当前位置: 仪器信息网 > 行业主题 > >

定量成像

仪器信息网定量成像专题为您整合定量成像相关的最新文章,在定量成像专题,您不仅可以免费浏览定量成像的资讯, 同时您还可以浏览定量成像的相关资料、解决方案,参与社区定量成像话题讨论。

定量成像相关的论坛

  • 对电泳胶上的斑点做定量,用凝胶成像分析系统好,还是用薄层扫描仪好?

    我在做一个课题,将糖类用琼脂糖凝胶电泳分离后,染色,再定量。现在的问题是到底用凝胶成像系统准确些,还是用薄层扫描仪效果好些?看国外的文献,用的是一种叫做“光密度计”的设备,国内难以找到。我的老板曾去相关实验室访问,他说对方用的是薄层扫描仪。我在想是否凝胶成像系统会更好些。不知各位高人有无好的建议给我?

  • 目前唯一将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术,精彩回放!

    目前唯一将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术,精彩回放!

    [size=24px]报告:高速大视场彩色三维显微成像技术及应用 [url=https://www.instrument.com.cn/webinar/meetings/swxw2021][b]精彩回放[/b][/url][/size]【摘要】 生物体表面色彩的不同色相、饱和度和明度在很大程度上反映了其微观结构和光学性质的不同。以激光共聚焦扫描显微镜为代表的点扫描显微成像技术具有三维层析成像能力,然点扫描显微成像技术的颜色通道十分有限,通常仅有三至四个,不能反映样品的全部色彩信息。研究团队开发了三维多视场成像技术,该技术是目前唯一的将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术。最大三维光切片速度100fps@1024×1024pixels。[size=18px][color=#ff0000][b][url=https://www.instrument.com.cn/webinar/meetings/swxw2021/]精彩回放:https://www.instrument.com.cn/webinar/meetings/swxw2021/[/url][/b][/color][/size][size=18px][color=#ff0000][/color][/size][size=18px][color=#ff0000][b]====[/b][/color][/size][img=,690,1227]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061826440679_4529_2507958_3.jpg!w690x1227.jpg[/img]

  • 【资料】凝胶成像 知识普及

    凝胶成像定义  凝胶成像即:对DNA或RNA胶  进行切胶、拍照、观察、分析  ,的实验室类仪器,  凝胶成像系统可以应用于分子  量计算,密度扫描,密度定量,  PCR定量等生物工程常规研究。凝胶成像应用范围  总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析  (1)分子量定量  对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量。通过这种方法所得到的结果较肉眼观察估计要准确很多。  (2)密度定量  一般常用的测定DNA(脱氧核糖核酸)和RNA(核糖核酸)浓度的方法是紫外吸收法,但它只能测定样品中的总核苷酸浓度,而不能区分各个长度片段的浓度。利用凝胶成像系统和软件,先将DNA胶片上某一已知其DNA含量的标准条带进行密度标定以后,可以方便的单击其他未知条带,根据与已知条带的密度做比较,可以得到未知DNA的含量。此方法也适用于对PA GE蛋白胶条带的浓度测定。  (3)密度扫描  在分子生物学和生物工程研究中,最常用到的是对蛋白表达产物占整个菌体蛋白的百分含量的计算。传统的方法是利用专用的密度扫描,但利用生物分析软件结合现在实验室常规配备的扫描仪或者直接用白光照射的凝胶成像就能完成此项工作。  (4)PCR定量  PCR定量主要是指,如果PCR实验扩增出来的条带不是一条,那么可以利用软件计算出各个条带占总体条带的相对百分数。就此功能而言,与密度扫描类似,但实际在原理上并不相同。PCR定量是对选定的几条带进行相对密度定量并计算其占总和的百分数,密度扫描时并对选择区域生成纵向扫描曲线图并积分。

  • 关于U23仪表大量程改小量程的问题

    由于目前现场进行超低排放改造,未来实施“燃煤机组烟气趋零排放”,在线仪表使用量程为SO2:0~1300mg/m3、NO:0~2000mg/m3,工厂设定量程为SO2:0~500/2500vpm、NO:0~400/2000mg/m3。脱硫脱硝系统改造后现有仪表测量精度低,误差较大,技改承包方提出更换仪表气室即可满足仪表精度与误差方面的要求。更换气室后,仪表工厂设定量程为SO2:0~200/1000vpm、NO:0~100/750mg/m3。想了解以下几个问题:1、仪表是否可以通过更换气室达到量程变小的目的,精度与误差是否真正的得到了提高?2、工厂设定量程是如何进行更改的,是通过西门子专用软件?3、U23仪表最小使用量程可以设置为工厂设定最小量程-10%,为何更换气室后的仪表,最小使用量程可以设置为SO2:0~6mg/m3、NO:0~1.0mg/m3,是什么原因造成的呢?4、仪表量程压缩有没有相关技术规定,量程压缩比方面的。愿各位师傅能给小弟予以指导,不胜感激,在此提前谢谢诸位。

  • 显微成像近红外技术

    [font=宋体]传统的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术测量的是平均光谱,反映样本的平均组成,而近红外显微成像技术增加了光谱的空间分布信息,可以使样品的异质性得到进一步[/font][font=宋体]确定。近红外显微成像系统是将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]与光学显微镜联用的系统,主要由近红外主机、近红外显微镜系统和计算机组成。近红外主机多采用干涉分光原理,主要部件包括迈克尔逊干涉仪、显微镜光学系统、检测器等。显微镜把光束聚焦到测量样品的微区上,可移动镜头从而对样品进行点、线、面的分子水平的扫描,可以快速获得大量的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图,并把测量点的坐标与对应的红外光谱同时存入计算机,得到不同化合物在微区分布的平面图或立体图。[/font][font='Times New Roman']1. [/font][font=宋体]近红外显微成像技术的特点[/font][font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])样品不需预处理。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])穿透能力强。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])水的干扰小,可以对鲜活组织和溶液中的细胞样品直接测定。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]4[/font][font=宋体])测定的区域可达到[/font][/font][font='Times New Roman']lcm[/font][sup][font='Times New Roman']2[/font][/sup][font=宋体]以上,并且可以检测粗糙表面的样品。[/font][font=宋体][font=宋体]([/font][font=Times New Roman]5[/font][font=宋体])非接触性、非破坏性、无环境污染。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]6[/font][font=宋体])二维光谱可以增强分辨率,展示更多的细节。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]7[/font][font=宋体])可分析多种物态的样品。[/font][/font][b][font='Times New Roman']2. [/font][font=宋体]成像方式[/font][/b][font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])总吸收图像,以每一个的数据点的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图为基础,宏观显示图像分析区域内的近红外吸收强度。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])单波长成像,以特定波长的近红外吸收强度为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])化学成像,也叫峰面积图像,是以特定吸收峰的峰面积为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][/font][font=宋体]([/font][font='Times New Roman']4[/font][font=宋体])相关谱成像,以某一张[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]为标准,计算出整个图像上的像素点光谱与它的相关性,再以相似度为度量成像。特别适于鉴别纯物质中的零星污染物。[/font][font=宋体]([/font][font='Times New Roman']5[/font][font=宋体])峰比率成像,以[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图不同吸收峰的峰比率为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][font=宋体]近红外显微成像技术在材料、食品、医药等行业已经发挥了较大的作用,利用其进行化学成分测定及微区分析,快速、简单、直观。与扫描电镜、透射电镜、电子探针、[/font][font='Times New Roman']X[/font][font=宋体]射线衍射等其他微区分析技术相比,近红外显微成像技术具有制样简单、操作方便、快速定量、无损分析的优点。因此,作为现代分析技术,近红外显微成像技术必将得到越来越广泛的应用。如何建立适用性、稳定性更好的数学模型,实现不同仪器之间、同一仪器不同条件下的定标模型的转移,以及与其他分析技术的联用将是近红外显微成像技术的发展趋势。[/font]

