D-LaPO4光催化剂用于光催化C(sp3)-N键断裂2. 通过一系列表征表明磷酸镧的引入能够与钨酸铋结合形成独特的“热”电子转移机制,从而改变载流子行为3. 开发了一款新型的异质结催化剂4. 表明烯烃的来源是三烷基胺而非二氧化碳Possible mechanism of charge separation and transfer under light irradiation.
  • 万测受邀参加第二十一届全国疲劳与断裂学术会议
    8月21-24日,由中国金属学会、中国力学学会、中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会、中国航空学会共同举办的第二十一届全国疲劳与断裂学术会议在山东省青岛市黄岛区中铁世博城国际会议中心成功召开。 疲劳与断裂是材料服役的主要失效形式。疲劳与断裂的研究涉及材料研发、机械制造、现代交通、基础设施建设、石油化工和航空航天等重要行业和关键领域。会议不仅邀请多位专业领域的知名专家开展学术报告交流近两年来的学术进展和今后的发展方向,而且邀请多家知名力学相关企业参展,为各参展单位提供了更多交流与合作的机会。 作为知名材料力学检测设备供应商,万测携电液伺服疲劳试验机精彩亮相。该疲劳试验机结构小巧,外形美观,主要用于金属材料、复合材料及零部件、生物骨骼、弹性体的疲劳力学性能试验。可实现拉伸、压缩、弯曲、拉压加载、高周疲劳、低周疲劳等试验;配置相关辅助测量装置亦可实现断裂力学试验。凭借优秀的外观设计和专业的技术水平,受到了参会嘉宾的广泛关注,展位前咨询人群络绎不绝。 万测多年来致力于各种材料的疲劳力学性能检验,旗下拥有多种电子伺服疲劳试验机、电液伺服疲劳试验机,在国防军工、航空航天、高等院校等众多领域为大量客户提供了专业高效的动态疲劳试验解决方案。今后,万测也将继续立足试验机领域,着眼客户需求,持续技术创新,为材料力学的发展贡献出自己的一份力量。
  • 抗断裂且可拉伸,仿生蛋白质创造二维分层复合材料
    科技日报北京7月25日电 据最新一期《美国国家科学院院刊》报道,美国宾夕法尼亚州立大学研究人员利用鱿鱼环齿上的仿生蛋白质创造了一种复合的层状二维材料,这种材料具有抗断裂和很强的弹性。大自然创造出像骨头、贝壳这样的分层材料,正是这种多级结构才确保了骨头具有极高的抗断裂强度,得以支撑庞大的身体。骨头中含有无数空隙,然而,随着生长发育,它对缺陷的敏感度会降低。这意味着即使骨头已经含有诸多“缺陷”,也依然具有较高的强度。宾夕法尼亚州立大学高级纤维技术中心主任、劳埃德和多罗夕福尔哈克仿生材料主席梅利克德米雷尔和多萝西福尔哈克表示:“研究人员很少报告骨头和贝壳的这种界面特性,因为它很难通过实验进行测量。”以此为灵感,新开发的复合二维材料是由像石墨烯或MXene(通常是过渡金属碳化物、氮化物或碳氮化物)这样的原子层厚的硬材料组成的,这些材料之间被一层东西黏合并隔开。虽然大块石墨烯或MXene具有块体性能,但二维复合材料的强度来自界面性质。德米雷尔介绍说,他们使用的是一种界面材料,可通过重复序列加以修改,从而能够微调性质,让它变得灵活而强大。此外,这种材料还具有独特的热传导性质。“这种材料很适合做跑鞋的鞋垫。”德米雷尔说,“它可以给脚部降温,反复弯曲也不会把鞋垫弄坏。”这些二维复合材料还可用于柔性电路板、可穿戴设备和其他需要强度和灵活性的设备。根据德米雷尔的说法,传统的连续介质理论无法解释为什么这些材料既坚固又灵活,但模拟表明,界面很重要。当组成界面的材料比例较高时,当材料受到压力时,界面会发生局部断裂,但作为整体的材料不会断裂。【总编辑圈点】搜索“鱿鱼环齿”,会发现科研人员早已对它摩拳擦掌,开展过多项研究,并尝试在不同领域应用。鱿鱼环齿蛋白质可被加工制成纤维和薄膜,可以替代塑料制品,提升织物的耐磨性,制作可穿戴设备… … 当然,要大规模应用这种仿生材料,需要先制造出仿生蛋白质,毕竟也不能一只只抓住鱿鱼扒拉蛋白质。本文中,科研人员用仿生蛋白质制造出复合层状材料,可以让它又坚固又灵活。从大自然的神奇生物身上,人类获得了很多“外挂”,改造后为自己服务。
  • 第二十届全国疲劳与断裂学术会议于重庆盛大开幕
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 2020年8月19日,“第二十届全国疲劳与断裂学术会议”在重庆保利花园皇冠假日酒店盛大开幕。本届会议由中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会主办,中国航空学会失效分析分会、中国航空学会结构与强度分会、中国航空学会材料工程分会、中国航发北京航空材料研究院承办。 /p p style=" text-align: justify text-indent: 2em " 会议作为我国疲劳断裂领域交流、研讨与合作的平台,吸引了130余家单位423人报名参会,共计收到340篇摘要,此外,会议也得到了40余家厂商的大力支持。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/f8af3fe5-1829-4bd3-bfc1-5268dd13d335.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 大会现场 /strong /p p style=" text-align: justify text-indent: 2em " 19日上午,大会进行开幕式和主会场报告。大会开幕式由大会副主席、中国航发北京航空材料研究院检测中心副主任刘昌奎研究员主持,中国航空学会秘书长姚俊臣为大会致辞。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/29eb9c10-e3df-431d-b34e-f68fe048c462.jpg" title=" 刘昌奎.png" alt=" 刘昌奎.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 大会副主席、中国航发北京航空材料研究院检测中心副主任刘昌奎研究员主持开幕式 /strong /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/84a38039-f2f2-4d6d-a239-6ee0021a1be7.jpg" title=" 姚.png" alt=" 姚.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国航空学会秘书长姚俊臣致辞 /strong /p p style=" text-align: justify text-indent: 2em " 开幕式后,中国科学院院士、飞机寿命与结构可靠性专家闫楚良;北京航空材料研究院研究员吴学仁;清华大学工程力学系长江学者、特聘教授冯西桥;中国科学院金属研究所研究员张哲峰;中国飞机强度研究所所长、科技委主任王彬文;华东理工大学教授张显程;中国航发航材院发动机材料力学行为研究中心研究员于慧臣;北京科技大学国家材料腐蚀与防护科学数据中心教授刘智勇;法国TRANSVALOR(传威科技)公司总经理雷迅依次带来了精彩的报告。大会报告环节由大会学术委员会主任、中国航发北京航空材料研究院专务陶春虎研究员和刘昌奎研究员担任主持。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/87c53149-6ed9-4f81-86e4-23df57b407a9.jpg" title=" 陶春虎.png" alt=" 陶春虎.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 大会学术委员会主任、中国航发北京航空材料研究院专务陶春虎研究员主持大会报告 /strong /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/e8eb82f9-7661-4bd9-bf10-b9fdafc9cd7d.jpg" title=" 闫楚良.png" alt=" 闫楚良.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 闫楚良院士作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《飞机定寿、延寿和保障飞行安全的关键技术与技术途径》 /strong /p p style=" text-align: justify text-indent: 2em " 闫楚良院士从飞机寿命可靠性评定原理、载荷谱飞行实测、全尺寸疲劳试验、单机寿命智能监控等四方面进行了讲述。闫楚良院在报告中提到,随着泛在物联网建设的快速推进,相关技术的进步给飞行器测量技术带来了机遇,智能量测系统将会承载更多的泛在物联网技术,这也给智能单机寿命监控的创新发展提出了新的挑战。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/5e1a06ce-8488-46c7-93d9-c42f91db8797.jpg" title=" 吴学仁.png" alt=" 吴学仁.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国航发北京航空材料研究院吴学仁研究员作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《断裂力学的权函数理论与应用——现状与展望》 /strong /p p style=" text-align: justify text-indent: 2em " 权函数法是具有独特优势的裂纹体断裂力学分析计算得强大工具。