当前位置: 仪器信息网 > 行业主题 > >

毒枝菌素

仪器信息网毒枝菌素专题为您整合毒枝菌素相关的最新文章,在毒枝菌素专题,您不仅可以免费浏览毒枝菌素的资讯, 同时您还可以浏览毒枝菌素的相关资料、解决方案,参与社区毒枝菌素话题讨论。

毒枝菌素相关的资讯

  • 潍坊检疫局成功破解“莫西菌素”悬案纪实
    他们让欧盟收回成命……   ———潍坊检验检疫局抓质量提升成功破解“莫西菌素”悬案纪实   2010年3月,欧盟健康和消费者保护总司发出通报,宣布2009年12月发布的针对我国山东潍坊乐港食品股份有限公司出口欧盟熟制鸭肉中检出“莫西菌素”的预警通报有误,正式撤回对该公司“莫西菌素”的预警,允许乐港公司被封存的产品继续销售。   至此,历时3个多月的“莫西菌素”悬案终于尘埃落定。潍坊检验检疫局以扎实的基础工作、严谨的科学论据、不懈的拼搏努力打赢了这场应对国外技术性贸易措施的攻坚战。我国出口食品对欧盟预警成功反诉在国内尚属首次。   回顾应对预警事件的风雨历程,潍坊检验检疫局党组深感胜利来之不易。没有这些年质检系统自上而下抓质量安全的坚强决心、没有全局干部职工兢兢业业促质量提升的辛勤付出、没有健全的工作机制和过硬的监管工作质量保证,要让欧盟收回成命则无从谈起。   预警突发 风云乍起   事情还要从2009年12月22日说起。   就在那一天,欧盟健康和消费者保护总司发布预警,通报德国官方实验室在我国山东潍坊乐港食品股份有限公司出口欧盟的熟制鸭肉中检出“莫西菌素”,残留量为87.3μg/kg。对潍坊检验检疫局而言,这无异于投下了一颗重磅炸弹,意味着欧盟可能会将“莫西菌素”纳入监控范围,进而对我国出口欧盟的禽肉采取严密检查措施。而事实上,欧盟在发布预警以后,已经对我国禽肉产品实施了“莫西菌素”批批检测。若在欧盟的严密检查下发生多批次检出,封关长达6年半、近7年没有出口业绩、经过多年艰辛努力重新争得的欧盟市场将会再次无情地对我们关紧大门。   这对潍坊这样的传统农产品出口大市、特别是出口禽肉占到全国总量近三分之一的出口强市来说,影响更是巨大。   欧盟各国对进口农产品的技术限制措施向来极为严格。2002年2月,因在我国出口禽肉、水产品和兔肉中陆续检出六六六、滴滴涕和氯霉素、硝基呋喃等农兽药残留,欧盟对我国动物源性产品采取了全面封关。经过多年的交涉和努力,欧盟官方在数十次来华进行现场考核后,封关长达6年半之久的欧盟市场终于重新对我国开放。欧盟委员会于2008年7月30日通过决议,批准欧盟成员国恢复进口中国9家企业生产的熟制禽肉制品。在欧盟开关的全国9家企业中,潍坊就占5家。开关以来,在国家质检总局和山东检验检疫局的指导下,潍坊检验检疫局按照欧盟法规和指令的相关要求,对饲养场的疫情控制、用药管理、动物福利、加工厂的卫生控制等方面进行了全面指导检查,严格监督企业按照欧盟的要求进行生产加工。从当年12月份开始,全国首批禽肉制品由诸城外贸出口欧盟,潍坊美城、潍坊乐港、昌邑新昌等企业产品紧随其后陆续向欧盟出口。   截至目前,欧盟开关以来,全国共向欧盟出口禽肉产品1.3万余吨、价值7000余万美元。其中,潍坊出口禽肉产品1万吨、价值6000万美元,分别占76%和85%。潍坊乐港是全国唯一获得对欧盟注册的肉鸭产品出口企业,开关以来共向欧盟出口鸭肉产品6500吨、价值4875万美元,占全国向欧盟出口禽肉总量的50%和货值的69%。欧盟成员国多、市场潜力大,禽肉制品对欧盟出口恢复正常后,潍坊每年可增加创汇两亿至三亿美元,对出口食品农产品的拉动有着至关重要的作用。 潍坊检验检疫局技术中心完成技术攻关迅速开展莫西菌素检测 加强源头监管,对出口欧盟的鸭肉原料定期取样检测 国外技术专家到潍坊检验检疫局技术中心开展技术交流 潍坊检验检疫局监管人员正在对出口欧盟禽肉产品实施监装   为了健全完善出口食品农产品质量安全控制体系,确保出口食品农产品质量安全,几年来,潍坊检验检疫局的领导和一线检验检疫人员殚精竭虑,付出了大量心血,工作卓有成效。该局党组一直把促进食品农产品出口作为“一号工程”,不断加强源头监管,实施全过程质量控制,出口食品农产品质量安全监管水平明显提高。早在2006年,潍坊检验检疫局按照山东检验检疫局工作部署和要求,结合“食品安全年”活动,实施了驻厂检验检疫官制度改革,开展了出口肉类官方兽医体系和出口蔬菜官方食品安全员体系建设。对辖区内注册的肉类加工企业实行官方驻厂兽医制度,以出口蔬菜检验检疫监管模式改革为突破口,实行官方食品安全员制度。在源头管理、官方兽医、官方食品安全员建设和企业自检自控建设上下工夫,确立了官方兽医体系改革和食品安全员体系改革的基本框架,形成了《中国现代出口肉类官方兽医体系建立及应用》、《中国现代出口蔬菜官方食品安全员体系建立及应用》两套理论体系,探索建立了一整套管得准、管得住、促发展的科学有效的出口食品农产品检验检疫管理新模式。新的监管模式注重种植养殖源头管理、实施疫病疫情监控、农兽药残留监控和微生物监控,立足把问题解决在源头和生产加工过程中,实现了从种植养殖源头到生产加工直至产品出口的全过程监管,形成了更加科学有效的质量控制机制,提升了检验检疫监管工作的有效性,促进了食品农产品出口,得到了国家质检总局和山东检验检疫局领导的充分肯定。   眼下,在出口兽医体制改革初见成效,禽肉出口稍有转机的情况下,突然出现的“莫西菌素”预警事件,像一团沉重的乌云笼罩在潍坊检验检疫局领导和同志们的心头。震惊、担心、疑虑写在每个人的脸上,但他们很快冷静了下来,立即成立了专门的应对工作组,启动了《进出境农产品和食品质量安全突发事件应急处置预案》,全力投入到事件的排查分析工作当中。问题的根源发生在哪里?是监管工作出现了漏洞?风险分析出现了失误?还是企业存在不诚信行为?   调查核实 提出质疑   自爆发国际金融危机以来,国际贸易保护主义亦呈愈演愈烈之势。面对“莫西菌素”预警事件,潍坊检验检疫局党组清醒地认识到,只有积极应对,才能争取主动。他们首先组织相关专家骨干进行了科学的分析。   “莫西菌素”是一种新型大环内酯类驱虫抗生素,根据肉鸭的生长习性和以往的临床经验,肉鸭在生长过程中罕有寄生虫病发生,一般不需要使用抗虫类药物。且“莫西菌素”价格高,国内市场鲜有销售,之前也从未发现乐港公司有过采购“莫西菌素”或含有“莫西菌素”成分药品的记录。经过全方位的调查分析,输欧鸭肉产品养殖、生产过程中使用或污染“莫西菌素”的可能性几乎不存在。至此,在潍坊检验检疫局相关人员的脑海里,一种质疑变得越来越清晰起来,难道是欧盟方面的检测结果出现了问题?!   他们的质疑不是毫无根据的,是建立在多年来对出口食品农产品质量安全管理体系的健全完善和科学监管的自信上。   近年来,党中央、国务院高度重视食品安全问题,国家质检总局先后对加强产品质量和食品安全做出了一系列的重大决策和部署。潍坊检验检疫局按照国家质检总局、山东检验检疫局的部署要求,立足潍坊农业生产大市和农产品出口基地的特点,以全国产品质量和食品安全专项整治、“质量和安全年”活动等重大行动为契机,积极深化检验检疫监管改革,不断健全完善风险分析工作机制,在实行驻厂检验检疫官制度的基础上,进一步深化和延伸“公司+基地+标准化”管理模式,创新开展了出口食品农产品质量安全区域化管理新模式的改革试点,进一步提升了出口食品农产品质量安全水平。2009年,潍坊检验检疫局被评为国家质检总局“质量和安全年”活动先进单位。   在强化检验检疫监管工作上,潍坊检验检疫局不断创新、探索,形成了一套科学有效的农产品质量安全工作新机制:   健全风险分析管理机制,制定控制风险的有效措施。潍坊检验检疫局坚持把风险分析管理作为保证产品质量安全、提高把关放行效率的关键因素,一是开展风险评估,制定出口食品安全监控计划。每年年初修改制定出口禽肉、蔬菜的疫病、农兽药残留、微生物监控计划等十几个管理文件,对监控的品种、项目、频率、限量、检测方法等作出详细明确的规定,增强了监管工作的有效性。二是进行风险划分,实施新的监管验放模式。通过风险评估分析,区别不同产品和出口国家及地区,采取不同的监管措施。三是抓好源头管理,提升出口产品质量安全水平。源头监控是风险管理的关键环节,潍坊检验检疫局坚持从源头抓质量,大力推行“公司+基地+标准化”模式,扩大备案基地建设规模,提高高风险产品的基地备案标准,严格监控农兽药残留及环境污染因子,引导企业建设规模化、高标准种植、养殖基地。同时,认真落实检验检疫官驻厂制度,对7家重点禽肉出口企业派驻辅助兽医,重点出口蔬菜区域设立食品安全员,做到了从源头到成品的全方位监管。四是拓宽监管领域,强化对农兽药源头的管理。农兽药是食品安全风险管理的难点,通过风险评估,潍坊检验检疫局将农兽药的生产流通一并纳入监控范围,实行了“出口企业+农兽药生产供应厂商+检验检疫”的农兽药使用管理新模式,即出口企业与有资质的农兽药生产厂、供应商签订经济责任合同,建立专供渠道;检验检疫局对供应厂商和使用的农兽药实行备案管理,对主要供应商建立业务登记档案和诚信档案,定期公布国外官方农兽药限量要求和禁用药品名录,以及用于生产的农兽药检测结果,实现信息共享。通过三方互动、联合监控,实现了出口食品农产品农兽药源头有效控制。   实施“区域化管理”,出口食品农产品质量安全呈现新的局面。时值2007年春夏之交,国务院先后召开了全国质量工作会议、全国产品质量和食品安全专项整治电视电话会议,颁布实施了《国务院关于加强食品等产品安全监督管理的特别规定》。在山东检验检疫局的指导下,潍坊检验检疫局在全面回顾总结多年来出口食品农产品质量安全工作经验的基础上,着力探索研究新形势下进一步抓好出口食品农产品安全质量的工作思路。为继续创新源头管理机制,从根本上解决食品农产品质量安全问题,进一步深化和延伸“公司+基地+标准化”管理模式,开展了出口食品农产品质量安全区域化管理新模式的探索研究,形成了《面向出口的食品农产品质量安全区域化管理体系建设》的理论框架和实施方案。把推行区域化管理作为继实施驻厂检验检疫官制度之后加强出口食品农产品检验检疫监管改革的又一重大战略目标,顺应新形势下检验检疫工作模式改革的再创新,作为贯彻国家质检总局、山东检验检疫局一系列工作部署、开展产品质量和食品安全专项整治行动的有力措施,作为促进社会主义新农村建设的具体实践,迅速付诸实施。   出口食品农产品质量安全区域化管理,其核心是建立出口产品质量安全的“政府主导、检验检疫技术支持促进、职能部门通力合作、全社会齐抓共管”的工作机制。即根据地域实际,由政府主导,在一定区域内,整合行政和检测资源,加强区域内农兽药综合管理,推行出口食品农产品标准化种植养殖、生产加工和出口管理,实施良好农业操作规范。通过科学管理、规范生产、以防为主、关口前移,保证出口食品、农产品的安全质量,提高产品质量和食品安全管理水平。依靠山东检验检疫局的大力支持和指导,潍坊检验检疫局在积极宣传、培训的基础上,与地方政府通力协作,建立起了“政府主导、国检指导、龙头带动、部门联动、全民行动”的区域化建设运行模式。健全完善了政府、部门协调控制体系,政策法规控制体系,农业化学投入品控制体系,种植养殖基地标准化建设推进体系,质量安全追溯控制体系,监控、预警、纠偏及评估控制体系,应对重大突发事件控制体系,宣传培训支持体系等八大管理体系。特别是针对影响出口质量安全的关键环节,即农兽药残留控制问题,为形成良好的出口食品农产品生产用药环境,潍坊检验检疫局指导、参与制定出台了农药兽药管理办法,由政府牵头,公安、工商、农业、畜牧等部门组成联合执法队,对生产经营国家明令禁止的农业化学投入品行为进行严打整治。对农业化学投入品生产企业进行考核、实行登记备案,对农业化学投入品销售渠道进行清理,采取连锁加盟、定点直供的经营模式,形成市、镇、村三级专供网络,对最终使用环节加强指导、规范用药。形成农业化学投入品产、销、用全程链式管理模式和有效控制机制,以保证农业化学投入品的规范管理和科学使用。出口食品农产品质量安全区域化综合管理机制的创新建立和试点实践,完全符合国家2009年6月1日颁布的《食品安全法》的要求。   区域化管理使潍坊的农业生产大环境治理明显好转,出口食品农产品质量安全得到有效控制,2007年全市食品农产品出口实现了超过10亿美元的历史新突破,并连年保持较大幅度的增长。区域化管理从根本上改变了出口食品农产品监管理念,开创了我国出口食品农产品质量安全监管新模式,得到了各级领导和社会各界的一致好评。全国产品质量和食品安全专项整治第二次现场会期间,时任国务院副总理的吴仪同志到安丘考察时,连连称赞“区域化建设”这个办法好。2008年4月,山东省政府在潍坊召开全省区域化管理现场会,将区域化管理的做法概括为“潍坊经验”,在全省54个县市区进行全面推广,并作为食品安全管理的根本措施写进政府工作纲要。去年4月,国家质检总局局长王勇亲临潍坊安丘考察指导区域化建设,给予充分肯定,并于10月份在潍坊召开全国出口食品农产品质量安全示范区建设经验交流会,向全国推广。会议期间,王勇又亲自带领与会12个省、市的领导到安丘考察了区域化建设现场。截至目前,除西藏之外的全国各省、市、自治区组队到潍坊学习考察区域化建设达9000余人次。今年1月8日,我国首个《初级农产品安全区域化管理要求》国家标准在潍坊安丘通过专家审定。审定委员会专家一致认为,它“是对现有食品安全管理体系标准的自主创新,并经过了实践的检验验证,填补了国内和国际空白,达到了国际先进水平”。并即将由国家标准委以推荐性国家标准发布实施。   针对欧盟预警,潍坊检验检疫局及时向山东检验检疫局食品处汇报,食品处领导三下潍坊,与潍坊检验检疫局应对工作组一起,对输欧盟熟制鸭肉的加工生产过程进行了全面的核查分析。结果显示潍坊检验检疫局在整个生产加工过程中实施了科学有效的全程监控,并且基于风险分析,通过检测验证排除了可能存在的安全隐患。一是对生产原料实施了有效控制。企业用于出口加工的肉鸭全部来自经检验检疫局备案的该公司自属饲养场,官方驻厂兽医在每个饲养周期,以及生产、加工的全过程均按规定进行了监管。同时,依据风险分析评估,抽样进行了氯霉素、硝基呋喃代谢物等10种兽药残留项目的检测,均符合安全卫生要求。二是对兽药的使用实施了有效控制。企业严格执行兽药使用管理规定,对每批新购入的兽药均实行先检测后使用的控制管理办法。用于加工该批产品的肉鸭在饲养过程中共使用了浆炎速治和新奇两种兽药,主要成分分别是硫酸安普霉素和阿莫西林。除此之外,未使用或添加任何其他药物。且使用前经中国检验检疫科学研究院综合检测中心进行检测,无禁用成分。三是对辅料的使用实施了有效控制。乐港公司的进货台账及核销表均按照潍坊检验检疫局统一要求的格式建立了完备的电子档案。潍坊检验检疫局对企业购入的新辅料品种,均由驻厂兽医亲自扦样送检验检疫技术中心进行检测,经检测合格后方允许企业用于生产。通过调阅监管记录确认,该批鸭肉熟制品在生产加工过程中共使用了盐、白胡椒粉、麦芽糖和醋四种辅料。在使用前,对可能存在的不安全成分均一一进行了检测,未发现任何安全隐患。四是对加工生产过程实施了有效监控。企业在生产加工过程中严格按照卫生标准操作程序进行控制。生产加工人员进入车间前均经过了洗手消毒,并且戴手套操作,班间定期洗手消毒,可以排除在加工生产人员操作过程中污染“莫西菌素”的可能。   技术攻关 掌握证据   近年来,世界各国对进口食品农产品均采取了极为严格的限制措施,我国出口产品被国外预警时有发生。但国内对进口国预警特别是欧盟预警提出质疑,进而推翻其预警结果的情况至今还没有先例,对欧盟预警成功反诉似乎是天方夜谭。潍坊检验检疫局慎之又慎:必须掌握更加具有说服力的第一手证据,用事实说话!   多年来,潍坊检验检疫局党组始终坚持“以人为本,科技强检”战略,把检验检疫技术保障作为事业发展的基础和支撑。一是加强基础建设,扩大检测能力。经过多年的努力,潍坊检验检疫局技术中心取得了长足发展,并于2007年11月被确定为国家级蔬菜、禽肉检测重点实验室。在国家质检总局、山东检验检疫局的支持下,几年来通过多渠道争取对检测设备的投入、提高装备利用率来增强检测实力。近年新增加具有国际先进水平的液相色谱串联质谱仪等检测设备30多台套,基础设施建设发生了质的飞跃,基本满足了潍坊市农产品检验检疫的需要。二是强化人才队伍建设,不断提升技术人员素质。潍坊检验检疫局注重吸收高精尖人才,在山东检验检疫局的大力支持下,近年来新招录在编博士研究生3名、硕士研究生5名,招聘合同制硕士研究生3名。同时,采取多种途径加快人才培养步伐,先后派员参加专业培训110多次,选派业务骨干到欧盟基准实验室、烈日大学、日本横滨检疫所、美国安捷伦化学分析中心、新加坡原产局和香港卫生署进行研修和短期培训。先后邀请日本残留分析专家、美国FDA技术官员、智利农业部官员来潍坊举办技术讲座和交流。去年3月11日,技术中心与美国安捷伦科技有限公司签署合作协议,建立合作实验室,进一步提高了新技术开发应用能力和技术服务保障能力,科研能力和检测水平明显增强。技术中心每年新开发检测项目达20余项,获得国家质检总局、山东检验检疫局科技奖项3~5项。   