当前位置: 仪器信息网 > 行业主题 > >

定形相变材料

仪器信息网定形相变材料专题为您整合定形相变材料相关的最新文章,在定形相变材料专题,您不仅可以免费浏览定形相变材料的资讯, 同时您还可以浏览定形相变材料的相关资料、解决方案,参与社区定形相变材料话题讨论。

定形相变材料相关的资讯

  • 仪器表征,科学家揭示碱金属离子如何改变MXenes材料的相变与稳定性!
    【科学背景】随着先进材料科学的快速发展,过渡金属碳化物因其在高熔点、高热导率和优异机械性能方面的独特优势,引起了科学家的广泛关注。过渡金属碳化物,如TiC、WC和HfC,在高温环境下的稳定性和性能使其在能源及极端环境应用中表现出色。然而,如何精确控制这些材料的相稳定性和性能,以满足实际应用的需求,仍然是一个重要的研究难题。过渡金属碳化物的相控制涉及到许多挑战,特别是在纳米尺度下的相稳定性控制。虽然一些方法如碳空位引入、快速加热和贵金属装饰等为改性这些材料的固有行为提供了工具,但对相-性能关系的精确控制仍存在困难。当前的研究往往依赖于低温烧结或闪烁技术来控制相,但这些方法尚未能在高温下实现理想的相稳定性。2011年MXenes的引入将过渡金属碳化物拓展到了二维领域,这一发展为材料科学提供了一系列新型的少原子厚度(约1纳米厚)且可溶液加工的过渡金属碳化物。MXenes的化学多样性体现在其Mn+1XnTx的广泛公式中,其中包含各种3d&minus 5d族过渡金属和碳/氮层,具有丰富的表面基团,如&minus O、&minus (OH)、&minus Cl和&minus F。这些表面基团来自MXenes自上而下的可扩展合成方法,这使得单层到少层MXene片能够以高稳定性存在于分散液中。早期对MXenes及其混合复合材料的研究探讨了它们在能源应用中的潜力,例如在碱金属离子电池中的应用。MXenes的层状结构和高电导率使其在电化学领域表现出色。然而,对于碱金属离子与MXenes表面基团及其缺陷位点的相互作用的理解仍不完全。尽管已有研究指出碱金属离子能够在层间迁移并与MXenes表面结合,但迄今为止尚无研究系统性地评估这些离子在表面基团和缺陷位点中的优先占据。为了填补对碱金属离子在缺陷位点占据的理解差距,美国普渡大学Babak Anasori教授团队首先证明了碱金属离子倾向于占据Ti3C2Tx MXene基面上的过渡金属原子空位。随后,研究展示了这些离子如何通过占据空位来有效控制高温下的相变,进一步稳定MXenes。此外,本研究还在复杂的Mo2TiC2Tx MXene中验证了这一行为,通过确定缺陷区域的γ-Mo2C晶体形成以及使用碱金属离子抑制这一生长。通过结合原位X射线衍射(XRD)、扫描透射电子显微镜(STEM)、外部原子层分辨的二次离子质谱(SIMS)、热重分析(TGA)、X射线光电子能谱(XPS)方法以及密度泛函理论(DFT)模拟,本研究为碱金属离子在二维MXenes中的缺陷工程应用奠定了基础,并为高温稳定的能量或极端环境材料的进一步应用提供了新思路。【科学亮点】1. 实验首次观察到碱金属离子倾向于占据Ti3C2Tx MXene基面上的过渡金属原子空位。这一发现是通过原位X射线衍射(XRD)、扫描透射电子显微镜(STEM)和外部原子层分辨的二次离子质谱(SIMS)技术实现的。2. 实验通过碱金属离子在基面空位缺陷位点的占据,有效控制了MXenes在高温下的相变。这种控制显著提高了MXenes的相稳定性,抑制了相变过程中Ti3C2Tx的C损失,进一步验证了碱金属离子在高温环境中的稳定作用。3. 实验还展示了这一行为在更复杂的Mo2TiC2Tx MXene中,通过分析γ-Mo2C晶体在相变Mo2TiC2Tx中的局部形成,并利用碱金属离子抑制γ-Mo2C在缺陷位点周围的生长。该实验结合了TGA数据和DFT模拟,证明了碱金属离子在高温条件下对MXenes的相稳定性和结构完整性的增强作用。【科学图文】图1:层层SIMS分析过度刻蚀的Ti3C2Tx上装饰的碱金属阳离子。图2:通过碱金属阳离子稳定缺陷来控制Ti3C2Tx MXene的相。图3:Mo2TiC2Tx的片层尺度相行为。图4:阳离子占据及阳离子装饰的Mo2TiC2Tx的相行为。【科学结论】本文的研究揭示了碱金属离子在Ti3C2Tx和Mo2TiC2Tx MXenes中的重要作用,特别是在高温环境下的相稳定性和缺陷控制方面。首先,碱金属离子可以优先占据MXenes基面上的过渡金属空位,这一机制有效地控制了MXenes在高温下的相变过程,从而稳定了材料结构。这一发现对理解MXenes的高温行为具有重要意义,并为设计高温稳定的MXenes材料提供了新的思路。其次,碱金属离子的引入显著减少了相变过程中的碳损失,增强了MXenes的稳定性。这一结果表明,利用离子装饰可以优化材料的相稳定性和性能,为高温应用中的材料设计提供了新的策略。最后,本研究还展示了如何通过精确的缺陷工程来调控MXenes的相变,这一方法不仅适用于MXenes,还可能扩展到其他二维材料或纳米晶陶瓷体系中。这为未来在极端环境条件下的材料开发提供了宝贵的理论基础和实践指南。原文详情:Wyatt, B.C., Boebinger, M.G., Hood, Z.D. et al. Alkali cation stabilization of defects in 2D MXenes at ambient and elevated temperatures. Nat Commun 15, 6353 (2024). https://doi.org/10.1038/s41467-024-50713-2
  • 无损测试材料相变温度的利器——相变温度分析仪
    p   武汉嘉仪通科技有限公司作为一家以薄膜物性检测为战略定位的高科技企业,一直专注于薄膜材料物理性能分析与检测仪器的自主研发,拥有一系列自主研发的热学相关分析仪器。其中,相变温度分析仪是嘉仪通热学分析仪器中非常有代表性的产品之一。 br/ & nbsp & nbsp 相变温度分析仪(PCA)是根据材料相变前后光学性质(反射光功率)有较大差异的特性,在程序控温下,使用一束恒定功率的激光照射样品表面,记录反射光功率变化,形成反射光功率与温度变化曲线,从而确定相变温度的一款仪器。可以实现对相变材料进行相变温度的实时测定、新型材料(相变材料、相变储能材料)的稳定性测试及性能优化以及进行新型相变机理(晶化温度的尺寸效应、材料的结晶动力学过程等)的研究等功能。 br/ strong span style=" color: rgb(0, 176, 240) " 为什么选择研发相变温度分析仪? /span /strong br/ /p p   相变材料(PCM-Phase Change Material)是指温度不变的情况下而改变物质状态并能提供潜热的物质。相变材料实际上可作为能量存储器,这种特性在节能、温度控制等领域有着极大的意义。这种非常重要的材料,可广泛应用在航天、服装、制冷设备、军事、通讯、电力、建筑材料等方面。但是在这种材料的科研过程中,理想的相变材料非常难找到,只能选择具有合适相变温度和有较大相变潜力的相变材料,而无损测试材料的相变温度却又是很难办到的。 /p p   嘉仪通正是发现了无损检测材料相变温度的重要性,想要帮助科研人员解决相变温度测试难题,进一步助力相变材料的应用发展,因此我们加大投入力度,从理论研究到工程化测试,不断攻坚克难,采用更加先进的测试方法和更加精密的控制系统,最终历时近6年时间,终于成功研发出了这款可以无损检测材料相变温度的精密仪器。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e832f85f-2f28-4ec9-8c44-f495fd028266.jpg" title=" 相变温度分析仪PCA-1200.png" alt=" 相变温度分析仪PCA-1200.png" width=" 400" height=" 275" border=" 0" vspace=" 0" style=" width: 400px height: 275px " / /p p style=" text-align: center " strong 相变温度分析仪 PCA-1200 /strong /p p strong span style=" color: rgb(0, 176, 240) " 嘉仪通相变温度分析仪具有哪些功能特性? /span /strong /p p style=" text-align: center " strong 全新技术设计 /strong /p p img src=" https://img1.17img.cn/17img/images/201809/uepic/f4dc9b2c-620c-4f33-9da4-2d0dcecca464.jpg" title=" 全新技术设计.png" alt=" 全新技术设计.png" width=" 350" height=" 330" border=" 0" vspace=" 0" style=" float: left width: 350px height: 330px " / br/ span style=" color: rgb(0, 176, 80) " strong br/ 无需基线,曲线趋势分析 /strong /span /p p br/ br/ span style=" color: rgb(0, 176, 80) " strong 无需标样,绝对测算方法 /strong strong /strong /span /p p br/ br/ span style=" color: rgb(0, 176, 80) " strong 无损检测,无需破坏膜层材料结构 /strong strong /strong /span /p p style=" text-align: center " br/ br/ strong 功能特色 /strong /p p · 采用高性能长寿命红外加热管进行加热,核心加热区采用抛物反射面设计,确保对样品进行有效全方位加热。 /p p · 采用PID调节与模糊控制相结合的温控系统,可实现系统的高速跟随控制,可实现最快50℃/s升温速度。 /p p · 以直线滚珠轴承作为组件支撑及运动导向关联件,确保送样的平稳可靠,行程限垫可有效确保导轨的行程范围。 /p p · 压迫式弹针接触端可确保温度传感器的有效接通,同时其弹力可确保设备处于锁紧状态时方可进行加热操作等事宜,避免误操作。 /p p · 组合隔温挡圈能有效形成前后隔离,确保温场均匀。 /p p style=" text-align: center " strong 应用范围 /strong /p p style=" text-align: center " TiN薄膜,GeTe薄膜,ZrO sub 2 /sub 薄膜,掺Ti的ZnSb薄膜,SiC薄膜,显示屏玻璃,形变记忆合金薄膜,NiAl复合薄膜,VO sub 2 /sub 薄膜,PZT铁电材料,MgO/Ni-Mn-Ga薄膜,GST相变存储薄膜,金属Co薄膜,Al sub 2 /sub O3薄膜,等 /p p style=" text-align: center " strong 测试案例 /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 红外材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/b7da2f45-1e2a-4575-ad21-52c91c75b63a.jpg" title=" 四川大学提供的红外材料样品VO2.jpg" alt=" 四川大学提供的红外材料样品VO2.jpg" / /strong /p p style=" text-align: center " strong 图1:VO2不同升温速率12℃/min、15℃/min /strong /p p style=" text-align: center " strong (四川大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 复合材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/fa3ce443-ac01-434e-8bb7-f2fc8e00b90b.jpg" title=" 西南科技大学提供的复合材料样品铝镍合金复合薄膜.jpg" alt=" 西南科技大学提供的复合材料样品铝镍合金复合薄膜.jpg" / /strong /p p style=" text-align: center " strong 图2:铝镍合金复合薄膜 /strong /p p style=" text-align: center " strong (西南科技大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 相变存储材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/f175574c-c528-4a7c-a745-aaf92126f24e.jpg" title=" 中科院微系统所提供的相变存储材料样品.jpg" alt=" 中科院微系统所提供的相变存储材料样品.jpg" / /strong /p p style=" text-align: center " strong 图3:相变存储材料图 /strong /p p style=" text-align: center " strong (中科院微系统所提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 热电薄膜材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/a822a53d-5c63-41c6-a2ea-3237ee56ece0.jpg" title=" 深圳大学提供的热电薄膜材料样品掺Ti的ZnSb.jpg" alt=" 深圳大学提供的热电薄膜材料样品掺Ti的ZnSb.jpg" / /strong /p p style=" text-align: center " strong 图4:热电转换薄膜材料(掺Ti的ZnSb) /strong /p p style=" text-align: center " strong (深圳大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 氧化锆薄膜 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/63e8d2e4-4c04-4112-aa76-10f92a542629.jpg" title=" 清华大学提供的氧化锆薄膜样品.png" alt=" 清华大学提供的氧化锆薄膜样品.png" / /strong /p p style=" text-align: center " strong 图5:ZrO2薄膜 /strong /p p style=" text-align: center " strong (清华大学提供样品) br/ /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e6c00cea-ef7b-4cca-a103-57181b6b0131.jpg" title=" 氧化锆薄膜与XRD对比图.jpg" alt=" 氧化锆薄膜与XRD对比图.jpg" / /p p style=" text-align: center " strong 氧化锆薄膜与XRD对比图 /strong br/ /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 高温陶瓷材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/ffba8968-5aa8-4340-927b-bad7ff25421f.jpg" title=" 海南大学提供的高温陶瓷材料样品TiN薄膜硅基底.jpg" alt=" 海南大学提供的高温陶瓷材料样品TiN薄膜硅基底.jpg" / /strong /p p style=" text-align: center " strong 图6:高温陶瓷材料(TiN薄膜硅基底) /strong /p p style=" text-align: center " strong (海南大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 硬质合金薄膜材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/9b945867-70c2-4548-adcc-cb5a2dbc1488.jpg" title=" 武汉大学提供的硬质合金薄膜材料样品切削刀具.png" alt=" 武汉大学提供的硬质合金薄膜材料样品切削刀具.png" / /strong /p p style=" text-align: center " strong 图7:切削刀具相变监测曲线 /strong /p p style=" text-align: center " strong (武汉大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong SiC薄膜 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/05df342d-1488-40b8-bf7c-8cf2f1dbd1d5.jpg" title=" 中国电子科技集团第五十五研究所提供的SiC薄膜样品.png" alt=" 中国电子科技集团第五十五研究所提供的SiC薄膜样品.png" / /strong /p p style=" text-align: center " strong 图8:SiC薄膜热膨胀系数监测曲线 /strong /p p style=" text-align: center " strong (中国电子科技集团第五十五研究所提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 显示屏玻璃 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/01d1e69a-88b7-4aae-9edc-c1864a7dce34.jpg" title=" 武汉天马提供的显示屏玻璃样品.png" alt=" 武汉天马提供的显示屏玻璃样品.png" / /strong /p p style=" text-align: center " strong 图9:显示屏玻璃热膨胀系数监测曲线 /strong /p p style=" text-align: center " strong (武汉天马提供样品) /strong /p p style=" text-align: right " strong (供稿:武汉嘉仪通) /strong /p
