当前位置: 仪器信息网 > 行业主题 > >

镀金镀碳材料

仪器信息网镀金镀碳材料专题为您整合镀金镀碳材料相关的最新文章,在镀金镀碳材料专题,您不仅可以免费浏览镀金镀碳材料的资讯, 同时您还可以浏览镀金镀碳材料的相关资料、解决方案,参与社区镀金镀碳材料话题讨论。

镀金镀碳材料相关的资讯

  • Quantum Design光学浮区法单晶炉,高效镀金双瓣对焦助力介电材料研究
    随着信息、电子和电力工业的快速的发展,以低成本生产具有高介电常数损耗的材料成为当前关注的热点,高介电常数材料无论是在电力工程,还是在微电子行业都具有十分重要的作用,研究高介电常数材料的结构与性能,对其介电机理、压敏机理和晶界效应的探讨具有深远意义。 (InNb)0.1Ti0.9O2陶瓷不仅具有高介电系数,同时具有较小的介电损耗,是一种具应用前景的巨介电材料。这种优异的介电性质的产生机理尚处于研究阶段,单晶样品是分析材料本征性质的有利武器。由于介电测试对于样品尺寸的特殊要求,为更真实地反应样品的介电性质,获得大尺寸、高质量的 (InNb)0.1Ti0.9O2单晶变得尤为重要。浮区法单晶炉高效镀金双瓣对焦 哈尔滨工业大学宋永利等人利用光学浮区法,通过对生长条件(气氛、气压、流量、生长速率)的控制,终获得了大尺寸(4mm直径、30mm长)的单晶样品。该单晶样品的制备使用的是Quantum Design公司推出的光学浮区法单晶炉。这款高性能单晶炉采用镀金双面镜、高反射曲面设计,高温度超过2000℃;系统采用高效冷却节能设计(无需额外冷却系统),稳定的电源输出保证了灯丝的高精度恒定加热功率,可制备高质量的单晶。光学浮区法单晶炉 型号:IRF01-001-00 浮区法的主要优点是不需要坩埚,故加热不受坩埚熔点限制,因此可以生长熔点高材料;生长出的晶体沿轴向有较小的组分不均匀性,在生长过程中容易观察等。浮区法晶体生长过程中,熔区的稳定是靠表面张力与重力的平衡来保持,因此,材料要有较大的表面张力和较小的熔态密度,故浮区法对加热技术和机械传动装置的要求都比较严格。相关产品链接高精度光学浮区法单晶炉 http://www.instrument.com.cn/netshow/C121152.htm
  • 行业细化、学术营销:“十二五”生物仪器产业镀金
    对于生物仪器产业的未来,美国全球行业分析公司给出了一组诱人的数据:全球生物技术仪器市场预计在2015年达到58亿美元。   其中,除了全球生物技术仪器需求量最大的美国和欧洲,亚太地区将是生物技术仪器需求增长速度最快的市场。   对此,生物谷总裁张发宝表示,生物技术仪器企业要把眼光从生命科学研究领域扩展到生物产业,生物领域的子产业正逐步走向成熟,关键是要创新营销模式。   领域迈向纵深   在张发宝看来,“十二五”期间,我国生物技术仪器行业将出现新的特色和亮点。   首先,未来一段时间里,国家对于基础研究的投入会倍增,特别是生物医药领域。个性化治疗与分子诊断领域、高通量新药筛选技术、新药研发相关通用设备、生物制药、细胞治疗领域、单次用品都将成为生物医药领域重要爆发点。   而且,随着国家对基础建设的不断重视,医药企业和医院将成为创新的载体,逐步取代传统的研究院所与大学。   张发宝建议,生物技术仪器企业要把眼光投向纵深,逐步从生命科学研究领域转移到生物产业,即从研究院所走向企业,这样才能发现更为广阔的天地。   其次,随着产业的成熟与升级,“十二五”期间,生物技术仪器设备的更新速度也将加快,特别是高通量设备,旧设备将逐渐被新产品所取代。   同时,科学仪器企业还将共同面临产品的多元化与近似化、竞争的复杂化与全球化、新领域陌生化等难题。   “企业要做的是,面对行业的变化时要跟紧或略有超前。”张发宝说。   不容忽视的新兴子产业   通过分析当前科学仪器行业的发展情况不难发现,新技术是其中主要的推动力。   正是由于基因组学、蛋白质组学、基因芯片、组合化学、高通量筛选等新技术的涌现,使得生命科学领域对科学仪器的需求量大增。   而复杂的分析和分离纯化方法,又让高效液相色谱仪、气相色谱、质谱等医药分析仪器市场有了前所未有的增长。   而在眼下,张发宝认为,“十二五”期间,七大战略性新兴产业中各个细分行业不断涌现出来的新技术,也会促使出现相应的科学仪器。   “对于节能环保和新能源领域,生物质能将带来一股研发热潮。而在高端装备制造业和新材料领域,生物材料也是不可忽视的亮点。”张发宝指出。   值得强调的是,“十二五”期间,生物技术仪器行业还应重点关注生物领域细化的子产业,其中包括创新药物研发、生物制药、体外诊断等先进医疗设备、农业生物育种、干细胞治疗、转基因六大领域。   而在这些子产业逐步走向成熟的过程中,国家投入、地方投入、企业投入等资本流向的背后也会发现潜在商机。   “钱的流向与行业成熟度是密切相关的,抓住资金的流向就等于抓住了市场。”张发宝说,例如在生命科学领域,该领域的发展高度依赖国家的投入,大部分资金流向研究院所与大学,所以这两大区域就是科研仪器公司需要锁定的目标市场。   同样,如果关注近几年国家自然科学基金的流向就会发现,很多科技园区成功申请到科学基金。在这些园区里不仅有供货服务平台,还有少则20家、多则300家的企业。   对此,业内人士建议,如果生物技术仪器行业能在早期抓住园区这一潜在市场,或许就会成为产业的先驱。   学术营销   如何在这些新领域进行营销决策就成为企业共同关注的话题。   “一个企业的营销效果30%靠的是营销战略,40%是营销模式,另外30%才是营销手段。”张发宝说,营销模式和营销战略对于一个科学仪器企业来说至关重要。   目前,科学仪器行业的营销模式依然存在很多问题,营销手段落伍,对新营销手段的跟进又不足,很多企业往往仍采用单点营销、关系营销这种老化的模式,而在当前日趋透明化的市场背景下,这种模式已经无法达到预期效果。   张发宝认为,学术营销渐成科学仪器行业营销热点。   “学术营销真正是传达一个知识,靠知识的传播来传达产品的信息,继而带动企业品牌的塑造,同时也给我们的客户以及客户的客户带来利益和收益。”张发宝说。   可以说,学术营销的目的就是建立一个成熟、高效的营销系统,通过向上下游整合研发资源、学术资源、人力资源、渠道资源等,快速有效地把新产品推向市场,做成领先产品甚至是“重磅炸弹”。
  • 三检测机构否认认定丙尔金无毒
    《剧毒化学品藏身写字楼》追踪   2013年2月16日国家发改委发布第21号令,公布了《国家发展改革委关于修改有关条款的决定》,对《产业结构调整指导目录(2011年本)》有关条目进行了调整修改。其中含有毒有害氰化物电镀工艺(氰化金钾电镀金及氰化亚金钾镀金)的原本暂缓淘汰调整为在2 0 14年全面淘汰。并在随后发布的说明中指出,丙尔金作为氰化亚金钾镀金工艺的唯一替代品被推广。   然而今年4月份,江门警方查获大量名为“丙尔金”的产品,经送检认定为剧毒化学品,引发了一场业界对丙尔金这个所谓的新型环保氰化物替代品的争议(南都4月16日、4月24日曾报道)。随后,河南三门峡恒生科技研发有限公司否认样品系该公司正品。近日,曾被用来宣传证明丙尔金是无毒产品的多个检测部门纷纷发表澄清公告,称并未认定过丙尔金产品无毒,再次将丙尔金推向了风口浪尖。针对发改委的决策,日前,中国机械工程学会表面工程分会主办了《清洁镀层技术专题研讨会》,会上多位业界权威专家提出,应由国家权威部门对丙尔金产品进行检测鉴定,在没有正式定论之前应暂缓执行该令。   早在2 0 0 8年8月12日,深圳市公安局桃源派出所就查处了一起贩卖剧毒化学品案件,所涉产品就是河南三门峡恒生科技研发有限公司生产的柠檬酸金钾(后改名丙尔金)。2 0 11年10月份,珠海市公安局也查处了一起非法贩卖剧毒化学品物资案,缴获了四瓶丙尔金,经送检含有氰化物。2 0 13年1月3 0日,深圳警方再次查处了丙尔金。直到今年4月1日,江门警方查获大量丙尔金,并送检分析其成分,才让这个一直有“清洁替代产品”称号的丙尔金陷入了“ 剧毒”漩涡。   事发:警方查处丙尔金,检测为剧毒品   今年4月份,江门警方在一写字楼里查获大量名为“丙尔金”的产品,经送检确定含有约75%的氰化亚金钾,其余为柠檬酸钾。其中,氰化亚金钾属于国家明文规定的剧毒化学品,在遇酸等条件下会释放出有害气体,需要在公安机关备案销售,不得随意流通。而此次,实际上已经是广东警方第四次查获丙尔金。   据警方调查,早在2008年8月12日,深圳市公安局桃源派出所就查处了一起贩卖剧毒化学品案件,所涉产品就是河南三门峡恒生科技研发有限公司生产的柠檬酸金钾(后改名丙尔金)。2011年10月份,珠海市公安局也查处了一起非法贩卖剧毒化学品物资案,缴获了四瓶丙尔金,经送检含有氰化物。2013年1月30日,深圳警方再次查处了丙尔金。直到今年4月1日,江门警方查获大量丙尔金,并送检分析其成分,才让这个一直有“清洁替代产品”称号的丙尔金陷入了“剧毒”漩涡。为了进一步搞清楚丙尔金的真实成分,警方分别将样品送往广州分析检测中心和中国疾控中心职业卫生与中毒控制所进行检测,结果经广州分析检测中心检测,该产品为75%的氰化亚金钾和25%的柠檬酸钾混合物。而中国疾控中心的检测证实,该产品急性经口毒性为高毒。   质疑:是清洁产品还是剧毒品?   江门警方查处丙尔金并送检,检测其为剧毒化学品的事件发生后,作为丙尔金的生产方河南三门峡恒生科技研发有限公司发表声明,称警方所检测物品并非其公司生产的丙尔金,而是贴错了标签。随后,警方要求其提供正品进行检测分析,但该公司一直未能提供样品。   对此,长期从事镀金行业的朱振华博士告诉记者,经查证国家专利局,恒生科技公司曾分别在2007年、2009年和2011年申报丙尔金产品的专利,三次申报中制作工艺是一模一样的,但是产品的化学分子式和结构却完全不同,存在自相矛盾的地方。记者随后也通过国家专利局官网查询,发现三次申报的化学分子式的确不同。“其宣称在神舟五号、神舟六号上有使用其产品,更是不可能,神舟五号是2003年上天的,怎么能使用一个在2007年才开始申请专利的技术?”而记者随后查询其公司公开宣传资料也显示,该公司成立于2000年,从2003年开始该产品的实验,到2005年才有小批量生产在市场上应用。   不仅如此,据朱博士介绍,按照国家《新化学物质危害评估导则》的要求,对于新化学物质的急性毒性检测,必须要经过经口、经皮以及吸入三种检测,以三种检测中毒性级别最高者判定产品毒性。但是在恒生科技对丙尔金宣传中所称的“无毒”鉴定中,并没有吸入的检测报告,而且其经口急性毒性分析也不是无毒,而是低毒。为什么该公司一直不提供样品,以还事实真相呢?网站上的宣传资料时间为何会出现矛盾?为了搞清楚这些问题,日前,记者多次联系该公司,但是公司网页上公布的全部电话均关机或无人接听。   进展:检测机构纷纷发澄清声明   随着该事件的不断推进,日前,三个曾经对三门峡恒生科技研 发有 限 公司 提 供 的样 品 进 行 检测的机构纷纷发表澄清声明。最早发布声明的是中国疾控中心职业卫生与中毒控制所,针对丙尔金产品宣传中声称该产品“经中国疾病预防控制中心中毒控制所检测,该产品属实际无毒产品”的内容,4月28日该所就发表了声明称,“本所曾接受企业委托进行拧大鼠丙尔金样品急性经皮毒性试验,但在本所出具的检测报告中均没有‘该产品实际无毒’的结论”。   随后,5月30日,曾对柠檬酸金钾(丙尔金)进行过检测的电子科技大学微电子与固体电子学院也发表了澄清公告,指出:“由于样品方提供了不实信息,导致分析结果的偏差,现公告对于样品‘柠檬酸金钾’的分析报告全部作废。”并声明保留追究样品方法律责任的权利。   三门峡恒生科技研发有限公司网站上的介绍资料显示,该产品经国家安全生产监督管理局危险化学品登记中心检测证明不属危险化学品。然而6月24日,国家安全生产监督管理局化学品登记中心就在其官方网站发布了《关于丙尔金危险性鉴定有关事项的声明》,指出“鉴于三门峡恒生科技研发有限公司(以下简称恒生科技)送检的‘一水合柠檬酸一钾二(丙二腈合金(I))’(别名丙尔金、柠檬酸金钾、丙二金,以下统称丙尔金)样品进行危险性鉴定时,所提供的毒性检测报告中的数据与有关公安机关向我中心出示的该产品毒性检测报告中的数据差异较大,我中心补充了丙尔金样品的成分检测和分析。检测结果表明,恒生科技送检时申报的丙尔金成分和含量信息严重失实,未申报含有主要有毒成分氰化亚金钾。我中心已函告恒生科技不得继续使用我中心曾出具的非危险品等相关鉴定报告进行丙尔金产品宣传及其他相关活动。由此产生的一切后果由恒生科技承担,我中心保留依法追究的权利。”   昨天下午,记者就此事致电国家安全生产监督管理局危险化学品登记中心,该中心的一位工作人员告诉记者,关于丙尔金的问题该中心已经发表声明。“那个公司都已经被停止生产了,产品都被查封了。”该工作人员透露。记者就此事多次联系三门峡恒生科技研发有限公司,但是公司网页上公布的全部电话均关机或无人接听。   [业界]   专家建议权威部门进行第三方检测   针对丙尔金问题,中国机械工程学会表面工程分会主办的“清洁镀层技术专题研讨会”上,多位业界权威专家提出,应由国家权威部门对丙尔金产品进行检测鉴定。厦门大学化学工程与生物工程系教授王周成就表示,根据警方查获的产品检测出来丙尔金并非一个新的化学物质,而只是氰化亚金钾和柠檬酸钾的混合物,但是三门峡恒生科技公司否认样品是其公司产品,因此做一个权威鉴定很重要。“从技术上说,做一个是否为新物质的鉴定是非常简单的,而样品就成了关键,需要国家相关部门出面让三门峡恒生科技公司拿出一份所谓的正品来检测。”   法学博士吴欣也指出,由于目前丙尔金宣称属于无毒产品,且不需要在公安等部门的监管下进行销售、运输,给社会带来了极大的危险,因此,对丙尔金做一个权威鉴定是必须的,而且在鉴定 结 果 出 来 之前,有关部门应该暂时停止这种产品的流通,以防止发生重大中毒事故。同时,他也呼吁国家有关部门尽快向社会披露丙尔金的真相,给大众一个权威说法。   中国机械工程学会表面工程分会秘书长陈建敏在最后发言时表示,首先学会坚决支持政府、企业、科研单位积极推动无氰电镀技术的开发,并在技术及产业成熟的条件下进行大力推广应用。但根据所收集的丙尔金相关技术资料和综合分析结果,认为目前以丙尔金全面替代氰化亚金钾是不妥当的,建议撤销或暂缓执行该项禁令。“镀金是一项基础工艺,在高端微电子产业有大量应用。推行无氰工艺时应采用政策鼓励、经济扶持等方法,不宜直接采用法令强制一刀切的办法,否则可能会产生严重后果。”他也表示,世界各国均在积极推动无氰电镀工艺开发,但迄今尚未见有任何国家或地区全面禁用氰化物电镀工艺。
