当前位置: 仪器信息网 > 行业主题 > >

定量成像

仪器信息网定量成像专题为您整合定量成像相关的最新文章,在定量成像专题,您不仅可以免费浏览定量成像的资讯, 同时您还可以浏览定量成像的相关资料、解决方案,参与社区定量成像话题讨论。

定量成像相关的资讯

  • 微生物代谢的原位拉曼可视化定量分析成功实现
    记者21日从中科院海洋研究所获悉,该所研究员张鑫课题组和孙超岷课题组共同合作,基于共聚焦显微拉曼技术,通过三维定量成像实现了长期、近实时、非破坏性的微生物监测,对微生物生长和代谢情况进行可视化及定量分析,为未来分析微生物原位生物过程提供了新思路。研究成果近日发表于《微生物学谱》上。固体培养基培养的菌落的三维定量成像示意图 课题组供图记者了解到,张鑫课题组在之前的工作中,观测到我国南海冷泉环境中单质硫含量丰富。随后,孙超岷课题组发现了冷泉细菌Erythrobacter flavus 21-3可以高效氧化硫代硫酸钠生成单质硫,张鑫课题组通过拉曼光谱鉴定后发现单质硫结构为环状S8,研究成果发表在生物学领域权威期刊《国际微生物生态学会杂志》。后续两个课题组合作将E. flavus 21-3及其突变株布放到深海冷泉喷口附近进行原位培养,证实该菌株在深海原位环境中也能形成硫单质,相关成果发表在国际生物学期刊《微生物学》,为解释我国南海冷泉喷口广泛分布硫单质的成因提供了重要理论依据。E. flavus 21-3在高氧条件下的三维拉曼成像分析 课题组供图由此可见,微生物是深海硫形成和循环的重要贡献者,其介导的硫代谢的研究对于了解深海硫循环至关重要。然而,由于深海环境极端复杂,采样困难、微生物难于分离培养等因素,以及缺少对硫元素的形成的近实时无损的监测方法,深海微生物的原位探测面临巨大挑战。目前,主要通过经典的生物和化学方法研究硫元素的生成过程,例如X射线吸收近边结构、高效液相色谱、透射电子显微镜、离子色谱法或化学计量法等。但是,这些方法主要通过取样来获知特定时间点的微生物代谢情况,不能在不破坏样品的前提下连续监测其在时间尺度上的代谢过程;并且,其中一些方法样品制备复杂,会破坏细胞的原位真实性;也可能会出现取样不均匀及污染的情况,导致难以实现连续的原位观察。因此,亟需新的方法突破此瓶颈。低氧条件下E. flavus 21-3的三维拉曼成像分析 课题组供图共聚焦显微拉曼三维成像技术拥有低成本、快速、无标签和无破坏性的优势,具有将定性、定量和可视化完美结合的潜力,为我们解决相关问题提供了新的思路。因此,为证明此技术的潜力,研究团队构建了一套固态基底上微生物群落拉曼三维定量原位分析方法,将光学可视化与拉曼定量分析相结合,可在时间和空间两个维度上无损定量表征微生物群落代谢过程。该技术已成功应用到深海冷泉细菌E. flavus 21-3硫代谢过程的原位监测。据介绍,基于拉曼三维成像进行体积计算和比率分析,课题组对不同环境下的菌落生长和代谢进行了量化,发现了生长和代谢方面不为人知的细节,为厘清深海冷泉生物群落中广泛分布的硫单质成因提供了重要技术支持。“据我们所知,这是首次尝试长期监测菌落在固体培养基中生长的原位无损技术。我们能够快速确定代谢产物,推断反应发生的途径,并快速筛选产硫细菌。由于这一成功的应用,不仅证明了该方法在未来对微生物原位过程的可视化及定量分析的潜力,也为研究深海中附着在岩石沉积物等固体表面上的微生物提供了新的思路。”张鑫对《中国科学报》表示。该研究得到了国家自然科学基金、中国科学院A类战略性先导专项、中国科学院海洋大科学研究中心重点部署项目、泰山青年学者计划等项目联合资助。
  • 新突破:广州生物岛实验室与中科院生物物理所合作,成功研制针对病理组织样本高通量成像需求的专用扫描透射电子显微镜SmartView
    2021年7月28日,广州生物岛实验室生物医疗器械部在中巨园区举行了《高通量全自动病理切片电子成像仪》项目结题验收会。该项目是广州生物岛实验室生物医疗器械部成立后启动的第一个自立项目(2019.6-2021.6),中国科学院生物物理研究所作为项目合作单位,生物物理所孙飞研究员和曹峰高级工程师到广州生物岛实验室兼职,分别担任此项目负责人和项目总监。项目从医院病理科电镜病理检测存在的仪器维护成本高、操作复杂、通量低、人力成本高等痛点出发,成功研制了针对病理组织切片样品的高通量扫描透射电子显微镜SmartView(图1),发明了载网托盘和新型的装载方式(图2),一次可以装载500个病理切片载网,实现了8K*8K的高速扫描透射成像能力,仪器成像分辨率优于1.1nm,可以进行病理组织切片样品高速和高质量成像(图3,图4),将有效推动生物医学病理电镜检测快速发展。验收会议邀请了华南理工大学陈晓峰教授(专家组组长)、中科院生物物理所徐伟研究员、北京工业大学吉元研究员、中山大学赵文霞研究员、北京大学高宁教授、西安交通大学康永锋教授、金域医学电镜病理检测中心侯晓涛主任和高月敏高级会计师等8位专家对项目完成情况进行评审。上午,项目负责人孙飞研究员向评审技术专家组介绍了项目背景和项目技术指标验收方案并得到专家组认可。随后,项目研发总监曹峰高级工程师带领评审技术专家组根据验收方案对研制的高通量扫描透射电子显微镜的各项技术指标(分辨率、加速电压稳定性、电子束流及其稳定性、高通量样品台和成像质量等)进行了现场考察和测试(图5)。通过各位专家对几种不同类型电镜照片盲测评分的数据统计,SmartView拍摄照片质量与120kV透射电镜所拍摄照片在生物切片样本成像质量方面相当,满足病理组织切片样品电镜检测的要求。下午的专家评审验收会由生物医疗器械部张昆总监主持,科技发展部和生物医疗器械部相关业务人员以及项目组骨干成员参加了会议。孙飞研究员和曹峰高级工程师分别对项目的研发背景、研发内容、指标完成、研发成果和经费使用等情况进行了详细汇报(图6)。评审专家分别从项目设计的科学性、合理性、创新性、研究成果产出和经费决算等方面进行了评价,对项目所取得的成果给予了充分的肯定。专家们指出,电镜病理检测技术对于肿瘤、肾病、消化、血液和神经等疾病的诊断和病原体的检测分析具有重要的作用。当前医学病理切片电镜检测工作由于通量低、操作复杂,对人员专业要求高,阻碍了电镜病理检测技术在广大临床医院中的推广和应用。本项目所研制的高通量全自动病理切片电子成像仪Smart View能够解决这一痛点和难点问题,降低电镜病理检测工作的技术门槛,促进电镜病理检测技术在人类疾病诊断中的广泛应用,具有良好的社会经济意义。此外,专家们也对项目后续研发和转化工作给出了建设性意见。最后,评审专家组一致同意通过该项目的结题验收(图7),并建议广州生物岛实验室进一步加大对项目研究团队的支持和投入,保障项目团队在生物医学电子显微仪器研发领域取得更多更好的成绩。该项目的顺利实施,得到了徐涛院士研究组、生物物理所生物成像中心的大力支持与帮助。图1. 高通量全自动病理切片电子成像仪图2 电镜载网上的病理组织切片样品(SmartView背散射电子图像)图3 利用SmartView对病理组织切片样品进行成像(中倍STEM像)图4. 利用SmartView对病理组织切片样品进行成像(高倍STEM像)图5. 项目验收会现场图6. 项目负责人汇报图7. 验收专家与生物岛实验室相关人员合影图8. 生物医学电子显微成像技术研究组全体合影
  • 凝胶成像分析系统助力DNA密度定量研究
    那么下面上海嘉鹏科技有限公司为大家简单介绍一下关于凝胶成像分析系统助力DNA密度定量研究:在生物领域当中,对于DNA的研究一直以来都是在不停的耗费人力物力,就希望能够把它研究得更加的透彻。对于很多产品的生产,包括人类的身体健康,都能够给予有效的帮助。但是我们在对DNA研究时,不仅仅要靠科学家的努力,有很多的设备也需要跟上时代的步伐,否则在研究时可能就没有办法可以突破。现在凝胶成像分析系统对于DNA密度定量的研究,能够给予更有效的帮助。因为它可以让读取的数值更加的准确,这样就可以通过现有的研究方式,了解DNA里面的含量标准来进行专门的方向研究。可以让我们对于DNA胶片的研究,呈现完全不一样的准确性。正因为有了这样的一种方式,就可以让我们对于DNA的研究完全跨上一个大步,所以现在在很多专业进行DNA研究领域当中,就会对凝胶成像分析系统来进行使用,对于他自己的研发可以起到有效的帮助。以前我们国家在需要相关设备时,都是通过国际上的一些知名公司来进行采购。不仅采购的成本相对较高,而且产品运输的费用也非常的高,还要涉及到关税等等一些问题,购买企业会觉得自己的经济压力相对较大。但是现在我们国内在凝胶成像分析系统相当中的研究已经不输于国际上比较知名的行业。在这方面的研究,也投入了大量的人力物力。所以现在有几个品牌的产品在经过研发时,取得了很好的成就。在使用的时候,不仅在清晰度上能够给予保障,而且在使用时,它的准确性也能够给予很好的保障。正是因为对于凝胶成像分析系统的整体研究达到了比较先进的水平,所以现在国内有很多的企业在对这一套系统购买时,不需要像以前一样,通过国际上的一些厂家来对产品采购。只需要通过国内的生产企业,就可以对凝胶成像分析系统直接购买。 以上就是上海嘉鹏科技有限公司为大家整理总结关于凝胶成像分析系统助力DNA密度定量研究 。 我们上海嘉鹏科技有限公司是专业生产超微量核酸蛋白测定仪、化学发光成像系统、凝胶成像分析系统、紫外分析仪、核酸蛋白检测仪、紫外检测仪、蛋白质分离纯化系统、光化学反应仪、旋涡混合器、恒流泵、自动部分收集器等十几个系列产品的厂家,欢迎大家前来订购
  • 小菲课堂|定性or定量热成像,到底该如何选择?