  • 热管理相变浆料PCM的稳定性表征
    PCM 浆料由于其高效的传热和热能存储特性,是高效热能管理的替代解决方案,受到越来越多关注。PCM 浆料有多种类型,例如冰浆、笼状物浆料和盐水合物 PCM 浆料 (SHPCMS)、微胶囊化 PCM 浆料 (MPCMS)、形状稳定 PCM 浆料 (SSPCMS) 和相变乳液 (PCE)。PCE 中的 PCM 液滴/颗粒可以在表面活性剂的帮助下分布到不混溶的载体流体中,这简化了材料的制备,使其成为一种有前途的 PCM 浆料。由于晶体生长的固有特性和与温度相关的固体分数,原始盐水合物 PCM 浆料无法呈现出良好的流动性和稳定性特征,有研究发现,表面活性剂和稳定剂的共同作用可以抑制晶体颗粒的生长,从而有助于浆体稳定性。本文基于为最佳开发盐水合物 PCM 浆料而提出的一种方法,介绍了 CaCl2&sdot 6H2O 浆料的制备、特性和性能改进。通过重力和离心稳定性测试研究了浆料的稳定性,以验证稳定剂的有效性。材料: 六水氯化钙 (CaCl2&sdot 6H2O)——基料;六水氯化锶 (SrCl2&sdot 6H2O) ——成核剂;十六烷基二甲基甜菜碱 (C16H33N+(CH3)2CH2COO-)——两性离子表面活性剂;聚乙烯醇 PVA——稳定剂;水杨酸钠——添加剂。浆料稳定性表征进行两组稳定性试验,其中设置了冷水浴系统以方便进行重力稳定性试验。在重力稳定性试验中,将装在单独试管中的不同CaCl2&sdot 6H2O浆料样品浸入浴中,观察颗粒沉降过程。晶体颗粒的沉降导致相分离界面,其变化由数码相机记录。本研究进行了大约一周的重力稳定性试验。另一项稳定性测试是在基于LUMiFuge的加速力场下进行的。它被用来深入了解不同添加剂对稳定性增强的影响。与重力稳定性试验相比,它依靠透射率百分比对时间的积分来分析浆料样品的“不稳定指数”,避免了在没有明显相分离的情况下引入的不确定性,并允许加速沉降过程。在本研究中,使用 LUMiFuge进行稳定性测试的转速在 30 分钟的测试期内设定为 1000 r/min。图1 重力稳定性试验中晶体颗粒的沉降过程(浆体样品从左到右分别为:原始CaCl2&sdot 6H2O浆体;添加成核剂;添加成核剂和表面活性剂;添加成核剂、表面活性剂和稳定剂)a) 刚生成时;b) 5分钟后;c) 15分钟后;d) 1小时后;e) 18小时后;f) 2天后;g) 4天后;h) 7天后。 图 2. 加速稳定性试验中不同 CaCl2&sdot 6H2O 浆料样品的不稳定性。 图1比较了不同浆料样品的重力稳定性,图2进一步展示了部分浆料样品在离心场下的稳定性测试,以深入了解不同添加剂提高稳定性的机理。稳定性测试在 15℃的水浴或环境空气中进行(分别用于重力和离心稳定性测试),浆料的质量固体分数约为 17w.t.%。从图1 可以清楚地看到,原料 CaCl2&sdot 6H2O 浆料迅速分层,在整个过程中呈现出沉积层高度最低和上方清澈透明溶液。原料 CaCl2&sdot 6H2O 浆料的相对较大的粒径是阻碍布朗运动的关键因素,导致沉降过程更快。重力稳定性试验中,添加成核剂和同时添加成核剂和表面活性剂的样品的沉降层高度在前18小时内相似(见图1)。有趣的是,沉降高度出现了交叉,添加成核剂和表面活性剂的样品在第一个小时内呈现出较快的分离过程,而之后速度减慢。这种交叉现象在加速稳定性试验中得到了证实,如图2所示。在重力稳定性试验中,添加成核剂的样品的沉降高度在18小时后继续略有降低,而同时添加成核剂和表面活性剂的浆料样品没有明显变化(见图1)。一开始的相似是因为晶体颗粒经历了一个长大过程,布朗运动对这些尺寸较小的颗粒影响较大。交叉现象可能是由于表面活性剂在晶粒表面积累起缓冲作用,阻碍了晶粒与溶液中分子的碰撞,从而抵消了部分布朗运动的影响。 但随着晶体的生长,由于仅含成核剂的 CaCl2&sdot 6H2O 浆料的粒径较大,布朗运动的相对影响减弱(图3b和c)。此外,在含成核剂和表面活性剂的浆料中,针状晶粒的尺寸相对较小,长宽比较大,在两性离子表面活性剂电位引入的排斥力的帮助下,可以形成更高的沉积层。图2证实了在加速稳定性测试中,含成核剂和表面活性剂的浆料样品的不稳定性低于仅含成核剂的浆料样品。相比之下,在重力和离心稳定性试验中,含有所有添加剂的浆料样品仅观察到轻微的分层。除了小粒径的影响外,PVA 在水杨酸钠的帮助下引入的综合效应也起到了一定作用,水杨酸钠作为支撑基质来容纳和隔离晶体颗粒。为了区分水杨酸钠的影响,在离心稳定性试验中测试了含有成核剂、表面活性剂和水杨酸钠的额外浆料样品。如图2所示,额外浆料样品的分层似乎经历了较慢的沉降过程,但最终的不稳定性与同时含有成核剂和表面活性剂的浆料样品相同。这是由于水杨酸钠的存在通过重构胶束增加了粘度,但粘度的增加与PVA和水杨酸钠共同的基质支持作用不同。图3. 不同浆料样品的晶体颗粒形态特征:a) 原始 CaCl2&sdot 6H2O 浆料;b) 添加成核剂;c) 添加成核剂和表面活性剂;d) 添加成核剂、表面活性剂和稳定剂。
  • 大连化物所开发出高性能光热转化石墨烯基复合相变材料
    近日,中国科学院大连化学物理研究所热化学研究组研究员史全团队通过合成策略开发出一种具有高光热转换效率的石墨烯基复合相变材料。该复合相变材料具有优异的相变性能和光热转换能力,为大规模制备石墨烯基光热转化复合相变材料提供了新思路。  石墨烯基复合相变材料能够解决相变材料相变过程中的泄漏问题,并具有优异的光吸收能力,在太阳能热转换和存储领域具有潜力。然而,目前石墨烯基复合相变材料的制备方法涉及多步过程,通常较为复杂、耗时耗能,阻碍了其进一步的应用。基于此,科研人员通过简单直接的一步法策略,将聚乙二醇相变材料原位填充到氧化石墨烯网络结构水凝胶中,构建出石墨烯基定型复合相变材料。该复合相变材料具有高的相变材料负载量(95wt%),经历1000个冷热循环后仍可保持稳定的相变焓值(162.8J/g),表现出优异的相变储热性能。此外,该材料还具有出色的光热转化能力,可快速将太阳能转化为热能储存于相变材料中,转化效率最高可达93.7%。  相关研究成果以One-step Synthesis of Graphene-based Composite Phase Change Materials with High Solar-thermal Conversion Efficiency为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到中科院洁净能源创新研究院-榆林学院联合基金、大连化物所创新基金等的支持。  论文链接
  • 国内首台淬火/变形相变仪将落户上海大学
    德国巴赫热分析公司的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)拥有世界上众多的金属研究的用户。由于价格昂贵,在中国一直没有此领域的使用者。日前,上海大学材料学院经过反复的调研论证,已经和巴赫公司的中国总代理-北京仪尊时代科技有限公司签署了购买合同。所以,上海大学将成为国内首台高级相变仪的使用者,希望它将成为该校金属学研究的得力帮手。 同时,仪尊时代感谢上海大学的信任和支持,将继续为推动此产品的市场而做出努力! 有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 复合相变材料与液冷耦合的动力电池热管理系统的研究
    HS-TGA-103热重分析仪主要由加热系统、称重系统、温度控制系统和数据处理系统组成。在测试过程中,样品被放置在加热系统内,通过温度控制系统进行升温。同时,称重系统监测样品的质量变化,并将数据传输至数据处理系统进行分析。通过测量样品质量随温度的变化,热重分析仪能够揭示材料的热稳定性和动力学行为等信息。复合相变材料与液冷耦合的动力电池热管理系统的研究【南昌大学 刘自强】复合相变材料与液冷耦合的动力电池热管理系统的研究上海和晟 HS-TGA-103 热重分析仪
  • 综述|相变蓄冷材料及系统应用研究进展
    摘要:相变蓄冷技术利用相变材料在相变时伴随着的吸热或放热过程对能量进行储存和应用,起到控制温度、降低能耗和转移用能负荷的作用。本文综述了相变温度在 25℃以下的相变蓄冷材料及其在不同应用场景的筛选依据。其次,介绍了相变蓄冷材料在食品医疗冷链物流、建筑节能控温与数据中心应急冷却、人体热管理和医疗保健的相变纺织品等领域的应用。从调节相变蓄冷材料相变温度、过冷度、热导率和循环稳定性等方面总结了材料热物性的调控策略,分析了不同调控策略存在的优缺点。指出相变蓄冷系统可通过增强蓄冷系统热导率和强化传热结构来改善普通材料传热性能差的问题。最后从复合相变材料制备到系统设计优化和应用场景拓展等方面对相变蓄冷技术研究方向进行了展望。关键词:相变蓄冷材料;相变蓄冷系统;复合相变材料;热物性;应用随着全球变暖和人们生活质量的提升,制冷需求快速增长,制冷空调系统带来的碳排放量与日俱增,预计到2050年,全球制冷能源消耗仍将增加十倍。面对制冷能耗急剧增长的发展趋势,大力开发太阳能、风能等新能源电力是解决未来制冷能耗缺口的技术关键。然而,新能源电力存在间歇性、波动大的缺点,易出现发电量与用电量不匹配的问题。因此发展高效储能技术,对新能源消纳与利用是适应可再生能源网络的有效途径。发展先进的蓄冷技术,调节制冷和用冷负荷使之匹配,是制冷系统技术发展的重要方向。蓄冷技术可以在峰谷电价时段或能量盈余的时候进行储能,实现能源移峰填谷,降低电网峰值用电负荷和成本。相对于电化学储能,蓄冷技术可以直接存储冷能,具有安全性高、循环稳定性好、成本低的优点。因此,将蓄冷技术与制冷系统耦合的储能技术一直是研究热点,在工商业及民用场景应用广泛。在冷链运输领域,我国每年因运输过程中低温环境不合格导致水产品腐烂损失率达25%,果蔬类损失率达25%~35%,全球有超过50%的疫苗被浪费。因而蓄冷技术在冷链运输领域能够通过减少运输过程中的温度波动来降低产品变质几率,有效减少产品损耗,实现食品和医疗用品的长距离运输。蓄冷技术也可应用于建筑节能,将蓄冷材料与建筑基体复合制得储能墙体,在白天吸收室外进入室内的热量,夜晚则释放热量给室内供暖,实现辅助控制室内温度,减小建筑采暖、制冷能耗,有助于提高室内环境舒适度。此外,通过蓄冷空调将晚上低谷电转化为冷能储存起来,在白天电网高负荷时释放,转移用电负荷,结合分时阶梯电价策略能降低建筑制冷成本与能耗。此外,蓄冷技术与纺织品结合制作成智能纺织品、应用于人体热管理,也是重要的应用领域之一。蓄冷材料是蓄冷技术的核心,开发适宜温度及高蓄冷密度的蓄冷材料是满足不同蓄冷需求的关键。目前常见的蓄冷材料主要有∶显热蓄能材料和潜热蓄能材料。显热蓄能材料包括水等,利用自身升降温过程中热能的变化进行能量储存和释放,技术成熟且成本便宜,适合大规模生产。但其蓄冷密度小,只适用于分钟、小时级的短时蓄冷场景。潜热蓄能材料利用相变材料固-液-气相态变化来储蓄或释放能量,其中应用最为广泛的固-液相变能在相变过程中吸收大量热能,同时温度保持不变(如图1)。潜热蓄能材料蓄冷密度远高于显热蓄能,适用于数小时至数周的蓄能场景,且成本适中,具备大规模应用的潜力。图 1 固液相变过程本文主要对应用于蓄冷领域的相变材料进行综述,探讨相变蓄冷材料物性调控和优化、相变蓄冷系统传热技术强化,总结当前相变蓄冷材料和蓄冷系统不足,展望相变蓄冷技术研究方向和应用前景。01常见相变蓄冷材料常见相变蓄冷材料主要指相变温度在25℃及以下的相变材料。其中,按材料成分可分为有机、无机和共晶相变材料。1.1 有机相变蓄冷材料有机相变材料主要包括石蜡、脂肪酸、酯和醇等,以碳链长度小于17的烷烃为主。有机相变材料相变焓优异、腐蚀性小,而且热稳定性好、经多次相变后物理和化学性质基本不变,可靠性好。但有机相变材料热导率低,如石蜡、酸或醇类有机物的热导率为0.3 W/(mK)、部分材料易燃、生产成本较高等。表1列举了一些相变温度在25℃及以下的常用有机相变材料热物性。其中十四烷相变温度为5~8℃,在冷库、冷链运输保温箱、空调蓄冷等多个场景中应用最为广泛。表 1 有机相变材料的热物性参数1.2 无机相变蓄冷材料无机相变材料主要有冰、水合盐类、熔融盐类、金属或合金类等,其中冰和水合盐因相变温度较低主要用于低温领域,如在空调和建筑蓄冷等领域应用广泛。无机相变材料相变焓大、热导率较高,常见水合盐热导率为0.5 W/(mK) ,而且来源广、成本低、商用化前景好。然而无机相变材料可靠性差,存在过冷度高和相分离严重的缺点,多次使用后性能衰减严重,而且腐蚀性强。表2列举了一些相变温度在25℃及以下的常用无机相变材料热物性。表 2 无机相变材料的热物性参数无机相变材料中冰的研究最多,因为冰相变焓为334 kJ/kg,为常见相变材料的2~3倍,而且成本低廉。冰与水混合所得冰浆具有良好流动性和高相变潜热,可通过离心泵和管道输送,在极高含冰量下不堵塞,且所需输送管道和储罐尺寸小,以其为基础的冰蓄冷技术是实际工程项目中使用最广泛的蓄冷技术。1.3 共晶相变蓄冷材料共晶相变材料是将两种或两种以上相变材料混合制备得到的共晶产物,其熔点低于任一组分。共晶相变材料按材料可分为有机-有机共晶、无机-无机共晶和有机-无机共晶相变材料。无机-无机共晶相变材料包括金属合金相变材料、水合盐及熔融盐共晶相变材料,有机-有机共晶相变材料包括有机酸共晶和石蜡,无机-有机共晶相变材料主要是有机酸和水合盐的共晶相变材料。其中无机-有机共晶相变材料能实现有机、无机材料优势互补,可获得兼具过冷度低、潜热较高、性能稳定的相变蓄冷材料,但目前应用研究较少,潜力巨大。共晶相变材料能通过调整各组分比例来控制相变温度,而且能一定程度上改善材料过冷度和相分离等问题,是调节相变材料热物性的一种重要方法,但共晶相变材料的制备工艺较为复杂,需要围绕共晶点按比例形成共晶物,且组分比例与相变温度不呈线性规律,应用前需要进行大量预实验,过程繁琐复杂。表3列举了一些相变温度在25及以下的常用共晶相变材料热物性。表 3 共晶相变材料的热物性参数1.4 相变蓄冷材料的选择研究并筛选出适用于蓄冷系统的相变蓄冷材料,是相变蓄冷技术的关键之一。一般来说,用于蓄冷领域的相变材料应具有以下特性∶①相变温度合适;②相变潜热大;③热导率高;④冻结和熔化率高;⑤热稳定性好;⑥固液相变体积变化小;⑦过冷度低;⑧循环稳定性好;⑨无毒和无腐蚀性;⑩成本低。目前相变蓄冷材料中有机相变材料和无机相变材料应用最为广泛,二者关键物性对比如图2所示,可作为实际选材的参考依据。无机相变材料具有低成本、毒性低和高热导率的优点,适合大规模生产,在蓄能水罐、冷库等大型建筑设备中应用较广,但其过冷度高、相分离严重和腐蚀性强的缺陷限制其在蓄冷领域的应用。