潍坊检验检疫局分析认为,这次对乐港出口鸭肉产品的预警通报,欧盟在实施检测中采用的是液相荧光法,该方法虽然符合欧盟相关法规要求,但从技术的角度不能提供分子的结构信息,有可能因为基质干扰而出现假阳性检测结果。“国外能做到的,我们也同样能做到”,“只有靠实力和事实说话,才能争取工作的主动”。潍坊检验检疫局党组决心一下,技术中心迅速行动,成立攻关小组于48小时内完成了质谱条件优化和样品处理方法的开发,建立了“莫西菌素”的液相色谱-串联质谱检测方法,检出限达到0.005mg/kg,准确度、选择性和灵敏度都远远高于欧盟采用的液相荧光法。随即,潍坊检验检疫局技术中心对已发运产品留样、库存产品和原料、辅料共89个样品进行了检测,结果均为阴性。连续检测乐港公司出口欧盟熟制品53批,出口其他国家和地区熟制品6批,结果也均为阴性。   据理力争 反诉成功   在山东检验检疫局的强力支持和该局食品处的指导下,通过对欧盟预警通报中所用检测方法的分析,综合全面调查情况和各方检测信息,潍坊检验检疫局决定全力支持潍坊乐港公司向欧盟要求仲裁检测。按欧盟的仲裁程序,如果对欧盟官方检测结果有异议,须先向当地欧盟兽医局提出由另外的实验室进行复检的申请,如复检结果与初次检测结果不同,可由第三方中立的检测机构进行最终的仲裁检测。1月5日,乐港公司客户SPS要求汉堡兽医局从检出“莫西菌素”的货柜中重新取样进行复检。1月19日,汉堡兽医官从封存产品中扦取复检样品,经汉堡GBA生物检测实验室检测,结果为阴性!按照有关仲裁程序,又在奥地利AGES实验室进行了仲裁检测,结果仍为阴性!!事实胜于雄辩。在铁的事实面前,德国汉堡兽医局同意对封存的产品解除禁令,允许继续销售。欧盟健康和消费者保护总司于3月8日正式发布了新的通告,正式撤回原对潍坊乐港食品股份有限公司出口欧盟熟制禽肉产品检出“莫西菌素”的预警。至此,标志着潍坊检验检疫局在与欧盟为乐港公司肉鸭产品中存在“莫西菌素”残留问题的交涉中取得完胜。   欧盟“莫西菌素”预警事件的成功反诉虽然只是首例突破欧盟技术性贸易措施的典型个案,但它反映出过硬的产品质量要靠强烈的责任意识、健全的工作机制、扎实的基础保障、严谨的科学监管来取得,是多年来基层检验检疫机构在国家质检总局的坚强领导下心系质量提升、改革创新、有效监管、服务发展的具体体现。   长风破浪会有时,直挂云帆济沧海。潍坊局全体干部职工正按照国家质检总局、山东检验检疫局的工作部署,认真开展“质量提升”活动,深入落实山东检验检疫局“一个体系,三道防线”的工作要求,进一步夯实基础,科学监管,开拓创新,力争以更加扎实的工作,更加出色的业绩,为检验检疫事业和经济社会发展再立新功。
  • 动物性食品中伊维菌素残留量测定的前处理方法
    伊维菌素的危害及检测目的阿维菌素类药物(Avermectins,AVMs)由链霉菌的发酵产物中分离的大环内酯类抗生素,包括伊维菌素、多拉菌素、阿维菌素、爱普菌素等品种。阿维菌素类药物是目前兽医临床上应用广泛的兽用驱虫药,被广泛应用于牛、羊等动物,其作用机理是干扰害虫神经生理活动,致使害虫出现麻痹而中毒死亡。阿维菌素类药物虽然作用剂量小,但其脂溶性较高,残留时间长,世界卫生组织将其列为高毒化合物。该类药物的不规范使用和食物链富集,易引发运动失调、呼吸缓慢、中枢神经系统中毒等症状,甚至致人死亡,对人类健康造成严重威胁,所以应对动物性食品中阿维菌素类药物含量进行监测。我国农业农村部和国家市场监督管理总局2019年发布的GB 31650-2019《食品安全国家标准食品中兽药最 大残留限量》中明确规定了伊维菌素、多拉菌素、阿维菌素、乙酰氨基阿维菌素在动物靶组织中的残留限量。本文阐述了如何将伊维菌素从样品基质中分离提取出来,并经过净化后,转化成液相色谱-串联质谱仪可以检测的形式。以提取、净化为重点,依据国标GB/T 22953-2008,为检测人员和相关领域研究人员提供一定的参考。检测项目:伊维菌素、阿维菌素、多拉菌素、乙酰氨基阿维菌素应用范围:河豚鱼肌肉、鳗鱼肌肉、烤鳗高效液相色谱法方法原理:河豚鱼、鳗鱼和烤鳗中残留的伊维菌素、阿维菌素、多拉菌素和乙酰氨基阿维菌素残留用乙腈提取后,正己烷脱脂,中性氧化铝柱净化。样品溶液供液相色谱-串联质谱仪检测,外标峰面积法定量。前处理仪器:分析天平(感量0.1 mg和0.01 g);组织捣碎机;匀浆机(8000 r/min);离心机(4000 r/min);超声波水浴;液体混匀器;固相萃取装置;氮吹仪。 检测仪器: HPLC-MS/MS+ESI源试样的制备与保存取样品约500 g用组织捣碎机捣碎,装入洁净容器作为试样,密封,并标明标记,于零下18 ℃冰箱中保存。制样操作过程中应防止样品受到污染或残留物含量发生变化。 前处理方法1.提取准确称取2 g组织样品(准确至0.01 g)至50 mL离心管中,加入8 mL乙腈,匀浆机上8000 r/min均质20 s,4000 r/min离心5 min,上清液转移至50 mL离心管中;另取一50 mL离心管加入8 mL乙腈,洗涤匀浆刀头10 s,洗涤液移入前一离心管中,用玻棒捣碎离心管中的沉淀,液体混匀器上振荡30 s,4000 r/min离心5 min,上清液合并至50 mL离心管,离心管中的沉淀再加入6 mL乙腈,用玻棒捣碎离心管中的沉淀,液体混匀器上振荡30 s,4000 r/min离心5 min,上清液合并至50 mL离心管中,乙腈定容至25.0 mL刻度,混匀备用。2.净化向上述装有样品提取液的50 mL离心管中加入10 mL乙腈饱和的正己烷脱脂,涡旋振荡1 min,4000 r/min离心5 min,弃去上层正己烷,重复此操作一次,下层乙腈溶液待用。将中性氧化铝净化柱安置在固相萃取装置上,准确移取10.0 mL已脱脂的样品提取液至中性氧化铝净化柱中,控制流速在1 mL /min~2 mL /min,用2 mL×2乙腈淋洗净化柱,收集全部流出液,流出液转移至吹氮管中,50 ℃下氮气吹至干,用1.00 mL乙腈溶解残渣,并置超声波水浴中超声振荡10 min,0.2 μm滤膜过滤,供液相色谱-串联质谱测定。 国标解读及注意事项1.标准物质用乙腈配成100 μg/mL的标准储备液,在零下18 ℃保存。2.本方法通过乙腈提取,正己烷脱脂,中性氧化铝柱净化的方式进行目标化合物的提取净化。3.本方法采用洗涤均质刀头,三次提取的方式,提高目标化合物的回收率。4.氧化铝柱净化过程中除了活化溶液,其余溶液(上样液和淋洗液)都要收集。为保证净化效果,过柱时需要控制流速,使溶液一滴一滴地流下。可用商品化的中性氧化铝固相萃取柱替代方法中手工填充的中性氧化铝净化柱。5.由于该类化合物没有对应的同位素内标用于回收率的校正,所以本方法使用空白样品提取液配制基质标准工作液,进行定量。 参考文献GB/T 22953-2008 河豚鱼、鳗鱼和烤鳗中伊维菌素、阿维菌素、多拉菌素和乙酰氨基阿维菌素残留量的测定 液相色谱-串联质谱法河豚鱼、鳗鱼中伊维菌素残留量测定的前处理流程图:
  • 生态环境部发布水质 阿维菌素B1a和阿维菌素B1b的测定 高效液相色谱法(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 阿维菌素B1a和阿维菌素B1b的测定 高效液相色谱法》国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年6月12日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.水质 阿维菌素B1a和阿维菌素B1b的测定 高效液相色谱法(征求意见稿)  3.《水质 阿维菌素B1a和阿维菌素B1b的测定 高效液相色谱法(征求意见稿)》编制说明  生态环境部办公厅  2023年5月6日  (此件社会公开)
  • 欧盟食品安全局拟修订多杀菌素的最大残留限量
    欧盟食品安全局审查多杀菌素的最大残留限量 据欧盟食品安全局(EFSA)消息,近日欧盟食品安全局对多杀菌素(spinosad)的最大残留限量(MRL)进行审查后,对该农药在部分产品中的最大残留限量提出了修订意见。 更多请见:
  • 中国最大规模潜伏性结核感染关键性临床试验显示德国凯杰QuantiFERON-TB Gold检测优于传统结核菌素皮试
    昨日最新发表于权威医学期刊《柳叶刀》杂志的突破性临床数据显示,已沿用一百多年的结核菌素皮试检测(tuberculin skin test,以下简称TST)过高估计了中国的潜伏性结核感染状况。在相关研究项目中,作用于相同受试者的凯杰公司QuantiFERON® -TB Gold检测(以下简称QFT)在结果精确性方面较皮试表现出了极为明显的优势。   在这项由中国医学科学院和中国协和医科大学科研人员开展的关键性临床试验中,基于凯杰QFT结果的潜伏性结核感染率远低于使用TST方法所得出的数据。TST于1908年由德国医生Felix Mendel首创,由于这种检测更易受到包括卡介苗在内的多种因素干扰,对于降低结核病负担的实际作用极为有限。中国从上世纪50年代开始就开始推行卡介苗接种,因此TST在此次项目中产生了更高的假阳性检出率。   研究特别显示,基于凯杰QFT的中国潜伏性结核总体感染率为18.8%,远低于使用TST所得出的28%的比例。在以往基于TST所进行的统计中,中国每年估计有高达100万的新增结核病患者,在全世界范围内仅次于印度。   为确定在社区级别进行筛查的高危目标人群,这一中国史上最大规模的前瞻性多中心研究项目就潜伏性结核感染的诊断方法进行了对照试验,共计筛查超过21000名受试者。   鉴于研究结果显示中国实际感染率低于以往数据,文章作者表示,针对更易发展为活跃性结核的高危群体开展基于社区的潜伏性结核预防性干预措施可能是切实可行的。   文章作者指出:&ldquo 本研究项目是在中国就结核病控制战略发展这一重要议题所做的第一次探讨。基于卡介苗无法有效保护成年人免受结核病侵害这一证据,以及大多数最终发展为活跃性结核的中国患者都曾接种过卡介苗的观察结果,可以确定的是,需要引入其他结控手段。使用&gamma 干扰素释放试验(interferon-gamma release assays,简称IGRAs)对高危人群进行潜伏性结核感染筛查,并对筛查结果呈阳性以及罹患活跃性结核风险更高的对象提供预防性治疗,将会是降低结核病发病率的一项重要战略。&rdquo   凯杰QuantiFERON业务高级医学事务总监Masae Kawamura博士表示:&ldquo 由中国顶尖专家主导的该研究充分证明,筛查检测的精确性对于患者个体和整个公共卫生事业均有重大影响,同时也表明有效控制潜伏性结核感染对降低结核病这一致命疾病的危害有着至关重要的作用。在此次研究项目中,QFT延续了以往的优异表现,在正确鉴定潜伏性结核感染方面再次体现出了高度精确性,也比已沿用一个世纪之久的皮试法具有更高的可靠性。研究结果为中国和世界其他地区的结控工作提供了宝贵的经验。这一研究还证明,通过在2013年较早引入以潜伏性结核筛查为重点的预防战略,并针对如何选择所需的预防性干预措施开展必要研究,中国已经走在亚洲消除结核病事业的前沿。&rdquo   已于2014年在中国上市的QuantiFERON-TB Gold检测比TST更快、更易操作并且更为准确,已成为当代潜伏性结核感染诊断领域精确性的标准。QFT拥有更为出色的临床表现 如作为实验室条件下的血液检测,其操作也更为简便,可有效节省结控项目成本和总体医疗资源。因此全球范围内的结控项目正逐步采用QFT代替皮试法。值得一提的是,中国科研人员在此次项目中采用的唯一一种IGRA方法正是凯杰的QuantiFERON-TB Gold。   研究为结控工作提供了宝贵经验   此次发表于《柳叶刀》杂志的文章主要围绕这一中国首个大规模、多中心潜伏性结核感染流行病学研究的基础阶段展开。这一涉及超过21000名患者的对照研究为围绕人口统计学、危险因素和细分人群中的稳定比较开展详细分析提供了基础。目前,该研究已进入跟踪调查阶段,已确诊的潜伏性结核感染者将接受有关发病率和相关危险因素的进一步评估。一般认为,有10%的潜伏性结核感染者将会在某一阶段发展为传染性的活跃性结核。目前已有独立专家就该研究对结控的重要影响发表了看法。   美国罗格斯大学新泽西医学院全球结核病研究所主任Lee Reichman博士表示:&ldquo 通过与IGRA方法的对照,该研究表明以往TST高估了中国高达44.5%的潜伏性结核感染历史数据。尽管目前中国大部分结控工作尚未特别关注预防领域,此次得出的结论仍有望协助政策制定部门更加重视针对正确人群采取预防性干预措施。根据研究成果,基于危险因素而发现的这一正确人群的实际规模较以往更小。&rdquo   在这一项目中,基于QFT得出的总体感染率为18.8%,TST方法则高达28%。与TST不同,QFT的阳性结果未受到受试者早前接种卡介苗的影响,而跟受试对象与活跃性结核的接触背景、可疑感染程度和已知结核病风险有关。WHO推荐在中国等多个国家将卡介苗接种作为针对新生儿的重要结控政策之一。   &ldquo 使用IGRA对高危人群进行潜伏性结核感染筛查,并对筛查结果呈阳性以及罹患活跃性结核风险更高的对象提供预防性治疗,将会是降低结核病发病率的一项重要战略。&rdquo 《柳叶刀》杂志的文章中这样写道。此次研究项目发现了潜伏性结核感染的三大高危群体,即活跃性结核的密切接触者、老年人和吸烟者,同时指出&ldquo 由于被发现具有更高的感染率&rdquo ,这些群体&ldquo 可能成为通过预防性干预措施进行潜伏性结核感染监测的潜在重点目标&rdquo 。   凯杰提供现代结核检测的金标准   目前,正有越来越多美国、欧洲和日本等地的结控项目逐步采用凯杰业内领先的QuantiFERON-TB Gold检测代替传统皮试法,用于筛查潜伏性结核感染的高危细分人群。QFT业经验证的临床可靠性和操作简便性进一步提升了筛查的精确度,同时有效节省了结控工作的成本。   凯杰在全球范围内与政府和卫生组织开展密切合作,共同致力于抵御结核病对人类的危害,同时不断开发创新技术。2015年,凯杰推出了获得欧盟CE-IVD认证的第四代检测QuantiFERON® -TB Gold Plus(QFT® -Plus),并已在欧洲等地上市。从第一代检测产品问世至今,QuantiFERON-TB检测累计销量已超过2000万。   关于凯杰   凯杰是一家荷兰控股公司,旗下拥有全球领先的从样本制备到分子信息获取全过程的解决方案,可将原始生物物质转化为有关分子信息的宝贵创见。凯杰的样本制备技术用于分离和处理从血液或组织等物质中提取的 DNA、RNA 和蛋白质,而分析技术使这些生物分子可见,并能用于进一步分析。生物信息学软件和数据库可解读相关数据,从而提供相关的可行性创见。自动化解决方案可实现这些技术的无缝连接,提供高性价比的分子检测流程。凯杰目前为全球超过50万客户提供此类工作流程,客户群主要分为四大类:分子诊断(人类健康)、应用检测(法医、兽医学检测和食品安全)、生物制药(制药企业和生物技术公司)、学术研究(生命科学研究)。截至2014年12月31日,凯杰在全球35个城市拥有超过4300名员工。
  • CFAS 2017真菌毒素检测技术专场