  • 岛津原子力显微镜——多维度纳米材料测试
    纳米材料是近十余年来新兴的功能材料类型,一般而言纳米材料在指在三维空间中至少有一维处于纳米尺度,即100 nm以下,或是由此尺度的单元构成的材料。100nm相当于不到1000个原子紧密排列在一起,在这个尺度下,材料表现出了不同于宏观状态的力、光、电、磁、热等属性。因此成为化学和材料学科中研究非常广泛,进展很快的领域。 在纳米尺度下,对此类材料的形貌表征普通的光学观察方式不再适用。因此常用的是电子显微镜和原子力显微镜。而原子力显微镜因为具备三维高分辨表征能力而且环境适用范围广,被广泛运用于纳米材料的分析与检测。 纳米材料按维度可以分为零维材料、一维材料、二维材料、三维材料。 零维材料是指电子无法自由运动的材料,如量子点、纳米颗粒与粉末等。 硅量子点太阳能电池形貌及粒度分布 GaAs (100)衬底上生长的In0.7Ga0.3As量子点 对于零维材料,普遍关注的是颗粒的粒径以及粒径分布情况。从以上两个用案例可以看出,原子力显微镜可以很方便地获得图像及粒径统计数据。 一维材料是指电子只能在一个方向上自由运动的材料,如纳米线、量子线。早期研究较为深入的一维材料是碳纳米管。 单壁碳纳米管 上图是对单壁碳纳米管的观测。不仅可以直观地看到其形貌,而且可以通过断面测量获得管径数值。 同样的,如果视野中观察到了多条纤维,原子力显微镜的分析处理软件也可以对其进行统计分析。 2004年曼彻斯特大学Geim 小组成功分离出单原子层的石墨材料——石墨烯,由此带动了对二维材料的研究。主要包括石墨烯、拓扑绝缘体、过渡金属硫系化合物、黑磷等。 其中研究较为深入的是石墨烯。由于其各种优良属性均依赖于单层或少数几层。所以对石墨烯的基本且重要的测试要求就是对层数的测量。 在这一点上,原子力显微镜具有很好的优势,也因此被列入了国家标准(GBT 40066—2021 纳米技术氧化石墨烯厚度测量——原子力显微镜法)。 氧化石墨烯图像 GBT 40066—2021中规定的厚度计算公式 上图计算得到的计算数据,可知该片氧化石墨烯厚度为0.630±0.039nm,由此可推测这片氧化石墨烯为单层石墨烯。 综上所述,在纳米材料领域,原子力显微镜因其高分辨而且是三维成像的属性,成为各类纳米材料常用的分析工具。 岛津原子力显微镜历经三十余年的发展与积累,应对各种需求,不断推出新型号和新功能,为科学研究和技术发展提供得力的工具。本文中所有图片均为岛津原子力显微镜获得。 本文内容非商业广告,仅供专业人士参考。
  • HORIBA 发布镀银TERS探针 不止增强那么简单
    日前, HORIBA Scientific发布了新的镀银AFM-TERS 探针,为NanoRaman系统提供更高的分辨率。  之前,TERS探针一直是NanoRaman成为常规分析表征技术的主要限制因素。今天,HORIBA发布了镀的AFM-TERS探针,与镀金AFM-TERS探针相比,拉曼信号可以增大10倍。  可靠的样本实验显示,HORIBA的TERS探针可以保证在633/638 nm处得到拉曼信号的增强。90%的探针近场和远场拉曼强度信号对比可以超过40倍,增强因子(EF)高达106。而且,TERS探针允许所有TERS模式的操作:顶部,侧面和底部。AFM悬臂探针由多层涂层制成,其中最后还有保护层, 在递送的过程中,TERS探针置于被保护的包裹中,以最大化其寿命。  除了信号的放大,TERS真正的关键还有纳米尺度的分辨率。HORIBA 的NanoRaman系统结合新的镀银AFM-TERS探针,不仅可以提供最高的增强,而且分辨率可以达到15nm甚至更低,进而助力纳米科学的研究。MoS2氧化石墨烯碳纳米管
  • 贺利氏:半导体封装材料的未来方向
    p & nbsp & nbsp & nbsp & nbsp 半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。封装测试是半导体产业的重要环节。在摩尔定律发展脚步迟缓的情况下,对芯片制造商而言,光是靠先进制程所带来的效能增进,已不足以满足未来的应用需求,因此先进封装技术显得尤为重要。然而目前的封装技术在封装材料上存在一些问题亟待解决。 /p p & nbsp & nbsp & nbsp & nbsp 在微型化的趋势下,封装尺寸越来越小,这对封装材料的散热、可靠性要求越来越高。但在超细间距应用中,焊接材料面临着工序复杂、空焊、冷接和焊接不良等问题。贺利氏为此推出了Welco AP5112焊锡膏,使用一体化印刷方案简化了封装流程,同时去除了空焊、冷接和焊接不良现象,减少了材料管理成本。 /p p & nbsp & nbsp & nbsp & nbsp 在高功率器件封装中,不同于传统半导体硅功率器件,第三代半导体功率器件工作温度突破了200℃,这对封装材料提出了新的要求。因此,功率器件封装中需要关键焊接材料具有较低的工艺温度、较高的工作温度、很好的导电性和散热能力。针对此,贺利氏推出了通过扩散将芯片背银和框架上的银(铜)连接在一起烧结银材料。 /p p & nbsp & nbsp & nbsp & nbsp 在存储器件封装应用中,引线键合高度依赖金线。随着国产存储芯片开始量产,急需降低引线键合成本。对此,贺利氏在去年发布了全球首款AgCoat Prime镀金银线,显著降低了净成本。 /p p & nbsp & nbsp & nbsp & nbsp 随着半导体制造工艺越来越难以继续缩微,先进封装对继续提升芯片性能的重要性日益凸显,对半导体封装材料也将带来更多要求。 /p p 原文: /p p style=" text-align: center " strong 贺利氏:全球化分工不可逆,构建可靠的供应链至关重要 /strong /p p & nbsp & nbsp & nbsp & nbsp 集微网消息,过去50年来,随着半导体工艺节点向7nm及以下节点工艺发展的速度减慢,摩尔定律减速,是否已到达效率极限已经引起全球辩论。尽管如此,5G、物联网和人工智能等新的终端市场应用正在彻底改变半导体行业,这些新兴应用对高效节能芯片的要求越来越强烈,小型化变得越来越重要,半导体业界正在积极探索解决方案,推动了对新的先进封装技术的需求。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" http://s.laoyaoba.com/jwImg/news/2020/07/01/15936066458907.png" / /p p & nbsp & nbsp & nbsp & nbsp 贺利氏电子中国区销售总监王建龙对集微网记者表示,先进封装发展趋势走向了模块化。一方面,在微型化趋势下,系统级封装(SiP)中的元件数量不断增加,但同时封装体尺寸越来越小。受此影响,手机等消费电子产品的先进封装对于连接材料的要求越来越苛刻。在窄间距、高密度的封装要求下,呈现出模块化封装的发展趋势。另一方面,在新能源汽车、轨道交通、智能电网等应用中,呈现数十颗功能芯片集成在一个模块里封装的趋势。而无论是传统的硅功率器件,还是以氮化镓和碳化硅为代表的第三代半导体器件,大量的大功率器件集成在一个模块中,对散热、可靠性的要求越来越高。 /p p & nbsp & nbsp & nbsp & nbsp “随着技术不断进步,对于元器件的要求越来越严苛。面对激烈的竞争,制造商们倍感压力,不得不努力缩短产品上市时间。贺利氏电子了解这些挑战,也知道客户需要什么样的产品和服务来满足这些严苛的要求。”王建龙表示。例如在消费电子的超细间距应用中,对焊接材料的要求越来越严苛,贺利氏为此推出了Welco AP5112焊锡膏,可以用一体化印刷方案解决SiP封装的SMD和Flip Chip两次工序需求,减少加工步骤,简化SiP封装流程。同时去除了空焊和冷接、焊接不良现象,也减少了材料管理成本。最小可以支持钢网开孔尺寸70um,线间距50um的印刷。 /p p & nbsp & nbsp & nbsp & nbsp 在高功率器件封装中,对于传统的硅功率器件,受本身半导体结构的限制工作温度限定在175° C,第三代半导体功率器件则突破了200° C。因此一方面要延长硅基功率器件的使用周期,另一方面要适应碳化硅等第三代半导体小型化高散热的要求,这对作为功率器件封装中关键焊接材料也提出了新的要求,既要有低的工艺温度和高的工作温度,还要有很好的导电性和散热能力。贺利氏的烧结银材料主要用到了熔点961° C的银,保证了焊接材料可以工作在 200° C 以上,具有高导电性、高散热能力和热机械稳定性。从焊接工艺来说,这种烧结材料不同于锡膏,在整个焊接过程中,银始终作为固态形式存在,通过扩散将芯片背银和框架上的银(铜)连接在一起,烧结后具备很好的剪切强度、高的导电性和散热性,提高了功率器件的工作温度和可靠性。 /p p & nbsp & nbsp & nbsp & nbsp 在半导体市场中,存储器件占据非常大的比例。在许多半导体应用中,封装中使用的金线已被银线、裸铜线和镀钯铜线所取代。然而在存储器件封装应用中,引线键合仍然高度依赖金线。随着中国国产存储芯片开始量产,降低生产成本的需求十分强烈。针对此贺利氏在去年发布了全球首款AgCoat Prime镀金银线,性能和可靠性堪比金线,可显著降低净成本。王建龙表示,AgCoat Prime产品前期在国内一些客户中进行验证,可能个别客户会有一些工艺参数的微调,也可能需要他们跟客户再进行一定的重复验证。“可以肯定的是这款产品可以大幅降低存储器件的成本,也不排除将来成为一种行业标准解决方案。”他指出,“AgCoat Prime起初是针对半导体存储器设计的,但是也可以用到RFID、LED等应用中。” /p h4 疫情、国际局势加速半导体产业升级 /h4 p & nbsp & nbsp & nbsp & nbsp 今年爆发的疫情,先后在中国和全球半导体产业中掀起不小的震荡。因为终端需求下滑,许多市场研究机构预测今年半导体的增速也会大幅下滑乃至继续为负,但是中国市场呈现出了不一样的活力。 /p p & nbsp & nbsp & nbsp & nbsp 根据近日上海市委常委、副市长吴清公布的数据,在1-5月份各个领域受到挑战的情况下,上海集成电路逆势增长,销售收入实现38.7%的增长。对此王建龙表示,中国半导体市场在未来五年里预计都将处于明显的上升周期中。疫情虽然短时间内对产业造成了一定冲击,但长期来看,疫情催生线上经济、加速“远程办公”,以及生活方式变革,对5G、存储、新能源技术等领域都是很大的推动力,中国半导体产业也在加紧技术研发和产业升级。“在这些因素作用下,贺利氏今年1~5月份市场表现甚至优于去年同期。除了汽车电子业务受市场需求影响略有下滑,在先进封装和功率电子业务上都呈现上升态势。”他补充说,“但是随着汽车互连化以及新能源车的加快推进,以及碳化硅功率器件的普及,贺利氏也将迎来巨大的增长机会。” /p p & nbsp & nbsp & nbsp & nbsp 另一方面,疫情和中美贸易冲突加剧,全球半导体产业链受到不同程度的停工、断供危机。王建龙认为,因为某一个工厂出了问题就断供,这是非常不可靠的公司行为。 /p p & nbsp & nbsp & nbsp & nbsp “贺利氏2016年建立的‘备份工厂’机制很好的避免了这些问题。我们的每个产品线都有备份工厂,某个工厂出现问题,其他的工厂可以马上替补生产。很多客户的产品都认证过,他们的产品可以在两个工厂之间随时切换。当然正常时期会优先选择供应周期更短、效率更高的工厂。在疫情期间我们的客户已经体会到‘备份工厂’带来的便利。”他表示,“另一方面,美国制裁华为,华为想要在国内建立更多供应链,以及多个国家想要将产业链迁出中国。从这方面看,短期内中国在全球制造业的地位是不会改变的。全球化不会因为政治影响而改变,最终还是需要用户受益,因此产业链也不可能逆市场而行。显然,市场、人才、效率、产业链,都在中国这里。全球分工、全球合作,不是某个人、某个国家可以改变的。” /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" http://s.laoyaoba.com/jwImg/news/2020/07/01/15936066061463.png" / /p p & nbsp & nbsp & nbsp & nbsp 作为贺利氏全球最重要的市场之一,为了贴近客户需求,贺利氏在上海先后成立了上海产品创新中心和技术应用中心,分别从事与客户及合作伙伴共同进行电子材料系统的研发测试和应用认证。王建龙透露,上海创新应用中心成立近两年来,多个重要客户在这里与贺利氏一起完成了他们关键产品的封装挑战。“例如某个新能源车企在这里,通过贺利氏的材料解决方案解决了在新能源车核心的电控部分的技术难题,使电控模块性能得到了显著升级。”他解释,& nbsp & nbsp & nbsp & nbsp “这是一个创新中心与客户共同研发、投入量产,以此推动产业发展的一个成功案例。相信在未来两年,国内主要的新能源车电控部分都会直接或间接与贺利氏合作。贺利氏也将继续以完善的材料产品与服务组合,来满足中国市场对于高性能电力电子产品日益增长的需求。” /p p & nbsp & nbsp & nbsp & nbsp 最后,王建龙强调,半导体制造工艺越来越难以继续缩微,而先进封装对继续提升芯片性能的重要性日益凸显,进而对半导体封装材料带来了更多要求。“芯片的集成度可能会受到摩尔定律逼近极限的影响,但是人们追求先进电子设备的脚步不会因此停下。封装技术无疑是一个重要途径,这也是为什么贺利氏将先进封装业务提升到更高的战略层面的原因。”王建龙强调。 /p
  • 弗尔德仪器成功参加第三届全国有色金属材料制备大会