有机相变材料具有过冷度低、循环稳定性好和腐蚀性小优点,主要适用于冷链运输和智能纺织品,但其低热导率、有毒、易燃和高成本的缺点阻碍其进一步应用。相比有机、无机相变材料,共晶相变材料可根据组分比例调控相变温度,实现精准控温,适用于要求温度变化范围小的场景,但目前研究较少,适用环境较少。图 2 无机相变材料与有机相变材料关键物性对比图在实际应用中,很难筛选出满足所有条件的相变蓄冷材料,因此要优先选择相变温度适宜且相变潜热高的蓄冷材料,最后采用合适的方法对其性能进行调控。02相变蓄冷技术的应用2.1 冷链运输冷链运输过程中环境温度波动易造成产品损耗,如果引入相变材料,发挥其相变控温功能,减少环境温度波动,能有效提高冷链运输产品质量。冷链运输根据保温方式分为被动式和主动式。被动式冷藏主要应用于冷藏箱,如图3所示,在箱体内加入相变蓄冷材料,吸收进入到箱体内部的热量、减缓温度上升速率,为冷藏物体长时间提供低温储存环境。Li等复合了膨胀石墨与辛酸-月桂酸共晶相变材料,二者质量比为71∶29,制得复合相变材料的相变温度和潜热分别为3.8℃和141.7 J/g,热导率提升了2.8倍,使材料释冷速率提高636.7%。Huang等基于石蜡OP5E开发了一种蓄冷保温箱,高低温测试表明,相变材料可以在至少80 h使保温箱内部温度保持在2~8℃。Liu等将KCl-NH4Cl共晶盐吸附于高吸水性聚合物SAP上,制得一种相变温度为-21℃和相变潜热为230.62 J/g的蓄冷材料。该材料在-15℃下冷藏生物样品时,冷藏时间能达到16.37 h,能有效保证生物样品质量。图 3 被动式冷藏箱及内部构造主动式冷藏是如图4所示在车内安装含相变材料的制冷机组,主动将车内温度控制在适合食品冷藏的低温状态。在主动冷藏系统内,加入相变材料可以辅助控温,减少车厢内的温度波动,降低主动制冷系统能耗。刘广海等设计了一款集隔热、相变蓄冷、制冷送风为一体的冷藏车,相比传统冷藏车,相变材料加入使车内平均温度波动下降48.7%,温度不均匀度系数下降50%。Zhang等考察了集成相变材料对制冷系统能耗影响情况,含相变材料的集装箱制冷能源成本和运营成本分别降低71.3%和85.6%。Michele等提出了一种结合相变材料并用于冷藏车的新型隔热墙,当相变材料厚度为1 cm时,能在10 h内使车内温度波动范围不超出相变温度2℃。图 4 主动式冷藏车及系统组成将相变材料与冷链运输相结合,能出色发挥相变材料高潜热和相变控温的特点,不仅大幅延长有效冷藏时间,还减少冷藏空间的温度波动,提升其温度均匀性,有效减少冷藏产品的损耗率。与传统制冷相比,将制冷系统与相变材料结合,能大大降低能源成本和运营成本,起到减少碳排放的作用。2.2 纺织品人体热管理与出汗散热类似,将相变材料如图5所示应用于纺织品中,通过引入温度调节作用以提升人体舒适度。这种纺织品被称为智能调温纺织品,能响应人体或环境的变化,实现保暖和降温双向温度调节功能,适应多变的环境。目前相变材料与纺织品结合方式主要有三种∶填充法、涂层法和纤维中空填充法。图 5 纺织品集成相变材料用于温度调节填充法是将相变材料填充于纤维或密封袋中,再集中放置在服装内部,特别是胸部和背部等发热量较大的部位,通过相变材料直接吸热或放热的方式控制体表温度。如图6所示,Saeid等将相变温度在24~35℃的石蜡用于降温背心,穿着降温背心在轻度活动和中度活动期间,温度仍维持在人体舒适温度范围内,出汗率分别降低了42%和52%,减少了脱水几率。Hou等开发了一种基于相变材料的液体冷却背心,背心重量为1.8 kg,能在炎热环境中为穿戴者提供至少2 h温度舒适环境。图 6 石蜡降温背心及其包装涂层法将相变微胶囊加入涂层液中,并用刮板将液体均匀涂抹在织物表面,使纤维表面粘附上相变微胶囊来改变纺织品的热性能。Xu等将相变微胶囊固定在棉质衣物上,所制衣物相变温度为16.5℃~36.8℃,符合人体热舒适温度,而且保温系数与不含相变材料的衣物相比从1.05%提高到32.2%。Yin等将相变温度为25.7℃的相变微胶囊嵌在纤维表面,使面料保温率达23.9%,控温能力良好。纤维中空填充法是如图7所示对含有中空结构的纤维进行加工,在内部填充相变材料来赋予纤维蓄能特性。Ke等制备了一种聚丙烯腈/月桂酸-硬脂酸/二氧化钛的复合纳米纤维,相变温度约为25℃,经30个循环后性质相对稳定,具有良好的控温性和稳定性。Song等采用真空浸渍法将月桂酸封装到木棉纤维微管中,制得样品中月桂酸质量分数达86.5%,焓值达153.5 J/g,经2000次循环后性能基本不变。图 7 纤维中空填充法相变材料对热能的吸收会延缓身体温度升高,并减少皮肤中水分散失,从而提高舒适度。同时相变材料具有相变控温特性,可以减缓穿着者的热失衡症状,如感冒、中暑和晕厥等,在医疗保健领域有着广阔的发展空间。Olson等制备了由NaCl、Na2SO4和水组成的复合相变材料,如图8所示,应用于婴儿出生后降温问题上,通过简单方式抑制了环境温度的变化。Prashantha等将相变材料制成冰袋用于低温治疗,不仅降低成本,而且延长了使用时间,提供更好的冷疗功能。图 8 相变床垫(蓝色)上为婴儿降温,床垫由相变材料和软垫组成Zhang等用浸渍法将OP10E和SEBS混合制备了可在10℃下保持1800 s的弹性相变油凝胶,并设计如图9所示的冷却帽用于发烧儿童的冷敷治疗,模拟了人体热调节过程,建立发烧儿童所需凝胶量的数据库,为相变头套设计提供参考标准。图 9 相变油凝胶冷却帽建模及数据库将相变材料与人体热管理相结合,可以实现个性化体温调节。这类智能被动体温调节纺织品体积小、使用便利,在高温作业和户外运动等场景中提升人体舒适度。将相变纺织品制备调节体温的医疗保健产品,能帮助婴儿或患有温度敏感性疾病的人群缓解热失衡和常见并发症,加快病情治愈速率。创新性的相变智能体温调节纺织品在技术上已有了较深积累,其商业化值得期待。2.3 建筑节能及数据中心应急冷却将相变材料用于建筑节能领域,能使室内温度维持在舒适范围内,提高人们居住和办公舒适度,实现节能和减少碳排放的目标。建筑节能领域所用蓄冷技术可根据蓄冷方式分为被动式蓄冷和主动式蓄冷。被动式蓄冷主要通过将相变材料与建筑墙体复合制得如图10所示的相变储能墙体,白天吸收热量给室内降温,夜晚释放热量维持室内温度,起到辅助调节室温、减小建筑采暖和制冷能耗的作用。聂瑞等将硅藻土、十八烷和过硫酸铵混合制备一种相变微胶囊/硅藻土复合材料,具有调节室温以及维持室内湿度平衡的功能。Wang等将石蜡、膨胀石墨和高密度聚乙烯掺入水泥砂浆中制备复合相变砖块,在15~30℃和18~24℃时,120 mm厚的相变墙体比240 mm厚普通墙体的蓄能能力分别提高了12.7%和61%,有效降低了室内温度波动。Fu等将膨胀珍珠岩和六水氯化钙复合制得相变温度在27.38℃的相变砖块,用其代替泡沫保温砖作为屋顶,使得室内峰值温度降低5℃,达到室内峰值温度的时间滞后约900 s。图 10 相变材料在建筑节能中的应用主动式蓄冷主要通过制冷装置将电能和太阳能等转化并储存到如图11、图12所示蓄冷装置中,常见于冷库、家用空调和数据中心应急冷却系统等,能在需要时将冷能释放出来,有助于缓解能源供需不匹配的问题。图 11 集成相变材料冷却系统的空调系统图 13紧急冷却系统综上,在建筑节能领域中引入相变蓄冷材料,可减少室内温度波动并维持在舒适范围内。且相比传统制冷装置,相变材料具有的高相变焓优势能减少制冷机组装机容量,实现制冷、蓄冷装置的轻量化,降低安装、运行成本,提高能源利用效率。
  • 北京化工大学汪晓东教授AFM:基于相变材料的“三明治”结构新型红外隐身材料
    热红外隐身材料可通过降低表面红外发射率或温度,实现目标物体的红外隐身功能。然而,随着红外探测仪器的精准度不断提高,对红外隐身材料的要求也越来越高,通过降低红外发射率或表面温度的单一调控方式已无法满足高温物体的红外隐身需求。近日,北京化工大学材料学院汪晓东教授团队报道了一种基于MXene膜、交联聚酰亚胺气凝胶及其与赤藓糖醇复合的三明治结构功能复合材料,将低发射率、热温调控、隔热相结合,实现了高温目标物体的长效红外隐身。该研究成果以“Long-Term Infrared Stealth by Sandwich-Like Phase-Change Composites at Elevated Temperatures via Synergistic Emissivity and Thermal Regulation”为题发表在国际学术期刊《Advanced Functional Materials》。该论文的第一作者为北京化工大学材料学院硕士生敬建伟,通讯作者为刘欢副教授和汪晓东教授。该课题得到了中央高校基本科研基金和国家自然科学基金的资助。在此三明治结构复合体系中,最下层为各向异性聚酰亚胺气凝胶层,其特殊的层状堆叠结构和极低的热导率,可隔绝高温物体大部分热量的传输;中间层为气凝胶相变复合材料层,利用赤藓糖醇的高显热和潜热吸收,保证复合体系的动态温度调节能力;最上层为MXene膜,其在3~5 μm和8~14 μm两个大气窗口波长范围内的平均发射率分别仅为0.315和0.253,为体系表面提供了极低的红外发射率。图1 三明治结构复合材料示意图及MXene膜的制备流程与性能最下层的聚酰亚胺复合气凝胶为多层状堆叠的微观结构,有利于平行通道方向上的热量传递,阻碍垂直于通道方向的传热(导热率低于43.5 mWm-1K-1),进而提升隔热效果。气凝胶高的孔隙率(大于88%)和耐高温稳定性(热分解温度高于500 ℃),为其在高温隔热领域的长期应用提供了保障。图2 聚酰亚胺气凝胶的基本特性中间层的聚酰亚胺气凝胶/赤藓糖醇相变复合材料的过冷度大,且具有较高的熔融焓(315 J/g以上),能够在高温下吸收大量热量,在极低温度下予以释放。相变复合复合材料高过冷和高焓值的特性恰好与高温热伪装应用相契合。热红外成像结果显示,低发射率有助于高温物体表面保持稳定的低热辐射温度;气凝胶阻碍了热量向外扩散与传递;相变复合材料有效减缓了表面温度的快速升高。图3 聚酰亚胺气凝胶相变复合材料的基本特性及红外隐身性能三明治结构复合材料在250、300、350、400和450 ℃的热台上加热2.5小时,其表面的红外探测温度仅为38.6、43.2、49.7、53.7和66.1 ℃,显著降低了高温目标的热辐射温度。此外,MXene膜在X-波段的总电磁屏蔽效能为65.58 dB,约72.3% 的入射电磁波通过MXene膜时被衰减,赋予三明治结构复合材料优异的电磁干扰屏蔽性能。此项研究为实现高温目标物的长效红外隐身提供了一种有效的途径。图4 三明治结构复合材料的高温红外隐身及电磁屏蔽性能原文链接:https://doi.org/10.100 2 /adfm.202309269
  • 宁波材料所在4D打印自传感光响应相变软体执行器方面取得进展
    气动执行器因其弯曲程度高、自由度大、环境适应性强等特点,在医疗保健、复杂地形勘探等领域有广泛的应用前景。但由于其压力系统离不开笨重且刚性的泵驱动气体设备,极大地限制了执行器的尺寸和移动性,以及在室外环境中的应用。液-气相变复合材料是一种在柔性弹性体中掺杂液-气相变材料而形成的智能材料。当温度达到材料沸点时,液滴蒸发产生压力,带动复合材料膨胀,因此每个微液滴都可以看作是一个气动单元。通过这种方式,将气源和气泵的功能集成到主要材料中,大大降低了系统的复杂性。然而,相变执行器的加热方式受到焦耳加热或环境加热的限制,需要外接电源或更高的环境温度,这阻碍了其更广泛的应用。此外,目前对执行器变形行为的监测通常由光学相机记录,然后对获得的图像进行后分析,缺乏实时性。因此,如何设计一个无系绳,且具有感知自身运动的柔性执行器仍是一个挑战。针对上述问题,中国科学院宁波材料技术与工程研究所增材制造材料技术团队程昱川研究员和孙爱华研究员基于石墨烯、低沸点溶液微滴和硅橡胶,制备了一种集成变形驱动和传感特性于一体的光响应液-气相变弹性体(PRPTE)(如图1)。PRPTE具有优异的机械性能,在100℃时,低沸点发生液-气相变产生的轴向力可以高达自身重量的400倍,且稳定性良好。以该材料为主动层材料,团队采用4D打印技术制备了一系列柔性执行器,实现弯曲、抓取和爬行等光控程序化运动(如图3)。尤其重要的是,基于电容变化PRPTE表现出自传感特性。石墨烯吸收近红外光产生热量,低沸点液体发生液-气相变,介电常数减小;石墨烯因硅橡胶膨胀而逐渐分散,弹性体介电常数减小;同时电极间距增大。在以上三个因素的共同作用下,PRPTE的电容会迅速减小,从而实现对其变形的实时感知。模仿生物体利用其自身信号反馈调节肌肉收缩和拉伸,从而进行复杂运动,团队制备了一种人工肌肉(如图2)。该人工肌肉可以通过反馈的电容值得知腿部弯曲角度,并根据需要的角度进行精确控制。该研究实现了柔性执行器的驱动/传感一体化功能集成,为设计和制造具有集成自感知能力的软机器人提供了新思路。该工作以“4D printing Light-Driven soft actuators based on Liquid-Vapor phase transition composites with inherent sensing capability”为题发表在Chemical Engineering Journal, 2023, 454, 140271 。本研究得到了浙江省自然科学基金(No.LZ22E030003)、国家重点研发计划(No.2021YFB3701500)、国家自然科学基金(No.11874366)和宁波市重大科技攻关(No.20211ZDYF020228)等项目的支持。图1 PRPTE执行器的驱动、传感原理和制造图2 PRPTE传感性能的表征图3 4D打印PRPTE/PDMS双层结构执行器
  • 点赞 | 纳米尺度下材料的奇异相变行为
    p style=" text-align: center " img style=" width: 600px height: 275px " title=" 1.jpg" border=" 0" alt=" 1.jpg" vspace=" 0" src=" https://img1.17img.cn/17img/images/201904/uepic/a72768ab-977d-40f8-a938-7e0e2f4d8e60.jpg" width=" 600" height=" 275" / /p p    strong 项目名称 /strong :纳米尺度下材料的奇异相变行为 /p p    strong 申报单位 /strong :材料科学与工程学院 /p p    strong 负责人 /strong :王勇 /p p    strong 01& nbsp /strong strong 项目简介 /strong /p p   纳米材料因其优异的性能和独特的结构,目前已成为材料研究领域最重要的方向之一。如何发现并解读这些新颖的物理现象,尤其是异于传统尺度下的新行为,是当前研究的重点,然而传统的研究手段无法满足上述需要。该项目发展了新的原位表征技术对纳米尺度下材料的相变行为进行了系统研究,发现了纳米尺度下二级相变过程中两相共存新现象。 /p p   不同于体材料的相变理论,纳米材料的相变需要考虑表面的贡献。如何可控引入表面贡献是研究和理解纳米尺度下相变机制的关键。项目自主设计楔形纳米样品成功引入梯度表面贡献,对纳米尺度下Cu2Se材料的相变行为进行了精确控温的原位研究,项目取得如下创新性成果: /p p   (1)首次发现二级相变材料Cu2Se构成的楔形纳米晶体中两相可以热力学稳定共存、对温度响应灵敏,并实现了相界面的原子尺度操控。 /p p   (2) 基于朗道理论和纳米尺度下表面效应建立了新的热力学模型,成功解释了上述异于块体材料的新现象。 /p p   论文Nanoscale Behavior and Manipulation of the Phase Transition in Single Crystal Cu2Se,2018年11月13日在线发表于Advanced Materials。 /p p   研究发现了纳米尺度下二级相变过程中两相共存的新现象,建立新的热力学模型拓展了传统相变理论,并实现了原子尺度相变的精确操控,将对相变的认识扩展到纳米尺度,为纳米器件设计提供新思路。 /p p   strong  02& nbsp /strong strong 项目团队 /strong /p p style=" text-align: center " img style=" width: 450px height: 391px " title=" 2.jpg" border=" 0" alt=" 2.jpg" vspace=" 0" src=" https://img1.17img.cn/17img/images/201904/uepic/df1f66bd-cd9d-4eb9-a12b-0e4289adcc40.jpg" width=" 450" height=" 391" / /p p style=" text-align: center " span style=" text-align: center color: rgb(0, 176, 240) " 图1. 