当前位置: 仪器信息网 > 行业主题 > >

凋亡细胞计数

仪器信息网凋亡细胞计数专题为您整合凋亡细胞计数相关的最新文章,在凋亡细胞计数专题,您不仅可以免费浏览凋亡细胞计数的资讯, 同时您还可以浏览凋亡细胞计数的相关资料、解决方案,参与社区凋亡细胞计数话题讨论。

凋亡细胞计数相关的资讯

  • 细胞坏死与细胞凋亡的区别
    细胞程序性死亡 概念:细胞程序死亡(programmed cell death,PCD)也常常被称为细胞凋亡,是生物体发育过程中普遍存在的,是一个由基因决定的细胞主主动的有序的死亡方式。具体指细胞遇到内、外环境因子刺激时,受基因调控启动的自-杀保护措施,包括一些分子机制的诱导激活和基因编程,通过这种方式去除体内非必需细胞或即将发生特化的细胞。而细胞发生程序性死亡时,就像树叶或花的自然凋落一样,凋亡的细胞散在于正常组织细胞中,无炎症反应,不遗留瘢痕。死亡的细胞碎片很快被巨噬细胞或邻近细胞清除,不影响其他细胞的正常功能。 凋亡细胞的主要特征是(参见表15-2):①染色质聚集、分块、位于核膜上,胞质凝缩,最后核断裂,细胞通过出芽的方式形成许多凋亡小体 ②凋亡小体内有结构完整的细胞器,还有凝缩的染色体,可被邻近细胞吞噬消化,因始终有膜封闭,没有内溶物释放,故不会引起炎症 ③凋亡细胞中仍需要合成一些蛋白质,但是在坏死细胞中ATP和蛋白质合成受阻或终止 ④核酸内切酶活化,导致染色质DNA在核小体连接部位断裂,形成约200bp整数倍的核酸片段,凝胶电泳图谱呈梯状 ⑤凋亡通常是生理性变化,而细胞坏死是病理性变化。理论意义:程序性细胞死亡在生物发育和维持正常生理活动过程中非常重要.在发育过程中,细胞不但要恰当地诞生,而且也要恰当地死亡。例如,人在胚胎阶段是有尾巴的,正因为组成尾巴的细胞恰当地死亡,才使我们在出生后没有尾巴.如果这些细胞没有恰当地死亡,就会出现长尾巴的新生儿.从胚胎、新生儿、婴儿、儿童到青少年,在这一系列人体发育成熟之前的阶段,总体来说细胞诞生得多,死亡得少,所以身体才能发育.发育成熟后,人体内细胞的诞生和死亡处于一个动态平衡阶段,一个成年人体内每天都有上万亿细胞诞生,同时又有上万亿细胞“程序性死亡”.两者处于一种动态平衡中,使人体器官维持合适的细胞数量得以正常运作的,正是“程序性细胞死亡”机制。(又如蝌蚪尾的消失,骨髓和肠的细生物发育过程中及成体组织中正常的细胞凋亡有助于保证细胞只在需要它们的时候和需要它们活的地方存活。这对于多细胞生物个体发育的正常进行,自稳平衡的保持以及抵御外界各种因素的干扰方面都起着非常关键的作用。)实践意义:如果调节细胞“自-杀”的基因出了问题,该死亡的细胞没有死亡,反而继续分裂繁殖,便会导致有问题或恶性细胞不受控制地增长,比如癌症 如果基因错向不该死的细胞发出“自-杀令”,不让之分裂繁殖,使不该死亡的淋巴细胞大批死亡,便破坏了人体的组织或免疫系统,比如艾滋病。控制“程序性细胞死亡”的基因有两类:一类是抑制细胞死亡的 另一类是启动或促进细胞死亡的。两类基因相互作用控制细胞正常死亡。如果能发现所有的调控基因,分析其功能,研究出能发挥或抑制这些基因功能的药物,那么人类就能够敲响癌症和艾滋病的丧钟。当然,这个过程需经过一番艰苦努力,因为线虫只有959个细胞,而人体则有大约1000万亿个细胞。
  • 文献速递|基于细胞外囊泡的新型纳米材料通过 Let-7a 诱导舌鳞癌细胞凋亡
    近日近日,吉林大学动物科学学院实验动物中心王东旭教授课题组与吉林大学口腔医院口腔颌面外科刘炜炜教授课题组在细胞外囊泡与舌鳞状细胞癌关系研究领域取得了新的进展。相关研究成果已发表在国际知名期刊《Frontiers in Bioengineering and Biotechnology》(IF:5.89,JCR 2区)。▲图1|国际知名期刊《Frontiers in Bioengineering and Biotechnology》(IF:5.89,JCR 2区)近年来,针对舌鳞状细胞癌(TSCC)的治疗和诊断已取得了进展,但 5 年生存率仍然很低。治疗TSCC的方法主要为手术、放疗和化疗。在过去几十年中,中医药在癌症研究方面已被广泛应用。例如,从蜂蜜中提取的白杨素可以通过非编码RNA在多种癌细胞中诱导细胞凋亡并抑制增殖。并且,纳米结构也已被广泛研究用于癌症治疗中的药物递送和诊断,例如金纳米粒子 (AuNPs)。细胞外囊泡(EVs)是由细胞释放到细胞外环境中的小囊泡。EVs 由脂质双层膜组成,该膜包裹着小的无细胞器的细胞质,EVs 的摄取特定于细胞类型。但白杨素与金纳米粒子在单独运用时对癌症缺乏特异性,有证据表明,纳米粒子与 EVs结合可作为靶向癌细胞的药物载体。因此,纳米材料与 EVs 结合可以提高癌症治疗的效率。为了探究该方法,王东旭教授与刘炜炜教授团队首先使用白杨素治疗 TSCC 细胞和分离的 EVs-白杨素。