    现如今,使用红外热像仪检测和可视化红外能量的能力为广大用户带来了巨大的优势,从挽救生命到挽救生计。尤其是在过去十年中,热像仪尺寸、重量和成本方面的创新,以及外形、分析软件和数据处理的升级,使这项技术以不可预见的方式变得非常宝贵。从用于搜索和救援的无人机摄像系统到用于发现逃逸气体的光学气体成像热像仪,当您为工作选择合适的热成像工具时,可以有如此多的选择。而且在我们检测的过程中,选择定性分析还是定量数据分析至关重要。定性热成像对于某些应用,操作员只需要一个热像仪,或表示为可视图像的红外数据,即可解释场景中发生的物理变化并确定问题根源或维修需求,这种热成像的定性分析方法提供了行动所需的视觉线索。光学气体成像是揭示气体泄漏的定性分析技术定性热成像分析技术的一项很有价值的用途是使用连接到无人机系统 (UAS) 的挂载热像仪进行搜索和救援行动。在这种情况下,搜索者使用热像仪来定位在较冷环境背景下突出的温暖人形。热像仪在不需要确定具体温度的低能见度(夜间或其他挑战人眼或可见光相机的环境)情况下特别有用的。热成像无人机经常被用来发现太阳能电池板的问题定量数据分析热成像相反,有时简单的热像图不足以解释所有场景。在有些场景中,检测和记录每个像素温度的能力对于任务的成功至关重要。在这些情况下,使用辐射热像仪很重要,这意味着热像仪能够通过解释接收到的红外辐射信号强度来测量被测物体表面的温度。通过热像仪中的辐射测量功能,无人机操作员可以保存拍摄数据以进行飞行后图像分析。配套的兼容软件可以准确测量数据中单个图像像素的温度,这是农业、建筑诊断或工业检测的关键过程。无论是查看屋顶、太阳能电池板、变电站还是农作物,无人机操作员都可以分析飞行后的温度数据,并发送详细报告和图像,提供可量化、可采取具体操作的分析结果。无人机辐射测量数据有助于诊断潜在问题热辐射技术在状态监测和机械检查中也起着至关重要的作用,因为它不仅可以识别异常热点或冷点,还可以提供正确诊断潜在问题所需的额外温度数据层。这些热点或冷点可能表示电气、机械或设施关键系统出现故障或存在潜在故障,及早发现这些问题可以让技术人员安排维修或更换,而无需停机所带来的高昂的代价。辐射热像仪通常包括一些实用的测量工具,例如点测温工具,用户可以移动或调整区域测温工具的大小,或者使用多个点测温工具来更好地适应特定的应用或测量场景,这对于确定可能指示电气、机械或操作问题的高于正常温度的热源至关重要。准确的温度数据有助于建筑检查员做出正确的判断尽管红外热成像技术应用广泛,但要明白,在获取非接触温度数据时,真实温度可能存在差异。被测物体表面的远程温度传感依赖于准确补偿被测物体表面特征、大气干扰和成像系统本身的能力。发射率或物体发射红外的能力,以及反射率或表面反射红外的方式,都会影响并降低记录温度的总体精度(大约2℃或更高)。大多数热成像仪提供补偿设置,可以辅佐这些表面特征并提高整体测量精度。设备的选择尽管定量数据分析红外热像仪似乎是任何应用的正确选择,因为它们同样适用于定性分析需求,但辐射热像仪比非辐射热像仪更复杂,而且通常更昂贵。最终,了解工作的特定需求将有助于选择合适的热像仪。
  • 布鲁克发布Bruker多量程X射线三维纳米显微成像系统(Nano-CT)新品
    SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。■多用途系统,样品尺寸可达300mm,分辨率(像素尺寸)可达 60 纳米■金刚石窗口x射线源,焦斑尺寸500nm■创新的探测器模块化设计,可支持 4 个探测器、可现场升级。■全球速度很快的 3D 重建软件(InstaRecon® )。■支持精确的螺旋扫描重建算法。■近似免维护的系统,缩短停机时间并降低拥有成本。地质、石油和天然气勘探■常规和非常规储层全尺寸岩心或感兴趣区的高分辨率成像■测量孔隙尺寸和渗透率,颗粒尺寸和形状■测量矿物相在3D空间的分布■原位动态过程分析聚合物和复合材料■以500 nm 的真正的 3D 空间分辨率解析精细结构■评估微观结构和孔隙度■量化缺陷、局部纤维取向和厚度电池和储能■电池和燃料电池的无损 3D 成像■缺陷量化■正负极极片微观结构分析■电池结构随时间变化的动态扫描生命科学■以真正的亚微米分辨率解析结构,如软组织、骨细胞和牙本质小管等■对骨整合生物材料和高密植体的无伪影成像■对生物样品的高分辨率表征,如植物和昆虫创新点:SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行 者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个 组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。 Bruker多量程X射线三维纳米显微成像系统(Nano-CT)
  • 布鲁克发布Bruker多量程X射线三维纳米显微成像系统(3D XRM)新品
    SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。■多用途系统,样品尺寸可达300mm,分辨率(像素尺寸)可达 60 纳米■金刚石窗口x射线源,焦斑尺寸500nm■创新的探测器模块化设计,可支持 4 个探测器、可现场升级。■全球速度很快的 3D 重建软件(InstaRecon® )。■支持精确的螺旋扫描重建算法。■近似免维护的系统,缩短停机时间并降低拥有成本。地质、石油和天然气勘探■常规和非常规储层全尺寸岩心或感兴趣区的高分辨率成像■测量孔隙尺寸和渗透率,颗粒尺寸和形状■测量矿物相在3D空间的分布■原位动态过程分析聚合物和复合材料■以500 nm 的真正的 3D 空间分辨率解析精细结构■评估微观结构和孔隙度■量化缺陷、局部纤维取向和厚度电池和储能■电池和燃料电池的无损 3D 成像■缺陷量化■正负极极片微观结构分析■电池结构随时间变化的动态扫描生命科学■以真正的亚微米分辨率解析结构,如软组织、骨细胞和牙本质小管等■对骨整合生物材料和高密植体的无伪影成像■对生物样品的高分辨率表征,如植物和昆虫创新点:SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行 者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个 组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。 Bruker多量程X射线三维纳米显微成像系统(3D XRM)
  • 我司承担中国医学科学院《定量质谱成像分析系统》开发
    近日,受中国医学科学院/北京协和医学院药物研究所国家药物及代谢产物分析研究中心(简称研究中心)委托,科迈恩(北京)科技有限公司(简称科迈恩)承担了《定量质谱成像分析系统》软件的研制开发任务。在此之前,双方已合作完成了《质谱成像及代谢组学数据处理软件系统》研发工作,建立的先进质谱成像系统工作站广受好评。  质谱成像技术是质谱领域的前沿技术,因其巨大的应用潜力,受到了众多仪器生产商和科研院所的关注。作为我国质谱成像及代谢组学研究领域的领军人物,再帕尔阿不力孜教授及其课题组从2006年起深入开展了质谱成像相关技术的研究和开发,并取得如成像原位代谢组学、定量质谱成像技术与方法、创新药物研发和肿瘤分子病理诊断应用等引领国际的原创性成果。  此次双方旨在前期合作基础之上,开发一套定量质谱成像分析系统,以实现对生物组织中的药物或生物标志物的定量可视化功能。该系统拟采用创新性的校正方法,以使定量质谱成像分析操作过程更简单,定量结果更准确,在新药研发、重大疾病早期诊断和精准医学等领域具有很好的应用前景。  合作协议签订期间,科迈恩(北京)科技有限公司技术团队前往研究中心进行了业务交流。质谱成像技术负责人贺玖明副研究员向科迈恩一行介绍了软件开发具体内容和技术要求,并就开发关键点进行了深入交流与讨论,科迈恩技术负责人表示将不负重托,尽快推出高质量的软件产品。
  • 低噪声、高分辨、高帧速,滨松推出世界首台光子定量科研级相机
    滨松公司利用独有的设计技术,并采用以最新制造技术新研发出的2D CMOS图像传感器,成功研制出拥有0.27e rms的极致低噪声,且具备940万像素(4.6 μm像素尺寸)的超高分辨科研级相机“ORCAⓇ-Quest qCMOSTM C15550-20UP”。由于光电信号转换时的噪声是决定相机检测极限的重要因素,我们通过将噪声抑制到低于光的最小单位光子(光粒),在世界上首次实现了光子数的准确测量,并对所测到的2D光子数进行成像。这将使我们能够更准确地观察离子和中性原子等的量子状态,有望促进以量子计算机(*)等其他量子技术的研究和开发。本产品将于2021年5月20日(星期四)正式上市。※量子计算机:作为量子的离子和中性原子等可处于“即是1又是0”的重叠状态。利用这种特性可以进行并行处理,是一种有望解决目前在时间和规模维度上无法解决问题的计算机。ORCAⓇ-Quest qCMOSTM 相机 C15550-20UP产品概要该产品采用了新研发的高性能2D CMOS图像传感器,是世界上首台实现光子定量的科研级相机。 滨松公司一直从事研发,生产和销售用于微弱荧光,发光现象成像应用的低噪声科研级相机。这次利用滨松独有的设计技术,优化像素结构的设计,并利用先进的精密半导体制造技术,开发了世界首个具有极致低噪声,且高像素数,高分辨率,并可实现高速读取的2D CMOS图像传感器。此外,利用长年积累的低噪声相机电路设计技术,高精度探测器冷却技术,独有的信号处理技术,有效抑制了2D CMOS图像传感器各像素出现的不均匀现象。由此,我们成功地开发了世界首台可实现光子定量,且可获得高可靠性测定结果,有助于推动科学的进步以及未知领域研发的科研级相机。本产品通过对来自离子,中性原子等的光量进行定量成像,可以准确观察其量子状态,有望加速量子计算机为代表的各种量子技术的研究和开发。此外,由于它可以在宽广视场中对极弱的光现象进行成像,也预计有望应用于天文和生命科学领域。今后,我们将面向国内外大学和企业的研究人员进行销售,并在多个领域中开拓2D光子数识别测量的新应用。发射荧光的中性原子(左)和猎户座大星云(右)的成像图像产品特点1、采用新研发的高性能2D CMOS图像传感器利用滨松独有的设计技术和最新的制造技术,成功研发了世界首个具有极致低噪声的2D CMOS图像传感器。此外,采用沟槽结构,将2D CMOS图像传感器的像素一个一个地隔开,减少像素之间的串扰,且通过背照模式同时实现了高量子效率和高分辨率。再有,在具有940万像素的高像素的同时,其信号的读取速度从原来的约27百万像素每秒到约47百万像素每秒,提高了约1.7倍。2、世界上首台实现2D光子数识别测量的相机利用滨松长年积累的相机低噪声电路设计技术,高精度传感器冷却技术和独有的信号处理技术,通过抑制每个像素的电特性变动,最大限度发挥了2D CMOS图像传感器的性能。 以上种种,我们成功研发了世界首台用于2D光子数识别测量,实现噪音为传统产品约三分之一,仅0.27e rms的极致低噪声科研级相机。研发背景滨松公司自1980年以来一直研发,生产并销售低噪声的科研级相机。目前为生命科学等学术领域以及工厂自动化领域等需要对极弱荧光和发光现象进行成像技术的各种场景提供产品。为满足市场对进一步降低噪声的要求,我们致力研发具备极致的低噪声,并实现了2D光子数字计测的科研级相机。主要规格
  • 使用高灵敏度液相DAD实现样品主要成分和微量成分的同时分析