课题组照片 /span /p p   项目负责人王勇教授:2006年于中科院物理研究所获博士学位,随后在澳大利亚昆士兰大学进行博士后研究。2010年到2011年,在美国加州大学洛杉矶分校进行访问研究,2012年回国加入浙江大学。目前主要从事纳米环境催化材料的研究,共发表SCI论文140余篇,其中3篇Nature Nanotechnology, 1篇Nature Materials,40余篇发表在影响因子10以上的高水平期刊上。现为浙大电镜中心主任,中国电镜学会理事,材料物理专委会副主任,中国材料学会青委会理事。获2012年青年千人及2013年香港求是科技基金会“求是杰出青年学者奖”。研究团队包括张泽院士,美国张绳百教授,硅酸盐所陈立东教授、史迅教授,澳洲孙成华教授。 /p p   strong  03& nbsp /strong strong 科学解读 /strong /p p style=" text-align: center " img style=" width: 450px height: 244px " title=" 3.jpg" border=" 0" alt=" 3.jpg" vspace=" 0" src=" https://img1.17img.cn/17img/images/201904/uepic/46b35d02-6f28-449f-b95d-b81e67b8cb1a.jpg" width=" 450" height=" 244" / /p p style=" text-align: center " span style=" text-align: center color: rgb(0, 176, 240) " 图2. 纳米尺度相变示意图 /span /p p style=" text-align: center " img title=" 4.jpg" alt=" 4.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/b31c539b-2ee3-4697-bedf-2c9f2afc7e53.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图3. 原子尺度相界面操控 /span /p p   相变物质一般有高温相和低温相,根据传统理论,有的物质高低温两相可以同时存在(一级相变),比如冰水混合物,但有些物质的高低温相不能同时存在(二级相变),比如我们要研究的Cu2Se材料,它就像一山不容二虎一样,要么全是低温相,要么全是高温相。那么有没有可能突破传统的理论,实现Cu2Se的两相共存?针对这个挑战,我们进行了深入探索,发现适于体材料的传统理论没有考虑到表面的贡献,那么如果引入表面贡献会发生什么呢?如图1所示,一般的,体材料低温相加热到相变温度点就会全部变成高温相。我们巧妙地将Cu2Se材料制备成楔形的纳米样品后,惊奇地发现在相变点附近的一定温度范围内,低温相和高温相同时存在了!这显然违背了体材料的相变行为,其原因就是纳米尺度下,比表面积增大,表面贡献不能被忽视了。由于楔形样品表面贡献随其厚度而改变,从而改变了同一材料局域的相变温度,比如site 1和site 2有不同的相变温度,实现了两相共存,并且表面贡献的越大,其相变温度越低,所以高温相变是从边缘开始并逐渐向内推进。这样,我们实现了二级相变材料的两相共存,并通过精确控温又实现了相界面的原子尺度操控,以图一所示样品为例,升高温度(比如0.2度),相界面从site 1迁移到site 2(精确移动3个原子层),反之亦然。基于高温相与低温相物理性质不同,可以利用它们设计新型纳米器件。该工作发展最先进的原位技术重新研究了相变这一古老而且基础的物理现象,将对相变的认识拓展到纳米尺度,为纳米器件设计提供了新的思路。 /p
  • 大连化物所采用一步法合成策略开发出高性能光热转化石墨烯基复合相变材料
    近日,大连化物所热化学研究组(DNL1903)史全研究员团队通过简单易行的合成策略,开发了一种具有高光热转换效率的石墨烯基复合相变材料。该复合相变材料具有优异的相变性能和光热转换能力,为大规模制备石墨烯基光热转化复合相变材料提供了新思路。  石墨烯基复合相变材料能够解决相变材料相变过程中的泄漏问题,并具有优异的光吸收能力,在太阳能热转换和存储领域具有潜力。然而,目前石墨烯基复合相变材料的制备方法涉及多步过程,通常比较复杂、耗时且耗能,阻碍了其进一步的实际应用。针对此问题,史全团队通过一种简单而直接的一步法策略,将聚乙二醇相变材料原位填充到氧化石墨烯网络结构水凝胶中,构建出石墨烯基定型复合相变材料。该复合相变材料具有高的相变材料负载量(95wt%),经历1000个冷热循环后仍可保持稳定的相变焓值(162.8J/g),表现出优异的相变储热性能。此外,该材料还展现出色的光热转化能力,可快速将太阳能转化为热能储存于相变材料中,转化效率最高可达93.7%。  相关研究以“One-step Synthesis of Graphene-based Composite Phase Change Materials with High Solar-thermal Conversion Efficiency”为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。该工作的第一作者是大连化物所DNL1903硕士研究生李艳更。上述工作得到中科院洁净能源创新研究院-榆林学院联合基金、大连化物所创新基金等项目的支持。  文章链接:https://doi.org/10.1016/j.cej.2021.132439
  • 北京首台淬火/变形相变仪将落户北京科技大学
    继2006年上海大学后,北京科技大学与北京仪尊时代科技有限公司正式签约,购买德国巴赫热分析公司生产的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)。成为该设备在中国的第二个使用者。目前,德国巴赫公司在该领域的欧美市场占有率几乎百分之百。近年来,很多中国的金属、尤其是钢铁方面研究人员对该设备表现出了浓厚的兴趣,显示出中国钢铁行业在特种钢和优质钢方面长足进步,也是缩小我们与欧美国家在钢铁领域差距的一个缩影。相信该设备将成为该校金属学研究的得力帮手。 有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。 screen.width-300)this.width=screen.width-300"
  • 新型相变材料研究等7个项目获中国材料研究学会科学技术奖
    p strong 仪器信息网讯 /strong  7月11日,中国材料大会2019在四川成都隆重召开,7000余代表与会。在大会开幕式上,颁发了中国材料研究学会“科学技术奖”,并举行隆重的颁奖仪式。中国材料研究学会副理事长、中南大学副校长、党委常委周科朝教授主持颁奖典礼。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/3159a1b5-fd5e-4e29-994a-20c491607fac.jpg" title=" 科学技术奖.jpg" alt=" 科学技术奖.jpg" / /p p style=" text-align: center "   颁奖嘉宾与获奖人员合影 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 259px " src=" https://img1.17img.cn/17img/images/201907/uepic/19f5706c-b0d0-4641-9788-a8fa63864b2b.jpg" title=" 周科朝.jpg" alt=" 周科朝.jpg" width=" 400" height=" 259" border=" 0" vspace=" 0" / /p p style=" text-align: center "   中国材料研究学会副理事长周科朝主持颁奖典礼 /p p   “中国材料研究学会科学技术奖”面向学会的团体会员单位和分支机构,评选范围:对材料科学前沿研究具有深远影响的、被公认的重要发现和材料技术重大突破的创新成果 对发展高技术有巨大推动作用的关键新材料合成与制造技术 对提升传统材料品质和促进产业技术进步影响面广、经济效益巨大的工程技术开发成果。不包括涉及国防、国家安全领域的保密项目。评奖等级依申报项目成果水平综合评定,主要从创新性、技术难度、总体水平、对相关领域和行业技术进步推动作用以及经济效益或者社会效益等方面评价。 /p p    strong 一等奖获奖项目名单如下: /strong /p table style=" border-collapse:collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 71" valign=" top" 宋志棠等 br/ /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 214" valign=" top" 中国科学院上海微系统与信息技术研究所 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 318" valign=" top" 八面体基元理论指导发现新型相变材料与其在128Mb存储芯片中应用 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 71" valign=" top" 石锋等 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 214" valign=" top" p 山东科技大 /p p 学北京大学 /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 318" valign=" top" 多种结构微波陶瓷的晶格动力学研究 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 71" valign=" top" 毕科等 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 214" valign=" top" 北京邮电大学 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 318" valign=" top" 高性能人工精细结构的构建与应用研究 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 71" valign=" top" 陈平等 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 214" valign=" top" 大连理工大学 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 318" valign=" top" 含芳杂环结构双马树脂设计合成及其复合材料界面性能调控 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 71" valign=" top" 于岩等 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 214" valign=" top" 福州大学 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 318" valign=" top" 复杂组分分尾矿渣的分类转化和高值综合利用 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 71" valign=" top" 贾金升等 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 214" valign=" top" 中国建筑材料科学研究总院有限公司 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 318" valign=" top" 光电探测用高性能光学纤维面板制备关键技术研发及应用 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 71" valign=" top" 赵霞等 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 214" valign=" top" 苏州法尔胜光通信科技有限公司 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 318" valign=" top" 面向航空航天及军工武器用高精度传感保偏光纤研发与产业化 /td /tr /tbody /table p /p
  • 宁波材料所在提升钙钛矿/硅叠层太阳能电池稳定性方面取得重要进展
    尽管目前钙钛矿/硅叠层太阳电池效率可达到33.2%,但钙钛矿活性层的长期稳定性是阻碍钙钛矿/硅叠层太阳电池商业化的最紧迫问题之一。目前提高钙钛矿器件稳定性通常基于封装工艺、晶体调控工程、缺陷钝化方法和能带调节方式。   然而,类似于许多金属、玻璃和聚合物材料中的“应力腐蚀”,由器件制造和运行中不可避免的拉伸应力引起的时间依赖的亚临界钙钛矿降解仍然会发生。微观层面,该应力可以削弱铅卤化物轨道耦合,从而改变与结构相关的材料特性(如带隙和载流子动力学),降低相变、缺陷形成和离子迁移的势垒;宏观层面,该应力会促使裂纹和分层情况的产生,从而加速钙钛矿的降解,导致器件的效率降低甚至失效。   近期,中国科学院宁波材料技术与工程研究所所属新能源所硅基太阳能及宽禁带半导体团队在叶继春研究员的带领下在前期晶体硅和钙钛矿太阳电池研究的基础上,在高效稳定钙钛矿/硅叠层电池领域又取得了新的进展。该团队采用一种长碳链阴离子表面活性剂添加剂,研究发现该添加剂能通过表面自分离和胶束化以改善钙钛矿晶体生长动力学,并在钙钛矿晶界构建类胶状的支架以消除残余应力;因此,钙钛矿活性层中缺陷减少、离子迁移受抑制以及能级结构改善。最终实现了未封装的钙钛矿单结和钙钛矿/硅叠层太阳电池在最大功率点跟踪下连续光照下3000小时和450小时的运行稳定性测试中,分别保持了85.7%和93.6%的初始性能,代表了迄今为止在类似条件下报道的稳定性最佳的器件之一。   相关成果以“Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion”为题发表于Nature Communications(https://doi.org/10.1038/s41467-023-37877-z),博士生汪新龙为第一作者,应智琴博士后、杨熹副研究员和叶继春研究员为共同通讯作者。该研究得到了国家重点研发计划(2018YFB1500103)、澳门特别行政区科学技术发展基金(FDCT-0044/2020/A1、0082/2021/A2)和澳门大学研究基金(MYRG2020-00151-IAPME)等项目的支持。长链阴离子表面活性剂抑制应力腐蚀作用机理(上);钙钛矿单结(中)以及钙钛矿/硅叠层(下)太阳电池最大功率点工作稳定性测试
  • 上海微系统所在相变存储器研制方面取得进展
    当今,电脑系统采用层次化存储架构:缓存、内存和闪存。离CPU越近,对存储器存储速度需求越高,如内存的速度为纳秒级别,而缓存则需要皮秒级别。   作为下一代存储器的有力竞争者,相变存储器的速度决定了其应用领域,而相变存储器速度主要由相变材料的结晶速度(写速度)所决定。   研究表明,相变存储器的热稳定性越差,结晶速度越快,而单质锑(Sb)是目前已知热稳定性最差的相变材料,可能具有最快的操作速度。   中国科学院上海微系统与信息技术研究所宋志棠和朱敏研究团队等通过分子动力学计算,发现单质锑能够在120 ps内从非晶结构中成核并进一步完全结晶。通过制备200 nm、120 nm和60 nm T型下电级器件的单质锑相变存储器件,研究发现随着器件尺寸减小,单质锑相变存储器的速度越快。   200 nm 单质锑器件最快的写速度为359 ps(见图1),当器件尺寸微缩至60 nm时,写速度为~242 ps, 比传统Ge2Sb2Te5的快近100倍(20 ns)。通过与已报道的相变存储器的速度对比(见图2),单质Sb器件的速度明显快于传统Sb-Te、Ge-Te以及 Ge-Sb-Te基相变存储器,其~242 ps的操作速度是目前相变存储器速度的极限。此结果表明,通过选择合适的相变材料,相变存储器有望具备替代内存甚至缓存的潜力。   该成果于1月31日发表在《先进材料》(Advanced Materials)上(10.1002/adma.202208065)。该工作得到中科院战略性先导科技专项、国家自然科学基金等的支持。