  • 如何给低含量成分定量

    做香精分析的版友们,你们是否遇到过这样的问题:就是有一些在香精中含量很低的成分,在谱图中几乎看不到峰,只能靠一些碎片信息来定性,积分条件即使设置得很低,也很难得到峰面积。遇到这样的问题时,分析报告中如何给出这些成分的定量值呢?

  • 【分享】最新医学成像技术透视奇妙人体构造---科学见证美丽(图)

    [center]最新医学成像技术透视奇妙人体构造 [/center] 据美国《探索》杂志报道,医学成像技术在过去几年取得了突飞猛进的发展,如今,这些新技术可以甄别人体任何结构以及许多重要生物过程,比如不同的血流速度。以下这组图片不仅揭示了患病后的人体构造,还在视觉上给人以冲击。 1.精神分裂症患者大脑图像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141239928.jpg[/img]精神分裂症患者大脑弥散张量成像(DTI) 一种描述大脑结构的新方法被称为弥散张量成像(DTI)。这张图便是医疗人员在研究精神分裂症患者时,利用弥散张量成像技术制作出来的。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141213834.jpg[/img]像这样的弥散张量成像图(呈现方式与以前的图像不同)可以揭示脑瘤如何影响神经细胞连接,引导医疗人员进行大脑手术。 弥散张量成像其实是核磁共振成像(MRI)的特殊形式。举例来说,如果说核磁共振成像是追踪水分子中的氢原子,那么弥散张量成像便是依据水分子移动方向制图。神经细胞纤维长而薄,分子通常会沿着神经细胞纤维扩散。研究人员可以突出水分子和一组组神经细胞纤维以相同方向运行的部位。像这样的弥散张量成像图(呈现方式与以前的图像不同)可以揭示脑瘤如何影响神经细胞连接,引导医疗人员进行大脑手术。它还可以揭示同中风、多发性硬化症、精神分裂症、阅读障碍有关的细微反常变化。 2. 核磁共振成像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614120194.jpg[/img]核磁共振成像 在核磁共振成像仪器下,患者躺在圆柱形磁体内,暴露于强大的磁场。一旦暴露在磁场中,水分子的质子会排成一行,要是遭到无线电波的攻击,它们会立即乱作一团,不成直线。在质子重新排列过程中,电脑会收集它们的信号,并加工成图像。富含水的组织会发出更强烈的信号,在生成的图像中看上去更亮,而骨骼相对较暗。这项技术用在此处是来描述大脑和颈部动脉的。在注射了用于对比的成像剂以后,放射线专家重复扫描,这时,成像剂在血管中移动,使他们可以看清楚造成中风、脑动脉瘤和各种外伤的堵塞物。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141138944.jpg[/img]脊椎管和大脑处的明亮区域表示脑脊髓液。 核磁共振成像技术还经常用在神经成像方面。脊椎管和大脑处的明亮区域表示脑脊髓液;向下延伸至身体的长条状体则是脊髓。 3.X光血管成像术 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141124647.jpg[/img]X光血管成像术 X光血管成像术让手上如此细小的血管都呈现出来。由这种最新数码探测仪生成的图像质量可以让放射科医师不用使用高剂量辐射物,也能看清楚器官的细微之处。这张照片显示了手外伤的直接影响——没有血液流向第四根手指,而其他手指的小血管却清晰可见。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/200910161410206.jpg[/img]X光血管成像术 制作有用的医学图像涉及两个主要步骤:一是搜集数据,二是将这些数据转换为可快速、准确解读的图像。这张图像由一种称为X射线断层成像(简称CT)的先进X光技术生成,突出了上述两个方面的进步。体绘制软件(Volume-rendering software)结合CT血管成像技术,可以识别心脏附近主动脉(从图像顶端延伸至身体下部、心脏周围的大片粉色血管)的异常情况。再往下,可以清楚看到肝脏(紫色)和肾脏(鲜红色)。准确测定主动脉直径至关重要,因为外科医生可以借此判断主动脉是否存在破裂的风险。 4.CT血管成像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614104491.jpg[/img]CT血管成像 对于此处用以显现骨盆的CT血管成像来说,成像剂会注射到静脉,使血管同软组织形成鲜明对比。电脑软件可以进一步凸显骨骼和血管之间的差别,让医生可以做出更明确、更快速地诊断。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614948897.jpg[/img]此图中的两只手是尸检扫描的结果 通常情况下,CT使用一个X光源,但研究人员可以将两个不同能量的X光源结合起来,更清晰地呈现软组织。根据特定组织(比如图中两只手的腱和韧带)吸收不同能量的事实,仪器可以突出展示它们的图像。为检验这种呈现方式的准确性,研究人员对尸体进行了扫描,将扫描结果同他们的“虚拟”发现相比较。此图中的两只手就是尸检扫描的结果。当然,CT技术的主要目标是改善健康,但也存在用于虚拟尸检的可能性。作为法医检查的一部分,像这样的CT扫描可以揭示小刀等物体的路径。 5.正电子放射层扫描术(PET) [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614932866.jpg[/img]正电子放射层扫描术(PET) 很多医学成像技术主要集中在解剖构造方面,正电子放射层扫描术(PET)有所不同:这种技术生成的图像突出了细胞活动。医生先给患者注射放射性示踪剂,接着,吸收示踪剂最多的细胞会发出亮光。此图中的示踪剂是葡萄糖。癌细胞会快速生长并分裂,因此会消耗大量能量,吸收葡萄糖。红色表示患者肝脏和肩部有问题。大脑和心脏(C形红块是心脏肌肉壁,即心肌层)同样会大量消耗能量,所以也会呈现出来。PET扫描和CT扫描二者结合,能够突出图中的人体构造。图一是PET扫描,图二是CT扫描,图三是PET扫描和CT扫描的结合,这使得医生可以更准确地看清楚问题所在。同核磁共振成像仪一样,正电子放射层扫描仪可以采集多个平面的数据。在这三张图中,分别只有一个“切片”显示出来,只要结合所有这些切片,就能生成三维图。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614916850.jpg[/img]在这张图中,PET扫描确认的癌组织是蔚蓝色圆团状物体,而CT扫描锁定了它在结肠的位置。 根据CT扫描,肾脏(红色)、骨骼和血管的结构也都清晰可见。PET技术最常用于肿瘤学检查,也应用于心脏病学和神经病学领域。生成此图的仪器制造商“GE Healthcare”日前引进了两种系统,帮助研究人员探索新的临床应用。据美国放射学学院的布鲁斯希尔曼(Bruce Hillman)介绍,由于可以监测细胞功能,PET就是一系列用以监控人体细胞和亚细胞新工具的典型代表。 更多阅读 美国《探索》杂志相关报道(英文)http://discovermagazine.com/photos/07-brain-saving-mind-blowing-hi-tech--medical-imaging

