当前位置: 仪器信息网 > 行业主题 > >

短肽型肠

仪器信息网短肽型肠专题为您整合短肽型肠相关的最新文章,在短肽型肠专题,您不仅可以免费浏览短肽型肠的资讯, 同时您还可以浏览短肽型肠的相关资料、解决方案,参与社区短肽型肠话题讨论。

短肽型肠相关的资讯

  • 集成有亚波长光栅的台面型InGaAs基短波红外偏振探测器
    红外辐射(760nm-30μm)作为电磁波的一种,蕴含着物体丰富的信息。红外光电探测器在吸收物体的红外辐射后,通过光电转换、电信号处理等手段将携带物体辐射特征的红外信号可视化。其具有全天候观测、抗干扰能力强、穿透烟尘雾霾能力强、高分辨能力的特点,在国防、天文、民用领域扮演着重要的角色,是当今信息化时代发展的核心驱动力之一,是信息领域战略性高技术必争的制高点。众所周知,波长、强度、相位和偏振是构成光的四大基本元素。其中,光的偏振维度可以丰富目标的散射信息,如表面形貌和粗糙度等,使成像更加生动、更接近人眼接收到的图像。因此偏振成像在目标-背景对比度增强、水下成像、恶劣天气下探测、材料分类、表面重建等领域有着重要应用。在短波红外领域,InGaAs/InP材料体系由于其带隙优势,低暗电流,和室温下的高可靠性已经得到了广泛的应用。目前,一些关于短波偏振探测技术的研究已经在平面型InGaAs/InP PIN探测器上开展。然而,平面结构中所必须的扩散工艺导致的电学串扰使得器件难以向更小尺寸发展。同时,平面结构中由对准偏差导致的偏振相关的像差效应也不可避免。与平面结构相比,深台面结构在物理隔离方面具有优势,具有克服上述不足的潜力。中国科学院物理研究所/北京凝聚态物理国家研究中心E03组长期从事化合物半导体材料外延生长与器件制备的研究。E03组很早就开始了对近红外及短波红外探测器材料与器件的研究,曾研制出超低暗电流的硅基肖特基结红外探测器【Photonics Research, 8, 1662(2020)】,研究过短波红外面阵探测器小像元之间的暗电流抑制及串扰问题【Results in Optics, 5, 100181 (2021)】等。最近,E03组研究团队的张珺玚博士生在陈弘研究员,王文新研究员,邓震副研究员地指导下,针对光的偏振成像,并结合亚波长光栅制备技术,片上集成了一种台面型InGaAs/InP基PIN短波红外偏振探测器原型器件。该原型器件具有的深台面结构可以有效地防止电串扰,使其潜在地实现更小尺寸短波红外偏振探测器的制备。图1是利用湿法腐蚀和电子束曝光等微纳加工技术制备红外探测器及亚波长光栅的工艺流程。图2和图3分别是制备完成后的红外探测器光学显微镜图片和不同取向的亚波长光栅结构SEM图片。图1. 集成有亚波长Al光栅的台面型InGaAs PIN基偏振探测器的工艺流程示意图。图2. 两种台面尺寸原型器件的光学显微镜图片 (a) 403 μm×683 μm (P1), (b) 500 μm×780 μm (P0)。图3. 四种角度 (a) 0°, (b) 45°, (c) 90°, (d) 135° Al光栅形貌。图4是不同台面尺寸的P1和P0器件(无光栅)在不同条件下的J-V特性曲线和响应光谱。在1550 nm光激发,-0.1 V偏压下,P1和P0器件的外量子效率分别为 63.2% and 64.8%,比探测率D* 分别达到 6.28×1011 cm?Hz1/2/W 和6.88×1011 cm?Hz1/2/W,表明了原型器件的高性能。图4. InGaAs PIN原型探测器(无光栅)的J-V特性曲线和响应光谱。(a) 无光照下,P1和P0的暗电流密度Jd-V特性曲线;不同入射光功率下,(b) P1和(c) P0的光电流密度Jph-V特性曲线,插图是-0.1V下光电流密度与入射光功率之间的关系曲线; (d) P1和P0的响应光谱曲线。图5表明器件的偏振特性。从图5可以看出,透射率随偏振角度周期性变化,相邻方向间的相位差在π/4附近,服从马吕斯定律。此外, 0°, 45°, 90°和135°亚波长光栅器件的消光比分别为18:1、18:1、18:1和20:1,TM波透过率均超过90%,表明该偏振红外探测器件具有良好的偏振性能。图5. (a) 1550 nm下,无光栅器件和0°, 45°, 90°和135°亚波长光栅器件的电学信号随入射光极化角度的变化关系;(b) 光栅器件透射谱。综上所述,研究团队制备的台面结构InGaAs PIN探测器,其响应范围为900 nm -1700 nm,在1550 nm和-0.1 V (300K) 下的探测率为6.28×1011 cmHz1/2/W。此外,0°,45°,90°和135°光栅的器件均表现出明显的偏振特性,消光比可达18:1,TM波的透射率超过90%。上述的原型器件作为一种具有良好偏振特性的台面结构短波红外偏振探测器,有望在偏振红外探测领域具有潜在的广泛应用前景。近日,相关研究成果以题“Opto-electrical and polarization performance of mesa-structured InGaAs PIN detector integrated with subwavelength aluminum gratings”发表在Optics Letters【47,6173(2022)】上,上述研究工作得到了基金委重大、基金委青年基金、中国科学院青年创新促进会、中国科学院战略性先导科技专项、怀柔研究部的资助。另外,感谢微加工实验室杨海方老师在电子束曝光等方面的细心指导和帮助。物理所E03组博士研究生张珺玚为第一作者。
  • ​因美纳推出首创产品,可在同一台仪器上实现长读长和短读长测序
    美国加利福尼亚州圣迭戈——2023年3月14日,全球基因测序和芯片技术的领导者因美纳(纳斯达克股票代码:ILMN)宣布,其首款基于新型Illumina Complete Long Read技术的产品现已接受订购。Illumina Complete Long Read Prep, Human,这一高性能、长读长的人类全基因组测序(WGS)分析方法,兼容因美纳NovaSeqTM X Plus、NovaSeqTM X和NovaSeqTM 6000测序系统。该技术首次支持用户在同一台因美纳测序平台上获取长读长和短读长数据。相较其他长读长技术,Illumina Complete Long Reads提供了更简单的工作流程,并且降低了DNA起始量的要求。Macrogen NGS部门负责人HyungIl Lee表示:“Illumina Complete Long Reads相较其他长读长技术更简便。我们可以用低DNA起始量的样本进行长读长文库制备,并且不需要其他技术所需的许多材料和设备。”探索更多最具挑战性的基因组区域一小部分基因组区域受益于更长的读长,可实现针对这些区域的分辨率和定位的提升。通过探索这些难绘制的区域,因美纳长读长数据为推动遗传病检测发展提供了额外的工具。这使得科学界能够通过大规模检测全部基因组变异来推进研究,更好地促进遗传病研究和药物基因组学领域的发现。Illumina Complete Long Read Prep结合了因美纳边合成边测序(SBS)技术和DRAGEN二级分析,可生成高准确度的全基因组测序(WGS)数据。Illumina Complete Long Read Prep, Human测序分析方法的价格包含了短读长和长读长文库制备、测序和云分析。在使用NovaSeqTM X Plus测序平台和单个25B测序流动槽的条件下,这一产品的促销价格为每个全基因组1,350美元,并将于今年晚些时候上市。因美纳首席技术官、研究与产品开发负责人Alex Aravanis表示:“许多长读长测序解决方案一直饱受DNA起始量要求高、工作流程复杂且通量低、结果高度差异化,以及需要专用长读长仪器的困扰。Illumina Complete Long Reads克服了这些痛点及相关成本,可帮助基因组实验室更易获得并简化长读长测序。”率先体验客户分享的数据证实了技术的准确性和灵活性 在2022年9月的因美纳基因组学论坛上,因美纳首席技术官、研究与产品开发负责人Alex Aravanis展示了与PrecisionFDA Truth Challenge v2基准数据集比较获得的Illumina Complete Long Read初步性能数据。使用Illumina Complete Long Reads和DRAGEN分析获得的F1评分为99.87%(精确率和召回率的复合统计数据)。在2023年2月的基因组生物学技术进展大会(AGBT)上,率先体验客户分享的数据证实了Illumina Complete Long Reads具有高准确度和灵活的DNA起始量,并且能够降低成本,简化操作。维康桑格研究所测序研发首席科学经理Michael Quail博士表示:“这项技术的文库制备简便,起始量要求灵活。数据的准确性以及可以在因美纳测序仪上生成的读长和相块给我们留下了深刻的印象。”因美纳计划将这项技术作为长读长应用开发的平台。2023年下半年,因美纳将推出富集检测,这是一种更具经济性、通量更高的靶向解决方案,将专注于已知可从长读长的额外洞察中受益的基因组区域。未来,因美纳将探索全基因组测序(WGS)和非人源样本以外的其他应用。关于因美纳因美纳公司致力于推动和激发基因组学的发展而不断改善人类健康。专注创新使我们成为全球基因测序和芯片技术的领导者,并为全球范围的科研、临床和应用市场客户提供专业服务。我们的产品广泛应用于生命科学、肿瘤学、生殖保健、农业及其他新兴领域。欲了解更多信息,请访问因美纳中国官网或关注因美纳微信公众号。
  • 最新!PacBio发布高精度短读长测序平台Onso
    2022年10月25日 ,测序解决方案开发商PacBio(纳斯达克股票代码:PACB)宣布将对 Onso™ 测序系统进行外部测试。这一创新的台式短读长 DNA 测序平台通过利用 PacBio独特的结合测序(SBB)技术有望达到惊人的准确率水平。PacBio 总裁兼首席执行官 Christian Henry表示:“我们很高兴看到研究人员将如何利用我们期望 Onso 系统提供的突破性测序准确性。Onso 推出后,PacBio 预计将成为市面上唯一一家能够同时提供高精度、原生短读和长读测序技术的公司,这将使我们能够为客户的挑战提供更完整的解决方案。Onso 测序系统旨在提供高度准确的测序读数,支持可扩展、灵活和成本优化的操作,并使客户对他们的科学更有信心。该系统旨在改变基因组学行业的游戏规则,我们很高兴开始向我们的测试合作伙伴提供测试系统。”Onso 测序系统在设计上与目前短读测序仪的丰富产品生态系统相兼容,并支持多样化的文库制备类型、单细胞分析方案、全基因组测序和其他靶向测序应用,如扩增子和杂交捕获Panel。预计每次运行可提供5亿条 reads,并提供200和300个测序循环试剂盒,实现双端和单端测序,每套系统的美国上市价格为25.9万美元。PacBio 首席运营官 Mark Van Oene表示:“我们相信差异化的准确性和工作流程将使科学家们能够通过 Onso 比市场上其他短读测序平台在相同的数据通量下处理更多的样本。Onso 测序系统有望带来数据质量和效率的新标准,可以更好地审视基因组,而无需过度测序和复杂的纠错方法。在肿瘤学研究应用中,我们很高兴能展示 Onso 在研究遗传变异和推进诊断工具发展方面的非凡敏感性和特异性,以改善治疗方案选择和复发监控。”Broad研究所首席基因组学官兼基因组学平台高级主任Stacey Gabriel 博士表示:“我们很高兴看到测序技术领域的持续创新。随着我们继续完善基因组的目标区域,这些区域孕育着可操作的和其他临床相关的变体,提高准确性和调用挑战性变体的能力将特别重要。”Corteva Agriscience 基因组学技术经理Gina Zastrow-Hayes 博士表示:“PacBio 公司新的 Onso 系统的高精确度为农业生物技术带来了新的机遇。我们期待着将该技术引入 Corteva,并将其应用于基因编辑特异性分析等可以从提高准确性中受益的应用。”PacBio 还在其网站上发布了一份演示文稿,提供了关于 Onso系统的更多细节。有兴趣的人士可以阅读 PacBio 的投资者关系网站上的演示文稿,以及产品信息。PacBio 还在其网站上发布了一份演示文稿,提供了关于 Onso系统的更多细节。有兴趣的人士可以阅读 PacBio 的投资者关系网站上的演示文稿,以及产品信息。