吴学仁研究员在报告中简要总结了国际断裂界几十年来权函数的主要研究应用工作,并对三种广泛工程应用的解析权函数法做了深入和公正的评价比较。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/0b2aa52a-115d-41fe-b0d5-5a0a9e3dbcb7.jpg" title=" 冯西桥.png" alt=" 冯西桥.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 清华大学冯西桥教授作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《生物材料的强韧化机制与模型》 /strong /p p style=" text-align: justify text-indent: 2em " 冯西桥教授介绍了生物材料强韧化的主要特点,珍珠母的强韧化机制,生物纤维复合材料的强韧性与超弹性机制以及胚胎发育中的断裂力学问题等内容。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 540px height: 360px " src=" https://img1.17img.cn/17img/images/202008/uepic/29692c8d-1674-4a37-b201-4cd1cd04f036.jpg" title=" 张哲峰.png" alt=" 张哲峰.png" width=" 540" height=" 360" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中科院金属研究所张哲峰研究员作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《金属材料疲劳性能预测与优化探索》 /strong /p p style=" text-align: justify text-indent: 2em " 张哲峰研究员在报告中介绍了金属材料的关键力学性能,如静态性能、疲劳性能,金属材料强度与塑性制约关系等,并提出了如何预测和提高金属材料的疲劳强度等关键科学问题。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/c87afb7d-9aa8-4a3e-810b-1dd4dcf28119.jpg" title=" 王彬文.png" alt=" 王彬文.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国飞机强度研究所王彬文研究员作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《航空疲劳技术进展与挑战》 /strong /p p style=" text-align: justify text-indent: 2em " 王彬文研究员从航空疲劳的背景与演进、规范与标准、体系与进展、挑战与方向等方面进行报告。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/881034cf-76ee-4910-9933-75bc8ee1d4e5.jpg" title=" 张显程.png" alt=" 张显程.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 华东理工大学张显程教授作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《面向十四五的机械结构强度学——从可靠性设计到可靠性制造》 /strong /p p strong /strong /p p style=" text-align: justify text-indent: 2em " 张显程教授在报告中讲到几个研究前沿问题:基于材料微观结构调控的机械结构寿命保障;极端严苛环境下结构性能测试与评定方法;基于微观损伤、残余应力与变形调控的可靠性制造方法;机械结构运维智能监控与寿命管理。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/0816e7eb-1ffc-4e6d-a887-89c319e0c10d.jpg" title=" 于慧臣.png" alt=" 于慧臣.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国航发北京航空材料研究院于慧臣研究员作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《增材制造钛合金疲劳行为研究现状及航材院相关研究工作》 /strong /p p strong /strong /p p style=" text-align: justify text-indent: 2em " 于慧臣研究员在报告中讲述了钛合金疲劳行为研究研究背景、研究现状与趋势,并介绍了航材院的相关研究工作。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/70ef1df5-8922-4403-bfab-dbe1d6612d3c.jpg" title=" 刘智勇.png" alt=" 刘智勇.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 北京科技大学刘智勇教授作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《高强海工钢腐蚀疲劳微观机制与耐腐蚀钢开发》 /strong /p p strong /strong /p p style=" text-align: justify text-indent: 2em " 刘智勇教授讲到,CF萌生和拓展过程均受到局部位错增殖及其电化学效应控制,即AD与HE机制混合控制。耐EAC钢的设计要同时注重成分和组织调控。对于薄壁体系用钢,应着重抑制AD的作用进行设计;对于厚壁体系用钢,应同时加强对AD和HE作用的抑制进行设计。 /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202008/uepic/0dacabb2-c846-46a0-88d2-ad4e0b255c25.jpg" title=" 雷迅.png" alt=" 雷迅.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 法国传威科技雷迅总经理作大会报告 /strong /p p style=" text-align: center " strong 报告题目:《材料研发中疲劳断裂的分析仿真平台》 /strong /p p style=" text-align: justify text-indent: 2em " 据了解,全国疲劳与断裂学术会议始于1977年召开的“中国金属学会断裂学科讨论会”和1982年召开的“全国疲劳学术大会”,在各自举行八届以后,1998年合并举办“第九届全国疲劳与断裂学术会议”。此后每两年举办一届,由中国航空学会、中国金属学会、中国力学学会、中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会六学会轮流主办。8月19日晚,将进行会议交接仪式。 /p p style=" text-align: justify text-indent: 2em " 本次会议为期2天,8月20日,还将同期举办“疲劳与断裂力学分会场”、“疲劳与断裂微观行为分会场”、“关键行业的疲劳与断裂工程应用分会场”、“典型材料与结构的破坏理论研究分会场”、“材料与结构疲劳断裂的测试表征分会场”、“复杂环境下的材料损伤失效分析分会场”、“重大装备的疲劳与断裂工程应用分会场”等七个分会场。 /p p style=" text-align: center text-indent: 0em " & nbsp /p
  • 8月18-20日 第二十届全国疲劳与断裂学术会议将于重庆召开