    有色金属结构材料是材料领域的一个极其重要的组成部分,大力发展有色金属新材料产业,加速有色金属结构材料的研究与开发,对促进国民经济的可持续发展具有极其重要的战略意义。为继续推进我国有色金属材料的学术繁荣、技术创新、产业发展,满足结构材料向高性能化、复合化、结构功能一体化发展的需求,促进有色金属材料各项新技术、新工艺和新产品的研究、开发与应用,加强产、学、研、用深度结合,交流有色金属材料领域近年来具有创新性的科技成果、应用成果;中国有色金属学会、广东省科学院等单位于2017 年3 月29-31日在广东省广州市共同举办“第三届全国有色金属结构材料制备/加工及应用技术交流会”。3月29日弗尔德仪器携旗下4大品牌现身有色金属大会。弗尔德仪器总经理董亮先生在会上首先介绍了Retsch Technology(莱驰科技)的干湿两用多功能粒度粒形分析仪Camsizer X2在金属材料检测领域的应用。Camsizer X2采用动态图像法,可以同时并实时测量大的或小的颗粒并记录所有关于颗粒大小、形状、透明度、球形度等信息,比激光法精度更高,进样量大,能给出量化的结果,检测速度快,是非常好的一种全新的分析方法。CAMSIZER X2的专利测量技术——两个数字采样镜头能够实时记录颗粒的大小和形状,并自动优化,这样可以在600nm至8mm的范围内精确的分析样品,并在整个测量范围内无需人工调节和校正。德国Retsch(莱驰)的高能球磨仪Emax非常适合于纳米研磨及合金制备:2000转/分的高速设计在球磨仪中无可匹敌,相应的研磨罐设计保证了能量有效输出。在冲击力、摩擦力和循环往复运动的协同作用下,超精细研磨时间大大缩短。由于创新高效的水冷系统散热快速,长时间的高速研磨也不用担心样品温度过热。 Carbolite Gero(卡博莱特 盖罗)的HTK金属炉特别适用于金属粉末注射成型(MIM),无碳气氛,烧结,镀金属等等。金属炉可提供精确定义的高纯度气氛环境(6N或更好),可达最高真空度。矩形炉体,前开门设计使加样和取样非常方便。HTK提供6种不同的尺寸供选择。最小体积8L,25L通常用于实验室开发和研究。80L,220L,400L或600L主要用于生产系统试验或大型生产。 除此之外,弗尔德仪器旗下的德国ELTRA(埃尔特)元素分析仪也特别适合这个行业。元素分析仪被用来精确测量给定样品里的元素含量,一般常见于研发及质量控制实验室。金属材料中的C浓度和表面碳含量以及O,H,N的水平是非常重要, ELTRA分析仪以其精确性,稳定性和灵活性而闻名。 弗尔德仪器作为进口研磨仪、粒度仪、马弗炉气氛炉及元素分析仪的厂家,在有色金属材料制备领域有着极大的优势。德国Retsch(莱驰)粉碎、研磨、筛分设备,德国Retsch Technology(莱驰科技)多功能粒度粒形分析仪,Carbolite Gero(卡博莱特 盖罗)烘箱、高温烘箱、箱式马弗炉、灰化炉、管式马弗炉、气氛马弗炉、真空马弗炉、高温马弗炉及工业定制炉,Eltra(埃尔特)碳/氢/氧/氮/硫元素分析仪。弗尔德仪器在有色金属材料制备领域中为您提供完美的全方位解决方案。
  • 出口欧盟食品接触塑料材料频遭通报
    出口欧盟食品接触塑料材料频遭通报 重金属迁移成“罪魁祸首”   根据欧盟食品及饲料类快速预警系统(RASFF)发布的食品和饲料类产品通报统计,2013年1至5月份,中国地区约有近60批次的食品接触材料被通报,涉及的产品主要包括不锈钢餐厨具、刀具、金属烧烤架、蛋糕模具以及食品处理器、电煎锅等厨房小家电。意大利是各种通报的“重灾区”,通报量占到欧盟通报总批次的70%以上,被通报的原因主要有重金属迁移、初级芳香胺迁移、甲醛迁移以及过高的迁移总量,其中金属制品中的铬、镍、锰、铅等重金属迁移量超标成“罪魁祸首”,占到通报总数的80%以上。   据统计,2013年1至5月,宁波地区共检验出口食品接触材料1.37万批次,金额达2.17亿美元,同比分别增长41.67%和27.81%,其中仅欧盟市场就达3599批,货值4907.07万美元,约占整个宁波地区出口总量的四分之一。输欧食品接触材料频遭通报、退货,不仅给生产企业带来了巨大的损失,面向欧盟各国发出的预警信息也给中国制造的声誉带来了较大的负面影响,究其原因主要有以下几个方面:   一是企业对欧盟的标准和法律法规信息了解不够。欧盟地区与食品接触材料相关的法律法规繁多且较为复杂,各成员国除了遵守欧盟(EC)No.1935/2004/EC指令以外,部分成员国还有针对本国市场的食品接触材料测试法规标准和法令。如意大利的D.M.21/3/73及针对不锈钢制品的n.258法令,德国的LFGB法规,法国的DGCCRF 2004-64等。根据不同的材料、不同的使用条件,不同的出口国,其检测项目、限量指标及测试方法等都存在一定的差异。   二是企业的原料把关意识不够,检测能力和水平有限。不锈钢制品具有耐腐蚀、易清洁、美观耐用等优点,这是源于其材料是由铁、铬、镍合金掺入其他一些元素制成的,这也就很容易导致不锈钢制品的金属迁移量超标。一些企业在生产的过程中过于关注品质、外观,对产品的卫生安全项目重视不够,在第三方样品检测的过程中对测试项目和条件的选择也比较盲目,很容易导致在国外严苛的检测条件下产品不合格的情况发生。   三是一些中小微企业技术水平相对薄弱,质量管理水平落后,质量控制能力缺乏。如在金属制品的加工生产过程中,多采用镀层工艺,但由于镀层的厚度、化学性能及电镀工艺等原因,电镀金属极易超标。此外,焊接、涂层等工序的控制不良也导致了重金属迁移量超标及过高的总迁移量。   鉴于此,检验检疫部门提醒相关食品接触材料尤其是金属制品生产企业:一是要及时了解和掌握欧盟各国相关法规的条款要求,对欧盟各国的限定项目和限量保持高度关注,提高风险意识,积极应对国外通报,尽量避免由此带来的损失 二是要完善企业质量控制体系,建立可靠的原辅料供应渠道,在产品检测和原辅材料把关上投入更多的成本和精力,重点把好原料关 三是要控制关键工艺的产品质量,并不断加大新技术、新工艺、新材料和新产品的研发力度。加强与检验检疫部门的联系,高度关注政府部门发布的预警信息,提早防范,提升自身产品的品质,提升“中国制造”的品牌形象。
  • 《Adv. Eng. Mater.》:跨尺度金属微结构增材制造
    近年来,微米尺度金属增材制造技术得到了快速的发展,并广泛应用于光学、微机器人、微电子学等领域。目前,微米尺度3D金属结构可以采用聚焦电子/离子束诱导沉积、激光感应光致还原等3D打印技术直接制备而成,或者采用双光子聚合3D打印技术结合电镀技术多步制备而成。其中,基于金属离子局部电化学还原反应的电化学沉积技术被认为具有极大的优势:该技术无需进行任何后处理,而且可制备致密性好、导电、无污染的金属样件。然而,如何在保持打印分辨率的情况下提高打印速率是该技术面临的一个难题。本研究论文是基于中空原子力显微镜(AFM)悬臂梁的金属电化学沉积3D打印系统,在保持电场电势和体素高度不变的情况下,研究了施加压力和喷嘴直径对体素水平尺寸的影响。研究结果发现,在打印过程中保持喷嘴直径不变,针对施加压力的实时调整可以实现体素面积两个数量级的跨越,并且通过改变施加压力,使用孔径为500nm的喷嘴成功制备了四根线径不同的铜线圈。基于以上研究,该技术通过精确调整体素尺寸不仅可以实现同一打印样件从亚微米级到亚毫米级的跨尺度制作,而且还可以显著提高打印速率。该技术使用铜作为金属打印材料,但同样适用于其他电镀金属。 图1. 基于中空AFM悬臂梁金属电化学沉积3D打印系统示意图及打印过程示意图 图2. 使用孔径为500nm的喷嘴打印的四根线径不同的铜线圈的SEM图,其中,a图和b图是同一结构的两种不同视图 原文链接:https://doi.org/10.1002/adem.201900961关于摩方精密重庆摩方精密科技有限公司(BMF,Boston Micro Fabrication)从事微纳3D打印设备的研发、生产及销售,专注于高精密3D打印领域。摩方精密采用面投影微立体光刻(PμSL: Projection Micro Stereolithography)技术,该技术具有成型效率高、加工成本低等突出优势。作为高精密增材制造领域的领军企业,已和众多全球知名企业开展业务合作,包括GE医疗、美国强生、日本电装、安费诺、泰科电子等,产品广泛应用在连接器、精密医疗器械、消费电子、精密加工等行业。摩方精密也与瑞士Exaddon AG公司合作,在中国区进行微纳金属3D打印设备提供服务和推广。基于电化学沉积技术的金属微增材制造技术,Exaddon创新地设计了微纳金属打印系统CERES。CERES可以在室温下以亚微米级分辨率打印复杂的微金属结构,尺寸从1 μm到最大1000 μm(人类的头发一般为80~90μm),并且无需进行后处理。Exaddon CERES 微纳金属3D打印系统官网:https://www.bmftec.cn/links/10
  • 从郑州居民楼大火谈材料烟毒性研究的重要性
    25日凌晨,郑州市西关虎屯小区一单元楼底层电表箱着火,目前已造成13人死亡,4人受伤。据报道,火灾中被浓烟熏死呛死的人是烧死者的4-5倍。 为何火势不大却伤亡如此惨重? 标准集团(香港)有限公司提出,在火灾中,材料燃烧时产生的浓烟毒气是造成人员伤亡的重要原因。 高层建筑发生火灾时,烟雾阻碍人们逃生、进行灭火行动从而导致人员死亡。统计表明,由于一氧化碳中毒窒息死亡或被其它有毒烟气熏死者一般占火灾总死亡人数的以上,而被烧死的人当中,多数是先中毒窒息晕倒后被烧死的。 标准集团(香港)有限公司认为,控制材料生烟性能以及烟气毒性是消防检测的一个重要问题,应该引起各方的重视。
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。官网:https://www.bmftec.cn/links/10
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。
  • 青岛杜科新材料采用赛恩思HCS-801高频红外碳硫仪
    青岛杜科新材料有限公司是一家拥有自主知识产权及专利技术的氢能源燃料电池复合双极板研发、生产及市场推广的高新技术型企业。近年来杜科新材料在燃料电池用胶业务上取得了丰硕成果,已经是国内燃料电池用胶行领域的龙头企业。四川赛恩思HCS-801型高频红外碳硫仪作为其质检设备,将对企业进一步提升产品品质,提高生产效率提供帮助。 高频红外碳硫仪采用高频燃烧,能保证待测样品的充分燃烧释放,是目前理想的固体样品碳硫分析设备。赛恩思HCS-801型高频红外碳硫分析仪是国内主流型号仪器,多分析金属、非金属材料,是中大型企业的选择,其性价比高、分析范围宽,适用多种样品分析,深受中大型企业的好评。 四川赛恩思仪器现已有HCS系列高频红外碳硫仪、OES系列直读光谱仪以及ONH系列氧氮氢分析仪,满足客户不同的检测需求。诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxeneCoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growthand Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal ofCrystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 足不出“沪”览尽全球顶尖新材料,匠心独“聚”打造材料应用新平台
    p   第十九届中国工博会-新材料产业展(NMIS)将于11月7日-11日在国家会展中心盛大开幕,展会汇聚全球顶尖材料供应商,重点展示十三五规划重点基础材料、关键材料与前沿创新材料,呈现新材料技术的最新研发应用成果,充分利用工博会平台优势,为材料供应商与下游行业用户搭建一个商贸洽谈、技术交流、需求对话与趋势展望的新平台。 /p p   本次展会吸引了一批材料领域顶尖企业参展,包括巴斯夫、亨斯迈、南南铝、上海华谊、上海建材、普利特、花王(中国)、嘉宝莉化工、赫格纳斯、石墨烯产业园、百色百矿、广西碳歌新材料等企业届时均将一一亮相,为专业观众带来企业在轨道交通、汽车、航空航天、建筑工程、航空航天、新能源、信息通信等各行各业的最新产品和应用解决方案。其中,南南铝将在本次展会上展示多个行业多项产品,如航空轻质合金中厚板和薄板、航空航天铝合金锻坯、高速动车组铝材、汽车铝材、船舶铝材、IT铝材、军工产品等。另外全球领先的化学企业巴斯夫也将展示其在生活和工业领域的材料解决方案,带来适用于运动场地的InfinergySP材料、除室内甲醛污染的最新创新技术 Formaldpure& #8482 以及可完全降解的Ecovio塑料,有效地解决厨余垃圾处理和堆肥的难题。更多精彩内容,欢迎莅临展会现场4.2号馆 /p p   现场还将举办新材料新(产)品发布会,发布产品将集中展示国内外新材料技术的最新发展成果,并以石墨烯、汽车轻量化关键材料、环保材料为三大主题于11月8-10日在国家会展中心4.2号馆内展开活动,发布会已吸引了包括百色百矿、普利特、中复神鹰、上海交通大学轻合金精密成型国家工程研究中心等十余家企业及科研机构报名,有兴趣了解这些材料的最新趋势、技术和产品的小伙伴们千万不要错过哦 /p p   不止于此,展会期间,主办方还将于11月8日上午在国家会展中心M3-02会议室举办2017中国工博会新材料产业创新发展国际高峰论坛。本次高峰论坛邀请行业专家与领军企业代表分享包括中国材料试验标准体系建设、中国新材料系统解决方案顶层设计以及材料最新成果及实践应用等行业关注的热点话题。同时现场还将颁发优秀新材料奖、布展设计奖和组织奖等评选活动,以表彰在新材料展中做出贡献的企事业单位。 /p p   这么多精彩活动,尽在11月7-11日国家会展中心4.2号馆,等你来! /p p   扫描下方微信公众号,预约登记,参与现场抽奖活动! /p p style=" text-align: center " img width=" 291" height=" 285" title=" 33.png" style=" width: 221px height: 226px " src=" http://img1.17img.cn/17img/images/201710/noimg/888b604e-e2ff-488c-b89d-982c70b0d036.jpg" / /p