  • 李灿院士:成功研制第一台457nm短波长手性拉曼光谱仪
    p    strong 仪器信息网讯 /strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。 /p p   在CNCLS19的第一天即开幕式上,中国科学院大连化学物理研究所李灿院士为大家带来了题为《短波长手性拉曼及其手性化学和生物分子研究》的精彩报告。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/0b87bef3-e948-4ab4-99ef-1969b86c38d0.jpg" title=" 李灿院士.jpg" / /p p style=" text-align: center " 中国科学院大连化学物理研究所李灿院士 /p p   李灿院士,中国科学院大连化学物理研究所研究员、洁净能源国家实验室主任,2003年当选中国科学院院士。主要从事催化材料、催化反应和催化光谱表征方面的研究。研制了具有自主知识产权的国内第一台用于催化材料研究的紫外共振拉曼光谱仪并开始商品化生产 在国际上最早利用紫外拉曼光谱解决分子筛骨架杂原子配位结构等催化领域的重大问题 发展了纳米孔中的手性催化合成和乳液催化清洁燃料油超深度脱硫技术等。近年来,主要致力于太阳能光催化制氢以及太阳能光伏电池材料研究。 /p p   手性是自然界普遍存在的一种现象,手性药物则是手性化合物中非常重要的一个分支(手性药物是指具有左旋或右旋对映体化学结构的单一对映体化合物,包括光学纯药品、光学纯农业化学品及其他光学纯产品与中间体)。手性药物的研究目前已成为国际新药研究的新方向之一,近十多年来国际公布上市的重磅药物中超过70%是手性药物。世界各国对于手性药物上市的手性对映体药效的要求极其严格,因此,手性中间体及手性药物的结果鉴定具有着“非同一般”的重要性。 /p p   分子手性的鉴定方法有HPLC、NMR等经验方法,也有XRD以及手性光谱等非经验方法。手性拉曼光谱(ROA)的首次实验报道见于1972年。手性拉曼光谱(ROA)法用于手性结构检定具有立体结构敏感且响应时间短(相对于NMR)、可进行水溶液体系中手性分子构象测定、鉴定手性分子绝对构型而无需结晶、检测对映体过量值而无需手性分离等潜在优势。但是,手性拉曼光谱也尤其弱势的地方,如,拉曼散射的信号非常弱,手性拉曼的信号强度是其千分之一或者更弱。所以,直到2003年,第一台商品化的手性拉曼光谱仪才面世(美国,BioTools公司)。 /p p   而李灿院士团队于1997年成功研制出我国第一台具有自主知识产权的紫外拉曼光谱仪,解决了国际拉曼光谱领域长期存在的荧光干扰问题,并在国际上最早将其应用于催化及材料科学的研究。获得了国家科技发明二等奖。通过紫外共振拉曼光谱首次获得了钛硅分子筛(TS-1)中有关骨架钛物种存在的直接证据。建立了鉴定微孔和中孔分子筛骨架中过渡金属杂原子的拉曼光谱研究方法,这一方法已被国际催化界认为是一种最为可靠的杂原子表征方法。2004年李灿院士团队又研制成功紫外可见全波段共振拉曼光谱议,使我国在拉曼光谱的催化表征研究方面继续处于国际先进水平。2008年,李灿研究组与卓立汉光仪器公司合作,开始将紫外拉曼光谱仪产业化。 /p p   2012年李灿院士团队承担了基金委国家重大科研仪器设备研制专项“电场、磁场调制的短波长手性拉曼光谱仪研制”。在研制过程中关于短波长的选择,李灿院士报告中介绍到,既要避开有机分子的荧光干扰(& gt 450nm),还要躲开电子态吸收(& lt 300nm),同时,通过实验发现450nm左右的波长可达到实测信号的最大化 这时,市面上正好出现了高质量的457nm激光器,所以,团队选择了457nm短波长。经过几年时间的研制工作,2017年李灿院士团队研制成功了新一代短波长(457nm)手性拉曼光谱仪,灵敏度得到了大幅度提高。 /p p   报告的最后,李灿院士介绍了短波长(457nm)手性拉曼光谱技术在氨基酸、蛋白、糖、核酸等的水溶液以及药物中间体、药物分子等的有机溶剂条件下的应用研究,解决了该领域中的一些关键科学问题。 /p p br/ /p
  • 珀金埃尔默加速转型为高增长型生命科学和诊断公司
    达成意向,拟拆分应用市场、食品及企业服务业务8月1日,珀金埃尔默宣布已与新山资本(New Mountain Capital)达成协议,拟拆分其应用市场、食品和企业服务业务,新山资本是一家领先的增长型私募股权公司。该项交易总现金额预计为24.5 亿美元。这一变革旨在帮助珀金埃尔默的各项业务更充分地发挥增长潜能,从而更好地服务于客户。珀金埃尔默总裁兼首席执行官 Prahlad Singh 表示:“这一举措是我们过去几年一直在推进的产品组合重要转型中的关键一步。交易完成后,我们将成为一家专注于生命科学和诊断领域的高增长型公司。公司不断增强的资金实力将支持我们加快对科研和疾病领域中潜力市场的投资,并推动先进的研究、探索和发现,以助力打造更健康的世界。交易完成后,珀金埃尔默的业务将包括生命科学和诊断业务。预计这些业务将在2022 年产生约 33 亿美元的销售收入,其中约 80% 是经常性收入。公司的收入预计将达到每年10%以上的有机增长 ,并保持高水平的盈利能力。已经积极开展的去杠杆化、预期强劲的现金流,以及业务拆分带来的收益,将使公司处于更有利的地位,从而更好地开展资本配置, 优化布局。Prahlad Singh补充道: “这一里程碑是珀金埃尔默全球近1.7万名员工努力工作的结果,是对我们所有员工和我们所建立的强大业务的肯定。通过这次交易,应用市场、食品和企业服务业务将与新的合作伙伴一起走向更大的成功。在交易完成后,我相信两家公司都将从对各自市场的加倍专业化和相应的投资中获益。”更多交易细节该交易预计将于2023年第一季度完成,还需获得监管部门的批准及其他惯例成交条件。交易完成后,珀金埃尔默的名称和品牌预计将由新成立的应用市场、食品和企业服务业务保留。公司的生命科学和诊断业务将采用新的名称和股票代码,并将于晚些时候公布。这家今后专注于生命科学和诊断业务的公司将高度专注于为客户带来创新解决方案,加快成长,推动对科研和疾病领域的研究,探索和创新。拟拆分的分析、食品和企业服务业务将继续秉承其创新理念,一如既往地为食品质量与安全、环境、化学与工业检测市场提供高品质的解决方案,并通过实验室一站式服务提供高效的实验室资产管理、实验室分析、数字化服务、实验室工作流解决方案等。这部分业务预计将在2022年产生约13亿美元的收入,以及后续的持续稳健增长。阅读新闻稿全文,请点击:https://ir.perkinelmer.com/news-releases/news-release-details/perkinelmer-accelerates-transformation-high-growth-high-marg
  • 珀金埃尔默加速转型为高增长型生命科学和诊断公司
    达成意向,拟拆分应用市场、食品及企业服务业务8月1日,珀金埃尔默宣布已与新山资本(New Mountain Capital)达成协议,拟拆分其应用市场、食品和企业服务业务,新山资本是一家领先的增长型私募股权公司。该项交易总现金额预计为24.5 亿美元。这一变革旨在帮助珀金埃尔默的各项业务更充分地发挥增长潜能,从而更好地服务于客户。珀金埃尔默总裁兼首席执行官 Prahlad Singh 表示:“这一举措是我们过去几年一直在推进的产品组合重要转型中的关键一步。交易完成后,我们将成为一家专注于生命科学和诊断领域的高增长型公司。公司不断增强的资金实力将支持我们加快对科研和疾病领域中潜力市场的投资,并推动先进的研究、探索和发现,以助力打造更健康的世界。”交易完成后,珀金埃尔默的业务将包括生命科学和诊断业务。预计这些业务将在2022 年产生约 33 亿美元的销售收入,其中约 80% 是经常性收入。公司的收入预计将达到每年10%以上的有机增长 ,并保持高水平的盈利能力。已经积极开展的去杠杆化、预期强劲的现金流,以及业务拆分带来的收益,将使公司处于更有利的地位,从而更好地开展资本配置, 优化布局。Prahlad Singh补充道: “这一里程碑是珀金埃尔默全球近1.7万名员工努力工作的结果,是对我们所有员工和我们所建立的强大业务的肯定。通过这次交易,应用市场、食品和企业服务业务将与新的合作伙伴一起走向更大的成功。在交易完成后,我相信两家公司都将从对各自市场的加倍专业化和相应的投资中获益。”更多交易细节该交易预计将于2023年第一季度完成,还需获得监管部门的批准及其他惯例成交条件。交易完成后,珀金埃尔默的名称和品牌预计将由新成立的应用市场、食品和企业服务业务保留。公司的生命科学和诊断业务将采用新的名称和股票代码,并将于晚些时候公布。这家今后专注于生命科学和诊断业务的公司将高度专注于为客户带来创新解决方案,加快成长,推动对科研和疾病领域的研究,探索和创新。拟拆分的分析、食品和企业服务业务将继续秉承其创新理念,一如既往地为食品质量与安全、环境、化学与工业检测市场提供高品质的解决方案,并通过实验室一站式服务提供高效的实验室资产管理、实验室分析、数字化服务、实验室工作流解决方案等。这部分业务预计将在2022年产生约13亿美元的收入,以及后续的持续稳健增长。
  • 使用ACQUITY UPLC H-Class系统进行肽段作图的可靠性
    目标 测定ACQUITY UPLC® H-Class系统在长浅洗脱梯度应用中的分析可重现性,以解析复杂的混合物,例如肽图谱分析。 ACQUITY UPLC H-Class系统提供了扩展批处理肽谱图分离的精确性和重现性。 背景 肽谱分析用于确认某种蛋白质的一级结构,识别翻译后修饰(PTM),并分析潜在的杂质。任何蛋白质结构差异应反映在含有该修饰的肽保留时间的变化中。含有和不含有特殊修饰的肽段的相对数量被用于测定含有该修饰的特定样品中的蛋白质的比例或含量。 面积比例的变化对应于含有特定修饰的样品中的蛋白分子的含量。为满足这些应用要求,需要采用长浅梯度洗脱。过去这些分离条件对于单泵梯度系统是一项挑战。本研究中,我们在ACQUITY UPLC H-Class系统上测试了一种典型的肽谱分析方案。 图1. 肽段作图样品列表开始于星期五,并在整个周末自动运行在星期一工作人员回到工作岗位时,数据已经准备好接受复查。图中显示了每三项分离,表现出了优异的重现性,分辨率和保留时间。如同表格1中的概括,五个做标记的峰,从A到E,被选为定量分析的代表。 溶液 ACQUITY UPLC H-Class系统由四元溶剂管理器(QSM),流量通过针头样品管理器(SM-FTN),柱加热器,以及光电二极管阵列(PDA)检测器。安装了可选择的250&mu L混合器。MassPREPTM BSA试剂中的标准肽段溶液经过ACQUITY UPLC BEH 300 C18反相柱分离。当每增加一个床体积的洗脱体积,洗脱梯度增加1.0%,每分钟梯度增加约为0.6%,此梯度被选为典型多肽作图梯度。 该方案充分利用了仪器的自动混合能力。纯溶剂储液器和浓缩修饰剂储备被用于替代二元,经预处理的溶剂。在本例中,梯度是在线路A中的纯水和线路B中的纯乙腈中形成,而一部分的液流从含有1%TFA的水储液器D中抽取。在梯度中,线路D的比例从5%降低到4%,相当于TFA浓度从0.05%降低到0.04%,从而使得基线漂移最小化。 肽谱图显示于图1,表格1中统计分析了保留时间和峰面积等参数。相对保留和分辨率在长系列运行期间保持恒定。保留时间是充分可重现的,以保证峰始终能被正确识别。以峰A的面积作为参比,比较峰B、C、D、和E,计算各测试样中其相应比例。在各测试样中这些面积比例均高度一致(如表格1),这样的精度符合我们在系列样品中测量修饰蛋白质的比例的要求。 表格1. 色谱峰保留时间和面积比例的总结。选作定量比较的5个峰,在整个洗脱梯度中均均匀间隔10min。 总结 对于有意义的肽段作图,同时需要定量和定性的可重现性。ACQUITY UPLC H-Class系统为大样品的肽段作图分离提供了精准的控制,使得分析师对仪器充满信心,相信任何保留时间的偏差均说明样品组成发生了变化,而不是由于仪器可变性引起的。在利用了这一多溶剂混合能力时,经观察的分离符合这一目标。这一系统的设计确保定量和定性结果均符合现代分析生物化学的要求.