    以日本的制药行业为例,当提交含有新有效成分药品的申请时,如果原料药及制剂中原料药的杂质超出1日剂量(作为原料药)的 0.03% - 0.05%,必须提供报告。另外,在环境领域,以高灵敏度测定微量残留物质的要求正日益增长。检测器的性能成为满足这一分析要求的重要因素。日立高效液相色谱仪 "Chromaster”5430DAD实现了与UV检测器同样的低噪音/低漂移,可进行高灵敏度测定。 在此,使用对羟基苯甲酸酯类作为模型样品,介绍高浓度成分和微量成分的同时分析。同时对对羟基苯甲酸丙酯(600 mg/L)和对 羟基苯甲酸乙酯(0.03 mg/L)进行了测定。展示2种成分的浓度比为(10000:0.5)即占主成分0.005%的微量成分的检出测定模型。3种对羟基苯甲酸酯类成分的测定例(各 10 mg/L)色谱条件3种对羟基苯甲酸酯类成分的测定例(DAD和UV检测器的比较)使用5430 DAD、5410 UV检测器测定对羟基苯甲酸丙酯(0 - 600 mg/L),决定系数分别为0.9992、0.9998,显示出了良好的线性。DAD实现了与UV检测器同样的低噪音,由该结果可知,以DAD测定对羟 基苯甲酸乙酯(0.03 mg/L)的S/N=42,证明微量成分(0.005%)完全可 与主成分同步进行定量分析。通过进一步对光谱进行比较,也已实现对羟基苯甲酸乙酯的定性分析。主要仪器配置 : Chromaster5110 泵、5210 自动进样器、5310 柱温箱、5430 DAD、5410 UV检测器相关产品:日立Chromaster高效液相色谱仪日立高效液相色谱仪自推出以来,凭借优异的性能,高度的可靠性,结实耐用,得到了用户的广泛认可。对于液相用户来说,尤其是制药企业用户,除了色谱硬件本身,软件也是关乎分析测定的重要环节。日立ChromAssist4.1数据库版色谱数据管理系统重磅发布!公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 89.9万!赛默飞世尔等中标化学发光成像系统、实时荧光定量PCR仪等设备一批项目
    一、项目编号:[3500]ZSZBGS[GK]2022005(招标文件编号:?[3500]ZSZBGS[GK]2022005)二、项目名称:化学发光成像系统、实时荧光定量PCR仪等设备一批三、中标(成交)信息供应商名称:本项目合同包一废标。供应商地址:本项目合同包一废标。中标(成交)金额:0.0000000(万元) 供应商名称:福州欣鸿博仪器仪表有限公司供应商地址:福州市台江区上浦路南侧富力中心C区C1栋1120室中标(成交)金额:89.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 本项目合同包一废标。 无 无 无 1 无 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 2 福州欣鸿博仪器仪表有限公司 超纯水系统;实时荧光定量PCR仪;化学发光成像系统;氮气发生器。 臻纯;赛默飞世尔;易勃特;析维。 Smart Direct pro;QuantStudio 1 plus;TOUCH IMAGER;BIO-NG+。 1;1;1;1。 50000;429000;300000;120000。
  • 岛津发布成像质谱显微镜新品
    iMScope QT保留岛津质谱成像的高空间分辨率和光学显微镜融合特点的同时,连接 LCMS-9030,以MALDI-Q-TOF提高成像速度和灵敏度。iMScope QT还可以把显微镜-MALDI单元简单地分离和组装,实现了一台仪器多用途使用,从而完成定性,定量,定位的整体流程。iMScope QT 主要特点:显微镜观察和质谱成像分析的融合。高分辨率光学显微镜完美地融合在成像质谱仪,可对微小区域进行观察和分析,通过叠加光学显微镜图和质谱成像图,更准确地进行定位。高空间分辨率,高速,高精度,高效率的成像分析。使用5 μm空间分辨率,20,000 Hz的激光频率,结合LCMS-9030的快速检测系统,成像分析速度可达到50像素/秒,分析100 x 100像素的图像仅需数分钟即可完成。LCMS-9030高性能的MS/MS分析,可快速提供目标分子的结构信息和高特异性成像数据。一台质谱即可获得LC-MS的定性、定量信息和质谱成像的位置信息。iMScope QT成像单元和LCMS-9030质谱单元可以组装和分离,轻松实现质谱成像分析和LC-Q TOF定性定量分析的切换,同时满足定量成像分析的需求。?创新点:1.光学显微镜和质谱仪精准融合,可分析亚细胞水平的5um高空间分辨率图像 2.激光频率为20kHz,质谱仪的MS、MS/MS扫描速度均为100Hz,整体的成像速度可达50像素/秒以上 3.成像单元可简单移动分开和组装使用,可实现质谱成像分析和LC-QTOF定性定量分析的兼用系统 4.后端质谱仪为 Q TOF型LCMS-9030,提高了质谱检测灵敏度 成像质谱显微镜
  • 赛默飞第二代全自动智能细胞显微成像平台上市
    赛默飞世尔科技(以下简称:赛默飞)于近日在北京、上海和广州三地分别召开了“2016细胞定量成像高级应用研讨会暨EVOS FL Auto 2智能型显微成像系统发布会”,行业的领导者代表以及赛默飞专家齐聚一堂,见证了赛默飞最新产品EVOS FL Auto 2全自动智能细胞显微成像平台的发布。  “EVOS FL Auto 2的成功推出为EVOS® 细胞成像系统再添新成员。该新产品给用户带来更快、更精美的智能成像体验,这也代表了智能显微镜新发展趋势之一。”赛默飞生命科学事业部大中华区仪器销售经理刘育林表示,目前赛默飞是唯一能够提供从细胞培养、检测、成像和定量分析完整解决方案的供应商。  它秉承EVOS家族无目镜设计,触摸屏操作,适合多通道荧光、明场和相差显微成像。新一代全自动智能细胞显微成像平台,提高了扫秒速度和自动聚焦功能,改善了通量和数据质量。同时,该产品配备了自动化电动X/Y扫描载物台,增强拍摄精度,并且单色高清相机或彩色双相机,为不同类型的应用而设计。另一大特点是,采集单平面或Z-层叠成像,适合厚样品成像,可与InvitrogenTM EVOSTM 载物台式培养箱兼容,以精确控制活细胞成像过程中的环境条件,自动化活细胞长期观察。同时,先进的Micro StudioTM图像分析软件能对细胞进行定量分析。EVOS FL Auto 2智能型显微成像系统  随着大数据时代的来临,科学家不再仅仅满足于高质量的细胞成像,他们逐渐关注细胞定量化,从而最大化地读取显微成像反映的生物学信息,定量成像技术平台的小型化、个性化、智能化也已成为趋势。赛默飞细胞分析高级科学家 Nicholas Dolman博士在研讨会上介绍了赛默飞高内涵细胞成像定量分析领域的创新应用和最新成果,并讲解了如何从细胞显微成像中最大可能地获得数据、挖掘与此相关的生物信息。  另外,来自全国众多知名科技研究机构和企业的约240位代表与赛默飞多位国内外细胞成像和定量分析专家热烈讨论。其中,中山大学、上海交通大学、中国科学院国家蛋白质科学中心、中国科学院基因组研究所、中国医学科学院药物所以及南方医科大学等科学家分享了他们对赛默飞细胞成像产品的认知和使用心得。
  • CT成像!海南大学获批国家自然科学基金“重大科研仪器研制项目”
    近日,海南大学生物医学工程学院院长刘谦教授主持申报的国家重大科研仪器研制项目“脑血管光子计数显微CT成像与定量分析系统”获国家自然科学基金委批准立项,直接经费达752万元。这是海南大学今年继“优秀青年科学基金项目”“重点项目”立项后,在国家自然科学基金高水平类项目又一零的突破,弥补了海南大学乃至海南省在国家重大科研仪器研制这一项目类型的立项空白。该项目聚焦活体小动物原位定量成像的关键技术难点,在设计原理上融合了X射线吸收光谱分析、超分辨率重构、原位减影和低剂量成像方法等多学科知识,研制脑血管光子计数显微CT成像与定量分析系统。该系统装置可为脑微血管网络与功能结构耦合生物学特征、脑疾病全程时间队列及神经退行性疾病防治体系的科学研究提供强有力的仪器支撑,对于建立活体动物纵向实验成像方法,打通临床前和临床的壁垒,推动基于光子计数显微成像方法的测量分析技术在新型生物材料开发,靶向诊疗药物研制,多种疾病诊疗的临床前研究等领域的应用与发展具有重要意义。同时,该项目对于促进科研仪器的自主研发,加快补齐我国在高端生命科学仪器领域短板,实现引领世界小动物活体成像技术发展等方面具有重要现实意义和科学价值。据悉,国家重大科研仪器研制项目面向科学前沿和国家需求,以科学目标为导向,加强顶层设计、明确重点发展方向,鼓励培育和着力支持原创性重大科研仪器设备研制,为科学研究提供更新颖的手段和工具,以全面提升我国的原始创新能力。国家重大科研仪器研制项目的成功获批也标志着我校科研工作具备解决国家重大需求的能力,显示出学校科技创新的巨大发展潜力。
  • 【时事新闻】赛默飞新品上市:第二代全自动智能细胞显微成像平台
    引领细胞成像大数据时代2016年7月5日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)于近日在北京、上海和广州三地召开了“2016细胞定量成像高级应用研讨会暨EVOS FL Auto 2智能型显微成像系统发布会”,行业的领导者代表以及赛默飞专家齐聚一堂,见证了赛默飞最新产品EVOS FL Auto 2全自动智能细胞显微成像平台的发布。“EVOS FL Auto 2的成功推出为EVOS?细胞成像系统再添新成员。该新产品给用户带来更快、更精美的智能成像体验,这也代表了智能显微镜新发展趋势之一。”赛默飞生命科学事业部大中华区仪器销售经理刘育林表示,目前赛默飞是唯一能够提供从细胞培养、检测、成像和定量分析完整解决方案的供应商。它秉承EVOS家族无目镜设计,触摸屏操作,适合多通道荧光、明场和相差显微成像。新一代全自动智能细胞显微成像平台,提高了扫秒速度和自动聚焦功能,改善了通量和数据质量。同时,该产品配备了自动化电动X/Y扫描载物台,增强拍摄精度,并且单色高清相机或彩色双相机,为不同类型的应用而设计。另一大特点是,采集单平面或Z-层叠成像,适合厚样品成像,可与InvitrogenTM EVOSTM 载物台式培养箱兼容,以精确控制活细胞成像过程中的环境条件,自动化活细胞长期观察。同时,先进的Micro StudioTM图像分析软件能对细胞进行定量分析。随着大数据时代的来临,科学家不再仅仅满足于高质量的细胞成像,他们逐渐关注细胞定量化,从而最大化地读取显微成像反映的生物学信息,定量成像技术平台的小型化、个性化、智能化也已成为趋势。赛默飞细胞分析高级科学家 Nicholas Dolman博士在研讨会上介绍了赛默飞高内涵细胞成像定量分析领域的创新应用和最新成果,并讲解了如何从细胞显微成像中最大可能地获得数据、挖掘与此相关的生物信息。另外,来自全国众多知名科技研究机构和企业的约240位代表与赛默飞多位国内外细胞成像和定量分析专家热烈讨论。其中,中山大学、上海交通大学、中国科学院国家蛋白质科学中心、中国科学院基因组研究所、中国医学科学院药物所以及南方医科大学等科学家分享了他们对赛默飞细胞成像产品的认知和使用心得。# # #关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美 元,在50个国家拥有约50,000名员工。我们的 使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发 展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为 了满足中国市场的需求,现有7家工厂分别在上海、北京和苏州运营。我们在全国共设立了4个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网 站:www.thermofisher.com
  • 赛默飞2015细胞生物学高级成像及定量分析研讨会圆满召开