  • 宁波材料所在AI 材料计算模拟领域取得系列进展
    基于量子力学的原子层级模拟计算是材料学中一种直观有效且常用的研究方法,它可以研究材料的空间原子结构、电子结构,以及由此带来的各种宏观物理、化学性质。长期以来,材料计算模拟的发展受到计算尺度的严重制约,例如描述理想周期结构、完美晶格的密度泛函理论仅可求解百原子量级的体系。   然而真实的材料体系是不完美并且非常复杂的,材料中存在缺陷、晶畴界、表界面、非晶无序等结构特征,处于非平衡态的材料体系同时具有动力学演化行为,这些复杂体系的特征行为体现在更大的时间和空间尺度,因此需要大尺度的模拟计算才能描述。基于传统物理“规则驱动”的计算技术已难以从理论框架突破尺度限制。   针对这一问题,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队利用并发展了AI+材料计算模拟方法。基于“数据驱动”的AI是从数据和观测值出发,寻找数据之间的特征和关系,从而发现一些定理和规律。AI与科学的结合带来了新的科研范式,给材料计算模拟带来全新的思路和视角。Deep-Potential(DP)是一种具有代表性的AI技术,它运用深度神经网络技术,采用大量小原胞(数十个原子)的密度泛函理论计算数据作为训练集,训练完成的网络可以高效准确地预测出大原胞(最高可计算百万个原子)的总能以及原子受力,从而实现大时间空间尺度(微米/纳秒)的动力学模拟。   钟志诚研究员带领研究小组近期开展了一系列DP相关的研究:1)通过研究SrTiO3的结构相变,发现了DP模型具有超高精度,与密度泛函理论计算得到的能量误差可达到meV/atom以内[Phys. Rev. B 105,064104(2022)];结合DP势函数和位错解析理论,在大尺度下准确描述Cu的位错芯结构以及位错间的长程弹性相互作用[Comput. Mater. Sci. 218,111941 (2023)]。上述两个工作证实了DP在大尺度下的高精度以及描述位错等复杂结构的有效性。2)利用DP,解释了ZrW2O8的负热膨胀现象以及压力诱导的非晶现象[Phys. Rev. B 106, 174101 (2022)],该工作表明DP势函数能够有效描述复杂动力学行为以及非晶无序结构。3)晶格量子效应对热力学等性质的求解至关重要,而却往往因为其较高的计算成本在模拟计算中往往被忽略。团队以SrTiO3的量子顺电现象为例,提出了结合DP+QTB高效地研究材料中的晶格量子效应方案[Phys. Rev. B 106, 224102 (2022)]。   以上工作为未来材料计算模拟研究提供了全新范式,为复杂材料体系的高精度大尺度模拟提供了具体思路。此外,结合AI+材料计算模拟进行大尺度及复杂效应的计算,有望解决一系列复杂材料体系中的微观机制、宏观性能等问题。例如多元体系中的高熵合金、固液界面;机制复杂的摩擦、张力、非晶、表面重构;化学反应的表面吸附、催化、燃烧等问题。   以上工作参与者包括中科院宁波材料所博士后何日、邓凤麟,博士研究生吴宏宇,合作者包括南京大学物理学院卢毅教授,西湖大学理学院刘仕教授,深势科技首席科学家张林峰博士。以上工作得到了国家重点研发计划(2021YFA0718900和2022YFA1403000)、国家自然科学基金(11974365和12204496)、中国科学院前沿科学重点研究计划(ZDBS-LY-SLH008)以及王宽诚教育基金(GJTD-2020-11)的支持。图1 (a) 通过密度泛函理论所计算的大量空间构型(约百原子级别)的能量和力;(b)DP训练所得的深度神经网络;(c)和(d)训练好的深度神经网络能应用于预测超胞(约百万原子级别)的能量和受力,其精度和密度泛函理论一致图2 课题组近期各工作。左上:DP势函数的精度展示;右上:DP方法描述位错间对数形式的长程弹性相互作用;左下:ZrW2O8的压力诱导非晶现象;右下:DP+QTB预测的SrTiO3结构相变
  • 普发特发布薄膜相变分析仪PTM1700型新品
    薄膜相变分析仪是一款对相变材料相变特性进行测量与分析的精密光电仪器,可通过自动测量分析薄膜或者粉体等相变材料的热滞回线、相变温度、热滞宽度、相变幅度等特性参数。先进的模块化设计理念、精密的光探针技术、高端的进口芯片、便捷的自动测试分析软件、以及时尚的外观,使该仪器成为二氧化钒等相变材料研究的不二选择。中国科学院广州能源研究所,深圳大学等单位为典型用户。薄膜相变分析仪技术特点:1、精密光学测量技术,可进行单层、多层和超小样品的测量,且灵敏度更高2、非接触式信号采集,避免了接触式探针测量对样品的损伤和不稳定性缺点3、先进的光探针技术,使得采样范围最小直径可达300微米4、全自动一-键测量,操作简单,省时、省事5、超高采样速率1测量快速、准确,工作效率高6、触摸屏操作与电脑操作两种模式,测量随心所欲7、升温速率无级可调,根据实际需求任意选择8、与DSC测量相比,具有超高性价比9、科研型与基础型,满足不同需求技术规格1、仪器型号PTM17002、工作波长1550nm (特殊需要波长可定制)3、样品台温度范围:室温~120°C,温度精度+0.1°C4、采样频率1Hz5、最小采样范围直径300um6、红外非接触测温模式7、自然冷却与风冷两种降温模式8、加热速率无级可调9、设定参数后自动测量出薄膜相变的热滞回线10、USB2.0高速数据接口11、测试分析软件可得到相变温度、热滞宽度等特性参数12.可以Exce形式导出各原始测试数据和分析数据,以word形式导出测试分析报告创新点:全自动薄膜相变分析仪是一款对相变材料相变特性进行测量与分析的精密光电仪器,可通过自动测量分析薄膜或者粉体等相变材料的热滞回线、相变温度、热滞宽度、相变幅度等特性参数。先进的模块化设计理念、精密的光探针技术、高端的进口芯片、便捷的自动测试分析软件、以及时尚的外观,使该仪器成为二氧化钒等相变材料研究的不二选择。中国科学院广州能源研究所,深圳大学等单位为典型用户。 薄膜相变分析仪PTM1700型
  • 2023年全国电子显微学学术年会之先进材料专场报告集锦(上)
    中国电子显微镜学会、仪器信息网联合报道 2023年10月27日,2023年全国电子显微学学术年会在东莞市会展国际大酒店龙泉厅盛大开幕。大会由电镜学会电子显微学报编辑部主办,南方科技大学、松山湖材料实验室、大湾区显微科学与技术研究中心共同承办,仪器信息网作为独家合作媒体参会报道。大会为期三天,参会人数再创新高,吸引来自高校院所、企事业单位、仪器技术企业等电子显微学领域专家学者2000余人出席参会。10月27-28日上午进行大会报告,27-28日下午及29日全天同时进行13个不同电镜主题的分会场报告。大会现场本次大会共设置十三个分会场:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学表征(含EBSD);8)聚焦离子束(FIB)在材料科学中的应用;9)低温电子显微学表征;10)生物显微学研究;11)生物医学和生物电镜技术;12)全国电子显微镜运行管理开放共享实验平台经验交流;13)先进材料。其中,第十三分会场“先进材料”是本次大会首次设置,邀请了众多材料领域知名学者分享报告,吸引了材料领域与会者的热烈关注。电子显微学技术是探索微观世界,揭示材料科学奥秘的重要手段,因此广泛应用于材料学等领域。以下为部分精彩报告摘要:报告人:田明亮 教授 安徽大学、中国科学院合肥物质研究院报告题目:Skyrmion bundles with multiple charges and current-driven dynamics in helimagnets 磁斯格明子 (magnetic skyrmion) 是具有拓扑保护属性的新型涡旋状磁结构,有望在高速度、低功耗磁存储等方面具有潜在的应用前景并成为磁学领域的研究前沿。对于通常的磁斯格明子,其拓扑荷为“+1”或“-1”。由于磁斯格明子霍尔效应,斯格明子在电流驱动下运动往往会发生偏转,这将导致器件设计复杂并难以精准控制。田明亮教授在报告中介绍了任意拓扑荷磁斯格明子—磁束子(multiple charge skyrmion bundles) 的产生、洛伦兹电镜实验观察以及脉冲电流操控运动等,发现拓扑荷为“0”的斯格明子以及在磁畴壁之间运动的斯格明子不会发生偏转,为潜在的多态存贮提供重要支撑。报告人:马秀良 研究员 松山湖材料实验室报告题目:晶体科学与传承:从二十面体到氧八面体无论是晶体还是准晶体,其结构都由点阵和结构单元两部分构成。二十面体是准晶体中重要的结构单元。二十面体结构单元以准周期方式排列构成准晶体,以周期性方式排列便构成周期性晶体(称之为准晶体的近似相)。马秀良在上世纪八九十年代跟随郭可信先生从事准晶体及近似相的电子显微学研究中,在Al基合金中发现并确定 20 余种晶胞参数以黄金分割比(τ=1.61803...)渐进膨胀(τn)的大单胞新物相,这些晶体都由二十面体或五边形结构单元构成。当n→∞时,晶胞参数无穷大的晶体相转变为准晶体。氧八面体是马秀良近些年来研究的钙钛矿型铁电氧化物中重要的结构单元。通过脉冲激光沉积,将铁电氧化物(如 PbTiO3、BiFeO3等) 以原子尺度外延成长在特定的衬底上,外延体系中特性的边界条件以及晶格参数的不匹配导致氧八面体的位移、畸变、旋转等,从而调控出一系列新型铁电极化拓扑结构,如通量全闭合畴、涡旋畴、半子及半子晶格、斯格明子以及周期性电偶极子波等。这些新型铁电拓扑结构的发现为与铁磁材料类比的结构特性增添了新的实质性内容,对探索基于铁电材料的高密度非易失性信息存储器件具有重要意义。在纪念郭可信先生诞辰 100 周年之际,马秀良简要回顾过去 30 余载两度历经的国际前沿、分享发现的乐趣、传承基于电子显微解析的晶体结构与缺陷科学。报告人:邓意达 教授 海南大学报告题目:催化材料活性调控与应用发展高效电化学能源器件对于推动绿色能源发展和实现碳循环具有重要意义。但目前大多数器件性能仍无法满足应用需求,其关键在于核心电催化材料的性能不足。以单原子、团簇为代表的原子级催化剂的催化位点暴露比例高、本征催化活性可调,对于提升电化学能源器件的效率和稳定性提供了有效途径。然而,如何通过调控原子级催化剂的近邻配位结构、电子结构等,来提升材料的催化活性和稳定性是目前该领域面临的关键难题。针对非贵金属原子级催化剂的本征活性低、稳定性差等问题,邓意达发展了调控催化位点本征催化活性的两种有效策略。一是,提出了单原子催化活性的不对称配位描述符,通过调控催化位点的不对称配位结构,来优化其电子结构,进而提升其催化活性。二是,通过构筑单原子-团簇多级结构,在团簇周围构筑卫星 状单原子,利用团簇对 Cl-的强吸附作用,来提高单原子的抗 Cl-腐蚀能力,并提升单原子位点的强亲氧特性,从而在单原子与团簇协同作用下,既提高了催化剂在海水环境中的催化活性又提高了抗 Cl-腐蚀的稳定性。另外,为推动催化剂走向规模应用开发了单原子催化剂的宏量制备技术,开发了平米级空气膜电极,设计了三明治结构双极膜电池单体,并构筑了从瓦级到百瓦级的空气电池电堆系统,开发的海水空气电池已经在南海开展实况验证。报告人:王立华 教授 北京工业大学报告题目:In situ atomic-scale deformation mechanism of metallic materials材料力学性能与其变形过程中微观结构演化的原子机理直接相关。在原子层次认知材料弹塑性变形过程的原子机理,是其力学性能优化的理论基础。透射电镜具有原子级分辨率,然而要实现在原子层次动态观察材料的变形行为依然非常困难。王立华在报告中介绍了团队发展的具有原子分辨的原位力学实验方法,然后利用该方法研究单体纳米线以及多晶材料的变形机制。报告中还介绍了金属纳米材料变形过程的原位原子尺度观察;研究小尺寸金属纳米材料奇异的弹性,塑性力学行为;研究尺寸、界面对金属弹性极限及塑性变形机制的影响,多晶以及孪晶结构金属材料的变形机制;揭示了晶界结构,晶粒尺寸对多晶金属材料塑性变形机制以及弹塑性能的影响。报告人:陈江华 教授 海南大学报告题目:In-situ/3D Transmission Electron Microscopy of Genetic Phase Evolution in Aluminum Alloys铝合金中的强化相种类多而结构未知,这些强化相颗粒尺寸在单个纳米量级,其结构无法用 X 射线、中子、电子衍射等传统方法测量。此障碍成为金属相关学科百年来无法逾越的世纪屏障,制约着对高性能铝合金深入理解及其高质量发展。事实上,单个纳米细小颗粒的结构测量问题是材料、冶金、生物等多学科普遍面临的研究方法上的世界难题。陈江华团队从创新电镜理论方法到自主创立电镜结构测量新技术,又到精准测量系列铝合金中强化相颗粒结构,再到系统解决其相变国际前沿科学问题,取得了系统原创性成果。第一,建立精确计算原子像的普适理论“陈-范代克方法(Chen-Van Dyck methods)”,提出获得可靠实验原子像的2种电子全息技术新方法,创建了系统完备的物镜像差矫正电镜定量原子成像新方法;第二,创立基于原子成像衬度定量分析的材料结构测量全新技术,解决了铝合金中细小强化相颗粒结构精准测量的世纪难题;第三,系统解决铝合金中主要强化相的相变规律问题,并拓展了新电镜技术应用和发展方向。陈江华团队测定了包括 2000 系航空航天铝及铝锂合金,6000 系汽车铝合金和7000系航空及高铁列车铝合金等主要工业需求铝合金的主要强化相颗粒的精细结构,并揭示了其中非平衡态相变的动态相变规律,提出了“遗传性相演变”的新概念以正确描绘和理解其中的动态相变规律。报告人:孙立涛 教授 东南大学报告题目:原子尺度下材料结构的原位调控方法(原子尺度制造方法问题)原子尺度结构调控(原子制造)是信息产业发展的必然趋势。高集成、高能效、低功耗促进了器件尺寸微型化,并使得制造中的特征加工尺寸不断减小。原子制造已成为技术自身发展的必然趋势,也是制造技术的极限目标。原子级制造基础研究国内外几乎同期探索,是推动制造强国建设的重要机遇。而解决原子制造需要解决制造材料和制造方法。先进材料的发展是提高科技水平和产业经济的重要支柱之一,先进材料的性能及应用与其形貌及结构密切相关,准确理解材料在不同条件下的结构演变机制并发展纳米尺度甚至原子尺度的结构调控方法至关重要。针对这一挑战,孙立涛借助透射电镜在原子尺度探索了电子束、温度场、电场以及液体环境对材料结构演变的影响,阐明结构演变机制,提出基于不同物理场的结构调控方法。孙立涛表示,当前原子制造得到越来越多的关注,是未来芯片制造的重要支撑,而原位可视化是破解科学之谜最直观手段。孙立涛坚信,新技术的广泛应用需要时间,但一定会到来,需要早布局和长坚持,统筹长远规划布局制造装备、产品、检测、软件等。报告人:赵纪军 教授 华南师范大学报告题目:Ab Initio Design of Novel 2D Magnetic Materials二维铁磁体因其在自旋电子学器件上的重要应用而备受关注。从器件应用的角度,亟待寻找更多实验上易于制备、具有高居里温度的铁磁体,并利用界面作用等策略进一步调控材料性能和构建器件。赵纪军首先讨论了二维范德华磁体 XGeTe (X=Cr,Mn,Fe)的高通量筛选,然后讨论了具有磁光调控特性或磁斯格明子的二维铁磁体CrSBr和CrI3层间异质结构。最后,设计了具有反常霍尔电导、多铁特性、磁热效应的几类非范德华二维磁体CrTexSe3-x、AgCr2X4(X = S, Se)、MnCoAs、FeSb。报告人:赵新宝 教授 浙江大学报告题目:Co在一种四代镍基单晶高温合金中的作用机制组织稳定性良好的镍基单晶高温合金是保障航空发动机高压涡轮叶片长寿命的关键因素之一。高难熔元素含量的镍基单晶高温合金长期高温服役下容易析出拓扑密堆相 (TCP) 相,损害合金的性能。Co具有一定抑制TCP相的作用,但Co对合金组织和蠕变性能的影响还需进一步探明。赵新宝以一种自主第四代镍基单晶高温合金为研究对象,考察了Co含量对合金组织和1100℃/137MPa 蠕变性能的作用机理。研究发现,适当增加Co含量减轻了多种难熔元素的凝固偏析,元素的均匀化分布有利于合金的整体强度的提高。Co的添加形成了元素的“逆分配”效应,导致Re、Cr和Mo的分配系数减小,而增加了γ’相形成元素Al的分配系数,也是9Co和12Co合金在蠕变第二阶段的显微组织中的TCP相被抑制的主要原因,增加了合金的组织稳定性。此外,Co的增加导致错配度减小,降低了位错网的密度,影响了长期蠕变后合金内γ’相的含量,均影响蠕变性能。研究条件下合金最佳的 Co含量为 9 wt.%,为单晶合金的低密度低成本设计提供参考。
