当前位置: 仪器信息网 > 行业主题 > >

动植物性食品

仪器信息网动植物性食品专题为您整合动植物性食品相关的最新文章,在动植物性食品专题,您不仅可以免费浏览动植物性食品的资讯, 同时您还可以浏览动植物性食品的相关资料、解决方案,参与社区动植物性食品话题讨论。

动植物性食品相关的资讯

  • 《中国植物性食品产业发展报告2022》正式发布
    植物性饮食是一个相对较新的术语,它代表了一种积极的绿色饮食运动。植物性食品可以满足素食人群和乳糖不耐受人群的膳食需求,可作为保护动物福利、实现农业和食品产业低碳可持续发展的解决方案,也是践行大食物观的重要路径,得到越来越多消费者的青睐。按照目前的发展模式,能够供给更充足的蛋白质、营养素是人类社会所面临的新挑战。植物食品具有资源消耗低、来源丰富、环境友好等特点,大力发展植物性食品,是人类对未来食物需求的必然选择。 日前,由农业农村部食物与营养发展研究所、全球绿色联盟(北京)食品安全认证中心主编的《中国植物性食品产业发展报告2022》报告在京正式发布。该报告由中国绿色食品协会绿色农业与食物营养专业委员会、北京工商大学、华南理工大学、中国农业科学院油料作物研究所、武汉轻工大学、中国农业大学、中国农业科学院作物科学研究所、中国疾病预防控制中心营养与健康所、世界中餐业联合会中餐工业化产业分会、东南大学、中国轻工企业投资发展协会、金沙河集团产业技术研究院、欧力(上海)饮料有限公司等单位联合编写,以热点植物性食品:植物肉、植物奶、全谷物食品、高n-3多不饱和脂肪酸植物油为主要对象,对其产业现状、产品创新、技术进展及市场前景进行了论述和讨论,并重点探讨了如何推动行业标准建设和可持续发展。 相信《中国植物性食品产业发展报告2022》的发布,将进一步提高社会各界对植物性食品的认知和关注,同时为行业从业人员、科研工作者和消费者提供指导,将极大助力植物性食品产业的健康发展。相关附件:《中国植物性食品产业发展报告2022》.pdf
  • 美国FTC质构仪量化肉和植物性替代品的质构特征
    质地是决定鱼、肉、无肉蛋白替代品及其加工衍生物食用质量的首要考虑因素。例如,从制造商的角度来看,这可能是一种成分的影响,例如,一个加工过的火腿生产商向其产品中加水,并希望量化消费者可接受的最大加水水平。从顾客的角度来看,这是正宗的火腿。从农场/海洋到餐盘的质地分析被用来客观地衡量鱼、海鲜和肉类产品的质量,例如老化对肉嫩度和鱼的肌肉轮廓的影响,以表明脂肪含量。其他应用包括加工肉制品的切片/撕裂特性,肉酱和糊状物的稠度,鱼凝胶的弹性,海产品的硬度,以及腌料对肉类的影响等。在过去50年里,全球对肉类和鱼类的消费显著增加,但也有一种消费肉类替代品的趋势。肉类替代品主要由寻求更健康、无胆固醇、可持续和合乎道德的肉类替代品的素食主义者和纯素食主义者消费,但也有弹性素食主义者(主要食用植物性食品,偶尔食用肉类、鱼类和家禽)消费。食品科学家正在开发植物性肉类 与肉类口感和味道相似的鱼类替代品,模仿动物蛋白质中的纤维特性。它们通常由大豆、麸质和Quorn等产品制成,但制造商也使用其他成分,如豌豆蛋白。无论是在一个研发实验室,一个领域,还是一个制造设施,我们的产品是量化鱼,肉和植物性替代品的质构特征的理想解决方案。
  • 【直播报名】GB23200.121-2021植物性食品中331种农药及其代谢物残留量的测定液相色谱-质谱-质谱法方法验证经验交流
    2021年3月,农业农村部等3部委联合发布GB 23200.121-2021《植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》,标准采用QuEChERS前处理方法、液相色谱-三重四极杆串联质谱一次进样正负源切换同时测定331种农药及44种农药代谢物,解决了现行液质标准适用农产品基质种类少、农药及代谢物品种不全、前处理操作复杂、部分农药方法定量限高于最大残留限量等诸多问题。睿科集团邀请来自食品安全检测领域专家,开展“GB 23200.121-2021 植物性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱-质谱法 方法验证的经验交流”为主题的线上网络会议,围绕此标准从标准解读到前处理方法进行逐一讲解。本次会议针对新国标GB 23200.121的进行方法验证的经验交流,睿科集团同时为大家提供针对此国标解决方案,帮助您轻松应对新国标的检测挑战。会议时间时间:2021年8月11日(星期三)下午15:30-16:30 会议内容1、标准的解读2、方法验证前准备3、标液配制、仪器方法调试及注意事项4、基质的选择、各基质的前处理方法及注意事项(手工前处理以及全自动前处理)5、数据解析会议讲师熊刚从事食品安全检测15年以上,2015年至今就职于厦门鉴科检测技术有限公司,担任研发部经理,主要从事新标准的验证,专利的撰写工作,擅长方向:液相色谱、液质联用仪的运用,食品中农兽药、添加剂、非法添加物等的测定。培训报名扫一扫或长按识别二维码,即可免费报名
  • 新型植物性“模拟肉”产品的研究——人造肉的物理化学表征、FTIR光谱和结构特征分析
    目前的研究旨在用脉冲蛋白取代肉蛋白,并确定植物蛋白-肉类似物商业化的加工方法的适用性。采用碱性/等电沉淀法从青豌豆、马豌豆和豇豆中提取脉冲蛋白浓缩物(PPCs)。对PPCs进行物理化学、形态、GC–MS和热分析。将青豌豆、马豌豆与豇豆的PPCs按(20:20:20)T1、(30:15:15)T2和(15:20:15)T3的比例制备油炸肉丸。所有PPC都表现出塌陷和褶皱的表面。马豌豆蛋白浓缩物表现出最高变性温度(Td°C)89.50 ± 2.57和焓(ΔH(J g−1))(287.73 ± 9.64),与其他样品相比,迭代出更好的热稳定性。FTIR光谱表明,羊肉油炸丸子存在O–H伸缩宽带(3321.22 cm−1)和植物油炸肉丸(3288.28 cm−1),而PPC在(3275–3278)cm−1区域)。在1600–1700区域观察到两条C-H带和PPCs的主要二级结构成分,如α-螺旋、β-片状、β-转弯和无规螺旋 cm−1.酰胺N–H弯曲(1400–1500 cm−1)和C–O伸缩带(1000–1300 cm−1)。以20:20:20(T1)的比例配制的植物性油炸肉丸在感官特性(颜色、质地、多汁性和整体可接受性)、颜色特性(L*和b*)以及质地特性(如硬度、粘附性和内聚性)方面与羊肉油炸肉丸密切相关。这些发现将开辟这一领域的新研究视野,并为肉类替代品的商业化铺平道路,这将减少对环境的影响和碳足迹。Penchalaraju,M,Poshadri,A,Swaroopa,G等人。利用印度脉冲蛋白制作植物性模拟肉III:肉类似物的物理化学表征、FTIR光谱和质地特征分析。国际食品科学技术杂志2023。https://doi.org/10.1111/ijfs.16828• 文章来源:Leveraging Indian pulse proteins for plant-based mock meat III: physicochemical characterisation, FTIR spectra and texture profile analysis of meat analogue(利用印度脉冲蛋白制作植物性模拟肉III:人造肉的物理化学表征、FTIR光谱和质地特征分析). Wiley Online Library供稿:符 斌
  • 动植物检疫实验室常见废弃物的危害和处理方法!
    动植物检疫实验室常见废弃物的危害和处理方法!百欧博伟生物:本文说明了一般的动植物检疫实验室所产生的废弃物对人类和环境所带来的危害,并参阅有关资料,整理和总结出一些对废弃物处理的方法,并提出一些减少实验室废弃物的建议,使实验室人员能够认识并重视到废弃物的危害,在处理废弃物时可以借鉴和参考,从而减少实验室废弃物所带来的环境污染和生态破坏,保护生物安全。一、前言随着世界贸易的进一步发展,我国进出口贸易的范围也在进一步扩大,作为一般的动植物检疫实验室,所检测的商品将会更多,所用到与检疫实验有关的药品、试剂、一次性用具、实验器械等将会增多,因此所产生的废弃物也将会随之增加。近年来,实验室所产生的废弃物由于没有进行必要的处理而直接排入外界所造成的危害,已经崭露头角,实验室已经成为一个不容忽视的污染源,特别是生物性实验室,所产生的废弃物或检疫样,可能携带一些危害性生物,极有可能造成疾病的流行或某些有害生物的疯狂生长,破坏生态环境。二、动植物检疫实验室废弃物的分类动植物检疫实验室的废弃物可以分为:⒈化学性废弃物:有氰化物、硝酸盐、邻苯二胺、砒霜等;⒉生物性废弃物:有作废的动植物标本、动植物检疫样品、微生物培养物、染色液等;⒊一般的废物:打碎的玻璃器皿、废纸、废纱布、橡胶以及塑料制品。三、动植物检疫实验室废弃物的危害⒈化学性废弃物⑴氰化物和硝酸盐:氰化钾和硝酸盐常用作微生物培养剂的制作。①氰化物属于剧毒物质,在酸性条件下易产生氰化氢,氰化氢为剧毒气体,在实验现场的z高含量须≤0.3 mg/m3;在居民大气中z高含量须≤0.8mg/m3。CN—能与细胞色素酶牢固结合阻止Fe+3还原,是组织细胞缺氧而窒息,从而抑制多种酶的活性。②硝酸盐容易诱发糖尿病,易造成肾脏的损害,如果人们摄取了高浓度的硝酸盐,肾脏的负担加重,容易引起溶血性贫血。并且硝酸盐可以在酶和细菌的作用下,被还原成亚硝酸盐,亚硝酸盐与人体血液作用,形成高铁血红蛋白,从而使血液失去携氧功能,使人缺氧中毒,轻者头昏、心悸、呕吐、口唇青紫,重者神志不清、抽搐、呼吸急促,抢救不及时可危及生命。不仅如此,亚硝酸盐在人体内外与仲胺类作用形成具有“三致” 作用的亚硝胺类,可严重危害人体健康。⑵邻苯二胺:邻苯二胺是ELISA实验常用的化学药品,可经过吸入、食入和皮肤侵入,对眼睛、粘膜、呼吸道有刺激作用;可以致微生物突变,遇火、高热可燃,受热分解放出有毒的氧化氮烟气。⑶砒霜(As2O3):为剧毒物质,砷化合物易和体内酶的巯基(-SH)结合,使酶失去活性,阻碍细胞正常代谢,使细胞变性坏死,从而损害神经系统、肝脏和肾脏。慢性砷中毒可伴随“三致”的发生。⒉生物性废弃物⑴动植物标本:动植物标本一般都用福尔马林作为防腐剂,被浸泡过的标本废弃后,上面会有甲醛气体散出。甲醛对神经系统、免疫系统、肝脏等有严重的损害,还会刺激眼结膜、呼吸道粘膜和皮肤,引起过敏性皮炎、结膜炎、咽喉炎、支气管炎等,损害视神经和视网膜,引起头痛、视力下降或失明,并且具有致癌、致畸作用。目前,世界卫生组织(WHO)和美国环境保护局(EPA)已将其列为具有潜在危险的致癌、致畸物质和重要的环境污染物。风干的标本可能因为保存不当而孳生一些病原生物(如:虫子、虫卵或霉菌等)而成为一个传染源,若不进行熏蒸或再烘干处理,则有可能损害其它标本或物品。⑵检疫样品①植物性检疫样:棉花、棉短绒、废丝、水果、花卉、木材等上面可能携带一些杂草籽、霉菌、细菌、病毒以及一些害虫等,检疫实验室对于这些检疫样品一定要妥善保管和处理,若使有害生物进入到外界环境,就有可能在新的地方疯狂生长,从而形成“生物入侵” 。如19世纪美洲仙人掌传入澳大利亚,z初是用来做篱笆,圈养牛羊,但是它迅速生长,到了1925年已侵染牧场,使得其中很大部分不能放牧,土地不能耕种,并且还以惊人的速度扩散。还有就是发生在我国的,在上世纪90 年代初,我国在大量引进观赏植物巴西铁(Dracaena fragrans )时,蔗扁蛾(Opogona sacchari )随之传入,并随巴西铁迅速扩散,现已分布于北京及南方各省,并且由南向北蔓延。经调查,蔗扁蛾目前在北京各花卉生产基地均有不同程度的发生,严重时,每年巴西铁因此虫的淘汰率达50%以上,现已成为北京温室花卉生产中的主要害虫之一。外来生物入侵的危害:diyi,造成严重的生态破坏和生物污染。比如,原产于南美洲的水葫芦现已遍布华北、华东、华中、华南的河流、湖泊、水塘,疯长成灾,严重破坏水生生态系统的结构和功能,导致大量水生动植物的死亡,并且阻塞河道。第二,外来物种通过压制或排挤土著物种,形成单优势种群,导致生物多样性的丧失。第三,生物入侵导致生态灾害的频繁爆发,对农、林、渔业等造成严重损害,给国民经济带来巨大损失。近年来,松材线虫、湿地松粉蚧、美国白蛾等森林入侵害虫严重发生与危害的面积,每年达150万公顷;稻水象甲、非洲大蜗牛、美洲斑潜蝇等农业入侵害虫每年超过140万公顷,据保守估计,全国主要外来物种造成的农林业经济损失平均每年达574亿元。第四,直接威胁到畜禽和人类的健康。如豚草、三裂叶豚草的花粉就是引起人类花粉过敏的主要病原物;紫茎泽兰含有的毒素能使马匹和羊患上气喘病,四川省凉山彝族自治州曾因紫茎泽兰入侵而在一年内减少了6万多头羊,畜牧业损失达2100多万元。由于紫茎泽兰对土壤肥力的吸收力强,能极大地耗尽土壤养分,对土壤可耕性的破坏也极为严重。②动物性检疫样:血液、呕吐物、分泌物、皮张、蚕茧、精液、胚胎、肉、奶、蛋等也可能携带一些我国没有而其它国家有的动物疾病,或者是国家明文规定的一、二类传染病病原(有细菌、病毒、支原体、衣原体、寄生虫等),这些疫病,一旦爆发或流行,将会对我国的畜牧业养殖造成巨大的危害。比如:血液中可能含有致病菌、病毒或者一些血液源性寄生虫(疟原虫、血吸虫、焦虫、边虫、锥虫等);皮张中极有可能含有炭疽;动物的呕吐物、分泌物中含有大量的病原微生物;精液和蛋中可能含有一些垂直传播的疾病(如:精液可以携带猪瘟、PRRS、非洲出血热、口蹄疫等病原微生物;蛋中会携带沙门氏菌、禽白血病、EDS-76等病原微生物… … 这些传染病随时有可能传入我国,作为检验检疫机构,检疫是重中之重,并且检验检疫时,工作人员一定要早好自身的防护。