  • 移液器调整到指定量程后,吸液时应注意哪些?

    移液器调整到指定量程后,吸液时应注意:1.将移液器设置到第一挡,并且垂直进入液面3mm以下,如若此时移液器倾斜,会导致移液不准确。2.缓慢松开控制按钮。速度过快会导致液体倒吸入移液器内部,从而使吸入体积减少,影响检定数据的准确。3.在液面下停顿几秒再离开液面,先用吸水纸吸干移液器洗头外的液体,但不能碰到移液器洗头,以免将吸管内的液体带走。4.排出液体时,应以一定角度紧贴容器壁,先设置到第一挡,稍微停顿1s待剩余液体聚集后,再设置到第二挡,将剩余液体全部压出。如若用移液器吸取黏稠或者易挥发的液体,尤其是移取体积大的液体时,为提高移液的准确性,应先用液体预湿移液器吸头内部并且在吸液和排液时多停留几秒。另外,可采用反相吸液法,吸液时先将移液器设置到第二挡,排液时设置到第一挡,移取调整好的定量即可。

  • 小动物体内荧光成像系统应用方向

    [img=小动物体内荧光成像系统]http://www.f-lab.cn/Upload/FluorVivo-system.jpg[/img][b][url=http://www.f-lab.cn/vivo-imaging/fluorvivo.html]小动物体内荧光成像系统fluorvivo[/url]应用[/b]表达荧光标记的小动物荧光筛选;肿瘤转移负担评价;药效试验内化物质的药代动力学;荧光物质的定量测量,如肿瘤负荷;连续或时间推移监测。小动物体内荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/fluorvivo.html[/url]

  • 三维光声超声成像系统特点

    [b][url=http://www.f-lab.cn/vivo-imaging/nexus128.html]三维光声超声成像系统Nexus128[/url][/b]是全球首款成熟商用的[b]3D光声成像系统[/b]和[b]3D光声CT系统[/b]和[b]3D光声断层扫描成像系统[/b],具有更高灵敏度和各向同性分辨率,提高光声图像质量,具有更快的扫描时间和更高光声成像处理能力。三维光声超声成像系统利用内源性或外源性对比产生层析吸收的断层图像,适用于近红外吸收染料或荧光探针进行对比度增强和分子成像应用。三维光声超声成像系统应用分子探针的吸收和分布肿瘤血管-血红蛋白浓度肿瘤缺氧-二氧化硫[img=三维光声超声成像系统]http://www.f-lab.cn/Upload/photo-acoustic-CT-Nexus128.png[/img]三维光声超声成像系统Nexus128特点预定义的肿瘤生物学和探头吸收协议先进灵活的研究模式的扫描参数先进的重建算法易于使用的图形用户界面紧凑,方便的现场系统强大的查看和分析软件易于使用的图形用户界面数据可视化与分析三维光声数据从三维光声超声成像系统传输到工作站进行观察和分析。工作站上的数据具有与三维光声超声成像系统相同的结构/组织。独立的工作站允许调查员分析数据,而另一个操作员正在获取数据。前置像头具有强大的内置工具Endra 可以为特殊定量数据应用提供OsiriX 插件三维光声超声成像系统Nexus128:[url]http://www.f-lab.cn/vivo-imaging/nexus128.html[/url]

  • 【分享】几种常用荧光探针的化学发光成像研究

    [b][size=4]利用双(2, 4, 6)三氯苯基过氧化草酸酯( TCPO) 2过氧化氢(H2O2 ) 2咪唑2荧光探针的化学发光体系,研究了荧光探针化学发光成像,对几种常用的荧光探针(丁基罗丹明、罗丹明B、罗丹明6G、荧光素及异硫氰酸荧光素等)进行了定量分析。本方法具有高灵敏度、成像分析高通量等优点,线性范围宽,检出限达10 - 11mol/L。对四甲基异硫氰酸罗丹明(TR ITC)标记的单克隆羊抗人IgG的化学发光成像分析,比相同条件下荧光成像的检出限低一个数量级。[/size][/b]