    p style=" text-align: justify text-indent: 2em " 疲劳与断裂是服役结构的主要破坏形式。有关数据表明,疲劳、断裂与磨损每年带来的损失约相当于国民经济总产值的4%。因此,世界各国都十分重视疲劳断裂机理及其预防措施的研究。疲劳断裂的研究与应用涉及航空航天、建筑建材、冶金矿产、石油化工和交通运输等重要行业和关键领域。 /p p style=" text-align: justify text-indent: 2em " 为解决材料与结构的安全评价和寿命预测问题,推动我国疲劳断裂领域的理论研究和技术应用,服务国家经济建设和社会发展,加强该领域专家学者交流、研讨与合作,“第二十届全国疲劳与断裂学术会议”将于2020年8月18-20日在重庆保利花园皇冠假日酒店召开。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 主办单位 /strong /span /p p style=" text-align: justify text-indent: 2em " 中国航空学会 /p p style=" text-align: justify text-indent: 2em " 中国金属学会 /p p style=" text-align: justify text-indent: 2em " 中国力学学会 /p p style=" text-align: justify text-indent: 2em " 中国腐蚀与防护学会 /p p style=" text-align: justify text-indent: 2em " 中国机械工程学会 /p p style=" text-align: justify text-indent: 2em " 中国材料研究学会 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 承办单位 /strong /span /p p style=" text-align: justify text-indent: 2em " 中国航空学会失效分析分会 /p p style=" text-align: justify text-indent: 2em " 中国航空学会结构与强度分会 /p p style=" text-align: justify text-indent: 2em " 中国航空学会材料工程分会 /p p style=" text-align: justify text-indent: 2em " 中国航发北京航空材料研究院 /p p style=" text-align: justify text-indent: 2em " strong 一、会议时间 /strong /p p style=" text-align: justify text-indent: 2em " 2020年8月18-20日 /p p style=" text-align: justify text-indent: 2em " strong 二、会议地点 /strong /p p style=" text-align: justify text-indent: 2em " 重庆保利花园皇冠假日酒店 /p p style=" text-align: justify text-indent: 2em " strong 三、会议日程 /strong /p table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 568" valign=" middle" colspan=" 2" style=" background: rgb(75, 172, 198) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" p span style=" color: rgb(255, 255, 255) " 2020年8月18日 会议报到 /span /p /td /tr tr td width=" 192" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 13:30-20:00 /p /td td width=" 358" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 保利花园皇冠假日酒店 /p /td /tr /tbody /table table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 568" valign=" middle" colspan=" 3" style=" background: rgb(75, 172, 198) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p span style=" color: rgb(255, 255, 255) " 2020年8月19日 主会场安排 /span /p /td /tr tr td width=" 158" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 9:00-9:20 /p /td td width=" 156" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 开幕式 /p /td td width=" 226" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F皇冠宴会厅 /p /td /tr tr td width=" 158" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 9:20-12:00 /p /td td width=" 156" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 大会报告 /p /td td width=" 226" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F皇冠宴会厅 /p /td /tr tr td width=" 158" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 12:00-13:30 /p /td td width=" 156" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 午餐 /p /td td width=" 226" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 1F月色西餐厅 /p /td /tr tr td width=" 158" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 13:30-16:20 /p /td td width=" 156" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 大会报告 /p /td td width=" 226" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F皇冠宴会厅 /p /td /tr tr td width=" 158" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 18:00 /p /td td width=" 156" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 晚宴 /p /td td width=" 226" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F皇冠宴会厅 /p /td /tr /tbody /table table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 568" valign=" middle" colspan=" 2" style=" background: rgb(75, 172, 198) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p span style=" color: rgb(255, 255, 255) " 2020年8月20日 分会场安排 /span /p /td /tr tr td width=" 334" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 疲劳与断裂力学分会场 /p /td td width=" 225" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F多功能Ⅳ-1厅 /p /td /tr tr td width=" 334" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 疲劳与断裂微观行为分会场 /p /td td width=" 225" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F多功能Ⅳ-2厅 /p /td /tr tr td width=" 334" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 关键行业的疲劳与断裂工程应用分会场 /p /td td width=" 225" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F多功能Ⅳ-3厅 /p /td /tr tr td width=" 325" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 典型材料与结构的破坏理论研究分会场 /p /td td width=" 225" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F多功能厅Ⅱ-1厅 /p /td /tr tr td width=" 334" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 材料与结构疲劳断裂的测试表征分会场 /p /td td width=" 225" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F多功能厅Ⅱ-2厅 /p /td /tr tr td width=" 334" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 复杂环境下的材料损伤失效分析分会场 /p /td td width=" 225" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F多功能厅Ⅱ-2厅 /p /td /tr tr td width=" 334" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p 重大装备的疲劳与断裂工程应用分会场 /p /td td width=" 225" valign=" top" style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " p B2F多功能厅Ⅲ厅 /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " strong 四、报名参会 /strong /p p style=" text-align: justify text-indent: 2em " 1.