    p strong 2015年9月1日,上海 /strong ——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日于湖南省张家界市圆满召开“2015细胞生物学高级成像及定量分析研讨会”,来自全国各地多家知名研究机构和企业的约70位用户和代理商代表参会。赛默飞多位国外研究人员也专程前往,与国内专家共同分享相关领域的前沿应用与解决方案。 /p p br/ /p p 首先,赛默飞生命科学仪器销售经理刘育林致欢迎词拉开了本次研讨会的序幕。随后来自赛默飞总部的细胞分析产品经理Scott R. Keefer和细胞分析首席科学家 Richik N. Ghosh分别做了关于全新Thermo Scientific sup TM /sup Cellinsight sup TM /sup CX7高内涵筛选仪器和高内涵应用的报告。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201509/uepic/a52c335d-6604-4d65-9525-04a1b080d7ab.jpg" title=" Scott.png" / /p p style=" text-align: center " 赛默飞细胞分析产品经理Scott R. Keefer介绍全新高内涵筛选仪器CX7 /p p br/ /p p 赛默飞细胞分析首席科学家 Richik N. Ghosh深入浅出地介绍了赛默飞在高内涵成像分析领域从试剂到仪器到软件的完整解决方案,并着重讲述了在细胞周期/增殖、细胞形态和表型检测、3D光学层析和组织发色团成像四个方面的应用实例。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201509/uepic/ec2466b1-d789-4f07-b17a-b5476be1f47f.jpg" title=" Richik.png" / /p p style=" text-align: center " 赛默飞细胞分析首席科学家 Richik N. Ghosh为与会者介绍完整解决方案 /p p br/ /p p 在这之后,来自中科院上海生化细胞所、诺华、中科院北京基因组所、东北农业大学和医科院苏州系统医学研究所的几位科学家先后分享了他们对赛默飞细胞成像产品的认知和使用心得,并同与会者展开讨论。 /p p br/ /p p 中科院上海生化与细胞所化学生物学技术平台研究人员做了题为“高级成像及定量分析技术在功能基因组研究和靶向性药物筛选中的应用”的报告,介绍了研究团队在仪器使用、文库申领和技术服务方面的概况,并特别提及平台利用Cellomics高内涵筛选仪器在高级成像细胞分析方面已经应用的部分实例,包括蛋白转位分析、细胞周期分类、细胞计数、细胞凋亡和单细胞追踪,对平台的高通量、高内涵和单细胞分析能力赞赏不已。 /p p br/ /p p 来自中科院北京基因组所的科学家为大家介绍了“高内涵在基因型-细胞表型相关性研究中的应用”,并分享了所内研究团队如何运用Cellomics高内涵筛选系统进行基因型和细胞表型的相关性研究。通过Cellomics专利的自动聚焦和集成的智能微孔板扫描方法,大大提高了细胞群体和表型研究的速度和精确度,为实验的成功提供了充分保障。 /p p br/ /p p 医科院苏州系统医学研究所首席科学家的秦晓峰博士结合自己的科研经历,做了题为“新一代流式细胞术及其前沿应用”的报告,畅谈了Attune声波聚焦技术给流式细胞仪带来的革新,其特点是具有更高的灵敏度、精确度和更快的检测速度,因此在抗体标记免洗和全血分析、稀有细胞分析、易碎易结团和大细胞分析以及不规则细胞分析上具有独特的应用效果。 /p p br/ /p p 为进一步帮助用户了解产品优势和特点,以及最新的技术发展,赛默飞生命科学仪器技术支持左洁博士针对性地做了“颠覆性的成像体验-EVOS智能显微成像分析平台”的介绍,详细展示了EVOS系列智能显微镜的革命性优点,并根据实例展示了一些高级功能,比如自动细胞计数、Z-stacking扫描、图像无缝拼接和活细胞动态监测等。赛默飞生命科学试剂技术支持经理冯彦斌博士则通过 “演绎细胞之多彩-荧光染料在成像实验中的应用进展”的报告,为大家带来了荧光成像领导品牌Molecular Probes系列试剂在成像实验中的众多应用。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201509/uepic/9c8fb7a3-00a2-4bd7-87bf-fcce72aa18bf.jpg" title=" 会议现场_01.jpg" / /p p style=" text-align: center " 会场上大家踊跃讨论和交流 /p p br/ /p p 与会代表对现场展示的赛默飞系列仪器表现出浓厚兴趣,详细询问了各款仪器的特点,并针对自身需求展开讨论。经过学习、交流和讨论,与会嘉宾和参会人员纷纷表示,他们对赛默飞在细胞成像和定量分析产品上的强大实力有了更深入的了解,认为赛默飞从仪器到试剂的完整解决方案能够为用户带来突出收益,在实现更优效率和生产力的同时,令研究投入最大化,也期待着能够通过赛默飞的细胞成像平台上获得更好的科研成果。 /p p br/ /p p strong 更多产品信息,请访问: /strong /p p Cellinsight sup TM /sup & nbsp CX7高内涵筛选仪器 /p p a href=" http://www.thermofisher.com/cn/zh/home/life-science/cell-analysis/cellular-imaging/high-content-screening/high-content-screening-instruments/cellinsight-cx7.html" _src=" http://www.thermofisher.com/cn/zh/home/life-science/cell-analysis/cellular-imaging/high-content-screening/high-content-screening-instruments/cellinsight-cx7.html" www.thermofisher.com/cn/zh/home/life-science/cell-analysis/cellular-imaging/high-content-screening/high-content-screening-instruments/cellinsight-cx7.html /a /p p br/ /p p EVOS系列智能显微镜 /p p a href=" http://www.thermofisher.com/cn/zh/home/life-science/cell-analysis/cellular-imaging/cell-imaging-systems.html" _src=" http://www.thermofisher.com/cn/zh/home/life-science/cell-analysis/cellular-imaging/cell-imaging-systems.html" www.thermofisher.com/cn/zh/home/life-science/cell-analysis/cellular-imaging/cell-imaging-systems.html /a /p p br/ /p p Molecular Probes系列试剂 /p p a href=" http://www.thermofisher.com/cn/zh/home/brands/molecular-probes.html" _src=" http://www.thermofisher.com/cn/zh/home/brands/molecular-probes.html" www.thermofisher.com/cn/zh/home/brands/molecular-probes.html /a /p p br/ /p p --------------------------------------------------------- /p p strong 关于赛默飞世尔科技 /strong /p p 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美 元,在50个国家拥有约50,000名员工。我们的 使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发 展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com /p p br/ /p p strong 赛默飞世尔科技中国 /strong /p p 赛 默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为 了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网 站:www.thermofisher.com /p
  • 690万!华南理工大学超高速转盘式全景共聚焦成像及定量分析系统采购项目
    项目编号:GZSW23156HG1033项目名称:华南理工大学超高速转盘式全景共聚焦成像及定量分析系统采购项目预算金额:690.0000000 万元(人民币)最高限价(如有):690.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求最高限价万元(人民币)1超高速转盘式全景共聚焦成像及定量分析系统1(套)具体详见采购需求6901.经政府采购管理部门同意,本项目(超高速转盘式全景共聚焦成像及定量分析系统)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。2.本项目不分包组。3.本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:办理免税证明后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州顺为招标采购有限公司地址:广东省广州市越秀区环市中路205号恒生大厦B座自编B501-B505、B512-B525房联系方式:020-835922163.项目联系方式项目联系人:陈小姐电话:020-83592216-825
  • 1010万!河南科技大学第一附属医院5D类器官成像检测定量分析平台和中国地质科学院矿产资源研究所矿物特征自动定量分析系统采购项目
    一、项目一(一)项目基本情况 1、项目编号:豫财招标采购-2024-781 2、项目名称:河南科技大学第一附属医院5D类器官成像检测定量分析平台、生物动态光学检测分析系统采购项目 3、采购方式:公开招标 4、预算金额:8,300,000.00元 最高限价:8300000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20241074-1 5D类器官成像检测定量分析平台采购项目 4500000 4500000 2 豫政采(2)20241074-2 生物动态光学检测分析系统采购项目 3800000 3800000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1采购货物名称及数量:包1:5D类器官成像检测定量分析平台1套;包2:生物动态光学检测分析系统1套5.2标包划分:本项目共划分为2个标包5.3采购货物技术性能指标: 具体参数详见招标文件第五章“采购需求”5.4核心产品:/5.5采购范围:货物的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及其他相关伴随服务5.6交货期:包1:合同生效后60日历天,包2:合同生效后30日历天5.7质保期:整机保修,不少于3年5.8交货地点:采购人指定地点5.9是否接受进口产品:包1:接受进口产品;包2:不接受进口产品 6、合同履行期限:自合同生效至质保期结束 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否 (二)获取招标文件 1.时间:2024年07月23日 至 2024年07月29日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:河南省公共资源交易中心网站 3.方式:登录《河南省公共资源交易中心-市场主体》凭CA数字证书下载投标项目所含全部资料 4.售价:0元 (三)凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:河南科技大学第一附属医院 地址:洛阳市涧西区景华路24号 联系人:姜敏 联系方式:0379-62218520 2.采购代理机构信息(如有) 名称:信人建设管理有限公司 地址:郑州市文化路9号永和国际17层1702室 联系人:张炜,杨静 联系方式:0371-63899156,18937159790 3.项目联系方式 项目联系人:张炜,杨静 联系方式:0371-63899156,18937159790 二、项目二(一)项目基本情况项目编号:0701-244704280455项目名称:矿物特征自动定量分析系统项目预算金额:180.000000 万元(人民币)最高限价(如有):180.000000 万元(人民币)采购需求:采购需求:包号采购标的名称数量单位合同履行期限/交货期采购包预算金额(人民币万元)1矿物特征自动定量分析系统1套合同生效后六个月内180交货地点北京备注1.本项目采购标的对应的《中小企业划型标准规定》所属行业为:工业。2.本项目接受进口产品及服务。3.报价须含合同金额2%外贸代理服务费。合同履行期限:合同生效后六个月内本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年07月23日 至 2024年07月29日,每天上午9:00至12:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:中国通用招标网(http://cgci.china-tender.com.cn/)方式:招标文件采用网上报名缴费,线上发售方式发放售价:¥200.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国地质科学院矿产资源研究所     地址:北京阜外百万庄大街26号        联系方式:肖老师010-68999523      2.采购代理机构信息名 称:中技国际招标有限公司            地 址:北京阜外百万庄大街26号            联系方式:吴晶晶、曹娜、朱治平、宋佳010-81168952/18510064822、010-81168603            3.项目联系方式项目联系人:吴晶晶电 话:  81168952