  • 5种质谱成像技术

    [font=&][size=14px]质谱成像(Imaging Mass Spectrometry, IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的“结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下: [color=#333333] [/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/406626.jpeg?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。[/size][/font][font=&][size=14px]最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(Vanderbilt University)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。[/size][/font][font=&][size=14px]正如数字图像包括三个通道:红,绿,蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后,得到一张分子特异性的成像图。”[/size][/font][font=&][size=14px]这种方法可用于小分子代谢物,药物化合物,脂质和蛋白,而且,质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体,下面列出五种先进的质谱成像方法。[/size][/font][font=&][size=14px]1、MALDI质谱分子成像技术[/size][/font][font=&][size=14px]在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如,想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。[/size][/font][font=&][size=14px]来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息。同时,可对这些蛋白质分子含量进行相对定量。[/size][/font][font=&][size=14px]MALDI质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/z的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。[/size][/font][font=&][size=14px]通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如,采用4000像素比200像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分,然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后,与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。[/size][/font][font=&][size=14px]2、电喷雾电离技术[/size][/font][font=&][size=14px]一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此,并不适用于即时成像(bed side applications),比如,要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。[/size][/font][font=&][size=14px]一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。[/size][/font][font=&][size=14px]这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如,水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。[/size][/font][font=&][size=14px]DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。[/size][/font][font=&][size=14px]3、APIR MALDI/LAESI技术[/size][/font][font=&][size=14px]了解细胞的内部成分是理解健康细胞不同于病变细胞的关键,但是,直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。[/size][/font][font=&][size=14px]来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但是,活体样本在真空中无法存活。[/size][/font][font=&][size=14px]实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于,基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]。而生物样品也可以直接吸收能量的,比如,2.94mm波长的光能激活水中氢氧键。[/size][/font][font=&][size=14px]因此,Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmosphericpressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。[/size][/font][font=&][size=14px]为了捕捉这些中性粒子,Vertes等人采用了第二种方法:[/size][/font][font=&][size=14px]LAESI(laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。[/size][/font][font=&][size=14px]与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。[/size][/font][font=&][size=14px]4、二次离子质谱技术[/size][/font][font=&][size=14px]质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。[/size][/font][font=&][size=14px]但是,一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的NicholasWinograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。[/size][/font][font=&][size=14px]SIMS早在用于生物学研究之前就已经应用广泛了,比如,分析集成电路(integratedcircuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。[/size][/font][font=&][size=14px]这种技术具有几个优点:[/size][/font][font=&][size=14px]速度快(-10,000 spectra per second),亚细胞构造分辨率(-100nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。[/size][/font][font=&][size=14px]Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。[/size][/font][font=&][size=14px]C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此,这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。[/size][/font][font=&][size=14px]这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。[/size][/font][font=&][size=14px]5、纳米结构启动质谱技术[/size][/font][font=&][size=14px]质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。[/size][/font][font=&][size=14px]来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。 [/size][/font][font=&][size=14px]NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。 [/size][/font][font=&][size=14px]通过这种方法可以分析很多类型的小分子,比如,脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。 [/size][/font][font=&][size=14px]由于,含氟聚合物不能很好的离子化,因此,会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高[/size][/font]