报名方式: /p p style=" text-align: justify text-indent: 2em " 会议网站http://ncff2020.com/-报名参会-我要报名-注册账户并填写信息。 /p p style=" text-align: justify text-indent: 2em " 2.报名和会议费交纳: /p p style=" text-align: justify text-indent: 2em " 2020 年 6 月 30 日前注册交费: /p p style=" text-align: justify text-indent: 2em " 正式代表 1600 元/人,学生 1200 元/人。 /p p style=" text-align: justify text-indent: 2em " 2020 年 6 月 30 日后注册交费: /p p style=" text-align: justify text-indent: 2em " 正式代表 1800 元/人,学生 1400 元/人。 /p p style=" text-align: justify text-indent: 2em " 参会专家学者食宿统一安排,费用自理。代表注册时勾选入住酒店和抵离日期,疫情期间已经注册的代表将按实际会议日期及大家入住天数进行顺延。由于参会人数较多,我会在收到会议费转账信息后为参会代表保留房间,房间数量有限,按缴费时间先后留房。 /p p style=" text-align: justify text-indent: 2em " 7 月 20 日以后缴费不保证房间预留。 /p p style=" text-align: justify text-indent: 2em " 3.发票: /p p style=" text-align: justify text-indent: 2em " 8 月初开发票,届时在群中统计发票信息,开发票前申请退费的收取 20%手续费,报名截止后不接受退费。 /p p style=" text-align: justify text-indent: 2em " 参会代表应认真填写开具发票所需信息,因信息提供错误导致重开发票的,需另缴 100 元手续费。本次会议默认提供增值税电子普票,会议开始前通过注册邮箱发送;需要纸质发票和专用发票的请在报名时注明,发票在注册报到时领取;需要邮寄的会后统计邮寄地址,邮寄方式到付。 /p p style=" text-align: justify text-indent: 2em " 4.缴费汇款方式: /p p style=" text-align: justify text-indent: 2em " 户 名:中国航空学会 /p p style=" text-align: justify text-indent: 2em " 帐 号:0200 0011 0908 9123 894 /p p style=" text-align: justify text-indent: 2em " 开户行:工行北京安定门支行 /p p style=" text-align: justify text-indent: 2em " 备注:NCFF-20+姓名电话 /p p style=" text-align: justify text-indent: 2em " strong 五、联系方式 /strong /p p style=" text-align: justify text-indent: 2em " 论文集出版:王小玉 010-62496238 sxfx621@163.com /p p style=" text-align: justify text-indent: 2em " 会议日程:李冀 13720896502(同微信) /p p style=" text-align: justify text-indent: 2em " 缴费发票:崔芷健 010-84924317 17888834535(同微信) /p p style=" text-align: justify text-indent: 2em " 安向阳 010-84924386 anxy@csaa.org.cn /p p style=" text-align: center " br/ /p
  • 国家科技部重大科仪专项电液伺服动态疲劳试验机完美亮相第十七届全国疲劳与断裂学术会议
    三十四年,对于一个行业而言可能意味着时代的更迭,然而对于连续举办了十七届的全国疲劳与断裂学术会议而言,则代表着它在学术会议上已攀上了新的巅峰。 2014年8月22-24日,在“山水甲天下”的中国桂林,由中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会、中国航空学会、中国金属学会、中国力学学会联合主办的“第十七届全国疲劳与断裂学术会议 ”隆重举行 ,六百余人如数参加会议,其影响力早已声名远播,成为屹立业界之巅、众人瞩目的一场盛会。三思纵横展会情况(1)三思纵横展会情况(2) 深圳三思纵横科技股份有限公司无可争辩地成为此次会议的最佳赞助商,在主会厅背景板、报到处背景板、论文光盘封面、论文集内页、《腐蚀防护之友》专刊等均能看到三思纵横LOGO展示和广告宣传。不仅如此,三思纵横还在会议前厅处设立了客户洽谈区和设备展示区两个展台,携国家科技部重大科仪专项电液伺服动态疲劳试验机成功助力此次会议,成为动态疲劳行业领域的唯一展出商,其企业发展态势和动态产品的推陈出新获得与会嘉宾们的广泛关注!客户参观电液伺服动态疲劳试验机 三思纵横的动态疲劳试验机的现场展出获得了大量专家学者的关注。来自全国各地一线院校力学专业和质检机构的参会代表们就设备的稳定性和可靠性与技术研发人员进行了充分的交流。他们看到,三思纵横电液伺服动态疲劳系统的关键单元和元件均采用当今国际领先技术制造,整个试验系统的整体性能与国际水平相当,可广泛应用于各类材料、结构件和部件的动态性能、疲劳以及静态力学性能试验。 部分专家表示,疲劳领域依然具有国内很多试验机企业难以攻克的技术难关,三思纵横能大力亮相此次会议,充分说明了对设备的专业水平具备十足的信心,希望三思纵横以技术实力填补动态疲劳产品的产品供应空缺,真正给广大试验机用户带去福音! 总工程师钱正国和621所副总工程师陶春虎留影 董事长黄志方和中航工业主任何玉怀留影 在董事长黄志方和总工程师钱正国的陪同下,中航工业首席专家、北京621所副总工程师陶春虎和中国航空工业集团北京航空材料研究院的著名教授何玉怀亲临动态疲劳试验机展台现场,亲临动态疲劳试验机展台现场,两位专家通过对金属疲劳试验数据展示的简单分析,对设备性能给予了高度评价。作为此次会议的分会场报告主席,两位专家表示:三思纵横通过此次会议的设备展示,让全国的疲劳学者专家们都了解了国家科技部重大科仪专项动态疲劳试验机的整体情况,并相信在三思纵横的努力研发下定能获得成功。此外,北京航空材料研究院也表示大力支持三思纵横的技术研究和产品推广,希望能够携手共谋未来发展!董事长黄志方作晚宴致辞 黄志方董事长在23号的主宴会厅作了简短扼要的晚宴致辞。他并没有在5分钟的讲话时间里高谈阔论,仅以简短的1分钟讲话,获得了全场人的掌声和认同。他说:三思纵横此次携电液伺服动态疲劳试验机亮相此次会议,承担着国家科技部重大专项的荣耀,也肩负着科技部部长万钢的殷切期待,更有着北京航空材料研究院的全力支持。在今后,我们将一如既往地为中国试验机用户提供更为优质的产品和服务! 简短的几句话,透露着一个企业家的信心和实力。优秀的产品和企业不仅需要市场的推广和带动,更需要市场的检阅和用户的口碑。在此次会议上,我们相信,电液伺服动态疲劳试验机的亮相足以证明一切,这是三思人不懈前行的信心,更是我们坚定“以质取胜”的信念!大会留影 两天的会议获得圆满成功,三思纵横也在此次会议中对品牌和产品作了一次完美的展现。作为中国领先的材料试验设备和材料试验解决方案的服务商,每一次技术革新都代表着三思纵横在试验机领域的进步和发展,每一次客户的认可和信任都带给三思纵横不断前进和追逐的动力。三思纵横也将不断努力,为用户提供更稳定、更精准、更可靠的试验机产品和服务,打造世界级材料力学性能测试领域的领导品牌! 三思纵横,从未止步!