  • 超微型“砧台”可用于“锻造”分子
    p   电 铁匠用砧台来锻造金属,美国科学家搭建出一个超微型“砧台”,能够在上面“锻造”分子,造成化学键断裂和电子转移。据介绍,这是首次仅通过机械压缩触发化学反应,可望带来更高效、精确和环保的化工合成技术。 /p p   化学反应的本质是化学键的形成和断裂,通常需要热、光或电触发,用纯机械手段来触发是个较新的研究领域。此前人们曾通过拉伸分子触发化学反应,但压缩方式尚未取得成功。 /p p   美国能源部SLAC国家加速器实验室和斯坦福大学研究人员在新一期英国《自然》杂志上发表报告说,他们利用金刚石产生巨大压强,再用结构牢固的碳硼烷分子作为“砧台”,把压强传递给比较“松软”的分子,使后者的化学键断裂。 /p p   实验中,研究人员让两块金刚石相互靠近,使其对放在中间的样本产生高达500吉帕斯卡的压强,约是地心压强的1.5倍。 /p p   被“锻造”的对象是铜硫团簇,实验显示,碳硼烷“砧台”能把金刚石装置产生的压强传递给铜硫团簇,致其变形。压缩过程中不仅发生化学键断裂,还使电子从硫原子移动到铜原子,产生纯铜晶体。 /p p   研究人员说,这项成果有助于研究压强对材料性质的影响,进而开发新型材料。如果能用机械压缩的方式简化一些重要的化学反应,也将为化工合成开辟新路,如降低合成氮肥的成本等。 /p p br/ /p
  • 探访世界首台中红外波段太阳磁场望远镜建设现场
    近日,记者驱车探访了东半球首个天文观测基地——青海冷湖天文观测基地,用于太阳磁场精确测量的中红外观测系统正在建设调试。冷湖天文观测基地位于柴达木盆地西北边缘的青海省海西蒙古族藏族自治州茫崖市冷湖镇赛什腾山区域,平均海拔约4000米。2017年以来,中国科学院等科研单位合作在此开展天文台址科学监测。监测结果显示,冷湖赛什腾山区域的视宁度、晴夜时间等光学天文观测所需的关键监测数据表现优越,可比肩国际一流大型天文台所在地。蜿蜒的山路平坦却又险峻。在海拔4000米左右的一处平台,五层楼高的用于太阳磁场精确测量的中红外观测系统正在进行调试。“在对太阳活动研究中,科学家发现磁场是影响太阳活动的重要测量量,为了获得更高分辨率的太阳磁场,我国研制了‘用于太阳磁场精确测量的中红外观测系统’,它是国际上第一台中红外波段的太阳磁场望远镜。”中国科学院国家天文台怀柔太阳观测基地博士生佟立越1日告诉记者。据佟立越介绍,太阳是距离地球最近的恒星,是研究恒星的最佳样本,也是密切影响现代人生活的主要天体。因此,对太阳活动的研究兼具科学与社会意义。“这个系统是国内首个用于太阳中波红外观测的望远镜,是由中国国家天文台、西安光机所和上海技物所联合研制的。”中国科学院西安光学精密机械研究所装配主要负责人雷昱说,该望远镜是一个1米口径的离轴格里高利系统,它有两个观测部分,一个是小的导行镜,可以看到整个太阳的全日面;大系统可以看到太阳6.4角分的视场,用于观测局部区活动。该项目是冷湖天文观测基地已落地的9个天文望远镜项目之一。目前,9个项目总投资近20亿元人民币,共有35台天文望远镜,4台已建成,29台已完成土建施工和主体建设,2台正在研制。在海拔4200多米的另一处平台,由中国科学技术大学、紫金山天文台实施的2.5米墨子巡天望远镜项目(WFST),已完成望远镜观测楼主体、附属用房及圆顶轨道安装调试,圆顶安装正在进行。WFST望远镜建成后,将成为北半球具备最高巡天能力的光学时域巡测设备,能够获取高精度位置和多色亮度观测数据,高效搜寻和监测天文动态事件,预期可以在时域天文、外太阳系天体搜寻、银河系结构和近场宇宙学等领域取得突破性成果。据了解,今年1月1日起,冷湖地区开始施行《海西蒙古族藏族自治州冷湖天文观测环境保护条例》,进行暗夜星空保护,在暗夜保护核心区内,光源种类和亮度都将得到严格控制。
  • 中国轮胎业无全国性试验场 产品只能送国外检测
    中国整个轮胎行业,没有一个全国性试验场。尽管很多地方都在探索建立,但受制于土地、资金以及国际认可等因素,何时能建设中国轮胎业自己的试验场还是未知数。   在已知的全球48个轮胎试验场中,世界轮胎巨头如普利司通有11个,固特异有6个,米其林有4个。然而,与此形成鲜明对比的是,中国整个轮胎行业,没有一个全国性试验场。   轮胎试验场是汽车轮胎室外测试的专用场地。通过对轮胎各项指标进行测试,提高产品技术,以更好地适应市场需要。   建设轮胎试验场已经成为中国轮胎企业的最大心病。   国内轮胎业的尴尬   据欧盟标签法规定,出口欧盟的所有轮胎均要贴上检测标签,要得到各种检测数据,这就需要在轮胎试验场进行试验。然而,令人诧异的是,轮胎行业发展多年,我国国内竟然没有一家全国性的轮胎试验场。   为了得到各种数据,国内轮胎出口企业必须把产品送到国外去检测。对于轮胎企业来说,成本和负担是沉重的。   盛泰集团总经理宋世良对此体会最为深刻。他让助理将检测报告拿给记者看。中国经济时报记者看到,检测报告并不是想像中的几份薄薄的文件,而是厚厚一叠,大约有200—300份。   “只要是出口的轮胎,都需要许多检测报告。”宋世良告诉本报记者,就拿欧盟标签法来说,主要对轮胎的滚动阻力、噪声、湿地抓着力等三个方面提出要求,做一份符合要求的检测需要2万—3万元,一年的认证费用就需要100多万元。   宋世良介绍道,取得这些认证都很贵,一条轮胎寄到国外需要花费几千元。这两年,光认证费用就花了好几百万元。   中国整个轮胎行业,没有一个全国性试验场。然而,与此形成鲜明对比的是,在全球已知的48个轮胎试验场中,世界轮胎生产巨头普利司通有11个,固特异有6个,米其林有4个。   随着欧盟轮胎标签法施行,加之美国、日本、韩国等国相继提高了对轮胎性能的要求,我国业界近年来对尽快建设轮胎试验场的呼声也日益高涨。轮胎试验厂是轮胎新技术、新产品开发的重要手段,也是体现一个国家生产和开发轮胎水平的重要标志之一。轮胎试验场已经成为中国轮胎企业的最大心病。   多家筹备建设中   如今,在欧盟轮胎标签法这条“鲶鱼”的刺激下,建设全国性轮胎试验场的议题重新提上日程,并且已经有项目正在建设中。   “现在,轮胎行业缺乏全国性试验场,很多地方都在探索建立。”广饶县经信局副局长李杰告诉中国经济时报记者,目前,广饶县对此也很重视,正在成立相关机构,研究应该如何建立轮胎试验场。   李杰认为,轮胎试验厂的建设,能够提高企业研发能力、为技术升级和产业升级打造基础。但其建立需要巨额资金,以及不低于2000亩的土地,依靠单个企业很难完成。   一份来自山东省橡胶(19660,5.00,0.03%)行业协会2013年6月份的资料显示,该协会在2011年7月就向省政府呈交了“关于建设轮胎试验场的请示报告”,呼吁政府在项目建设立项、资金投入以及征地手续等方面给予政策扶持。   该资料还显示,山东轮胎企业中,目前,玲珑集团已经获批960亩地,还有1000亩地待批,并且已经完成了试验场的设计工作。   东营市也准备建立占地2000亩的轮胎标准试验场,目前来看,项目已经进入实施阶段。   据悉,玲珑集团为建设轮胎试验场计划投资11.3亿元,是企业3至5年的销售利润。   轮胎试验场建设投资大、占地广、周期长,单个企业往往力不从心。据兴源集团总经理宋文博介绍,建一个80—100公顷的轮胎试验场,至少要投资5亿元 建100—200公顷的轮胎试验场,要投资15亿元左右。而且,轮胎试验场的维护费用相当高,如果没有充足的财力支撑,是很难进行建设与维护的。   据本报记者了解,除了上述企业以外,国内还有许多轮胎厂家都有建设试验场的意向,比如中策集团、赛轮以及北京橡胶设计院等也在牵头建设中。   实际上,轮胎试验场的建设已在我国酝酿了近30年,国家还曾经为此专门立项,但都由于各种原因半途而废,轮胎行业的试验场梦想一直未能实现。   资料显示,原化工部曾于1984年经原国家计委立项,在河北廊坊征地2500亩,筹建我国第一个轮胎试验场,后因缺乏建设资金而被迫下马 原国家计委也曾调研应用现有汽车试验场进行轮胎试验的可能性,由于试验功能的差异性也被迫放弃。   “土地、资金以及国际是否认可”是最大瓶颈   为何轮胎业有如此大的产业规模,却缺乏全国性的轮胎试验场?众多业内人士指出,建设全国性轮胎试验场,有几个关键点:土地、资金以及国际是否认可等。   “国内并不是完全没有试验场,也有个别企业建设了轮胎试验场,但建设完成后的效果和当初设计却相差甚远。”李杰介绍称。   据悉,李杰曾经考察了普利司通在浙江建立的轮胎试验场。该试验场和当初设计能力差距甚远,连设计能力的百分之几都不能达到。   另外值得关注的是,建立完成的轮胎试验场,能否达到相关技术水平,以及检测结果能否得到国际市场的认可,这些在建设初期,都需要考虑到。   这种观点得到盛泰集团总经理宋世良的认可,他表示,国内试验场建设完成后,其检测结果是否能够得到国际认可,这点很难确定。   此外,兴源集团总经理宋文博告诉本报记者,企业投资建设试验场会背上很大的包袱。一般企业,也没有这个能力跑下这样的项目,很难拿到批文。   不久前,在中国橡胶工业协会召开的轮胎试验场筹备工作汇报研讨会上,针对建设全国性轮胎试验场,多家企业发表了自己的看法和意见。杭州中策集团董事长沈金荣表示,杭州中策一直想建设自己的轮胎试验场,投资不是最大的问题,但关键问题是没有土地。土地供应压力大,而且国内的土地一般都要求有“亩产”,但轮胎试验场根本没有“产出”,因此很难获得土地。   中国化工橡胶总公司总经理曹朝阳认为,建设轮胎试验场,是全行业期盼的大事情,不仅仅是应对欧盟轮胎标签法,保证轮胎出口需要。   业内人士也呼吁,建设轮胎试验场仅靠行业力量是有限的,还要得到政府多多支持。希望国家有关部门在立项审批、环境影响评价、土地审批、建设资金和税收优惠政策上给予大力支持,力争在最短时间内建成轮胎试验场。
  • 使用超高效合相色谱分析短杆菌肽