  • 活体光学成像技术专栏| 荧光成像与生物发光成像技术的比较

    [i][font='Times New Roman'][font=宋体]引言[/font][/font][/i][font='Times New Roman'][font=宋体]在上一期的专栏里[/font][/font][font=宋体],我们对荧光成像和生物发光的基本原理进行了对比。同时也留下了几个问题:[/font][font='Times New Roman'][font=宋体]针对我的课题[/font][/font][font=宋体],生物发光和荧光成像哪个好?什么情况下选择生物发光,什么情况下选择荧光成像。别急,今天将为大家解答关键问题:[/font][b][font=宋体][color=#ff0000]荧光成像和生物发光成像的优缺点是什么?[/color][/font][/b][align=center][font='Times New Roman']一、 [/font][b][font=宋体]荧光成像技术的优点[/font][/b][/align][font='Times New Roman'][font=宋体]相比生物发光成像[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像技术的优势主要表现在[/font][/font][font=宋体]:[/font][font='Times New Roman']1. [/font][b][font='Times New Roman'][font=宋体]荧光蛋白及荧光染料的标记能力更强[/font][/font][font=宋体]。[/font][/b][font=宋体]荧光标记分子种类繁多,包括荧光蛋白、荧光染料、量子点标记等,可以对基因、蛋白、抗体、化合药物等进行标记。[/font][font=宋体][color=#ff0000]应用范围极广[/color][/font][font=宋体],可以对样本进行[/font][font=宋体][color=#ff0000]多色标记[/color][/font][font=宋体],一个样本同时获得多种细胞或药物的分布[/font][font=宋体]。[/font][font='Times New Roman']2. [/font][b][font='Times New Roman'][font=宋体]信号强度[/font][/font][font=宋体]高[/font][/b][font=宋体]由于荧光成像的[/font][font=宋体][color=#ff0000]光子强度较生物发光更强[/color][/font][font=宋体][font=宋体],持续时间长,对[/font]C[/font][font='Times New Roman']CD[/font][font=宋体]的灵敏度要求相对较低,不需要必须配备低温冷[/font][font='Times New Roman']CCD[font=宋体]即可获得清晰的成像结果,节省实验成本和购置成本。[/font][/font][font='Times New Roman']3. [/font][b][font='Times New Roman'][font=宋体]实验成本低[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]成像过程简单[/font][/font][/b][font='Times New Roman'][font=宋体]相比生物发光成像,成像前无需注射荧光素酶底物。有合适的激发光源照射就可以发出特定波长的发射光[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]只要荧光基团稳定,就可实现[/font][/font][font='Times New Roman'][color=#ff0000][font=宋体]随时激发随时发光随时检测[/font][/color][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman']4. [/font][b][font=宋体]从活体到离体均可成像[/font][/b][font=宋体][font=宋体]相比生物发光只能在活细胞内才会产生发光。荧光蛋白或荧光染料只需要保持荧光基团稳定即可稳定发光。可以在活体或离体组织器官进行观察,在实验前期荧光材料制备阶段,可以直接在[/font]E[/font][font='Times New Roman']P[font=宋体]管中进行成像观察[/font][/font][font=宋体]。[/font][font='Times New Roman']5. [/font][b][font=宋体]应用范围广[/font][/b][font=宋体]相比生物发光成像,荧光成像技术应用范围极广。在肿瘤生长与转移、药物的分布与代谢、纳米颗粒的靶向性与代谢、植物基因的表达、生物相容性材料开发、新型标记技术的开发等多个研究中均可用到荧光成像技术。([/font][font=宋体][color=#ff0000][font=宋体]点击了解[/font]FOBI[font=宋体]整体荧光成像在上述领域的应用[/font][/color][/font][font=宋体])[/font][align=center][font='Times New Roman']二、 [b][font=宋体]生物发光技术的优点[/font][/b][/font][/align][font='Times New Roman'][font=宋体]相比荧光成像[/font][/font][font=宋体],生物发光成像的主要优势表现在:[/font][b][font=宋体]1[font=宋体]、特异性强,无自发荧光[/font][/font][/b][font=宋体]以荧光素酶作为体内报告源的生物发光方法,特异性极强。由于动物本身没有任何自发光,使得生物发光具有极低的背景和极高的信噪比。[/font][b][font=宋体]2[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]高灵敏度[/font][/font][/b][font='Times New Roman'][font=宋体]由于生物体内很多物质在激发光的照射[/font][/font][font=宋体]下[/font][font='Times New Roman'][font=宋体]也会发出荧光[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]这些非特异性荧光背景会影响检测灵敏度[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像的灵敏度最高可在动物体内检测到约[/font]10[/font][sup][font='Times New Roman']4[/font][/sup][font='Times New Roman'][font=宋体]细胞,而生物发光具有在动物体内监测[/font]10[/font][sup][font='Times New Roman']2[/font][/sup][font='Times New Roman'][font=宋体]数量级细胞的灵敏度。[/font][/font][b][font=宋体]3[font=宋体]、检测深度更高[/font][/font][/b][font='Times New Roman'][font=宋体]对于需要在深部[/font][/font][font=宋体]组织[/font][font='Times New Roman'][font=宋体]下进行的研究(检测的深度在[/font]3~4cm[font=宋体])[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]应用生物发光是最佳的选择[/font][/font][font=宋体]。[/font][b][font=宋体]4[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]精确定量[/font][/font][/b][font=宋体]由于荧光素酶基因是插入细胞染色体中稳定表达的,单位细胞的发光数量、发光条件相对稳定。即使标记细胞在动物体内有复杂的定位,亦可从动物体表的信号水平测量出发光细胞的相对数量。[/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光成像和生物发光技术[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]是互为补充[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]分别满足不同的研究领域[/font][/color][/font][font=宋体][color=#ff0000]。对于不同的研究,可根据两者的特定及实验要求,选择合适的方法。[/color][/font][table][tr][td][font='Times New Roman'] [/font][/td][td][align=center][font='Times New Roman']优点[/font][/align][/td][td][align=center][font=宋体]缺点[/font][/align][/td][/tr][tr][td][align=center][font=宋体]荧光成像技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]荧光染料、蛋白标记能力强,可用于多重标记[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]信号强度大,成像速度快[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]实验成本低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=宋体][color=#333333]体内、体外,器官、活体均可成像。[/color][/font][font=Verdana][color=#333333] [/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]应用范围极广[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]非特异性荧光限制了灵敏度,体内检测最低约[font=Verdana]104[/font][font=宋体]细胞[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]检测深度受限制[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]较难精确体内定量[font=Verdana] [/font][/color][/font][font=宋体][color=#333333]。[/color][/font][/td][/tr][tr][td][align=center][font=宋体]生物发光技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]特异性强,无自发荧光[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]背景低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]高灵敏度,在体内可检测到几百个细胞[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]可精确定量[/color][/font][font=宋体][color=#333333]。[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]信号较弱,检测时间较长,需要灵敏的[font=Verdana]CCD[/font][font=宋体]镜头,仪器价格贵[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]要求高[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]需要注入荧光素,实验成本高[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=宋体][color=#333333]只能用于细胞标记,应用范围窄。[/color][/font][/td][/tr][/table][i][font=宋体]结束语[/font][/i][font=宋体]随着活体成像技术的发展特别是荧光标记技术的发展,越来越多的生物学研究需要用到活体光学成像的方法。无论大家是选择生物发光或者荧光成像技术,苦恼总是随之而来,例如:[/font][font=宋体][color=#ff0000]生物素在体内可以维持多长时间?荧光蛋白和染料种类繁多,我该怎样选择呀?[/color][/font][font=宋体][font=宋体]别急,下期我们继续为大家介绍关于活体成像技术应用与选择的问题与难点。[/font][/font][font=宋体][font=宋体][url=http://dwz.date/cwes]点击了解更多活体成像技术的应用与仪器信息![/url][/font][/font][align=center][font='Times New Roman'][font=宋体]参考文献[/font][/font][/align][font='Segoe UI'][color=#222222]1. [/color][/font][font='Segoe UI'][color=#222222]Su, Y., Walker, J.R., Park, Y. [/color][/font][i][font='Segoe UI'][color=#222222]et al.[/color][/font][/i][font='Segoe UI'][color=#222222] Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. [/color][/font][i][font='Segoe UI'][color=#222222]Nat Methods[/color][/font][/i][font='Segoe UI'][color=#222222] [/color][/font][b][font='Segoe UI'][color=#222222]17, [/color][/font][/b][font='Segoe UI'][color=#222222]852–860 (2020). [/color][/font][font='Segoe UI'][color=#222222]2. [/color][/font][url=#!][font='Segoe UI'][color=#222222]M.Keyaerts[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]V.Caveliers[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]T.Lahoutte[/color][/font][/url][font='Segoe UI'][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780444536334][font='Segoe UI'][color=#222222]Comprehensive Biomedical Physics[/color][/font][/url][font=等线][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780128012383][font='Segoe UI'][color=#222222]Volume 4[/color][/font][/url][font='Segoe UI'][color=#222222], 2014, Pages 245-256.[/color][/font]

  • 新手入门-气相色谱的定量1:定量基础

    气相色谱是如何定量的?当然是用峰面积或者峰高定量了。那为什么可以用峰面积或者峰高定量呢?不知道,反正都是这么做的,结果也很准确的。我的学生在我问问题的时候,都这么回答我。。色谱可以这么定量,有两个重要依据。最重要的第一条,就是检测器的线性响应关系。在我关于FID的讲座中,讲到了这个问题。在所有的色谱检测器中,除了FPD之外,所有的检测器都遵从线性响应,也就是说m=KS。这里m指单位时间内到达检测器的待测物质的量(包括质量或物质的量),K表示线性响应系数,S表示检测器响应信号的值。也就是说,检测器响应信号的大小与单位时间到达检测器的被测物质的总量成正比。当然我们也知道,这个关系是有范围的,量太大或者太小,都会脱离线性。其次就是第二条,就是塔板理论。塔板理论充分阐述了峰高与进样量之间的关系,或者说他们之间是成正比的。这个可以参考我对塔板理论的说明。。根据这两条,可以肯定的说,待测物质的峰高与待测物的进样总量成正比。或者利用微积分可以推断出,待测物质的峰面积和待测物的进样总量成正比。既然峰高和峰面积都与进样总量成正比,为什么我们喜欢用峰面积,而不是更简单的峰高呢?这个问题也很简单,因为塔板理论不完全正确,峰形经常不完全满足正态分布,所以峰高的代表性不足。什么时候峰高能够有良好的代表性?很明显,峰形良好而且对称,成良好的正态分布曲线形状的时候。或者说,峰形尖锐且对称的时候。色谱峰可是经常拖尾的哦,那我们怎么办?很简单,用峰面积定量就可以了,峰面积绝大多数情形下,都具有很好的代表性。那么说,峰面积也有代表性不足的时候了?是的,在检测器超载,或者模数转换器超载,或者峰面积积分不准,或者进样代表性不足的时候,以及一些其他特殊情形下,用峰面积也不能得到正确结果。但无论如何,用峰面积定量,已经是我们可能的最准确方法了,因此我们几乎别无选择。。那你就直说要用峰面积定量不就成了,说这么啰嗦一大堆。好吧,你说的也对,但别忘了确实有时候用峰高定量更简单。