  • 843万!桂林理工大学2023年材料科学与工程一流学科仪器设备建设项目
    一、项目基本情况 项目编号:GXZC2023-G1-005075-GXDC 项目名称:2023年材料科学与工程一流学科仪器设备建设项目 预算总金额(元):8430000 采购需求:标项一标项名称:2023年材料科学与工程一流学科仪器设备建设项目A分标数量:不限预算金额(元):1300000简要规格描述或项目基本概况介绍、用途:(1)应用范围:可测量材料的热电偶效应系数和电导率。系统通过镀金红外加热炉精确控制温度;再通过对样品加热生成一个温度梯度,可自动测量探针间产生的电动势,获得热电偶效应系数;并可同时通过四探针法测量电导率。(2)热电偶效应系数测量。具体内容详见招标文件。最高限价(如有):/合同履约期限:自签订合同之日起180个工作日内到货并全部安装调试合格完毕。本标项(否)接受联合体投标备注:标项二标项名称:2023年材料科学与工程一流学科仪器设备建设项目B分标数量:不限预算金额(元):7130000简要规格描述或项目基本概况介绍、用途:1.频率范围:10MHz~44GHz。2.端口数:2。3.频率分辨率:≤0.2Hz。具体内容详见招标文件。最高限价(如有):/合同履约期限:自签订合同之日起90个工作日内到货并全部安装调试合格完毕本标项(否)接受联合体投标备注:二、获取招标文件 时间:2024年01月09日至2024年01月16日 ,每天上午00:00至11:59 ,下午12:00至23:59(北京时间,法定节假日除外) 地点(网址):“政采云”平台(https://www.zcygov.cn) 方式:网上下载。本项目不提供纸质文件,潜在供应商需使用账号登录或者使用CA登录“政采云”平台(https://www.zcygov.cn)-进入“项目采购”应用,在获取采购文件菜单中选择项目,获取招标文件(或在“政采云电子投标客户端-获取采购文件”跳转到政采云系统获取)。电子投标文件制作需要基于“政采云”平台获取的招标文件编制,通过其他方式获取招标文件的,将有可能导致供应商无法在政采云平台编制及上传投标文件。 售价(元):0 三、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:桂林理工大学 地 址:广西桂林市建干路12号 项目联系人:顾晨 项目联系方式:0773-5895090 2.采购代理机构信息 名 称:广西达成咨询有限公司 地 址:桂林市秀峰区滨江路18号 项目联系人:毛崇文 项目联系方式:0773-3569998
  • 负极材料粒度分布对锂离子电池性能的影响
    负极材料作为锂离子电池的核心材料,对锂离子电池的能量密度、充放电性能、循环性能、生产工艺等起着至关重要的作用。负极材料的主要技术指标包括粒度、比表面积、振实密度、真密度、灰分、pH值等。其中,粒度分布作为负极材料的重要技术指标,它还影响比表面积和振实密度,从而影响锂离子电池的生产工艺和综合性能。一、粒度分布对锂离子电池性能的影响负极材料的粒度分布主要从以下几个方面影响锂离子电池的生产工艺和性能:1、粒度分布影响体积能量密度负极材料的颗粒大小应当具有合适的粒度分布,体系中的小颗粒能够填充在大颗粒的空隙中,有助于增加极片的压实密度,从而提高电池的体积能量密度。2、粒度分布影响充放电性能负极材料的颗粒越小,锂离子嵌入时所需要克服的范德华力也就越小,嵌入越容易进行,而且颗粒越小,锂离子嵌入和脱出的通道越短,越有利于快速达到充分嵌锂状态,从而具有更好的充放电性能。3、粒度分布影响循环性能实验表明,颗粒越小的石墨负极有较大的初次容量,但不可逆容量也较大;随着粒径增大,初次充放电容量降低,不可逆容量减少。同时,石墨颗粒越小,与电解液接触的比表面积越大,初次充放电过程中形成的SEI膜所消耗的电荷就越多,不可逆容量损失也就越大。因此,合理的粒度分布不仅能够提升锂离子电池的初次容量和初次效率,而且能够提升锂离子电池的循环性能。4、粒度分布影响生产工艺负极材料的粒度分布会直接影响电池的制浆和涂布工艺。在相同的体积填充份数情况下,材料的粒径越大,粒度分布越宽,浆料的黏度就越小,这有利于提高固含量,减小涂布难度。颗粒的粒径以及分布宽度对浆料黏度的影响二、负极材料对粒度的要求在负极材料相关的标准中,对材料颗粒的粒度分布提出明确的要求,具体如下:三、欧美克高性能激光粒度分析仪如何满足锂离子电池材料粒度检测要求负极材料的研发、生产及来料检验普遍采用激光粒度分析仪进行粒度检测,选择高性能的激光粒度仪是获得准确粒度分布信息的重要保证。对于一款高性能的激光粒度分析仪,往往采用合理的光学结构、高性能的光电元器件以及科学的反演模型,从而体现出良好的重复性、重现性、真实性、分辨率等测试性能。珠海欧美克仪器有限公司从1993年开始从事激光粒度分析仪的研发、生产和应用,积累了丰富的激光粒度分析仪研发、生产和应用经验。从1999年开始,欧美克激光粒度分析仪系列产品在锂离子电池研发、生产领域逐步获得行业认可。下面,从几个小案例管中窥豹,看看欧美克如何匠心智造每一款产品,又是如何站在行业应用的角度为用户提供粒度解决方案的。1、大角散射光的球面接收技术(DAS)的应用确保散射光能信息的准确获取对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光能信息都准确地聚焦获取。以欧美克LS-609型激光粒度分析仪为例,在散射光能探测器的设计时,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式放置在与其散射角相对应的傅立叶透镜焦点位置,保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。大角散射光的球面接收技术(DAS)2、优良的测试性能准确反映出测试样品的细微差别(1)Topsizer对粉体材料的大、小颗粒具有高超的分辨能力欧美克Topsizer激光粒度分析仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。下图是应用欧美克Topsizer激光粒度仪对D50为0.1μm左右的超细隔膜材料氧化铝的粒度测试粒度分布图。(2)LS-609激光粒度仪具有优良的重现性下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。 此外,不同使用环境还可以选配不同的进样器,分析软件还具有用户分级、权限管理、数据完整性及可追溯功能,欧美克激光粒度分析仪真正做到了性能可靠、操作简单、维护量少,是值得信赖的高性能激光粒度分析仪。参考文献【1】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用【2】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用【3】苏玉长,刘建永,禹萍,邹启凡,中南大学材料与工程学院,粒度对石墨材料电化学性能的影响【4】旺材料锂电,锂离子电池负极材料标准最全解读【5】中国粉体网,粒度对负极材料有什么影响?
  • 岛津走进贵阳举办材料表面分析高端论坛
    日前,岛津公司走进贵阳成功举办了材料表面分析高端论坛,与来自贵州大学、贵阳地化所、贵州民族大学、贵州理工学院、贵州地矿、贵铝技术中心等的47位专家和老师共同探讨了材料表面分析技术的最新发展成果与未来发展趋势。在论坛上,北京大学分析测试中心谢景林教授做了题为” XPS 在材料表征中的广泛应用“的报告;国土资源部华东矿产资源监督检测中心沈加林主任做了题为” EPMA 在地质调查和岩矿分析中的应用”的报告;成都理工大学油气藏地质及工程国家重点实验室孟祥豪教授做了题为“EPMA 在岩矿分析中的应用”的报告;岛津公司分析测试仪器市场部技术专家陈强做了题为“材料表面分析新技术之一:XPS & EPMA”的发表;全国微束分析标准化技术委员会龚沿东委员做了题为“材料表面分析新技术之二:微观世界的“手”与“眼””的发表; 岛津公司分析中心专家章斌做了题为“材料表面分析新技术之三:当 XRD 遇上 EDX”的发表。论坛现场传真贵阳地区各所高校的老师和专家通过参加本次高端论坛,进一步了解了在材料表面分析领域中岛津技术的先进性,并对岛津材料表面分析技术在未来科研工作中能够发挥出的重要作用充满期待。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 超级电容又添新材料,稳定性大幅度提高
    p   多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在其表面涂了一层几纳米厚的氮化钛涂层,使其性质得以改变。 /p p   该团队负责人麦卡· 普伦尼拉解释说,因化学反应导致的不稳定性和高电阻导致的低功率,不带涂层的多孔硅本是一种极差的电容器电极材料。涂上氮化钛的能提供化学惰性和高导电性,带来了高度稳定性和高功率,且多孔硅有很大的表面积矩阵。 /p p   根据荷兰爱思唯尔出版集团《纳米能源》杂志在线发表的论文,新电极装置经13000次充放电循环而没有明显的电容减弱。普伦尼拉说,报告数据受检测时间的限制,而并非电极真实性能。他们继续对其进行充放电循环,至今已达到5万次,甚至在循环中让电极干燥,也没有出现物理损坏或电学性能衰减问题。“超级电容要求稳定地达到10万次循环。目前用多孔硅—氮化钛(Si-TiN)做电极的电容装置能完全稳定地通过5万次测试。” /p p   在功率密度和能量密度方面,新电极装置比得上目前最先进的超级电容器。目前由氧化石墨烯/还原氧化石墨烯制造的芯片微电容器功率密度为200瓦/立方厘米,能量密度为2毫瓦时/立方厘米,而新电极装置功率密度达到214瓦/立方厘米,能量密度为1.3毫瓦时/立方厘米。普伦尼拉说,这些数字标志着硅基材料首次达到了碳基和石墨烯基电极方案的标准。 /p p   从电子产品的功率稳定器到局部能量采集存储器,芯片超级电容器有着广泛的应用。普伦尼拉说,他们在整体设计中还存在一些难题,每单位面积电容仍需提高,要达到技术许可的最高水平,他们还需进一步研究。 /p p   总编辑圈点 /p p   日本厨师发现将牛油果加上芥末竟然有了三文鱼的味道。如今,芬兰科学家也玩起了这样混搭的“戏法”——他们给多孔硅穿上一层氮化钛的外衣,尽管这层薄薄的外衣只有几纳米那么厚,却足以改变多孔硅电极的性能。这样的想象力让超级电容器的电极材料又多了一位优质成员,且它给人们的生活带来的改变也许远比一道日本料理大得多!随着芯片技术的广泛应用,希望科学家尽快解决多孔硅电极材料在超小型超级电容器上的设计问题,让这样巧思的发明早日造福人类。 /p p br/ /p
  • 国产突破!松山湖材料实验室成功研制先进激光镀膜设备
    超导技术被誉为21世纪最具有经济战略意义的新兴技术之一,超导体所具备的“零电阻”和“完全抗磁”这两大神奇特性,为人们带来了巨大想象空间。例如利用超导体电阻为零的特性来进行电力输送,可以大大减少线路损耗,实现超远距离的大容量电力输送;利用它完全的磁抗性可以制造磁悬浮列车、电磁弹射装置等。“超导最近在媒体出现的频率比较高。比如时下热门的量子计算,涉及到超导量子比特;被称为‘人造太阳’的全超导托卡马克核聚变实验装置,也应用了超导磁体。”中国高温超导研究奠基人之一、国家最高科学技术奖得主赵忠贤院士介绍道,超导距离实际生活最近的应用,则是医院常见的核磁共振成像中的超导磁体。超导薄膜技术是超导技术发展的重要方向之一。日前,由赵忠贤院士倡导建立并担任顾问的研究团队,面对国外禁运,通过技术集成创新,成功研制出基于国产部件的“三光束脉冲激光共沉积镀膜系统”,并制备出大尺寸双面钇钡铜氧(YBCO)超导单晶薄膜,为我国制备高品质、应用型超导薄膜产品技术带来新突破。关键设备买不来,怎么办?在东莞松山湖科学城松山湖材料实验室“实用超导薄膜研究团队”的一间实验室内,一组银白色装置占据了房间一角,三台激光器宛如手术台上的三支机械臂,将一个带有观测窗的球形操作台围在中间,绿色和紫色的光束不时闪烁。这个装置就是该团队近期研发成功的“三光束脉冲激光共沉积镀膜系统”。该设备基于国产部件实现技术集成创新,包括采用国产小型固态脉冲激光器实现多光束共沉积、激光器与光路系统模块化整体位移、自主研发控制软件实现操作智能化等。利用这台设备,该团队还成功制备出2英寸双面YBCO超导单晶薄膜,将脉冲激光沉积技术制备高品质应用型薄膜产品,推向了一个新的高度。该团队负责人金魁研究员表示,大尺寸双面钇钡铜氧(YBCO)单晶薄膜,是设计高温超导薄膜器件的良好载体,而高温超导薄膜器件则是开发未来通信技术和超高性能雷达探测器的重要部件,具有十分重要的应用前景。然而,能够制备该类薄膜的先进设备,此前被德日美等少数国家掌握,一直以来对我国封锁核心技术,并且大尺寸薄膜制备设备近期也已对我国禁运,导致我国高品质应用型“薄膜”和“镀膜设备”核心技术受制于人。金魁坦言,按照最初构想,是希望直接从国外购买一套先进的大尺寸镀膜设备,之后按团队的需求改造,然而却未能如愿。“买小尺寸薄膜制备设备回来,做出的样品主要是用于基础研究,找规律、写论文,国外公司同意卖给我们;但要买能投入实用的大尺寸薄膜制备设备,他们就拒绝了。”金魁表示,另一方面,国外的设备只能实现单面薄膜的制备,无法满足团队需求。关键设备买不来,怎么办?在赵忠贤院士的鼓励和指导下,团队最终下定决心走上了自研之路。令他们感到高兴的是,团队产出成果的进度超过了预期。在国外禁运的情况下,团队仅用一年多时间就取得了成功。“积小胜为大胜”“我们用激光去打真空腔里面的靶材,由于瞬时高温,靶材表面的成分会变成等离子体向外喷射,之后接触高温衬底,外延沉积完成镀膜,过程就像是烙饼一样。”该设备主要的设计和搭建者冯中沛博士是团队里的一名年轻人,设备成功运转,让他格外兴奋。过去一年多,冯中沛和同事们几乎每天都围着这台设备转。在工作室紧邻该装置的墙边有一面白板,上面写满了与装置搭建相关的事项。一年时间里,大到整个装置的设计装配,小到一根螺丝钉的定制,整个团队“挂图作战”,环环推进,最终才获得了成功。“这台设备的功能可以扩展,也可以为超导以外的材料进行镀膜。