  • 高能所等应用同步辐射纳米分辨谱学成像技术揭示氧化还原反应的相变过程
    p style=" text-align: justify " & nbsp & nbsp & nbsp & nbsp 中国科学院高能物理研究所多学科中心X射线成像实验站副研究员袁清习和国内外课题组合作,建立了基于同步辐射纳米分辨谱学成像技术追踪氧化还原反应相变过程的方法,并成功应用于锂离子电池电料相变过程的研究。研究成果近期发表在《自然-通讯》(Nature Communications)期刊上。 /p p style=" text-align: justify " & nbsp & nbsp 同步辐射谱学成像(XANES imaging)是利用特定元素对X射线能量的不同响应特性来获得样品内部对应元素的化学价态三维分布。基于波带片全场成像方法的纳米分辨谱学成像技术可以获得高空间分辨的形貌和化学信息,近年来受到了越来越多的重视,在材料科学领域尤其是在能源材料领域的研究中表现出重要潜力。 /p p style=" text-align: justify " & nbsp & nbsp 针对纳米分辨谱学成像方法学和应用研究,高能所多学科中心X射线成像实验站近年来开展了大量的工作。其中,袁清习和国内外多个同步辐射装置建立紧密联系,在技术研发、科研应用等方面开展了广泛的合作。近期,袁清习联合美国斯坦福同步辐射光源研究员刘宜晋课题组、弗吉尼亚理工大学教授林锋课题组提出了应用同步辐射纳米分辨谱学成像技术研究氧化还原反应的不均匀相变过程的新方法。这个联合团队成功将他们提出的新方法应用于Li(NixMnyCoz)O2(NMC) 三元正极材料的研究中,揭示了该材料热稳定性的一系列问题。该项工作发表于Nature Communications9, 2810,2018,共同第一作者为弗吉尼亚理工大学博士穆林沁和高能所袁清习。 /p p style=" text-align: justify " & nbsp & nbsp 以NMC正极材料中的应用为实例,该实验方法的工作流程如下:首先,为了研究该材料体系在不同温度下的行为,开展原位实验,利用谱学成像获得大量空间分辨的吸收谱数据;其次,提取Ni元素K边吸收能量表示相应的化学状态,高能量代表高价态(相对氧化态),低能量代表低价态(相对还原态)。进而使用样品在不同温度条件下的化学价态分布结果来表征氧化还原相变过程;第三,选择特定的Ni元素价态(例如,选择氧化还原反应最剧烈的能量点代表的价态),利用所采集的大量数据来描绘Ni元素等价态面的三维分布,对比不同反应条件下的等价态面分布来表征相变的发生、发展及相变前沿的推进过程;最后,引入等价面局域曲率(反应界面局域曲率)的概念,来描绘成核生长及整个相变的复杂过程。 /p p style=" text-align: justify " & nbsp & nbsp 图1为Ni的价态随NMC材料加热过程的变化,其中的每一条曲线代表了相应条件下基于全部像素的Ni价态的分布情况,可以看出化学反应从开始到结束全过程Ni元素价态分布的演变情况。图2给出了四个特定反应条件下Ni等价态面的发生、发展过程,所选择的Ni价态为8341eV对应的价态。从图1可以看出,8341eV代表的价态可以代表是化学反应最剧烈情况。图3中用不同颜色表示了镍元素的吸收边能量代表的镍元素的价态。受由晶粒边界和其局域的化学环境(不同组分和缺陷)所影响,相变过程通常非常复杂,如图3a所示,镍阳离子三维的形貌由不同的价态组成,从相对还原态(低能量态)到相对氧化状态(高能量态)。这些三维的价态推进前端提供了一个直观的三维立体多面体。还原态和氧化态分别代表了子相和母相,相变反应的推移前端从图3a到图3c。同时,作者将这些三维多面体每个局域的曲率计算出来,并分别用红色和蓝色代表局域曲率为正值和负值。从图3d、e可以看出相变过程中局域价态曲率的演化过程。 br/ /p p style=" text-align: justify " & nbsp & nbsp 这项工作不仅对锂离子电极材料的热稳定性和热致相变给出了详细的描述,还为下一步的储能材料优化提供了一些思路。研究工作所使用的方法可以推广到更加广阔的研究领域,尤其是复杂体系的非均匀相变过程等的研究中。特别是考虑到下一代同步辐射光源的发展,更高的亮度将会大大降低实验的时间,从而能够更好地捕捉到相变过程中的非稳定状态,为能源材料、环境科学等研究领域提供有力的工具。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/863601e7-f186-445f-b8b1-ff31fd5d1984.jpg" title=" 图1111.jpg" / /p p style=" text-align: center " 图1 NMC样品中镍元素的价态随加热过程的变化。(a)为镍元素的局域价态直方图。(b-e)为原位观测镍价态信息示意图。镍的价态由Ni 的K吸收边能量表示,高能量和低能量分别代表了高价态和低价态。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/974970c5-2fc2-4129-beeb-217abf22612c.jpg" title=" 图2222.jpg" / /p p style=" text-align: center " 图2 NMC样品不同反应条件下Ni等价态面的产生、发展及推进过程 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d29d8585-987d-4cf3-9540-9ad6e2f158af.jpg" title=" 图3333.jpg" / /p p style=" text-align: center " 图3 局部镍元素价态曲率随相转变的演化。(a,b,c)分别代表了不同能量(8339, 8340 和8341 eV)的Ni K-edge的等值面形成的三维曲面。图d和e表示了在不同能量范围内价态曲率随着能量值的变化。 /p p br/ /p
  • 物理所在光激发VO2超快电子相变和结构相变的动力学解耦研究中取
    二氧化钒(VO2)是一种典型的强关联材料。在温度约为340K时,VO2会经历从绝缘性单斜相(M1-VO2)到金属性金红石相(R-VO2)的一级相变过程。强关联材料中电荷、晶格、轨道和自旋等自由度强烈地耦合在一起,这使得VO2绝缘体-金属相变存在多种相变机制。超快激光脉冲通过激发固体材料的价电子可以快速改变原子的势能面,因此激光辐射已经成为一种诱导强关联材料相变的有效途径,比如激光辐射可以使M1-VO2在500fs内发生非热的结构相变。但是实验上通常很难直接同时观测结构相变和绝缘体-金属相变中的超快原子和电子动力学,因此对于VO2的超快结构相变和绝缘体-金属相变的相变机制,以及两种相变能否脱耦仍然存在巨大争议。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员利用自主开发的激发态动力学模拟软件TDAP,研究了激光诱导M1-VO2到R-VO2的超快结构相变和绝缘体-金属相变,揭示了超快尺度上的非平衡相变机制。激发态动力学模拟可以追踪光诱导VO2结构相变和绝缘体-金属相变的超快过程,直接证明飞秒尺度上两种相变的解耦合行为。在这种动力学过程中,激光将M1-VO2 d||带上的价电子激发到导带上,d||带上产生的空穴可以引起V-V对的扩张和V-V-V扭转角的增加,从而驱动M1-VO2到R-VO2的结构相变(图1、图2)。计算模拟得到的结构相变速率与激发强度的依赖关系,与超快实验数据符合得很好。基于杂化密度泛函的激发态动力学模拟证明了在M1-VO2构型下可以出现等同结构的绝缘体-金属相变(图3)。M1-VO2中的空穴会引起间隙能级在带隙中的填充,从而引起带隙的消失。更高强度的光激发可以引起d||带的明显上移。模拟得到的结构相变和绝缘体-金属相变的激发阈值基本上是相同的,而结构相变和电子相变存在着数百飞秒的时间延迟,这导致了金属型M1-VO2瞬态和等同结构电子相变的出现(图4)。该工作揭示了VO2超快结构相变和绝缘体-金属相变过程中不同的超快机制,澄清了以往对于VO2是否存在等同原子结构的电子相变的争议,并提供了研究强关联材料非平衡动力学的新方法。相关成果近期发表在Science Advances上。研究工作受到国家重点研发计划、国家自然科学基金委和中科院的资助。图1 VO2原子结构图和光激发电子跃迁过程。(A)低温绝缘型M1-VO2和(B)高温金属型R-VO2的原子结构图。钒原子和氧原子分别以绿色和橙色显示。(C)脉冲电场强度E0为0.20 V/的800nm激光脉冲,以及其激发M1-VO2中的光生空穴密度随时间的演变。(D)光激发有效空穴密度与激光脉冲电场强度E0的关系。图2 光激发M1-VO2到R-VO2相变原子动力学。(A)不同激发强度下V-V长键和V-V短键平均长度的时间演变。(B)不同激发强度下平均V-V-V扭曲角的时间演化。(C)0.64 e/f.u激发强度下的差分电荷密度图。黄色区域对应于电子增加,青色区域对应于电子减少。(D)光激发结构相变时间常数与实验数据的比较。图3 光激发M1-VO2的电子动力学。(A)不同激发强度下M1-VO2的电子态密度。(B)杂化泛函非绝热模拟中电子激发量的演化。在E0=0.14 V/ 下t= 20 fs(C)和t = 40 fs(D)时的电子占据和态密度。图4 光诱导M1-VO2超快相变示意图。初始的绝缘相M1-VO2(t = -100 fs)在t = 0 fs时被激光脉冲激发。光激发诱导M1-VO2发生等同原子结构的绝缘体-金属相变(10 fs内),而结构相变在100至300 fs的时间尺度内发生。
  • 大昌华嘉与LDS和Formulaction建立合作关系,在中国市场进一步拓展材料特性稳定性分析技术解决方案
    大昌华嘉(dksh)与formulaction公司签署了独家代理协议,推动在中国市场的科学仪器业务。lds是formulaction在中国的长期伙伴,将成为大昌华嘉中国的一部分,是这一合作关系的重要部分。2020年5月8日,中国上海 - 大昌华嘉科技事业部,专注于为科技企业提供市场拓展服务的领导者,与法国formulaction仪器公司建立了独家合作关系。该公司位于法国图卢兹,以其智能分析仪器解决方案和科学仪器而闻名,分析过程中样品无需制备,没有任何非自然的破坏。大昌华嘉将为formulaction在中国提供市场营销、销售、物流和分销以及售后服务,这些解决方案针对表征仪器稳定性、颗粒粒径、相变和流变特性。产品组合包括formulaction公司的turbiscan和rheloaser系列以及fluidcam产品。 lds 是formulaction在中国的长期分销合作伙伴,自2020年5月1日起将成为大昌华嘉团队的一部分,并继续为现有和新客户提供服务。lds的专业人员加入大昌华嘉后,将更加壮大销售和服务网络。这三大联盟将携手共同在中国市场进一步可持续性发展。 此次合作主要关注个人护理、制药、涂料和油墨、食品和饮料、石油和天然气,以及一般化学、聚合物和电子行业领域,与大昌华嘉进一步扩展科学仪器业务的战略方向一致。“大昌华嘉在中国发展悠久,拥有所有必要资源以满足客户需求,并扩大我们的业务。这项合作将为我们当前和未来的客户提供最佳的支持和专业知识。”formulaction全球销售总监pascal bru评论道。公司信赖大昌华嘉的产品组合、测试实验室,再结合lds的专业销售团队,对formulaction在中国的业务发展和拓展是一个绝佳机会。lds中国区总经理ellen he 何羽薇表示:“对于lds而言,与大昌华嘉的合作有机会让我们成为一个更大的平台。大昌华嘉和formulaction与lds一样,秉承一致的专业精神和关注重点,但却拥有了更为广阔的服务网络为中国的lds客户提供服务,这对formulaction所有现有和未来潜在客户都是一个良好的机遇。”大昌华嘉中国科技事业部总经理oliver hammel补充说:“我们期待成为formulaction在中国值得信赖的合作伙伴。我们的目标是通过我们系统的市场开发方案以及独到的销售和服务专业知识,来扩大市场覆盖范围。此外,我们将在各实验室网点展示formulaction的先进技术。拥有lds中国团队的加入,他们出色的专业技能、知识以及长期的经验积累,对于三方都是一次非常好的合作机遇。关于formulaction法国formulaction是一家领先的仪器制造商,专注于非破坏性材料特性表征及测量,采用了静态多重光散射和动态光散射光学技术(smls、dws),表征样品的稳定性、颗粒粒径、相变和流变特性。在过去25年里,formulaction致力于提供独特的解决方案,帮助配方设计人员在各行业进行开发、扩大规模和工艺优化:家庭和个人护理、制药、涂料、电子、化学。formulaction对科学、创新的热情,以及渴望实现卓越,与科学界分享其专业知识是驱动公司发展的动力。 关于大昌华嘉大昌华嘉(dksh)是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。大昌华嘉致力于帮助其他公司和品牌拓展在消费品、医药保健、特色原料、科技事业领域的业务。大昌华嘉的服务范围包括采购、市场研究与分析、市场营销与销售、配送与物流以及售后服务。公司在瑞士证券交易所上市,在全球36个市场营运,拥有33,350名专业员工, 2019年净销售额达116亿瑞士法郎。大昌华嘉成立于1865年,凭借深厚的瑞士传统背景,公司在亚洲开展业务历史悠久,深深植根于亚太地区的社会和企业界。大昌华嘉科技事业部为专门的工业应用提供完整的解决方案。业务部拥有约1,670名专业员工,2019年净销售额为4.319亿瑞士法郎。
  • PRL发表|王建波团队氧化锌纳米线可逆结构相变研究获突破
    p   武汉大学新闻网消息,近期,武汉大学物理科学与技术学院王建波教授课题组在氧化锌纳米线可逆结构相变研究中取得重要突破,实现了相变前后原子尺度结构变化的原位测定和基于第一性原理计算的机理理解。 br/ /p p style=" text-indent: 2em " 11月19日,物理学顶级期刊Physical Review Letters(《物理评论快报》)在线发表了论文“Surface- and strain-mediated reversible phase transformation in quantum-confined ZnO nanowires”(《量子限域氧化锌纳米线中基于表面和应力效应的可逆相变》)。武汉大学物理科学技术学院、电子显微镜中心和高等研究院为第一署名单位及唯一通讯作者单位,物理科学与技术学院博士生赵培丽和高等研究院博士生管晓溪为论文共同第一作者,王建波教授、郑赫副教授为通讯作者。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 192px " src=" https://img1.17img.cn/17img/images/201911/uepic/b6141e00-65f5-42f7-bccb-55a424c73a8f.jpg" title=" 0.jpg" alt=" 0.jpg" width=" 600" height=" 192" border=" 0" vspace=" 0" / /p p   氧化锌(ZnO)作为一种宽禁带半导体材料,由于其多态性和可调的电子光学性质,在量子点发光、自旋功能器件等核心技术领域具有广泛应用。但是当ZnO尺寸接近其激子玻尔半径(~2纳米)时,由于量子限域效应导致其晶体结构及光电性能的变化,可能引起器件失效。然而,相关理论计算和实验研究方面的机理研究一直存在较大分歧:尽管大量理论计算预测低维ZnO具有比纤锌矿(WZ)结构更稳定的类石墨结构(h-MgO)或体心四方结构(BCT),但由于技术条件限制,实验上一直未予验证,同时其相变机理也还未完全厘清。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/7a5b7c13-f97a-4232-82d7-c501fe48b90c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " ZnO纳米线中可逆结构相变过程的实验测定(a-f)和第一性原理计算(g) /span br/ /p p   在前期相关工作的基础上(Nano Lett. 18: 4095 (2018) Phys. Rev. Mater. 2: 060402(R) (2018) ACS Appl. Energy Mater. 2: 7709 (2019) Microscopy 10.1093/jmicro/dfz038 (2019)(特邀综述)),王建波课题组通过原子尺度原位技术首次观察到低维 ZnO纳米线(宽度约为2纳米)在拉伸应力作用下从WZ到BCT再到h-MgO结构的原子尺度相变过程(如下图)。在应力撤去时,该相变过程是可逆的。进一步基于第一性原理计算,揭示了尺寸、表面及应力对低维ZnO结构稳定性的影响机理。研究结果为理解量子限域的低维ZnO中不同晶体结构的稳定性及其相变机理提供重要的实验依据和计算分析,可为实现相关体系的结构-性能调控提供参考。 /p p   该研究受到国家自然科学基金、湖北省自然科学基金及江苏省自然科学基金的项目资助。 /p p style=" text-indent: 2em " strong 原文链接: /strong /p p style=" text-indent: 2em " a href=" https://link.aps.org/doi/10.1103/PhysRevLett.123.216101" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " https://link.aps.org/doi/10.1103/PhysRevLett.123.216101 /span /a /p p style=" text-align: right " 内容参考自:武汉大学新闻网 /p