    使用超高效合相色谱(UPC2)分析短杆菌肽 Sean M. McCarthy, Andrew J. Aubin, 和 Michael D. Jones 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离短杆菌肽 ■ 载量线性响应 ■ 准确、高精度分析短杆菌肽的方法 ■ 有可能用于其它疏水性肽和蛋白质 沃特世解决方案 ACQUITY UPC2系统 ACQUITY® SQD ACQUITY UPC2 CSH氟苯基色谱柱 Empower&trade 3软件 关键词 超高效合相色谱、UPC2、疏水性肽、短杆菌肽 简介 用反相液相色谱(RPLC)分析疏水性肽和蛋白质难度很大,因为溶液中经常需要使用洗涤剂保持疏水性物质的稳定性,而这些洗涤剂容易发生聚集和/或沉淀,严重影响它们的回收,这些因素以及其它原因使得难以用RPLC分离疏水性肽和蛋白质。 在本应用纪要中,我们为您介绍一种在ACQUITY UPC2TM系统上使用沃特世(Waters® )超高效合相色谱技术分离典型跨膜肽-短杆菌肽的方法。 短杆菌肽是由芽孢杆菌产生的一种常见和已被良好表征的跨膜肽物质,它被用作对抗革兰氏阳性和某些革兰氏阴性细菌的局部用抗生素,短杆菌肽包括通用组成为甲酰-L-缬氨酸-甘氨酸-L-丙氨酸-D-亮氨酸-L-丙氨酸-D-缬氨酸-L-缬氨酸-D-缬氨酸-L-色氨酸-D-亮氨酸-L-X-D-亮氨酸-L-色氨酸-D-亮氨酸-L-色氨酸-氨基乙醇的一族化合物,其中X取决于短杆菌肽分子,即分别占总短杆菌肽量约87.5%、7.1%和5.1%的革兰氏A(X=色氨酸)、革兰氏B(X=苯丙氨酸)和革兰氏C(X=酪氨酸),1需要交替的D和L氨基酸单元构成_-螺旋状。 我们研究了色谱柱化学品、流动相改性剂和梯度斜率对分离短杆菌肽的影响。采用优化方法分离市场上销售的非处方药物(OTC),将测定的短杆菌肽浓度与标示量进行对比。采用质谱仪测定短杆菌肽的浓度,采用选择离子谱表征每种物质。在ACQUITY UPC2系统上使用我们的方法,可得到线性和可重复的结果&mdash &mdash 测定的OTC制剂浓度为标示量的98.4%。 试验 测试条件 除非另有说明,以下是用于所有色谱最终方法的最佳条件。 UPC2测试条件 UPC2系统: ACQUITY UPC2 检测器: PDA、ACQUITY SQD PDA @ 280nm,分辨率为6 nm(补偿400至500 nm) 色谱柱: ACQUITY UPC2 CSH 氟苯基,3.0 x 100 mm, 1.7 &mu m 柱温: 50 ° C 样品温度: 15 ° C UPC2 ABPR: 1885 psi 进样量: 1 &mu L 流速: 2.0 mL/min 流动相A: CO2 流动相B: 含0.1%TFA的甲醇(除非另有标示) 梯度: 20%至30% B,1.5min SQD条件 离子源: ES+ 锥孔电压: 20 V 毛细管电压:3.7kV 源温度: 150 ° C 脱溶剂气温度: 500 ° C 脱溶剂气体流速: 400 L/hr 锥孔气体流速: 25 L/hr SIR: 922.6,930.3,941.9 数据管理 Empower 3软件 样品描述 用解硫胺素芽孢杆菌(短芽孢杆菌)制备的短杆菌肽从Sigma Aldrich公司购买,将样品溶解在甲醇中制成0.5mg/mL浓度的溶液,如需要,可用甲醇稀释。含有短杆菌肽的非处方软膏是从当地药店购买的。将0.2g软膏溶解在10mL正己烷中,然后用5mL甲醇萃取短杆菌肽,去除甲醇层,用0.2-&mu m的烧结玻璃盘过滤,然后直接进样ACQUITY UPC2系统。 结果与讨论 我们系统性地筛选了四种色谱柱,测定哪种分离效果最佳,结果如图1所示,色谱柱筛选过程可在1小时内非常快速地完成。在我们设定的筛选条件下,BEH 2-EP和BEH色谱柱未检测到谱峰,由于其它色谱柱表现出合适的色谱性能,因而未对这两者的非洗脱原因深入研究,其中ACQUITY UPC2 CSH氟苯基色谱柱检测的色谱峰形最佳,因此采用该色谱柱继续研究。 图1.通过短杆菌肽标准物的色谱峰形和保留时间筛选各种化学特性色谱柱。所有色谱柱规格为3.0x100mm,填装亚-2-微米填料;所有分离条件都采用流动相 A:CO2、流动相 B、含0.1% FA的MeOH、2 mL/min, 3%B至25% B,5min。 为了分离短杆菌肽物质,对酸性改性剂的影响进行了研究,结果表明:使用三氟乙酸(TFA)可得到稍好的峰形,提高了短杆菌肽A和短杆菌肽C之间的分离度,结果如图2所示。已知TFA会抑制质谱电离,但每种物质的信号都足以定量检测治疗制剂,后续将对此进行讨论。对于要求更高灵敏度的应用,可能需要降低TFA浓度或使用甲酸,以达到希望的检测限值。 图2.酸性改性剂对分离短杆菌肽的影响。 当设置好合适色谱条件后,通过减少梯度时间优化分离过程,结果如图3所示,我们能够在1.5分钟时间内使每种短杆菌肽组分的分离度达到1.4或更高,在相同流速下通过减少运行时间增加梯度斜率,不但实现有效分离,同时还将短杆菌肽A的信噪比从336提高至605。 图3.UV 280-nm痕量检测优化分离短杆菌肽A、B和C。 我们测试了最佳分离条件,能够使用单四极杆质谱(SQD)检测每种物质,图4显示:每种物质都被质谱良好分离和检测到,另外每种短杆菌肽物质都显示含有绝大多数的M+2H离子,后续的研究将使用这些参数进行选择离子监测。 图4:每种短杆菌肽物质的总离子图谱-A和加合离子图谱-B-D。选择强度最高的离子评估市场上销售的抗菌制剂中的短杆菌肽含量,对于多肽序列,红色残基是L型同分异构体,黑色残基是D型同分异构体。 为了评估我们的方法是否适用于定量分析市场上销售的非处方药中的短杆菌肽,我们在ACQUITY SQD上使用选择离子监测,结果如图5A所示。我们绘制浓度-峰面积曲线,得到每种物质的校正曲线。结果发现:如图5B-D所示,每种成分在测试范围内都呈线性响应。另外还使用校正曲线测定了非处方药物中的每种短杆菌肽物质浓度。 图5,图A-25.0、12.5、1.25和0.625mg/mL浓度的标准溶液中含有短杆菌肽物质的叠加选择离子谱。图B、C和D-每种短杆菌肽A、B和C各自的MS峰面积线性拟合图。 使用开发的方法评估非处方药物中的短杆菌肽物质的浓度和相对丰度。如图6所示,重复分析结果表明:每种短杆菌肽%RSD值小,计算浓度与标签上的标称值相吻合;我们还发现短杆菌肽物质的相对丰度与文献报道的丰度非常吻合1。 图6. 从抗菌软膏中萃取的短杆菌肽A、B和C的叠加选择离子谱重复进样分析的计算RSD值(N=3)在可接受限值以内,计算丰度与文献报道数值非常吻合1。 结论 正如本应用纪要所展示的,ACQUITY UPC2系统与ACQUITYUPC2色谱柱化学结合使用,可为短杆菌肽提供简单、准确和可重现的分析方法。该工作表明ACQUITY UPC2系统可用于分析疏水性肽,还可能用于分析疏水性蛋白质,例如膜蛋白。 参考文献 1. The Merck Index and Encyclopedia of Chemicals, Drugs, and Biologicals.13th ed. Whitehouse Station, NJ : Merck Research Laboratories 2001. 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 汇健科技与热景生物达成战略合作,合力共创糖链短肽质谱诊断新价值
    3月5日,杭州汇健科技有限公司(以下简称“汇健科技”)与北京热景生物技术股份有限公司(以下简称“热景生物”)在北京签署战略合作协议,双方将充分发挥核心研发和技术优势,共同开发基于异常糖链短肽的质谱诊断产品。汇健科技董事长兼首席科学家邬建敏教授与热景生物董事长兼总裁林长青先生代表双方正式签约。作为介于蛋白组和代谢组的多肽组,蕴藏着与疾病相关的大量信息。血液中的多肽包括基因表达的直接产物及某些高丰度蛋白在胞内的降解产物。相比于分子量较大的蛋白质,不同组织与器官产生的多肽更易分泌到胞外并透过血管内皮细胞进入血液系统,血液循环多肽(BCP)种类与分布和肿瘤发生时的基因突变及蛋白酶表达量的变化密切相关。此外,血液肽段的磷酸化和糖基化修饰也与肿瘤的发生和发展紧密相关。通过检测血清肽谱和血液中异常糖链糖蛋白水平对肿瘤的早期发现、辅助诊断、疗效评估、预后跟踪、复发转移监测有较大意义。 汇健科技通过底层技术创新,开发了高效和可靠的微量血清样本前处理Bio-pSi微纳材料和血清肽谱检测试剂、稳定的质谱仪器和机器学习算法,首次将血清肽谱应用于肿瘤液体活检领域,同时建立了蛋白、多肽组学产品开发、生产、注册报证全链条的转化能力,为质谱产业链上下游和临床转化提供整体解决方案。此次战略合作充分整合了热景生物在糖组学、汇健科技在高通量临床质谱和组学技术领域拥有的原创性技术和核心研发优势。在糖生物学领域,热景生物具有丰富的技术积累和产品研发经验,拥有异常糖链蛋白分离检测技术(专利号:201810691539.4)和适用于糖肽质谱检测的样本处理方法(专利号:201811649280.3)。汇健科技综合运用纳米材料技术、高通量生物检测技术、数据库及AI算法,已经构建了多元样本诊断及健康监测的高通量临床质谱平台,适用于微量样本的短肽富集、检测、分析一体化技术拥有原创自主知识产权,在硅基微纳材料、质谱检测试剂盒、AI算法获得多项国内发明专利(ZL201810163433.7、ZL202010054067.9、ZL202310389621.2, 以及高价值专利(ZL201210252926.0)。众行致远,合力共为,双方将通过优势互补、深度协作,聚焦肿瘤诊断应用场景,共同致力于新一代质谱诊断产品研发,引领技术创新升级,为临床诊断提供更卓越、更多元化的解决方案,用科技力量守护患者健康。关于热景生物北京热景生物技术股份有限公司(股票代码:688068),成立于2005年6月,是一家以“发展生物科技,造福人类健康”为使命的生物高新技术企业。公司不断探索自主创新诊断技术平台,积极研发拓展液体活检癌症早筛技术,建立包括蛋白标志物、糖链外泌体、DNA甲基化的多组学诊断技术平台;同时,成立未来技术研究院,探索前沿科技,积极布局抗体药物、核酸药物、活菌药物等生物制药领域,打造从诊断到治疗的全产业链发展战略。公司于2019年在科创板上市,近年来荣获2021最具价值科创板上市公司,荣登2022年科创板上市公司百强榜单,上榜2021中国新经济企业500强,被认定为北京市专精特新“小巨人”企业,入选北京民营企业百强。公司始终聚焦科技创新,持续探索新的诊断技术、发现新的诊断标志物;同时不断探索新的业务领域,加快在生物制药领域的全面布局。用科技助力国家“十四五”发展战略,为构建人类卫生健康共同体奋斗!