就像买了一口锅,一开始只用来炒菜,后面还可以用来蒸煮。”冯中沛介绍道。令整个团队感慨的是,直到他们研制出成本更低、性能更优的设备时,从日本采购的小尺寸镀膜设备甚至因为疫情,还没有厂家工程师前来拆箱。“这件事虽然谈不上伟大,但是它给了我们很大信心。遇到‘卡脖子’难题,逼着自己进行自主研制和创新,最终把一条新的技术路线走通了。”赵忠贤表示,假如全国几十万、上百万的科研团队,能有十分之一像这样专注去做一件事,我们跟国外的科技竞争就能握有更大的主动权。“积小胜为大胜,变成大胜就有了长板,有了竞争优势,国外还怎么卡我们脖子?”他说道。除了团队自身的努力和经验积累,赵忠贤还特别提到,松山湖科学城给予的宽松科研环境与合理的评价体系,为这一成果取得提供了重要土壤。在他看来,松山湖材料实验室一方面注重研究实效,不以论文论英雄,让科研人员集中精力搞攻关;另一方面,充分信任科学家,原本购置设备的钱可以灵活用于自主研发,“允许用打酱油的钱去买醋”,赋予科学家自主权。推动超导技术成果转化能否制备出大尺寸、高质量的超导薄膜,关系诸多关键产业的发展前景。以超导薄膜为基础的数字电路,相比半导体材料做的数字电路速度更快、损耗更小、容量更大;用超导薄膜制成的超导量子干涉器,可以探测比人脑磁场弱几千倍的磁场,用收集来的磁信号进行分析,能够确定矿源、预报地震等。而超导薄膜制成的天线、谐振器、滤波器等微波通讯器件,具有常规材料(如金、银等)无法比拟的高灵敏度。此外超导薄膜在大型粒子加速器中也有着广泛的应用。粗略估计,国内外计划建设的各类加速器项目,对超导薄膜谐振腔的需求量将超过10000个。面对这一趋势,与超导基础研究打了大半辈子交道的学界泰斗,开始将工作重心放在推动超导技术成果转化与实际应用上来。2017年底,广东启动首批四家省实验室建设,赵忠贤接受邀请,出任松山湖材料实验室学术委员会主任一职,从北京来到了东莞松山湖。在他倡议和亲自指导推动下,“实用超导薄膜研究团队”在松山湖材料实验室迅速建立起来。除赵忠贤院士作为团队顾问之外,担任团队负责人的金魁研究员,也是一位高水平超导研究专家,他在高温超导体机理研究、超导薄膜制备、新超导体探索等方面都有诸多重要成果,先后在《自然》杂志等主流刊物发表重要论文80余篇。此外,多位具备国家重点实验室工作背景的超导薄膜和低温技术专家也先后加入,组成了国内一流的班底阵容。“我们选定的题目是‘实用超导薄膜及相关技术研究’,这个不像‘量子’或者‘智能’之类的名字时髦,但并不意味着研究的内容不重要。”赵忠贤说,希望以应用为目标来做一个中长期项目,解决超导应用过程中一系列关键核心技术难题,推动实现跨越性的进步,带来应用上的质变。谈及今后的打算,年届八旬的赵忠贤心心念念的,仍然是超导。“一是找到超导应用存在的短板,想办法推动一些项目、组织一批队伍来把超导领域的这些问题全部扫光;二是在超导应用的某些方面,希望看到我们比别人强,有自己的‘绝活’。”
  • 首位华人获2014年度国际材料科学奖
    日前,从在南非召开的&ldquo 先进材料世界论坛POLYCHAR&rdquo 2014年度大会传来佳讯,中国科学技术大学教授徐春叶荣获2014年度&ldquo 国际材料科学奖&rdquo 。她成为第一位获此殊荣的华人科学家。   &ldquo 国际材料科学奖&rdquo 奖项表彰在高分子化学和物理方面的基础研究、应用研究和教育领域作出杰出贡献的中青年化学工作者,旨在培养高分子科技人才,鼓励国际广大中青年投身于高分子化学和物理科学事业,促进该领域的发展。   徐春叶现为中国科大微尺度物质科学国家实验室和化学与材料科学学院教授,多年来一直致力于电活性功能材料的合成与集成组装。她围绕电致变色&mdash 智能窗和电致变形&mdash 传感器,开展功能材料合成调控和器件集成组装的研究。
  • 2021年度中国复合材料学会优秀博士学位论文评审公示
    2022年7月19日,中国复合材料学会在北京学会会员之家组织开展了2021年度中国复合材料学会优秀博士学位论文评审会。根据《中国复合材料学会优秀博士学位论文评选条例》,经理事及相关单位推荐,通过资格审查、函审和会评,共有5篇论文获评优秀博士学位论文,5篇论文获提名奖。现将2021年度中国复合材料学会优秀博士学位论文及提名奖名单予以公示,公示期为2021年7月19日至2021年7月29日,共10天。公示期间,如有异议,可向中国复合材料学会实名反映,并提供联系方式和证明材料。评选结果见附件。联系人:靳鹏程电话:18600638835邮箱:xuehuibu@csfcm.org.cn地址:北京市海淀区花园东路15号旷怡大厦3层附件:2021年度中国复合材料学会优秀博士学位论文名单姓名单位论文题目张博北京交通大学用于发汗冷却的碳化硅基多孔陶瓷的制备与性能表征付宇彤清华大学纤维增强树脂基复合材料宏细观工艺力学研究庄磊西北工业大学ZrC-SiC改性C/C复合材料及其表面硅基陶瓷涂层的研究王兵哈尔滨工业大学基于FFT方法的编织复合材料异形结构损伤失效研究昝宇宁中国科学技术大学(B4C+Al2O3)/Al高温中子吸收材料的制备与加工研究2021年度中国复合材料学会优秀博士学位论文提名奖名单姓名单位论文题目王晓东北京航空航天大学基于细观力学的复合材料裂纹扩展及失效分析方法研究梁超博西北工业大学石墨烯泡沫/环氧树脂复合材料可控制备及电磁屏蔽性能刘京彪哈尔滨工程大学形状记忆聚合物及其复合材料性能与热力学行为研究王帅哈尔滨工业大学层状钛基复合材料多尺度组织调控与力学行为研究韩俊伟天津大学用于致密储能的锂离子电池负极材料设计和可控制备
  • 中国在化学和材料领域贡献度超美国
    据人民日报等报道,10月29日下午,中国科学院文献情报中心与汤森路透旗下的知识产权与科技事业部在京共同发布《2015研究前沿》报告,甄选出了2015年的100个热点研究前沿和49个新兴研究前沿,并通过进一步分析,归纳了可能代表国际基础科学的重大前沿突破以及当今若干重大问题的解决及发展途径的若干研究前沿群。根据报告,希格斯玻色子观测,RNA病毒所致流行性疾病,新型电池,恶性肿瘤疾病,宇宙是如何起源和演化的,气候变化的影响因素及其环境响应,植物抗逆性以及经济危机与失业对公众健康、自杀率和死亡率的影响等方面的研究非常活跃。在生物科学领域的热点前沿“新型H7N9禽源流感病毒的传播与致病机理”中,中国学者发挥了重要的作用。据悉,中国科学院文献情报中心于2011年与汤森路透(Thomson Reuters)联合共建新兴技术未来分析联合研究中心,此次合作发布的《2015研究前沿》报告延续了汤森路透发布的《2013研究前沿》报告和联合研究中心发布的《2014研究前沿》报告的分析思路和方法,基于汤森路透的Essential Science Indicators (ESI) 数据库中的1万多个研究前沿,甄选出了2015年的100个热点研究前沿和49个新兴研究前沿,对这些前沿进行详细解读和分析。另外,与《2014研究前沿》报告不同,今年的报告增加了对149个前沿的国家表现的分析,以高度概括的视角对美国、英国、德国、中国和日本等国在149个前沿的基础贡献水平和潜在发展水平进行了评估描述。报告通过同学科同年度中根据被引频次排在前1%的高被引论文(核心论文)来代表当前热点内容,根据各国作者入选热点前沿和新兴前沿中的核心论文数量来反映各国在各个领域的前沿贡献度。从数据看,美国在143个前沿(占149个前沿的96%,下同)都有核心论文入选,且在108个前沿的核心论文数都排名第一(72.5%);英国、德国和日本分别在120个(80.5%)、106个(71.1%)和82个前沿(55%)有核心论文入选;中国在82个前沿(55%)有核心论文入选,在16个前沿的核心论文数为第一名(10.7%),超过英国的10个(6.7%)、德国的8个(5.4%)和日本的2个(1.3%),这显示中国具有较强的前沿贡献度,在某些重要前沿跻身世界先进行列。由于美国核心论文数第1的前沿数占多数,各国在前3名的竞争更反映了各国在这些前沿中的竞争能力。报告也注意到,中国有38个前沿进入核心论文数前三名(25.5%),美国、英国、德国和日本分别有133个(89、3%)、68个(45.6%)、55个(36.9%)和29个(19.5%)。中国在核心论文数排名第一的16个前沿分别来自化学与材料科学领域,物理领域,数学、计算机科学和工程领域,农业、植物学和动物学领域,生物科学领域和地球科学领域这6个领域。其中,在化学与材料科学领域,中国在前沿的贡献度超过美国。在该领域19个前沿中,中国在9个前沿中核心论文数排名第一,美国有7个。中国科学院科技战略咨询研究院执行副院长、研究员张晓林介绍:“从报告数据看,中国在临床医学、天文学等领域占领的前沿还比较少,在这些领域里我们跟踪研究的力度还不够,希望今后能看到更多的前沿中有我们的参与度。当然,这个报告基于论文发表的数据进行分析,肯定会有局限性,比如可能会更侧重基础研究领域,而对发表论文较少的应用科学领域则覆盖不全。但在当前大数据和海量文献的环境下,通过这种计量学分析方法进行研究也给我们提供了一种角度,对我国把握今后科技发展趋势有所帮助。”中国高校的材料化学实验(资料图)今年高大上的前沿热点报告显示,CRISPR/cas基因组编辑技术继成为《2014研究前沿》重点新兴前沿后,在《2015研究前沿》中与之相关的3个前沿入选为热点前沿和新兴前沿。其中,“CRISPR/cas9系统免疫机制及其在基因组编辑的应用”成为该领域2015年度的重点热点前沿,而且新兴前沿“CRISPR/cas9系统的分子机理研究”和“CRISPR/cas9系统在人类细胞研究中的应用”也分别关注了CRISPR/cas9系统的运行机制及其在加速基因挖掘中的作用。生物科学领域的另外一个前沿群是RNA病毒所致流行性疾病,相关研究包括2个热点前沿“新型H7N9禽源流感病毒的传播与致病机理”和“中东呼吸综合征冠状病毒的分离、特征与传播”。在热点前沿“新型H7N9禽源流感病毒的传播与致病机理”中,中国学者发挥了重要的作用。物理学领域中,出现“希格斯玻色子”和“中微子”2个重大前沿突破的前沿群,其中“希格斯玻色子”前沿群包括4个前沿,从2014年的“希格斯玻色子观测”扩展到3个相关前沿:热点前沿“希格斯粒子质量为近125 GeV下的超对称模型研究”和两个新兴前沿“希格斯粒子发现后标准模型的扩充研究”、“希格斯粒子发现后的双希格斯二重态模型研究”。《2014研究前沿》中“中微子振荡数据的全局分析”是热点前沿,2015年在中微子方面新出现了热点前沿“基于混合角 13最新结果的中微子振荡研究”和新兴前沿“冰立方的高能中微子观测及其起源研究”。在化学领域中,5个前沿组成的“新型电池研究”前沿群,分别关注太阳能电池、锂电池、光伏电池的相关研究。此外,关于荧光现象的研究占据了化学领域10个热点前沿中的三席,包括“用于活体成像硫化氢分子的荧光探针”、“过渡金属化合物用于荧光探测生化分子”和“用于白光LED的荧光粉”。植物抗逆性的研究占据了农业、植物和动物学领域研究的8个热点前沿,组成了“植物应对生物和非生物胁迫的分子机制和调控”前沿群。在生态与环境科学领域中,11个研究前沿形成了2个前沿群,“资源开发和利用对环境和健康的影响”前沿群(包括5个前沿)和“生物多样性遗传、形成和维持机制研究”前沿群(包括6个前沿)。在地球科学领域中出现1个前沿群,其中6个前沿构成“气候变化的影响因素及其环境响应”前沿群。该领域的“中国华北克拉通的变形历史研究”连续出现在《2014研究前沿》和《2015研究前沿》报告遴选出的热点前沿队列中,而且它是中国科学家特别关注的研究前沿。在数学、计算机科学与工程领域,《2014研究前沿》中“基于粒子群算法的搜索优化”是当年最年轻的热点前沿,今年“粒子群优化与差分进化算法”和“忆阻器、忆阻电路及忆阻神经网络的相关研究”入选今年重点热点前沿。医学领域中的重点热点前沿“新型口服抗凝药防治症状性静脉血栓栓塞”和“激酶抑制剂治疗B细胞淋巴瘤”均聚焦于新型药物替代常规方法治疗疾病,“激酶抑制剂治疗B细胞淋巴瘤”热点前沿致力于致命血癌的治疗。在2015年天文学与天体物理领域排名前10的热点前沿中,有9个前沿聚焦于“宇宙是如何起源和演化的”,研究对象和主题涉及超新星、高红移星系、系外行星、伽玛射线暴、暗能量、恒星形成与演化等。值得注意的是,排名前10的研究前沿多与具体的空间探测卫星任务直接相关,展示出本领域研究前沿热点强烈依赖空间任务平台的学科特色。社会热点问题和交叉学科研究成为经济学、心理学以及其他社会科学领域TOP10研究前沿的核心,例如“亚马逊的土耳其机器人与在线调研与实验研究”、“经济危机与失业对公众健康、自杀率和死亡率的影响”、“二手烟对健康的影响以及无烟立法的效应”等。更多精彩,扫描下面二维码“MOLBASE”关注。
  • MOCON直播 | 如何准确验证高阻隔材料、镀膜的真实透水值
    薄膜材料因其质量轻,防水性强,外形设计灵活等优势,在半导体、光伏、消费电子、纳米技术等行业得到广泛应用。MOCON的渗透分析仪和测试服务准确评估薄膜材料的水蒸气透过率。高阻隔材料的透水性能确保设备免受环境水汽的侵蚀,提高设备的使用寿命。在半导体设计、制造、封装中的各个环节都要进行反复多次的检测、测试以确保产品质量,从而研发出符合系统要求的器件。缺陷相关的故障成本影响高昂,从IC级别的数十美元,到模块级别的数百美元,乃至应用端级别的数千美元。因此,检测设备从设计验证到整个半导体制造过程都具有无法替代的重要地位。AMETEK SEMICONDUCTOR半导体直播专场活动基于以上背景,阿美特克集团旗下6大部门将开展“半导体联直播专场”线上研讨会活动。本次研讨会活动将于10月26日10点正式开始——CAMECA的刘红艳、GATAN & EDAX的严琴舫和袁昊、MOCON的何志勇、ZYGO的张磊以及TMC的何捷,深耕半导体检测领域的6位专家们将在阿美特克直播间分享他们的技术干货。直播专场将分为三场,敬请期待!AMETEK SEMICONDUCTOR直播报名方式扫描上方图片二维码即可报名参加,本次会议全程免费。10月26日下午15:00-15:45,MOCON专场:如何准确验证高阻隔材料、镀膜的真实透水值。我们将一同探讨如何评估半导体封装材料的阻隔性能,提高设备的使用寿命,欢迎报名参加!