  • 如何选购离子色谱系列之一—— 动态量程电导检测器

    如何选购离子色谱系列之一—— 动态量程电导检测器

    动态量程电导检测器的命名,是相对于传统的固定量程电导检测器而言,特别是以模拟电路为基础的检测器。动态量程电导检测器是一种新型数字信号电导检测器,其主要特征在于不预先设定量程,而是在分析过程中根据电导信号的变化自动选择和切换合适的量程,样品分析期间量程不是固定的,当检测小信号(低浓度样品)时,自动切换高灵敏度量程,当检测大信号(高浓度样品)时,自动切换低灵敏度量程,不同量程检测到的电导信号通过软件无缝接合,形成一张完整的高低信号共存的谱图。[align=center][color=#00b0f0][b][/b][/color][/align][hr/][align=center][color=#00b0f0][b]动态量程电导检测器解决的问题[/b][/color][/align][align=center][color=#00b0f0]一次进样可同时分析样品中的高低浓度离子(在色谱柱允许的前提下,浓度过高色谱柱将饱合)[/color][/align][hr/] 众所周知,很多仪器(不限于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url])都有量程,每一个量程限制了一个最大的检测范围,分析之前预先设定好量程,在样品分析过程中量程保持不变,直到样品分析结束。如果样品超出此量程范围则无法定量,需要切换量程后重新进样。这样在分析陌生样品时,我们无法准确判断样品浓度会在哪个量程范围,即无法确定设定哪个量程是合适的。以往的解决办法有两个,一是稀释样品后选择灵敏度较高的量程试测;二是样品不稀释或小倍数稀释用低灵敏度量程试测。根据试测的情况来确定稀释倍数和量程,如此过程试测是不可省略的,且当样品中离子浓度差别比较大时,不能一次进样同时分析,在正常的样品分析过程以外,增加了工作量。动态量程电导检测器以全新的方式解决了以上问题。[hr/][align=center][b][color=#00b0f0]传统固定量程电导检测器存在的问题[/color][/b][/align][hr/]什么是固定量程电导检测器? 由于检测器检测到的电导信号在一定的范围内呈线性,超过这个范围将不呈线性,所以要将大信号衰减到可以检测的范围内,量程就是用来控制信号衰减倍数的工具,电导检测器的每一个量程实际就是规定了信号的放大倍数,比如:1档、2档、3档.......10档等,1档最灵敏,10档最不灵敏而检测信号范围最宽。 通常量程有一定的规律,比方说同一个离子用不同的量程检测,1档检测的峰高是10,那么2档检测的信号是1档的几分之一(每个厂家的规定不一样),比较多见的是2档是1档信号的1/2,即2档峰高是5,依此类推3档是2.5、4档是1.25、5档是0.625、6档是0.3125、7档是0.1563、8档是0.0781、9档是0.0391、10档是0.01953。1档信号是10档的512倍,换言之10档的检测限是1档的512倍。当我们用1档检测低浓度离子时,样品中的高浓度离子有可能会超出这一档的最大值而出现平头峰。如图1所示。[align=center][img=[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]出现平头峰,1000,531]http://dwbsemail.gotoip4.com/upload/201808/1533769205408865.png[/img][/align][align=center]图1.固定量程电导检测器出现平头峰[/align]对于用于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]分析的传统固定量程电导检测器而言,量程在进样前预先设定好,如果进样后灵敏度不合适再重新切换量程或稀释样品进样分析一次,有时一个样品需要进样几次才能得出准确结果,其特征如下:●控制面板:有明显的量程选择功能,如档位选择(1-10档任选1档),或30μS、100μS、1000μS等范围选择●信号单位:mV(毫伏)●量程设定:进样前预先设定(不同厂家产品供设定的量程数量不同,如10档,8档,2档,共同的特征是需要进样前预先设定)●电导检测范围:小信号的量程与检测大信号的量程是分开的,不能同时检测,所以即使检测范围最宽的一个量程可以达到35000μS也是没有意义的,因为低浓度的离子还是要切换高灵敏度量程再次进样(不能在一个量程下同时分析高浓度离子与低浓度离子)●线性范围:相对较小。通常在100mg/L以内。●灵敏度:灵敏度差。通常安装50-100微升定量环●标准曲线:每一个量程都需要建立标准曲线。如10档则需要建立10组标准曲线,只有这样做,在切换量程时才能准确定量,进样工作量巨大。●样品稀释:需要稀释样品。由于每一量程做标准曲线的工作量较大,所以通常选择某一常用的量程固定下来,做一组标准曲线,当样品中某离子浓度超出量程时(平头峰或变形峰),采取稀释样品使样品浓度降至量程范围内。●输出信号:模拟信号,需要外置信号采集器;●抗干扰能力:弱●平头峰:超出量程时出现平头峰。比较常见的情况是,信号超过1300mV时就会出现平头峰,信号超过800mV时峰开始变形。如图1所示:[align=center][/align][hr/][align=center][color=#00b0f0]动态量程电导检测器介绍[/color][/align][hr/]全新的基于数字电路的动态量程电导检测器,彻底解决了传统固定量程电导检测器量程限制的问题,可一次进样同时分析样品中的高低浓度离子,其特征如下:●控制面板:无任何量程选择项●信号单位:μS(微西门子)●量程设定:无需设定量程●电导检测范围:0-15000μS全覆盖●线性范围:0.001-200mg/L(以氯离子计,10μL进样量);●灵敏度:灵敏度高;●标准曲线:一组或两组标准曲线(出于定量准确度要求,建议高低浓度分开做);●样品稀释:样品可以不稀释直接进样;●输出信号:数字信号,无外置信号采集器;●抗干扰能力:强●平头峰:在色谱柱容量范围内,不会出现平头峰;[hr/][align=center][color=#00b0f0][b]动态量程电导检测器与传统固定量程电导检测器对比[/b][/color][/align][hr/] 在同一台仪器上,将固定量程电导检测器与动态量程电导检测器串联,以同一样品进样,分别采集的谱图叠加在一起。如下图所示:[align=center][color=#00b0f0]两张谱图以NO[sub]3[/sub][sup]-[/sup]峰高为基准对齐[/color][/align][align=center][img=,690,506]https://ng1.17img.cn/bbsfiles/images/2018/08/201808311622215642_2498_1608336_3.png!w690x506.jpg[/img][/align][align=center]图2. 动态量程电导检测器与固定量程电导检测器谱图叠加对比[/align]由图得到如下信息:1.两图中低浓度的F[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]重合,说明两种检测器在检测小信号方面性能一致。2.红色的传统固定量程电导检测器信号,在图中红色虚线标注的区域信号呈非线性响应,峰形变形,最终在最高点出现平头峰,氯离子浓度超过了这个量程的最高点。3.蓝色的动态量程检测器信号,不受量程限制,没有出现平头峰,且信号线性响应,氯离子出峰完整。[align=center][color=#00b0f0][/color][/align][hr/][align=center][color=#00b0f0]动态量程电导检测器与固定量程电导检测器对比表[/color][/align][align=center][color=#00b0f0][/color][/align][hr/][table=1880][tr][td=1,1,397] [/td][td=1,1,716][b]传统固定量程电导检测器[/b][/td][td=1,1,767][b]全新动态量程电导检测器[/b][/td][/tr][tr][td][b]控制面板[/b][/td][td]有量程设定项,如1档到10档,或30μS、100μS、1000μS等范围选择[/td][td]无量程设定项[/td][/tr][tr][td][b]信号单位[/b][/td][td]mV(毫伏)[/td][td]μS(微西门子)[/td][/tr][tr][td=1,1,397][b]量程设定[/b][/td][td=1,1,716]预先设定固定的量程,进样分析过程保持不变[/td][td=1,1,767]无需设定量程,根据样品中离子浓度大小自动切换量程,进样分析过程中使用多个量程[/td][/tr][tr][td=1,1,397][b]电导检测范围[/b][/td][td=1,1,716]每个量程有不同的范围,高灵敏度量程检测范围小,低灵敏度量程检测范围宽,但灵敏度极低[/td][td=1,1,767]0-150000μS全覆盖[/td][/tr][tr][td=1,1,397][b]高低浓度同时检测[/b][/td][td=1,1,716]不可以[/td][td=1,1,767]可以[/td][/tr][tr][td=1,1,397][b]灵敏度[/b][/td][td=1,1,716][b]低[/b][/td][td=1,1,767][b]高[/b][/td][/tr][tr][td=1,1,397][b]标准曲线[/b][/td][td=1,1,716]每个量程分开标定(因为每个量程对信号的放大倍数不一样,所以切换量程后必须有对应的曲线)[/td][td=1,1,767]单曲线标定[/td][/tr][tr][td=1,1,397][b]样品稀释[/b][/td][td=1,1,716]需要稀释[/td][td=1,1,767]可以不稀释(有的样品出于保护色谱柱的考虑可以适当稀释,但在不稀释的情况下,也可以检测高浓度离子)[/td][/tr][tr][td=1,1,397][b]平头峰[/b][/td][td=1,1,716]当离子浓度超过量程检测范围时会出现平头峰[/td][td=1,1,767]不会出现平头峰[/td][/tr][tr][td=1,1,397][b]输出信号[/b][/td][td=1,1,716]模拟信号,外置信号采集器[/td][td=1,1,767]数字信号,无外置信号采集器[/td][/tr][/table]