  • 突破传统光学衍射极限:新一代Nanoimager可轻松实现超分辨荧光成像
    近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司新推出的超分辨荧光显微镜—Nanoimager,由牛津大学Achillefs Kapanidis教授团队经过8年时间研发而成,是全球台大视野单分子FRET显微镜,将以超强的分辨率在单分子示踪、活细胞成像、蛋白互作、3D成像等研究领域发挥重要作用。Nanoimager主要技术特点? 横向分辨率20nm;纵向分辨率50nm ? 稳 定 性:1 μm/K的漂移;1 nm (1 Hz to 500 Hz)振幅 ? 支持同时双色成像和顺序四色成像 ? 采用1激光,使用安全 图1 Nanoimager 超分辨成像 Nanoimager采用PALM/dSTORM技术和光激活定位显微技术 (PALM) ,利用单分子定位算法并结合光学系统艾里斑的形状,以超高精度(纳米量)获得荧光分子的中心位置,然后用CCD将其信号进行采集转化终得到分辨率为20nm的超分辨图像。 Nanoimager主要应用案例1、单分子FRET FRET是一种两个荧光分子间非辐射性的能量转移方式,反映两者的分子间距(一般在2 – 10 nm的间距发生)。Nanoimager是台用于大视野单分子荧光共振能量转移(smFRET)的商业化仪器,其适用于smFRET的关键功能包括:同时双色成像;单分子散射光强度和总体平均的实时分析;视野中数千个单分子的高通量成像,以及用交替荧光激发 (ALEX) smFRET的功能来定量化学计量与FRET效率。图2是smFRET用于研究单个DNA霍利迪交叉的动力学。 图2 用smFRET检测霍利迪交叉(HJs)的实时构象变化 2、单分子示踪 Nanoimager可以在两个通道同时示踪细胞或者纯化物样品中的单分子 (图3),并计算扩散系数。细胞中分子的扩散系数可以被示踪,如酶或蛋白可以通过药物和抗生素的反应来示踪。低扩散率可以表示标记分子与另一分子或结构的相互作用或相结合。 Nanoimager可以直接反映纯化样品中荧光粒子的扩散率和预估大小,具有敏感性 (单荧光分子别) 和特异性 (双色标记可以显著降低检测杂质的可能性)。 图3 Nanoimager双色追踪单分子/粒子 3、更大视野的成像 Nanoimager的每个成像通道均有50 μm x 80 μm的大视野,且照明均匀,可以实现单分子或细胞的高通量成像并快速收集数据。图4显示了以10倍于其他技术的速度对突变的大肠杆菌细胞的不同表型进行成像。为了获得不同表型的可靠的结果,需要对大量细胞进行比较。使用具有大视野,能够自动对焦和自动获取数据的Nanoimager可以显著加快整个实验速度和通量。将大视野与超分辨成像结合是Nanoimager的特优势。 图4 Nanoimager的大视野可以在高分辨率下实现高通量成像 超分辨荧光显微镜以其特的优势,已成为生物医学研究的重要工具。如果您想了解更多关于Nanoimager的技术和应用详情,欢迎致电010-85120280咨询,我们会尽快给您满意的答复! 相关产品及链接 1、新一代超分辨荧光显微镜 (NEW):http://www.instrument.com.cn/netshow/SH100980/C273664.htm2、LaVision BioTec光片照明显微镜:http://www.instrument.com.cn/netshow/SH100980/C132856.htm3、双光子荧光显微镜:http://www.instrument.com.cn/netshow/SH100980/C132637.htm4、LVEM5 台式透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C157727.htm
  • 长春市疾病预防控制中心预算587.7万元购买荧光定量PCR仪、凝胶成像仪等仪器
    3月24日,长春市疾病预防控制中心公开招标,购买液PCR仪、荧光定量PCR仪、凝胶成像仪等多台设备,预算587.7万元。  招标项目编号:JM-2021-02-13864/3787-214JCZX21028  招标项目名称:长春市疾病预防控制中心新冠肺炎等重点传染病监测和能力建设设备购置项目  招标产品列表(主要设备):序号货物名称数量简要技术规格1A2型生物安全柜2详见招标文件技术规格要求2双人生物安全柜23台式高速离心机14台式高速冷冻离心机15梯度PCR仪16PCR仪27暗视野显微镜18细菌全基因组测序仪19实验室自动化工作站110全自动移液工作站111流式细胞仪112脉冲场凝胶电泳系统113凝胶成像仪14全自动微生物鉴定和药敏分析系统115全自动微生物过滤系统116均质器117荧光偏振仪118荧光定量PCR仪1  开标时间:2021-04-15 13:30(北京时间)
  • 化学所生物质谱成像研究获重要进展
    p   在国家自然科学基金委和中国科学院的大力支持下,中国科学院化学研究所活体分析化学院重点实验室的研究人员长期致力于动物组织质谱成像技术的研究,先后开发了系列小分子新基质(Anal. Chem. 2012, 84, 465 Anal. Chem. 2012, 84, 10291 Anal. Chem. 2013, 85, 6646 ),并对半脑缺血(Anal. Chem. 2014, 86, 10114)、肿瘤转移等生物模型小鼠(Anal. Chem. 2015, 87, 422)的脑、肾、脾等组织进行了分子组织学质谱成像研究。最近,研究人员发展了一种通用、免标记的直接质谱成像方法,快速检测并对小鼠体内的碳纳米管、石墨烯和碳量子点等碳纳米材料进行定量成像研究。相关结果发表在近期的《自然· 纳米技术》(Nature Nanotech. 2015, 10, 176)杂志上。 /p p   碳纳米材料因为其独特的物理化学性质,在材料学领域具有非常广阔的应用前景。近年来,碳纳米材料由于在药物输送、光动力学治疗、组织工程以及生物成像等方面的重要价值,成为生物医学研究领域的热点材料。但是有关碳纳米材料的生物效应及生物安全性问题目前依然存在争论,因此生物组织中的碳纳米材料的生物分布研究具有重要的实际价值,尤其是亚器官的生物分布成像研究,有助于揭示纳米材料与生物体之间的相互作用。但是目前为止,这方面研究仍缺乏实用有效的方法。 /p p   对于碳纳米材料的生物监测或成像,通常采用放射性同位素或荧光标记法,因费时费力且标记物有解离的可能而具有一定局限性。而免标记的光谱学方法又存在成像速度慢、发光信号弱、背景干扰强等缺点。质谱成像技术提供了一种同时获取生物样品形貌及其分子信息的检测手段,各个种类分子可以在10微米及以下的空间分辨率被独立检测出来。这种技术属于内源性的“免标记”法,因为分子都有其固有质量,只要分子可以被离子化就可以被检测出来。在质谱成像中最常用的分子离子化方法是基质辅助激光解吸/电离(MALDI),但需要有机基质(通常为被测物的10000倍)与目标样品共结晶并用激光照射。基质吸收激光辐射后被快速激发并蒸发,随后共结晶的样品被转移到气相环境,样品分子可以通过基质的电荷转移离子化。然而,没有人证实过MALDI质谱检测完整碳纳米材料的能力,因为很难找到与其共结晶的合适的基质。如果没有基质,完整的分析物就很难被释放到气相中。而且,碳纳米材料的巨大分子量也远远超出了质谱能够检测的质量范围。 /p p   为了解决这个问题,研究人员放弃传统基质,发现并利用碳纳米材料在紫外激光解吸电离过程中产生的固有碳负离子簇(C2-C10)指纹信号,该质谱信号几乎不受任何生物分子的背景信号干扰。结合飞行时间质谱,同时实现了小鼠体内碳纳米材料的亚器官质谱成像和定量分析。该碳负离子簇质谱指纹信号的发现,克服了传统质谱方法无法直接检测纳米材料的难题,将质量信号窗口转移到了质谱灵敏度高的小分子质量范围。与传统的标记方法相比,该激光解吸电离质谱分析方法由于采用内源性的化学信号,避免了标记基团在活体循环过程中可能产生的解离、衰变或者失活。同时,与免标记的光谱方法相比还具有高信噪比、低背景干扰以及准确可靠的优点。 /p p   研究人员证实并比较了碳纳米管、石墨烯和碳量子点的亚器官生物分布。研究发现,碳纳米管和碳量子点在肾中主要分布在外部的实质区域。而在脾组织中,这三种碳纳米材料主要分布在脾的红质区域,还发现在边缘区中碳纳米管的浓度最高。定量结果表明,尺寸较大的未修饰碳纳米管和石墨烯主要富集在肺组织中,而碳量子点主要停留在内皮网状系统丰富的肝和脾中。此外,还意外地发现碳量子点在小鼠器官中的超长清除时间。最后,将该方法拓展到小鼠肿瘤组织中药物负载的碳纳米管成像以及二硫化钼二维纳米材料的组织成像研究。 /p p   这些重要的应用和发现,进一步表明该方法可以结合质谱成像和定量的优点,进行纳米材料与生物体系相互作用研究,并有望发展成为一种碳纳米材料乃至其它纳米材料生物分析的通用方法。论文发表后,Nature Nanotechnology 杂志专门邀请国际知名质谱学专家Richard W. Vachet撰文在同期的“新闻视角”专栏评论:“这种成像技术提供了一种强大的活体定量纳米材料的方法,一个特别让人激动的优势是该方法可拓展同时检测纳米材料及其附近的蛋白质或其他生物分子,将深层次揭示生物分子和材料的相互作用。无论如何,活体纳米材料的质谱成像研究将有一个光明的未来。” /p p    a href=" http://www.nature.com/nnano/journal/v10/n2/full/nnano.2014.282.html" 论文链接 /a /p p style=" text-align: center " img title=" W020150319401924220724.jpg" src=" http://img1.17img.cn/17img/images/201512/noimg/0797cf49-646a-4e6a-8c55-eec276e5949f.jpg" / /p p style=" text-align: center " 质谱成像揭示碳纳米材料的亚器官生物分布 /p
  • 发布气体监测成像预警系统新品