  • 利用仪器化划入表征材料的断裂韧度
    仪器化划入方法已经成功应用于测试各种材料(包括硬的合金、陶瓷、金属、岩石[1]和软的高分子聚合物、碱硅酸盐凝胶[2]等)的断裂韧度(跨越两个数量级)在材料科学与工程领域具有巨大应用前景,尤其是评估微米级材料或多尺度复合材料(比如碎屑-橡胶混凝土[3]、再生混凝土[4]、水泥[5]、页岩[1, 6, 7],骨头[8]、功能梯度和复合涂层[9])的断裂性能,其诸多优势包括:结果与传统方法(比如单边缺口试样的三点弯曲、紧凑拉伸)测量值一致;重复性好;材料体积小;设备操作、数据分析简单;近乎无损检测(微米级划入测试划入深度一般在十几微米);尤其是试样制备简单,不需要预制缺口或裂纹;测试成本和周期都大大减小[10]。仪器化划入过程的实物图和示意图见图 1[11]。在仪器化划入过程中,利用侧向力和压入深度可以计算出材料的断裂韧度。仪器化划入表征断裂韧度主要有两种理论:一种是线弹性断裂力学(linear elastic fracture mechanics or LEFM);另一种是能量尺寸效应理论(microscopic energetic size effect laws or ESEL)。理论都是假设在压头前端存在沿水平扩展的裂纹,见图 2[12]。这种裂纹模式在直刚刀压头划入石蜡的实验中体现得最好,见图 3[13]。对于直压头:三维裂纹的横截面是长方形。能量释放率可以由J-积分计算,再结合断裂准则,即可以建立利用侧向力和压入深度计算断裂韧度的关系式。图 1 仪器化划入测试实物图及示意图:(a)直钢刀压头划入石蜡;(b)倾斜直钢刀压头划入测试示意图;(c)Rockwell C压头划入薄膜材料;(d)轴对称压头划入示意图(压入深度d,压头尖端圆角半径R,侧向力FT,划痕方向x)图 2 利用轴对称压头划入过程的侧视图(左图)和正视图(右图)。x 是划痕方向,FT 是水平侧向力,FV 是竖直正压力,d 是压入深度,n 是压头与材料接触界面朝材料外侧的单位法向,A 是承载侧向力的面积投影,p 是压头与材料接触界面的周长图 3 石蜡在直钢刀压头仪器化划入过程中压头前端水平扩展的裂纹:(a)实验结果;(b)理想的裂纹形状示意图(具有长方形横截面的三维裂纹,需要裂纹长度l、刀具宽度w、压入深度d 三个尺寸表征)不同的学者提出了不同的分析方法,断裂韧度Kc 可以通过拟合仪器化划入的实验数据获得[10, 14-19]:其中Λ=A/(2P)是名义长度,p 和A 分别是周长和水平投影面积(见图 2),都是压入深度d 的函数[12]。利用线弹性断裂力学可以直接计算出断裂韧度Kc已知压头几何形状可以得到p(d)和A(d),f=2p(d)A(d) 即压头形状函数:对于圆锥压头,f 与d3 成正比;对于圆球压头,f 与d2 成正比。图 4是利用Rockwell C压头划入钢材的结果[20]。示意图见图 4(a)。在划入过程中,施加线性增大的正压力FV,如图 4(b),同时记录侧向力FT 和压入深度d。数据与划痕残余形貌一一对应,形貌见图 4(c),并且可以利用声发射分析断裂过程,如图 4(d)。图 4 利用圆锥压头分析钢材料的断裂韧度:(a)圆锥压头仪器化划入过程示意图(划痕方向沿X 轴,FV 和FT 分别是正压力和侧向力);(b)划入过程中在施加线性加载的正压力的同时记录侧向力;(c)划痕残余形貌;(d)侧向力和压入深度的关系(左轴)和声发射(右轴)当圆锥部分起主导作用时,FT/d3/2趋近于一条水平线,这说明划入过程由断裂机制控制,声发射信号也直接验证了断裂的发生。可见,利用划入方法测试材料的断裂韧度需要适合的加载条件,只有当载荷足够大,断裂机制占主导时才能应用线弹性断裂力学的公式计算断裂韧度,但是过大的载荷会产生很多扩展方向不同的裂纹,使得只有一条裂纹扩展的假设不成立。声发射信号是确定断裂发生的有效手段,可以用于区分断裂的程度(剧烈的断裂会使得声发射信号饱和),寻找适合的加载力范围。FT/d3/2一直在波动,这种锯齿状数据是切削的典型特征,与传统测试(比如紧凑拉伸中只有一个裂纹产生)明显不同,划入过程中会产生很多裂纹,所以有必要对平稳段的数据取平均[21]。仪器化划入方法已经成功应用于各种材料的断裂韧度表征[22, 23],比如:高分子材料(聚碳酸酯PC[18]、改性石墨烯添加的环氧树脂基复合材料[24])、玻璃(熔融石英硅[25]、K9玻璃[26])、金属(紫铜[27, 28])、半导体材料(单晶硅和碳化硅[29])等。表 1比较了部分材料的仪器化划入测试结果与传统方法测试结果,划入法测试与传统方法测试结果大体一致,差异很有可能是由于材料的各向异性和不均匀造成的,因为划入法表征的是表面微观区域的力学性能,传统方法测试的是宏观力学性能。所以划入法可以表征材料断裂韧度的分布,适合于异质复合材料各组织以及界面的力学性能表征,研究不同尺度结构的断裂性能,这些都是先进材料及微纳米器件发展迫切需要解决的关键测试表征技术,尤其在表面微观力学领域有广阔的应用前景。表 1 利用仪器化划入方法表征各种材料的断裂韧度(MPa• m1/2)压头(形状尺寸)及方法材料(牌号):划入法测的断裂韧度(传统方法测试值)单位(国家)[参考文献]Rockwell C压头(2θ=120°,R=200 μm),线弹性断裂力学铝合金(AA 2024):34.4±3 (32~37)热塑性聚合物(Delrin Grade 150):2.5±0.2 (2.9±0.5)麻省理工学院(美国)[20] Rockwell C 压头(2θ=120°,R=200 μm),线弹性断裂力学钠钙玻璃:0.71±0.03 (0.70)耐热高硼硅玻璃:0.68±0.02 (0.63)热塑性聚合物(Delrin 150E) :2.75±0.05 (2.8)热塑聚碳酸酯:2.76±0.02 (2.69)铝合金(2024-T4/T351) :28.8±1.3 (26~37)AISI-1045:62.2±2.6 (50)AISI-1144:62.2±2.6 (57~67)Titanium 6Al-4V:77.0±3.4 (75)麻省理工学院(美国)[22]直钢刀压头,线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)石蜡:0.14 (0.15)水泥:0.66~0.67 (0.62-0.66)侏罗纪石灰岩:0.56 (ESEL), 0.34 (LEFM)A-51w:0.82 (ESEL), 0.81 (LEFM)B-4w:0.74 (ESEL), 0.72 (LEFM)B-12w:0.78 (ESEL), 0.78 (LEFM)麻省理工学院(美国)西北大学(美国)伊利诺伊大学厄巴纳-香槟分校(美国)[21]直钢刀压头、Rockwell C线弹性断裂力学水泥(直钢刀压头):0.66±0.05 (0.67)钢材(Rockwell C压头):40±0.2 (50)麻省理工学院(美国)[11]直钢刀压头能量尺寸效应方法水泥:0.66(0.65~0.67)伊利诺伊大学厄巴纳-香槟分校(美国)[23]Rockwell C压头线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)塑料(Delrin):3.26 (LEFM),2.85 (ESEL)聚碳酸酯(Lexan):2.87 (LEFM),2.38 (ESEL)熔融石英硅:0.96 (LEFM),0.96 (ESEL)传统测试结果:塑料(2.8)、聚碳酸酯(2.2)、熔融石英硅(0.8)科罗拉多大学(美国)麻省理工学院(美国)[28]Rockwell C压头能量尺寸效应方法聚缩醛 :3.16 (2.8)石蜡:0.14 (0.14)聚碳酸酯(Lexan 934):2.8 (2.69)铝:32.53 (32)伊利诺伊大学厄巴纳-香槟分校(美国)[40]圆球压头线弹性断裂力学熔融石英硅:0.7 (0.68~0.75)K9玻璃:0.85 (0.82)福州大学(中国)[45,46]Rockwell C压头线弹性断裂力学聚碳酸酯:2.3 (2.2)福州大学(中国)[43]作者简介刘明,福州大学机械工程及自动化学院教授,福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员、ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学本科、硕士,肯塔基大学(美国)博士,法国巴黎高科矿业工程师学校材料研究所博士后、华盛顿州立大学(美国)博士后。主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn 参考文献[1] A.-T. Akono, P. Kabir, Microscopic fracture characterization of gas shale via scratch testing, Mechanics Research Communications, 78 (2016) 86-92.[2] C.V. Johnson, J. Chen, N.P. Hasparyk, P.J.M. Monteiro, A.T. Akono, Fracture properties of the alkali silicate gel using microscopic scratch testing, Cement and Concrete Composites, 79 (2017) 71-75.[3] A.-T. Akono, J. Chen, S. Kaewunruen, Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale, Construction and Building Materials, 175 (2018) 735-745.[4] A.-T. Akono, J. Chen, M. Zhan, S.P. Shah, Basic creep and fracture response of fine recycled aggregate concrete, Construction and Building Materials, 266 (2021) 121107.[5] J. Liu, Q. Zeng, S. Xu, The state-of-art in characterizing the micro/nano-structure and mechanical properties of cement-based materials via scratch test, Construction and Building Materials, 254 (2020) 119255.[6] M.H. Hubler, F.-J. Ulm, Size-Effect Law for Scratch Tests of Axisymmetric Shape, Journal of EngineeringMechanics, 142 (2016).[7] A.-T. Akono, Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing, Journal of Nanomechanics and Micromechanics, 6 (2016) 04016001.[8] A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Reports, 6 (2017) 17-25.[9] H. Farnoush, J. Aghazadeh Mohandesi, H. Cimenoglu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition, J Mech Behav Biomed Mater, 46 (2015) 31-40.[10] A.T. Akono, N.X. Randall, F.J. Ulm, Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals, J. Mater. Res., 27 (2012) 485-493.[11] A.-T. Akono, F.-J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear, 313 (2014) 117-124.[12] A.T. Akono, F.J. Ulm, Fracture scaling relations for scratch tests of axisymmetric shape, J. Mech. Phys. Solids, 60 (2012) 379-390.[13] A.-T. Akono, F.-J. Ulm, Z.P. Bažant, Discussion: Strength-to-fracture scaling in scratching, Eng. Fract. Mech., 119 (2014) 21-28.[14] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in: H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, L. Howarth (Eds.) Advances in Applied Mechanics, Elsevier, 1962, pp. 55-129.[15] H.M. Hubler, F.-J. Ulm, Size-effect law for scratch tests of axisymmetric shape, J. Eng. Mech., 142 (2016) 04016094.[16] A.-T. Akono, Energetic size effect law at the microscopic scale: Application to progressive-load scratch testing, J. Nanomech. Micromech., 6 (2016) 04016001.[17] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter, Wear, 444–445 (2019) 203158.[18] M. Liu, S. Yang, C. Gao, Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading, Polymer Testing, 90 (2020) 106643.[19] M. Liu, Microscratch of copper by a Rockwell C diamond indenter under a constant load, Nanotechnol. Precis. Eng., 4 (2021) 033003.[20] A.T. Akono, P.M. Reis, F.J. Ulm, Scratching as a Fracture Process: From Butter to Steel, Phys. Rev. Lett., 106 (2011) 204302.[21] A.-T. Akono, G.A. Bouché, Rebuttal: Shallow and deep scratch tests as powerful alternatives to assess the fracture properties of quasi-brittle materials, Eng. Fract. Mech., 158 (2016) 23-38.[22] 刘明, 李烁, 高诚辉, 利用圆锥压头微米划痕测试材料断裂韧性, 摩擦学学报, 39 (2019) 556-564.[23] 刘明, 李烁, 高诚辉, 利用微米划痕研究TiN涂层的失效机理, 计量学报, 41 (2020) 696-703.[24] S. Li, J. Zhang, M. Liu, R. Wang, L. Wu, Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite, Polymer Bulletin, (2020).[25] M. Liu, Q. Zheng, C. Gao, Sliding of a diamond sphere on fused silica under ramping load, Materials Today Communications, 25 (2020) 101684.[26] M. Liu, J. Wu, C. Gao, Sliding of a diamond sphere on K9 glass under progressive load, Journal of Non-Crystalline Solids, 526 (2019) 119711.[27] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter,Wear, 444-445 (2020) 203158.[28] C. Gao, M. Liu, Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter, Tribology Letters, 67 (2019) 8.[29] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 重磅|揭秘三元材料的粒度分析