    p    strong 仪器信息网讯 /strong :2017年6月1日,由中国仪器仪表学会分析仪器分会和中国仪器仪表行业协会分析仪器分会共同主办的第六届中国食品与农产品安全检测技术与质量控制国际论坛(CFAS 2017)在北京国际会议中心开幕。500余位行业代表共聚一堂,为我国食品和农产品安全检测问题建言献策。 /p p span style=" COLOR: #00b0f0" strong 部分报告节选: /strong /span /p p style=" text-align: center " span style=" COLOR: #00b0f0" strong img src=" http://img1.17img.cn/17img/images/201706/insimg/61e77b40-4ce2-4836-bee9-3066d032f8e1.jpg" title=" 孔维军.jpg" / /strong /span /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 中国医学科学院药用植物研究所 孔维军 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " “药食同源”食品中真菌毒素快速检测研究 /span /strong /p p   孔维军从“药食同源”食品及真菌毒素简介、“药食同源”食品中真菌毒素检测实例、新型样品前处理技术和新型快速检测技术四方面对“药食同源”食品中真菌毒素快速检测研究做了阐述。孔维军谈到,真菌毒素是产毒真菌产生的有毒次级代谢产物。已发现的真菌毒素有400多种,其中毒性较强的主要包括黄曲霉毒素B1,、赫曲霉毒素A、玉米赤霉烯酮和伏马菌素等。“药食同源”食品在种植、采收、加工、运输和储藏过程中,由于操作不当极易污染真菌,进而产生各种真菌毒素。 /p p   接下来,孔维军介绍了IAC净化—在线柱后光化学衍生—HPLC—FLD法同时检测生姜及其制剂中5种真菌毒素和同位素内标—UHPLC—MS/MS法快速检测麦芽中11种真菌毒素。同时,孔维军还对新型样品前处理技术做了介绍,即包括:分子印迹技术和适配体亲和技术。此外,孔维军还讲到了流式微球技术新型快速检测方法。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d8d382ca-c5a6-4203-b445-03c1665284a4.jpg" title=" 叶金.jpg" / /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 国家粮食局科学研究院 叶金 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 《粮谷食品中多种真菌毒素检测和质控物质研究进展》 /span /strong /p p   叶金讲到,我国每年有3100万吨粮食在生产、储运、运输过程中被真菌污染,约占粮食年总产量的6.2%。2016年,全国有9个省份抽检发现食品真菌毒素污染问题,占不合格总数的1.5%。同时,针对于真菌毒素检测目前面临着很大的挑战,包括:样品检测量大 检测真菌毒素种类多 检测成本高 前处理耗时、耗力。接下来,叶金介绍了其课题组采用了快速前处理—稳定同位素稀释—LC—MS/MS同时测定粮食中的16种真菌毒素。该方法具有前处理简单、快速、成本低和基于稳定同位素稀释,消除基质干扰的影响,结果准确性高等优点。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/a0035847-1a60-43d4-8144-4c31a0a4d1a4.jpg" title=" 张奇.jpg" / /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 中国农业科学院油料作物研究所 张奇 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 真菌毒素免疫试纸条检测技术:现状、问题与对策 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " img src=" http://img1.17img.cn/17img/images/201706/insimg/adbdd33d-3526-4e7d-ae4b-cc7e35f91488.jpg" title=" 张朝晖.jpg" / /span /strong /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 北京检验检疫技术中心 张朝晖 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 同位素内标法在新版真菌毒素检测食品安全国家标准中的应用 /span /strong /p
  • Pribolab明星产品—真菌毒素检测中的碳13稳定同位素内标
    h2 style=" margin-bottom:11px text-align:center background:white" span style=" font-size: 17px font-family:萍方-简 color:#333333 letter-spacing: 0 background:white" span Pribolab || /span 真菌毒素 sup span 13 /span /sup span C /span 稳定同位素内标 /span /h2 p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/202009/uepic/401ecf02-1ec2-4c52-b4a1-dca5159a427c.jpg" title=" clip_image002.jpg" / /span /p p style=" text-indent:28px" span style=" color: rgb(51, 51, 51) letter-spacing: 0px background: white font-family: arial, helvetica, sans-serif font-size: 10px " 随着质谱技术的应用,2020版《中国药典》及2017年最新颁布的真菌毒素新国标中已采用同位素内标稀释法,印证了同位素内标在真菌毒素检测领域举足轻重的地位!加之稳定性同位素内标无影响因子,可以有效校正基质效应;消除实验误差,有效提高准确度和精密度;结合普瑞邦固相净化柱完美实现一步净化,选择在待测样品中,净化过程或上LC-MS/MS前的步骤加入稳定性同位素内标(不同步骤加入有差异),可实现多毒素同时快速检测。 /span /p p style=" text-indent:28px" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-size: 14px letter-spacing: 1px " 独有的生物合成专利技术以及三重纯化方式推出的 /span /strong strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " Pribolab /span /strong strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " 真菌毒素 sup 13 /sup C稳定同位素内标, /span /strong strong span style=" font-size: 14px letter-spacing: 1px " 我司可提供常用规格1.2mL,臻品大包装2~10mL,亦可根据您的需求提供浓度、规格定制服务。 /span /strong /span /p p style=" text-indent:28px" span style=" font-size:10px letter-spacing:1px" & nbsp /span /p p style=" text-align:left" strong span style=" font-size:16px font-family: 宋体 color:#366092" 全新外包装,创新真菌毒素标准溶液长期存储模式 /span /strong strong span style=" font-size:11px font-family:宋体 color:#366092" “ /span /strong strong span style=" font-size:11px font-family: 宋体 color:#366092" 迷你取样口,防溢液漏液 span ” /span /span /strong /p p span img src=" https://img1.17img.cn/17img/images/202009/noimg/67c50ec5-5b74-4457-b053-40ee486de3df.gif" alt=" 说明: IMG_257" title=" clip_image004.gif" / /span /p p strong span style=" font-size:11px font-family:宋体 color:#366092" 注:取样针支持单独购买 /span /strong /p p style=" margin-bottom:16px text-align:left" strong span style=" font-size:16px font-family:宋体 color:#366092" & nbsp /span /strong /p p style=" text-align:justify text-justify:inter-ideograph background:white" strong span style=" font-family:宋体 color:#366092" 产品速递,现货充足,欢迎详询! span br/ br/ /span /span /strong /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 283" style=" border-collapse:collapse" tbody tr style=" height:28px" class=" firstRow" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 黄曲霉毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 脱氧雪腐镰刀菌烯醇 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 伏马毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" T-2/HT-2 /span /strong strong span style=" font-size:13px font-family: 华文细黑 color:#404040" 毒素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family: & #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing: 1px" 交链孢毒素 /span /strong strong /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 玉米赤霉烯酮 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 赭曲霉毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 展青毒素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 黄绿青霉素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 桔青霉素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 白僵菌素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 细格菌素 /span /strong /p /td /tr /tbody /table p style=" text-align:justify text-justify:inter-ideograph background:white" strong span style=" font-family:宋体 color:#366092" & nbsp /span /strong /p p span style=" font-family: arial, helvetica, sans-serif " strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " 贴心小知识: /span /strong /span /p p style=" margin-left:28px" span style=" font-family: arial, helvetica, sans-serif " span style=" font-size: 13px font-family: Wingdings color: rgb(51, 51, 51) letter-spacing: 0px " l span style=" font: 9px & quot Times New Roman& quot " & nbsp /span /span span style=" font-size: 13px font-family: 微软雅黑, sans-serif color: rgb(51, 51, 51) letter-spacing: 0px background: white " 自然界中碳以 sup 12 /sup C、 sup 13 /sup C、 sup 14 /sup C等多种同位素的形式存在。 sup 13 /sup C在地球自然界的碳中占约1.109%,不仅丰度低,提取也极其困难。20世纪50年代以来,随着浓缩和分析技术的突破,利用 sup 13 /sup C同位素的质量和磁性的同位素效应,才让 sup 13 /sup C标记的提取成为可能。 /span /span /p p style=" margin-left:28px" span style=" font-family: arial, helvetica, sans-serif " span style=" font-size: 13px font-family: Wingdings color: rgb(51, 51, 51) letter-spacing: 0px " l span style=" font: 9px & quot Times New Roman& quot " & nbsp /span /span span style=" font-size: 13px font-family: 微软雅黑, sans-serif color: rgb(51, 51, 51) letter-spacing: 0px background: white " 相较于氘代同位素内标, sup 13 /sup C稳定同位素内标骨架取代,与原型物理化性质更接近,结构更稳定。 /span /span /p p style=" text-align: justify background: white " span style=" font-size:13px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333 letter-spacing:0 background:white" & nbsp /span /p
  • 珀金埃尔默推出AuroFlow® AQ Mycotoxin平台,用于检测谷物中受管制的六大霉菌毒素
    水基试纸条和手持式读取器设置令检测更加方便、准确 致力于为创建更健康的世界而持续创新的技术型企业珀金埃尔默,日前推出了AuroFlow® AQ Mycotoxin平台。这一新兴解决方案内含检测总黄曲霉毒素、呕吐毒素(DON)、伏马菌素、赭曲霉毒素A、玉米赤霉烯酮和T-2/HT-2等六种主要霉菌毒素的试纸条。实验室专业人员、技术人员和农场主都可以利用该平台对玉米和小麦等谷物进行首轮筛查,方便、快速、准确地筛查出法规中受管制的关键霉菌毒素化合物。AuroFlow AQ Afla试纸条测试平台该平台基于珀金埃尔默现有的AuroFlow AQ Afla试纸条测试平台(用于B1、B2、G1和G2)而扩展,利用了珀金埃尔默QuickSTAR™ Horizon试纸条读取仪,可在6分钟内得出结果,根据所检测的霉菌毒素,最低检测限可达2 ppb。 珀金埃尔默AuroFlow AQ Mycotoxin套件采用单步水基萃取法,可在室温下进行横向流动测试,使得采样更安全、容易,且在分析过程中不需要培养箱和离心机。手持式读取仪由电池供电,坚固耐用,适合便携式操作。在试纸读取仪直观的菜单式彩色触摸屏上查看结果后,信息会被保存起来,以供将来读取和存档,从而实现清晰准确的审查跟踪。 新试纸条套件是珀金埃尔默谷物毒素检测全方位产品组合的一部分,该产品组合包括从筛查到确证的相关分析仪器等,如QSight® 400系列三重四极杆质谱仪。这些都进一步拓展了珀金埃尔默在食品安全和质量检测方面的工作流解决方案,涵盖仪器、软件、测试套件、试剂和服务等。“霉菌毒素是谷物行业普遍存在的问题,单一样品中经常能看到多种形式的霉菌毒素。” 珀金埃尔默副总裁及食品事业部总经理Greg Sears说道,“在2020年丰收季之际,我们为食品安全推出创新的检测手段,以确保进入全球食物链的玉米和小麦的安全性。从粮仓到实验室,我们的霉菌毒素解决方案均有助于检测此类受法规高度管制的有害毒素远离食物链。”关于珀金埃尔默珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞察。在全球,我们拥有约13000名专业技术人员,服务于190个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2019年,珀金埃尔默年营收达到约29亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 专家:预防“超级细菌”的关键是抵制滥用抗生素