  • 加拿大回收对儿童存在潜在危害的强力磁铁套装
    加拿大政府于5月22日宣布召回六类含有小型强力磁铁容易被儿童吞咽或吸入的面向成人销售的新型磁铁套装。   召回涉及的磁球和磁铁立方体在中国大陆生产,可被用于构建雕塑、拼图、图案和各种形状。受影响的磁铁模型包括以下几款:BuckyBalls Magnetic Building Spheres、BuckyBalls BuckyBars Magnetic Building Rods、BuckyBalls BuckyBigs XL Magnetic Building Spheres、BuckyBalls BuckyCubes Magnetic Building Cubes、BuckyBalls Chromatics Magnetic Building Spheres 和BuckyBalls Sidekick Magnetic Building Spheres。这些磁铁套装呈各种形状、尺寸和颜色,包括铬黄色、金色、银色、粉色、蓝色、绿色和黑色。加拿大政府表示,有关磁铁套装的风险评估显示,这些磁铁套装会危害人类健康和安全,因为当吞下超过一个强力磁铁,磁铁会在消化系统中与另一个磁铁吸附。磁铁会相互吸引成为块状从而缓慢撕裂肠道壁,导致穿孔。   除了召回,加拿大当局还发布了一份新奇磁铁套装危害的警告。加拿大卫生部尤其担心那些含有超过一个的小型强力磁铁的套装,这类套装常被用作玩具或一般娱乐性操作,而忽视使用者年龄的大小。加拿大卫生部认为,稀土元素制成的磁铁磁性是传统磁铁的许多倍,会导致更大的危害。
  • 2020下半年核酸提取仪市场:疫情强力催化 领头羊初显
    进入新年以来,国内多个地区零星爆发新冠疫情。按照疫情防控要求,全国多个中高风险区展开大规模筛查,现场检测机构超负荷运转。也是在疫情期间,“核酸检测”首次破圈,为公众所认知。核酸提取作为作为核酸检测的“第一步”,也是最关键的一步,其获得的核酸质量的优劣直接影响到下游分子生物学试验的成败。新冠疫情之前,核酸提取多采用手工抽提法,流程长,操作复杂,实验人员在操作过程中存在较高的感染风险,一般只有大型三甲医院才使用全自动的核酸提取工作站或半自动核酸提取仪进行核酸提取。在疫情期间,自动化的核酸提取仪在加速新冠病毒检测中起了举足轻重的作用。仪器信息网统计了2020年下半年核酸提取仪的招中标讯息,一共搜集到642条中标数据,并对核酸提取仪采购增量、采购单位、中标品牌、中标型号及金额进行了分析。疫情强力催化核酸提取仪市场 需求暴增 2018年-2020年核酸提取仪中标数量变化一直以来,核酸提取仪市场属于稳中有进,以约20%的速度持续增长。2020年特别是下半年,受疫情对核酸检测的迫切需求,核酸提取仪的普及和使用被强力催化,核酸提取仪招标数量激增。据仪器信息网跟踪,2019年以前,中国政府采购网每年有效中标信息不到百条,2019年也才117条,而2020年核酸提取仪中标信息激增至642条,用户需求暴增5倍有余。2020年7月-12月核酸提取仪中标讯息条数按月份来看,2020年下半年以来,核酸提取仪的招标需求居高不下,且持续增长,在12月达到最高点。按照疫情防控态势,核酸提取仪的招标需求在未来很长一段时间仍将保持较高增长,核酸提取仪市场大有可为。医疗用户占九成 医院/疾控中心成最大采购单位核酸提取仪中标单位当前核酸提取系统最核心的用户群体仍然是医疗领域用户。对采购单位进行分析发现,超九成招标单位为医疗卫生机构:医院、疾控中心、卫生健康局、妇幼保健院、血站、计生中心等,其中医院采购量最高达44.9%;疾控中心采购量次之,占比达30.6%。这也印证了正是“新冠疫情强力催化了核酸提取仪市场”这一结论。核酸提取仪中标金额分布对中标核酸提取仪金额分析,发现30万-50万的核酸提取仪最受采购单位欢迎,这个价格区间主要为国产核酸提取仪。国产品牌主导 领头羊企业初显 核酸提取仪进口/国产比例(数量)中标信息覆盖50家核酸提取仪研发制造企业,其中外资企业仅占6席。从核酸提取仪中标数量来看,81.3%为国产品牌,进口品牌仅占18.7%。可以说在核酸提取仪市场,国内品牌已经占据显著优势。核酸提取仪中标品牌占比从核酸提取仪中标数量来看,TOP15中有13家国产企业。天隆科技、硕世生物两家国产企业领跑核酸提取仪市场,销量占比分别为16.2%和12.4%。赛默飞位居第三,销量占比仅为8.6%。和其余仪器品类不同,核酸提取仪市场远没有达到垄断,且国产企业在这个市场中发挥了中流砥柱作用,市场领头羊企业已经初步显现。但就核酸提取技术来看,国内厂商差距不大,且有近三成的市场分散度高,有待深挖,国产厂商在这一细分领域仍大有作为。TOP15明星产品一览 核酸提取仪热门中标型号西安天隆或成核酸提取仪市场最大赢家,生产的GeneRotex96、NP968-C两款核酸提取仪分列热门型号TOP2。硕世生物SSNP-9600A和达安基因StreamSP96核酸提取仪分别位列第三和第四,赛默飞KingFisherFlex是唯一进入TOP10的进口核酸提取仪设备。详情请阅览如下表格型号品牌GeneRotex96天隆NP968-C天隆SSNP-9600A 硕世生物StreamSP96 达安基因KingFisherFlex赛默飞EXM6000中元汇吉AU1001-96百泰克SSNP-2000A硕世生物NPA-32P博日BK-HS96博科Auto-Pure32A 奥盛SSNP-3000A 硕世生物S-S13A圣湘QIAcube凯杰MagNAPure罗氏热门中标型号及其品牌附:仪器信息网“核酸提取仪”专场