⑶微生物培养物、染色液:微生物的培养、鉴定以及染色观察是实验室常用的用于微生物的观察、研究和判定,废弃后的培养基、染色液上会携带微生物,还有与微生物有过接触的废弃物,如一次性用品:手套、帽子、口罩、工作服、移液器的枪头以及玻璃仪器,均要做好管理和消毒灭菌处理,否则,会造成疾病的流行。例如:2003年非典流行过后,许多生物实验室加强对SARS病毒的研究,之后所报道的非典感染者,多是科研工作者在实验室研究时,由于没有做好自身的保护以及这些危险物的管理和处理工作而被感染的。⒊一般性废物:在实验室,许多打碎的玻璃器皿、废纸、废纱布、橡胶或者塑料制品被直接装进垃圾袋,扔进垃圾堆,z后再掩埋或焚烧。焚烧后,有的燃烧不彻底,又会产生新的固体废物和有害气体,造成二次污染;直接掩埋后,许多在环境中不易或不能降解,因此对土壤和作物的生长发育产生不良影响:①由于这些物质的阻隔,土壤水分运动受阻,孔隙度、通透性降低,不利于土壤空气的循环及交换,致使土壤中CO2含量过高,不利于作物正常生长发育。有些含有有害成分(如聚氯乙烯类塑料),接触种子或幼芽后,会抑制种子萌发,或会使芽、幼苗灼伤。②使土壤物理性能不良而导致作物扎根困难,吸肥、吸水性能降低而减产。③如果不回收利用或回收不彻底,将会造成资源的浪费。四、动植物检疫实验室废弃物的处理动植物检疫实验室所产生的废弃物因具有潜在的感染性、传播性以及危害性,若处理不当,将会严重的污染环境,危及人类、动物和自然的安全,因此需要进行必要的处理,才能废弃,除了焚烧和深埋以外,还应该提倡回收和综合利用的方式,减少资源浪费。⒈实验室废弃物处理的一般原则为防止污物扩散、污染,应该分类收集、存放,分别集中处理,尽可能采取废物回收以及固化、焚烧或深埋等方法处理。在实际工作中,选择合适的方法进行处理,尽可能减少废物量,减少污染。⒉动植物检疫实验室废弃物的具体处理措施生物类废物应根据其病源特性、物理特性选择合适的容器和地点,专人分类收集进行消毒、烧毁处理,日产日清。液体废物一般可加漂白粉进行氯化消毒处理。固体可燃性废物分类收集、整理,z后作焚烧处理。固体非可燃性废物分类收集,可加漂白粉进行氯化消毒处理,满足消毒条件后作最终处置。⑴生物性废弃物的处理①一次性使用的制品如手套、帽子、工作物、口罩等使用后放入污物袋内集中烧毁或及时用消毒剂浸泡,彻底消毒后,统一上交,集中存放,重新回收,再利用,减少资源浪费。 ②植物检疫样,如没有发现病虫害,则可以利用;若发现有病虫害,可以装于密闭容器内,在60-120℃下烘干1-2 h后,做焚烧或深埋处理。③动物检疫样,肉、蛋、奶、精液、胚胎、蚕茧等在没用异常的情况下可以加以利用,若有病变或异常,则应集中销毁,或焚烧或深埋。对于利用效 率不大或不能利用的检样(小块皮张等),高压灭菌后,应集中储存,妥善保管,z后统一作深埋或焚烧处理。如果量大,可以化制处理,生产一些有用的工业副产品,减少资源浪费,变废为宝、化害为利。④微生物检验接种培养过的琼脂平板或不能回收的染色液应高压灭菌30min,趁热倒掉废弃处理。尿、唾液、血液、分泌物等生物样品,加漂白粉搅拌后作用2-4h,倒入化粪池或厕所或者进行焚烧处理。⑤可重复利用的玻璃器具如玻片、吸管、玻璃瓶等可以用1-3g/L有效氯溶液浸泡2-6h.然后清洗灭菌后重新使用。⑥盛标本的玻璃、塑料、搪瓷容器可煮沸15min.或者用1g/L有效氯漂白粉澄清液浸泡2-6h,消毒后用洗涤剂及流水刷洗、沥干;用于微生物培养的,用压力蒸汽灭菌后使用。⑵化学性废弃物的处理①氰化物用NaOH调节PH10,加入KMnO4或者漂白粉,经充分搅拌,静置,使氰化物完全被氧化分解。②硝酸盐或者亚硝酸盐类可以,加入尿素,调为酸性条件,充分搅拌,使反应生成氮气。③邻苯二胺可以在酸性条件下加入高锰酸钾,使其氧化分解;也可以利用H-103树脂吸附处理,再用稀盐酸作为脱附剂回收或利用磷酸三丁脂萃取等。奇兵等人应用液膜处理高浓度的邻苯二胺废水,效果较好,主要过程包括制备乳液、液膜萃取、澄清分离等过程,用氯仿作为传质介质,将邻苯二胺以盐的形式回收,乳液可以重复利用或破乳后在制乳。④含砷废液:在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的PH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。静置,分离沉淀,上清液达标后可排放。⑶化学性废弃物的处理一般性废弃物如打碎的玻璃器皿、废纸、废纱布、橡胶或者塑料制品,应经消毒和灭菌后,分类装进垃圾袋,统一深埋或焚烧或做回收处理。五、减少生物性废弃物的措施⒈不要购买暂时不用的药品和试剂,不要购买过多的药品和试剂。⒉促进实验室人员的知识更新,加强技术培训,避免在实验工程中污染。⒊提高实验室人员的环境保护意识,加强责任心教育和废弃物的管理,做好回收利用工作。⒋制定相应的实验室废弃物管理和处理的制度和措施,使其更加制度化和规范化。⒌研究无毒害、无污染的替代品,减少剧毒物的利用。⒍采用微型实验,开发绿色实验室。六、小结实验室是实践学习和科学研究的试验基地,检疫实验室除此作用外,在进出口贸易中还具有检测货物中的病虫害,发出预警通知,防止外来疫情或有害生物的侵入的作用。所以,检疫实验室产生的废弃物,更应该先处理,后废弃,切实做好国门卫士的角色。为避免检疫实验室的污染危害,实验室要更加完善废弃物的管理和处理制度(保证生物性废弃物能够专库贮存,专人看管,分类存放,贮存废物的容器或垃圾袋必须贴上标签,标明废弃物种类、贮存时间等,贮存时间不能太长,贮存数量也不能太多,合理及时有效的处理生物性废弃物,z大限度地保护实验工作人员的健康,保护我们的生存环境,保护我国的农业、林业、畜牧业及山产养殖业的健康发展,这样才能更好的保护人民的生命财产安全,充分体现社会主义以人为本、以民为贵的优良作风。现今,我们对于废弃物的z终处理,最常用的是焚烧和深埋两种。我国还应该加强对废弃物处理这一领域的研究工作,寻求更彻底、更简便的方法,避免焚烧和深埋带来的二次污染,并且要回收可以重复利用的废弃物,做到既不污染环境又不浪费资源。北京百欧博伟生物技术有限公司拥有对菌种、细胞、培养基、配套试剂等产品需求者的极优质服务,对购买项目的前期资料提供,中期合同保证,后期货物跟踪到z终售后的确保项目准确到位,都有相关人士进行维护,确保您在中国微生物菌种查询网中获得z优质服务!也正因为此,北京百欧博伟生物技术有限公司与国内外多家研制单位、生物制药、第三方检测机构和科研院所院校、化工企业有着良好、长期和稳定的合作关系!
  • 未来,植物基食品会是什么样?福斯首席科学家访谈
    本周,福斯参加的FBIF食品创新展中,创新论坛里一个很重要的议题就是“新植物基时代”。植物食品业务正在不断发展。现在,如果你打开电子购物平台输入植物基食品,跳出来的产品有植物汉堡、植物酸奶、植物牛排,甚至还有植物酸菜鱼。未来,植物基食品会是什么样?让我们听听福斯首席科学家Mette Skau Mikkelsen的最新见解。「 Mette拥有植物食品科学与技术博士学位,长期致力于植物食品的成分研究、产品开发和营养评估等方面的工作。」昨天、今天和明天的植物食品?这一切都是从大豆和豆腐开始的。豆腐在中国有2000多年的历史,可直到20世纪80年代才在欧美广泛消费。它如今是许多无肉生活方式的人的重要蛋白质来源,也是中国、日本、韩国和东南亚美食的重要组成部分。豆腐是一种受人欢迎的植物产品,但现在面临着其他蛋白质来源的竞争,这些蛋白质来源可以更好地复制动物肉的味道和质地。小麦面筋(如seitan)、真菌菌丝体蛋白(如quorn),以及豌豆和蚕豆等豆类蛋白在植物基产品中都越来越受欢迎,许多公司正在试验不同的发酵工艺,以使最终产品更有“肉质”。在过去的几年里,这些产品的味道和质地都有了很大的改善。在伦敦的植物博览会上,我们吃了以色列Redefine meat公司的3D打印植物牛排。如果我不是事先知道,我会想,我吃了一块真正的牛排,但其实这是一块全植物牛排,由豌豆和大豆蛋白制成。“完全一样,又完全不同”,植物食品的未来包括以更好的方式复制动物食品,但作为植物食品本身,它们也应挖掘自己的独特价值。企业有很大的潜力去重新定义我们认为的植物产品,并在更大范围内挑战它所模仿的肉类。植物食品产业面临的最大挑战是什么?最大的挑战是需要不断创新。新植物产品的开发需要在创新方面进行巨额投资。竞争和消费者需求的增加给植物产品生产商增加了另一层压力,而在更传统的食品生产方面,这种压力并不明显。当谈到公众对植物性产品的兴趣时,许多趋势专家一致认为,该行业可能会遵循S曲线:开始时比较低,一段时间后迅速增长。起初,兴趣会很低,并会反复受挫。但随着规模的上升和价格的下降,市场渗透率可能会达到10%或更多。这就是线性增长突然转变为指数增长的关键点。这是我们在从冰箱到智能手机的数十种技术中看到过的趋势。FOSS 的植物食品研究都有哪些?在FOSS,我们以不同的方式研究植物性食品。在“植物细胞”这个项目下,我们的创新部门有几位同事,他们正在为植物性行业创建分析解决方案。FOSS如何为食品体系的绿色转型做出贡献的一个例子是,在DTU国家食品研究所领导的一个项目中,FOSS与丹麦公司Thise Dairy、KMC、科汉森和哥本哈根大学建立了合作关系,将MilkoScan&trade FT3用于检测植物性乳制品,并将尝试新应用开发,例如,监测发酵过程,以准备好适合这一新兴行业的解决方案。该项目旨在开发生产植物性发酵食品的工艺和发酵剂,比如以豌豆、燕麦和土豆为基础的酸奶产品。新的发酵剂将提高植物乳制品替代品的性能和质量,使所有全球生产商受益,并扩大乳制品行业以外的潜在客户范围。FOSS 的分析解决方案如何帮助植物食品产业?市场上的植物性食品正在蓬勃发展,生产商真的开始探究其质地和口味,尤其是肉类替代品。所有这些新食品都和传统食品一样需要分析的支持,以确保标准化的生产和安全统一的质量。我们一直在与植物乳制品和植物肉生产商密切合作,创建分析包和解决方案以满足他们的特定需求。许多植物性肉类和乳制品制造商在生产中难以实现一致的质量,原因之一就是缺乏对其产品详细成分的了解。如果你想确保产品的成分随着时间的推移保持不变,你需要能够在整个生产过程的每一步,从原材料到成品,检测成分的关键参数。这也将使你能够使用正确的原材料混合物,并优化生产流程,从而减少浪费并降低成本。然后,你就可以始终如一地提供你的消费者想要的东西:一种美味、健康、对地球有益的产品。一种完全符合标签上所说的产品,没有更多,也没有更少。一种看起来、尝起来和感觉起来都像独特的“肉类和乳制品”的产品。同时,你达到了改进流程,降低成本,提高营收。
  • 广东省农业标准化协会立项《植物性农产品中多种类农药及其代谢物残留量的测定》团体标准
    各相关单位:根据《广东省农业标准化协会团体标准管理办法》的相关要求,2024年5月21日-2024年5月29日,广东省农业标准化协会对《植物性农产品中多种类农药及其代谢物残留量的测定》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述所申报的团体标准符合立项条件,现批准立项。请制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准编制的质量和水平,增强标准的适用性和有效性。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。特此公告。 联系人:钱波 电 话:020-85161829 电子邮箱:gdnybzh@163.com 广东省农业标准化协会2024年5月29日粤农标协字〔2024〕19号广东省农业标准化协会关于《植物性农产品中多种类农药及其代谢物残留量的测定》团体标准立项的公告.pdf
  • 动物性胶囊重金属超标难除 植物胶囊或“走红”
    由于动物性胶囊重金属超标问题难根治,专家呼吁用植物胶囊来替代   今年4月发生的“毒胶囊”事件让公众对所有胶囊制剂的药品(食品)惶恐不安,如何消除安全隐患,保障胶囊剂药品(食品)安全已成为当下亟待思考的问题。日前,在由广东省保健行业协会等机构主办的“胶囊剂质量安全思考与解决方法讲座暨研讨会”上,国家食品药品监督管理局药品注册司原副司长、中国医药包装协会副会长冯国平教授表示,由于动物明胶胶囊人为掺入或人为污染原因造成的重金属超标很难根治,植物胶囊人为污染的途径和可能较小,因此用植物胶囊替代动物胶囊是解决胶囊污染顽疾的根本途径,但现实情况是植物胶囊的成本要稍高一些。   冯国平介绍说,胶囊剂是口服制剂中的第二大剂型,据统计,2011年我国药品、保健食品以及用硬胶囊灌装的食品总量约2500亿粒,软胶囊剂约500亿粒,其中95%以上为动物明胶胶囊。但是,当前我国胶囊剂的质量却令人担忧。   冯国平介绍,药用空心胶囊是一种药用辅料,目前,世界上药用空心胶囊主要为动物性胶囊,是从猪、牛等动物骨骼、皮中提取的明胶为主要原料制成的。动物明胶本身的理化性质和来源的复杂性、难控性决定了产品存在诸多难以克服的性能和安全方面的缺陷,已成为业界的共识。对于动物明胶胶囊来说,人为掺入或人为污染原因造成重金属超标很难根治,而且鉴于动物性胶囊保存时间短等问题,许多国家都在开发植物性药用空心胶囊方面做了大量的研究。   “植物胶囊人为污染的途径和可能较小,因此,用植物胶囊替代动物胶囊是解决胶囊污染顽疾的根本途径。”冯国平介绍说,近年来,发达国家植物胶囊应用已是趋势,每年都以30%的速度在增长。   据统计,我国胶囊剂药品在药品制剂中占很大比例,年需药用空心胶囊千亿粒以上,市场需要量很大。但是由于植物胶囊的生产成本较高,目前在我国使用的比例还非常少。冯国平呼吁,要彻底解决药用胶囊的安全性问题,需要国家在植物胶囊的生产、使用等环节予以政策扶持,也需要有责任感的制药企业多采用植物胶囊,同时提倡患者注意选用采用植物胶囊的药品(食品)。