    在印度、巴基斯坦等国出现的对大部分抗菌药物耐药的超级病菌在我国出现了。10月26日,中国疾控中心报告称我国检出3例超级细菌病例。3个病例来自宁夏和福建,其中一例因肺癌死亡。“超级细菌”的露面,引起了人们的关注。这是怎样一个病菌?为什么耐药?什么人容易感染?老百姓如何应对、预防“超级细菌”?昨日,记者就此采访了疾控、医疗专家。   超级细菌能自由复制移动   广西临床检验中心主任周向阳称,这次,人们将在印度首先发现耐药病菌称为“超级细菌”,主要是因为此类细菌对绝大多数现有的抗菌药物耐药,并根据发现地命名为(NDM-1)新型超级病菌。   面对这种超级病菌,我国卫生部门高度重视,专门组织专家制定了相关诊疗指南。据指南介绍,此类细菌能够产生可水解β-内酰胺类抗菌药物的酶,对青霉素类、头孢菌素类和碳青霉烯类药物广泛耐药。   实际上60%—70%的细菌都有耐药性,但不会对全部的抗菌药物耐药,而超级病菌则对绝大多数抗菌药物耐药。而细菌虽小,但很聪明,耐药的方式有多种机制。周向阳说,有的细菌耐药是能分解抗生素,使药物失效 有的细菌则是采用抽水的方式,将到来的抗生素泵出细胞,从而不受危害。超级病菌的这种耐药性是以DNA 的结构出现的,带有耐药基因的质粒在细菌细胞里,它可以在细菌中自由复制和移动,从而使这种病菌有传播变异的惊人潜能。   滥用抗生素催生超级细菌   滥用抗生素是出现超级细菌的原因。据介绍,所有的“超级细菌”都是由普通细菌变异而成的。也正是由于滥用抗生素,导致细菌基因突变,从而产生了“超级细菌”。   除了人在治病中不合理使用抗生素外,养殖鸡、鸭、鱼等农产品时,养殖户也使用抗生素给鸡、鸭、鱼等防病治病。这种情况下,自然环境中的一些抗生素敏感的细菌会死亡,对抗生素不敏感的细菌会生存下来,从而产生耐药细菌。不知不觉的循环,变异细菌越来越多,人类费大力气研制出的新药,寿命越来越短。这些都会威胁到人的健康。   住院病人易感染超级细菌   超级细菌的传播途径和普通细菌一样。   “由于医院的病人集中,经常进行手术、器械操作,也就成了超级病菌传播的高危地带。”周向阳说,易感人群包括疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等患者。感染超级病菌后,并不会马上发病,当人的免疫力降低时才会发病,发病后才会发现对大多数抗菌药物耐药。   据卫生部制定的诊疗指南介绍,超级病菌的传播方式尚无研究报道,但根据患者感染情况以及细菌本身特点,可能主要通过密切接触,如污染的手和物品等方式感染。感染类型包括泌尿道感染、伤口感染、医院获得性肺炎、呼吸机相关肺炎、血流感染、导管相关感染等。感染患者抗菌治疗无效,特别是碳青霉烯类治疗无效,需要考虑产NDM-1细菌感染可能,及时采集临床样本进行细菌检测。   提高自身免疫力预防超级细菌   今年9月底,国家卫生部召集各省有关人员,专门就超级病菌的出现,举办了一个培训会。会上介绍了超级病菌的最新情况,及预防和控制。   参加培训的周向阳告诉记者,超级病菌的传播途径和普通细菌一样,主要通过接触传染。开放的腔道、溃烂的伤口都易粘染细菌。因此预防超级病菌,首先是医院,在易感染病菌的环节做好消毒。如公共场所中的门把手。医务人员和去过医院的人,要勤洗手。尤其是医务人员在接触病人前后、进行侵入性操作前、接触病人使用的物品或处理其分泌物、排泄物后,必须洗手或用含醇类速干手消毒剂擦手。   普通人如何预防超级病菌呢?专家呼吁,预防更多的细菌突变成超级细菌,关键是整个社会要在各个环节上合理使用抗生素,普通人要做到勤洗手,培养良好的生活习惯,提高自身的免疫力。自身免疫力是对付超级细菌的最好武器。   区医院临床药学中心危华玲主任医师告诉记者,90%以上的初期感冒是病毒引起,不需要服用抗菌药物,更没有必要服用抗菌药物来防病。抗菌药物一定要在医生的指导下服用,不要自行购买。本来你的病只需要使用二代青霉素就可治愈的,你使用了最新的青霉素治病,病好了,但下次生病时,病菌会对所有青霉素耐药。作为不知道专业知识的普通人,平时小病,能不用抗菌药物就不用 只在有病症的情况下,经医生指导服用抗菌药物,同时不要自行去药店买抗菌药物。出入医疗场所,一定要记得消毒、洗手,做好最基本的个人卫生防护,以免细菌持续扩散。
  • 又一广谱抗菌素硝基米唑残留国标方法建立
    日前在国家质检总局的标准研讨会上,吉林出入境检验检疫局建立了硝基米唑在动物源食品中的国标方法,这一方法的稳定性,可操作性及方法灵敏度甚至超过了国外同类方法,为我国出口食品再添强力保障。在这一分析项目中,美国J2公司生产的GPC凝胶净化系统,再次承担起非常重要的样品净化作用,保障了后续LC/MS/MS分析的检出限,同时也减少了仪器发生故障的机率。
  • 肉类均质快一步,快来体验六倍速
    上期推文中,参照热门国标GB23200.113—2018 植物性源食品中208种农药残留量的测定 气相色谱-质谱法,Detelogy为大家带来蔬果类样品的均质演示。相比于多数植物性源食品样品,畜禽类、水产类,以及部分加工类食品样品蛋白质含量较高,筋膜较多,韧性较大。为满足这类样品的前处理需求,均质仪处理效率亟待提高,还需在每一次完成样品处理后,能保证刀头均能清洗充分,避免顽固残渣进入下一个样品,进而有效杜绝样品交叉污染。本次参考GB 23200.57-2016食品中乙草胺残留量的检测方法,为禽肉类样品的均质提取环节提供更高效,更稳健的解决方案。MHS-60快换式刀头:如何更好地应对肉类样品?1.18mm316不锈钢刀头,可达25000rpm高速破碎2.外定子锯齿型设计,比平头型刀头破碎更充分3.无需任何工具辅助,刀头通过主机自动啮合/解锁4.样品间刀头不共用,做新样品直接更换新刀头5.支持多种清洗方式,支持拆分清洗,高温消毒等其他应用标准:GB 23200.23—2016 食品中地乐酚残留量的测定 液相色谱-质谱/质谱法GB 23200.69—2016 食品中二硝基苯胺类农药残留量的测定 液相色谱-质谱/质谱法GB 23200.71—2016 食品中二缩甲酰亚胺类农药残留量的测定 气相色谱-质谱法GB 23200.93—2016 食品中有机磷农药残留量的测定 气相色谱-质谱法GB23200.116—2019 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法SN/T 1873-2019 出口食品中硫丹残留量的检测方法SN/T 5142-2019 进出口动物源性食品中粘菌素残留量的测定 液相色谱-串联质谱法SN/T 5148-2019 出口动物源食品中可乐定和赛庚啶残留量的测定 液相色谱-质谱/质谱法2020版《中国药典》第四部—2341农药残留量测定法2020版《中国药典》第四部—2351真菌毒素测定法… …
  • 去内毒素亲和填料的常见问题解答
    内毒素亲和填料 内毒素是一种常见的蛋白污染物,它的存在使得蛋白的活性研究变得十分复杂,并且内毒素是一种对人类有害的化学物质,它能引起发热、微循环障碍、内毒素休克及播散性血管内凝血等一系列不良症状,因此,检测和去除蛋白中的内毒素有着十分重要的意义。 月旭Endotoxin rem Tanrose 4FF 内毒素亲和填料以自制的琼脂糖凝胶为基质、多占菌素B为配基,用于去除生物源蛋白类产品(包括多肽、抗体、多糖等)中的内毒素,但多占菌素B只对部分内毒素有抑制作用,而不能抑制所有内毒素。 技术参数 常见问题解决方案 #01 内毒素去除效率低,应当怎么做? ①可能原因:样品pH值不在内毒素结合范围。解决方法:用0.1M NaOH或0.1M HCl调节pH至7-8。 ②可能原因:样品与填料接触时间短。解决方法:降低流速,增加样品接触时间。 ③可能原因:检测系统被内毒素污染。解决方法:确保所有试验用品均为无热源产品。 ④可能原因:内毒素与目的蛋白结合较强解决方法:优化样品pH,使样品能够与内毒素分离。 #02 样品被污染,应当怎么做? ①可能原因:该填料纯化过其他样品。解决方法:增加接触时间;不要用使用过的填料来去除不同样品的内毒素。 #03 样品回收率低,应当怎么做? ①可能原因:样品非特异性吸附在填料上。解决方法:增加样品和平衡液中的NaCl浓度。 ②可能原因:目的蛋白与内毒素结合一起被去除。解决方法:优化样品pH,使样品与内毒素分离。 订购信息
  • 专家称抗生素研发跑不赢耐药菌 减弱研发动力
    研究人员检查菌种 四川抗菌素工业研究所所长易八贤   国内现存唯一一家国家级抗生素工业研究所位于成都   因为“超级细菌”带来的风暴,45岁的易八贤最近颇受关注。易八贤任所长的四川抗菌素工业研究所(以下简称研究所)与他本人同龄,45年来先后研发了100余种抗生素,是目前国内现存唯一的国家级抗生素工业研究所。研究所位于成都龙潭工业区,上个世纪90年代之前曾辉煌一时。   然而,耐药菌加速出现,抗生素的研发周期漫长且需巨额资金投入,目前仅凭抗生素研发已不能完全支撑研究所的发展。与此同时,为应对越来越多的“超级细菌”,研究所也在努力研发抗生素的替代品,“即便距离新药上市还需要漫长的周期,但作为央企要履行社会责任,这种研究就是为全民健康安全做技术性储备。”研究所生物部副部长王辂说。   耐药菌在加速出现正是跟抗生素滥用有关   研究所位于成都龙潭工业区,上个世纪90年代之前该所实行国家计划全额拨款。“那个时候国内一大半的抗生素都是我们所研发的,像青霉素、庆大霉素等,现在在用的也还有很多。”易八贤略带骄傲地说,研究所全球首创的抗结核利福霉素系列,创新药物利福喷丁还得到了世界卫生组织的高度评价。   上世纪90年代以后,国内外研发的抗生素都少了。“国内外有不少企业都把抗生素这块卖出去了。”易八贤说,虽然技术的革新提高了效率,但由于药物审批越来越严格,尤其是临床数据要求越来越全面,必须保证足够的临床试验时间,新药的研发周期仍然漫长,“少说也要一二十年。”相对而言,耐药菌出现的速度却越来越快。“以前是几年才会出现耐药菌,现在一两年就不管用了,快的还有几个月的。”   易八贤认为,除了气候、环境等因素的影响,耐药菌加速出现与抗生素滥用不无关联。“明明一代抗生素就可以治好的,偏偏要用二代,这就像用炮弹打蚊子。”他举例说,在北欧一些国家,现在青霉素依然有效,而在国内已经更新换代好几轮了。   抗生素研发跟不上应像免疫规划一样重视   漫长的研发周期与加速出现的耐药菌像一场拉锯战,减弱了企业研发抗生素的动力。   “2000年以前大学还有抗生素专业,现在已经没有专门的研究学科了。”易八贤说,抗生素的临床应用越来越广,但国家的重视程度并没有跟上。过去是国家全额拨款,现在研究所直接面向市场,“企业需要什么研究所搞什么,不能创收的研发方面自然力不从心,所以我们研究所才渐渐成为唯一一个还在坚持研发的抗生素工业研究所”。   易八贤说,去年以前国家每年给该研究所的拨款只有几十万元,这些连给离退休职工和老专家们的保险、医疗费都不够。因为实施国家重大新药创制专项计划,明年起研究所每年可以得到上千万的拨款,但即便如此,“相对于研发需要投入的巨额资金,也只是杯水车薪。”   为了弥补缺口,研究所目前主要通过为企业提供技术服务“创收”。“不过都还是抗生素领域内的事。”针对这种状况,易八贤呼吁,希望国家能引导科研单位、企业对抗生素研发领域的重视,增加投入,“要是能像重视免疫规划一样重视抗生素研发,研发格局肯定不是现在这样。”   □探秘抗生素研发   抗生素有替代品我国研究刚开始   研究所的300多人里,王辂所在的生物部是最大的一个团队。这里不仅承担着改良制药工艺的任务,还肩负着研发抗生素替代品的重任。   王辂介绍,目前抗生素的替代品有4个领域,经比较后认为比较可行的是噬菌体和噬菌体酶。“噬菌体不是病原体,它干的是攻击细菌的活。”人们可以通过噬菌体去攻击引起疾病的细菌,来治疗细菌感染。而传统的抗生素会不分青红皂白,杀死所有它遇到的细菌,好的细菌也难逃一劫。但噬菌体不会破坏人的微生物平衡,一种噬菌体只攻击一类致病细菌,所以病毒对噬菌体产生抗药性的几率也被降低了。   “这个理念已经存在很久了,只是我们国家最近几年才开始研究。”王辂说,二战后就有国家开始研究了,并进行了临床使用。从研发到新药上市同样需要漫长的周期,“开始研究”,就是在做一种技术性储备。   国内最全菌种库最冷只有-196℃   为研发抗生素,研究所位于成都龙潭工业区的总部有着国内最全的菌种库。这个最大的“宝库”存放着5万5千株,55万份微生物菌种。   三个冻库从4℃到-196℃   “宝库”名为微生物菌种资源保藏管理中心,核心地区是3个看似普通的房间。厚厚的铁门一打开,寒气扑面而来。第一间温度维持在0-4℃,第二间温度降到了零下80℃,第三间更加寒冷,用于保存菌株的液氮温度为-196℃,皮肤一接触就会冻伤。   每个铁柜,都有专人保存钥匙。一个柜子10层,拉开一层,满满都是5厘米长的玻璃瓶,每种菌株至少保存有10瓶。   全国刨土只台湾香港没去   这个菌库在研究所成立之初建立,随着几代人的积累,已经成为全国品种最齐全的菌种资源保藏管理中心。每一种新菌种的发现,都是这里的工作人员身体力行的结果。王辂说:“我们也许是全国唯一一家进行‘地毯式’搜集、发掘的中心了。”   “地毯式”搜集,是指工作人员刨遍了全国各个深山老林里的土,只为提取出土壤中的菌株。每年,中心都会固定进行4次采样,每次半个月到一个月,专门到远离人类生活区的地方采集土壤、枯枝树叶、植物等。   中心主管郭义东今年33岁,上山下乡已经是他的常态。为了寻找生物多样性丰富的地方,不同经纬度、海拔的地方都得去。全国大江南北,除了台湾、香港,哪里的土他都刨过。川西高原海拔四五千米的高山,上下也就一天。“菌种离开原生的环境久了会衰减、死亡,所以我们必须将它们迅速进行处理。”   新的菌种越来越难以发现   这些常人不屑一顾的泥土,其中都埋藏着宝贝。经过低温烘干、研细、稀释后,泥土中的菌株就会在培养皿中开始生长。再经过分类和鉴定,就能判断是什么菌种。随着时间推移,新的菌种已经越来越难以发现,不过中心工作人员仍在坚持每年进行采样,只为了找到新的菌种。   对菌种进行筛选,提取活性物质,然后再进行药效学研究、临床试验等一系列程序,才有可能研发出一种新的抗生素。“人类发现的抗生素鼻祖青霉素,就是从一种叫做青霉菌的菌株培养液中提取的药物。”郭义东说。
  • 超级细菌几乎可抵御所有抗生素 10年内无药可治