    一、产品介绍我国首产并有自主知识产权的气体远距离监测红外光谱仪系统,该红外监测系统可对气体远距定性、定量识别分析;可成像预警直观溯源;可在线监测、巡航、便携使用;广泛用于石油、化工、环保、安监、消防、科研等领域有毒有害气体遥测预警成像系统利用气体红外指纹光谱对气体云团进行遥感探测,通过识别软件实现对危险气体的快速定性识别和半定量反演,配合扫描云台和同轴可见-红外相机实现检测区域的扫描成像,依据气体的种类和浓度,分别以不同的颜色和深浅与可见图像或视频进行伪彩叠加,可以直观快速的核定危险气体源头、给出其在大气中的分布和扩散趋势。产品由集成了同轴相机的可见-红外相机的傅里叶红外光谱仪、扫描云台及配套的识别反演软件组成,如图 1所示。产品可以固定架设,也可采用车载方式。该检测方法与常规技术相比,具有以下特点:(1) 对现场气体远距离进行探测;(2) 不需采样,无需繁琐和危险的取样手续;(3) 检测种类多(涵盖了绝大多数易燃易爆和有毒气体种类);(4) 自动识别气体种类、反演浓度、自动报警;(5) 快速进行危险气体源头的定点定位、核定污染范围及其在空气中的分布和扩散趋势;(6) 快速分析多组分混合物;(7)监测范围广、速度快、灵敏度高。灵敏度高,可达到ppm.m级别,检测速度快,3秒钟内给出检测结果。二、测量成分:◆ 化学毒剂:沙林(GB)、芥子气(HD)、维埃克斯(VX)、索曼(GD)、环沙林(GF)、塔崩(GA)、路易斯气(Lewisite)等;◆有害气体:二氧化硫、硫化氢、氮氧化物、一氧化碳、氯化氢、苯、甲苯、二甲苯、 苯系物、多氯联苯、砷化氢 、磷化氢、光气、氯化氰、氰化氢等200多种气体;◆挥发有机物(VOCs);三、应 用:◆港口、海事局应用方式:高处架设或船载流动检测目的:针对进港船舶是否更换清油及排放超标的监测◆环保执法大队应用方式:高处架设或车载流动检测目的:提高环保部门针对排污企业超标排放的监测及执法技术手段◆化工园区管委会、安监局应用方式:高塔或高处架设,针对园区整体24小时监测目的:拓展政府部门对于化工园区的安全管理手段,监控偷排,防止爆燃类生产事故◆中海油、中石油、中石化应用方式:高塔或高处架设,无人车载巡检目的:防止爆燃类、中毒等生产事故◆消防大队、安监局应用方式:车载流动检测目的:火灾现场、危化品事故现场的应急处置支援,协助定性污染物种类、空气中分布及扩散趋势 创新点:用途:远距离360° 无死角扫描化工区气体泄露,覆盖从地到空的排放;可同时识别几十种气体,定性物种和定量数据可视化的输出。助力园区安全预警、泄露点快速溯源。 1、进入2017年国家重点研发计划,应急管理部“卡脖子”重大工程之一,公安部“十三五”反恐专项入选装备,军转民高科技产品,几十项专利支撑。 2、测量距离覆盖几十米到5km,无需采样,原位秒级快速测定几十种VOCs和无机有毒有害气体。 3、360度无死角大范围扫描:可实现水平360° 、仰俯 -30° ~ 45° ,1~ 5公里范围监测,空间覆盖度高。 4、可视化输出模式,助力溯源:将肉眼看不到的气体可视化,颜色表示浓度高低;自带可见光相机和红外相机,气体的图像叠加于相机图片上,使用人一眼就能看到污染排放的位置、具体物种和大致浓度,并了解扩散趋势和范围。。 5、应用场景多样:可便携、车载、船载,可连续自动和无人值守,提高工作效率。 气体监测成像预警系统
  • Nat Commun | 戴琼海/季向阳团队开发计算光学层析,推动光场显微术进入定量荧光时代
    近年来,以光场显微镜为代表的一系列计算成像技术,因其低光毒性、快速三维成像能力等优势备受注目,在活体显微成像领域取得了突破性的成果【1】。由于光场成像技术可以在单次拍摄下获取样本的高维信息,在长时动态观测方面具有独特的优势,例如观测血流、大规模神经活动、细胞内以及细胞间长期相互作用等等。而在复杂的活体成像环境下,光场系统采集的高维目标信号与无序散射光以及高强度背景光深度杂糅,极大限制了穿透深度与信号的定量程度。近日,清华大学的研究团队提出了一种基于非相干散射理论的多尺度量化模型(QLFM),可通过充分挖掘光场数据的高维特性和准确的物理建模,从而实现计算光学层析能力。该研究显著减少了背景荧光与散射光子的影响,同时也提升了单光子成像在复杂活体环境下的穿透深度,推动光场显微技术进入定量荧光显微时代。相关研究成果于 2021 年 11 月 4 日在线发表在 Nature Communications 杂志,题为:Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy。在复杂的成像环境下,由于背景光、散射光以及系统像差等多种因素的干扰,传统的光场成像模型无准确求解成像反问题。这一特性极大限制了光场显微成像技术在活体观测中的应用。在此基础上,QLFM提出了多尺度精确量化模型,在完备空间下剥离信号光、背景光以及散射光分量,实现了光学计算层析,显著提升了成像穿透深度。通过此方式,科学家在400μm的成像深度下,将图像的信背比 (signal-to-background ratio, SBR) 提升了20dB。该方法被用于观测等斑马鱼脑、果蝇脑、果蝇卵、小鼠脑等多种活体生物样本,并在多种成像环境下成功解析了高SBR的三维动态信息。此外,由于不需要额外的硬件支撑,该方法广泛适用于各种相空间成像系统。图1 | QLFM 概念与原理示意在传统的光场成像模型中,大量的背景光极易将目标荧光信号淹没,极大制约了成像深度。QLFM首先提供了一种多尺度的完备空间模型,利用光场不同角分量下点扩散函数 (point spread function, PSF) 的不同特征,分离出大尺度范围内的背景光分量,并将其在成像反问题求解过程中剔除。另外,为了提升计算效率,QLFM提供了一个基于非均一分辨率的多尺度采样机制。这种采样方式极大的节约了计算成本,将重建速度提升了两个数量级,为长时间活体三维观测提供了基础。图2 | 在斑马鱼心脏成像实验中,QLFM 与传统模型的对比除了背景光,杂乱无序的散射光也是一个需要考虑的因素。在传统成像模式下,由于散射光与信号光深度杂糅,不能通过常规的光学层析将散射光剔除。但在光场成像模式下,相空间分量准确描述了目标的高维光场分布,这为解析散射光提供了可能。基于上述理论,QLFM还提出了一种相空间下非相干散射传播模型,对目标体中的散射光进行逐层建模,并将此模型融合到相空间成像反问题求解算法中,通过反复优化迭代,最终获得分离的散射光和信号光分量。另外,系统畸变造成高维PSF畸变也是导致成像质量下降的一个因素。QLFM提供了一个基于向相位恢复算法的PSF矫正模型,通过反复迭代拟合,使得仿真PSF的强度分布收敛到与实采PSF一致,同时又保证了更高的信噪比。使用矫正后的PSF进行反问题求解可以显著缓解近焦面的伪影,同时在整个成像范围内都提升了空间分辨率。QLFM 利用精确数学建模获得了光学计算层析能力,极大程度削弱了背景光的干扰,剔除了活体样本中散射光的影响并消除由系统像差引入的畸变,由此从高维光场信号中准确求解复杂成像反问题,显著提升了光场显微系统的实用性与在活体环境下的定量荧光观测能力。同时QLFM也进一步提示了复杂物理模型在反问题求解过程中的重要性。如何准确地从数据中可解释地挖掘出真实世界的定量本真信息将是未来发展的一个重要趋势。清华大学自动化系博士生张亿、卢志、清华大学自动化系助理教授吴嘉敏为该论文的共同第一作者,清华大学自动化系、脑与认知科学研究院、北京科学信息与技术国家研究中心戴琼海教授、季向阳教授、吴嘉敏助理教授为论文共同通讯作者。原文链接:https://doi.org/10.1038/s41467-021-26730-w
  • VILBER Fusion FX7成像系统简介
    VILBER Fusion FX7成像系统简介 VILBER LOURMAT是一家专业从事分子成像系统、化学发光成像系统、图像分析软件以及紫外荧光设备生产和研发的跨国企业,有着超过50年服务科研的丰富经验。其新近研发的Fusion FX7是集化学发光成像、多色荧光成像、可见光成像多种功能于一体的高端成像系统,该系统具有无与伦比的性能,是广大科研人员进行分子生物学研究的最佳伙伴。 1. Fusion FX7主要性能  无以伦比的高灵敏度 对于化学发光成像系统来说,高灵敏度是反映其性能的最主要的指标之一。Fusion FX7镜头采用的是最新一代的传感器和半导体元件,再加上独一无二的HSC高灵敏成像技术,使得Fusion FX7非常适合于ECL,CDP Star, CSPD,SuperSignal 等应用。低于室温67° C的4级Peltier制冷CCD,使得成像过程中所产生的暗电流更小,背景噪音更低,进一步保证其高灵敏度。凭借出众的灵敏度、分辨率和动态范围,Fusion FX7在任何实际应用中均可呈现完美的图像。  一键操作 Fusion FX7配有全自动滤光轮、全自动镜头以及全自动感光控制,因此操作起来非常简单。图像获取速度超乎您的想象。只需一键即可自动获取最佳图像。特点丰富的用户界面能够指引你轻松进入录像模式、多色荧光模式等高级功能。分析软件具有分子量计算、条带定量和菌落计数等多种分析功能。  最大透光率 Fusion FX7采用固定的F0.95大光圈镜头:一方面,能够保证透光率最大,即使再微弱的光也能被有效传至CCD传感器,另一方面,即使对焦距离再短也能呈现完美图像。  &ldquo 方法&rdquo 驱动软件 成像所需设置的一系列的参数可保存为一个&ldquo 方法&rdquo ,方便以后直接调用,保证仪器高重复性;&ldquo 方法&rdquo 一经调用,软件便会自动进行图像捕获。软件可对系统进行自动控制:采集、优化、定量、分析图像,并且拥有树形图计算功能。  出众的透照台和光激发装置 Super-Bright紫外透照台,消除所有的可见光成分,和市面已有紫外透照台相比,能将信号提高25%;StarLight光激发装置,提供红绿蓝(RGB)三色激发光源,加上标配的三波长紫外光源,可以激发所有的荧光染料。 2.VILBER Fusion FX7 主要参数特点  CCD:420万像素,像素大小10.4um× 10.4um,分辨率2048× 2048  像素密度:16bit(65536灰度)  动态范围:4.8OD  1.1英寸CCD芯片  灵敏度:能检测出0.01ng经EB染色的DNA  CCD温度:-42° C(低于室温67° C)  CCD制冷采用先进的方式:内部四级Peltier制冷  采用高亮固定的F0.95大光圈镜头,具有手动和自动两种模式  照明方式:透射方式,反射白光,透射白光,无光源化学发光  激发光源:312nm透射紫外光,白光透射光,254nm,365nm双波长落射紫外灯,落射白光灯,红光LED624nm,蓝光LED470nm,绿光LED528nm  滤光片:标配2个滤光片,另有3个滤光片可供选择  能连续拍照99张,曝光时间0.1秒-2小时  像素整合方式5种:2x2,3x3,4x4,6x6和8x8  在450nm处量子效率(QE)75%,非常适合化学发光  紫外白光转换台,保证用户拥有拍摄用最适背景色差 DNA胶 macroarray 蛋白胶 western blot 蛋白胶 多色荧光 高通量成像活体成像 菌落技术 生物发光 微孔板 荧光膜染色
  • 如何使用Phasics SID4相位成像相机进行表面测量?
    使用Phasics SID4相位成像相机进行表面测量Phasics SID4相位成像相机,可以集成在商业或者自制的光学显微镜装置上。为了提高样品的整体性能,测量物体表面特性是一种有效的方法。对于此类应用,Phasics的软件可以分析光程差,并且实时转化为物体表面的形貌。硬件方面,Phasics相机体积小、结构紧凑,并且易于使用。事实上,Phasics的波前分析仪能够与实验室常用的相机一样易于集成。整个相机可以轻松集成到生产线或者实验室中。表面测量结构Phasic SID4相位相机利用的是一种四波横向剪切技术,将入射光分成剪切的4束,然后再互相干涉形成干涉图,通过傅立叶逆变换可以得到入射光的相位谱和强度信息,这是一种消色差的技术,因此白光和LED光源非常适合。此外,可以使用任何显微镜进行测量,并且不依赖于偏振。如上图光路所示,SID4相机位于被测物体的成像面进行探测,使用简单。SID4相位成像相机可以集成在商业反射显微镜或专用光学系统上。SID 和 AFM 测量比较图中红线部分是Phasics测量结果,黑线位AFM测量结果。使用AFM测量表面缺陷,和使用SID4相位成像相机一次测量成型的结果对比。SID4 与 光学轮廓测量仪 对比使用SID4 HR定量测量,以及白光光学轮廓仪测量结果的对比。两个报告中,第yi个侧重于轮廓,第二个侧重于深度测量。测量结果Phasics是一家专门从事相位测量的法国公司。Phasics向其客户提供全系列的产品,所有这些都是基于独特的技术,即四波侧向剪切干涉技术。Phasics公司的专长在于对这项技术的深刻理解,以及将其应用于从激光和光学计量到生物样品成像等多个领域的能力。对于每一个领域,Phasics都提供了专门的硬件和软件的解决方案。在生物学方面,Phasics提供了SID4Bio,这是一种独特的用于活细胞成像的设备,依赖于定量相位成像。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 100%进口垄断,全国高内涵细胞成像分析系统市场谁占鳌头?