    p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 粉体粒度是粉体材料的主要指标之一,它直接影响产品的工艺性能和使用性能。目前常用的粉体粒度测试方法有筛分法、沉降法、显微镜法、电感计数法、激光粒度法等。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/104312_514411_newsimg_news.jpg" width=" 528" height=" 253" style=" border: 0px margin-left: -3em !important width: 528px height: 253px " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 14px color: rgb(127, 127, 127) " 几种粒度测试的方法、原理及使用范围 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 三元材料产品的颗粒大小在微米级,依据以上粒度测试方法的优缺点可知,选用静态光散射法即激光衍射法最为适合,目前行业内三元材料粒度测试基本上都采用激光衍射法,采用的仪器是激光粒度仪。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " br/ /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " strong span style=" font-size: 16px " 一、三元材料用激光粒度仪 /span /strong /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 激光粒度仪测试基本原理是根据颗粒能使激光产生散射的物理现象来测试粒度分布。根据米氏散射原理,散射光的强度代表该粒径颗粒的数量,这样,测试不同角度上的散射光的强度,就可以得到样品的粒度分布。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 激光粒度仪主要厂家有丹东百特仪器有限公司、马尔文、贝克曼库尔特、布鲁克海文、HORIBA、珠海欧美克仪器有限公司等。根据马尔文官网提供的三款不同激光粒度仪信息可知,主要差别在于测试颗粒粒度范围上。一般三元材料行业选用Master-sizer2000就够了,它可以依据需要配置不同的样品分散器,如针对水溶性(碳酸锂)材料或非水溶性材料(如三元材料)的样品分散器。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/104447_304295_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 在使用激光粒度仪对三元材料进行粒度测试时,影响粒度测试结果的因素主要包括样品分散、测试遮光度的控制、样品折射率和吸光率的设定、仪器使用过程的维护保养、取样制样过程、不同厂家设备的选择等。样品的折射率和吸光率都是确定的,日常测试中要依据测试样品的不同而设定;仪器使用过程的维护保养主要是指对仪器进样管道和反傅立叶透镜的清洗和清洁。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " br/ /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " strong span style=" font-size: 16px " 二、影响粒度测试结果的因素 /span /strong /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 下面是对三元材料粒度测试中集中常见的影响粒度测试结果因素的分析。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " br/ /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 1、样品分散对测试结果的影响 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 三元材料为微米级的颗粒物质,颗粒容易团聚,尤其是小颗粒。在三元材料粒度的测试中样品分散很关键,样品分散的关键点是对分散介质、分散剂、分散方法等的选择。三元材料粒度测试中分散介质选用超纯水,分散剂一般选用2%的六偏磷酸钠溶液(视情况而定,常见的分散剂有六偏硫酸钠、焦磷酸钠、氨水、水玻璃等),同时采取搅拌、超声等措施相结合来实现样品的充分分散。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 在保证其他测试条件不变的情况下,验证样品分散好坏对测试结果的影响,表中测试数据只是控制三元材料样品分散时是否添加分散剂,其他分散措施如搅拌、超声按正常操作进行。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/104541_756096_newsimg_news.jpg" width=" 580" height=" 194" style=" border: 0px margin-left: -3em !important width: 580px height: 194px " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 14px color: rgb(127, 127, 127) " 有无添加分散剂对三元材料粒度测试的影响 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 14px color: rgb(127, 127, 127) " 注:①指样品分散时用2%的六偏磷酸钠溶液②指样品分散时用高纯水 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 由表中测试结果可知,在保证其他测试条件一致的情况下,样品分散时使用分散剂,三次平行测试结果的一致性好;不使用分散剂时,三次测试结果偏差较大,尤其是Dmax。由此可见,样品分散时不加分散剂,样品在水中出现团聚现象,导致Dmax很大而且不均。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " br/ /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 2、遮光度对测试结果的影响 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 三元材料粒度测试中,遮光度的控制也很关键。激光粒度仪测试原理是通过样品的激光损失确定样品浓度,遮光度是指反应测量时每次激光束中存多少样品的指标,其大小与颗粒多少成正比。遮光度过高说明样品量多,反之,样品量少。在三元材料粒度测试中,遮光度控制在10~20之间较为合适。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/104649_927648_newsimg_news.jpg" width=" 520" height=" 298" style=" border: 0px margin-left: -3em !important width: 520px height: 298px " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 14px color: rgb(127, 127, 127) " 三元材料在不同遮光度下粒度测试结果 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 由数据可知,当遮光度过大或者过小时都会导致测试结果一致性变差。遮光度过大时,样品分散不好或测试中会发生散射现象,导致测试结果不准确;遮光度过小时散射光纤对检测器来说不足,会造成信噪比下降,重复性变差。因此测试中控制遮光度在合理的范围内还是很有必要的。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " br/ /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 3、不同设备对测试结果的影响 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 不同厂家生产的仪器,即使都是激光衍射测量原理,由于设计方法、加工精度、数据处理、技术参数、性能等方面的不同,同一样品所得到的结果也往往存在差异。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/104809_395834_newsimg_news.jpg" width=" 607" height=" 138" style=" border: 0px margin-left: -3em !important width: 607px height: 138px " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 14px color: rgb(127, 127, 127) " 不同设备对三元材料粒度测试结果的影响 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 从表中可以看出,设备的选择对测试结果的影响也很大。建议行业内尽量统一粒度测试的原理和所用设备的精度,以保证测试结果的准确度和可比性。 /span /p
  • 锂电行业都在关注丨电池材料清洁度检测新方案
    CATL 作为领先的锂离子电池研发制造公司,在清洁度管控方面的研发投入、经验积累都处于行业领先地位。如今,CATL 已采用新一代基于扫描电镜 + 能谱的全自动解决方案,帮助其清洁度控制。01 为什么要做电池材料的杂质分析?既然大家都在做锂电池杂质分析,那这小小的杂质,到底怎么不好了呢? 其实,锂离子电池的性能与正负极材料的质量息息相关。当在正极材料中存在铁(Fe)、铜(Cu)、铬(Cr)、镍(Ni)、锌(Zn)、银(Ag)等金属杂质时,这些金属会先在正极氧化再到负极还原,当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电。当然,负极材料中的杂质元素同样严重影响电池的电化学性能,有可能刺穿隔膜,造成安全隐患。这小小杂质可不得了。 图片来源于网络 所以,在锂电池行业,对于正负极材料的杂质,大家都在想尽办法去把控。 02 现在大多数还在使用等离子体发射光谱法(ICP-OES)测定,这种测试方法需要将磁选出的杂质颗粒溶解到酸液中,并给出各个成分的含量均值。 这种方法测出来的元素含量的准确性很高,但也存在 2 个主要问题:无法定量锂电杂质颗粒的形态和数量无法区分锂电杂质颗粒的种类(如铁类、铜类) 03 我们先来看一下这个新方案,能帮我们解决哪些烦恼~ 每个杂质颗粒的形貌,尺寸,成分,以及分类都能看! 自动识别并采集所有杂质颗粒的形貌及成分信息。清晰的表面形貌有助于分析杂质的产生机理(如摩擦磨损等),成分信息有助于分析杂质产生的来源。 每个杂质颗粒的形貌,尺寸,成分,和分类信息都能呈现 不同种类的杂质颗粒的数量及成分信息都能看! 杂质的分析结果严格按照 VDA19 要求的格式呈现,颗粒分类统计结果更有助于评估锂电池生产的清洁度情况,方便不同批次样品的对比,以及生产工艺调整的验证。 能检测到的所有杂质颗粒的数量和成分信息, 一目了然 各种杂质颗粒的分布情况都能看! 将杂质颗粒的分类统计结果更直观的体现在直方图中,结果一目了然。 各种杂质颗粒的分布情况(按体积分布) 04 检测原理:以扫描电镜 + 能谱仪为硬件基础,通过背散射成像的明暗衬度识别颗粒,进而对颗粒进行能谱成分分析,根据颗粒形貌和成分信息对其智能分类,并且可以一键生成检测结果的报告。 Particle X 杂质自动分析系统的工作原理 一键生成检测报告时,可以选择您感兴趣的信息,也可以选择不同的报告存储格式。不管是用于汇报或存档(PDF 格式)还是调用数据(Excel 格式),都非常方便。 一键生成检测报告(PDF 和 Excel 格式均可) 让我们看一下大家最关注的几种杂质颗粒的检测结果(截取自检测报告)~ 以下是系统自动筛选出的杂质颗粒的部分结果,可以直观地看出杂质的形态,成分,种类等信息。 当然,Particle X 系统除了可以智能分析电池清洁度外,还可以用来分析钢铁夹杂物,汽车清洁度等。 ParticleX 参数 图像分辨率:优于 8nm放大倍数:250,000x灯丝材料:1,500 小时 CeB6 灯丝抽真空时间:小于 30 秒探测器:背散射电子探测器(选配二次电子探测器)样品室尺寸:100mm x 100mm应用场景:电池清洁度检测,钢铁夹杂物检测,汽车清洁度检测
  • 访化学工业合成材料老化质量监督检验中心
    为了解中国科学仪器的市场情况和应用情况,同时将好的检测机构及其优势检测项目推荐给广大用户,“仪器信息网”与“我要测”自2011年9月1日开始,对不同领域具有代表性的家实验室进行联合走访参观,关注行业热点。近日,“仪器信息网”与“我要测”相关工作人员参观访问了化学工业合成材料老化质量监督检验中心。   化学工业合成材料老化质量监督检验中心   化学工业合成材料老化质量监督检验中心(老化研究所,以下简称“老化检验中心”)隶属于广州合成材料研究院有限公司,是专门从事高分子材料老化与防老化研究、性能检测及老化试验方法制修订的国家级权威检测机构,该中心是通过国家计量认证的法定质检机构,并于2003年通过国家实验室认证。广州合成材料研究院有限公司于1961年成立,原名为化学工业部合成材料老化研究所,1993年更名为化学工业部合成材料研究院,1999年7月加入中国蓝星(集团)总公司后改为现名。 中心的各种资质证明   老化试验对于科学研究,对于现代工业生产都是非常重要的检测手段,是检验及提高安全性、稳定性和可靠性的必要检测。老化检验中心可按国际标准(ISO)、中国标准(GB)、ASTM、DIN、JIS、等标准进行各种合成材料及其制品的老化试验,如人工气候老化、热氧老化、高低温老化、湿热老化、臭氧老化、盐雾腐蚀和液体介质老化等试验。能够对各种高分子材料(玻璃钢、复合材料、塑料、橡胶、汽车材料、涂料、油漆、树脂、胶黏剂、化学试剂等)及其制品进行性能检测,对高分子材料、复合材料进行成分分析,对塑料、橡胶、复合材料进行使用寿命推算、最高使用温度推算、温度指数推算等。   除了全面及专业的老化测试之外,老化检验中心还能够进行物理机械性能、电学性能、耐热性和工艺特性、阻燃性能、化学稳定性能等多方面的性能检测与分析,能够进行化学试剂和溶剂的化学试剂和溶剂的定量测试、材料材质分析等,能够进行涂料、颜料的全项测试及防水材料的测试等。   中心加速老化实验室内的多种老化试验设备   老化检验中心位于广州天河区的研究所内,设有加速老化实验室、拉力试验室、燃烧试验室、热性能试验室、危化品分类检验室、金属腐蚀实验室等室内实验室。其加速老化实验室面积为1380平方米,配备有各种加速老化试验设备30多台,其中光加速老化试验设备有:氙弧灯试验箱,荧光紫外试验箱,开放式碳弧灯试验箱等。其他加速老化试验设备有:臭氧试验箱、盐雾试验箱、高低温交变试验箱、湿热试验箱、热老化试验箱等多种类型,具备进行各种加速老化试验的能力,还配置了各种相关检测设备100多台。   在多年的研究和检测中,老化检验中心不但提高和积累了老化检验的技术,还利用自己的经验技术研发生产了氙灯老化试验箱、荧光老化试验箱等设备。   老化检验中心在研究与测试中使用的部分其他仪器:   气相色谱-质谱联用仪   X射线荧光光谱仪   气相色谱仪   电子万能试验机   除上述实验室外,中心还拥有我国目前仅有的几个自然老化曝露实验场之一,位于广州市郊白云区。之所以设立在处在南亚热带的广州,主要就是考虑到了利用南亚热带湿润乡村气候进行暴露试验,大型的自然老化曝露实验场可以进行大量、大型的老化试验,如自然暴露老化试验和埋地土壤腐蚀试验标准等。   除日常检验工作外,老化检验中心还承担国家指定的检测任务,广东省质量监督涂料产品检验站和广东省质量监督化学试剂检验站也设立于此。广东省质量监督涂料产品检验站,是广东省质量技术监督局授权的[(广东)省质监认字(082)]具有第三方公正地位的、省内唯一专门从事涂料质量检验的省级质检机构,也是是中国国家认证认可监督管理委员会指定的3C产品强制性论证检测机构之一。广东省质量监督化学试剂检验站,是广东省质量技术监督局授权的[(广东)省质监认字(083)]、省内唯一专门从事化学试剂质量检验的省级质检机构。   不仅如此,老化检验中心主持或参与了数十项标准的制订与修订,如:GB/T1766-1989 色漆和清漆 涂层老化的评级方法,GB/T9276-1996 涂层自然气候曝露试验方法,GB/T3681-2000 塑料大气暴露试验方法,GB/T13938-1992 硫化橡胶自然贮存老化试验方法等,在高分子材料研究方面也取得了不少成果。   附:化学工业合成材料老化质量监督检验中心   http://www.cmar.cn/
  • 畅聊多技术联用进展|牛津仪器2022首届材料分析论坛在长沙成功举办!