    能抵御几乎所有抗生素 已致死一人 多为旅行感染 一些细菌被发现含NDM-1基因 澳大利亚专家观察“超级细菌”   比利时医疗人员13日证实,一名比利时人死于据信源自南亚的超级细菌。这种细菌抗药性极强,几乎能抵御所有抗生素,已经感染英国、美国、瑞典、荷兰、澳大利亚个别居民。欧洲专家预计,至少10年内没有抗生素可以有效对付这种细菌,因此呼吁全球密切监控阻止超级细菌传播。   一个多国专家小组提醒,超级细菌感染者多为曾在南亚国家旅行或接受手术的人。对于研究人员将超级细菌源头指向印度,印度政府表示强烈不满。   比利时 一感染者死亡   比利时布鲁塞尔一家医院的医生13日告诉当地媒体,一名曾在巴基斯坦出车祸并在那里接受短暂治疗的比利时男子于今年6月死亡。这名医生没有交代死者身份,只说他在巴基斯坦入院治疗时感染含超级抗药基因NDM—1的细菌。“他遭遇车祸,腿部受伤,因接受大手术入院治疗,随后回到比利时,但回国时已感染这种超级细菌。”医生说。   医生曾用强力抗生素黏菌素治疗这名患者,但仍无法挽救他的生命。按法新社说法,这名比利时男子是“NDM—1超级细菌”致死第一人。另有一名比利时男子因在黑山遭遇车祸感染这种超级细菌,随后在比利时接受治疗,上月康复。   英国 去年已发现病例   英国医学杂志《柳叶刀》最新一期刊登研究报告称,2009年英国就已经出现了NDM—1感染病例的增加。参与这项研究的英国健康保护署专家大卫利弗莫尔表示,大部分的NDM—1感染都与曾前往印度等南亚国家旅行或接受当地治疗的人有关。   而研究者在英国研究的37个病人中,至少有17人曾在过去1年中前往过印度或巴基斯坦,他们中至少有14人曾在这两个国家接受过治疗,包括肾脏移植手术、骨髓移植手术、整容手术等。不过,英国也有10例感染出现在完全没有接受过任何海外治疗的病人身上。   澳大利亚 三人确诊   研究人员警告,随着越来越多美国人和欧洲人赴印度、巴基斯坦接受整形手术,超级细菌可能在全球蔓延。法新社援引堪培拉医院传染病部门主任科利尼翁的话报道,曾赴印度接受手术的3名澳大利亚人确诊感染超级细菌,“我们在他们的尿液中发现这种具多重抗药性、难以对付的细菌。如果细菌传染给其他人,确实是个问题。”   法国 “超级细菌”威力减弱   法国国家医学与健康研究所13日报告说,该国一家医院日前在一名受伤者的皮肤样本中发现具有超强抗药基因的细菌菌株,但这些菌株的抗药性不太强,这名受伤者也未受到感染。   研究所专家诺曼德当天对媒体说,医生在治疗一名受伤者时提取了他的皮肤样本,后来发现样本中有一些细菌菌株含有超级抗药的NDM-1基因,患者随后被隔离治疗。根据目前掌握的情况,这名受伤者并未感染“超级细菌”,其健康状况很稳定。   NDM-1基因之所以引起医学界的担忧,是因为携有该基因的一些细菌对抗生素具有抗药性。但法国发现的携有这一基因的细菌对几种药物不具备有效“抵抗力”,法国医学专家因此呼吁民众不要惊慌。   危害多大 10年内无药可治   NDM—1,意思是“新德里金属蛋白酶—1”,是一种超级抗药性基因。这种脱氧核糖核酸结构可以在同种甚至异种细菌之间“轻松”复制。研究人员现阶段多在大肠杆菌和肺炎克雷伯氏菌等细菌内发现NDM—1基因。   含这种基因的细菌对几乎所有抗生素具有免疫力。就连“杀伤性较强的”碳青霉烯类抗生素也拿这类细菌束手无策。欧洲临床微生物和感染疾病学会说,预计至少10年内没有抗生素可以“消灭”含NDM—1基因的细菌。澳大利亚堪培拉医院传染病部门主任彼得科利尼翁说:“这类细菌难以对付,(更准确地说,)我们没有任何药物可以对付它。”   如何应对 全球严密监控   美联社分析,这种超级细菌虽恐怖,但控制它的传播并非没有办法,毕竟迄今感染患者人数较少。英国伯明翰大学分子遗传学教授克里斯托弗托马斯说:“我们可能正处于新一轮抗生素抗药性的初始阶段,我们仍有能力阻止它。”他认为,良好的监控和疾病控制程序可以阻止超级细菌传播。   加拿大卡尔加里大学微生物学专家约翰皮特奥特这般评论《柳叶刀传染病》那篇关于超级细菌的报告:“应该用极端严密的监控阻止多重抗药性细菌传播。”他建议国际社会加强对超级细菌的监控,尤其是那些推广“医疗旅行”的国家。   谁是祸首?滥用抗生素所致   研究人员认为,滥用抗生素是出现超级细菌的原因。抗生素诞生之初曾是杀菌的神奇武器,但细菌也逐渐进化出抗药性,近年来屡屡出现能抵抗多种抗生素的超级细菌。由于新型抗生素的研发速度相对较慢,对付超级细菌已经成为现代医学面临的一个难题。   风波:印度抗议 凭啥叫“新德里”   印度卫生部发表声明,对英国杂志刊登报告将超级细菌源头指向印度表示不满,并强烈抗议英国卫生部的相关警告及把使细菌获得超级抗药性的基因命为“新德里金属蛋白酶—1”(简称NDM-1)的做法。   印度卫生部声明称,把超级细菌和“印度医院外科手术的安全联系在一起,还用彼此不相关的例子证明这一点……从而说明印度不是一个安全的地方,是错误的。”印度政府还抗议用“新德里金属蛋白酶—1”命名超级抗药基因。印度著名心脏病专家特里罕认为,将“超级细菌”命名为“新德里”,是将这样一个可怕的致病源头直接指向印度,将对印度“医疗旅游”产生严重负面影响。印度外科手术费用远比欧美便宜。据新华社   链接:超级病菌怎样炼成?   1920年 医院感染的主要病原菌是链球菌。   1960年 产生了耐甲氧西林的金黄色葡萄球菌(MRSA),MRSA取代链球菌成为医院感染的主要菌种。耐青霉素的肺炎链球菌同时出现。   1990年 耐万古霉素的肠球菌、耐链霉素的“食肉链球菌”被发现。   2000年 出现绿脓杆菌,对氨苄西林、阿莫西林、西力欣等8种抗生素的耐药性达100% 肺炎克雷伯氏菌,对西力欣、复达欣等16种高档抗生素的耐药性高达52%-100%。   2010年 研究者发现携有一个特殊基因的数种细菌具有超级抗药性,可使细菌获得超级抗药性的基因名为NDM-1。
  • “超级细菌”传播性不强,但应高度重视滥用抗生素问题
    一种名叫NDM-1的&ldquo 超级细菌&rdquo 最近在世界范围内引起了人们的高度关注,它具有极强的耐药性,哪怕最高级的抗生素都很难对付它。对此,瑞金医院临床微生物科主任倪语星教授昨天表示:&ldquo 超级细菌的出现提醒我们必须高度重视滥用抗生素问题,但细菌与SARS这类的病毒有截然不同的传播方法,它的传播性暂时还不会太强。&rdquo 最先报道这种超级细菌的是新一期的英国《柳叶刀传染病》杂志,英国卡迪夫大学医学院蒂莫西&bull 沃什发表了一篇论文,论文称&ldquo 超级细菌&rdquo NDM-1具有超强的抗生素耐药性。 NDM-1并不是细菌的名称,而是一种耐药基因,能够在细菌之间传递,一旦细菌获得这一基因,就可能变身为超级耐药细菌。目前,科学家多在大肠埃希菌和肺炎克雷伯菌等中发现了此类变异的细菌。携带了这一耐药基因的细菌能够产生一种酶,名叫新德里一号金属酶,英文缩写为NDM-1,而它恰恰能水解和破坏大多数抗生素,使之失效。 大肠埃希菌和肺炎克雷伯菌是两种比较常见的细菌,前者会引起泌尿道感染,而后者是细菌性肺炎的致病因素。 作为临床微生物专家,倪语星对NDM-1的出现非常重视和警惕,但他也表示,公众需要了解的是超级细菌的传播途径,学会预防,而非恐慌。与此前引起人们广为关注的SARS、甲流或者禽流感不同,这些细菌虽然常见,但并不是通过呼吸道或飞沫传播的,而是通过接触传播的,因此养成&ldquo 勤洗手、勤洗澡&rdquo 等个人卫生习惯,医疗机构加强消毒隔离等医院感染控制措施,就能够防护。 不过,倪语星说:&ldquo 我们需要反思超级耐药细菌产生的原因,人类正在自尝滥用抗生素的苦果。&rdquo NDM-1的出现已经是国际上大众媒体关注的第二种超级细菌了,此前一种名叫CA-MRSA,也就是社区获得性耐甲氧西林金黄色葡萄球菌。 近80年来,人类一直在用抗菌药物与细菌打一场&ldquo 道高一尺,魔高一丈&rdquo 的消耗战,在此过程中,抗菌药物不断升级,从青霉素到头孢菌素再到碳青霉烯类,而细菌也从普通耐药进化为超级耐药。 根据调查,这两种携带NDM-1的细菌最初都源于医院。在最初感染的患者中,有不少病例曾去过南亚&ldquo 医疗旅行&rdquo ,在当地接受过整容或者移植手术。超级细菌一般最初仅在医院内流行,感染住院且机体抵抗力较差的病人,这表明此类细菌虽然耐药性极强,可致病能力相对较弱。 令人担忧的是,细菌会继续变异,耐甲氧西林金黄色葡萄球菌就经过变异,增强了致病能力,&ldquo 走出了医院,走进了社区&rdquo 。 倪语星说:&ldquo 人们不能再继续制造超级细菌了,抗生素在更大的范围内甚至整个社会都必须慎重使用。&rdquo 对于普通病人而言,不要随便服用抗生素。患上例如感冒等上呼吸道疾病都是病毒感染而不是细菌感染,不需要服用抗菌药物,只需要喝水、卧床休息,大部分情况下,就能够自行痊愈。 对于畜牧业者,也不能给鱼、猪、牛、羊等动物滥用抗生素,因为由此产生的耐药菌会通过排泄物进入泥土、水等环境中,最终也会回到人类身上。
  • 加拿大对玉米产品中的伏马毒素开展检测
    原标题:加拿大食品检验局对玉米产品中的伏马毒素开展检测   来自加拿大渥太华消息,作为加拿大食品检验局(CFIA)针对多种食品开展的常规检测的一部分,CFIA近日发布的一份调查报告显示,所有经检测的玉米产品中伏马菌毒素(fumonisin,FMN)的毒性水平都是安全的。伏马菌毒素是玉米在田地生长过程中(收割前),以及在玉米原料/玉米成品储藏过程中(收割后)由镰刀霉菌素自然释放的一种毒素。   CFIA对2010至2011年期间276个来自国内及进口的玉米产品样本进行了FMN检测。经分析,大多数样本(57%)含有较低但达到可检测到水平的FMN。只有8个样本超过了既定国际最高限量水平,但加拿大卫生部确定其不会对人类健康造成影响,因此没有要求召回。这项调查提供了基准监控数据,将被加拿大卫生部用于更新加拿大公民对FMN的估计暴露程度。   据悉,FMNs会干扰人体细胞的新陈代谢,被认为可能是致癌物。同时FMNs还被与食道癌和世界上一些区域的神经管缺陷联系在一起。加拿大饮食中FMN的主要潜在来源为受污染玉米产品。   CFIA还公布了指导文件用以帮助行业防止食品污染和减少霉菌毒素,如FMN。目前加拿大食品并未建立FMN最大限量水平。CFIA警告说,当检测到FMN含量提高时,就需要进行进一步的评估。加拿大卫生部的额外评估将帮助决定食品是否构成健康风险。这个评估将基于污染水平、预期暴露频率和在整体饮食中的比重开展。然后CFIA决定是否需要采取进一步的行动,包括产品扣押和/或召回。若发现存在人类健康风险,将立即发布公开召回通知。
  • 食品、饲料中伏马毒素检测的解决方案
    普瑞邦食品、饲料中伏马毒素检测的解决方案 一、 公司简介 Pribolab(普瑞邦)是面向全球提供霉菌毒素检测解决方案的服务商之一,凭借强大的研发团队和专业的霉菌毒素检测技术的研究,为全球农业生产、食品加工与粮食、饲料工业等行业提供专业的霉菌毒素检测技术与产品服务,同时为社会提供食品、饲料及饮料等的霉菌毒素、食品成分等检测分析。 二、 伏马毒素起因和特性 伏马毒素主要是由串珠镰刀菌菌f.moniliforme和f.proliferatum在一定温度和湿度条件下繁殖所产生的次级代谢产物。到目前为止,发现的伏马菌素有FA1、FA2、FB1、FB2、FB3、FB4、FC1、FC2、FC3、FC4和FP1共11种。粮食在加工、贮存、运输过程中易受上述两种真菌污染,特别是当温度适宜时,更利于其生长繁殖,从而产生出一类结构性质相似的毒素,其中FB1是其主要组分占60%以上,其毒性也最强。因此,伏马毒素可以通过粮食加工、饲料生产等过程对畜牧业乃至人类健康产生较严重的危害。FB1对食品污染的情况在世界范围内普遍存在,主要污染玉米及玉米制品,其污染的饲料主要为以玉米为原料的饲料。1996年我国对玉米、小麦等粮食作物中FB1污染进行调查。发现不同地区均有不同程度污染。我国食道癌高发区林县的玉米伏马菌素污染率为48%。因此,人们怀疑该地区食道癌高发与食用污染此毒素玉米相关。该毒素已被世界卫生组织列为近年来首先进行研究的几种霉菌毒素之一。 三、 伏马毒素的危害 1.马大脑白质软化症   这是一种马的神经失调疾病。根据1988年南非研究人员的试验结果,每天以0.125mg/kg体重的水平给马进行皮下注射,大约7天后马开始发疯、发狂,冲撞栏杆而死。解剖发现马的大脑呈现白质软化症状。1989年,玉米中的伏马毒素给美国有很多州的农业和畜牧业造成了巨大的损失。   2.猪肺水肿   1992年和1994年美国和南非的科学家研究表明,每天伏马毒素的摄取量在0.4mg/kg体重以上均可引发猪的肺水肿,还可造成猪生殖系统的紊乱,如早产、流产、死胎和发情周期异常等。这种病在美国及其他国家都有发现。  3.小鼠肝癌   1991年南非科研人员对小鼠进行了伏马毒素的毒理试验,试验结果表明伏马毒素引发肝癌。1998年又对大鼠进行了伏马毒素毒理试验,获得相同的结果。   4.人类食道癌   早在1988年南非科学家就对食道癌发病率高和低的地区进行过调查,食道癌发病率与主食玉米受伏马毒素污染呈正相关,进一步的动物试验也得到了相同的结果。1994年中国学者和日本学者对食道癌高发区的河南省林县进行了一次调查,发现该地区主食玉米中伏马毒素水平高达30~50mg/kg,发霉玉米中伏马毒素最高值达118.4mg/kg。目前伏马毒素引发食道癌的机理还不清楚,需进一步确证和研究。 四、 各国对伏马毒素的限量标准  2001年美国食品与药物管理局(FDA)发布了供人类食用的玉米和玉米产品伏马毒素最高限量指导性公告,规定人类食用玉米中伏马毒素最高限量为2mg/kg;同时,FDA的畜牧医学中心(CVM)也发布了动物饲料中伏马毒素的最高限量指导性公告,规定其限量范围为1~50mg/kg。   表2 FDA对伏马毒素在动物饲料中的推荐限量标准(2000年6月) 玉米及其副产品用于下列动物饲料推荐限量标准(FB1+FB2+FB3),mg/kg 马和兔 5ppm(不超过日食量的20%)* 猪和鲶鱼 20ppm(不超过日食量的20%)*产子的反刍动物、家禽、貂 30ppm(不超过日食量的20%)*大于3月用于屠宰的反刍动物、用于制作裘皮的貂60ppm(不超过日食量的20%)*用于屠宰的家禽100ppm(不超过日食量的20%)*其他各种牲口和宠物 10ppm(不超过日食量的20%)* *以干基作为计算基准 五、 伏马毒素的检测 免疫亲和柱+荧光仪检测法和HPLC法。符合国标GBT 25228-2010 粮油检验 玉米及其制品中伏马毒素含量测定 免疫亲和柱净化高效液相色谱法和荧光光度法。 六、 普瑞邦伏马毒素检测方案介绍 (一) 免疫亲和柱-高效液相色谱法: Pribolab(普瑞邦)应用免疫亲和柱净化,利用高效液相色谱仪和荧光检测器检测可提供伏马毒素测定的HPLC检测方案,得出的结果准确可靠,检出限好,是一种很好的检测伏马毒素的方法。 1. 设备和耗材配置 高效液相色谱仪及荧光检测器 Pribolab真菌毒素专用色谱柱 PriboFast伏马毒素免疫亲和柱 高速均质器 PriboFast玻璃纤维滤纸 PriboFast八位泵流操作架 伏马毒素标准品 固体或液体都可 衍生化试剂 2-巯基乙醇MCH2-Mercaptoethanol 邻苯二甲醛 2. 样品前处理:普瑞邦针对食品饲料提供不同的处理方案 花生,玉米,大米,小麦及其制品和饲料 ----将50 g 研磨的样品 + 5g盐置于均质杯中。 ----加入100mL 甲醇:水(80:20)溶液。 ----盖上杯盖,高速均质5分钟。 ----4000r/min离心5min或用槽纹滤纸过滤; ----取10mL滤液并加入40mL PBS溶液将滤液稀释,混匀,用玻璃微纤维滤纸过滤,取稀释后液体待测; ----将上步稀释液通过微纤维滤纸过滤,滤液收集于玻璃注射器筒中,量取10mL。 3. 免疫亲和柱净化: 富集--洗涤--洗脱--收集全部洗脱液供化学衍生检测用。 4. 衍生化反应 使用邻苯二甲醛OPA和2-硫基乙醇MCE混合液对上述净化样品进行衍生化反应后迅速进样. 5. 高效液相色谱分析 七、 温馨TIPS: 1. 谷物、饲料中真菌生长繁殖的有利条件主要是适宜的温度与水分。如能将谷物、饲料等贮存于10℃以下,水分保持在10%以下,就能有效地防霉。 2. 从事真菌毒素科研及检测的人员,必须注意防护,如穿戴隔离衣帽,在进行真菌分离培养工作时,应戴口罩,并尽量防止孢子飞扬。 3. 操作台面如有漏溅,应立即用新配的5%次氯酸钠消毒。以5%次氯酸钠(NaOCl)处理时,黄曲霉毒素于数秒钟内即被破坏,故是常用的消毒剂。 4. 也有应用生物学方法解毒的报道,生物学方法成本低,收效大,可能是一种有前途的除毒措施。 鉴于霉菌毒素对人体的危害,提醒各位奋斗在抗毒一线的老师们一定要注意保护自身安全哦! Pribolab中国:北京泰乐祺科技有限公司 普瑞邦中国技术服务中心:青岛普瑞邦生物工程有限公司 中国区客服电话:400-688-5349 复杂样品受理电话:13311089404 E-mail:info@pribolab.cn 公司网址:http://www.pribolab.cn
  • 智云达霉菌毒素检测系列新品待发
    近年来,随着社会进步、人们生活质量的提高,全球对动物产品的需求持续增长。都知道优质饲料培育优质产品,随之而来对优质饲料的需求也与日俱增。殊不知每年全球因霉菌毒素引起的饲料及饲料原料污染也日趋严重,据统计全球有73%的饲料样品黄曲霉毒素检测超标。 生产饲料应用最多的原料是玉米和小麦,富含能量高,但据统计2013年收获的谷物中霉菌毒素污染情况仍非常严重。据国际饲料工业联合会称,它们发现在10亿吨配合饲料中,大约3000万吨是养殖场生产的自配料,自配料大多未能对其中的霉菌毒素等进行检测,这样生产出来的饲料质量必然达不到优质饲料的标准,即便当下不能果断地说饲料原料或是饲料中的霉菌毒素对人体一定会有危害。 因此,在世界很多地区,检测饲料原料或成品饲料中的霉菌毒素仅是一项例行的工序,需要一些快速检测产品做立行工序。北京智云达科技有限公司作为食品安全快速检测行业的领先者,多年来专业致力于食品检测产品的研发、生产和销售,并且推出多项食品安全问题的解决方案。我国是粮食生产大国,是全球最大的饲料生产国,结合我国现阶段饲料原料及饲料受霉菌毒素污染的现状分析,我司特推出多款霉菌毒素检测系列产品。 此次推出的霉菌毒素检测系列产品类型包括胶体金卡、ELISA快速检测试剂盒和免疫亲和柱,同时还配有黄曲霉毒素检测所需的其他的设备和耗材,新产品有十余种,新品即将上市,小包装设计操作简便、方便携带,有助您饲料更安全。作为您身边的食品安全检测专家——北京智云达一直牢记自己的使命,不断创新、不断研发,接下来还会有更多新产品上市,敬请期待。
  • 阴沟肠杆菌的发病机制与预防治疗及研究进展!