    高校及科研院所重大科研基础设施和大型科研仪器是国家科技基础条件资源的重要组成部分。但由于管理模式及制度,高内涵细胞成像分析系统等科学仪器设备不对外开放,大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。仪器信息网对平台高校和科研院所上传的高内涵细胞成像分析系统数量和品牌分布进行统计分析,在一定程度上可反映科研用高内涵细胞成像分析系统的市场信息。(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考)。高内涵细胞成像分析系统是什么?高内涵细胞成像分析系统又称高内涵筛选系统(high content screening, HCS),是一种结合自动化荧光显微镜的细胞定量成像分析技术。HCS可同时检测多个细胞参数,通过实时监测多种信号通路阐明细胞损伤,在单一实验中获取大量与基因、蛋白及其他细胞成分相关的信息, 确定其生物活性和潜在毒性,被广泛应用于大规模的药物筛选,具有微量、快速、灵敏和准确等特点。全国共享HCS市场调研据统计,网络管理平台上HCS的总数量为144台,涉及25个省份、直辖市、自治区。其中,北京、上海、江苏等地区共享HCS数量最多,分别为40台、16台、16台。除此之外,湖北、广东、浙江均大于5台,分别为9台、9台、8台。从全国共享HCS地区分布图可以看出,共享HCS主要分布在高校教育资源集中的地区。全国共享HCS地区分布图这144台HCS的单位来源共涉及113所高校及研究院所,共享HCS数量超过1台的单位有15所,分别为北京大学、清华大学、中山大学、中国科学院上海药物研究所等。其中,北京作为共享HCS最多的地区,涉及28所高校及研究院所,且高校的共享HCS数量比科研院所多。全国共享HCS数量超过1台的单位北京28所共享HCS单位从全国共享HCS品牌分布来看,HCS市场完全被进口垄断。美谷分子、珀金埃尔默、赛默飞世尔、GE占据了85%的市场,其中,前二者更是抢占到总份额的60%,在高校和科研院所中占据绝对优势。除此之外,BD、奥林巴斯、Leica也在HCS市场中存在一定的竞争力。全国共享HCS品牌分布从全国共享HCS产地分布来看,HCS市场完全被来自美国的仪器生产厂商垄断,它们占据总市场份额的90%。日本的尼康、奥林巴斯等,德国的Leica、蔡司,抢占剩余的市场,在高校和科研院所的仪器采购中占有一席之地。全国共享HCS产地分布更多高内涵细胞成像分析系统讯息,点击专场查看。
  • 中国科大在大量程纳米位移光学感测研究方面取得新进展
    近日,中国科学技术大学微纳光学与技术课题组王沛教授和鲁拥华副教授在大量程纳米位移光学感测研究方面取得重要进展。课题组利用光学超表面(metasurface)设计了一种简捷的光场偏振态空间编码,结合精巧的光学系统设计,发展了一种大量程(百微米量级)、高灵敏(亚纳米)、简捷实用的位移感测技术。该研究成果10月12日以“Ultrasensitive and long-range transverse displacement metrology with polarization-encoded metasurface”为题发表在《科学进展》上。   纳米精度的高灵敏位移测量对于半导体制造、精密加工和先进成像等领域都具有关键性作用。以半导体制造为例,不同层光刻图案的叠对误差对提升产品良率具有重要的作用。一般要求叠对误差测量技术(overlay metrology)的精度优于光刻线条宽度的五分之一。因此,对于10纳米以下节点的半导体制造工艺必须发展纳米及亚纳米的位移感测技术。   以往的研究表明,利用纳米光学天线的定向散射光场可以实现亚纳米位移感测的技术指标。课题组在先前的研究中也分别提出了硅纳米天线对(OE, 26 : 1000-1011, 2018)、表面等离激元天线对(PRL, 124, 243901, 2020)的技术方案。但是基于光学天线散射的感测方法通常只有百纳米的量程,且存在信噪比低的问题,给叠对误差测量等位移感测的实际应用带来较为苛刻的限制。   在这项研究工作中,课题组利用光学超表面独特的位相和偏振调控能力,将空间位置信息编码在光场的偏振取向上,并通过精巧的光学系统设计让光场两次经过超表面结构,从而将超表面相对于光束的横向位移信息转化为读出光强信息。由于超表面结构可以在亚波长精度上调控光场的偏振和位相分布,从而可以极大提高偏振空间编码的梯度,进而提高位移感测的灵敏度。   实验测试证明,这一偏振编码超表面系统的位移感测精度可以达到100皮米(图1)。进一步,课题组通过移相方法实现了测量范围的周期性延拓,并消除了感测灵敏度的“死区”,偏振编码超表面系统的感测量程可以拓展到200微米以上。   与基于光学天线散射的纳米位移感测技术不同,这项研究工作在保持亚纳米的位移感测精度的同时,极大地拓展了感测的量程,而且,通过光强读出位移信息,具有可工程化、简单可靠且精度高的特点,为其在叠对误差测量等位移感测领域的实际应用带来便捷。 图1 偏振编码超表面位移感测系统示意图和实验测试结果   光电子科学与技术安徽省重点实验室的臧昊峰、席铮特任教授和张植宇为该论文的共同第一作者,鲁拥华副教授和王沛教授为共同通讯作者。该工作得到了科技部重点研发项目、国家自然科学基金区域创新发展联合基金和先进激光技术安徽省实验室主任基金的经费资助。
  • 高通量自动化成像及分析设备使用心得——中科院分子细胞科学卓越创新中心高级工程师韩帅
    为帮助广大实验室用户及时了解高内涵成像前沿技术、创新产品与解决方案,向用户传递准确、实用的技术干货和宝贵的实验经验,仪器信息网特别组织策划“高内涵成像技术”主题约稿活动(点击查看)。本期,特别邀请到中国科学院分子细胞科学卓越创新中心化学生物学平台技术主管韩帅博士谈一谈高通量自动化成像及分析设备方面的使用心得。中国科学院分子细胞科学卓越创新中心 韩帅 高级工程师韩帅,博士,高级工程师,中国科学院分子细胞科学卓越创新中心化学生物学平台技术主管,负责功能基因组筛选、高内涵筛选及单细胞转录组测序文库构建等技术体系搭建,为药物新靶标发现等高通量筛选项目提供技术咨询和服务。建立了多种基于高内涵的高通量筛选体系,作为主编组织编写了《高通量筛选技术实验手册》及《高内涵成像与分析实验手册》;利用自动化设备建立了基于384孔板模式的单细胞转录组自动化建库体系。所建立的技术体系帮助用户在Nature、Cell、Cancer Cell、Nature Genetics等知名期刊发表多篇研究论文。俗话说:“眼见为实”,显微成像技术是生命科学研究领域中至关重要的检测手段之一。随着自动化技术与显微成像技术的融合,以及图像分析技术的提升,涌现出了一大类高通量自动化成像及分析仪器。这类仪器不仅可以帮助我们在短时间内迅速获取大量图片,而且能够从中提取出多种参数的定量信息。这些特点使其能够最大程度上避免传统高通量筛选检测方式因检测指标相对单一而带来的假阳性和假阴性结果。目前,高通量自动化成像及分析设备在高通量药物筛选、功能基因组筛选及其他多样品检测项目中有了越来越广泛的应用,涉及的领域也涵盖了细胞信号通路、肿瘤、神经生物学、免疫学、传染病学、干细胞等多种生物学研究领域。中国科学院分子细胞科学卓越创新中心化学生物学技术平台是一个以高通量实验技术为手段,为功能基因组筛选及药物筛选等通量化实验提供服务的技术平台。显微成像是我们开展高通量筛选项目的重要检测手段之一。为了最大程度满足中心乃至全国用户在高通量成像及定量分析方面多元化的实验需求,平台目前配备了5台侧重点不同、各有优势的高通量自动化成像及分析设备。为了帮助用户获得最佳数据,我们对成像实验主要从以下三个方面进行综合考虑:实验标记体系选择、成像设备选择及图像分析方法设置。其中实验标记体系及图像分析方法设置在《高内涵成像及分析实验手册》中有详细描述,本文将结合我们在技术服务过程中的体会,重点就如何选择合适的高通量自动化成像及分析仪器进行讨论。我们参考平台现有的设备,将自动化成像分析仪按照性能特点大致分为三个类别,下文将分类探讨其特点及应用。1. 高内涵成像分析仪高内涵成像分析系统通常具备高分辨率、多通道成像、大样本容量和高通量的能力,配合强大的图像定量分析软件,适用于高度复杂的细胞和生物分子研究,如细胞表型分析、药物筛选等。具体来说,高分辨率的成像能力使研究者能够在微观水平上观察细胞和亚细胞结构的微观细节;其次,多通道成像使得研究者可以同时获得多个生物标记物的信息,为复杂生物学研究提供更全面的数据;高通量性能使得在相对短的时间内处理大量样本成为可能,支持高效的大规模实验和筛选。高内涵成像分析仪配备非常强大的图像分析软件,这是它区分于其他类别高通量成像分析仪的最主要方面。其软件可以自动识别、分割细胞及细胞亚结构,并在此基础上对数目、形态、强度、定位、运动轨迹、纹理等多种参数进行定量化分析。大多分析软件的界面呈现为可自由组合的多种分析模块,用户可以像使用命令语句编写程序一样,根据实际需求非常灵活地将模块按照特定逻辑进行个性化组装,最终获得所需参数。分析软件还可以提供单个细胞的数据,并可根据单细胞数据对整体细胞进行亚群分类,非常适合异质性培养体系的分析。对于动力学实验,分析过程中配合细胞追踪模块(cell tracking)可以拿到每个单细胞的动力学变化数据。很多高内涵的分析软件中还加入了机器自学习或人工智能,对于复杂的表型或高通量筛选过程中会出现的不可预测的多样化表型进行智能化分析。这种智能化的图像分析有助于从庞大的图像数据中提取有意义的信息,加速实验结果的分析和解释。根据光路设计的不同,高内涵又分为共聚焦高内涵及宽场高内涵两大类。共聚焦成像模式最大的优势在于去除了来自非焦面的信号,从而极大地提高图像的信噪比,使图像更清晰。但这并不意味着宽场成像在所有应用中都劣于共聚焦成像。在我们的实际运行过程中,宽场成像可以满足大部分日常需求,例如荧光强度、细胞形态、细胞迁移、周期、类器官大小和数目检测等等。在某些对信噪比要求较高的实验中,共聚焦表现出更大的优势。例如,对比较厚的样品(如类器官或多层生长的细胞)进行成像并需要对单个细胞进行精确定量时,共聚焦成像会去除大量来自非焦面的信号,从而给出更准确的数据;当关注的细胞亚结构尺寸较小(例如自噬小体、蛋白聚集体等呈现为点状的结构)时,共聚焦成像会获得信噪比更高的图像,使计数或荧光强度的分析更加准确;另外,对于信号较弱的样品,由于共聚焦成像一般使用能量强波长单一的激光作为激发光源,且通过pinhole过滤掉大部分来自培养基及板底的背景信号,图像信噪比会较宽场成像有非常显著地提升。高内涵成像分析仪在生命科学研究中的应用非常广泛。