  • 又一个食品黑科技“植物肉”火了,能吃吗?来听北京工商大学教授怎么说
    近几年来,一类叫做“植物肉”的食品走近市场,并受广大消费者喜爱,根据MarketsandMarkets数据,2019年全球植物肉的市场规模约为121亿美元,预计每年将以15.0%的复合增长率增长,到2025年将达到279亿美元。但随着近期“黑科技食品”的网络舆论掀起,“植物肉”到底为何方神圣?又是智商税?是什么原料制成的?有无添加剂?能吃吗?吃完后会对身体有伤害吗?其实网友们并不用过于偏激和恐慌,目前我国对食品安全监管非常严格,很少会再有不法商家生产出对人体造成严重危害的食品了。“植物肉”严格来讲应该叫“植物基肉”,顾名思义,就是以植物原料为基础,模仿肉的色、香、味及物理状态而制成的产品。目前大多数“植物肉”的制作原料是大豆。采用挤压的手段,通过高温、高剪切、高压,使大豆蛋白的分子结构打开,打开之后重新形成纤维状的、类似于肉的结构。那“植物肉”能为人体提供什么营养物质呢?从专业角度上“植物肉”的风味与真肉有何区别?未来是否“植物肉”能更大范围的代替真肉?……11月17日,仪器信息网将召开“动物源食品质量安全检测技术”网络研讨会,将特邀北京工商大学 副院长/教授 李健老师做客直播间,将为大家讲解《植物肉营养与风味评价》。欢迎大家报名参加!为保证网友们的听会质量,本会场只限时开放300个免费听会名额,立即报名!李健,北京工商大学食品与健康学院教授,博士生导师,副院长。中国粮油学会粮油营养分会理事,中国绿色食品协会绿色农业与食品营养专委会副秘书长。主要开展植物蛋白肉风味的研究,通过多级酶解植物蛋白和风味仿真技术制备了植物性肉香风味料,克服了现有产品香气滋味单薄的缺陷,改变了中国传统素肉的生产工艺。。研究成果被新华社、中央电视台、中国新闻周刊、北京日报、南方都市报等媒体报道。主持美国GFI植物肉前瞻课题1项,国家自然科学基金2项,为“Frontiers in Plant Science”客座编辑,Food Chemistry等食品期刊审稿人。报告题目:《植物肉营养与风味评价》报告摘要:近年来,由于受到资源,气候,环境,伦理等因素的制约,以及消费者对于营养,经济,健康食品的追求,植物基肉类替代品成为研究热点。本报告综述了植物肉营养和风味研究的最新进展,为植物肉产品的本土化转变提供依据。会议报名链接:https://www.instrument.com.cn/webinar/meetings/Animalderivedfood/若报名不成功,或关于会议任何问题,可扫描下方二维码加食品领域小助手微信号:更多免费会议,欢迎关注网络讲堂服务号:相关会议赞助,请联系刘经理,欢迎各位厂商前来咨询!
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • 120万!南京海关动植物与食品检测中心精密仪器设备拟增购维保服务
    项目概况南京海关动植物与食品检测中心精密仪器设备拟增购维保服务项目 招标项目的潜在投标人应在本项目采用网上报名的方式获取招标文件,并于2022年02月21日 14点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:JTCC-2208AX0067项目名称:南京海关动植物与食品检测中心精密仪器设备拟增购维保服务项目预算金额:120.0000000 万元(人民币)最高限价(如有):120.0000000 万元(人民币)采购需求:见附件合同履行期限:满足采购人需求。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:见附件3.本项目的特定资格要求:无三、获取招标文件时间:2022年01月24日 至 2022年01月30日,每天上午8:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:本项目采用网上报名的方式方式:供应商报名前请先联系陈工(15261808623、025-83241642))售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年02月21日 14点30分(北京时间)开标时间:2022年02月21日 14点30分(北京时间)地点:南京市鼓楼区郑和中路118号D座1402室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜见附件七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南京海关动植物与食品检测中心     地址:江苏省南京市建邺区创智路39号        联系方式:王凯民 025-52346209      2.采购代理机构信息名 称:江苏省招标中心有限公司            地 址:南京市鼓楼区郑和中路118号D座1307室            联系方式:陈道祥 15261808623、02583241642            3.项目联系方式项目联系人:陈道祥电 话:  15261808623
  • 天津检验检疫局动植物与食品检测中心新增检验项目335项
    天津检验检疫局动植物与食品检测中心充分发挥软硬件资源优势,加强检测工作管理,提升检测实力和服务效率。今年以来,积极开发新检验项目335项,涵盖了动物检疫、植物检疫、食品检验等多个领域,为确保天津口岸安全,助推经济发展,做出了积极贡献。   天津检验检疫局动植物与食品检测中心按照“质量提升”活动和检测工作整顿方案要求,积极开展质量提升与检测工作整顿,做到完善规章制度、提高人员素质、加强监督管理、提升检测执行力、确保检测结果准确可靠。工作中,该中心紧紧围绕增强检测能力,确保检测工作安全和准确的目标,深入分析影响和制约检测水平的各方面因素,着力解决检测管理中存在的突出问题和检测工作中存在的薄弱环节,按照制度健全、能力适应、行为规范、监管到位的要求,提高检测管理工作的规范化、科学化和制度化水平。同时,该中心加大实验室设备投入,优化人员技术培训,增强技术创新能力,提高检测能力,在保证检测数据准确的同时,进一步缩短了流程、提高了工作效率 积极探索日常检测、社会服务与技术开发双路并行模式,切实为质检工作提供可靠的执法基础和技术保障,为社会提供优质的检测服务。
  • 聚焦肉蛋奶安全:动物性食品中也有农药残留?
    动物性食品是指动物来源的食物,包括我们餐桌上常见的畜肉(猪肉、牛肉、羊肉等)、禽肉(鸡肉、鸭肉等)、蛋类、水产品(鱼类、虾、蟹、贝类等)、奶及其制品等。动物性食品为我们提供蛋白质、脂肪、矿物质和维生素等人体必需的营养物质。随着人们生活水平的提高,食品安全问题愈发引人关注,动物性食品作为我们饮食组成中的必要部分,其重要性不言而喻。 2021年11月,农业农村部、国家卫生健康委、市场监管总局在第488号公告中公布了包括GB 31658.8-2021《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定 气相色谱-质谱法》在内的36项食品安全国家标准,自2022年2月1日起实施。GB 31658.8-2021标准针对常见动物性食品中的多种拟除虫菊酯类农药残留量测试,提供了配备负化学电离源(NCI)的气相色谱-质谱检测方法。 拟除虫菊酯的“前世今生” 菊酯是一种天然的杀虫剂,从除虫菊花中分离萃取而得,其活性成分包括除虫菊素I、除虫菊素II等6种化合物。天然除虫菊酯的杀虫效果好,但见光易分解。20世纪60年代,在天然除虫菊酯化学结构和构型研究清楚的基础上,化学家着手开发一类具有光稳定性的除虫菊酯的类似物,即拟除虫菊酯类农药。 常见拟除虫菊酯类化合物 拟除虫菊酯的化学结构和生物活性类似天然除虫菊酯,具有高效、广谱、相对低毒、低残留等优点,被广泛用于农作物的病虫害防治,但其使用不当时也会通过食物链的富集作用残留在动植物体内,进而对人类健康造成危害。 限值与管控 针对此类农药,GB 2763-2021《食品安全国家标准-食品中农药最大残留限量》中已涵盖了11种动物性食品中甲氰菊酯、联苯菊酯等多种菊酯化合物的最大残留限量。在其引用的测试标准中,检测方法多为气相色谱法或气相色谱-质谱法。 而在本次公布的GB 31658.8-2021《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定 气相色谱-质谱法》中,采用了配备负化学电离源(NCI)的气相色谱-质谱仪,对牛、羊、猪肌肉、脂肪和肝脏中的溴氰菊酯、联苯菊酯等多种拟除虫菊酯类农药残留量进行测定。 岛津解决方案 使用岛津GCMS-QP2020 NX产品,建立了使用负化学电离源(NCI)测定拟除虫菊酯类农药残留量的方案。 岛津气相色谱质谱仪GCMS-QP2020 NX • 方法介绍 • 标准谱图图1 7种拟除虫菊酯50 ng/mL混合标准溶液色谱图(1:七氟菊酯 2:联苯菊酯 3-6:氟氯氰菊酯 7-8:氟氰戊菊酯 9-10:氰戊菊酯 11-12:氟胺氰菊酯13-14:溴氰菊酯) 图2 部分化合物校准曲线 此方法在10-1000 ng/mL范围内线性良好,灵敏度和准确度均可满足标准要求。 • 样品测试结果分别取市售牛里脊肉、猪肉样品进行实验,样品谱图见图2所示,2个样品中均未检出7种拟除虫菊酯类农药残留。 图3 样品测试谱图 What’s more? 在标准规定的方法之外,岛津还开发了利用气相色谱-串级质谱GCMS-TQ8050 NX测试动物性食品中拟除虫菊酯类农药残留量的方案。此方法质谱部分配备EI源(电子轰击电离源),采用MRM(多反应监测)采集模式,目标化合物经二次电离/二次筛选后到达检测器,抗干扰能力更强,在复杂基质样品的低浓度化合物分析中体现了优越的灵敏度及准确性。 图4 部分化合物质量色谱图(20 ng/mL)及校准曲线 总结 动物性食品是人体重要的蛋白质、维生素等营养物质的来源,随着大家食品安全意识的不断提高,人们“舌尖上的安全”也成为食品行业关注的热点。岛津公司秉承“为了人类和地球的健康”的理念,快速应对国标动物性食品中拟除虫菊酯检测项目,让您吃得营养、吃得健康。 本文内容非商业广告,仅供专业人士参考。
  • 坪山新区动植物检验检测中心开业
    由朗诚实业规划设计的、具有国内一流水平的区级农产品检测实验室---深圳市坪山新区动植物检验检测中心于昨日宣布开业。坪山新区动植物检验检测中心的建设为新区农产品质量安全提供了有力的技术平台,为新区的经济建设和民生将起到保驾护航的作用,在大运会来临之际,也更好的保障大运会食品安全 。 深圳市农业渔业局局长何永志,坪山新区党工委书记杨绪松兴致勃勃地参加了简洁的开业典礼并剪彩,宣布深圳市坪山新区动植物检验检测中心正式开业
  • 日程公布!植物源性食品质量安全检测技术及应用新进展网络会即将召开
    近年来,随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。但植物源性食品的原料、植物生长的生态环境、食品贮藏、加工、运输、销售中带来的安全问题也引发大众讨论。为了进一步促进植物源性食品质量安全检测工作的交流与合作,仪器信息网将在2023年9月21日组织召开“植物源性食品质量安全检测技术及应用新进展”主题网络研讨会,围绕大家关心的话题共同探讨,为用户、专家和学者搭建优质、有效的交流平台。点击图片报名一、主办单位仪器信息网二、举办时间2023年9月21日报名链接:https://www.instrument.com.cn/webinar/meetings/zhiwy230921/ 三、会议日程植物源性食品质量安全检测技术及应用新进展9月21日上午报告题目报告专家单位09:30--10:00中国植物性食品研究进展刘锐农业农村部食物与营养发展研究所 副研究员10:00--10:30国内外全谷物食品质量标准现状与挑战朱宏农业农村部食物与营养发展研究所 副研究员10:30--11:00植物源性食品中功能成分检测方法与标准崔亚娟北京市营养源研究所有限公司 分析检测中心主任/研究员11:00--11:30GC-NCI-MS在果蔬农残检测中的应用包晓明岛津企业管理(中国)有限公司 应用工程师11:30--12:00苹果牛眼果腐病菌检疫鉴定方法吴品珊中国检验检疫科学研究院 研究员9月21日下午报告题目报告专家单位14:00--14:30茶叶加工品质的快速无损检测方法董春旺山东省农业科学院茶叶研究所 研究员14:30--15:00黑果枸杞冻干饮料的活性组分研究李玉林中国科学院西北高原生物研究所 研究员15:00--15:30不同品种蜂蜜鉴别和营养功能差异研究吴黎明中国农业科学院蜜蜂研究所 副所长/研究员15:30--16:00新型异质结的构建及其在真菌毒素光电化学检测中的应用熊成义湖北大学 讲师
  • 这位外长是在怀疑中国的动植物检验水平么?