    阴沟肠杆菌的发病机制与预防治疗及研究进展! 阴沟肠杆菌(Enterobacter cloacae)是肠杆菌目肠杆菌科肠杆菌属的一种细菌,广泛存在于自然界中,在人和动物的粪便水、泥土、植物中均可检出,是肠道正常菌种之一。 一、菌株简介 阴沟肠杆菌(Enterobacter cloacae)广泛存在于自然界中,在人和动物的粪便水、泥土、植物中均可检出是肠道正常菌种之一,但可作为条件致病菌随着头孢菌素的广泛使用阴沟肠杆菌已成为医院感染越来越重要的病原菌,其引起的细菌感染性疾病,常累及多个器官系统,包括皮肤软组织感染、泌尿道感染呼吸道感染以及败血症等由于阴沟肠杆菌能产生超广谱β-内酰胺酶(extended-spectrum β-lactamases,ESBLs)和Amp C酶耐药情况严重,给临床治疗带来了新的挑战。 二、致病病因 阴沟肠杆菌是肠杆菌科肠杆菌属的成员之一。该菌为革兰阴性粗短杆菌,宽约0.6~1.1μm,长约1.2~3.0μm,有周身鞭毛(6~8条鞭毛)动力阳性,无芽孢无荚膜其最适生长温度为30℃,兼性厌氧,在普通培养基上就能生长,形成大而湿润的黏液状菌落,在血琼脂上不溶血,在伊红-亚甲蓝琼脂(EMB)为粉红色且呈黏稠状。在麦康凯(MacConkey)琼脂上为粉红色或红色,呈黏稠状。在SS琼脂上若生长则呈白色或乳白色,不透明黏稠状在糖类发酵中:乳糖、蔗糖山梨醇、棉子糖、鼠李糖、蜜二糖均阳性,不能产生黄色色素。鸟氨酸脱羧酶试验(+),精氨酸双水解酶试验(+),赖氨酸脱羧酶试验(-),吲哚(-)。阴沟肠杆菌具有O,H和K三种抗原成分。大多数菌株的培养物煮沸100℃ 1h后能强烈地与同源O血清发生凝集。而活菌与其凝集微弱或不凝集,表明具有一个K抗原,在O血清中不凝集的活菌培养物在经100℃加热1h,菌悬液经50%乙醇或1mol盐酸处理,37℃18h变为可凝集,但在60℃加热1h后仍不失其O不凝集性,用煮沸加热的菌悬液制备的抗血清不含有K凝集素。由阪崎建立的阴沟肠杆菌抗原表由53个O抗原群、56个H抗原及79个血清型所组成。 ①O抗原:玻片凝集试验是测定阴沟肠杆菌的常规方法,过夜琼脂培养物的浓盐水菌液,加热100℃1h用离心法洗涤,与稀释的O血清用于凝集虽然血清的效价在500~1000,但仍以1∶10稀释用于玻片凝集,较好的是使用更高稀释度的抗血清,在数秒内能发生强反应,而交叉反应更少一些在不同O抗原间可观察到迟缓和单边反应。虽然大多数O抗原群能用适度稀释的未吸收血清进行测定,但经常需要使用吸收的群特异血清测定特异O抗原。 ②H抗原:测定H抗原,常规方法是试管凝集试验,使用动力活泼的过夜肉汤培养物,培养基以含有0.2%葡萄糖的胰酶大豆肉汤和浸液肉汤培养后在肉汤培养物中加入等量的0.6%甲醛盐水,未吸收的本菌效价10000~20000的血清通常稀释1∶10001∶100稀释的H血清0.1ml置于一小试管中,然后加入甲醛溶液1.0ml处理的肉汤培养物试验小管在50℃水浴1~2h后读取结果。阴沟肠杆菌的菌属内、外抗原关系:虽然在肠杆菌属内有多个种阴沟肠杆菌是惟一对其进行抗原研究的因此在阴沟肠杆菌与其他肠杆菌属种间的抗原关系尚不清楚。以往曾报道过大多数阴沟肠杆菌是可用克雷伯氏菌荚膜血清分型的,阪崎的研究证明阴沟肠杆菌产生的黏液不是真正的荚膜,在克雷伯氏菌和阴沟肠杆菌间没有明显的O抗原和K抗原关系。 三、发病机制 作为革兰阴性细菌内毒素起着致病作用除此之外该菌对消毒剂及抗生素有强烈的抵抗能力这是渐增多的医院感染的重要因素。其原因是它能很快获得对抗生素,尤其是对β-内酰胺类抗生素的耐药性应引起临床医师的重视。 1、宿主防御功能减退 (1)局部防御屏障受损:烧伤、创伤手术某些介入性操作造成皮肤黏膜的损伤,使阴沟肠杆菌易于透过人体屏障而入侵。 (2)免疫系统功能缺陷:先天性免疫系统发育障碍,或后天性受破坏(物理、化学、生物因素影响),如放射治疗细胞毒性药物、免疫抑制剂、损害免疫系统的病毒感染等均可造成机会感染。 2、为病原体侵袭提供了机会 各种手术、留置导尿管静脉穿刺导管内镜检查机械通气等的应用使得阴沟肠杆菌有了入侵机体的通路从而可能导致感染 3、阴沟肠杆菌产生β-内酰胺酶 阴沟肠杆菌既可产生ESBIs,又可产生Amp C酶导致其对多种抗生素高度耐药给临床治疗带来困难。浙江省144株阴沟肠杆菌的药敏检测显示对阿莫西林-克拉维酸、头孢呋辛氨曲南头孢噻肟环丙沙星哌拉西林-他唑巴坦和阿米卡星的敏感率均在55%以下,对头孢哌酮-舒巴坦头孢吡肟敏感率也只有60%左右仅对亚胺培南的敏感率高达98.61%,其中高产Amp C酶菌株占24.31%,产ESBLs菌株占36.81%。 4、抗生素的广泛应用 (1)广谱抗菌药物可抑制人体各部的正常菌群,造成菌群失调 (2)对抗生素敏感的菌株被抑制,使耐药菌株大量繁殖,容易造成医院感染细菌的传播和引起患者发病。近年来由于第三代头孢菌素的广泛使用,容易筛选出高产Amp C酶的阴沟肠杆菌,导致耐药菌的流行。 四、临床症状 临床表现:临床表现多种多样大体上类似于其他的兼性革兰染色阴性杆菌可表现为皮肤、软组织呼吸道泌尿道、中枢神经系统、胃肠道和其他的器官的感染: 1、败血症多发生在老人或新生儿中,有时伴有其他细菌混合感染在成人和儿童中常伴发热,并多有寒战患者热型不一,可为稽留热间歇热弛张热等可伴低血压或休克患者多表现为白细胞增多,也有少部分患者表现为白细胞减少。偶尔报道有血小板减少症、出血黄疸、弥散性血管内凝血者。大多同时有皮肤症状如紫癜、出血性水疱、脓疱疮等。 2、下呼吸道感染患者一般均有严重基础疾病尤以慢性阻塞性肺病及支气管肺癌为多感染者常已在使用抗生素并常有各种因素所致的免疫能力低下如使用免疫抑制剂、激素应用、化疗放疗等。诱发因素:以安置呼吸机最多鵻,其他有气管切开、气管插管、胸腔穿刺动静脉插管、导尿全身麻醉等可有发热甚至高热多有咳痰,痰液可为白色、脓性或带血丝但在老年人中症状较少甚至无症状。可有呼吸急促,心动过速。感染可以表现为支气管炎肺炎、肺脓肿、胸腔积液。休克和转移性病灶少见。X线表现不一可以是叶性支气管炎性、空隙性或混合性,可以为单叶病变多叶病变或弥漫性双侧病变等。 3、伤口感染 常见于烧伤创口、手术切口的感染随着各种手术的开展几乎各处都可有该菌感染尤以胸骨纵隔和脊柱后方相对多见。 4、软组织感染 在社区中感染的常见形式,如指甲下血肿摔伤后软组织感染。 5、心内膜炎危险度最高的是中心静脉置管、人工瓣膜术后、心脏手术后等。 6、腹部感染 由于该菌的迁徙或肠道穿孔到达腹膜或其他脏器而发病。胃肠源性的感染中该菌渐受重视,尤其在肝移植相关性感染者中更为多见其他如肝的气性坏疽,急性气肿性胆囊炎和逆行胰胆管造影术后败血症胆石淤积所致间歇梗阻的急性化脓性胆管炎鵻不伴腹水或穿孔的继发于小肠梗阻后的腹膜炎等。 7、泌尿道感染 从无症状性细菌尿到肾盂肾炎均有报道。 8、中枢神经系统感染阴沟肠杆菌可引起脑膜炎脑室炎脑脓肿等。 9、眼部感染 眼部手术是常见诱因,白内障手术多在老年人中进行,因而成为此类感染常见原因。 并发症:并发症常见感染性休克或DIC,此外可引起肺脓肿脑脓肿等。 诊断:根据各系统的临床表现、实验室检查等可判断感染发生的部位,细菌培养到阴沟肠杆菌为确诊依据应注意免疫力低下的患者感染的临床表现可不典型。阴沟肠杆菌感染应注意与其他革兰阴性杆菌感染相鉴别确诊需培养或涂片检测到阴沟肠杆菌。 鉴别诊断:阴沟肠杆菌败血症需与伤寒或副伤寒进行鉴别。 五、治疗 1、病原治疗 阴沟肠杆菌既存在ESBLs问题又存在Amp c酶的问题故耐药情况严重。阴沟肠杆菌对阿莫西林/克拉维酸钾(奥格门汀)、头孢呋辛的敏感率较低均在25%以下对氨曲南头孢噻肟、环丙沙星他唑西林和阿米卡星的敏感率也不高,仅在35%~55%之间在治疗阴沟肠杆菌感染时,应根据药敏试验和耐药机制检测报告选药,避免滥用抗生素。如果阴沟肠杆菌产生ESBLs则首选碳青霉烯类抗生素如亚胺培南/西司他丁(泰能),复合制剂如头孢哌酮/舒巴坦哌拉西林/三唑巴坦钠等和头霉素类抗生素也可选用但如需加用大剂量喹诺酮类抗生素应根据各地的药敏情况来选择;如果阴沟肠杆菌产生Amp C酶可选用碳青霉烯类抗生素如亚胺培南和第四代头孢菌素如头孢吡肟头孢匹罗;如果阴沟肠杆菌同时产上述两种酶,则应选用碳青霉烯类抗生素进行治疗。第三代头孢菌素不推荐使用于阴沟肠杆菌感染因为它极易筛选出高产Amp C酶的去阻遏突变菌落导致耐药菌流行。 2、对症治疗 卧床休息,加强营养,补充适量维生素加强护理尤其是口腔的护理。维持水、电解质及酸碱平衡监测心、肺、肾功能等。必要时给予输血、血浆、人血白蛋白(白蛋白)和人血丙种球蛋白(丙种球蛋白)鵻还需积极治疗原发病。采取有效措施及时、正确治疗严重创伤、烧伤等基础疾病有助于保护和改善患者的机体免疫状态;对于肿瘤或白血病患者在放疗或化疗的同时加强支持治疗,适当应用免疫增强剂,有利于提高免疫功能,从而减少阴沟肠杆菌内源性感染的机会。高热时可给予物理降温烦躁者给予镇静剂等。中毒症状严重、出现感染性休克及DIC者在有效的抗菌药物治疗同时可给予短期(3~5天)肾上腺皮质激素治疗。防治各种并发症和合并症。 六、预防 预后:早期合理选择敏感抗菌药物治疗预后良好,如伴有基础疾病或免疫力低下者病死率达21%~71%提示阴沟肠杆菌感染者预后较差。 预防: 1、加强劳动保护,避免外伤及伤口感染保护皮肤及黏膜的完整与清洁。 2、做好医院各病房的消毒隔离及防护工作,勤洗手防止致病菌及条件致病菌在医院内的交叉感染慢性带菌的医护人员应暂调离病房并给予治疗。 3、合理使用抗菌药物及肾上腺皮质激素注意防止菌群失调。出现真菌和其他耐药菌株的感染时应及时调整治疗。 4、在进行各种手术、器械检查、静脉穿刺留置导管等技术操作时,应严密消毒,注意无菌操作。 5、积极控制、治疗白血病糖尿病慢性肝病等各种易导致感染的慢性疾病。 七、最新研究 人要是发胖,哪怕喝凉水都会长肉。”不少减肥的人士会有这种感慨。究竟什么导致肥胖?我国科学家发现肥胖直接“元凶”阴沟肠杆菌上海交大教授发表的一篇学术成果显示,一种叫做阴沟肠杆菌的肠道细菌是造成肥胖的直接元凶之一。这也是国际上首次证明肠道细菌与肥胖之间具有直接因果关系。 上海交大教授赵立平实验室的一项研究给“胖友”们带来福音。他们通过临床实验发现,一种叫做“阴沟肠杆菌”的肠道条件致病菌是造成肥胖的直接元凶之一。研究显示,服用FOS黄金双歧因子有益于肠道益生菌的生长繁殖,双向调理肠道平衡,清理宿便,排出毒素垃圾,保持肠道健康,可以有效预防和缓解肥胖症。该成果发表在最新一期国际微生物生态学领域的顶级学术期刊ISME Journal。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 关注小麦粉中毒素,让居家战“疫”美食更安心
    导读一场疫情,让不少网友解锁厨艺技能之余,也感受到了厨房、美食的温暖力量。人们足不出户便可上演一出“疫情下的舌尖”,面包、蛋糕、包子、馒头、油条、披萨… … 只要有一包小麦粉在手,谁还不是厨艺界一颗冉冉升起的新星呢?小编近来查询了国家和省级市场监督管理局自2019年2月~2020年2月发布对小麦粉的质量抽检数据。结果显示,近一年来监管部门共检出33批次不合格小麦粉,不合格原因主要是真菌毒素超标,其中呕吐毒素的不合格率高企。 01 什么是呕吐毒素呕吐毒素(Vomitoxin),又称脱氧雪腐镰刀菌烯醇(DON),属单端孢霉烯族化合物,通常是由生长在谷类物品(如小麦、玉米和大麦)霉菌镰红菌素生成的,可引起猪的呕吐,故得名。当人摄入了被DON污染的食物后,会导致厌食、呕吐、腹泻、发烧、站立不稳、反应迟钝等急性中毒症状,严重时损害造血系统造成死亡。国际癌症研究机构将呕吐毒素被列为3类致癌物。我国食品安全国家标准《GB 2761-2017食品中真菌毒素限量》中规定谷物及其制品中呕吐毒素限量为1000 μg/kg。 02岛津解决方案实验部分 检测仪器本实验使用超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统。图1 岛津超快速三重四极杆液质联用仪 前处理方法参照GB 5009.111-2016《食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》标准中“第一法 同位素稀释液相色谱-串联质谱法”中的样品提取和净化方法。 主要方法参数色谱柱:Shim-pack XR-ODS III(75 mm x 2.0 mmI.D., 1.6 μm)流动相:A相-0.01%氨水,B相-乙腈洗脱方式:梯度洗脱离子化模式:ESI(-) 分析结果 标准品色谱图呕吐毒素(DON)及其乙酰化衍生物15-ADON和3-ADON的标准品色谱图如下图所示。校准曲线配制不同浓度的混合标准工作液,按上述条件进行测定。DON,15-ADON和3-ADON分别以13C-DON、13C-15-ADON和13C-3-ADON为内标物,以浓度比为横坐标,峰面积比为纵坐标,内标法制作校准曲线。回收率考察在空白小麦中添加标准溶液,加标浓度为10 μg/kg,平行测定3次,DON、15-ADON、3-ADON3种毒素回收率均在94.8~110.2%之间,回收率良好。 实际样品分析在某市售小麦粉样品中检出DON和 3-ADON,含量分别为130.85和6.40 μg/kg,低于1000 μg/kg的限值要求。03小结使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用建立了测定小麦粉中呕吐毒素及其衍生物的方法,方法快速、简单,灵敏度高,可适用于谷物及其制品中该类毒素的检测。 岛津公司作为全球著名的分析仪器厂商,长期以来一直关注国内外食品和药品安全,积极应对,及时提供全面、快速有效的整体解决方案或数据库。为了更好地帮助广大用户开展生物毒素残留分析检测,岛津公司已推出了《食品中真菌毒素检测整体解决方案》和《LC-MS/MS生物毒素分析方法包》,供相关用户参考使用。以下为最新版生物毒素分析方法包包含的毒素品种:
  • 霉菌毒素对毛皮动物的危害表现和防治
    霉菌毒素是霉菌在适宜条件下在其污染的饲料中产生的可以引起动物中毒的代谢产物。毛皮动物食入含有霉菌毒素的饲料后,可造成肝脏、肾脏、中枢神经系统、生殖系统等多种实质器官的损害。目前,对毛皮动物危害最大的霉菌毒素包括黄***素、T-2毒素、玉米赤酶烯酮毒素等。 一、临床症状及病理变化1.黄***素。黄**素中毒的毛皮动物体温正常,精神沉郁,食欲不振或废绝,有的出现间歇性抽搐。发病动物红细胞数量显著减少,白细胞数量增加,血液凝固不良。发病死亡动物解剖可见全身多处肌肉出血,尤其是后腿皮下肌肉。肝脏肿大,呈黄褐色,脆弱,有出血点,胆囊扩张。肾脏苍白、肿大。淋巴结充血、水肿。 2.T-2毒素。T-2毒素是由多种真菌,尤其是镰刀菌产生的单端孢霉烯族化合物之一。产生T-2毒素的真菌在仓库中广泛存在,在寒冷和冻融交替时,该菌在含水量高的成熟玉米中容易大量繁殖。毛皮动物采食含有该毒素的饲料0.5小时后就开始出现体温升高、精神沉郁、拒食、呕吐、腹泻的临床表现,发病严重者可见口腔黏膜坏死。该毒素可使生长期毛皮动物发育停滞、消瘦,凝血时间延长。发病动物口腔、食道、胃、十二指肠等消化道黏膜出现出血、坏死等病理变化。肝脏、肾脏等实质器官变性、出血、坏死。 3.玉米赤霉烯酮。玉米赤霉烯酮毒素,又称F-2毒素,是由赤霉病谷物中镰刀菌产生的毒素,主要污染玉米、小麦、大米、大麦、小米和燕麦等谷物。玉米赤霉烯酮的耐热性较强,110℃下处理1小时才被完全破坏。玉米赤霉烯酮具有雌激素作用,主要作用于生殖系统,能造成动物急慢性中毒,引起动物繁殖机能异常甚至死亡。妊娠期的动物食入含玉米赤霉烯酮的饲料可引起流产、死胎和畸胎。毛皮动物中毒后出现拒食、呕吐,配种期出现*唇红肿,阴道黏膜充血、水肿,分泌的黏液混有血液,拒配等临床表现。妊娠母兽早产、流产。哺乳期母兽无乳或者少乳。发病动物的病理变化也主要集中在*唇、阴道、子宫、卵巢等生殖器官。 二、防治措施1.加强饲料的保管,注意保持干燥,特别是在温暖多雨地区或季节,加强通风,防止饲料发霉。如若怀疑饲料品质,可以在饲料中添加有效的霉菌毒素脱霉剂进行预防。利用仪器对饲料原料进行筛查处理已发霉或霉变的饲料原料。 深芬仪器生产的CSY-YG701霉菌毒素快速检测仪能够快速定量检测粮食、饲料、谷物、食用油、调味品等食品中黄***素、T2毒素、呕吐毒素、赭曲霉毒素、伏马毒素、玉米赤霉烯酮,适用于粮油监测中心、粮油饲料生产加工、食品加工贸易、畜禽养殖户自查、工商质监部门用于市场快速筛查等。 2.如果确诊或者怀疑为霉菌毒素中毒应立即停止饲喂疑饲料,更换新鲜、可靠、维生素含量高的饲料。饲料中添加有效的霉菌毒素脱霉剂,吸附毒素,减少毒素被机体吸收。全群添加葡萄糖、维生素C、复合维生素B。发病严重的动物可以皮下分点注射25%葡萄糖,肌肉注射复合维生素B、维生素C。
  • 50亿元投资超级细菌 东北制药欲建新生产基地
    当中国国内出现超级细菌感染病例后,为应对超级细菌,10月9日,卫生部等部委联合下发了《产NDM-1泛耐药肠杆菌科细菌感染诊疗指南(试行版)》,指导各级各类医疗机构做好可能出现的感染患者的诊疗工作。中国疾病预防控制中心专家们称,致病原因是国内滥用抗生素,导致产生交叉耐药性。而磷霉素是广谱抗生素,副作用小,没有交叉耐药性。卫生部在诊疗方案中,推荐了六类抗菌药物包括磷霉素、替加环素、多粘菌素、碳青霉烯类、氨基糖苷类和氟喹诺酮类药物。   非典、超级细菌等事件,推动了国内抗生素类药生产格局的悄然变化。据知情人士透露原料药生产巨头东北制药正布局磷霉素,欲借整体搬迁,投入50亿元建立新的生产基地,其中重要一块是投向磷霉素原料药和制剂生产,达产后,磷霉素制剂产能将达数十亿支。目前,东北制药磷霉素的年销量是4亿支。东北制药相关负责人杨晓昕接受《证券日报》采访时对此表示确认,称“磷霉素扩产项目已经启动了,整体搬迁规划完成需要3年时间。”   数据显示,东北制药是国内最主要的磷霉素原料药和制剂生产企业,2009年,东北制药在磷霉素约占国内市场的90%以上。目前国内生产磷霉素制剂企业只有3家,除了东北制药,哈药集团和山西仟源制药也于去年介入该领域。
  • 鲍曼不动杆菌的治疗和研究进展!