在细胞生物学中,它们被用于研究细胞形态学、细胞内信号传导、亚细胞结构等方面。在药物筛选和药物发现中,高内涵成像分析仪可以用于评估化合物对细胞的影响,加速新药物的发现和开发过程。此外,这些设备还在生物标记物研究、基因表达分析、蛋白质相互作用研究等方面发挥着关键作用。2. 分析功能相对简单而明确的自动化显微镜相比于分析功能丰富而灵活但操作门槛较高的高内涵成像分析仪,另外一类仪器应用场景明确且操作简单更易上手。这类仪器在成像方面具有高度自动化的功能,成像速度快,能够拍摄高质量的明场及荧光图像;用户友好的操作界面使得操作者能够轻松设置实验参数、调整显微镜设置,并进行图像采集;但物镜配置往往以低倍镜为主,这些特点决定了这类成像仪器的应用场景基本以细胞整体水平的观测和分析为主,不适用于对分辨率要求更高的细胞亚结构水平的检测;分析软件提供的分析功能相对简单而明确,界面大多以已开发好的分析流程呈现给用户,用户只需优化部分参数的设置即可。结合我们平台的实际运行情况,这类仪器较多的应用是细胞计数、细胞活死分析、病毒感染/质粒转染效率分析、细胞融合度分析/生长曲线绘制、基因表达/细胞整体荧光强度分析、克隆个数分析等。概括来讲,如果实验的定量需求基于细胞计数,或是整体荧光强度,或孔内特定区域的分析(如细胞克隆或细胞融合度),都可以考虑这类自动化显微成像仪器。由于这类仪器低倍镜成像速度快,在以酶标仪读值作为主要检测指标的高通量筛选体系中,我们会根据具体情况建议用户在实验结束之前利用自动化显微镜收集全孔图像,便于后续酶标数据分析过程中对阳性孔或数据异常的孔回溯图像,从而帮助筛选者有效减少传统高通量筛选体系中的假阳性和假阴性。例如,实验结束前,在不影响酶标检测体系的前提下,利用核染色或明场成像统计孔内细胞数,可辅助校正由孔间细胞数差异导致的酶标读值变化。总之,这类仪器虽然功能相对简单,但它们提供了快速而有效的图像获取及简便的定量分析解决方案。3. 自动化活细胞长时程监测设备若要对活细胞样品进行较长时间的跟踪拍摄,通常需要在拍摄过程中提供二氧化碳、温度及湿度控制。虽然大多数自动化成像仪器能够实现二氧化碳和温度的控制,然而对于需要长时间跟踪拍摄的实验,如细胞生长曲线监测和细胞迁移监测往往需要持续数天,湿度控制对于确保在观察期间细胞处于最适宜状态变得尤为关键。这种情况下,就需要使用自动化活细胞长时程监测设备。自动化活细胞监测设备的湿度控制有多种实现方式。一种是体积较小可直接放入细胞培养箱内使用的活细胞工作站,细胞培养箱为成像设备内的样品提供所有环境控制。这类仪器通常具备多个板位,能够实现对中等通量样本的同时监测。另一种方式是成像设备自身搭载自动湿度控制模块。另外,对于开放式的自动化显微镜,可通过在载物台上加装具有活细胞环境控制模块的腔室(chamber),来实现在拍摄过程中对活细胞环境的控制。然而,这类设备一次只能实现一块板的连续拍摄,更适用于低通量样本监测。此外,我们平台还采用了将高内涵成像设备通过机械臂与自动化培养箱整合的方式,实现活细胞长时程监测。当一块样品板完成拍摄后,机械臂将其送回自动化培养箱,继续下一块样品板的拍摄。这种运行方式也可实现中等通量的样品监测,但只适合拍照时间点间隔较长的实验。在某些研究项目中,还会出现对氧气浓度有要求的实验(例如研究低氧或高氧环境对细胞的影响)。这种情况对环境控制提出了更高的要求,需要成像设备或培养箱搭载氧气浓度控制模块。自动化活细胞长时程监测设备通过连续、实时的图像采集,使研究人员能够观察和记录细胞的实时变化。对于研究细胞的实时响应、细胞迁移、细胞周期、细胞增殖等过程至关重要,确保我们不会错过微观层面上的关键事件。综上所述,高通量自动化成像分析设备的不同类别在生命科学研究中各具特色,为科学家提供了多样化的工具,促进了研究的深入发展。高内涵成像分析仪通过高分辨率成像及丰富多样化的定量分析指标为生物学研究提供了深刻的洞察;分析功能相对简单而明确的自动化显微镜为分辨率要求不高的通量化检测提供了快速有效的图像获取及简便的定量分析解决方案;而活细胞长时程监测设备则使得细胞动态过程的观察更为全面和细致。这三类设备相互补充,共同推动了生命科学领域的进步,为科学家提供了更广阔的研究空间。在未来,随着这些设备技术的不断创新和进步,会更好地服务于生命科学研究。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎投稿,投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 聚焦器官芯片|Revvity & Emulate器官芯片高内涵成像应用手册正式发布
    作者:Revvity & Emulate器官芯片(Organ-On-a-Chip, OOC)是一种多通道3D微流控细胞培养芯片,可以模拟器官或生物体组织层面的行为、机械力和生理反应,是可以重现人体重要生理特征的人工微组织模型,是重要的体外生物研究新工具。该模型由于其极高的生理相关性,被主要应用在高通量药物筛选、药效评估、药物的吸收代谢、药物毒理、药物递送、药物相互作用、疾病生理微环境模拟、疾病基础机制、细胞间相互作用等研究中,更有望减少药物开发中对动物的需求。全球器官芯片的佼佼者Emulate一直致力于开发高度模拟人体生理特征的器官芯片技术和不同类型的创新应用,以全面了解疾病发生规律和帮助评估药物的真实反应,改善人类健康。其芯片可忠实再现原生组织的复杂三维结构和组织内部复杂的功能交互,而这些精妙的生物学过程均可采用多种成像分析手段进行精准监测和表征。有助于更深入理解复杂细胞学机理和互作,并获得精准定量信息。因而器官芯片不仅为体外表型筛选提供了一个完整丰富的迷你生物平台,更可以结合多标记,多靶点,多参数的高内涵分析筛选技术,实现高通量的表型分析工作,极大缩短药物发现试验周期,增加了预测的准确性。在此,瑞孚迪(Revvity)高内涵联合Emulate器官芯片,针对器官芯片的高通量成像及分析技术联合推出了器官芯片高内涵成像应用手册。该手册涵盖了:“高内涵成像助力器官芯片中的免疫细胞招募“及”利用Emulate肝芯片进行高通量大规模盲法毒性预测研究”两个经典案例介绍,同时为大家总了Emulate器官芯片高内涵成像的工作流。
  • “慧眼”观微—成像质谱显微镜iMScope QT开箱测评
    成像质谱显微镜iMScope QT作为岛津近年来高端质谱领域发布的重磅新产品,融合光学显微镜、MALDI和Q-TOF的显微质谱成像技术很让人期待!成像质谱显微技术研究物质的空间分布具有显著优势,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息,在医学、药学、农业食品、公共安全、资源环境、工业等领域有着广泛的应用前景。 下面小编就给大家带来一份iMScope QT的详细图文测评报告,相信大家看过之后,对这款产品一定有了更深入的了解。 开箱初见 坐着飞机悄然落地实验室的大家伙终于迎来了开箱时刻,百闻不如一见,一起来体验一下吧!iMScope QT和MS-9030合体过程 岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope QT),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置四极杆飞行时间质谱仪(Q-TOF)。 将光学显微镜和质谱仪整合成一体,既可观察得到高分辨率的形态图像,又可以对特定分子进行鉴定和可视化分布分析,可将两种不同检测原理的图像进行重叠分析,为成像分析提供了全新的工具。 镜质合璧,还原真实 作为一台搭载了光学显微镜的质谱成像仪,两种不同检测原理的图像如何进行采集,图像重叠分析时又会碰撞出怎样的火花呢? 在下图中是从光学图像中选择肝门静脉进行质谱成像分析,可以清晰观察到肝门静脉周边的血脂和脂质的分布。 多角度测评环节正式开始 下面请随着小编从分辨率、扫描速度、灵敏度等几个角度进行测评。 空间分辨率“高清镜头”下的微观世界 作为一款搭载了光学成像镜头和质谱成像功能的仪器,iMScope QT的光学显微镜物镜最大可达到40倍率又结合质谱成像显微镜5μm空间分辨率,究竟能够将研究视野深入到什么样的微观水平呢?小编拿来了大家关注的亚细胞水平的组织器官,看看iMScope QT能观察到微观世界哪些变化。 以槲皮素为例,iMScope QT成功观察到其在肝脏部位的细胞水平分布,分析结果表明药物主要分布在细胞间质,充分显示了成像质谱显微镜分析亚细胞水平的可靠性。高空间分辨率对于药物动态分析、安全性评估和毒性机制的阐明,以及视网膜和皮肤等特殊组织的分析中都具有重要意义。 扫描速度快速制图“小能手” iMScope QT这款产品拥有超高质谱空间分辨率给细胞水平上的研究带来便利,但是小编担心如果没有快速的扫描速度作保障,在大面积样本成像时会消耗很长的时间才能完成分析。带着疑虑,小编准备了小鼠全脑切片(14ⅹ7mm),空间分辨率采用20 μm,扫描区域245000pix,2.6小时后我们获得一张高清晰度小鼠脑成像图。与同类质谱成像产品比,iMScope QT能够高速、高效地采集到高清晰度的质谱成像图。 小鼠脑成像质谱图 灵敏度“火眼金睛”看切片 质谱成像中高灵敏度分析也是至关重要的,尤其在药物代谢研究中对低浓度代谢物分布的研究。iMScope QT在硬件性能上较之前作了较大提升,后端Q-TOF型LCMS-9030的接入提高了质谱检测的灵敏度。在本次开机测评中,小编分析了给药后的大鼠肺中抗心律失常药物胺碘酮及其代谢物的分析,明确了药理学研究中的发现是胺碘酮副作用引起。给药后的大鼠肺部病理切片分析发现坏死区域质谱成像发现抗心律失常药物胺碘酮及其代谢物在坏死区域的分布,明确了药理学研究中的发现是胺碘酮副作用引起。 系统扩展性成像定位分析与液质分析的完美兼容 cope QT不仅局限在成像分析,成像单元支持移动分开和组装使用,小编实验室就是将已有LCMS-9030的Q-TOF单元与成像单元连接后使用,确实可以实现质谱成像分析和LCMS-9030的兼用系统,既可以用于准确定性定量分析,也可以完成可靠的定位分析。 结语 整体而言,成像质谱显微镜iMScope QT将光学显微镜和质谱仪整合成一体既可观察到高分辨率的形态图像,为成像分析提供了全新的工具。在拥有高空间分辨率同时,还能高速扫描,高效获得高质量成像数据。同时还能保持系统的拓展性,通过一台仪器即可获得LC-MS的定性、定量信息和质谱成像的位置信息。期待iMScope QT能够为国内相关科研工作者们的研究带来帮助,落地开花结出硕果。 撰稿人:宋玉玲
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制