  • 新技术可捕捉材料波动的高清影像
    德国马克斯玻恩研究所、亥姆霍兹中心、美国布鲁克海文国家实验室和麻省理工学院研究人员组成的团队,开发出一种革命性的新方法,利用强大的X射线源捕获纳米级材料波动的高分辨率图像。这种新技术允许创建清晰、详细的影像,而不会因过度辐射损坏样本。研究结果近日发表在《自然》杂志上。世界的微观领域是不断运动的,并以不断变化为标志。即使在看似不变的固体材料中,这些波动也可能产生不寻常的性质;高温超导体中电流的无损传输就是一个例子。在相变过程中,波动尤其明显,材料会改变其状态,例如在熔化过程中从固体变成液体。然而,详细研究这些过程是一项艰巨的任务,捕捉到这些波动模式的影像就更具挑战性。联合研究团队开发出一种新的无损成像方法,称为相干相关成像。为了制作一段影像,他们快速连续地拍摄样本的多个快照,同时降低足够的光照以保持样本的完好无损。尽管这会导致个别图像中样品的波动模式变得不清晰,但这些图像仍包含足够的信息以将它们分成几组。研究团队首先创建一种新的算法来分析图像之间的相关性。每个组中的快照非常相似,因此可能来自相同的特定波动模式。只有当一组中的所有镜头一起观看时,才会出现样本的清晰图像。科学家们现在能将每一张快照与样本当时状态的清晰图像联系起来。该团队在由薄磁性层制成的样品上展示了相干相关成像。他们创建了一张地图,显示了被称为磁畴的区域之间边界的首选位置。这张地图和运动的影像使人们更好地理解了材料中的磁性相互作用,促进了未来在先进计算机体系结构中的应用。
  • 德国巴赫动态高低温相变仪进入中国
    德国巴赫热分析公司的世界领先产品--DIL805A/D动态高低温相变仪拥有世界上众多的金属研究的用户,在相变研究领域独占鳌头。日前,马鞍山钢铁集团公司经过反复的调研论证,已经和德国巴赫公司的中国总代理-北京仪尊时代科技有限公司(Esum Technology Limited)签署了购买合同。成为我国首个与欧美国家同步使用最先进的相变研究手段从事钢铁材料研究的中国企业。该设备可以模拟钢铁材料在加工处理过程中的不同应力、应变状态及不同受力条件下的相变行为。从而绘制出不同条件下的TTT、CCT等曲线。希望这台设备将成为马钢集团钢铁材料的开发和研究的得力帮手。   有关该项技术的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 中国科大在拓扑相变量子模拟上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、林毅恒等人与中科院量子信息重点实验室罗希望等合作,在拓扑相变量子模拟方面取得重要进展。通过发展高自旋离子阱体系的调控技术,实现了对三重简并拓扑单极子的量子模拟,观测到具有不同拓扑荷的单极子之间的相变,并展示了自旋张量在其中的重要作用。该研究结果于2022年12月14日以“Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion”为题,发表在《物理评论快报》上[Phys. Rev. Lett. 129, 250501 (2022)] 。   拓扑物态是当前物理研究的前沿和主流领域之一,为新材料、新器件的设计带来了新的思路,乃至对我们深入理解宇宙基本粒子的性质都具有重要的意义。2016年,诺贝尔物理学奖便授予了在拓扑物理学方面做出开创性贡献的三位科学家。拓扑源自于数学,指在局部的连续变化下保持不变的整体性质。比如面包圈和茶杯拓扑等价,这是由于他们都有一个穿透的洞,而洞的个数是一个拓扑性质,对应拓扑荷。科学家发现,拓扑在凝聚物质的一些物理特性上也起到关键作用,这些物理特性不依赖样品的细节,完全由系统状态的整体拓扑性质确定。而拓扑相变——具有不同拓扑性质的状态之间的转变——一定是不连续的跃变。例如在一些半金属材料中,能带简并点形成的类似单极子的拓扑结构可以具有不同的拓扑荷,探索他们之间的拓扑相变是目前的前沿研究方向之一。同时,简并点附近的准粒子激发表现出类似基本粒子的行为,探索其拓扑相变对于探索新型粒子也具有重要意义。   此项研究针对拓扑相变中的一类重要的费米子——三重简并费米子模型进行实验模拟。该模型对应自旋为1的拓扑单极子,在近期的研究中受到广泛关注。然而,在固体材料体系中,直接观测这种三重简并点的拓扑相变需要复杂的调控,目前难以实现。因此,高度可控的量子模拟器为研究拓扑现象提供了新的途径。这项研究中,通过使用在超高真空环境束缚的铍离子,结合微波、射频等的精准调控,构建多能级的量子体系,可以有效的观测自旋为1的拓扑单极子的行为。通过调控实验参数,研究人员清晰的观测到量子态的拓扑相变,并且提取出高阶自旋张量在其中的贡献(图1所示)。该工作发展出的高度可调控的多能级束缚离子系统,为研究高自旋物理提供了良好的平台,并为进一步研究新奇高阶拓扑简并态以及其他拓扑单极子现象铺平了道路。图1. 自旋为1的拓扑量子模拟实验结果。左图:实验观测到的拓扑相变行为,其中 β-2 对应拓扑荷为2, β-2 对应拓扑荷为0;不同颜色的数据代表拓扑相变中各种分量的贡献,其中黄色数据代表张量部分的贡献,实线为对应的理论预测结果。右图:实验观测张量椭球在拓扑相变点 β≈-2 附近的几何环绕行为。自旋张量椭球在参数空间中特定回路的演化,可以清晰的反应张量对拓扑荷的贡献。研究中使用的离子阱实验系统属于近几年迅速发展起来的高自旋量子模拟器。中科院微观磁共振重点实验室杜江峰院士、林毅恒教授带领团队从无到有搭建了实验平台,并成功发展了一系列新型的高自旋操控技术,包括使用动力学去耦将三能级状态相干时间提高一个数量级[Phys. Rev. A. 106, 022412 (2022)];通过解析模型辅助的形状脉冲,以实现四能级系统的两个近邻跃迁之间的快速普适调控[Phys. Rev. Applied. 18, 034047 (2022)]。上述工作为本文的研究奠定了核心实验基础。中科院量子信息重点实验室罗希望教授、美国德克萨斯大学达拉斯分校张传伟教授为本文的工作提供核心理论支持。   审稿人高度评价该工作,指出“...importantly, the spin-tensor-momentum-coupling could be generated for spin-1 systems and induce intriguing quantum phenomena different from spin-1/2 ones. This work is of interest and importance.”(“……重要的是,自旋-张量-动量的耦合可以通过自旋为1的系统生成,导致与自旋1/2不同的有趣的量子现象。这个工作是有意思的和重要的。”)   中科院微观磁共振重点实验室博士研究生张梦翔、李岳以及袁新星博士为该论文共同第一作者,杜江峰院士、林毅恒教授和罗希望教授为共同通讯作者。该研究得到国家自然科学基金、中科院、科技部、安徽省的资助。
  • 稳定性为基,自动化智能化为翼——屹尧科技与衡昇质谱成功举办新形象新产品发布会
    仪器信息网讯 2023年7月11日,屹尧科技与衡昇质谱联合举办了一场以“强悍性能、智能化、自动化、智慧实验室”为关键词的新品发布会,宣布推出两款重量级新品——iQuad 2300系列ICP-MS质谱仪和P3超能微波机器人。同时,衡昇质谱也展示了其全新的品牌标识,开启在技术进步和市场拓展上的新篇章。会上,庄松林院士、上海市科学技术委员会基地处领导、屹尧科技&衡昇质谱董事长倪晨杰和技术创新中心主任康怀志教授还为上海市高端科学仪器技术创新中心揭牌,表明了国产科学仪器的自主研发进程正受到越来越多的关注和支持。衡昇质谱VI焕新 诠释技术创新与升级随着ICP-MS质谱仪产品正式推向市场,衡昇质谱对于自己的品牌形象和市场定位等有了更加明确的规划。此次发布会上衡昇质谱发布了全新形象,包括新的简称,由“衡昇仪器”变更为“衡昇质谱”,新的英文名字“HanSelMS”,以及全新品牌标识。新品牌标识将衡昇质谱的企业文化和产品特点相结合,由运动的微观粒子和四极杆的动态变形为设计元素,其中,螺旋状行进的微观粒子、四极杆分析器的形态和红色,展现了衡昇质谱对质谱的热爱,在质谱领域的专注与专业,也代表着其笃定以四极杆质谱为发展方向。“‘衡’久流传、‘昇’生不息,‘衡昇’代表着我们在技术研发上的活力和创新精神。”衡昇质谱总经理祝敏捷表示,“此次全新品牌标识的发布,不仅提升了品牌的辨识度,更在消费者和市场中树立了衡昇质谱专业、创新、高品质的品牌形象。”左起:屹尧科技&衡昇质谱董事长倪晨杰、中国仪器仪表学会分析仪器分会秘书长吴爱华、中国仪器仪表学会分析仪器分会名誉副理事长刘长宽、中国仪器仪表行业协会分析仪器分会秘书长曾伟、中国分析测试学会副理事长刘成雁、清华大学张新荣教授、中国检验检测学会测试装备分会秘书长邢志教授、衡昇质谱总经理祝敏捷共同揭晓衡昇质谱新标识稳定性大幅提升 衡昇质谱新一代ICP-MS正式推向市场衡昇质谱iQuad 2300系列 ICP-MS衡昇质谱此次推出的iQuad 2300系列ICP-MS,凭借稳健可靠的性能成为了分析领域的焦点。这款新产品在二代机的基础上进行了多项升级,在分析效率、分析稳定性和精准性等方面表现出色,为环保、化工、材料、金属地质地矿和食品等行业的高通量分析实验室提供了高效、精确和便捷的解决方案,助其在痕量元素分析时获取更精准和可靠的数据。新品亮点:卓越的系统稳定性,铸就超乎寻常的分析稳定性;独特的带有轴向加速功能的六极杆碰撞反应池,实现超高离子通过效率;七通阀高速进样系统为高通量实验室量身定制,实现大幅降本增效。iTrace智能软件实现远程一键启动,自动调谐,便捷操控,大大提升分析效率。左起:中国仪器仪表学会分析仪器分会秘书长吴爱华、中国仪器仪表行业协会分析仪器分会秘书长曾伟、清华大学化学系张新荣教授、衡昇质谱总经理祝敏捷共同为iQuad 2300系列ICP-MS揭幕主打自动化智能化 屹尧科技P3超能微波机器人揭幕屹尧科技P3超能微波机器人样品溯源从前处理开始。屹尧科技发布的最新一代超能微波机器人P3是一款性能出众的数字智能化微波消解仪,为实验室样品溯源工作带来显著优势,大大提高实验室工作效率和样品的处理能力,实现实验室前处理过程的全面数字化管理,提升实验室工作的自动化程度和智能化水平。新品亮点:P3超能微波机器人拥有三个独立高效微波通道,可实现96个样品的全自动消解;大空间电动试剂仓满足分析需求,可轻松实现各种实验过程自动化;专利单模微波腔体可极致提升操作安全,使困难样品在20分钟内完成准备工作;P3超能微波机器人开放包容,可轻松接入实验室智能化管理系统,通过APP实时了解样品状态,实现远程操控。左起:屹尧科技副总经理张锴、上海市食品药品检验研究院王柯副院长、清华大学分析测试中心邢志教授和实朴检测董事长杨进博士共同揭晓P3超能微波机器人屹尧科技&衡昇质谱董事长倪晨杰表示:“国产仪器自主研发是推动科技创新和国家发展的关键。只有通过自主研发,我们才能掌握核心技术和创新能力,实现仪器制造行业的独立自主和持续发展。屹尧科技和衡昇质谱将继续深耕科学仪器领域,助力中国科研进步。”屹尧科技&衡昇质谱董事长倪晨杰致辞关于屹尧科技上海屹尧仪器科技发展有限公司成立于2000年,始终专注于微波化学和样品前处理领域,产品涵盖微波消解、微波合成、固相萃取等。历经20余年的技术沉淀,推动了“温压双控”“底部双红外控温” “全自动微波消解”等技术在中国的发展。屹尧科技以用户至上为准则,立足中国,着眼世界,为国内外用户提供专业优质的产品与服务,产品远销40多个国家和地区,广泛应用于各国政府实验室, 并赢得第三方检测、乳品、能源等企业客户的认可。 关于衡昇质谱成立于2014年的衡昇质谱,始终立足研发,拥有多项独立知识产权的核心技术,旨在打造行业高端质谱产品。衡昇质谱涉及实验室科学仪器及设备的研发、生产、销售、售前售后技术支持、技术咨询等业务。衡昇仪器为包括环境监测、食品分析、化学化工、地质地矿、特种材料、金属检测、科研院所、医院、第三方检测、农林畜牧业、核工业、疾控、检验检疫等行业的实验室客户提供优质的产品及服务。
  • 原位X射线衍射技术在材料研究中的应用
    p style=" text-align: justify text-indent: 2em " 反应相变机理及使用环境下结构演化规律是材料构效关系研究的重要内容,目前常用的手段是离位表征,即撤除环境(如热、力、电等)参量后的研究,往往不能反映真实结构变化过程,而原位技术则可以动态、实时、真实的表征该变化。 /p p style=" text-align: justify text-indent: 2em " 目前最重要且常用的是原位X射线衍射结构表征技术,即在样品上加载温度场、电场、力场、磁场等外场,或在样品发生电催化、电化学、光催化等反应时采集X射线衍射信号,该技术可以应用在粉末衍射仪、单晶衍射仪、高分辨衍射仪、和二维衍射仪上,通过数据分析,就可以得到材料结构信息与温度、力、电、磁等的关系,就可以得到电化学、电催化等反应的实时结构变化。 /p p style=" text-align: justify text-indent: 2em " 现在各个仪器厂商都非常重视原位附件的开发,较成熟的商品化附件主要有高低温附件(通常在液氦到2300℃,真空及气氛下)、拉伸附件(通常0-5KN),但是对于一些复杂环境的加载还很缺失,并且其测试精度也还无法完全满足表征需求,因此上海硅酸盐所科研人员针对这些问题设计开发和完善相关的原位衍射装备,比如设计新型防位移样品台以及精准的气氛控制系统,实现了复杂环境下高精度温场原位X射线衍射表征,并可模拟材料服役环境下的结构演化研究。另外,还缺少商品化的电场(磁场等)原位表征附件,有些学者会通过在样品上镀电极的办法实现电场加载,这会存在电场强度测量不准的问题,因此我们还设计开发了国内首台电场可以连续自动调整的原位衍射装置,包括偏置电源、电场加载试样台、电场控制和调整软件等,可实现场强在0-5.50MV · m-1精确连续调整,并能模拟失效环境。其他原位X射线衍射装备的设计原理是相通的,无非是给样品一个特殊的环境变量,这里不再赘述。 /p p style=" text-align: justify text-indent: 2em " 那么从原位衍射花样中能得到哪些信息呢? /p p style=" text-align: justify text-indent: 2em " 以粉末衍射数据为例,通过峰位的变化比如晶面间距可以给出反应过程的物相变化,通过面间距的移动可以给出热力学膨胀性质及晶格参数变化,通过峰形的变化给出相变过程的结晶性以及晶粒尺寸、微应力等微结构信息,通过峰强的变化给出相含量和结晶度,如果综合这三种信息则可以给出材料的准确晶体结构信息(如键长、键角、原子占位、占有率等)。 /p p style=" text-align: justify text-indent: 2em " 原位X射线衍射技术在材料研究中具体有哪些应用呢? /p p style=" text-align: justify text-indent: 2em " 以应用面最广的温场原位X射线衍射为例,它是在对样品进行升降温的同时采集衍射信号的技术,样品所处的环境可以是真空和气氛系统,用这个技术可以研究材料相变或混合物的化学反应,可以测定可逆反应,属于相变晶体学和相变结构学的研究范畴。