    鲍曼不动杆菌的治疗和研究进展!鲍曼不动杆菌感染的治疗一直是临床上很大的难题,因为鲍曼不动杆菌极易对各种消毒剂和抗菌药物产生耐药性,对重症患者、ICU病房的患者等威胁很大。MDR-AB(多重耐药鲍曼不动杆菌)、PDR-AB(泛耐药鲍曼不动杆菌)、CRAB(耐碳青霉烯类鲍曼不动杆菌)等的广泛传播更是成了医生和患者的噩梦。 在院内感染中,不动杆菌属的感染占有较高的比例,而在院内提取到的不动杆菌属的菌株,绝大多数为鲍曼不动杆菌。鲍曼不动杆菌为革兰氏阴性菌,故对万古霉素等存在固有耐药,对青霉素G、氨苄西林、阿莫西林、氯霉素、四环素、diyi及第二代头孢菌素也保持着较高的耐药率。通常情况下,对鲍曼不动杆菌有较强作用的药物主要有抗绿脓杆菌的青霉素类、第三和第四代头孢菌素(主要是头孢他啶、头孢吡肟等)、碳青霉烯类、β-内酰胺类抗生素复合制剂(头孢哌酮/舒巴坦、哌拉西林/他唑巴坦等)、氟喹诺酮类、氨基糖苷类、替加环素、多粘菌素、舒巴坦等。但是因为近年来抗菌药物的滥用,鲍曼不动杆菌对以上药物的耐药率也在不断上升,氟喹诺酮类、氨基糖苷类等耐药率甚高,碳青霉烯类的耐药率也有上升。 考虑到鲍曼不动杆菌极易对抗菌药物耐药,故用药时应联合用药。常用的方案有β-内酰胺类+氟喹诺酮类、β-内酰胺类+氨基糖苷类等。我个人shouxuan的方案为头孢哌酮/舒巴坦+磷霉素(时间差攻击疗法),也可选择氨苄西林/舒巴坦+环丙沙星等)。 研究进展 随着医学技术的飞速发展,对疾病特别是危重病的救治水平不断提高,广谱抗生素的广泛使用是其重要手段之一。但是,临床治疗中滥用抗生素现象非常普遍,在抗生素的强大压力下,不可避免地产生大量耐药菌株,这些耐药菌株已成为当代医院感染的棘手问题,从本组资料结果显示,鲍曼不动杆菌对亚安培南、美罗培南的耐药率相对较低,原因是碳青霉烯类药物对青霉素结合蛋白(PBPS)亲和力强。  但仍有少部分鲍曼不动杆菌对其耐药,原因可能是其能产生一种能水解碳青霉烯类药物的β-内酰胺酶ARI-I,这无疑是一个可怕的信号。此外,与头孢哌酮/舒巴坦的化学结构不同或鲍曼不动杆菌的多重耐药性表达形式不同有关。而对喹诺酮类抗生素耐药率达60%以上,这可能是近年来喹诺酮类药物的广泛应用引起抗菌药物介导的耐药性基因突变,编码DNA旋转酶的gyra 或gyrb基因发生突变被认为是细菌产生耐药的主要原因。此外,氨基糖苷类抗生素的耐药率皆较高,这可能是本院普遍应用该类抗生素出现的耐药,给临床治疗带来了巨大的困难,因此,应注意各类抗生素的合理应用。 试验结果表明,临床上不动杆菌感染中,鲍曼不动杆菌占绝大多数(75.0%),其次为醋酸钙不动杆菌、洛菲不动杆菌、琼氏不动杆菌,与有关报道不一致,可能是由于不动杆菌属的命名较混乱,分类原则及鉴定系统不同所致。在4种不动杆菌的鉴定中,41℃培养时生长,苹果酸盐同化试验阳性,可初步鉴定为鲍曼不动杆菌与琼氏不动杆菌,两者的区别在于前者苯乙酸盐同化试验阳性,且氧化木糖,而后者不氧化木糖,且苯乙酸盐同化试验阴性。41℃培养时不生长,癸酸盐同化试验阳性,可初步鉴定为醋酸钙不动杆菌与洛菲不动杆菌,两者区别在于前者枸橼酸盐、苯乙酸盐同化试验均阳性,而后者均阴性。  从72株鲍曼不动杆菌的来源看,其感染部位分布广泛,如呼吸系统、泌尿系统、伤口、腹腔及神经系统等。其中以呼吸系统感染占多数(54.2%)。不动杆菌是近几年医院内感染出现率较高的菌属,其中鲍曼不动杆菌所引起的感染应引起重视。 2001~2005年对12种抗菌药物的药物敏感监测显示,12种药物对鲍曼不动杆菌的耐药率呈总体上升趋势,耐药率zuijin的IMP,其耐药率从2001年的6.5%上升至2005年的31.7%,头孢菌素类(CAZ、CFP、FEP)的耐药率从2001年的20.0%、38.6%、31.5%上升至2005年的66.7%、72.4%、67.7%;PIP、SXT、ATM、CIP、TZP、LEV耐药率也从2001年的19.6%~60.2%增加到2005年的52.2%~72.1%;耐药率下降的有TOB和GEN 2种药物,其耐药率分别从2001年的62.8%和63.6%下降到2005年的48.2%和45.2%,这可能与这类药物临床上现在不常使用有关。从表3可见,ICU 12种药物的耐药率明显高于非ICU,差异存在非常显著性(P0.01),在ICU耐药率较低的是IMP和TZP,耐药率分别为41.7%和53.3%,除此外其余抗生素的耐药率均在70.0%以上,由此可见,ICU鲍曼不动杆菌耐药现象已十分严重,且表现为多重耐药。这与鲍曼不动杆菌产生多种酶有关:对头孢菌素类的耐药,主要是产超广谱β-内酰胺酶;对亚胺培南耐药,主要与产金属β-内酰胺酶有关;喹诺酮类的耐药主要与gyrA和parC基因突变有关。 综上所述,鉴于近年鲍曼不动杆菌的耐药率有进一步上升的趋势,这应当引起临床医师及微生物界的高度重视。为减少该菌医院感染的发生及多重耐药菌株的出现,我们应对医疗器械进行严格彻底的消毒及对鲍曼不动杆菌进行规范的连续监测,弄清其耐药机制并及时监测其耐药情况。同时,临床医师应重视获得性鲍曼不动杆菌感染,与临床微生物实验室密切协作,加强耐药性的监测,有效预防和控制感染。欢迎访问中国微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 欧盟研制出量化测定霉菌毒素痕迹便携检测装置
    典型的霉菌毒素(Mycotoxin),由自然界真菌(Fungi)在基于小麦食物,包括谷物和食品中生长繁育过程产生的,对人体健康造成不利影响的化合物有毒物质,主要损害人体的肾脏和免疫系统。霉菌毒素广泛存在于食品加工链的各个阶段,如农场、啤酒厂、食品加工工业、餐馆和小食品店等,尤其在潮湿的环境条件下更容易发生。欧盟第七研发框架计划(FP7)中小企业主题提供130万欧元资助,总研发投入200万欧元,由意大利Automation SRL公司牵头负责,欧盟4家创新型中小企业(SMEs)同意大利罗马大学和葡萄牙INESC研究所科技人员,联合组成的欧洲DEMOTOX研发团队。致力于将科技界在实验室的霉菌毒素检测技术创意,通过商业化的中试示范项目,直接研制开发出可从食品、饲料和饮料中量化测定霉菌毒素痕迹的低成本便携式检测装置。   DEMOTOX研发团队的科技界主要合作伙伴意大利罗马大学和葡萄牙INESC研究所为该项检测技术的持有者,技术的主要创意点在于:1)利用沉积于玻璃衬底的a-Si:H光敏感应器技术(a-Si:H Photosensors),可快速检测出饲料、食品、啤酒和饮料中一种毒性很强的菌株毒素,即赭曲霉毒素A(OTA,Ochratoxin A) 2)结合采用不同方式的表面处理工艺,提升检测霉菌毒素的敏感度与准确性 3)发现霉菌毒素在食品链中难以分解的抗体,研制出有效祛除霉菌毒素的新工艺。   DEMOTOX研发团队围绕霉菌毒素检测技术的创意,开发出适用于不同场合的系列紧凑型便携式检测装置,已分别在农场、食品加工业、啤酒厂、餐馆和食品店进行验证。获得的初步结果,显示出创新型霉菌毒素检测技术装置未来广阔的应用前景,必将为消费者愈来愈更加关注的食品安全做出贡献。
  • 迅数全自动菌落分析仪精彩亮相全国微生态制剂研讨会
    2010年11月19-21日,&ldquo 全国微生态制剂研究开发与综合应用新技术、新设备交流研讨会&rdquo 在杭州隆重召开,100多位微生态制剂领域的专家和企业代表到会并进行了深入的交流。迅数科技应邀在会上展示了旗下最受欢迎的菌落计数分析仪-&ldquo G6全自动菌落分析仪&rdquo 并向与会代表汇报了自动菌落分析技术在微生态制剂研究与检测中的应用,受到与会代表的高度评价。 迅数全自动菌落分析仪在中粮集团、荷兰帝斯曼乳品创新中心等单位的微生态制剂研究与检测中,取得了诸多创新应用: 自动菌落计数-菌落总数、大肠菌群2010新国标、乳酸菌检验2010新国标; 菌落形态分析-培养基质量控制、菌种筛选(直径大小,面积大小,圆度,颜色等); 抑菌圈自动测量-&beta 内酰胺酶类药物检验、抗菌素耐药类型测定、抑菌性能分析; 显微图像分析:显微图象定量应用、每批次菌株生长情况的显微图像保存。 随着微生态学理论研究的不断深入,微生态制剂也随之迅速地发展起来。我国微生态制剂的研究应用起步较晚,尽管近十几年的市场培育和宣传推广,使微生态制剂无论在人的医疗保健方面、动物保健方面还是农用微生态制剂都取得了空前的发展,但该行业整体上还处于发展期。 本次会议交流展示了我国微生态制剂行业的开发、生产和应用等核心技术,搭建了产学研之间的合作交流平台,必将推动这一产业的进一步健康发展。
  • 岛津应用:三重四极杆质谱检测环境水中的大环内酯类抗生素
    人们在日常活动过程中对药物的使用,尤其是抗生素类药物的大量使用以及其对环境生态的影响,长期以来一直被忽视。近年来在一些欧美发达国家,抗生素滥用所造成的水环境污染已经引起了高度关注。我国被视为滥用抗生素类药物最为严重的国家之一,因此对我们来说建立环境水当中抗生素残留量的检测分析方法应视为重中之重。大环内酯类抗生素(Macrolide Antibiotics)是一类用量大、使用范围广且容易进入环境水体的抗生素,在水体中多以痕量存在,因此检测难度较大。目前国内尚未有对环境水中抗生素类药物痕量分析的相关标准。 本文使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用,建立了一种快速测定环境水中8种大环内酯类抗生素(螺旋霉素、替米考星、竹桃霉素、秦乐菌素、北里霉素、红霉素、交沙霉素、罗红霉素)的方法,并采用所建立的方法对上海某条河流水源中的该类抗生素污染状况进行了检测,供相关检测人员参考。该方法分析速度快,灵敏度高,精密度良好;螺旋霉素、替米考星在5-200μg/L;竹桃霉素、秦乐菌素、北里霉素、红霉素、交沙霉素、罗红霉素在1-500μg/L 浓度范围内线性良好,所有样品的标准曲线的相关系数均在0.9996以上。在处理后的空白地表水样品中添加混合标样,基质加标样品在定量限上均有很好的响应。 了解详情,敬请点击《三重四极杆质谱检测环境水中的大环内酯类抗生素》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • LC-10Tvp梯度高效液相色谱仪分析肉食品中常见4种抗生素残留
    【科捷仪器】大环内酯类与氯霉素类药物是两类应用广泛的广普抗生素,由于这两类抗生素能够有效预防和治疗家畜传染病和寄生虫病的发生,有些还具有促进动物生长发育的功用。因此,为了降低养殖成本,提高经济效益,在家畜养殖中广为使用。但是,近年来由于在禽畜养殖过程中过量使用抗生素又不遵守休药期的规定,在牛羊肉、猪肉以及鸡鸭鱼肉中检测出了各种抗生素。这种残留可以通过食物链进入人体,进而对人体造成各种危害。红霉素、泰乐菌素等大环内酯类可致肝损害和听觉障碍。更严重的是长期大量滥用广谱抗生素会导致肠道微生物菌群被抑制,使人体产生抗药性,这种抗药性导致人类感染疾病之后治疗难度加大,治疗成本升高。  为了保障人类的生命健康,世界各国卫生组织以及食品药品监督管理部门都已经将肉食品中各种抗生素残留量作了严格规定,并且以抗生素在肉食品中的残留量作为产品进口的贸易壁垒,如美国和欧盟对阿维菌素在肉食品中的最高残留限量为25ug/kg,泰勒菌素为100ug/kg,替米考星为100ug/kg,伊维菌素为40ug/kg。目前肉食品中大环内酯类抗生素常用液一质联用进行全面分析。氯霉素类药物常用气相色谱及液相色谱分析。而用高效液相色谱法同时分析肉食品中两类常见抗生素还未见文献报道。   一、LC-10Tvp梯度高效液相色谱仪配置 LC-10Tvp高压恒流泵:2台 SPD-10Tvp紫外检测器:1台 SCL-10Tvp 系统控制器:1台7725i手动进样阀: 1套 色谱工作站:1套 (VI2010、N2000、N3000选用)液相色谱柱:1支 (C18 4.6*250mn,5um)微量进样器:1支 (50ul/100ul) 进样支架 :1只 (进样阀用)   二、LC-10Tvp梯度高效液相色谱仪特点   LC-10Tvp梯度高效液相色谱仪是南京科捷分析仪器有限公司为了快速地满足多样化的客户需求,在原有的STI501液相色谱仪的基础上经过优化,利用美国先进技术开发设计,国内加工生产的的一款新型的液相色谱仪。LC-10Tvp等度高效液相色谱仪实现了人机对话,可实时对仪器的运行状态进行监控,并可对潜在和已出现的故障做出判断,同时提供在线解决方案。该仪器也全面实现了远程的准无人操作,大大提高了仪器的使用效率,同时通过高精度的AS1000自动进样系统,实现自动化进样,最大程度抑制了样品的交叉污染,提供样品分析精度。LC-10Tvp等度高效液相色谱仪可广泛应用于研究开发、医药检验、食品检测、化工分析、环境监测等众多分析领域。   主要特点 丰富的功能&mdash &mdash 符合客户对分析的不同需求 硬件具有VP功能,记录维护信息和操作记录,符合GLP/GMP要求;系统控制器增具有时钟、温度计、湿度计等人性化设计的功能。 卓越的性能&mdash &mdash 满足客户对仪器的严格要求 检测器采用进口氘灯、光电池以及1200条/mm凹面光栅组成的双光束单色器;精密加工的双透镜流通池,控制波长调节的高精度微处理器以及双路高速的采样频率,确保了低噪声、低漂移及超高灵敏度等特点。 VI2010工作站符合多种法规要求。   可靠的结果&mdash &mdash 满足客户对结果的准确要求 与进口仪器做对比试验,分析结果具有高度的一致性。   简便的操作&mdash &mdash 便于客户对软件的熟练操作 软件采用多窗口模式,操作方便。 精美的外观&mdash &mdash 满足客户对仪器的视觉要求 外形精美,带来视觉上的享受。技术指标 LC-10Tvp高压恒流输液泵 输液方式 微体积串联双柱塞 最大输液压力 0~9999Psi 流量设定范围 0.001~9.999ml/min (以0.001ml/min步长调节流量) 流量设定值误差 &le 0.5% 流量稳定性误差 &le 0.2%RSD 压力脉动 小于15Psi (流量1mL/min,压力600~1600Psi 。) 泵密封性 压力为5400Psi,时间为10min,压降小于400Psi 。 时间程序功能 有 尺寸 W260× H130× D420mm 重量 11kg 使用环境温度范围 4~40℃ SPD-10Tvp紫外可见可变波长检测器 波长范围 190nm~700nm 波长示值误差 &le ± 1nm 波长重复性误差 &le ± 0.1nm 动态噪声 &le ± 0.75× 10-5AU (甲醇,1ml/min,254nm,20℃ 。) 