    p   近日,中国海关在加拿大油菜籽中检出油菜茎基溃疡病菌、十字花科黑斑病菌、法国野燕麦、苍耳属(非中国种)、长芒苋等检疫性有害生物。因此,目前中国已经暂停从加拿大进口任何油菜籽(注:加拿大是世界第一大油菜产品出口国)。加拿大外长表示他不相信中国有什么科学依据。看得出,这位外长对于中国的动植物检验检疫技术水平不是很有信心。或者是这位外长想到了当年的挪威三文鱼?挪威政府可是足足花了6年时间来修复中挪外交关系,时任挪威驻华大使也不得不超期“服役”。 /p p   不过,在6日的记者会上外交部新闻司司长兼外交部新闻发言人陆慷就表示,中国海关是依法做出了这一决定,谁都知道有害物种一旦进入,将会危及农业和生态,同其他国家一样,中国也需要保障自己国民的健康和安全。 /p p   此前华为CFO孟晚舟被加拿大当局代表美国政府扣留后,中加关系一直处在阴云之中。在孟晚舟被扣一周时间内,就有大量中国企业减少和终止同加拿大企业的合作,甚至导致加拿大赖以生存的矿产资源也是瞬间失去了中方的市场,致使5天的时间就损失了3700亿。之后加拿大原计划访华的副外长北京行程及林业商业代表团访华谈判行程也被取消。联系此前的种种迹象,此次全面禁止进口加拿大油菜籽事件无疑对双方关系再次产生不利的影响,但这件事真的是我们在“报复”加拿大政府吗? /p p   其实,加拿大油菜理事会(Canola Council of Canada)的发言人Heidi Dancho在接受媒体采访时就表示,尽管中加外交上的冲突令人担忧,但现在“并没有明显证据能证明”这次油菜籽的事情和外交冲突有关。而今年3月1日海关公布的“加拿大输华小麦大麦大豆油菜籽注册企业名单”中,虽然没有了此次涉事的加拿大大型农产品企业“理查森国际”公司,仍然有近百家被允许对中国出口多种农产品的加拿大企业,其中,也包括允许未来向中国出口油菜籽的其他加拿大企业。 /p p   所以此次事件,恐怕更多还是加拿大油菜籽自己的问题。作为农料作物,油菜籽的进口管控及相关检测想必十分严格,特别是需要科学仪器的帮助。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/14b3e52c-5d8f-483c-b689-edb3378cce43.jpg" title=" 1e838.jpg" alt=" 1e838.jpg" / /p p   从有害生物的检测方法而言,形态学鉴定是有害生物传统检测方法。检疫人员需要长时间的经验积累才可对有害生物进行准确的形态学鉴定,鉴定所需时间也很长。随着生命科学领域的技术性革命不断出现,尤其是分子生物学技术在有害生物基因快速检测领域的大量应用,改变了单纯依靠形态学方法实现有害生物检测的历史。DNA分子鉴定、分子遗传标记等高新技术越来越多地应用到动植物检疫,从而大幅度提高了有害生物诊断的效率和准确率。 /p p   总之,无论国际风云如何变幻,食品安全的标准不能打折扣,因为它关乎每个人的健康。而动植物检验检疫无疑是国门的第一道技术防线。未来,我们也许会看到越来越多的新技术为国民的食品安全保驾护航。 /p
  • 天津检验检疫局动植物与食品检测中心“十二五”工作回眸
    p   “十二五”期间,动植物与食品检测中心紧紧围绕天津检验检疫局“十二五”科技发展规划“五个实现”的总体思路,大力开拓、勇于创新,以信息化建设、检测能力提升、基础设施设备建设、人才队伍建设、科研创新等为主攻方向,积极推进“科技兴检”战略举措,在维护天津口岸的正常进出口秩序、保障食品安全、严防疫情疫病方面发挥了重要的技术支撑作用。 /p p   过去五年,人才队伍建设得到进一步充实。“人才是第一生产力”,人才队伍建设是实验室创新发展的决定性因素,动植食中心重视人才引进,创造一切条件,鼓励职工在职深造、外出学习培养。“十二五”期间,动植食中心引进和培养博士11名,硕士28名 培养国家百千万人才工程专家1名,享受政府特殊津贴专家1名,正高级技术人员6名以及一大批系统内动物、植物、食品、微生物、转基因、检疫处理等领域专家。 /p p   过去五年,信息化建设得到进一步巩固。信息化建设是实验室发展水平的一个重要体现,“十二五”期间,动植食中心建立病、虫、草数据库,为昆虫杂草远程鉴定奠定基础 努力实现木质包装处理企业电子监管和木质包装防伪溯源体系的建立 不断加大等各类办公管理软件的投入使用,与高校合作开发应用《实验室仪器状态监控及数据集成系统》 充分利用中心网站、微信公众号等网络平台,借助实验室开放日、检企座谈会、进社区等活动,积极打造品牌、树立形象。 /p p   过去五年,基础设施设备不断完善。在质检总局及天津局的大力支持下,实验室设施设备投入不断加大,对实验室电路、气路、空间布局、安全卫生等环境进行改造不断完善,以满足发展需求 ICP-MS、同位素质谱、LC/MS、GC/MS、微生物鉴定系统等高通量、高分辨率新型仪器设备不断充实,为实验室快速发展奠定基础。 /p p   过去五年,实验室规划建设进一步优化。“十二五”期间,动植食中心以现有的国家重点实验室为依托,在进一步提高重点实验室水平的基础上,积极筹建新的国家重点及区域中心实验室,以点带面、合理规划、优化资源,促进各专业领域技术水平全面发展。根据天津口岸及自贸区进出口业务发展形式,分离出按照商品种类进行检测的专属实验室,做到检测更专业、更全面。2014年成立酒类检测实验室,已基本覆盖白酒、红酒、伏特加、威士忌、酒精饮料等产品中的营养成分、微生物、理化残留等技术领域。 /p p   过去五年,实验室检测能力不断提升。“十二五”期间,实验室不断加强能力建设,以满足国际贸易及国内市场检测需求。一是积极开发新的检测项目,扩大认可范围。检测能力从原来的14个领域扩增至目前包括食品、化妆品、饮用水、酒类、糖类、动植物检疫、水产品、乳及乳制品、肉制品等33个领域,检测项目参数扩增至2000余项。基本覆盖了生活饮用水、乳及乳制品、酒类全参数检测,重点加强国标方法认可能力。二是严把质量控制关。质量是实验室发展之根本,动植食中心通过积极参加外部能力验证计划/测量审核,严格制定并落实内部控制计划,确保检测质量。近五年,共计参加能力验证活动230余次,范围和频次均高于评审要求 人员比对、留样再测、盲样测试、添加回收试验等实验室内部质量控制手段,实现实验室检测人员全覆盖。 /p p   过去五年,科研工作硕果累累。“十二五”期间,动植食中心积极完成在研课题,对已经成熟的方法、项目等,加大技术性输出,寻求合作之路 全方位推进技术储备性工作的开展,充分利用中心新仪器的优势,开展深层次、前瞻性研究 结合国家、滨海新区的发展需要,拓宽科研视野,加大管理类等软课题研究投入 利用中心现有资源,充分发挥学科带头人作用,通过定期举办科技讲堂、博士论坛等活动,营造良好学术氛围。五年间,先后承担、参与科技部、质检总局、天津市、滨海新区、天津局等科研课题163项。获国家科技进步二等奖1项,省部级科技进步奖37项,滨海新区科技进步奖7项,中国食品科学技术学会技术进步奖2项,中国信息化(质检领域)奖1项,中国分析测试协会奖1项,中国商业联合会进步奖1项,天津局科技兴检奖18项 主持制定标准186项,其中国家标准20项,行业标准166项 在各类核心期刊共发表论文401篇,被SCI收录23篇 由标准出版社、科技出版社等出版《核酸扩增技术原理及应用》《过敏原及其成分的检测》《辐照食品鉴别技术及应用》等论著14部 获得国家专利授权81项。 /p p   动植食中心科技工作在路上,过去的努力与成绩为今后的工作奠定了基础。未来5年更将是检测技术突飞猛进的时期,全球化进程将持续加快,检验检疫事业改革正处于关键期,动植食中心将紧紧围绕质检总局及天津局未来科技发展总体部署,扎实工作,开拓创新,努力为推动天津检验检疫事业发展、服务滨海新区开发开放贡献力量。 /p p style=" TEXT-ALIGN: center" img title=" W020160718483692694528.jpg" src=" http://img1.17img.cn/17img/images/201607/insimg/2a2b0966-3626-45d2-85e7-52a9de9ff458.jpg" / /p p style=" TEXT-ALIGN: center" 检测动物源性食品 /p p    p style=" TEXT-ALIGN: center" & nbsp img title=" W020160718483692768294.jpg" src=" http://img1.17img.cn/17img/images/201607/insimg/48db309f-c83e-4592-b8d1-2f9db6dca66e.jpg" / /p p style=" TEXT-ALIGN: center"   对铬矿石进行检测 /p p style=" TEXT-ALIGN: center"    img title=" W020160718483692845521.jpg" src=" http://img1.17img.cn/17img/images/201607/insimg/6c5c0187-7362-4216-8531-d347be820679.jpg" / p style=" TEXT-ALIGN: center" & nbsp   对新西兰猕猴桃辐射剂量进行检测 /p p strong   2015年“科技兴检”获奖项目展示 /strong /p p strong   把好食品、药品安全第一关 /strong /p p   为应对美国、日本等发达国家和欧盟地区对我国出口食品、中草药、烟草等产品的严要求和满足国内食药领域安全。天津检验检疫局科研人员建立了系列检测方法,主要涉及进出口食品、中草药、烟草等产品中农、兽药残留物及生物毒素检测系列新方法、新装置的开发及集成应用,同时探索了中草药中农药残留物辐照降解研究。 /p p   科研小组主持的《农产品中有害残留物检测及辐照降解关键技术研究与应用》课题,获得2015质检总局科技奖三等奖。 /p p   课题组采用全二维气相色谱质谱技术分析中草药中103种农药残留,解决了中草药复杂基质分离、定性及定量难题 首次对中草药中常用农药残留物辐照降解规律及质量控制技术进行研究,填补了相关领域技术空白,确定了人参、白茯苓等中草药最佳辐照工艺 首次将二维液相色谱-组合质谱检测技术应用于动物源食品中不同结构的多种兽药残留分析检测,实现了在线净化和二维分离分析有机结合,填补了农兽残分析方法空白。 /p p   目前,该课题研究所建立的多项检测技术已在吉林、北京、厦门、陕西、河北等检验检疫局的检测中心得到了广泛应用,另外部分成果已转化为国家标准或行业标准并在质检、食药、农业、疾控及企业等相关检测机构得到了广泛应用。 /p p strong   食品中元素及其形态分析核心技术 /strong /p p    strong 研究与设备的研制应用 /strong /p p   天津局、深圳检验检疫局和北京吉天仪器有限公司合作共同完成的《食品中元素及其形态分析核心技术研究与设备的研制应用》课题,获得2015年质检总局科技兴检三等奖。该项目为了解决食品中元素及其形态分析的难点,针对不同基质、不同元素及其形态、接口技术、前处理提取和分离检测技术等进行了深入的系统研究,建立了铬、砷、汞、锡、镉等元素及其形态的分析方法。 /p p   本项目在以下方面有所创新:一是首次利用Cr(Ⅲ)与噻吩甲酰三氟丙酮(TTA)生成的络合物在石墨炉中的挥发性,建立了一种前处理简单、灵敏度高的测定食品中六价铬的分析方法 二是首次建立了一种石墨炉原子吸收法直接测定罐头食品中锡含量的分析方法,并将其上升为行业标准 三是基于上述检测技术的研究基础,研发了检测Cr(VI)的原子荧光光谱仪、检测汞、铅、镉和六价铬的原子荧光光谱仪、低温等离子体原子荧光光谱仪等多种新型仪器,并获专利授权。 /p p   系列方法的建立填补了元素形态分析领域方法标准上的空白,对我国元素形态分析标准体系的建设和完善起到推进和引领作用,同时能够引起国家相关限量卫生标准的改进,使元素检测和判定更加科学合理。该系列方法在深圳局、江苏局、深圳市天鉴检测技术公司、深圳市计量院等相关机构推广后,产生了良好的经济效益。同时提高了食品安全监管和进出口检验检疫执法的针对性和科学性,保障了国内市场和进出口市场良性发展,促进了社会和谐,创造了良好的社会效益。 /p p    strong 辐照检疫处理时代已然到来 /strong /p p   天津局科研人员研究明确了桔小实蝇、新菠萝灰粉蚧、扶桑绵粉蚧等重要水果害虫的辐照检疫处理技术指标,建立了一种安全、有效、环保的检疫处理方法 基于营养学角度,通过对水果色泽、失重率、腐烂率、维生素C、风味指标、基本营养成分、口感、货架期等营养价值指标进行了全面研究,系统评估了来自8个国家近20种水果的辐照安全性,提出了各种水果的辐照处理安全剂量 基于热释光原理,建立了检疫辐照水果定性鉴别方法,选用一定的参比剂量和判定阈值,并结合热释光发光曲线形状,可以定性鉴别100Gy以上检疫辐照水果。该科研成果为辐照检疫处理将来在我国实际应用提供了决策支持,进一步推动了我国辐照检疫处理的国际化进程。 /p p   科研小组主持的《进口水果危险性害虫快速鉴定与新型检疫处理技术研究及应用》课题,获得2015年质检总局科技兴检奖二等奖。 /p p   课题组攻关溴甲烷替代技术,从辐照导致害虫不育、辐照水果安全性、辐照检疫处理水果的检疫监管以及检疫辐照处理的操作程序等方面系统评估了辐照检疫处理的可行性,率先在系统内制定了水果辐照检疫处理技术行业标准,系统内首次建立了检疫辐照水果定性鉴别方法,一定程度上解决了检疫辐照处理的监管难题。 /p p   目前,该课题成果已在我国进口菲律宾香蕉中新菠萝灰粉蚧的辐照检疫处理中实际应用。 /p p /p p /p p /p p /p p /p /p /p
  • 2824万!质谱仪、色谱仪在内!南京海关动植物与食品检测中心公布8至12月仪器设备更新采购清单