  • 上海蟠龙医用材料有限公司选购我司口罩拉力试验机
    上海东北亚新纺织科技有限公司董事长、有“袜王”之称的高宝霖决定直接扩大生产,在市区相关部门的支持下,他及时转型布局口罩生产线,他设立了专门生产口罩的上海蟠龙医用材料有限公司。口罩按照形状不同,有平面口罩、杯型、毛巾口罩、三角巾口罩、棉纱口罩以及防毒面具等。防护口罩包括防尘口罩、防护口罩、防毒面具等,根据结构和作用原理,可分为过滤式和隔离式呼吸防护器两大类。符合测试标准:YY 0469-2011 医用外科口罩标准规定每根口罩带与口罩体连接点处的断裂强力应不小于10NYY/T 0969-2013 一次性使用医用口罩标准规定每根口罩带与口罩体连接点处的断裂强力应不小于10NGB T 32610-2016 日常防护型口罩标准规定每根口罩带与口罩体连接点处的断裂强力应不小于20NGB T 32610-2016 日常防护型口罩技术规范规定了口罩带及口罩带与口罩体的连接处断裂强力试验方法测试设备:
  • 质量把关,让“逆行者”披上坚固战衣
    导读:当前新型冠状病毒疫情形势严峻,为了防止疫情进一步扩大,全国超过15个省市延迟复工;疫情防控力度加大,各地不断出现物资告急的问题。2月7日,国家药监局加快医用防护服注册审批和生产许可,要求符合《医用一次性防护服技术要求》(GB19082-2009)。前线的医生所用的医用防护服等耗材的质量引发再一次引发极大的关注。其中医用防护服不单单要在医务人员接触潜在感染性患者血液、体液、分泌物、空气中颗粒等起到阻隔作用,更要保证防护服的力学性能结实可靠。其撕破强力、接缝强力、胀破强力和刺破强力对防护服而言十分重要,不同的材质和实验参数的变化对防护服强力测试的结果有着直接的关系。图1.防护服外观根据《医用一次性防护服技术要求》(GB19082-2009),此处举例对医用纺织纱布进行拉伸试验,测试其最大断裂强度与断裂伸长率。(GB19082-2009)规定防护服关键部位材料按照GB/T 3923.1-2013对其关键部位的材料进行拉伸试验并得到其断裂强度与断裂伸长率。图2 防护服关键部位材料拉伸试验图3 试验结果图像表1 实验数据在疫情当前的非常时期,岛津万能材料试验机为各类医疗耗材的力学性能测试保驾护航,不仅对防护服的力学性能进行质量评估,还能测试硅胶手套拉伸强度、纱布包装剥离测试、防护用品撕裂测试与皮下注射针推进力等一系列试验。图4. 注射针推力试验医用防护用品,保量更要保质。岛津在行动,武汉加油,中国加油! 撰稿人:方俊淇
  • 牛奶中土霉素,四环素,金霉素,强力霉素残留量的测定
    四环素类抗生素是一类广谱抗生素,包括土霉素,四环素,金霉素和强力霉素等。奶牛饲养中经常使用四环素类抗生素用于疾病的治疗及预防,但四环素类药物的滥用,会造成牛奶中这类药物残留量超标,如果人们长期饮用了这类奶制品,会使人体产生对四环素类药物严重的耐药性,影响疾病治疗。因此四环素类药物残留的检测也越来越受到人们的重视。本文参考GB/T 22990-2008中的检测方法,应用日立Primaide高效液相色谱系统,对牛奶中四环素类抗生素进行了分析。标准样品的测定例 仪器配置:Primaide 1110泵,1210自动进样器,1310柱温箱,1410紫外检测器。结果表明:四环素类抗生素在62.5~2000μg/L的浓度范围内线性关系良好,R2≥0.9997。重现性良好。样品的测定例n 样品前处理用0.1 mol/L Na2EDTA-Mcllvaine缓冲液提取试样中四环素类抗生素残留,SPE柱净化。n 样品测定结果 对牛奶样品进行测定,未检出土霉素,金霉素和强力霉素。对牛奶样品进行加标回收率实验,在50~100μg/kg的添加浓度下,牛奶中四环素类抗生素的加标回收率在85%~98%之间,符合GB/T 22990-2008规定的回收率要求。
  • 国家层面强力支持 精准医疗研发计划将于“十三五”启动
    中国将在“十三五”期间启动一项“精准医疗重点科技研发计划”,并将选择性地在全国各个具备条件和优势的区域中的医院和社区内建设示范中心。上海产业技术研究院生物医学研究院院长李亦学在28日的浦江创新论坛智慧医疗产业论坛上向《第一财经日报》记者透露了这一信息。  国家层面强力支持  “精准医疗计划的一个重要方面就是建设区域示范中心,把示范中心的成果运用到临床实践,而且其中必然需要医院和病人的参与,这个计划与智慧医疗密切相关,将会产生巨大的社会经济效益。”李亦学表示,该计划的论证阶段已经结束,“十三五”期间肯定会启动,国家层面对此项目会有“非常强大的支持力度”。  早在今年3月,就有报道称科技部在我国首次关于精准医学的专家会议上决定,2030年之前在此项目上投入600亿元。  时隔半年,精准医疗计划已经完成了论证。