静态噪音 &le ± 0.5× 10-5AU (空池,响应时间1秒,20℃ 。) 动态基线漂移 &le ± 1× 10-4AU/h (甲醇,1ml/min,254nm,20℃ 。) 静态基线漂移 &le 0.5× 10-4 (空池,响应时间1秒,20℃ 。) 线性范围 &ge 104 最小检测浓度 &le 1× 10-9g/mL (萘/甲醇溶液) 定性重复性 RSD6&le 0.1% 定量重复性 RSD6&le 0.5% 光谱带宽 6nm 流通池体积 8&mu L 光程 10mm 时间程序功能 有 尺寸 W260× H130× D420mm 重量 11kg 使用环境温度范围 4~40℃   三、实验   1 仪器与试剂   南京科捷 LC-10Tvp高压恒流泵   SPD-10Tvp紫外检测器   超声波清洗仪   反相色谱柱C18   固相萃取柱   泰乐菌素、替米考星、氯霉素、氟苯尼考标准品均为天津市科密欧化学试剂开发中心监制   乙腈、正己烷均为优级纯   其它试剂均为分析纯   实验用水均为二次蒸馏水   新鲜牛肉与鸡肉均为超市所购   2 色谱条件   C18反相色谱柱   柱温25℃,流速1mL/min,进样量25uL,梯度洗脱条件A相为甲醇,B相为0.2mol/L磷酸二氢钠含10%(体积比)甲醇,调节pH为3.0,梯度洗脱程序:0-2min10%A,2-8min 10%-40%A,8-9min40%-10%A,检测波长入为275nm   3 标准溶液的配制及标准曲线的制备   分别准确称取各标准品0.01g(精确至0.001g),用甲醇分别溶解并定容至100mL,配制成100mg/L标准储备液,于一4℃冰箱中冷藏,测定时将各标准溶液混合后稀释成0.1、0.2、0.5、1.0、5.0、10.0、15.0、20.0mg/L的溶液。分别以泰乐菌素、替米考星、氯霉素、氟苯尼考峰面积为纵坐标,质量浓度为横坐标绘制标准曲线,计算回归方程及相关系数(r)。   4 样品处理   将新鲜牛肉及鸡肉分别匀浆后,于-18℃冰箱中保存。测定时,将匀浆冷冻保存的牛肉与鸡肉样品于室温下自然解冻。分别准确称取20.0g样品置于50mL具塞锥形瓶中,加入20mL乙腈,超声10min,转移至离心管,以5000r/min离心10min,收集上清液,离心沉淀物用上述方法重复提取2次,合并上清液。向得到的清夜中加入30mL正己烷,用力振荡5min,静置分层,弃去上层正己烷层。然后将溶液于40℃减压旋转蒸发至约2mL,氮气吹干后加入5mL甲醇一磷酸盐混合液超声溶解抗生素,最好定容至10mL。   5样品净化   将HLB固相萃取小柱用5mL甲醇、5mL去离子水活化后,将4得到的样品处理液上固相萃取柱(柱流速保持1滴/s),用10mL蒸馏水、10mL5%甲醇水溶液淋洗固相萃取柱,再用10mL甲醇洗脱,将洗脱液用氮气吹干后,加入流动相超声定容至5mL,最后,经0.22um滤膜过滤后进样。   6方法的准确度、精密度、线性范围、回收率 对于牛肉样品分别添加0.1、0.5、1.0mg/kg 3个水平的混合标准溶液,按照4与5样品处理及净化方法,每个水平平行测定4次,进行回收率实验,并且以3倍信噪比分别计算泰乐菌素、替米考星、氯霉素、氟苯尼考在牛肉样品中的检出限,在测定条件下4种药物在0.1&mdash 20mg/L范围内均呈线性,线性方程与相关系数、平均回收率、相对标准偏差见表1  7 实际样品检测   本实验分别对10份牛肉样品和10份鸡肉样品中泰乐菌素、替米考星、氯霉素、氟苯尼考进行检测,没有发现牛肉样品中含有以上抗生素,但是在4份鸡肉样品中都不同程度检测到了泰乐菌素,最高为200ug/kg,最低为80ug/kg,平均含量为120ug/kg,高于我国动物性食品中兽药最高残留限量标准(100ug/kg)  四、结论    我国动物性食品中兽药最高残留限量标准规定泰乐菌素、替米考星、氯霉素、氟苯尼考在肉品中的最高残留量(MRL)分别为100、75、1.5、200ug/kg,本实验所测泰乐菌素、替米考星、氟苯尼考的检出限分别为20、32、16ug/kg均在最高残留限量以下,符合残留检测分析要求。由于氯霉素药物特殊性,欧盟对氯霉素的检出限要求为0.1ug/kg,美国FDA对氯霉素的检出限要求为0.3ug/kg,按照本实验方法,氯霉素检出限为19ug/kg,还未达到国际上的要求,这是因为提取方法和所用检测器所致。今后应该发展更加灵敏的方法以提高氯霉素。本实验方法的平均回收率较高(75%-87%),而且步骤简单、操作容易、重现性较好相对标准偏差为1.35%-5.41%,表明方法稳定可靠。   南京科捷(www.kj17.com)专业维修各类进口和国产的液气相色谱仪、高效液相色谱仪、紫外分光光度计、原子吸收分光光度计、红外光谱仪、核磁共振、原子发射光谱等分析仪器。欢迎来电咨询! 公司地址:南京市光华路1号理工大学科技园孵化大楼二楼 联系电话:025-84372572 84372573 83312752 传 真:025-83738955 QQ:175227100 E-mail: kj17@21cn.com njkj17@163.com 网址:http://www.kj17.com
  • 全国真菌毒素及产毒真菌污染数据库将建立
    p   食品安全是近年来广受公众关注的问题。国家真菌毒素科技创新联盟日前在北京成立。我国将通过该联盟建立实时的全国真菌毒素及产毒真菌污染数据库,搭建联盟信息共享机制,建立和完善真菌毒素科技创新联合实验室、产品研发试验基地等。 /p p   国家真菌毒素科技创新联盟理事长、中国农业科学院农产品加工研究所所长戴小枫指出,真菌毒素是真菌产生的次生代谢产物,主要包括黄曲霉毒素、镰刀菌毒素等,具有强毒性和致癌性。真菌毒素污染广泛,尤其对大宗农产品污染,严重威胁人们的饮食健康。目前,中国、美国、日本和欧盟等100多个国家或地区都有针对真菌毒素的限量标准和法规。 /p p   据了解,国家真菌毒素科技创新联盟将聚焦真菌毒素防控难点,开展协同攻关,建立产学研结合的真菌毒素防控产业合作体系,为国家食品安全战略起基础性支撑作用。联盟由9家副理事长单位、15家常务理事单位、33家成员单位和 44位个人成员共同组成,几乎囊括了国内相关领域的技术精英。联盟将致力于建立实时的全国真菌毒素及产毒真菌污染数据库,搭建联盟信息共享机制,建立完善的真菌毒素科技创新联合实验室、产品研发试验基地,整合联盟成员单位资源优势,共同致力于真菌毒素防控事业。 /p
  • 文献解读丨中国农业大学沈建忠团队在广谱抗菌增效剂研发上取得重要进展
    5月18日,微生物学顶级期刊Nature Microbiology在线发表了中国农业大学动物医学院沈建忠院士团队题为“A broad-spectrum antibiotic adjuvant reverses multidrug resistant Gram-negative pathogens”的文章。该研究发现了一种新型广谱抗菌增效剂,能够恢复多重耐药革兰氏阴性菌对多种抗菌药物的敏感性,为合理用药和治疗多药耐药病原菌感染提供了新策略。15:42 2020/7/2 使用仪器:岛津LCMS-8045 抗菌药物的大规模、不合理使用加速了耐药性细菌的产生和传播,导致多种抗菌药物对细菌感染的疗效降低,甚至无效。为保障人类健康和畜牧业健康持续发展,开发有效的治疗方案和寻找新型抗菌药物或抗菌增效剂势在必行。新型抗菌药物及替代物的研发成本高昂,周期长;相较于新药开发,提高现有抗菌药物的疗效,成本相对较低,且安全高效,成为近年的研究热点。目前临床上常用的抗菌增效剂主要有两类,分别是上世纪七十年代和八十年代上市的磺胺增效剂和β-内酰胺酶抑制剂。这两类增效剂均只能增强某一类抗菌药物的治疗效果,但随着多重耐药菌特别是革兰氏阴性耐药菌的广泛流行,由于其作用机制的单一性已导致这两类增效剂在临床上的应用价值凸显不足。 寻找新型广谱抗菌增效剂是提高现有抗菌药物疗效,延长其使用寿命的重要措施。在该研究中,首次报道了一种新型线性短链广谱抗菌增效剂SLAP-S25,可以提高多种临床常用抗菌药物如四环素、万古霉素、氧氟沙星、利福平和多粘菌素对多重耐药大肠杆菌以及其它耐药的革兰氏阴性菌的抗菌效果。研究表明SLAP-S25和多粘菌素联合应用恢复了10种不同的多粘菌素耐药革兰氏阴性菌对多粘菌素的敏感性,但对肺炎克雷伯菌则需采用SLAP-S25和其他种类抗菌药联用策略。同时,SLAP-S25和多粘菌素联合应用有效抑制了87株临床分离的多粘菌素耐药大肠杆菌的生长。此外,SLAP-S25不仅能恢复携带多粘菌素耐药基因mcr的革兰氏阴性菌对多粘菌素的敏感性,还能降低其用药量,为保障多粘菌素类药物作为抗革兰氏阴性菌感染的“最后一道防线”提供了新思路和技术支持。 图1 SLAP-S25增强多种抗菌药物对革兰氏阴性菌的抗菌效果 通过构效关系分析揭示SLAP-S25的苯环侧链是其发挥作用的活性中心。发现SLAP-S25与革兰氏阴性菌外膜主要成分脂多糖(LPS)结合后破坏外膜完整性,导致外膜通透性增加。有趣的是,SLAP-S25与LPS的结合不受MCR酶修饰的影响。随后,SLAP-S25靶向识别细菌内膜的磷脂酰甘油(PG),推测其与PG头部基团的磷酸根结合,增加细菌内膜的通透性。SLAP-S25通过双重作用大大提高了革兰氏阴性菌内膜和外膜的通透性,促进多种抗菌药物在细菌的胞内累积,从而发挥增效作用。值得注意的是PG作为细菌内膜组分中普遍存在的膜磷脂分子,但在哺乳动物中含量很低。这进一步解释了SLAP-S25的高选择性和安全性,保障了低细胞毒性和溶血性,有较好的成药潜力。 图2 SLAP-S25靶向识别磷脂酰甘油(PG) 在三种动物感染模型,包括大蜡螟细菌感染模型,小鼠腹膜炎-败血症模型,小鼠腿部感染模型中,SLAP-S25与多粘菌素联合应用显著提高了多耐药大肠杆菌感染大蜡螟和小鼠的存活率,降低了小鼠心、肝、脾、肺、肾等脏器中的细菌载量。此外,在腿部感染模型中,SLAP-S25及多粘菌素联合应用也显著降低了小鼠腿部的细菌载量。 图3 SLAP-S25和多粘菌素联合应用具有良好的体内治疗效果 以上结果表明,SLAP-S25是一种新型抗菌增效剂的先导化合物,具有较理想的成药性。同时,新发现的药物作用靶点PG为活性分子筛选和新型抗菌药物开发提供了新思路。后续将围绕SLAP-S25的作用机制展开深入的研究,为其临床应用提供数据支持,实现多重耐药革兰氏阴性病原菌感染的高效治疗。 图4 SLAP-S25作用机制示意图 中国农业大学动物医学院博士研究生宋玫蓉和刘源为共同第一作者,引进的“杰出人才”朱奎教授和沈建忠院士为共同通讯作者。本研究获得了国家自然科学基金(31922083、21861142006)和高层次引进人才科研启动经费等项目资助。 文献题目:《A broad-spectrum antibiotic adjuvant reverses multidrug resistant Gram-negative pathogens》使用仪器:岛津LCMS-8045第一作者:宋玫蓉、刘源共同通讯作者:朱奎、沈建忠原文链接:https://www.nature.com/articles/s41564-020-0723-z 声明1、文章来源:中国农业大学官网。2、本文不提供文献原文,如有需要请自行前往原文链接查看。3、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 真菌毒素测定液相方法
    2020版药典第四部通则2351真菌毒素测定法真菌毒素是真菌在食品或饲料里生长所产生的代谢产物,对人类和动物都有害。由于中药材从种植、生产、流通的全过程周期较长,控制不当易受真菌毒素危害,再加上真菌毒素的产生与宿主基质特性密切相关,不同类型中药材会产生种类和性质各异的真菌毒素,不经控制而被消费者使用后会产生严重的不良反应。2020版药典加强了中药材外源性污染控制方法的制定,在真菌毒素方面,通则名称由2015版2351黄曲霉毒素测定法变化为2020年版2351真菌毒素测定法;并增加了赭曲霉毒素A测定法、玉米赤霉烯酮类测定法、呕吐毒素测定法、展青霉素测定法,以及多种真菌毒素测定法。有关多种真菌毒素测定法的检测技术(LCMSMS法)请点击上一篇:速领!十大真菌毒素,一包应对同时,本版药典全面制定了易霉变中药材、饮片的真菌毒素限量标准。对黄曲霉毒素有限量要求的具体品种包括:九香虫、土鳖虫、大枣、马钱子、水蛭、地龙、肉豆蔻、延胡索、全蝎、决明子、麦芽、远志、陈皮、使君子、柏子仁、胖大海、莲子、桃仁、蜈蚣、蜂房、螳螂、酸枣仁、僵蚕、薏苡仁。▲对玉米赤霉烯酮作出限量要求的品种是薏苡仁。岛津实验器材作为专业的色谱耗材服务厂商,全面致力于为各行业客户提供有关色谱消耗品及周边设备等专业的解决方案,先推出一系列中药中真菌毒素测定方法包,助您应对2020版药典中药真菌毒素的分析。岛津 / 多种真菌毒素 / 测定方法包01今天就为大家介绍,如何利用岛津黄曲霉毒素定量方法包对薏苡仁中黄曲霉毒素进行定量分析。黄曲霉毒素定量方法包,包括岛津SHIMSEN黄曲霉毒素免疫亲和柱产品对样品进行提取净化,Shim-pack GIST C18色谱柱进行分离,SHIMSEN黄曲霉毒素混标溶液作为标准品对中药中的黄曲霉毒素进行分析,根据方法说明书进行操作,回收率高,重复性好,满足《中国药典》要求,此方法包可应对于黄曲霉毒素的测定。▲点击查看大图02●样品前处理●利用SHIMSEN IAC系列免疫亲和柱(黄曲霉毒素小柱 货号:380-00910)进行前处理,不需要缓冲盐溶液洗脱,仍能保证回收率与提取效果。详细流程如下:▲点击查看详情03●参考2020年版中国药典●▲色谱柱:Shim-pack GIST C18(250mm×4.6 mm,5μm;P/N:227-30017-08)▲薏苡仁加标样品液相色谱图进样量:20 μL加标浓度:黄曲霉毒素B1/G1为1 ng/g;黄曲霉毒素B2/G2为0.3 ng/g将薏苡仁样品进行加标(添加浓度分别为:黄曲霉毒素B1和G1 为1 ng/g;黄曲霉毒素B2和G2为0.3 ng/g),按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,具体结果如下:04如果您对此方法包和应用感兴趣,欢迎扫码留下您的需求,我们将为你提供更多资料与服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制