    2024年8月22日,南京海关动植物与食品检测中心公布2024年8至12月仪器设备更新项目政府采购意向清单。包含质谱仪、色谱仪、显微镜等,预算金额共计2824万元。序号采购单位采购项目采购品目预算金额(万元)预计采购日期采购需求概况1南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100407质谱仪3102024年9月详见项目详情2南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100408色谱仪402024年9月详见项目详情3南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100407质谱仪1602024年9月详见项目详情4南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100407质谱仪1802024年9月详见项目详情5南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100407质谱仪2252024年9月详见项目详情6南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02109900其他仪器仪表292024年9月详见项目详情7南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100407质谱仪5122024年9月详见项目详情8南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02109900其他仪器仪表252024年9月详见项目详情9南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100407质谱仪2502024年9月详见项目详情10南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100301显微镜452024年9月详见项目详情11南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100408色谱仪482024年9月详见项目详情12南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100404光学式分析仪器652024年9月详见项目详情13南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100408色谱仪352024年9月详见项目详情14南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02109900其他仪器仪表1302024年9月详见项目详情15南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100408色谱仪502024年9月详见项目详情16南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100407质谱仪3652024年9月详见项目详情17南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100407质谱仪1552024年9月详见项目详情18南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100408色谱仪402024年9月详见项目详情19南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02109900其他仪器仪表702024年9月详见项目详情20南京海关动植物与食品检测中心南京海关动植物与食品检测中心2024年实验室仪器设备更新项目A02100408色谱仪902024年9月详见项目详情
  • ISO正在修订动物和植物油脂方法标准
    截止2010年4月11日,ISO/TC34/SC11(国际标准化组织/农产食品标准化技术委员会/谷物和豆类分技术委员会)已制定了67项关于谷物和豆类的标准,其中正在修订中的标准有11项。标准号、标准名称、中文名称、进展阶段具体如下表所示: 标准号 标准名称 中文名 阶段 ICS ISO/DIS 3656 Animal and vegetable fats and oils -- Determination of ultraviolet absorbance expressed as specific UV extinction 动物性和植物性油脂-紫外线吸收率的测定 40.20 67.200.10 ISO/FDIS 12871 Olive oils and olive-pomace oils -- Determination of aliphatic alcohols content by capillary gas chromatography 橄榄油和橄榄果渣油 -脂肪族醇含量的测定,毛细管气相色谱法 50.20 67.200.10 ISO/FDIS 12872 Olive oils and olive-pomace oils -- Determination of the 2-glyceryl monopalmitate content 橄榄油和橄榄果渣油 - 2-甘油单棕榈酸酯 50.20 67.200.10 ISO/FDIS 12873 Olive oils and olive-pomace oils -- Determination of wax content by capillary gas chromatography 橄榄油和橄榄果渣油 - 蜡含量的测定,毛细管气相色谱法 50.20 67.200.10 ISO/DIS 12966-2 Animal and vegetable fats and oils -- Gas chromatography of fatty acid methyl esters -- Part 2: Preparation of methyl esters of fatty acids 动物性和植物性油脂-脂肪酸甲酯的气相色谱 - 第2部分:脂肪酸甲基酯的制备 40.60 67.200.10 ISO/CD 12966-4 Animal and vegetable fats and oils -- Gas chromatography of fatty acid methyl esters -- Part 4: Determination of cis-, trans-, saturated, mono- and polyunsaturated fatty acids in vegetable or non-ruminant oils and fats 动物性和植物性油脂-脂肪酸甲酯的气相色谱- 4部分:蔬菜或非反刍动物油脂中的顺,转,饱和,单和多不饱和脂肪酸的测定 30.99 67.200.10 ISO/WD 14477 Vegetable fats and oils -- Determination of triacylglycerols -- Method by high performance liquid chromatography (HPLC) 植物油脂 - 甘油三酯的测定 - 高效液相色谱法(HPLC法) 20.99 67.200.10 ISO/CD 17932 Vegetable fats and oils - Determination of carotene content 植物油脂 - 胡萝卜素含量的测定 30.99 67.200.10 ISO/DTS 23647 Vegetable fats and oils -- Determination of wax content by gas chromatography 植物油脂-气相色谱法测定蜡含量 30.99 67.200.10 ISO/DTR 24054 Animal and vegetable fats and oils -- Determination of polycyclic aromatic hydrocarbons (PAH) -- Method using gas chromatography/mass spectrometry (GC/MS) 动物性和植物性油脂- 多环芳烃(PAH)的测定- 气相色谱法/质谱法(GC / MS) 30.60 67.200.10 ISO/DIS 27608.2 Animal and vegetable fats and oils -- Determination of Lovibond? colour -- Automatic method 动物性和植物性油脂- Lovibond?色素测定- 自动方法 40.99 67.200.10 对我国的启示: 目前,我国还没有上述动物和植物油脂的检测方法标准或需修订类似标准。因此,急需相关机构或技术委员会参与国际标准的制定,及时制定我国相关国家标准或行业标准,加强植物和动物油脂产品质量的检验、监督,以保障植物和动物油脂产品的质量安全。
  • 新品上市(十四)鸿蒙质选—食品安全检测标准物质
    甲醇中粉锈宁(三唑酮)溶液标准物质广泛适用于卫生、环保、医药、农业、化工、教学等领域的相关分析方法确认与评价、实验室质量控制,同时也适合计量系统量值传递,认证考核现场专用标准物质。 产品名称甲醇中粉锈宁(三唑酮)溶液标准物质产品信息产品信息适用于GB/T 5009.126-2003 植物性食品中三唑酮残留量的测定溯源性及定值方法本标准物质以配制值作为浓度标准值,采用气相色谱法进行量值核对。通过使用满足计量学特性要求的制备、测量方法和计量器具,确保标准物质量值的溯源性。包装、运输、储存及使用1.包装:本标准物质采用玻璃安瓿瓶包装,规格为1mL/支,使用时根据需要准确移取。2.运输:在运输时注意安瓿瓶包装防护,避免破损。3.储存及使用:冷藏避光条件下保存。使用前于室温(20℃±3℃)平衡,并摇动均匀。安瓿瓶一经打开,应立即使用,不可再次熔封后作为标准物质使用。该标准物质属于有毒有害物质,使用时应注意防护,戴口罩、乳胶手套,避免吸入及直接与皮肤接触。
  • 赫施曼助力动植物中角鲨烯含量的测定
    角鲨烯是一种高不饱和的天然萜类化合物,被广泛应用于医药和化妆品等相关领域。根据GB/T 43732-2024,动植物中角鲨烯含量的测定方法为:气相色谱法。非油脂类样品(油脂类样品直接皂化和甲酯化)经水解,乙醚-石油醚混合溶液提取,皂化和甲酯化。用正已烷萃取,经气相色谱法测定,外标法定量。实验涉及标准工作溶液的配置:角鲨烯标准工作溶液:用Miragen电动移液器加0.300mL标准储备液于100mL容量瓶中,再采用20mL规格的opus电子瓶口分配器,stepper模式设置4个体积分别为1.00、2.00、4.00、5.00mL,然后按分液键,将4个体积的标准储备液(100μg/mL)分别加到100mL容量瓶中,用正已烷定容,得到质量浓度为3.00、10.0、20.0、50.0、100μg/mL的系列溶液。样品前处理:1.非油脂类提取:水解后的样品,用瓶口分液器加入10mL95%乙醇,混匀,然后加入50mL乙醚-石油醚混合溶液,振摇5min,静置10min。用少量的乙醚-石油醚混合溶液冲洗具塞试管和塞子,将醚层转移到250mL烧杯中。按照以上步骤重复提取水解液两次,将三次收集的醚层合并到250mL烧杯中。放置于水浴锅上蒸发至干得到样品提取物。2.皂化及甲酯化:将提取物用正已烷溶解并完全转移至25mL试管中,用氮吹仪吹干,用Miragen电动移液器加入1mL的1moL/L氢氧化钾-甲醇溶液,在涡旋振荡器上振荡2min,用Miragen电动移液器加入5.0mL正已烷,在涡旋振荡器上萃取1min,用饱和氯化钠溶液洗涤至中性,静置,使水相和正已烷相分层。用Miragen电动移液器取正已烷相3mL于10mL试管中,加入约0.3g无水硫酸钠进行干燥,用0.22μm滤膜过滤,待测。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的常规液体(酸、碱、有机试剂等)的移取,而实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加和分液,大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 《食品中百草枯等54种农药最大残留限量》发布
    中华人民共和国卫生部 中华人民共和国农业部 公告 2011年第2号   根据《食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布食品安全国家标准《食品中百草枯等54种农药最大残留限量》(GB26130—2010),自2011年4月1日起实施。   特此公告。   二〇一一年一月二十一日   附件: 食品中百草枯等54种农药最大残留限量.doc   目 录   前 言. 3   1 范围. 4   2 规范性引用文件. 4   3 术语和定义. 5   4 技术要求. 5   4.1 百草枯(paraquat). 6   4.2 苯丁锡(fenbutatin oxide). 6   4.3 苯菌灵(benomyl). 6   4.4 苯醚甲环唑(difenoconazole). 6   4.5 吡蚜酮(pymetrozine). 7   4.6 丙森锌(propineb). 7   4.7 草甘膦(glyphosate). 7   4.8 虫酰肼(tebufenozide). 7   4.9 除虫脲(diflubenzuron). 8   4.10 春雷霉素(kasugamycin). 8   4.11 敌百虫(trichlorfon). 8   4.12 地虫硫磷(fonofos). 9   4.13 丁硫克百威(carbosulfan). 9   4.14 毒死蜱(chlorpyrifos). 9   4.15 多菌灵(carbendazim). 9   4.16噁草酮(oxadiazon). 10   4.17噁霉灵(hymexazol). 10   4.18二嗪磷(diazinon). 10   4.19氟虫腈(fipronil). 10   4.20氟硅唑(flusilazole). 11   4.21氟氯氰菊酯(cyfluthrin). 11   4.22腐霉利(procymidone). 11   4.23 甲胺磷(methamidophos). 12   4.24甲基毒死蜱(chlorpyrifos-methyl). 12   4.25甲基硫菌灵(thiophanate-methyl). 12   4.26甲基异柳磷(isofenphos-methyl). 