  • 基于超高效液相色谱-质谱法的肽段分析中非特异性吸附评估及通用型最小化策略
    近年来,蛋白质组学技术在肽和蛋白质类新型治疗药物的蓬勃发展以及临床新型大分子生物标志物的深入发掘中被日益广泛应用。应用方式的迭代对生物大分子的分析技术提出了更高的要求。基于蛋白质特征肽段检测的自下而上的蛋白质组学技术(bottom up proteomics)是现有研究中具有较高灵敏度与分辨率的蛋白质定性定量方法。开发多肽的生物分析方法是极具挑战的,除了所需的低检出限外,多肽的非特异性吸附性质,使其极易在接触到的材料表面发生吸附,进而导致分析全流程中待测物的丢失或干扰,给定性和定量分析引入巨大风险。例如在蛋白组学研究的质谱数据库搜索中,即使系统中微量肽段的损失或残留亦可能导致假阳性或假阴性结果。而在高灵敏度的多肽定量方法的开发中,肽段的非特异吸附对定量分析的线性、准确度和精密度均有负面影响。低浓度肽段溶液的吸附性质会更加明显,表现形式为标准曲线的非线性,最终导致定量限的不必要升高以及方法的重复性差。已有一些研究在分子水平上解释这种吸附行为,然而目前对其潜在的机制和相互作用仍然知之甚少。Eeltink等基于分子动力学模拟,提出了一种三相分子机制解释肽段从溶液吸附到强相互作用不带电固定相上的原理。Kristensen等研究了样品容器对阳离子多肽吸附的影响,当1 μmoL/L肽溶液在硼硅酸盐或聚丙烯瓶中存储1 h后,肽段的回收率仅有10%~20%。也有研究通过在溶剂中添加有机试剂、酸/碱性溶液、表面活性剂、吸附竞争剂或调整流动相组成等方法减少这类吸附。这些研究论文大多对一组特定的多肽和/或表面材料进行研究,但均未给出可用来预测多肽吸附特性的规律,也未给出通用的解决吸附的方法。本研究选择牛血清白蛋白(BSA)作为模型蛋白质,以其酶解后的肽段作为包含亲水性和疏水性多肽的“典型”多肽组样本。首先通过超高效液相色谱-高分辨质谱(UPLC-HRMS)的测定,分析常见多肽理化参数与上述多肽组的非特异吸附程度的关联性。然后基于超高效液相色谱-三重四极杆质谱(UPLC-QQQ-MS/MS)建立对强吸附肽段吸附程度的评估方法,从样品制备至分析测定建立全过程试验设计,考察不同材质的制备、储存耗材对肽段吸附的影响,以及考察不同色谱条件对肽段残留的影响,最终提出多肽全流程分析中减少非特异性吸附的通用型策略。01样品制备方法取10 mg BSA溶于10 mL水中,制得1 mg/mL蛋白储备液,进一步以水稀释为100 μg/mL的工作液。取200 μL上述工作液于蛋白质低吸附离心管中 加入65 μL 500 mmol/L碳酸氢铵和60 μL 50 mmol/L二硫苏糖醇,于60 ℃水浴加热60 min对蛋白质进行还原 放冷至室温后加入120 μL 50 mmol/L碘代乙酰胺,于暗处反应30 min进行烷基化 加入100 μg/mL的胰蛋白酶5 μL,于37 ℃水浴中酶解8 h,加入甲酸20 μL终止反应,12000 g离心15 min后,取200 μL上清置于蛋白质低吸附的进样瓶中作为混合肽段溶液待测。02超高效液相色谱-高分辨质谱方法参数色谱条件:色谱柱采用Waters Acquity Premier Peptide CSH C18(100 mm×2.1 mm, 1.7 μm) 柱温为40 ℃ 流速为0.25 mL/min 流动相A、B两相分别为0.1%甲酸水溶液和0.1%甲酸乙腈溶液。洗脱梯度为0~1 min, 1%B 1~13 min, 1%B~40%B 13~13.1 min, 40%B~90%B 13.1~16 min, 90%B 16~16.1 min, 90%B~1%B 16.1~20 min, 1%B。进样器温度10 ℃ 进样量5 μL。质谱条件:毛细管电压3 kV,锥孔电压30 V,离子源温度120 ℃,脱溶剂气温度450 ℃,锥孔气流速25 L/h,脱溶剂气流速800 L/h。电喷雾电离(ESI)源、正离子模式下测定,MSE模式采集,扫描范围m/z 50~2000 数据采集时使用亮氨酸脑啡肽校正液进行实时质量校正,以保证采集质量数的准确性与重复性。采集后的数据使用Unifi软件处理。03相对残留量的测定和肽段分级策略将上述混合肽段溶液经上述条件采集、Unifi软件分析后,可得BSA酶解后肽段组的实际肽段组成和每个肽段的响应值Area(供试品溶液)。在进样上述供试品溶液后连续进样3针空白溶剂,以3针空白溶剂中检测到的对应肽段响应之和Area(Blank 1+Blank 2+Blank 3)计为该肽段的残留总量,该肽段的相对残留量为肽段的残留总量与肽段响应值的比值。基于肽段的响应与相对残留量,可将BSA酶解后的肽段组分为如下四类:Class Ⅰ,响应高且无残留的肽段 Class Ⅱ,响应高但有残留的肽段 Class Ⅲ、Class Ⅳ分别为响应低,无吸附和有吸附的肽段。响应的高低以是否大于中位数计,有无残留以Area(Blank 1+Blank 2+Blank 3)是否有检出判断。04超高效液相色谱-三重四极杆质谱方法参数色谱条件:色谱柱采用Waters ACQUITY UPLC BEH C8(100 mm×2.1 mm, 1.7 μm) 柱温30 ℃ 流速0.4 mL/min 流动相A、B两相分别为0.2%甲酸水溶液和0.2%甲酸乙腈溶液。洗脱梯度为0~2 min, 2%B 2~5 min, 2%B~60%B 5~5.1 min, 60%B~90%B 5.1~8 min, 90%B 8~8.1 min, 90%B~2%B 8.1~11 min, 2%B。进样器温度10 ℃ 进样量5 μL。洗针液为90%乙腈水溶液(含0.2%甲酸)。质谱条件:离子化电压5500 V 气帘气压力0.14 MPa 离子源温度500 ℃ 喷雾气、辅助加热气压力0.38 MPa。ESI源正离子模式下测定,多反应监测(MRM)模式采集,12条Class Ⅱ类肽段的离子对、碰撞能量(CE)、去簇电压(DP)值经Skyline软件协助优化后结果如原文表1所示。文章信息色谱, 2022, 40(7): 616-624 DOI: 10.3724/SP.J.1123.2021.12012张莹1,2, 杨静1,2, 马跃新1,2, 曹玲2*, 黄青2*1.南京中医药大学药学院, 江苏 南京 2100232.江苏省食品药品监督检验研究院, 国家药品监督管理局化学药杂质谱研究重点实验室, 江苏 南京 210019
  • 西安光机所在超短激光脉冲光场测量研究方面取得重要进展
    近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。   超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。   而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。
  • 罗氏诊断2017收入增长5% 免疫诊断业务大幅增长
    p   2018年2月1日,罗氏(Roche)宣布,其2017年诊断产品销售收入同比增长5%,这得益于其集中式和即时健康解决方案业务中免疫诊断产品销售的实力增长。 /p p   截至12月31日罗氏诊断部门的财年收入为120.8亿瑞士法郎(合129.3亿美元),高于去年同期的114.7亿瑞士法郎。诊断部门报告第四季度营收为32.8亿瑞士法郎,比2016年第四季度的31.1亿瑞士法郎上涨4%。 /p p   罗氏公司在2017年的总收入为533.0亿瑞士法郎,比2016年的505.8亿瑞士法郎上涨了5%。 /p p   罗氏公司首席执行官Severin Schwan在一份声明中表示:“在2017年,我们取得了重大进展,新推出的药品和测试带动了这两个部门的良好增长。” /p p   在罗氏诊断公司内部,集中式和护理业务点解决方案的收入从去年同期的67亿欧元增长了7%至71.8亿瑞士法郎。综合血清学工作解决方案推动增长,免疫诊断收入增长13%,临床化学收入增长3%。 /p p   罗氏公司表示,2017年,在其集中式和护理点解决方案业务范围内,最终确定了Cobas e 801的血清学筛查组合,使实验室能够覆盖全自动仪器的全方位血清学测试。该公司表示,自推出以来,已有900套Cobas e 801模块投放市场。 /p p   罗氏公司的分子诊断产品收入从2016年的18.5亿瑞士法郎增长4%至19.2亿瑞士法郎。人乳头瘤病毒筛选收入增长15%,血液筛查收入同比增长1%。在病毒学产品中,罗氏的分子诊断业务也是其中的一部分,销售额增长持平,艾滋病毒病毒学检测的强劲增长弥补了2016年HCV销售下滑的业务。 /p p   该公司的组织诊断收入比2016年的9.14亿瑞士法郎增长了11%,达到10.2亿瑞士法郎,这主要得益于先进染色法(收入增长了11%)和原色染色法(收入增长了12%)。在组织诊断业务中,伴随诊断业务收入增长了13%。 /p p   罗氏表示,其糖尿病护理收入比去年同期下滑3%至19.7亿瑞士法郎,相比2016年的20.2亿瑞士法郎下滑,反映了市场条件的挑战,尤其是在北美地区。 /p p   在地区方面,亚太地区的销售总体增长了15%,诊断部门的中国销售额增长了21%。欧洲,中东和非洲地区的销售额增长了3%,拉丁美洲的销售额增长了12%,但北美地区销售额持平 /p p   Roche Diagnostics首席执行官罗兰· 迪格尔曼(Roland Diggelmann)在公司财报的网络广播中表示,2017年是诊断部门销售总额超过120亿瑞士法郎的第一年。他说,该公司的临床诊断业务实现了“高于市场”的同比增长7%。 /p p   Diggelmann表示,罗氏诊断公司在糖尿病检测业务方面继续面临报销和定价的压力,2016年美国医疗保险和医疗补助服务中心的报销削减正在扩展到私人支付市场,影响业绩。 /p p   尽管2017年病毒学检测销售额呈现平稳增长,但2016年直接抗病毒类似物的出现推动了Roche大量的HCV检测,因此,该公司预计2017年将成为有类似形势出现。 /p p   总体而言,罗氏报告的净收入为88.3亿瑞士法郎,较2016年的97.3亿瑞士法郎下降9%,原因是品牌价值和无形资产减值。核心每股收益为15.34瑞士法郎,比2016年的14.53瑞士法郎上涨了6%。 /p p   2017年,罗氏制药部门收入从391亿瑞士法郎增长5%至412.2亿瑞士法郎。 /p p   该公司表示,预计到2018年,整体销售额将回归到个位数增长,预计核心每股收益将以高位数增长。该公司预计,排除美国税收立法变化的影响,核心每股收益将大体上与销售额一致。 /p
  • 中欧联合测试“微笑”卫星任务!四台尖端仪器中国造了三台
    在最新的一次合作中,我国和欧洲的科学家共同完成了联合太空任务的关键测试,该任务最终将于2025年由欧洲火箭发射。中欧联合空间任务——太阳风磁层电离层链路探测器(SMILE)由中科院(CAS)和欧空局(ESA)于2015年联合设计和开发,该探测器是研究地球磁环境的强大工具。本月,我国的一个团队前往荷兰与ESA下属的欧洲空间研究与技术中心的同事们进行合作,测试了该任务的一颗原型卫星能否按照设计与欧洲发射装置对接和分离。该原型卫星的部件是在上海的微型卫星创新学院组装并运往欧洲的。此次任务的联合首席研究员、意大利天文学家雷蒙特表示,测试是成功的,中国和欧洲团队与火箭公司阿丽亚娜空间公司之间建立了“良好的合作”。此次合作是中国制造的卫星首次被运往欧洲航天局,同时也是中国团队第一次在欧洲航天局的设施中协助组装和测试卫星。地球磁层是地球生命抵御超音速太阳风和宇宙辐射的保护罩,到目前为止许多航天器已经观测到了太阳对地球磁层的影响。然而,雷蒙特说,大多数任务都专注于局部过程或特定的太阳事件,没有一个可以描绘出全球图景并支持对这一问题的全面理解。SMILE提供了一种被称为“太阳风电荷交换”的过程,可以在全球范围内监测地球的磁环境。她说,在这个过程中,太阳风中的带电粒子将与地球上层大气中的中性粒子交换电荷。在21世纪初,雷蒙特和她的团队向欧空局提出了几个候选任务,利用这种想法来研究太阳风的影响,但他们的建议没有被选中。随后,她联系了北京的空间气象学家,两方都有共同且相似的目标,因此在2015年提出了一个ESA-CAS联合任务。SMILE将在高度椭圆的极轨道上使用四台尖端仪器,在X射线和紫外线波段连续捕捉太阳风和地球磁层之间相互作用的图像。其中一个仪器是由莱斯特大学在英国航天局300万英镑资助下开发的,另外三台则是在中国建造的。除了科学仪器,欧空局还与我国共享卫星系统建设、科学运行等项目。欧空局表示,此次任务标志着欧空局和中国首次联合选择、设计、实施、发射和运营太空任务。SMILE是继上世纪90年代中国国家航天局与欧空局成功执行双星任务之后,中欧空间科学合作的新典范。雷蒙特表示:“我们与中方的合作一直以来都非常成功,双方进行了良好的信息交流,能够灵活适应和解决可能出现的任何问题。”SMILE原定于2021年进行测试,但由于疫情的影响,该项目不得不推迟。预计SMILE将于2025年4月在南美库鲁的欧洲太空港搭载阿丽亚娜空间公司的Vega-C火箭发射。