  • 深度学习算法可用于近红外光谱成像分析领域的哪些方面?

    [font=宋体][font=宋体]卷积神经网络、自适应编码器等可用于特征提取、噪声消除等;此外,卷积神经网络、[/font][font=Times New Roman]LSTM[/font][font=宋体]神经网络等可直接用于模式识别或是定量分析。目前,深度学习算法在农产品近红外成像分析领域的应用尚在探索阶段,比如输入的选取、深度神经网络的拓扑结构设计等。尽管深度学习在图像、视频、音频和自然语言处理等领域展现了无可比拟的优势,但是在光谱成像分析领域,深度学习算法是否一定优于传统方法还有待具体问题具体分析。[/font][/font]

  • 白酒定量分析

    在白酒定量分析中,我采用内标的方法将对其进行定量。但是采用内标定量时需要计算较正因子,我想问下,在定量的过程中,较正因子的求法是要把每种化合物的较正因子求出来才能计算最终含量吗?但在白酒当中还有很多微量成分是我们没有标准品的,这类化合物的较正因子又该怎么计算呢?

  • 【求助】定量有问题了

    本来一直都好好的,这两天我的产品峰旁边好像多出一个小峰,产品的峰和那小峰连在一起了,定量成问题了,是基线漂移了吗?还是什么?(色谱柱已老化)

  • 定性程序和定量程序的关系

    各位老师,我自己操作的时候,怎么定量和定性的谱库检索注册,操作不一样但是感觉意义都是一样的啊,后来看了一个作业指导书如图片,这里我没弄懂,定性的检出没有检出,我理解的是直接谱库检索看有没有了,我错在哪里呀,一个人看也不知道错在哪儿[img]https://ng1.17img.cn/bbsfiles/images/2019/09/201909281149086030_9507_4004805_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/09/201909281149086625_7938_4004805_3.png[/img]

  • 【求助】全分析矿物原料的成分,定量

    请教专家: 我们有一些矿物原料,绝大部分非晶态,如何定量检测其未知成分(主量成分硅、铝、钙、镁),包括比较微量的。用红外光谱或X荧光可以吗?那种型号,哪里可以? 请指教!