12   4.27甲萘威(carbaryl). 13   4.28甲氧虫酰肼(methoxyfenozide). 13   4.29腈苯唑(fenbuconazole). 13   4.30喹啉铜(oxine-copper). 13   4.31 乐果(dimethoate). 14   4.32硫丹(endosulfan). 14   4.33马拉硫磷(malathion). 14   4.34咪鲜胺(prochloraz). 15   4.35嘧菌酯(azoxystrobin). 15   4.36灭多威(methomyl). 15   4.37灭瘟素(blasticidin-S). 15   4.38灭锈胺(mepronil). 16   4.39嗪草酮(metribuzin). 16   4.40噻虫嗪(thiamethoxam). 16   4.41噻菌灵(thiabendazole). 16   4.42噻嗪酮(buprofezin). 17   4.43噻唑磷(fosthiazate). 17   4.44三唑锡(azocyclotin). 17   4.45杀螟丹(cartap). 17   4.46杀螟硫磷(fenitrothion). 18   4.47五氯硝基苯(quintozene). 18   4.48烯唑醇(diniconazole). 18   4.49辛硫磷(phoxim). 18   4.50氧乐果(omethoate). 19   4.51乙烯利(ethephon). 19   4.52 乙酰甲胺磷(acephate). 19   4.53异丙甲草胺(metolachlor). 20   4.54异菌脲(iprodione). 20   农药英文通用名称索引. 21   农药中文通用名称索引. 23   前 言   本标准按照GB/T 1.1-2009给出的规则起草。   本标准中乙酰甲胺磷和甲胺磷在糙米中的相关规定代替GB 2763-2005中乙酰甲胺磷和甲胺磷在稻谷上的相关规定。   本标准与国际食品法典委员会(CAC)标准《食品中农药最大残留限量》(2009)中的相关规定的一致性程度为非等同。   食品中百草枯等54种农药最大残留限量   1 范围   本标准规定了食品中百草枯等54种农药的最大残留限量。   本标准适用于与限量相关的食品种类。   2 规范性引用文件   下列文件对于本标准的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。   GB/T 5009.21 粮、油、菜中甲萘威残留量的测定   GB/T 5009.102 植物性食品中辛硫磷农药残留量的测定   GB/T 5009.103 植物性食品中甲胺磷和乙酰甲胺磷农药残留量的测定   GB/T 5009.107 植物性食品中二嗪磷残留量的测定   GB/T 5009.144 植物性食品中甲基异柳磷残留量的测定   GB/T 5009.145 植物性食品中有机磷和氨基甲酸酯类农药多种残留的测定   GB/T 5009.147 植物性食品中除虫脲残留量的测定   GB/T 5009.184 粮食、蔬菜中噻嗪酮残留量的测定   GB/T 5009.201 梨中烯唑醇残留量的测定   GB/T 19648 水果和蔬菜中500种农药及相关化学品残留的测定 气相色谱-质谱法   GB/T 19649 粮谷中475种农药及相关化学品残留量的测定 气相色谱-质谱法   GB/T 20769 水果和蔬菜中450种农药及相关化学品残留量的测定 液相色谱-串联质谱法   GB/T 23376 茶叶中农药多残留测定 气相色谱/质谱法   GB/T 23380 水果、蔬菜中多菌灵残留的测定 高效液相色谱法   GB/T 23750 植物性产品中草甘膦残留量的测定 气相色谱-质谱法   NY/T 761 蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定   NY/T 1016 水果蔬菜中乙烯利残留量的测定 气相色谱法   NY/T 1096 食品中草甘膦残留量测定   NY/T 1453 蔬菜及水果中多菌灵等16种农药残留测定 液相色谱-质谱-质谱联用法   NY/T 1680 蔬菜水果中多菌灵等4种苯并咪唑类农药残留量的测定 高效液相色谱法   SN 0150 出口水果中三唑锡残留量检验方法   SN 0340 出口粮谷、蔬菜中百草枯残留量检验方法 紫外分光光度法   SN 0493 出口粮谷中敌百虫残留量检验方法   SN 0592 出口粮谷及油籽中苯丁锡残留量检验方法   SN/T 1923 进出口食品中草甘膦残留量的检测方法 液相色谱-质谱 质谱法   SN/T 1975 进出口食品中苯醚甲环唑残留量的检测方法 气相色谱-质谱法   SN/T 1976 进出口水果和蔬菜中嘧菌酯残留量检测方法 气相色谱法   SN/T 1982 进出口食品中氟虫腈残留量检测方法 气相色谱-质谱法   SN/T 1990 进出口食品中三唑锡和三环锡残留量的检测方法 气相色谱-质谱法   SN/T 2158 进出口食品中毒死蜱残留量检测方法   SN/T 2236 进出口食品中氟硅唑残留量检测方法 气相色谱-质谱法   JAP-018 吡蚜酮检测方法   JAP-055 氟定脲、除虫脲、虫酰肼、氟苯脲、氟虫脲、氟铃脲和氟丙氧脲检测方法   德国食品与饲料法(LFGB §64) 推荐官方分析方法(2010年版)   3 术语和定义   下列术语和定义适用于本文件。   3.1   残留物 pesticide residues   任何由于使用农药而在农产品及食品中出现的特定物质,包括被认为具有毒理学意义的农药衍生物,如农药转化物、代谢物、反应产物以及杂质等。   3.2   最大残留限量 maximium residue limits (MRLs)   在生产或保护商品过程中,按照农药使用的良好农业规范(GAP)使用农药后,允许农药在各种农产品及食品中或其表面残留的最大浓度。   3.3   每日允许摄入量 acceptable daily intakes (ADI)   人类每日摄入某物质至终生,而不产生可检测到的对健康产生危害的量,以每千克体重可摄入的量(毫克)表示,单位为mg/kg bw。   4 技术要求   每种农药的最大残留限量规定如下。   4.1 百草枯(paraquat)   4.1.1 主要用途:除草剂   4.1.2 ADI: 0.005 mg/kg bw   4.1.3 残留物:百草枯阳离子   4.1.4 最大残留限量:应符合表1的规定。   表 1 食品名称 最大残留限量( mg/kg) 棉籽 0.2 香蕉 0.02 苹果 0.05* *: 因该数值为方法的最低检出限,该限量为临时限量,下同。   4.1.5 检测方法:按SN 0340规定的执行。   4.2 苯丁锡(fenbutatin oxide)   4.2.1 主要用途:杀螨剂   4.2.2 ADI: 0.03 mg/kg bw   4.2.3 残留物:苯丁锡   4.2.4 最大残留限量:应符合表2的规定。  表 2 食品名称 最大残留限量(mg/kg) 柑橘 1   4.2.5 检测方法:参照SN 0592规定的方法测定。   4.3 苯菌灵(benomyl)   4.3.1 主要用途:杀菌剂   4.3.2 ADI: 0.1 mg/kg bw   4.3.3 残留物:苯菌灵和多菌灵的总和   4.3.4 最大残留限量:应符合表3的规定。   表 3   食品名称 最大残留限量(mg/kg) 柑橘 5** 梨 3** **: 因无相关的监测方法,该限量为临时限量,下同。   4.3.5 检测方法:参照GB/T 23380、NY/T 1680规定的方法执行。   4.4 苯醚甲环唑(difenoconazole)   4.4.1 主要用途:杀菌剂   4.4.2 ADI: 0.01 mg/kg bw   4.4.3 残留物:苯醚甲环唑   4.4.4 最大残留限量:应符合表4的规定。   表 4 食品名称 最大残留限量(mg/kg) 茶叶 10 大蒜 0.2 柑橘 0.2 荔枝0.5   3.4.5 检测方法:按GB/T 19648、GB/T 20769、SN/T 1975规定的方法执行。   4.5 吡蚜酮(pymetrozine)   4.5.1 主要用途:杀虫剂   4.5.2 ADI: 0.03 mg/kg bw   4.5.3 残留物:吡蚜酮   4.5.4 最大残留限量:应符合表5的规定。   表 5 食品名称 最大残留限量(mg/kg) 小麦 0.02   4.5.5 检测方法:按JAP-018规定的方法执行。   4.6 丙森锌(propineb)   4.6.1 主要用途:杀菌剂   4.6.2 ADI: 0.007 mg/kg bw   4.6.3 残留物:丙森锌(以CS2计)   4.6.4 最大残留限量:应符合表6的规定。   表 6 食品名称 最大残留限量(mg/kg) 大白菜 5 番茄 5 黄瓜 5   4.6.5 检测方法:按GB/T 20769规定的方法执行。   4.7 草甘膦(glyphosate)   4.7.1 主要用途:除草剂   4.7.2 ADI: 1 mg/kg bw   4.7.3 残留物:草甘膦   4.7.4 最大残留限量:应符合表7的规定。   表 7 食品名称 最大残留限量(mg/kg) 茶叶 1 柑橘 0.5 苹果 0.5   4.7.5 检测方法:茶叶、柑橘按SN/T 1923规定的方法执行 苹果按GB/T 23750、NY/T 1096规定的方法执行。   4.8 虫酰肼(tebufenozide)   4.8.1 主要用途:杀虫剂   4.8.2 ADI: 0.02 mg/kg bw   4.8.3 残留物:虫酰肼   4.8.4 最大残留限量:应符合表8的规定。   表 8 食品名称 最大残留限量(mg/kg) 结球甘蓝 1   4.8.5 检测方法:按GB/T 20769 规定的方法执行。   4.9 除虫脲(diflubenzuron)   4.9.1 主要用途:杀虫剂   4.9.2 ADI: 0.02 mg/kg bw   4.9.3 残留物:除虫脲   4.9.4 最大残留限量:应符合表9的规定。   表 9   食品名称 最大残留限量(mg/kg) 茶叶 20   4.9.5 检测方法:按JAP-055或参照GB/T 5009.147规定的方法执行。   4.10 春雷霉素(kasugamycin)   4.10.1 主要用途:杀菌剂   4.10.2 ADI: 0.113 mg/kg bw   4.10.3 残留物:春雷霉素   4.10.4 最大残留限量:应符合表10的规定。   表 10 食品名称 最大残留限量(mg/kg) 糙米 0.1** 番茄 0.05**   4.11 敌百虫(trichlorfon)   4.11.1 主要用途:杀虫剂   4.11.2 ADI: 0.002 mg/kg bw   4.11.3 残留物:敌百虫和敌敌畏的总和。   4.11.4 最大残留限量:应符合表11的规定。   表 11 食品名称 最大残留限量(mg/kg) 糙米 0.1 结球甘蓝 0.1 普通白菜 0.1   4.11.5 检测方法:糙米按SN 0493规定的方法执行 甘蓝、普通白菜按GB/T 20769、NY/T 761规定的方法执行。   4.12 地虫硫磷(fonofos)   4.12.1 主要用途:杀虫剂   4.12.2 ADI: 0.002 mg/kg bw   4.12.3 残留物:地虫硫磷   4.12.4 最大残留限量:应符合表12的规定。   表 12 食品名称 最大残留限量(mg/kg) 花生 0.1 甘蔗 0.1   4.12.5 检测方法:花生按GB/T 19649规定的方法执行 甘蔗按GB/T 19648、GB/T 20769、NY/T 761规定的方法执行。   4.13 丁硫克百威(carbosulfan)   4.13.1 主要用途:杀虫剂   4.13.2 ADI: 0.01 mg/kg bw   4.13.3 残留物:丁硫克百威、克百威、3-羟基克百威的总和。   4.13.4 最大残留限量:应符合表13的规定。   表 13 食品名称 最大残留限量(mg/kg) 糙米 0.5 柑橘 1 苹果 0.2 花生 0.05 黄瓜 0.2 节瓜 1 结球甘蓝 1   4.13.5 检测方法:柑橘、苹果、黄瓜、节瓜、甘蓝按NY/T 761规定的方法执行 花生、糙米按LFGB §64规定的方法执行。   4.14 毒死蜱(chlorpyrifos)   4.14.1 主要用途:杀虫剂   4.14.2 ADI: 0.01 mg/kg bw   4.14.3 残留物:毒死蜱   4.14.4 最大残留限量:应符合表14的规定。   表 14 食品名称 最大残留限量(mg/kg) 荔枝 1   4.14.5 检测方法:按GB/T5009.145、GB/T 19648、GB/T 20769、NY/T 761、SN/T 2158规定的方法执行。   4.15 多菌灵(carbendazim)   4.15.1 主要用途:杀菌剂   4.15.2 ADI: 0.03 mg/kg bw   4.15.3 残留物:多菌灵   4.15.4 最大残留限量:应符合表15的规定。   表 15 食品名称 最大残留限量(mg/kg) 柑橘 5 西瓜 0.5 韭菜 2   4.15.5 检测方法:按GB/T 23380、NY/T 1453、NY/T 1680规定的方法执行。   4.16噁草酮(oxadiazon)   4.16.1 主要用途:除草剂   4.16.2 ADI: 0.0036 mg/kg bw   4.16.3 残留物:噁草酮   4.16.4 最大残留限量:应符合表16的规定。   表 16 食品名称 最大残留限量(mg/kg) 糙米 0.05 花生 0.1 棉籽 0.1   4.16.5 检测方法:糙米按GB/T 19649规定的方法执行 花生、棉籽按LMBG §35规定的方法执行。   4.17噁霉灵(hymexazol)   4.17.1 主要用途:杀菌剂   4.17.2 ADI: 0.2mg/kg bw   4.17.3 残留物:噁霉灵   4.17.4 最大残留限量:应符合表17的规定。   