通过研究反应过程物相变化与温度的关系,以及通过Rietveld结构精修表征相含量、微结构(晶粒尺寸、微观应变等)变化,可以揭示相形成和转化规律,进而明确相变机理,并且可以研究相的温度稳定性及晶胞参数、键长、键角等与温度的变化关系。此外,热膨胀是材料热力学稳定性的重要评价指标,在变温过程中,声子的振幅变化会导致晶胞参数变化。用原位衍射技术可以研究材料变温过程中的结构相变以及不同晶轴方向上的线热膨胀系数及体积膨胀系数,建立热膨胀系数与材料磁、铁电相变等性质变化的关系。其他力、电、磁场以及电化学、电催化等原位衍射的应用,也是大同小异、触类旁通的,总体来看都是研究材料反应或结构演化与环境参量的关系。 /p p style=" text-align: justify text-indent: 2em " 综上所述,原位X射线衍射技术是研究材料结构与环境参量关系的重要表征手段,正日益在材料工艺优化和性能提升等相关基础研究中发挥着积极作用。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 作者简介: /strong /span /p p img style=" max-width: 100% max-height: 100% width: 96px height: 125px float: left " src=" https://img1.17img.cn/17img/images/202010/uepic/d72990d9-e856-43cb-978c-51c8e9f75876.jpg" title=" 图片1_副本.png" alt=" 图片1_副本.png" width=" 96" height=" 125" / /p p style=" text-align: justify text-indent: 2em " 程国峰,中国科学院上海硅酸盐研究所研究员,X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会秘书长。主要研究领域为X射线衍射与散射理论及应用、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《同步辐射X射线应用技术基础》等专译著4部,发布国家标准和企业标准5项,获专利授权6项,在Nat.& nbsp Mater.,J. Appl. Phys.,Mater.& nbsp Lett.等SCI期刊上发表论文80余篇。 /p p style=" text-align: justify text-indent: 2em " strong 作者邮箱: /strong gfcheng@mail.sic.ac.cn /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 " /span br/ /p p style=" text-align: justify text-indent: 0em " br/ /p
  • 新的无损成像方法可捕捉材料波动的高清影像
    德国马克斯玻恩研究所、亥姆霍兹中心、美国布鲁克海文国家实验室和麻省理工学院研究人员组成的团队,开发出一种革命性的新方法,利用强大的X射线源捕获纳米级材料波动的高分辨率图像。这种新技术允许创建清晰、详细的影像,而不会因过度辐射损坏样本。研究结果近日发表在《自然》杂志上。世界的微观领域是不断运动的,并以不断变化为标志。即使在看似不变的固体材料中,这些波动也可能产生不寻常的性质;高温超导体中电流的无损传输就是一个例子。在相变过程中,波动尤其明显,材料会改变其状态,例如在熔化过程中从固体变成液体。然而,详细研究这些过程是一项艰巨的任务,捕捉到这些波动模式的影像就更具挑战性。联合研究团队开发出一种新的无损成像方法,称为相干相关成像。为了制作一段影像,他们快速连续地拍摄样本的多个快照,同时降低足够的光照以保持样本的完好无损。尽管这会导致个别图像中样品的波动模式变得不清晰,但这些图像仍包含足够的信息以将它们分成几组。研究团队首先创建一种新的算法来分析图像之间的相关性。每个组中的快照非常相似,因此可能来自相同的特定波动模式。只有当一组中的所有镜头一起观看时,才会出现样本的清晰图像。科学家们现在能将每一张快照与样本当时状态的清晰图像联系起来。该团队在由薄磁性层制成的样品上展示了相干相关成像。他们创建了一张地图,显示了被称为磁畴的区域之间边界的首选位置。这张地图和运动的影像使人们更好地理解了材料中的磁性相互作用,促进了未来在先进计算机体系结构中的应用。
  • Nat. Nanotechnol.:范德华磁体中应变诱发的可逆磁相变——OptiCool、Montana低温光学设备大显神通
    晶体的机械形变会对其物理性质产生深远的影响。值得注意的是,即使是化学键几何形状很小的修改也可以完全改变磁交换相互作用的大小和符号,从而改变磁基态。来自华盛顿大学的徐晓栋教授课题组通过可以连续原位施加单轴张应力的装置在低温下使二维A型层状反铁磁半导体材料CrSBr产生了高达几个百分点形变。利用该装置,研究者实现了零磁场下应变诱导的可逆反铁磁-铁磁相变,及应变调控的自旋翻转过程。该工作为二维材料的磁性和其他电子态的应变调控创造了机会。该工作于2022年1月20日发表在nature nanotechnology上。该研究中涉及到了多种原位低温光谱的测量。为这些低温光学测量提供高稳定性低温及磁场环境的正是目前光学低温设备中的代表:OptiCool-超全开放强磁场低温光学研究平台和Montana超精细多功能无液氦低温光学恒温器。OptiCool-超全开放强磁场低温光学研究平台Montana超精细多功能无液氦低温光学恒温器全干式系统全自动软件控制,一键变温变场8个光学窗口超大磁场:±7T1.7K~350K全温区控温智能触摸屏,“一键式操作”2小时快速降温(300K-4.2K)5个光学窗口震动稳定性: ☛ 低温拉曼原位检测应变大小——基于OptiCool的低温拉曼测量研究者利用新的应变装置,通过对压电陶瓷施加电压来原位改变二维材料的单轴应变。为了估算CrSBr的应变大小,研究者比较了在应变区域和远离间隙的非应变区域的拉曼光谱。为此,该团队使用应变片异质结构校准了345 cm−1拉曼峰位(标记为P3)与压电陶瓷所加电压以及应变率之间的关系。校准得到的红移率为~4.2 cm−1每1%应变,与原理计算预测的~4.4 cm−1每1%应变相一致。图1:原位可调应变装置与拉曼测量应变率图2:应变诱导的反铁磁-铁磁相变☛ 低温PL光谱探测CrSBr磁性变化——基于Montana超精细多功能无液氦低温光学恒温器的PL光谱测量由于向RMCD对面外磁性比较敏感,而CrSBr是面内的A型反铁磁结构,因此用RMCD来测量磁性并不是一种好的方法,近期研究发现,激子光致发光(PL)和吸收谱对CrSBr的层间反铁磁和铁磁排列非常敏感。因此该工作中用低温PL光谱研究了CrSBr不同应变下的磁性态。图3:应变诱导的磁相变前后与磁场相关的PL光谱 ☛ 低温RMCD探测CrSBr自旋翻转过程——基于Montana定制型光学恒温器的RMCD测量在对CrSBr二维材料施加面外磁场时,自旋会逐渐翻转至面外方向。研究者发现,应变会导致自旋翻转过程发生剧烈的变化。利用低温限RMCD作为面外磁化的敏感探针,研究者测量了应力对自旋翻转的影响。图4:应变调控的面外磁翻转过程总结在此作中,研究者展示了新的技术手段以用来探测低温下原位可调的单轴应变对二维材料和异质结的影响。利用这一技术,研究者实现了对层状磁性半导体CrSBr磁性能前所未有的控制。研究结果表明利用自旋、电荷、晶格之间特的耦合作用可以用于制造二维器件,例如应力控制的磁阻开关、通过应变导致的磁性态反转对称性破缺实现调控二次谐波,或者零磁场下调控磁隧道结。利用应变的调控还可以扩展到范德瓦尔斯材料之外的其他二维材料、异质结、莫尔超晶格中,为应变调控开辟了广阔的前景。设备简介OptiCool超全开放强磁场低温光学研究平台OptiCool是Quantum Design于2018年2月新推出的超全开放强磁场低温光学研究平台,创新特的设计方案确保样品可以处于光路的关键位置。系统拥有3.8英寸超大样品腔、双锥型劈裂磁体,可在超大空间为您提供高达±7T的磁场。多达7个侧面窗口、1个部超大窗口方便光线由各个方向引入样品腔,高度集成式的设计让您的样品在拥有低温磁场的同时摆脱大型低温系统的各种束缚。OptiCool是全干式系统,启动和运行只需少量氦气。全自动软件控制实现一键变温、一键变场、部窗口90°光路张角让测量更便捷;控温技术让控温更智能;新型磁体结合了超大均匀区与超大数值孔径。OptiCool让低温光学实验无限可能。OptiCool技术特点:▪ 全干式系统:完全无液氦系统,脉管制冷机。▪ 8个光学窗口:7个侧面窗口,1个部窗口;可升底部窗口▪ 超大磁场:±7T▪ 超低震动:Montana超精细多功能无液氦低温光学恒温器全球知名光学恒温器制造商Montana Instruments多年来为低温光学、量子信息等领域提供性能的光学恒温器而广受好评。作为低温光学恒温器的旗舰产品,Montana Instruments近推出了全新型号CryoAdvance系列。该系列的目标是助力科技工作者在先进材料和量子信息领域研究研究方面更进一步。CryoAdvance 50新特色▪ 自动控制:全新智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。▪ 模块化设计:多种配置可选,快速满足各种实验需求,后续升简单。▪ 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。▪ 稳定性设计:新设计在变温和振动稳定性上进一步优化。CryoAdvance 50主要参数▪ 自动控温:3.2K - 350K 样品台▪ 温度稳定性:▪ 样品腔空间:Φ53 mm ×100 mm▪ 光学窗口:5个光学窗口,可选光纤引入▪ 水平光路高度:140 mm▪ 窗口材料:多种材质可选▪ 基本电学通道:20条直流通道。▪ 接口面板:双RF接口+25DC接口
  • 2022年全国电子显微学学术年会材料科学分会场集锦(下)
    仪器信息网、中国电子显微镜学会(对外名义)联合报道:2022年11月26日,由电镜学会电子显微学报编辑部主办、南方科技大学承办的“2022年全国电子显微学学术年会”在广东省东莞市顺利召开。大会为期三天,采用线下+线上直播方式进行,吸引来自高校院所、企事业单位等电子显微学领域专家学者三千余人次线上线下参会。本届年会线上+线下邀请报告达约500个,是国内电子显微学领域最具影响力的学术盛会。11月26-27日上午进行大会报告,26-27日下午及28日全天同时进行12个不同电镜主题的分会场报告。大会线下现场11月28日,四大材料科学主题分会场共进行了约80场报告,以下为第三分会场:功能材料的微结构表征,第四分会场:结构材料及缺陷、界面、表面,相变与扩散,第五分会场:先进显微分析技术在工业材料中的应用,第八分会场:聚焦离子束(FIB)在材料科学中的应用部分报告集锦,以飨读者。部分报告现场:兰州大学实验师 关超帅报告题目:铁镓合金omega相变研究关超帅对omega相变的研究为探索新型磁致伸缩材料提供新的思路。在报告中介绍,铁镓合金中存在连续型omega相变;omega相变过程中会释放-11.2%的应变;omega相前驱体带来的内应力会造成BCC 铁镓合金 -0.69%的应变;omega相诱导铁镓合金中高温亚稳相D019相的反常析。上海大学副研究员 李倩倩报告题目:锂离子电池硫化镍负极的反应可逆性和结构稳定性的原位电镜研究深入认识电极反应和失效机理是有效解决电池面临挑战的关键,具有原子分辨率和多重信息采集功能的原位成像技术,对于深入理解动态反应过程具有重要意义。研究中发现,不同化学计量比的Ni-S化合物在首次循环后形成热力学稳定相Ni3S2;Ni-S化合物在锂化-退锂中结构发生多孔化-结构“重构”,归因于Ni3S2的形成;复合电极呈规理想的倍率性能和循环稳定性。西北工业大学教授 刘峰报告题目:稳定性与金属结构材料设计《中国制造2025》提到,推进我国制造业高质量发展的核心是推动制造业从数量扩张向质量提高的战略性转变。当前,对成分/工艺-组织-性能的准确定量理解已成为金属结构材料科学与工程领域亟持解决的共性基础性难题。广义稳定性的提出实现了热力学与动力学、相变与变形、微观组织和变形缺陷的统一处理,必然可以实现成分-工艺-组织-性能这一闭环的理论贯通。西安交通大学教授 韩卫忠报告题目:金属点缺陷复合体诱导反常强化研究发现,点缺陷复合体机制广泛存在,是金属变形和损伤的催化剂。氢吸收空位成复合体H-V催化基面位错环完美解释了锆辐照生长;He-V诱发反常辐照硬化,He-V调控螺/刃相对速度,纳米氦泡发射位错促变形;O-V诱发BCC金属氧脆,阻碍位错运动强化,收集空位形核损伤。武汉大学教授 郑赫报告题目:孪晶调控金属纳米结构的塑性变形机制应力场诱导金属纳米结构演变规律尚不明确,因此高空间、高时间分辨结构演变表征将有利于低维材料研究。报告中,研究了应力加载方向及孪晶取向角对孪晶纳米线延展性的影响,进一步闹明了位错与孪晶界的不同相互作用机制;揭示了Mo纳米线中尺寸调控的可逆孪生机制;定量解析了共格孪晶界及倾斜孪晶界对纳米线导电性质的影响。北京工业大学 蔡吉祥报告题目:TEM原位高温力学技术及其在原子尺度结构-性能研究中的应用报告中介绍,原位显微技术是研究材料在使役环境下微观特征变化的实验方法,是建立显微结构和宏观性能之间关联性的有效手段 解决力学加载时,施加应力的方向与样品同轴同面问题,解决纳米级位移控制问题 解决各种外场信号的精准施加,高精度测量利置和有效反馈的问题;避免外场耦合信号之间,以及外场信号与电镜成像之间的相互干扰 解决在各种外场环境施加的同时,能够超时随地的实现正交双轴倾转功能的问题。松山湖材料实验室研究员 张博报告题目:超稳定的非晶合金Ce基非晶合金在Tg附近长时间退火实验在对非晶合金以往的研究中还从未有过。研究发现近18载室温老化作用后,Ce70Al10Cu20非晶合金依旧保持着完美的非晶态,表现出极强的的抗晶化能力,打破了以往人们对非晶合金稳定性差的认识;热力学和动力学稳定性同时得到大幅度提升,表现出一种与琥珀相媲美的超稳性 Ce70Al10Cu20超稳定性的获得,一方面是由于强的液体特性能够有效加速弛豫过程;另一方面,其极低的形核率能够有效杜绝在弛豫或老化过程中发生形核结晶,为进一步认识过冷液体和玻璃弛缘等基本问题提供新证据和模型材料。中国科学院金属研究所研究员 邵晓宏报告题目:镁合金中LPSO结构变形机理的透射电子显微学研究邵晓宏研究员从原子尺度揭示了镁合金LPSO结构的变形机制,介绍了厚LPSO扭折(晶界强化)、LPSO/SF孪晶(晶内强化)、扭折与孪晶协同(塑化)等现象,有助于深入理解LPSO结构对镁合金力学性能的贡献。天津大学副教授 张利峰报告题目:锂镧钛氧固态电解质中缺陷结构与Li+传输性能的关系研究研究发现,“微观亚晶界”和“贫锂相”是阻碍锂离子传输的因素,原子尺度结构及相界阻碍了锂离子的传输,降低了锂离子电导率;固态氧化物电解质形成了“三维网状高密度畴界”,缺陷位置大量消耗锂,结构阻隔使得有效锂大幅减少,导致导Li+性能恶化;通过制备LLTO-PVDF复合固态电解质,LLTO与PVDF界面面积增加,优化了固态电池性能。西安交通大学助理教授 吴生华报告题目:纳米晶铝合金中溶质原子热稳定化的高浓度空位策略研究发现,液氮低温HPT和Sc微合金化的有效隅合,可以在纳米晶Al-Co-Sc合金中引入超高空位浓度,并形成(Cu、Sc、空位)复合体;复合体中由于空位含量高,具有较强的结合能,抑制脱溶分解至230℃,表现出优异的热稳定性;高密度的复合体可以显著提高加工硬化能力,纳米晶Al-Cu-Sc合金具有优异的室温力学性能。云南大学副研究员 杨杰报告题目:FIB在半导体缺陷和界面分析中的应用报告中,利用FIB和透射电镜分析了半导体品圆和外延层缺陷产生的原因,研究了键合界面的质量。研究发现,GaAs晶圆缺陷是由于杂质产生的择优腐蚀导致的结果;村底表面的In富集导致了InP基外延层的彗星缺陷 InP基外延麻点缺陷的产生是因为AllnAs外延层中形成了InAs三角颗粒,导致后续外延层的择优生长 通过含中间多晶层的Ge/Si亲水键合法,获得了无氧化层的键合界面,界面质量需进一步优化。中国科学院兰州化学物理研究所助理研究员 李红利报告题目:低维磁性铁氧体的离子展位解析及磁学性能的研究报告中,在原子尺度系统地解析了Ni-ZnFe2O4的离子占位,掺杂后微观磁结构和磁学性能的改善归因于阳离子的重新排列;系统地研究了钇铁石榴石纳米纤维的离子占位及磁各向异性对磁化分布的影响,并通过离子束辐照对磁结构进行调控。为期三天的电镜大会至此结束,会后各分会场宣读并颁发了优秀报告奖。线上颁奖
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制