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 电泳时胶回收和凝胶成像的需要注意事项有哪些

    电泳时胶回收切胶的注意事项:  1. 电泳的buffer和gel都是新制的,切胶的台子清理干净,刀片最好洗净灭菌,总之一句话就是保证切下的带没有外源dna污染。  2. 切胶是要把整个目的片断所在位置的胶全部回收。为了减少胶的体积,可以用相对比较薄的胶来做,只要够点样即可,也可采用薄而宽的梳子来跑胶。  3. 关于防护,在一般有机玻璃后就足够了,戴上防护面具以保护眼睛,如果戴树脂眼镜就可以了。要是非常害怕紫外照射,或者对于胶有特殊要求,例如要求不含EB,可以采用点marker和带刻度的尺子一起照相的方法来确定目的条带在胶上的位置进行切胶。  4. 按照正常程序点marker跑胶,然后切下有marker的胶,EB染色,紫外灯下与带刻度的尺子一起照相。由于要回收的带与marker间的相对位置已知,根据尺子来衡量未染色胶上目的带的位置即可。如果觉得很难判断,可以直接在marker边点少量的样,这样位置就容易确定了。  凝胶成像分析系统的使用和注意事项:  凝胶成像分析系统:可以应用在蛋白电泳凝胶,DNA凝胶,样品进行图象采集并进行定性和定量分析,样品包括:EB、SYBR Green、SYBR Gold、Texas Red、GelStar、Fluoroscecin、 Radiant Red等染色的核酸监测;以及Coomassie Blue、SYPRO Orange、各种染色的蛋白质凝胶如考染等。(或UV,EB和有色及可见样品成像)  使用注意事项:  • 注意开机顺序,先开凝胶成像系统,再打开电脑进入软件。  • 紫外凝胶照相时要防止EB 污染仪器,凝胶成像系统的门不能用污染的手套接触,进行软件操作时同样不能被污染的手套接触。凝胶成像仪推荐  • 在使用紫外光源照相的过程中,不可以打开凝胶成像系统前面板。  • 照相后经废胶取出,并用较软的纸擦拭干净。  • 调焦时要轻,动作不要剧烈。  • 环境电压 不稳定 时,请使用稳压电源。使用过程中如遇断电,请及时将仪器电源关闭,直至重新来电。  • 使用时,请先打开仪器的电源开关,再打开电脑开关并打开软件( Quantity One )。  • 保持观测室内环境干燥,及时将遗留在观测板上的水或其他液体檫干(可使用软质纸,一般卷纸即可)。  • 观测用 EB (溴乙锭)染色的凝胶时,注意不要污染仪器表面。千万不要用手直接接触凝胶,或戴着接触过凝胶的手套去接触仪器的门和观测台的把手。  • 使用仪器时,要将门及观测台关紧,否则将无法正常使用紫外灯。  • 尽可能不要将电脑连接到因特网或局域网上,同时在电脑上安装杀毒软件(推荐使用正版软件),做到专机专用。  • 较长时间不用仪器时,请将仪器用防尘罩盖上。  • 为延长灯管的使用寿命,请观测好凝胶后及时关闭光源(仪器自身有 15 分钟的自动保护程序)。 转自上海思伯明仪器设备www.springsci.com.cn

  • 转载:磁共振成像中的生物指纹

    转载:磁共振成像中的生物指纹

    来自凯斯西储大学和凯斯西储大学医院医学中心的研究人员在《自然》(Nature)杂志上报告称,他们开发了一种磁共振成像(MRI)新方法,可以早期常规筛查某些特异的癌症、多发性硬化症、心脏病及其他疾病。http://ng1.17img.cn/bbsfiles/images/2013/03/201303191704_431210_2698941_3.jpg科学家们说,每个身体组织和疾病都具有一种独特的指纹,可用于快速诊断问题。利用新的MRI技术可以同时扫描不同的物理特性,研究小组在12秒钟的时间内区分出了大脑中的白质、灰质和脑脊髓液,有希望在不久的将来更快速地完成这一工作。作者们认为,该技术有潜力使得MRI扫描成为年度体检的标准程序。全身扫描仅需几分钟,将提供更多的信息,且无需放射科医师注释这些数据,相比于现在的扫描,其可使诊断变得更加便宜。“我们的总目标在于明确鉴别个体的组织和疾病,有望在它们变成问题之前看到及定量一些东西。然而要试图达到这一目标,我们不得不放弃我们所知道的一切关于MRI的东西,重新开始,”凯斯西储大学医学院和凯斯西储大学医院医学中心放射学教授Mark Griswold说。10年来,Griswold和凯斯西储大学的放射性助理教授Vikas Gulani,以及生物医学工程学助理教授Nicole Seiberlich一直致力于实现这一目标。在过去的3年里,他们与协作者们开发了这一技术,并证实了概念。磁共振成像仪是利用磁场和无线电波脉冲来生成身体组织和结构的图像。相比于传统的MRI,磁共振指纹法(Magnetic resonance fingerprinting,,MRF)每次测量可以获取更多的信息。Griswold将技术中的差异比作两个不同的合唱队。“传统的MRI,是每个人都唱着同一首歌,你可以说出谁唱得更响亮,谁跑调了,谁唱得更柔和。但也就是这样。”大声、柔和和跑调的歌声由扫描中的黑点、轻微的亮点和明亮点表示,放射科医生必须对其进行注释。例如,生化试剂中MRI显示肿胀为明亮区。但亮度并不一定等同于严重或病因。Griswold说:“利用MRF,我们希望能够一步告知疾病的严重程度,以及在这些区域确切发生的事件。”因此,身体内的每个组织、每种疾病以及每种物质的指纹就是一首不同的歌。在MRF中,每个合唱队成员都同时唱着不同的歌。“整个听起来就像随机一团糟。”研究人员通过同时改变标记组织的输入电磁场的不同部分,生成一些独特的歌曲。这些变化生成了对随组织而异的4种物理特性敏感的接收信号。当在面孔识别软件中利用数学模式识别程序时,这些差异会变得明显。随后这些模式被制成图表。Griswold说,检测的不是来自图像的相对测量值,而是通过定量评估区分一种组织与另一种。随着这一技术不断进步,这些结果将确定组织是否健康,严重程度以及凭据。科学家们相信他们将能够查询总共8个或9个物理特性,使得他们能够推导出来自大量组织、疾病和物质的歌曲。对于患者而言,MRF看起来就像一个快速MRI。当完成扫描后,将患者的所有歌曲与乐曲库相比较,就可以为医生提供一套诊断信息。“如果结肠癌是‘生日快乐’歌,我们没有听到‘生日快乐’,就意味着患者没有结肠癌,”Griswold说。其他一些研究人员曾尝试利用MRI的多个参数,而研究人员能够比以前尝试做到的更敏感及快速地进行扫描。“这一研究给予了我们希望,我们可以看到MRI有可能能够看到各种东西。”研究小组期望在接下来的几年里,能够减少扫描时间,继续建设乐曲库,或是指纹库

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制