表 17 食品名称 最大残留限量(mg/kg) 糙米 0.1**   4.18二嗪磷(diazinon)   4.18.1 主要用途:杀虫剂   4.18.2 ADI: 0.005 mg/kg bw   4.18.3 残留物:二嗪磷   4.18.4 最大残留限量:应符合表18的规定。   表 18 食品名称 最大残留限量(mg/kg) 花生 0.5   4.18.5 检测方法:按GB/T 5009.107、GB/T 19649或参照NY/T 761规定的方法执行。   4.19氟虫腈(fipronil)   4.19.1 主要用途:杀虫剂   4.19.2 ADI: 0.0002 mg/kg bw   4.19.3 残留物:氟虫腈母体。   4.19.4 最大残留限量:应符合表19的规定。   表 19 食品名称 最大残留限量(mg/kg) 结球甘蓝 0.02 糙米 0.02   4.19.5 检测方法:甘蓝按GB/T 19648、GB/T 20769规定的方法执行 糙米按GB/T 19649、SN/T 1982规定的方法执行。   4.20氟硅唑(flusilazole)   4.20.1 主要用途:杀菌剂   4.20.2 ADI: 0.007 mg/kg bw   4.20.3 残留物:氟硅唑   4.20.3 最大残留限量:应符合表20的规定。   表 20 食品名称 最大残留限量(mg/kg) 黄瓜 1 刀豆 0.2 葡萄 0.5 香蕉 1   4.20.5 检测方法:按GB/T 19648、GB/T 20769、SN/T 2236规定的方法执行。   4.21氟氯氰菊酯(cyfluthrin)   4.21.1 主要用途:杀虫剂   4.21.2 ADI: 0.04 mg/kg bw   4.21.3 残留物:氟氯氰菊酯   4.21.4 最大残留限量:应符合表21的规定。   表 21 食品名称 最大残留限量(mg/kg) 蘑菇 0.3   4.21.5 检测方法:按GB/T 19648、NY/T 761规定的方法执行。   4.22腐霉利(procymidone)   4.22.1 主要用途:杀菌剂   4.22.2 ADI: 0.1 mg/kg bw   4.22.3 残留物:腐霉利   4.22.4 最大残留限量:应符合表22的规定。   表 22 食品名称 最大残留限量(mg/kg) 番茄 2   4.22.5 检测方法:按GB/T 19648、NY/T 761规定的方法执行。   4.23 甲胺磷(methamidophos)   4.23.1 主要用途:杀虫剂   4.23.2 ADI:0.004mg/kg体重   4.23.3 残留物:甲胺磷(乙酰甲胺磷的代谢物)   4.23.4 最大残留限量:应符合表23的规定。   表 23 食品名称 最大残留限量(mg/kg) 糙米 0.5   4.23.5 检测方法:按GB/T 5009.103。   4.24甲基毒死蜱(chlorpyrifos-methyl)   4.24.1 主要用途:杀虫剂   4.24.2 ADI: 0.01 mg/kg bw   4.24.3 残留物:甲基毒死蜱   4.24.4 最大残留限量:应符合表24的规定。   表 24 食品名称 最大残留限量(mg/kg) 棉籽 0.02 结球甘蓝 0.1   4.24.5 检测方法:棉籽按GB/T 19649规定的方法执行 甘蓝GB/T 19648、GB/T 20769、NY/T 761规定的方法执行。   4.25甲基硫菌灵(thiophanate-methyl)   4.25.1 主要用途:杀菌剂   4.25.2 ADI: 0.08 mg/kg bw   4.25.3 残留物:甲基硫菌灵和多菌灵之和   4.25.4 最大残留限量:应符合表25的规定。   表 25 食品名称 最大残留限量(mg/kg) 小麦 0.5 糙米 1   4.25.5 检测方法:按GB/T 20769、NY/T 1680规定的方法执行。   4.26甲基异柳磷(isofenphos-methyl)   4.26.1 主要用途:杀虫剂   4.26.2 ADI: 0.003 mg/kg bw   4.26.3 残留物:甲基异柳磷   4.26.4 最大残留限量:应符合表26的规定。   表 26 食品名称 最大残留限量(mg/kg) 玉米 0.02   4.26.5 检测方法:按GB/T 5009.144或参照NY/T 761规定的方法执行。   4.27甲萘威(carbaryl)   4.27.1 主要用途:杀虫剂   4.27.2 ADI: 0.008 mg/kg bw   4.27.3 残留物:甲萘威   4.27.4 最大残留限量:应符合表27的规定。   表 27 食品名称 最大残留限量(mg/kg) 普通白菜 1******: 因膳食暴露评估依据的数据不充分,该限量为临时限量,下同。   4.27.5 检测方法:按GB/T 5009.21、GB/T 5009.145、GB/T 20769、NY/T 761规定的方法执行。   4.28甲氧虫酰肼(methoxyfenozide)   4.28.1 主要用途:杀虫剂   4.28.2 ADI: 0.1 mg/kg bw   4.28.3 残留物:甲氧虫酰肼   4.28.4 最大残留限量:应符合表28的规定。   表 28 食品名称 最大残留限量(mg/kg) 结球甘蓝 2 苹果 3   4.28.5 检测方法:按GB/T 20769规定的方法执行。   4.29腈苯唑(fenbuconazole)   4.29.1 主要用途:杀菌剂   4.29.2 ADI: 0.03 mg/kg bw   4.29.3 残留物:腈苯唑   4.29.4 最大残留限量:应符合表29的规定。   表 29 食品名称 最大残留限量(mg/kg) 糙米 0.1   4.29.5 检测方法:按GB/T 19648、GB/T 20769规定的方法执行。   4.30喹啉铜(oxine-copper)   4.30.1 主要用途:杀菌剂   4.30.2 ADI: 0.02 mg/kg bw   4.30.3 残留物:喹啉铜   4.30.4 最大残留限量:应符合表30的规定。   表 30 食品名称 最大残留限量(mg/kg) 苹果 2** 黄瓜
  • “动植物生物反应器”主题项目各课题通过验收
    p   利用真核生物作为蛋白表达的工厂来生产蛋白药物、疫苗等重组蛋白产品是现代生物技术的重要应用,我国自上世纪90年代开始关注该领域科技创新。“十二五”期间,国家863计划在现代农业技术领域设置了“动植物生物反应器”主题项目对该领域进行持续支持。2017年3月17日,农村中心组织专家在北京对该项目到期课题进行了验收。陈焕春院士和陈晓亚院士带领验收专家组听取了课题负责人对课题执行情况的汇报,审查了相关材料。经质询和讨论,验收专家组认为所有课题完成了规定的主要任务和指标,同意通过验收。 /p p   “十二五”期间,“动植物生物反应器”项目各课题组建立了高表达且稳定遗传的乳腺生物反应器及水稻胚乳生物反应器等技术平台和体系,研制了蚕蛹高效表达口服蛋白药物,建立了动物基因工程疫苗研发平台、鹿茸生物反应器及多基因协同高效表达等植物代谢工程技术体系,开发了植物油体生物反应器外源药物蛋白表达体系、高效表达目的基因的水牛生物反应器、高表达花色素苷及胡萝卜素的甘薯生物反应器等相关动植物生物反应器。相关课题组还建设了设施先进的重组蛋白类药物与疫苗的研究与生产基地,这些成果为现代生物技术向产业化过渡迈出了夯实的一步,为我国创新技术领域的升级与指导提供了新的方向和重要理论和实践支撑。 /p p br/ /p
  • PCR在动植物病害检测和鉴定中的应用|iCPCR2023在线开讲
    PCR在动植物疫病应用广泛5月29日,《自然通讯》(Nature Communications)杂志网站刊登了“在猪中检测到高致死性基因型I和II重组非洲猪瘟病毒”的研究。研究称,哈兽研研究团队在江苏、河南和内蒙采集的猪样本中分离出3株非洲猪瘟病毒基因I型和基因II型的重组体,结果表明,重组病毒JS/LG/21在猪中是高度致死和可传播的。重大动物疫病、人畜共患病危及公共卫生安全。非洲猪瘟从2018年延绵到现在,一直被生猪养殖界称为世界性难题。值得关注的是,荧光PCR检测方法是非洲猪瘟确诊的重要标准,世界粮农组织及中国农村农业局均推荐优先采用荧光PCR检测方法进行核酸检测诊断非洲猪瘟。而植物病害严重危害农业生产,不仅危害农作物产量的减少,而且在一定程度上还严重威胁农产品质量安全及国际贸易。应用PCR扩增技术可将很少的病原微生物核酸扩增放大,可以用于植物病害的早期诊断。病害的防治通常是预防大于治疗,浓度偏低的病毒病标样的准确诊断和检测对病害的有效控制非常重要。目前,PCR技术在我国植物病害检测中已得到了广泛应用,覆盖真菌类、细菌类、病毒类的检测研究。聚焦动植物疫病,iCPCR2023全阵容嘉宾开讲PCR和建立在PCR基础上的分子生物学技术以其灵敏、快速、简便等优点,能将病害快速、准确的鉴定出来,在动植物病害检测和鉴定中得到了广泛应用。2023年6月28-30日,由仪器信息网举办的第七届PCR技术网络会议(iCPCR 2023)将在线开播,众位PCR技术和仪器研发专家,PCR技术应用专家,前沿科学研究PI等嘉宾将在3i讲堂分享精彩报告。本次会议特别设置了【动植物疫病应用】分会场,特邀多位嘉宾分享PCR在动植物疫病检查中的应用与经验。立即报名》》》精彩报告提前揭晓:原霖 实验室技术总监 北京中科基因技术股份有限公司《数字PCR在污水等复杂基质中的动物病原检测》(6月30日上午开讲 点击报名 )原霖 博士 高级兽医师,北京中科基因技术股份有限公司 实验室技术总监,“原博士带你做检测”公众号创始人。毕业于中国农业大学。全国标准物质技术评审专家库专家、全国标准样品技术委员会动物防疫标准样品专业工作组(SAC/TC118/WG15)组员、全国生化检测标准化技术委员会(SAC/TC 387)成员。目前主要从事检测实验室质量控制与标准化研究。已经研制了ASFV和PRRSV等10余项国家标准物质/标准样品。PRRSV核酸标准物质为我国兽医领域第一个核酸定量有证标准物质。建立了非洲猪瘟、禽流感和蓝耳病等数十个数字PCR方法。主持及参与国家重点研发计划2项,参与起草《医学实验室 核酸检测质量和安全指南》(CNAS-TRL-018)等标准10项,参编书籍6本;发表学术论文30余篇。王少林 教授 中国农业大学动物医学院《高通量扩增子检测技术在动物病原与耐药性检测中的应用》(6月30日上午开讲 点击报名 )王少林,教授,现就职于中国农业大学动物医学院,2003年获得中国农业大学生物学学士学位,2009年获得美国奥本大学分子遗传学博士学位,入选中组部万人计划“青年拔尖人才”。主要从事药理基因组, 毒理基因组,微生物基因组、宏基因组和生物信息学方面的研究;在重要国际期刊上发表SCI论文100余篇,主要研究成果论文引用5000次以上,参与出版英文著作4个章节,主持国家重点研发计划课题、自然科学基金、农业部细菌耐药性监测项目等10项。史喜菊 博士/研究员 中国海关科学技术研究中心《多重荧光PCR在动物疫病检测中的应用》(6月30日上午开讲 点击报名 )史喜菊博士,研究员,中国海关科学技术研究中心,主要从事境外动物疫病风险评估、进出境动物疫病分子诊断技术研究和实验室质量管理体系研究。“十三五”、“十四五”国家重点研发计划课题主持人,先后主持/负责完成国家级、省部级科研课题22项,科研成果曾获得北京市科技奖励二等奖1项、三等奖1项、原国家质检总局科技兴检二等奖1项,三等奖3项,获海关总署科技成果评定三等奖1项。获得授权的国家发明专利9项,副主编出版专著2部,参编、参译著作7部;以第一作者发表文章50多篇,其中SCI文章6篇,主持/参与制定行业标准15项。夏应菊 高级兽医师 中国兽医药品监察所《猪瘟和非洲猪瘟假病毒的研制与应用》(6月30日下午开讲 点击报名 )夏应菊博士,高级兽医师,中国兽医药品监察所,国家/WOH猪瘟参考实验室骨干。从事猪瘟、非洲猪瘟等重大猪病诊断方法、疫苗评价及免疫机制等研究工作。国家猪瘟参考实验室学术委员会委员、中国畜牧兽医学会动物传染病学分会青年学者专业组委员。主持和参加 “十四五”、“十三五”国家重点专项课题、国家自然科学基金面上项目等国家和省部级课题8项。发表论文30余篇,主编、参编著作3部,获专利3项。邓丛良 研究员 中国海关科学技术研究中心《数字荧光PCR技术在检验检疫中的应用》(6月30日下午开讲 点击报名 )邓丛良,博士,研究员,北京植物病理学会常务理事,现在中国海关技术研究中心动物研究所从事物种查验工作。在植物病毒检测技术研究方面具有深入研究,第一作者和通讯作者发表论文30余篇,研究成果分获省部级1等奖,2等奖和3等奖计5项。冯小宇 正高级兽医师北京市动物疫病预防控制中心《动物疫病检测用标准物质的研究与应用》(6月30日下午开讲 点击报名)冯小宇,北京市动物疫病预防控制中心正高级兽医师。中国微生物学会兽医微生物学专业委员会委员,北京市奶牛创新团队岗位专家。从事动物疫病监测诊断、防控技术研究及推广应用工作。主持或参与省部级科研项目 15 项;获省部级奖励 6 项、国家标准物质 2 项、新兽药证书 1 项、发明专利 9 项、实用新型专利 4 项,发表论文30 余篇。获北京市青年文明号、北京市动植物疫情防控先进个人、北京市郊区青年致富带头人等荣誉称号。蒲静 研究员 中国海关科学技术研究中心《PCR技术在动物源性成分鉴定中的应用》(6月30日下午开讲 点击报名 )蒲静,研究员,2005年毕业于中国农业大学,获预防兽医学博士学位。现任职于中国海关科学技术研究中心动物检疫研究所,同时担任进出境濒危物种鉴定实验室联盟技术专家。主要从事进出境动物及动物源性产品的检验检疫、濒危物种鉴定及动物源性成分鉴定等国门生物安全动物领域相关工作,在精准分子检测及鉴定技术方面开展科研创新,主要研究成果包括“濒危动物及其制品鉴定技术体系”、“主要动物疫病快检技术平台”等。主持和参加国家科技支撑计划、海关总署科研项目等12项,获得省部级科技进步奖3项;主持发布国家标准3项;取得授权发明专利12项;发表核心期刊论文和会议论文30余篇。 参会指南 快速报名入口:https://www.instrument.com.cn/webinar/meetings/icpcr2023/一、主办单位仪器信息网二、会议时间2023年6月28日-30日三、会议日程第七届PCR前沿技术与应用网络会议(iCPCR 2023)时间专场主题6月28日 上午新产品与新技术6月28日 下午分子诊断应用6月29日 上午药品/生物制品应用6月29日 下午农林育种应用6月30日 上午动植物疫病应用(上)6月30日 下午动植物疫病应用(下)扫码直达报名页面温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。四、会议联系会议内容及报告赞助仪器信息网 刘编辑:13683372576,liuld@instrument.com.cn