  • 进军短读长! Pacific Bioscience以8亿美元收购高精度测序商Omniome
    1.合并旨在改变基因组学格局,并为高增长的临床市场提供差异化的产品2.将Omniome的高精度短读长测序平台与PacBio市场领先的高精度长读长解决方案结合在一起3.交易将由主要生命科学投资者提供的3亿美元PIPE融资支撑加利福尼亚州Menlo Park和加利福尼亚州San Diego,2021年7月20日(环球新闻社)- 加利福尼亚Pacific Biosciences公司(纳斯达克股票代码:PACB)(“Pacific Biosciences”或“PacBio”),一家领先的高质量长读长测序平台供应商,今天宣布已签署最终合并协议,根据该协议,它将收购总部位于San Diego的Omniome公司,该公司开发高度差异化的专有短读长测序平台,能够提供无与伦比的准确性。合并完成后,我们相信PacBio将成为唯一同时拥有高精度长读长和短读长测序平台的公司。这些互补技术的整合将使PacBio能够以新颖的方式扩大其测序市场机会,在最广泛的应用领域为客户提供更多价值。Christian HenryPacBio 总裁兼首席执行官收购Omniome完全符合PacBio的使命,即实现基因组学对改善人类健康的巨大潜能。将 Omniome 的短读长测序技术添加到我们的长读长产品组合中,不仅能够扩大我们的总体市场机会,而且我们相信将进一步加速SMRT测序的采纳,因为我们希望通过更深入的产品供应来吸引更多客户。我们选择Omniome是因为它的新颖方法,我们相信它将产生最准确的短读长测序平台,以渗透到肿瘤学、转录组学,宏基因组学和无创产前检测 (NIPT)等大型、快速增长的临床应用领域。”Richard ShenOmniome 总裁Omniome的团队花了几年时间开发了一种独一无二的测序方法,即Sequencing by Binding (SBB)。我们开发这种化学方法是因为临床应用需要当前测序技术难以达到的准确度。SBB与其他技术相比具有根本优势,并且有可能以更低的成本提供更高的灵敏度来开拓新市场。PacBio已经组建了一支强大的领导团队,他们在NGS和基因组学方面具有远见和丰富的经验。我们期待加入这个团队,并认识到我们各自研发组织之间的巨大协同作用得以提升我们的组合技术加速基因组学的价值。Mark Van OenePacBio 首席运营官通过汇集Omniome和PacBio令人印象深刻的研发人才,以及我们规模化的制造和商业基础设施,我们现在拥有一个统一的团队,按照相同的原则运作:对基因组学未来的憧憬,让我们永远不会满足于按部就班的现有技术。科学家和临床研究人员依靠准确的短读长和准确的长读长来开展他们的科学研究并回答他们的具体问题。PacBio致力于提供最先进的测序解决方案组合,以实现完整的基因组学格局。交易条款根据协议条款,PacBio将以约6亿美元的前期对价收购Omniome,其中包括940万股PacBio普通股和3亿美元现金,另外还有2亿美元现金和一部分股份在达成某些里程碑后兑现,总交易额约为8亿美元。该交易已获得两家公司董事会的一致批准,并在符合惯例成交条件的前提下,预计将于本季度晚些时候完成。融资活动就拟议收购而言,PacBio已达成最终协议,以每股 26.75 美元的价格在私募交易中出售约1120万股PacBio 普通股,公司因此收益约为3亿美元,投资承诺来自主要生命科学投资者财团。此次私募得到了PacBio现有主要投资者的支持,包括Casdin Capital、SB Northstar LP、由软银集团100%子公司SB Management Limited管理的基金,以及由T. Rowe Price Associates Inc提供咨询的基金和账户, 此次交易取决于惯例成交条件以及Omniome收购的完成情况。交易顾问Centerview Partners担任PacBio与收购有关的财务顾问。Cowen担任PacBio的独家配售代理。Jefferies LLC担任Omniome的独家财务顾问。Wilson Sonsini Goodrich和Rosati担任PacBio的顾问,Cooley LLP担任Omniome的顾问。PacBio第二季度初步收入PacBio还宣布了2021年第二季度的初步收入约为3050万美元,与 2020年第二季度相比增长了约78%。并预示着第五个连续增长的季度。公司预计将于2021年8月3日发布第二季度的完整财务业绩。关于Pacific BiosciencesPacific Biosciences of California, Inc.(纳斯达克股票代码:PACB)专注于为生命科学家提供高度准确的长读长测序。该公司的创新仪器基于单分子实时 (SMRT® ) 测序技术,可提供基因组、转录组和表观基因组的全面视图,从而能够获取任何生物体的全谱遗传变异。PacBio® 测序系统被数以千计的同行评审科学论文引用,被世界各地的科学家用于推动人类生物医学研究、植物和动物科学以及微生物学的发现。关于OmniomeOmniome总部位于加州San Diego,成立于 2013 年,是一家生物技术公司,开发专有 DNA 测序平台,能够提供高精度测序准确性。在领先的生命科学风险投资者和成熟的管理团队的支持下,Omniome的愿景是成为最值得信赖的DNA测序平台并广泛支持临床测序。
  • “短波长X射线体应力无损分析仪”通过鉴定
    p    strong 仪器信息网讯 /strong 2015年10月17日,由中国工程物理研究院材料研究所、四川艺精科技集团有限公司、中国兵器工业第五九研究所等单位承担的国家科技部重大科学仪器设备开发专项“短波长X射线体应力无损分析仪开发及应用”的研究成果,顺利通过了四川省科技厅、四川省经济和信息化委员会组织的科技成果及新产品鉴定。 /p p style=" TEXT-ALIGN: center" img title=" 现场.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/0320ff88-b9a6-43a1-a3b3-8557088232ef.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体, 楷体_GB2312, SimKai" strong “短波长X射线衍射分析技术暨短波长X射线体应力无损分析仪新产品鉴定会”现场 /strong /span /p p   按照鉴定会程序,鉴定委员会听取了研制工作报告、技术报告,观看了技术研发视频,审核了第三方机构检测报告,考察了仪器现场,并进行了充分讨论、质疑。最后,鉴定委员会一致认为“短波长X射线衍射分析技术及短波长X射线体应力无损分析仪新产品”属于国际首创的技术与仪器,获得了多项国际、国内专利授权,对我国重大装备制造业水平的提升具有推动作用。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 400px HEIGHT: 455px" title=" image002.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/insimg/8971472e-bb72-4eae-b3d8-d8216642d878.jpg" width=" 400" height=" 455" / /p p style=" TEXT-ALIGN: center" strong span style=" FONT-FAMILY: 楷体, 楷体_GB2312, SimKai" 短波长X射线体应力无损分析仪新产品 /span /strong /p p   材料及工件的应力分布特征是影响物理化学性能的重要因素,在国防军工、航空航天等各个领域,由于材料、工件内部应力导致失败的案例很多,给国家和人民造成重大损失。目前,虽然 a href=" http://www.instrument.com.cn/zc/77.html" target=" _self" title=" " strong X射线(衍射)应力仪 /strong /a 已经得到商业化普及,但其功能只可测定试样约10微米深度表层的应力,无法完成体应力的测定。中子衍射和同步辐射高能X射线应力装置能够开展材料体应力测试,但该类仪器都是以反应堆或同步辐射光源等大型装置为基础,这些装置设备庞大、造价昂贵,无法市场化推广。 /p p   针对此现状,中国工程物理研究院材料研究所在“国家科技部重大科学仪器设备开发专项”支持下,研制了实验室用短波长X射线体应力无损分析仪,体积相对较小、价格较低,既可测定体应力,又可市场化推广,在一定程度上填补了以上两类装置之间的空白。 /p p   “短波长X射线体应力无损分析仪”采用钨靶发出的波长短、穿透性强的特征X射线,测试材料的内部应力、物相、织构等 利用能量法,改善了入射X射线强度的衰减 采用透射式和反射式的光路设计,获取材料内部结构沿深度分布的信息。该仪器高精度的测角仪、欧拉环等部组件,以及自动控制和应力分析软件等皆是项目组自主研发。样品台最大可承重20Kg 测试铝材当量厚度大于40毫米,无应力铁粉测试误差小于正负20兆帕 空间分辨能力可调,最小空间分辨率为0.1× 0.2× 2mm sup 3 /sup (宽× 高× 厚),对具有一定厚度的样品能够获得三维空间应力分布。 /p p   据介绍,项目组实施了边研制边应用、销售的策略,该仪器已在兵器工业、航空航天、交通运输领域及科研院所得到应用 初步实现仪器的销售,可对外提供材料工件体应力检测服务,目前已创造经济效益696万元。 /p p style=" TEXT-ALIGN: center" img title=" 专家组.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/9f7dfd71-eb8a-403a-a7bb-26d116d3c3fe.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体, 楷体_GB2312, SimKai" strong 项目负责人与鉴定委员会成员合影 /strong /span /p p   此次鉴定会的鉴定委员会成员包括:中科院物理研究所/中国物理学会X射线衍射联合委员会主任麦振洪研究员、清华大学材料学院院长张政军教授、中国工程物理研究院高级顾问/院士武胜研究员、全国无损检测协会副理事长/爱德森(厦门)电子有限公司总经理林俊明研究员、西南交通大学材料学院院长黄楠教授、中国核动力研究设计院二所书记兼副所长/核工业西南无损检测中心主任唐月明研究员、重庆大学材料学院/全国残余应力学术委员会副秘书长叶文海教授、中国东方电气集团有限公司核电设计所所长唐伟研究员、中航工业贵州黎阳航空发动机(集团)有限公司冶金处处长朱明研究员。麦振洪研究员、张政军教授分别为鉴定委员会正、副主任。 /p p   此次鉴定会还邀请了中国工程物理研究院科技委前副主任孙颖研究员等12位专家作为见证嘉宾。国家科技部、四川省科技厅、四川省经济和信息化委员会、绵阳市经济和信息化委员会、中国工程物理研究院、中国工程物理研究院材料研究所、四川艺精科技集团有限公司相关领导,该项目负责人中国工程物理研究院材料研究所副总工程师张鹏程研究员及其他项目骨干等出席了本次鉴定会。 /p p style=" TEXT-ALIGN: right" 撰稿:刘丰秋 /p p br/ /p
  • 代谢组学揭示肠癌患者临床诊断依据