但是,在产业和社会层面,对于精准医疗的讨论仍在热烈进行,与精准医疗密切相关的云计算、大数据、物联网和移动互联网等概念,在医疗方向的运用被不断深挖。  “我们搭建起来云服务平台之后,已经向多个领域深入,健康是我们的一个重点项目。”金山软件CEO张宏江向《第一财经日报》记者强调了金山云的“AllinCloud”战略。  张宏江认为,智慧医疗体系的建立依靠三大技术支撑,一是大数据和人工智能的结合,二是移动医疗的普及,三是连接起孤岛的云平台。  “今天我们的社会有很多患者,但是我们的数据是支离破碎的,无法很好地从数据中提取出一些很好的病例数据,从而得到一些经验总结和研究。”张宏江举例,三甲医疗机构自己的病人过多,无法把自己的力量集中在一些疑难杂症上,更无法和社区医院进行交流,这是医疗系统运行模式的问题。  隐私和参与  精准医疗的概念最早由美国医学界在2011年提出,今年1月,美国总统奥巴马在国情咨文中宣布启动精准医疗计划,并斥2.15亿美元作为第一笔投资。该计划还将搜集数百万志愿者的健康数据进行研究,因此,注重隐私和鼓励全民参与,成为该计划一个硬币的两面。  对中国的相关行业人士来说,这两面同样存在,并且机遇和挑战因人口规模而放大。  精准医疗的一个重要方面就是基因测序,基因信息的数据化一旦掌握,便可能在未来将过去中国面临的负担转化为资源。  生命科学企业华大基因执行副总裁朱岩梅表示,中国有数量庞大的病源和样本,一旦拥有成本低廉的数据采集工具,从全基因组到疾病,每个人将从生到死不同时间的基因档案建立起来,那将会是规模庞大的数据。  朱岩梅提到,中国在精准医疗领域具有“本土需求”,这体现在,中国目前的出生缺陷率为5.6%,由此造成8000万残疾人,而发达国家的水平为2%多一点,此外,中国的肿瘤患者5年生存率为33%,而发达国家是70%。  “如果能够通过这样的技术平台,帮助中国把出生缺陷率降低50%,达到发达国家的水平,同时把肿瘤患者5年生存率从33%提高到50%,行不行?我们如果把所有的医院联合起来,不管是原来的电子病例还是现在的样本采集,中国这么多的病床、这么多病人,如果我们关注这两个最根本的民生需求,是不是就是中国最经典的创新需求?”朱岩梅表示了自己对精准医疗市场需求的理解。  北京大学人民医院信息中心主任刘帆则表示,医院数据通过两个方面产生价值,一是临床研究,通过回顾或预测寻找规律,二是通过临床数据帮助医生做出更好的诊断,“我个人认为,医院的系统化绝对不是移动治疗挂号和支付等等,而是所有数据的整合,它能发挥的价值远远大于医院的单一系统。”  需要更多开放数据  朱岩梅在谈及基因采样时提到了一组关于唐氏综合征——一种由染色体异常导致的先天缺陷——的检测数据,在全球62个国家做了74万例孕妇检测,检测准确率高达99.99%。一旦检测样本扩大,成本就可以得到大幅下降,届时将有更多人得到预诊。  但是,即便准确率如此之高,相比医院产生的大量数据,上述的检测样本规模依然太小,精准医疗需要依托更大的开放和共享数据。  上海红十字会常务副会长高解春表示,中国完全有条件在精准医疗方面走在全球前列,但是,顶层设计非常重要,民间也要有共识,共同参与医疗数据的完善。  “每个人都要为社会做贡献,不能说我的数据不进数据库。只要活在社会上,每一个人都要进去,和医保一样。”高解春说。  而刘帆更强调数据的隐私和使用伦理,他表示,精准医疗产业里,采用医院的数据时一定要是过滤了个人隐私的豁免数据,“个人的数据放在这个群体里不应该涉及个人的隐私,应该没有姓名、没有年龄,变成一个群体数据,这个数据是可以拿来做科研和研究用的。”  精准医疗所面临的伦理问题不止一个,比如,不少人提出质疑,通过精准医疗预诊出胎儿基因的唐氏综合征,那么这样的生命就没有选择来到这个世界的权利吗?“妈妈来决定,其实伦理要随着科学的进步而进步。”朱岩梅说。
  • 海关加强防疫物资质量检验,岛津仪器各显身手
    图片来自:https://unsplash.com/ 4月10日海关总署公告2020年第53号,为加强医疗物资质量监管,按照《中华人民共和国进出口商品检验法》及其实施条例,将对医用口罩、医用防护服、医用消毒剂等11类物资实施出口商品检验。防疫物资质量的保证将对全世界抗“疫”战争起着重要的作用,严格把控防疫物资的质量关是我们对全世界负责的态度和担当。 医疗物资相关国家标准和检定项目医用口罩及防护服的环氧乙烷残留量 医用口罩和医用防护服技术要求规范文件中都明确规定了环氧乙烷的残留限量应小于10μg/kg,依据国家相关标准《GB/T 16886.7-2015/ISO10993-7:2018 医疗器械生物学评价 第7部分:环氧乙烷灭菌残留量》,使用顶空气相色谱法进行定量分析,岛津的顶空进样器HS-10和HS-20搭配不同型号气相色谱仪GC Smart和GC-2010 Pro均能进行环氧乙烷残留的检测,环氧乙烷检出限可达到0.1μg/g。岛津HS-10顶空进样器+GC Smart气相色谱仪 医用防护服的断裂强力、断裂伸长率和医用手套的拉伸性能 医用防护服技术要求中规定防护服关键部位材料的断裂强力应小于45N,关键部位材料的断裂伸长率应小于15%,医用橡胶检查手套国家标准中规定了手套的拉伸性能和限值规定。岛津公司的AGS-X材料试验机能够测试多种材料的拉伸、强度等性能,保障这些产品的质量。 ◇ 1kN 高精度力值传感器◇ DSES-1000 大变形引伸计◇ 1KN气动双推夹具◇ 智能TRAPEZIUM 软件 医用消毒剂含量及重金属检测 医用消毒剂包含的种类有75%乙醇、戊二醛、过氧乙酸、季铵盐类、84消毒液等, 国标中对不同消毒剂的有效成分含量使用不同的检测方法。 在GB/T 26369-2010《季铵盐类消毒剂卫生标准中》,氯化苄铵松宁消毒剂推荐使用液相色谱法检测,岛津的LC-16、LC-2030 Plus以及最新推出的LC-40系列均可用于苄铵松宁的检测。在GB/T 26373-2010《乙醇消毒剂卫生标准》中,推荐乙醇含量的测试方法为气相色谱法,岛津的GC-2010 Pro配置AOC-20系列自动进样器,可支持大量样品的分析。消毒剂中Pb、As等重金属含量的分析推荐使用岛津原子吸收光谱仪AA-7000或电感耦合等离子体发射光谱仪ICPE-9800分析。 医用护目镜 医用护目镜还没有对应的国标,目前只能参考相关标准如GB 14866-2006《个人用眼护具技术要求》,可参考该标准中的可见光透射比等光学性能,耐腐蚀性能等化学性能,化学雾滴、粉尘、刺激性气体的防护性能等。岛津的紫外可见分光光度计UV-2600对护目镜的可见光透射比等光学参数进行分析,小巧便携的红外光谱仪IRSpirit可对护目镜的材质进行鉴定分析。岛津IRSpirit ◇ 小巧便携◇ 采样方便◇ 软件直观 岛津UV-2600 ◇ 超宽光度测试范围◇ 超低杂散光◇ 超宽波长范围◇ 多附件扩展◇ 强大分析软件支持 结语 春暖花开的四月,我们为中国防控取得的成绩感到骄傲,但是疫情还在全世界蔓延,中国对其他国家的医疗和物资援助还在持续进行,相信全世界记住的不光是中国专业的医疗团队,还有中国生产的各种有质量保证的防疫物资!岛津中国会为防疫物资的检测和质控提供有力保障。
  • 鼎昊源PS-Smart强力板式振荡混匀仪特价促销火热进行中!
    鼎昊源PS-Smart强力板式振荡混匀仪特价促销火热进行中! 最大振荡速度:1800转/分钟;兼容PCR板、深孔板、培养板及各种EP管的强力板式振荡混匀仪&mdash &mdash 鼎昊源PS-Smart6.5折特价促销火热进行中! 北京鼎昊源科技有限公司是一家专业开发生产生命科学仪器的高科技公司。我们立志于推广民族品牌的优质生命科学仪器,&ldquo 做中国最大的生命科学仪器制造商&rdquo 是我们的目标!公司现拥有分子生物学产品、细胞工程学产品及生物实验室常规仪器等多个系列产品。其中,公司最新研发生产的PS-Smart强力板式振荡混匀仪,最大振荡速度:1800转/分钟;兼容PCR板、深孔板、培养板及各种EP管!该机详细信息如下: 产品图片:如右 订货编号:0401229 性能特点: 体积小巧;采用微电脑控制,数字显示,方便操作;升温速度快;样品座内径与样品管完全吻合,热量传导无损失; 多种样品座可以选择,更换样品座简单方便,并可定制特殊的样品座; 广泛应用于样品的保存和反应、DNA扩增和电泳的预变性、血清凝固等实验。 具体参数: 温度控制范围:室温+5˚ C~105˚ C; 温度控制精度:0.1˚ C; 温度显示精度:0.1˚ C; 温度准确性误差:± 0.2˚ C; 温度均匀性误差:± 0.5˚ C; 升温速率:(25˚ C~100˚ C)5˚ C/分钟 为答谢广大用户的支持与信任,鼎昊源PS-Smart强力板式振荡混匀仪现进行6.5折特价促销,促销时间为6月1日至10月31日。欢迎垂询订购!同时诚邀有志之士加入我们,携手推广民族优质品牌! 电话订购:010-85584421、85584156; 邮件订购:sales@dhsci.com 合作代理:18601371900(李经理)
  • 订货号2600025德国IKA 欧洲之星搅拌器强力控制型
    6731元,不含税不含运费欧洲之星搅拌器强力控制型最大搅拌量 (H2O) 40 l 电机输入功率 130 W 电机输出功率 110 W 转速显示 LCD 速度范围 50 - 2000 rpm 最大粘度 50000 mPas 搅拌轴最大输出功率 105 W 允许连续运转时间 100 % 搅拌轴最大转矩 60 Ncm 在60转时,搅拌轴最大转矩(过载) 60 Ncm 在100转时,搅拌轴最大转矩 60 Ncm 在1000转时,搅拌轴最大转矩 60 Ncm 转速控制 无级 搅拌桨固定 转夹头 转夹头夹持范围最小直径 0.5 mm 转夹头夹持范围最大直径 10 mm 空心轴,内径 11 mm 空心轴(停止状态可插入) 是 支架固定 支架??延长臂 延长臂直径 16 mm 延长臂长度 200 mm 转矩显示 是 额定转矩 0.6 Nm 转矩测量 趋势 外形尺寸 80 x 253 x 190 mm 重量 3.8 kg 允许环境温度 5 - 40 °C 允许相对湿度 80 % DIN EN 60529 保护方式 IP 42 RS 232接口 是 模拟输出 是 电压 230 / 115 / 100 V 频率 50/60 Hz 仪器输入功率 130 W
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制