  • 质构仪在鱼、肉、无肉蛋白替代品及其加工衍生物食用质量的质构控制
    美国FTC质构仪(多种型号可选)质地是决定鱼、肉、无肉蛋白替代品及其加工衍生物食用质量的首要考虑因素。例如,从制造商的角度来看,这可能是一种成分的影响,例如,一个加工过的火腿生产商向其产品中加水,并希望量化消费者可接受的最大加水水平。从顾客的角度来看,这是正宗的火腿。从农场/海洋到餐盘的质地分析被用来客观地衡量鱼、海鲜和肉类产品的质量,例如老化对肉嫩度和鱼的肌肉轮廓的影响,以表明脂肪含量。其他应用包括加工肉制品的切片/撕裂特性,肉酱和糊状物的稠度,鱼凝胶的弹性,海产品的硬度,以及腌料对肉类的影响等。在过去50年里,全球对肉类和鱼类的消费显著增加,但也有一种消费肉类替代品的趋势。肉类替代品主要由寻求更健康、无胆固醇、可持续和合乎道德的肉类替代品的素食主义者和纯素食主义者消费,但也有弹性素食主义者(主要食用植物性食品,偶尔食用肉类、鱼类和家禽)消费。食品科学家正在开发植物性肉类 与肉类口感和味道相似的鱼类替代品,模仿动物蛋白质中的纤维特性。它们通常由大豆、麸质和Quorn等产品制成,但制造商也使用其他成分,如豌豆蛋白。无论是在一个研发实验室,一个领域,还是一个制造设施,我们的产品是量化鱼,肉和植物性替代品的质构特征的理想解决方案。
  • 中关村开启进境动植物生物材料检验检疫改革
    &ldquo 以前,进口一次,审批一次 现在好了,年初做好计划,一次审批,多次核销,全年有效。&rdquo 16日,北京维通利华实验动物技术公司总经理卢胜明说。同日,北京出入境检验检疫局对外公布,在中关村[0.00% 资金 研报]开展包括分级授权审批、缩短审批时间、延长检疫许可证有效期并实现分批核销等5项措施在内的进境动植物生物材料检验检疫改革试点。   分级授权审批。在此次改革中,国家质检总局将部分动植物产品的行政审批权下放北京出入境检验检疫局,减少行政审批层级,方便相关企事业单位办理检疫审批。   缩短审批时间。试点企事业单位进口授权审批范围内的动植物生物材料,审批时限由20个工作日缩短为3个工作日 进口授权审批范围外的动植物生物材料,审批时限缩短为7个工作日。   延长检疫许可证有效期并实现分批核销。试点企事业单位进口有关动植物生物材料的,《进境动植物检疫许可证》有效期由现行的6个月延长至12个月,并实施一次审批多次核销制度。   调整相关动物细胞系风险级别。将主要细胞库的细胞系风险级别明确为四级(最低风险级别),进口时免于提供输出国官方卫生证书,只需随附境外提供者出具的安全声明原件和安全评估资料文件。   调整SPF鼠进境隔离检疫措施。实验条件符合相应生物安全条件的试点单位,经批准后可在SPF鼠隔离检疫期间开展急需的科学实验。   在改革试点中,北京出入境检验检疫局推进中关村检验检疫&ldquo 一站式&rdquo 服务,在具备检验检疫查验及监管条件后,将检验检疫报检、查验、后续监管全部调整至中关村。试点企事业单位进口SPF鼠的,将隔离检疫场批批考核调整为季度考核,简化指定隔离检疫场申请材料,隔离检疫场考核时间由20个工作日缩短到7个工作日。
  • 卫生部发布11项食品安全国标
    关于发布《食品添加剂磷脂》(GB28401-2012)等11项食品安全国家标准的公告 (卫生部公告2012年第9号)   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂磷脂》(GB28401-2012)等11项食品安全国家标准。其编号和名称如下:   GB 28401-2012食品添加剂 磷脂   GB 28402-2012食品添加剂 普鲁兰多糖   GB 28403-2012食品添加剂 瓜尔胶   GB 28404-2012保健食品中α-亚麻酸、二十碳五烯酸、二十二碳五烯酸和二十二碳六烯酸的测定   GB 4789.5-2012食品生物学检验 志贺氏菌检验(代替GB/T 4789.5-2003)   GB 4789.13-2012食品微生物学检验 产气荚膜梭菌检验(代替GB/T 4789.13-2003)   GB 4789.34-2012食品微生物学检验 双歧杆菌的鉴定(代替GB/T 4789.34-2008)   GB 4789.38-2012食品微生物学检验 大肠埃希氏菌计数(代替GB/T 4789.38-2008)   GB 5009.94-2012植物性食品中稀土元素的测定(代替GB/T 5009.94-2003,GB/T 7630-1987,GB/T 22290-2008,GB/T 23199-2008)   GB 9686-2012内壁环氧聚酰胺树脂涂料(代替GB 9686-1988)   GB 14936-2012硅藻土(代替GB 14936-1994)   特此公告。   11项标准文本.rar   二○一二年五月十七日
  • 沃特世推出LiveID软件,可直接对样品进行实时的食品分析和植物表型分析
    借助质谱技术直接进行样品分类,更快获取检测结果并制定决策 沃特世公司(纽约证券交易所代码:WAT)于近日隆重推出全新的LiveID软件。此款软件可与沃特世四极杆飞行时间质谱仪(QToF)配合使用,对肉类、作物等食品样品进行近瞬时分析和分类,从而直接获取样品信息。借助这款全新的软件,实验室研究人员可使用配备iKnife采样装置、快速蒸发电离质谱(REIMS)离子源和MassLynx质谱软件的Waters Xevo G2-XS QTof或SYNAPT G2-Si质谱仪,轻松检测食品掺假。沃特世LiveID软件现已在全球同步上市。 沃特世公司信息学产品高级总监Ronan O' Malley表示:“如果我们获取的食品样品信息脱离了最重要的时间和空间,那么这些信息不仅将失效,而且还会影响工作效率。我们开发LiveID软件的目的就是尽可能以最直观、快速、简单的方式,实时获取样品信息。” 食品掺假(即食品被贴上与本身不相符的标签进行售卖)是一个日趋严峻的恶性问题,现已成为某些有组织犯罪的资金来源。它不仅会让消费者受到蒙骗,还会损害食品生产商的声誉,同时影响食品出口领域的经济健康。 近年来,QTof质谱技术已逐渐成为一项极具前景的食品掺假检测技术。贝尔法斯特女王大学全球食品安全学院院长Chris Elliott教授率先将该技术投入了实际应用。他表示:“REIMS QTof技术平台能够同时检测多个影响食品样品完整性的问题,并且在分析速度方面具有显著优势。它有望彻底革新食品掺假分析技术,为食品行业提供强有力的支持。目前我尚未发现能与之比肩的其它技术。” 与传统技术(如免疫测定和PCR)相比,应用LiveID软件的质谱方法分析速度更快,在短短数秒内即可给出可靠结果。得益于iKnife采样装置和REIMS离子源,分析人员通常无需进行样品预处理或分离。当手持式iKnife采样装置与动植物组织或其它加工食品(如黄油)接触时,会使样品产生含有特定化合物分子的烟雾。接着这些分子将被导入REIMS离子源中进行电离,最后送入质谱仪检测。在极短的时间内,LiveID软件就能生成样品的分子谱或化学指纹图谱,将其与用户生成的参考指纹图谱数据库进行比对,然后将样品归为某一个样品类型或者某个样品组。 沃特世于2015年推出了作为QTof质谱仪辅助装置的iKnife采样装置和REIMS离子源。此后,沃特世不断改进REIMS离子源的设计,以便研究人员通过更直观、简单的方式利用质谱仪做出实时决策,从而深入挖掘这项技术的无限潜力。 关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 斯坦福大学教授:从源头上杜绝问题食品产生
    “中国对食品安全的重视到了前所未有的高度,今年《食品安全法》的出台就是中国食品安全一个标志性事件。然而,也应清醒地看到,中国的食品监管还有很长的路要走。”斯坦福大学国际研究所Helen Farnsworth主席、高级研究员Scott Rozelle教授指出,“如何能从源头上杜绝问题食品的产生,把食品安全事故扼杀在摇篮中,是中国目前最需要解决的问题。”他是在16日举行的斯坦福中美学生论坛2009年中国会议上接受中国经济网记者采访时作出如上表述的。   从源头入手 杜绝问题食品的产生   “食品安全问题并非中国独有,也不可能一下子就能解决。”Scott Rozelle教授指出。美国食品问题的管理和追查比较容易,因为生产企业都是大企业,没有作坊式的小厂。而中国食品生产加工企业共有50多万家,其中有很大一部分还是中小食品企业、小作坊。对这些企业的监管涉及到生产、流通、消费等几个环节。面对如此庞大的监管工作量,质量监管无法保证效果。Scott Rozelle教授建议:“中国应该从其产品链最薄弱的地方入手,关停生产不合格农药的厂家,从源头上杜绝受污染的不安全的食品被生产出来。”研究表明,植物性农产品的农药、重金属、化肥污染,动物性农产品的抗生素、激素残留,农产品中有害微生物引起的安全性问题,以及转基因农产品的安全问题,已经成为中国农产品不安全的四大主要原因。其中农药、激素残留超标更是食品安全的最大敌人。   严惩黑心商家 “一次违法、终身出局”   在美国,一旦出现食品安全问题,相关企业根本无法逃脱惩罚。生产商或销售商都会受到处罚,且要花巨额费用召回相关食品。Scott Rozelle教授认为,只有当消费者能够通过诉诸法律获得巨额赔偿的情况下,食品安全体制才可能真正影响生产企业的所作所为。必须让食品生产商知道,如果这种诉讼赔偿巨大、过于频繁或范围广泛,它最后只能沦落到破产的地步。他指出:“这样严厉的处罚对食品企业才会形成有力的威慑。”   中国产品被拿来说事是挑战也是契机   在谈到为何别的国家出口商品出现问题的比率高于中国,却未被国外媒体抓住不放,而中国产品一出问题就被无限“放大”时,Scott Rozelle教授指出,这既是一个严重的挑战,同时也是一个不错的契机。挑战需要通过加强沟通和合作来化解,契机则是这同时也会促使中国在产品质量监管上完善制度、加大力度。事实终究是不可被屏蔽的,只要真正提高自己的产品质量,就不会惧怕任何“借题发挥”和“煽风点火”。   作者简介:   Scott Rozelle教授是康奈尔大学博士,曾任教于加利福尼亚大学戴维斯分校农业与资源经济系,现任斯坦福大学国际研究所Helen Farnsworth主席、高级研究员和教授,世界银行、美国农业部经济研究局、国际农业研究磋商小组影响评价委员会、联合国开发计划署中国办公室政策顾问。主要研究领域包括:中国农业供求分析、中国农业国际贸易、中国农业政策及其效果、转型经济中市场制度的建立及其对平等与效率的影响、贫困与不平等的经济分析等。
  • PCR将成为多项动植物、水产品检验国标方法
    仪器信息网讯 日前,《2013年第一批国家标准制修订计划的通知》公布,通知显示PCR将成为9项有关动植物、水产品的检验防疫的国家推荐标准方法。另外,还有3项检测涉及了显微镜法。这些标准的完成时间为2014年。 计划编号 项目名称 标准性质 制修订 代替标准号 采用国际标准 完成时间 主管部门 归口单位 起草单位 20130409-T-469 甘蔗条纹花叶病毒实时荧光RT-PCR检测方法 推荐 制定     2014 国家标准化管理委员会 全国植物检疫标准化技术委员会 农业部甘蔗及制品质量监督检验测试中心、农业部福建甘蔗生物学与遗传育种重点开放实验室、福建农林大学甘蔗综合研究所 20130476-T-326 无乳支原体PCR检测方法 推荐 制定     2014 农业部 全国动物防疫标准化技术委员会 中国农业科学院兰州兽医研究所 20130477-T-326 隐孢子虫套式PCR检测方法 推荐 制定     2014 农业部 全国动物防疫标准化技术委员会 中国农业科学院上海兽医研究所 20130478-T-326 猪传染性胃肠炎病毒-流行性腹泻病毒-轮状病毒多重RT-PCR诊断方法 推荐 制定     2014 农业部 全国动物防疫标准化技术委员会 华中农业大学动物医学院 20130479-T-326 猪肺炎支原体PCR检测方法 推荐 制定     2014 农业部 全国动物防疫标准化技术委员会 江苏省农业科学院 20130480-T-326 猪瘟病毒RT-nPCR检测技术 推荐 制定     2014 农业部 全国动物防疫标准化技术委员会 中国兽医药品监察所、中国人民解放军军事医学科学院军事兽医研究所 20130491-T-326 斑节对虾杆状病毒病诊断规程 PCR检测法 推荐 制定     2014 农业部 全国水产标准化技术委员会 中国水产科学研究院黄海水产研究所等 20130498-T-326 对虾肝胰腺细小病毒病诊断规程PCR检测法 推荐 制定     2014 农业部 全国水产标准化技术委员会 中国水产科学研究院黄海水产研究所等 20130512-T-326 桃拉综合征诊断规程 RT-PCR检测法 推荐 制定     2014 农业部 全国水产标准化技术委员会 中国水产科学研究院黄海水产研究所等 20130505-T-326 牡蛎包纳米虫病诊断规程 显微镜检查组织法 推荐 制定     2014 农业部 全国水产标准化技术委员会 中国水产科学研究院黄海水产研究所等 20130506-T-326 牡蛎单孢子虫病诊断规程 原位杂交法 推荐 制定     2014 农业部 全国水产标准化技术委员会 中国水产科学研究院黄海水产研究所等 20130507-T-326 牡蛎马尔太虫病诊断规程 显微镜检查组织法 推荐 制定     2014 农业部 全国水产标准化技术委员会 中国水产科学研究院黄海水产研究所等 20130508-T-326 牡蛎小胞虫病诊断规程 显微镜检查组织法 推荐 制定     2014 农业部 全国水产标准化技术委员会 中国水产科学研究院黄海水产研究所等
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制