    近年来,医学领域的基础研究日趋系统化和多学科交叉,系统生物学的迅猛发展翻开了临床实践、药物研发的新篇章。作为国内较早涉足系统生物学研究的贾伟教授研究团队,近年来应用代谢组学技术对各种临床疾病的早期预测、诊断和预后的生物标志物进行了广泛的研究,现以结直肠癌的系列研究为例介绍我们的研究进展。  研究团队首先采用气相色谱质谱联用、液相色谱质谱联用分析方法,结合单维统计、多维统计的代谢组学研究技术,对I-IV期的64名肠癌患者和65名健康志愿者分别进行了血清和尿液代谢标志物的筛查,并进一步在扩大的研究对象101名肠癌患者和103名健康人中对所发现的潜在代谢标志物进行了验证。  研究结果显示,肠癌患者与健康人的血清代谢物组成具有显著差异。肠癌患者的糖酵解通路中的两个代谢产物丙酮酸和乳酸在血清中呈显著性升高,三羧酸循环中的琥珀酸、异柠檬酸、柠檬酸中间产物呈下降趋势 油胺在肠癌病人血清中的含量也有显著性降低 尿素循环代谢物精氨酸、鸟氨酸和瓜氨酸在病人血清中均显著降低,脯氨酸、羟基脯氨酸和谷氨酸也显著下降 另外,色氨酸及其相关的代谢物5-羟基色氨酸和5-羟基吲哚乙酸在肠癌组和正常组之间有显著性差异,提示与5-羟色胺的代谢相关。研究结果还显示,血清代谢产物不仅可以将肠癌Ⅱ-Ⅳ期的患者与健康人明显区分开,还能将Ⅰ期的早期肠癌患者与健康人也区分开来。我们的相关研究结果从2009年开始陆续发表在专业领域内具有较大影响力的杂志Journal of Proteome Research(2009和2013)上。  尿液代谢组学结果同样显示,结直肠癌患者和正常人的代谢谱亦呈显著差异。结直肠癌患者中的色氨酸代谢上调,组胺和谷氨酸代谢通路、三羧酸循环和肠道菌群代谢紊乱。另外,结直肠癌病人中紊乱的代谢谱,如5-羟色氨酸代谢物、三羧酸循环代谢和肠道菌群代谢物在手术后得到明显改善。研究进而开展了二甲肼(DMH)所致结肠癌早期病变的SD大鼠模型的研究,同样发现这些代谢物的波动和紊乱。研究结果发表在Journal of Proteome Research (2010和2012)上,并得到美国ACS和TIME(时代周刊)为代表的多家权威媒体的重点报道和关注,对该研究结果和前景给予了极高的评价。  在结直肠癌血清和尿液的代谢组学研究基础上,我们对肠癌的组织也进行了深入的研究,对组织的研究可以有效规避血清、尿研究中由于饮食差异等外界因素对体内代谢物的影响带来对研究结果的影响。研究团队首先对来自上海地区的结直肠癌和癌旁组织进行研究,发现了一组在癌和癌旁组织中具有显著性差异的代谢物。进而对来自北京、浙江和美国加州另外3个不同地区的结直肠癌和癌旁组织也进行了研究。结果显示肠癌组织中总的代谢物变化趋势在4个不同地区的样本具有很高的相似性,其中的15个代谢分子呈现出完全一致的变化趋势。进一步研究发现这些差异性代谢物的变化与所在的代谢通路上的基因表达水平的变化呈高度的一致性。这些差异代谢物包括上调的犬尿氨酸、b-丙氨酸、谷氨酸、半胱氨酸、2-氨基丁酸、棕榈油酸、焦谷氨酸、天冬氨酸、次黄嘌呤、乳酸、豆蔻酸、甘油、尿嘧啶、腐胺,以及下调的肌醇。差异表达性的基因包括LDHA、TALDO1、GOT2、MDH2、ME1、GAD1、ABAT、PANK1、DPYD、ACLY、FASN、SCD、IDO1、GPX1、GSTP1、GSR、GSS、GGCT、ANPEP、CAT、ERCC2。结合代谢物和基因表达变化发现的结直肠癌的代谢物模式和基因表达模式特点主要可以从三个方面阐释其生物特性:1)“瓦伯格效应”(Warburg Effect):这是肿瘤细胞能量代谢的典型特征,表现在大量地摄取葡萄糖进行有氧糖酵解,生成大量的乳酸,同时为不断生长的肿瘤细胞提供生物合成原料 2)伴随着糖酵解的上升,用于大分子物质合成的代谢中间体显著上升:肿瘤细胞的代谢会产生大分子中间体来支持细胞生长,导致某些特定的游离脂肪酸(豆蔻酸、棕榈油酸)和核酸(次黄嘌呤)的浓度上升。在肿瘤细胞中,高表达的ACLY、 FASN和SCD同样提示了脂肪酸合成的增强。而b-丙氨酸在肿瘤细胞生长中明显的变化可能与脂肪酸合成中的乙酰辅酶A和丙二酸辅酶A有着密切的联系,提示这种变化可能与肠道菌群代谢有相关性 3)肿瘤细胞内维持较高的氧化应激水平:我们发现肿瘤组织内具有抗氧化活性代谢物的浓度显著上升。由于肿瘤细胞加速合成代谢而产生较高的活性氧,从而使胞内氧化应激水平上升。所发现的这些具有抗氧化活性的代谢产物在肿瘤组织中被大量的合成,提示肿瘤细胞通过改变代谢模式,用还原性的分子来平衡活性氧,从而在较高的氧化应激水平下维系其生理和代谢功能。实验中发现,氧化应激的生物标志物视晶酸、2-氨基丁酸在肿瘤细胞中上升。同时,与谷胱甘肽相关的基因包括GPX1、GSR、GGCT、GSTP1也在肿瘤组织中显著升高。该研究结果发表于国际知名的癌症研究期刊ClinicalCancer Research(2014)。  我们相信对结直肠癌的系统性的代谢研究,对寻找和发现具有临床早期诊断和预后价值的生物标志物研究提供了极大的可能性,为未来的临床转化研究奠定了坚实的基础。     原文出处:  1.Qiu, Y. Cai, G. Su, M. Chen,T. Zheng, X. Xu, Y. Ni, Y. Zhao, A. Xu, L. X. Cai, S. Jia, W., Serummetabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS.Journal of Proteome Research. 2009, 8, 4844–4850.  2.Qiu, Y. Cai, G Su, M. Chen, T. Liu, Y. Xu, Y. Ni, Y. Zhao, A. Cai, S. Xu, L. X. Jia, W.,Urinary Metabonomic Study on Colorectal Cancer. Journal of Proteome Research.2010, 9, 1627–1634.  3.Cheng, Y., Xie, G., Chen, T., Qiu, Y., Zou,X., Zheng, M., Tan, B., Feng, B., Dong, T., He, P., Zhao, L., Zhao, A., Xu,LX., Zhan,g Y., Jia, W. Distinct urinary metabolic profile of human colorectalcancer. Journal of ProteomeResearch. 2012, 11(2):1354-63.  4.Tan, B, Qiu,Y, Zou, X, Chen, T, Xie, G, Cheng, Y, Dong, T, Zhao, L, Feng, B, Hu, X, Xu, L.X, Zhao, A, Zhang, M, Cai, G, Cai, S, Zhou, Z, Zheng, M, Zhang, Y & Jia, W.Metabonomics identifies serum metabolite markers of colorectal cancer. Journalof Proteome Research 2013, 12, 1354?1363.  5.Qiu, Y. Cai,G. Zhou, B. Li, D. Zhao, A. Xie, G. Li, H. Cai, S. Xie, D. Huang,C. Ge, W., Zhou,Z. Xu, L. Jia, Weiping Zheng, S. Yen, Y. Jia, W. Metabonomicsof human colorectal cancer: new approaches for early diagnosis and biomarkerdiscovery. Clinical Cancer Research.2014, 20(8):15.
  • 罗氏2012分子诊断业务收入增长7%
    罗氏(Roche)日前报道称其分子诊断业务收入同比增长了7%,超过了公司诊断部门的整体增长。   瑞士药品、诊断和研究产品的企业巨头公布诊断业务总销售收入102.7亿瑞士法郎(112.2亿美元),相比2011年的97.4亿瑞士法郎,增长了5%。按恒定汇率计算,收入同比增长4%。   按恒定汇率计算,罗氏的MDx销售额从10.9亿瑞士法郎增加到11.7亿瑞士法郎,增长4%。并且,MDx销售增长是由血液筛查业务和丙型肝炎病毒监测业务所驱动。   该公司还指出,在第四季度推出的LightCycler 96,扩大了其PCR仪器在基因分型、基因表达和其他研究中的应用组合。LightCycler 96 “两个月内售出100多台仪器,从中可看到一个非常积极的攀升,”罗氏在一份声明中说。   罗氏指出,其诊断业务包括,与罗氏制药合作的超过200个正在进行的生物标志物和同伴诊断项目,以及与外部的制药公司新签订的12个协议。此外,公司在10月为辉瑞在欧盟进行的crizotinib伴侣诊断推出了ALK(间变性淋巴瘤激酶)组织测试。   总的来说,罗氏集团收入为455亿瑞士法郎,相比2011年425.3亿瑞士法郎的销售额增长了7%。净收益97.8亿瑞士法郎、每股13.62瑞士法郎,而2011年利润95.4亿瑞士法郎、每股12.30瑞士法郎。
  • 天美:短期无集资需要 内地业务稳定增长
    从事制造及分销实验室仪器的天美今日以介绍形式于主板上市,公司主席兼行政总裁劳逸强表示,公司短期无集资需要,但不排除有需要时会集资。   该公司生产的科学仪器涵盖15-16个领域,包括政府化验所、食品监测及大专院校实验室,他指,近年内地关注食品安全,该方面的增长强劲,但由于公司积极发展亚洲其它市场,内地业务占比有所下降,惟强调,内地业务仍在稳定增长。   他补充,欧洲业务占公司营业额约10-12%,又指,不担心欧债危机影响当地市场,因为公司主要生产中价型仪器,在经济不明朗下,客户倾向采用实用的仪器。
  • 迪安诊断:发展进入新阶段,技术创新驱动增长
    p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/e9ba9d1a-34c9-48de-bdad-14ad0ba9cec7.jpg" / /p p   迪安诊断的实验室网点已经完成了全国布局,渠道资源的并购整合效果显著,公司目前是国内规模最大的产品、服务一体化供应商。技术平台与应用平台的不断创新,开发符合临床需求的新项目,是独立医学实验行业未来重要的驱动因素。公司目前搭建了基因检测(高通量测序)和质谱两大特检技术平台,从临床需求角度来看,基因检测技术是目前临床检测量增速最快的细分领域,包括个体化用药、优生优育和遗传病等领域 质谱技术之前由于设备价格昂贵,样本处理效率较低,临床应用很少,但是随着质谱技术的进步,在某些领域已经能够较好地满足临床使用需求,并且比传统方法学展现了独特优势,未来潜力巨大。随着实验室网点布局的完善,渠道资源的整合,迪安诊断的发展进入了新的阶段,技术创新将成为未来公司增长的去要驱动力量。 /p p    strong 1.携手全球质谱领军企业,技术平台实力在上新台阶。 /strong /p p   合作方爱博才思是全球质谱领军企业SCIEX旗下在中国的业务公司,SCIEX是丹纳赫集团旗下企业,丹纳赫在国际医疗器械市场实力雄厚,其诊断设备在中国和全球的临床市场占据重要地位。全球主要质谱设备供应商包括该公司在内,还有安捷伦、布鲁克、铂金埃尔默、岛津和沃特世等等。根据CFDA披露的信息,SCIEX、沃特世、布鲁克和铂金埃尔默等公司的质谱设备在国内取得了医疗器械注册证书。 /p p   根据公司公告,新成立的合资公司注册资本5000万元,其中迪安诊断将出资2550万元,占比51% 爱博才思出资2450万元,占比45%。合资公司未来主要业务是在中国开发、注册、生产及销售一类、二类及三类体外诊断试剂和仪器:第一阶段将以开发、注册和制造与SCIEX Triple Quad 4500MD LC-MS / MS系统或其他SCIEX的仪器配套使用的临床试剂盒为主。4500MD LC-MS/MS系统是SCIEX在国内取得医疗器械注册证书的产品。 /p p   2017年3月份,迪安诊断公告,对旗下子公司凯莱谱增资3700万元,持有公司55.32%的股权,凯莱谱是公司旗下的质谱技术与应用平台,未来目标就是打造国内一流的多项质谱应用平台。此次公司和SCIEX合作,势必将大幅提升公司在质谱技术领域临床应用的优势。 /p p   strong  2.看好质谱技术未来在临床应用的前景。 /strong /p p   根据我们之前对医院草根调研的情况来看,虽然目前配备质谱设备的医院相对较少,但是质谱在临床的应用已经开始了快速增长。质谱技术灵敏度高,并能够进行定量检测,特别是在遗传代谢病和微生物鉴定等领域,质谱技术展现了独特的优势。比如在遗传代谢病领域,质谱技术可以一次性检测几十种遗传代谢病,而且成本优势明显。基于质谱技术在小分子定量分析领域的优势,未来在药物治疗监测、维生素和甾体类激素等领域的应用有可能成为重要发展趋势。 /p p   strong  3.服务与渠道布局完善,发展进入新阶段。 /strong /p p   公司独立医学实验室网点基本完成了全国覆盖,通过并购整合了经销商,正在推进的非公开发行将完善华南地区渠道的整合。分级诊疗基层市场扩容将给独立医学实验室行业带来机会,基于新型技术平台的检测技术将开辟新的增量市场。随着公司业务框架和板块布局的完善,公司将进入技术创新驱动的发展新阶段。 /p p & nbsp /p