    随着显微分析技术的发展,采用多技术联用对材料进行全方位的表征及分析受到越来越多研究人员的重视。通过扫描电镜、拉曼、原子力显微镜、能谱等联用进行原位表征,将进一步推动显微分析技术的发展,为材料研究及表征带来新的思路。为了促进多种显微分析技术在材料、地质、生物、半导体、新能源等多种领域的交流及分享,牛津仪器于2022年9月20日在长沙成功举办2022年度首届材料分析论坛,论坛上多位明星专家和牛津仪器工程师分享最新的研究成果和技术进展。仪器信息网编辑也在牛津仪器材料分析论坛上分别采访到了本次会议到场的四位嘉宾,分别是牛津仪器MAG中国区销售总监李霄飞、中南大学高等研究中心副主任马春德、长沙理工大学金属研究所所长刘小春、湖南大学材料科学与工程学院教授刘继磊,分别向他们了解牛津仪器的最新动态和本次活动的参会体验。牛津仪器材料分析论坛牛津仪器华南区销售经理刘宇介绍到场嘉宾牛津仪器MAG中国区销售总监李霄飞致欢迎词牛津仪器材料分析集团(MAG)中国区销售总监李霄飞首先欢迎到场的各位嘉宾,并对牛津仪器的发展历史和现状进行了简要介绍。牛津仪器于1959年在英国牛津由马丁伍德爵士夫妇创建,是牛津大学孵化的第一家商业公司。牛津仪器目前主要由低温强磁场(Nano Science)、芯片等离子加工(Plasma Technology)、科学相机及光谱解决方案(Andor)、纳米分析(Nano Analysis)、共聚焦拉曼成像显微镜(WITec)、原子力显微镜(Asylum Research)、核磁共振(Magnetic Resonance)、X射线科技(X-ray Technology)、售后服务(Service)等部门组成。而牛津仪器材料分析集团主要由其中的纳米分析(Nano Analysis)、共聚焦拉曼成像显微镜(WITec)、原子力显微镜(Asylum Research)、核磁共振(Magnetic Resonance)等组成,产品涵盖基于电镜的显微分析技术、高灵敏高分辨激光共聚焦拉曼显微镜、高通量及高分辨原子力显微镜、台式核磁共振波谱仪等,提供从纳米到毫米、厘米级的成分、结构分析技术及解决方案。牛津仪器不仅在上海设有维修中心,同时在北京也在筹备新的维修中心。牛津仪器工程师目前已经在全国分布广泛,在北京、上海、广州、武汉、深圳、西安、天津、厦门、苏州、南京等地,都有牛津仪器本地工程师驻守。此外,牛津仪器在北京、上海、广州都设有演示实验室,并在北京、上海、广州、南京等地都有应用支持人员。随着牛津仪器在长沙累积的高端用户越来越多,不但有湖南大学、中南大学这样的高水平高校,还有很多第三方检测的用户,牛津仪器在不久的未来也将考虑在长沙安排本地工程师入驻,以便更好地服务湖南本地的用户。中南大学高等研究中心副主任马春德作为邀请嘉宾致辞马主任此次作为中南大学高等研究中心的代表出席。中南大学高等研究中心的前身是中南大学的现代分析测试中心。目前中南大学高等研究中心有5000多平方米的专业实验室,三个多亿的先进仪器设备资产,事业编的实验测试技术人员40多人,在教育部直属高校里,综合硬件实力水平排在前列。马主任认为,材料分析工作离不开通过各种测试仪器获取各种数据,并用这些数据指导科学研究方向和各种新材料性能的提升。目前全世界还在进行日益激烈的科学竞争,对于中国来说有很多的卡脖子工程,比如芯片、高性能航空发动机、特种极端环境下服役的特种材料、功能材料等等。这些问题的解决都要依靠基础科学研究来实现,那么就必须通过各种先进的仪器设备作为研究的工具。中南大学高等研究中心刚刚申报成功的“湖南省电子显微镜中心”,能够对材料的微区表征、形貌成分、晶体取向、原子结构能够进行科学研究,不仅满足了中南大学各种课题研究需要,同时也面向湖南省的各个科研机构提供测试服务及技术支撑。中南大学高等研究中心和牛津仪器早在2010年就建立了合作关系,陆续引进了牛津仪器的一系列设备。在十几年的合作过程中,牛津仪器公司作为一个具有英国血统的老牌仪器供应商,无论从技术能力还是服务质量上,都能提供非常优质的服务体验。最后马主任祝本次论坛会议能够取得圆满,也希望大家每个人都有所收获,同时也欢迎到场的科研工作者到中南大学高等研究中心共同交流研讨。牛津仪器纳米分析部高级应用科学家徐宁安分享《从表征到分析,多技术联用在材料分析中的灵活应用》,徐宁安在报告中介绍了牛津仪器EDS-EBSD-AFM联用分析含稀土钢析出相和EDS-EBSD-Raman联用分析钢铁氧化层的研究进展。长沙理工大学金属研究所所长刘小春报告《金属材料纳米尺度晶体取向定量表征:FIB-STEM与TKD联用技术的应用与探索》刘老师团队介绍了1年多时间自筹经费,并与牛津仪器在内的等多个仪器厂商合作搭建的电镜平台——凯普乐电子显微分析中心,中心目前具备超大面积(高通量)表征、多设备协同测试(EBSD-FIB-TEM、FIB-TKD-APT、STEM-EELS、STEM-EDS)等能力,并介绍了FIB-STEM&TKD、TEM&TKD、TEM&PED等多技术联用在金属材料中的应用。报告最后,刘老师感慨道,一个好的仪器品牌,其根源的技术储备来源和所处的生态非常重要。正是因为有了牛津仪器的高端智能仪器,以及贴心的售前售后服务,帮助科研人员工作做得更好。牛津仪器纳米分析部应用科学家马岚报告《微观尺度下,如何实现元素准确定性定量的分析方法》,马岚在报告中介绍了提高EDS空间分辨率的技巧、EDS定量技术、AZtecWave新进展等。牛津仪器WITec中国区应用经理胡海龙报告《WITec共聚焦拉曼显微镜及多场关联成像的前沿应用》。报告中分别举例介绍了WITec共聚焦拉曼显微镜在能源半导体材料、高分子材料、金属腐蚀及防护、生物及地质等领域的最新应用进展。(威泰克WITec是德国高分辨光学和扫描探针显微技术解决方案制造商,提供Raman、AFM、SNOM、SEM以及联用技术等,并于2021年加入牛津仪器集团。)湖南大学材料科学与工程学院教授刘继磊报告《拉曼光谱在电池研究中的应用》刘教授在报告中主要探讨了拉曼光谱在电池性能提升机制探索方面的一些应用研究。由于电池本身是一个封闭的多相多物理场,系统内部很复杂,类似一个“黑匣子”。在实际的工况条件下,电池实际工作过程当中,电池内部电极、材料、结构组分整个变化很难有直观的观测。而基于原位拉曼光谱就能够在真实的工况条件下,观察电池内部材料的结构、组分相转变过程,以及电池界面形成的动态演变规律,进而可以更精准地来揭示整个电芯的容量衰减机制,从而帮助找到更加高效方法进一步优化整个电池的设计。牛津仪器纳米分析部高级应用科学家徐宁安报告《纳米到厘米级微观结构EBSD表征及分析技术最新进展》,报告中介绍了利用EBSD数据进行材料弹性性能分析、材料塑性变形分析、位错分析等,并介绍了进一步提升TKD透射EBSD模式下空间分辨率的有关方法。牛津仪器Asylum Research应用科学家薛以泽邦报告《眼见为实,感触为真——AFM技术的应用与展望》。薛以泽邦报告中对AFM技术进行了全方位应用展示,如在生物大分子动态实验、阳极氧化、钙钛矿太阳能电池、电化学沉积、电化学腐蚀、磁斯格明子、铁电材料相变、AFM-SKPM-EDS联用。会展现场以下为仪器信息网编辑在牛津仪器材料分析论坛上对到场的四位嘉宾的采访实录。厂商采访:牛津仪器MAG中国区销售总监 李霄飞仪器信息网:请介绍一下牛津仪器材料分析集团(MAG)以及MAG中国的概况和成立背景?李霄飞:牛津仪器材料分析集团(Materials Analysis Group)(以下简称MAG)是牛津仪器经过跨部门整合后,由纳米分析(Nano Analysis)、共聚焦拉曼成像显微镜(WITec)、原子力显微镜(Asylum Research)、核磁共振(Magnetic Resonance)部门组成的,希望通过部门间的优势互补实现1+12的效果。这四个部门面向的客户群各有交叉,以高校科研为主,还包括企业高端的R&D研发。由于用户都是在做材料的表征和研发,牛津仪器就将这四个部门组成牛津仪器材料分析集团(MAG),这之后无论是在管理上、市场活动、资源的整合上都会有一些共同的行动方针。整合后的牛津仪器材料分析集团(MAG)最终目的还是以客户为中心,希望通过加强不同部门间的内在联系给客户提供更多、更好的整体解决方案。仪器信息网:牛津仪器材料分析集团(MAG)将提供哪些整体解决方案服务中国用户?李霄飞:现在我们推出的有代表性解决方案,不仅有EBSD和AFM的联用、AFM和拉曼的联用,还有EDS/EBSD和拉曼的联用。这三种技术紧密围绕显微分析形成掎角之势,尤其是牛津仪器的拉曼具备高灵敏度,而且在成像方面具有独到的优势。市面上的其它的拉曼目前还是选点分析为主,Mapping的效率比较低,而牛津WITec的拉曼由于速度和灵敏度的优势,已经可以做类似能谱的快速Mapping,恰好和EDS、EBSD、AFM的Mapping成像相串联,使得成像过程具有可比性。仪器信息网:牛津仪器材料分析集团(MAG)初成立阶段将实施哪些服务革新?李霄飞:我们现在已经有计划地布置实施,过去牛津仪器每个部门都有自己的工程师,但现在我们开始对这些工程师进行交叉培训,使得他们不仅擅长自己部门的业务,也能够学习其他部门一些基本的内容,这样大家都有各自的专长,但同时在技能上进行了拓展,最终形成一个更有竞争力的团队,更加高效地解决用户的问题,从而更好地服务用户。即便在疫情背景下,由于牛津仪器的工程师分布很广,我们可以保证快速派遣工程师到现场,解决用户的燃眉之急。这对于用户来说是非常有价值的。我们还正在组建Customer Care Center(CCC)的服务团队。过去如果一个实验室购买了牛津仪器不同的产品可能需要联系不同部门的工程师,但有了CCC服务团队,只要一个电话,CCC中的资深工程师就能帮助用户统一解决问题,极大地提升用户体验。仪器信息网:疫情波动下举办线下活动实属不易,请谈谈此次牛津仪器克服这种困难举办本次论坛的背景和活动的重要意义?李霄飞:疫情持续到现在已经有三年多的时间,我们和客户面对面的机会比原来减少了很多,所以跟客户线下见面的重要性是不言而喻的。其实我们上半年就有不少的计划,但是后来我们基本上都推迟了。牛津仪器当前始终保持着两位数以上的高增长速度,有着巨大的装机量和客户群,这也保证了牛津仪器举办线下用户活动都会有足够多的用户参加。这次在长沙举办的活动,就已经超出了我们的预期,来参会的用户了解牛津仪器这次带来的最新技术也都觉得十分有收获。所以只要疫情许可的情况下,牛津仪器还是会坚持多办这样的线下活动,促进同行业的交流。仪器信息网:多技术联用可以说是本次活动的重要主题,请谈一下牛津仪器如此重视联用技术的原因?牛津仪器在这方面有哪些应用案例和最新进展?李霄飞:牛津仪器材料分析集团主推的多技术联用,主要还是基于很多微观领域研究,客户希望同时了解图像、成分、结构信息,甚至微区力学实验的需求。牛津仪器材料分析集团(MAG)经过整合,加上我们在硬件和软件上的改进,已经大大降低了原位操作和表征的门槛,这对于材料微区研究意义重大。我们不仅能够给客户提供一站式解决方案,无形中也增强了我们的竞争力。过去大家可能觉得AFM和拉曼在在金属材料应用较少,其实并不是。经过我们了解,它们在金属材料都是可以有很多应用的。比如金属材料中的夹杂物研究,我们可以用能谱看它的成分分布,用EBSD进行精确分析,用AFM探索表面形貌和了解它电化学的性质。还有金属的氧化物的分析,EBSD虽然可以做,但对样品质量要求比较高,而拉曼对样品的制备不像EBSD那么严格,可以比较容易地得到非常漂亮的结果,也延伸了拉曼在材料领域中的应用。此外,我们还在金属材料的腐蚀和药物制剂等方面做了不少探索。仪器信息网:牛津仪器材料分析论坛未来还有哪些系列计划?李霄飞:我们目前计划在年底前应该还会举办10期这样的材料分析论坛,但由于目前疫情形势复杂,具体地点还没有确定。特邀嘉宾:中南大学高等研究中心副主任 马春德仪器信息网:您所在单位或实验室配置了哪些牛津仪器的设备?使用体验如何?马春德:中南大学高等研究中心旗下的电镜中心是我们五大板块之一,电镜中心配置了一系列高端的电镜设备,其中配置了多款牛津仪器的设备,比如说我们2012年引进的双束电镜就配置了牛津仪器的能谱。后来引进的FEI和泰思肯的电镜也配置了牛津仪器的EDS EBSD和机械手等。总体从使用看,牛津仪器的产品质量比较可靠,性能非常稳定,从2012年到如今大约10年间,使用过程中故障率非常低,到现在为止我们都是正常使用。仪器信息网:此次参加牛津仪器材料分析论坛的感受?马春德:我觉得应该对我个人来说不虚此行。我是第一次参加牛津仪器的论坛,此次是作为中南大学公共平台的管理者身份参加本次论坛,我们也带了自己的同事来学习交流。牛津仪器此次论坛也是给我留下了比较深刻的印象。一是规划比较完善、规模也比较大,疫情当下想组织这样一场规模的线下会议十分不易,来参会的单位也比较多;二是报告的质量和水平也比较高,不但有明星专家分享仪器操作和分析表征的经验,还有牛津仪器的明星工程师的一些经验和分享,从实用性、技术性、前沿性这几点都有很好的体现。仪器信息网:您如何看待多技术联用的发展?马春德:多技术联用已经成为现代科学研究的一种趋势。对于复杂的实际问题,我们通过单一的仪器检测单一的数据只能做一些简单的研究。随着现代科技的发展,科学研究所面临的问题越来越复杂,我们不可能通过某几个方面或者某几个参数的确定就能解决实际问题。现在我们很多的基础科学还是有很多欠缺,对复杂的物理现象的解释必须要考虑到多方面以及多技术引入,才能获得新的解释和揭示。此外,为了更好地应对国家重大战略需求需要解决的理工医以及交叉学科的问题,学校近年来也在进行连续大规模的投资,组织出联合攻关的团队,利用各种各样的科学设备综合体去集中解决。仪器信息网:此次参会对牛津仪器的建议或意见?马春德:对于我们来说就是使用者的身份,其实我们这样大的平台相对资金上的压力稍微小一些,因为学校有很好政策支持,我们的维修费用相对来说比较容易获得解决。我们非常注重的在于维修、维护的时间效率。由于高等研究中心测试平台每年平均要肩负着500多项国家自科基金以上的纵向科研项目的测试技术服务支撑,对于我们来说科研效率成本以及肩负的压力都很大。希望未来牛津仪器能够在长沙常驻维修工程师或者应用工程师,一方面能够快速解决维修问题,另一方面也能够及时获取牛津仪器的最新技术和应用经验,能更好地当面进行交流。不只对中南大学,对整个湖南科研领域来说都具有非常有重要的意义。专家采访:长沙理工大学金属研究所所长 刘小春仪器信息网:相比其他材料,金属材料微观尺度研究有哪些特点?对于材料表征技术有哪些不一样的需求?刘小春:我觉得金属材料微观结构表征最大的特点是它的材料种类特别的丰富。虽然金属听上去是两个字,实际上是代表了构建我们各行各业的基础性材料。上到飞机里的高温合金零部件,下到用于航海的高强耐腐蚀的钛合金,都与金属材料息息相关。金属材料的微观结构表征非常依赖于操作人员的专业知识背景,检测人员不仅仅需要知道仪器设备的使用功能,更加需要对材料的结构、成分,还有它各种细节的处理的信息有足够的了解,才能有针对性的把表征做好。我们自己也搭建了针对金属材料的分析表征的材料研究平台,要想把表征和检测相关的工作做好,我们更看重技术人才需要有扎实的材料科学的基础知识和晶体学这方面的积淀,这个是我们金属材料分析跟别的领域相比最大的一个特点,就是它更强调技术跟材料本身专业知识背景的无缝的对接。这两个都匹配好了,才能够真正的把设备能用好,把研究工作能做好。仪器信息网:您报告分享了STEM与TKD联用技术,请谈下多技术联用对于金属材料研究的重要性?相关联用技术应用进展如何?刘小春:我在报告中提到联用技术,是我从用户的角度主动选择的结果。我把赛默飞电镜的STEM成像能力和牛津仪器TKD的测试方法进行了有效的结合,发现可以实现到纳米级别的形貌分辨,之后我们自己的团队以及研究工作也在逐步将STEM和TKD联用起来,然后开发新的应用场景,推动金属材料的研究进展。我认为,各种各样的联用技术是对传统单一的检测方法的一个补充,也是未来的一个发展趋势。科研人员包括仪器厂家,如果能在各种设备联用,或者说多场景、多种技术或多场景的跨尺度的应用方面做得更好,我相信他们未来的竞争力和影响力会更大,对于科研人员反过来也是一样,它可以推动我们的科研工作做得更好。多技术联用将会成为科研人员手中非常便利的工具,通过多技术联用去推动我们整个仪器行业以及科学家的研究领域解决一些难度较高的研究问题,这是我们的共同愿景。我也会通过不断与牛津公司这样的优秀的厂家交流,然后去了解掌握更多的多技术联用的最新进展。仪器信息网:请分享下此次参与牛津仪器材料分析论坛的体会?刘小春:牛津仪器是在国内极具影响力的一个仪器公司,他们确实做到了技术领先和契合客户的深度应用场景。我觉得能做到这一点,是一个仪器厂家之所以具有很好的口碑和竞争力的一个原因,它不仅产品做得好,而且应用服务还有与客户的合作关系,以及生态构建都很完美,这样大家会从内心认可这家公司的产品和服务。通过与牛津仪器的技术专家进行交流,我觉得整体来说收获很大。仪器信息网:对牛津仪器有哪些发展建议?刘小春:牛津仪器作为一家国际性的公司,应该考虑在中国设立一些生产基地,这样的话,第一能保障产能,第二能保障供货的周期,尤其是现在全球各大经济主体有一定的竞争脱钩的趋势下,需要他们有生产能力的保障,否则有可能不利于他们未来持续的竞争力。同时进口厂家本土化实际上反过来也会促进国内相关技术的成熟和配套技术的成长,包括国内技术人才的培养,这当然是一个双赢的事情,牛津仪器能更好地利用在国内的便利生产的条件,通过更好地成本控制能够做到更好性价比,这样他们盈利空间可能还会更大。对于我们国内的消费者来说,供货期的缩短也将会提升牛津仪器的影响力。专家采访:湖南大学材料科学与工程学院教授 刘继磊仪器信息网:相比其他材料,储能材料研究的特点有哪些?对于材料表征技术有哪些特殊的需求?刘继磊:目前储能材料表征致力于更精准的阐明电池失效的机理,指导我们进一步优化材料设计并提供理论指导,所以现在表征越来越重要。现在整个科学研究有一点朝着拼设备的程度在发展,其实就是凸显了表征的重要意义。仪器信息网:原位光谱-电化学表征技术发展现状如何?联用技术对于储能材料研究的重要性?当前应用进展如何?
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制