  • 大连化物所李灿院士团队成功研制短波长手性拉曼光谱仪
    p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/694a02ea-3cd0-463f-b9ba-a8fa80a93e9d.jpg" / /p p   近日,国家自然科学基金委员会主持的国家重大科研仪器设备研制专项项目结题验收会议在北京举行。大连化物所李灿院士、冯兆池研究员团队主持完成的“电场、磁场调制的短波长手性拉曼光谱仪研制”专项通过结题验收,并获得优秀。这个进展也在Applied Spectroscopy(2017,71(9),2211-2217)上发表。成功研制出国际上第一台457nm激光为激发光源的短波长手性拉曼光谱仪。 /p p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/9a1f6b78-2cd3-4bba-b2c0-7ee292355bc0.jpg" / /p p   手性是自然界的基本属性之一,手性分子的研究在生命科学、药物合成及不对称催化等领域中具有重要的意义。其中手性分子的绝对构型鉴定是科学界的一个挑战课题。手性拉曼光谱是手性分子结构表征的一种新的光谱学方法,由于该方法不需要样品结晶,可直接对溶液相中手性样品进行绝对构型的鉴定,因而受到学术界和工业界高度关注。然而,手性拉曼光谱的本征信号非常弱,比常规光谱技术信号弱3至7个数量级,因此在实验上检测手性拉曼信号极具挑战。该研究团队在多年紫外拉曼光谱仪器研制的基础上,提出短波长手性拉曼光谱仪器的研制思路,基于躲开电子态吸收和避免荧光干扰两个基本原理分析,优化选取了适合于手性拉曼光谱的457nm激光作为光源,与国内外相关光谱仪器公司合作,成功研制世界上首台短波长手性拉曼光谱仪,也同时填补了我国手性拉曼光谱技术的空白。 /p p   仪器研制成功后,在近期举行的第十九届全国光散射学术会议上,还专门举行了457nm短波长手性拉曼光谱学术研讨会。国内分析化学、不对称合成、药物研究领域的6位院士、拉曼光谱领域的相关专家以及华北制药集团等手性药物的企业技术负责人近30位专家出席了会议。与会专家在听取了项目负责人李灿的总结汇报、项目组其他成员的研制工作介绍、以及现场测试专家的汇报后,进行了深入的研讨。最后与会专家认为:该国际上首次成功研制的457nm短波长手性拉曼光谱仪,信噪比大幅度提升,摄谱时间由数小时缩短至几十分钟,待测样品要求从纯化合物到10%,使手性拉曼仪器性能达到了一个新的高度,同时也填补了我国在手性拉曼光谱仪器的技术空白。并建议将短波长手性拉曼光谱仪尽快工程化,该光谱仪预计将在手性分子鉴定、新药合成和鉴定、不对称催化和生物大分子研究领域发挥重要的作用。 /p p   文章题目:A Short-Wavelength Raman Optical Activity Spectrometer with Laser Source at 457nm for the Characterization of Chiral Molecules /p
  • 上海光机所超强超短激光在太赫兹强源研究方面取得重要进展
    近日,在中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在新一代超强超短激光综合实验装置上开展的超强太赫兹(Terahertz,THz)脉冲实验取得重要进展,以“Generation of 13.9-mJ Terahertz Radiation from Lithium Niobate Materials”为题在线发表于Advanced Materials。该成果由北京航空航天大学和上海光机所强场激光物理国家重点实验室,在张江实验室支持下协同中科院物理所、上海科技大学等单位合作完成,在新一代超强超短激光综合实验装置上实现了基于铌酸锂晶体的超强THz脉冲的能量新纪录13.9mJ。研究团队利用超强超短激光输出的30fs,1.2焦耳脉冲激光,基于倾斜波前技术,实验验证了低温冷却铌酸锂晶体可产生单周期13.9mJ极端强度THz脉冲,从800nm激光到THz的能量转换效率为1.2%,聚焦峰值电场强度约为7.5MV/cm。实验还表明,室温条件下,450mJ的泵浦激光可产生单脉冲能量为1.1mJ的THz脉冲,并观察到泵浦激光的自相位调制效应会导致晶体中的THz增益饱和。这项研究为基于铌酸锂晶体的亚焦耳级THz产生奠定了基础,并将激发极端强场太赫兹科学和应用领域的更多创新。图1 基于上海光机所新一代超强超短激光综合实验装置的铌酸锂太赫兹强源产生光路示意图。图2 铌酸锂太赫兹强源单脉冲能量半个世纪的提升历程。
  • 保泰持盈,行稳致远——莱伯泰科2024年上半年营收利润双增长
    GUIDE导读8月28日,莱伯泰科揭晓了2024年中报。在2024上半年,莱伯泰科表现出整体稳健的增长势头,营业收入2.14亿元,同比增长9.08%,归母净利润0.24亿元,同比增长4.44%,实现了营收和净利的双增长。在上半年,莱伯泰科不断推进高端分析仪器的研发工作,并在半导体领域取得了显著突破,同时积极向医疗和医药行业拓展应用。此外,公司还成功发布了多项创新技术和产品,并与国际知名学府展开合作,致力于开发蛋白质组学样本制备的一体化解决方案,以推动新药研发和临床诊断方法的进步。展望未来,莱伯泰科将继续坚持以科技创新为驱动力,以产品高品质为基石,为推动科学仪器行业的持续发展贡献力量,并向广大客户提供更可靠、更高效的产品与解决方案,创造更为广泛的社会价值。
  • PacBio将以1.1亿$收购Apton Biosystems,加速下一代高通量短读长测序仪的开发
    PacBio 8月2日宣布,已达成协议收购 Apton Biosystems, Inc (Apton)。总部位于湾区的公司正在开发一种高通量短读长测序仪,该测序仪采用最先进的光学和图像处理技术,并结合新颖的聚类和化学技术,旨在实现在一个流动池中对数十亿个 DNA 簇进行测序。作为一个合并组织,PacBio 计划将其结合测序 (SBB™) 短读长化学技术集成到 Apton 的高通量仪器中,以提供差异化的高通量测序仪。 据悉,该交易价值高达 1.1亿美元。Apton的光学系统可以以单分子分辨率检测表面密集堆积的数十亿个分子Christian Henry PacBio总裁兼首席执行官“Apton 在开发新型高通量测序平台方面取得的进展给我留下了深刻的印象,该平台有潜力以极低的成本进行大规模测序。通过将我们高精度的 SBB 技术与 Apton 先进的光学和图像处理能力相结合。我们预计将会比我们计划更快的速度实现高通量短读平台的商业化。此次收购符合PacBio开发多产品线短读长测序产品组合以及长读长测序平台的战略,使我们有机会在数十亿美元的测序市场中占据更大份额。”Mark Van Oene PacBio首席运营官“在最初的试运行中,看到我们的 SBB 化学物质如何无缝地移植到 Apton 系统,真是令人兴奋。收购 Apton 加快了我们的开发进度,目前预计不会增加我们计划的研发费用。我们可以快速开始将我们的测序化学集成到 Apton 的高通量测序仪器上,我们相信这将显著减少开发新平台所需的时间。Apton 拥有精干而灵活的团队,我们期待快速跟踪这款新测序仪的开发。此外,Onso 进入商业化阶段恰逢其时,Onso 开发团队期待利用其这个新项目的专业知识。”John W. Hanna Apton Biosystems首席执行官“在 Apton,我们一直不懈地追求成本和通量方面的改进,以满足高通量市场中客户的需求。当 PacBio 推出 Onso 台式测序仪时,它扩展了我们对高通量测序仪所能提供的功能的想象。我们知道,如果我们能够用 SBB 等一流的化学技术来补充我们在光学方面的进步,我们就有潜力开发真正与众不同的高通量短读测序仪,一个前所未见的产品。”曾有业内人士指出,长读长是NGS发展的一个重要方向。PacBio有点类似当时的Affymetrix,在股票跌入谷底的时候坚持了朝一个方向投入来取得进展。当时Affymetrix是坚定地转入临床市场取得了FDA注册证,靠临床带来了新增长点,吸引了TMO。PacBio则是一直在降低错误率,和把机器小型化。从年初传出消息将被测序巨头Illumina以12亿美元收购以失败告终,到如今主动出击收购企业加速下一代高通量短读长测序仪的开发,PacBio未来终要自立自强。关于PacBioPacific Biosciences of California, Inc.(纳斯达克股票代码:PACB)是一家领先的生命科学技术公司,致力于设计、开发和制造先进的测序解决方案,以帮助科学家和临床研究人员解决基因复杂的问题。我们正在开发的产品和技术源于两项高度差异化的核心技术,专注于准确性、质量和完整性,包括我们现有的 HiFi 长读长测序和我们新兴的 SBB 短读长测序技术。关于AptonApton 是一家总部位于加利福尼亚州普莱森顿的 Super-Res™ 测序和单分子检测系统开发商,其产品用于早期癌症检测和群体测序等大规模临床应用。Apton 重新设计了用于测序的光学系统,使用超分辨率来评估间隔比光波长更近的分子。Apton 的 Super-Res™ 专利技术使用简单、无图案的流动槽,可在单次运行中对数百亿个reads进行测序,从而降低测序成本。
  • 日本研制出世界最短波长X射线激光
    新华网东京6月12日电 日本研究人员近日利用X射线自由电子激光装置成功发射出波长仅0.12纳米的X射线激光,刷新了这种激光最短波长的世界纪录。   根据日本理化研究所和高辉度光科学研究中心联合发布的新闻公报,来自这两家机构的研究人员利用建在兵库县的X射线自由电子激光装置发出了波长仅0.12纳米的X射线激光,打破了美国的直线加速器相干光源于2009年4月创下的0.15纳米的最短波长世界纪录。   公报说,研究人员将X射线自由电子激光装置的监视器、电磁石等硬件,以及精密控制各种仪器的软件都按最佳设计进行了彻底调整,从2月底装置运转开始,仅用了3个多月时间就发射出了世界最短波长的X射线激光。而当年美国的调整过程花费了几年时间。   X射线激光的波长小于1纳米,它被看作能给原子世界照相的“梦幻之光”。在从基础研究到应用开发的广阔领域,比如膜蛋白的结构分析、纳米技术等领域,X射线激光的应用前景都被看好。
  • 非侵入性微型传感器可测人体pH值,或有助于诊断癌症
    据最新一期《化学科学》杂志报道,加拿大研究人员开发出一种可更准确测量pH值的微型传感器,或有助更好地理解和诊断包括癌症在内的一系列疾病。 多伦多大学士嘉堡分校化学系助理教授张晓安称,在活生物系统中实时检测pH值,对于探测和理解pH值失衡导致的相关疾病至关重要。如低pH值与囊性纤维化、局部缺血以及癌症的病理状况密切相关。pH值信号可用于诊断疾病及监测治疗效果,了解人体组织内的pH值在何时何地发生显著变化是非常重要的。因此,迫切需要找到一种可进行深入、精确的探查,同时又确保不入侵组织的新方法。 张晓安团队使用核磁共振光谱技术开发的微型传感器,可以非侵入方式在原子水平对分子进行非常详细的观察。研究人员将大肠杆菌细胞作为实验对象,完成了对卵母细胞(鱼卵细胞)的传感器测试。 pH值是对质子(附着于其他分子的微小带电粒子)活性的测定。质子活性很难在组织中测量,因为质子移动迅速,难以用常规核磁共振的时间尺度来捕获分子位置。利用核磁共振测量pH值的主要挑战在于,在不同的质子化状态(附着或不附着)对分子进行精细成像。既有核磁共振技术无法对不同质子态的实时测量提供足够的精度。 张晓安团队研发的传感器,则通过一种缓慢的质子交换机制,提供了独特的解决方案。该探测器可减缓质子运动,并观察不同状态下的质子,从而使测量变得更为灵敏和精确。该传感器虽为医疗成像设计,但亦可扩展到环境科学、生物学乃至食品生产和质量控制等其他应用领域。
  • 横河电机发布适用于短波长测量的新型光谱仪
    日本横河电机株式会社近日推出新型光谱分析仪AQ6373,适用于短波长测量,量程范围350nm~1200nm。横河电机自收购安藤公司以来,即在光通信测试领域保持世界领先地位,光谱分析仪是享有传统美誉的拳头产品。   AQ6373使用单色镜技术,拥有出色的光学测量能力,如高精度波长测量、高分辨率、大动态范围等等。它继承了AQ6370B的友好用户界面和出色的测量吞吐量等优点,在很多测试场合将大大提高工作效率。AQ6373可满足医疗、生物、材料加工、电信设备等众多应用领域中对短波长设备的测量需求,尤其适用于短波长激光、光无源器件和LED的研发及生产。它能够代替许多与AQ6315同期的光谱分析仪。
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制