然后将四氯金酸(HAuCl4)与 EVs-白杨素一同孵育形成 Au-EVs。在 EVs-Con 和 EVs-chrysin 之间进行转录组测序筛选后,对 let-7a 家族进行了分析。该研究结果表明,Au-EVs 通过TSCC中的 let-7a 诱导细胞凋亡。▲图2 |实验方案示意图文章中,研究 Au-EVs在体内的抗肿瘤作用的实验使用了博鹭腾AniView600多模式动物活体成像系统拍摄观察。在该实验中,首先将SCC9 细胞注射到裸鼠体内。7天后,将Au-EVs注射到肿瘤下方,并在第8天和第15天用近红外光照射裸鼠并进行肿瘤生长分析。结果表明,Au-EVs具备肿瘤靶向性,且荧光强度随时间增加而增加。此外,近红外辐射可以淬灭 Au-EVs 的荧光。在第21天时收集肿瘤,与预期结果相符,Au-EVs 与 NIR 结合显着抑制了肿瘤生长,并且没有改变体内其他器官。这些结果表明,Au-EVs 有效地介导了等离子光热疗法(PPT)并抑制了体内肿瘤的生长。▲图3|注射Au-EVs 后的荧光强度本研究发现,Au-EVs作为一种新型纳米材料,在SCC9 细胞中具有吸收特异性。在经过近红外辐射后,Au-EVs 能够有效增强细胞凋亡。通过RNA-seq,筛选 EVs-chrysin miRNA,Let-7a-3p,并且过表达let-7a-3p会诱导细胞凋亡,此结果表明经NIR 处理的 Au-EV 显著抑制了体内肿瘤的生长。综上所述,本研究结果提供了一种能够提高 AuNPs 靶向性的纳米材料,并且该材料可能与针对 TSCC 的疗法相关。论文链接:doi: 10.3389/fbioe.2021.766380
  • 中国首个针对乙肝治疗的细胞凋亡通路新靶点IAP抑制剂获批临床
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/48582be5-56f8-4909-b2e6-9897a64c3ce4.jpg" / /p p   APG-1387临床研究负责人、中国肝炎防治基金会副理事长、2017年亚太肝病研究学会(APASL)主席、中华医学会感染病学分会前任主任委员、南方医科大学南方医院肝病中心主任侯金林教授评论道:“目前临床上用于治疗乙肝的药物能非常有效的抑制病毒复制,但临床治愈率(即HBsAg消失)很低。因此,大多数乙肝患者需要长期使用抗病毒药物。我对APG-1387治疗乙肝的新颖作用机制感到非常兴奋,期待与亚盛在APG-1387的临床试验合作中进一步验证其清除患者体内HBV感染的潜力。” /p p   APG-1387是亚盛医药自主设计开发的、具有全球知识产权的新一代凋亡蛋白抑制因子(IAP)高效特异性抑制剂,主要通过模拟内源性Smac分子降解IAPs来诱导和加速细胞凋亡的进程。由南方医院肝病中心张小勇教授课题组完成的临床前研究发现,慢性乙肝患者肝内IAPs分子表达上调,导致HBV感染的肝细胞发生免疫逃避,不能被特异性T细胞杀伤。APG-1387治疗可有效抑制肝细胞中的IAPs表达,促进病毒特异性T细胞介导的HBV DNA和HBV表面抗原的消除,从而治愈慢性HBV感染。IAP抑制剂用于治疗乙肝病毒感染的优势在于,依靠特异性T细胞的识别能力,能优先杀死感染细胞而不影响健康细胞。 /p p   值得关注的是,世界卫生组织在去年发布的《2017年全球肝炎报告》显示,全球感染乙肝或丙肝的人数已超过3.25亿,每年约有134万人因此丧生。在我国,慢性乙肝病毒携带者达到了9000万人左右,慢性乙肝患者有3000万人,得到治疗的仅有200万人,不足总数的1/10。根据研究与咨询公司GlobalData的数据,未来十年,中国仍将是最大的乙肝市场,且将继续保持高增长态势。预计到2020年我国乙肝用药市场规模将达到200亿元,远期将达300亿。而目前市场上并未有完全能治愈乙肝的药物,用药需求巨大。 /p p   亚盛医药首席医学官翟一帆博士表示:“APG-1387在中国进入临床开发是我们执行全球开发战略中的关键一步,我们期待这个药能够为迫切需要更有效治疗药物的乙肝患者提供更多的可能性。” /p p   亚盛医药目前也在对APG-1387进行癌症的临床开发。此前,APG-1387在中国和澳大利亚均已完成针对晚期实体瘤的临床I期剂量爬坡试验。去年11月,APG-1387又获得了美国FDA新药临床试验批准,将与肿瘤免疫药物联合用于治疗晚期实体瘤、恶性血液肿瘤。 /p p    strong 关于APG-1387 /strong /p p   APG-1387是亚盛医药设计开发的新型小分子细胞凋亡蛋白抑制因子(IAP)抑制剂。研究结果表明IAP蛋白高度表达可诱导肺癌、头颈部肿瘤、乳腺癌、胃肠癌、黑素瘤和多发性骨髓瘤的发生。亚盛医药正在全球范围内开发APG-1387,已在中国和澳大利亚完成癌症的临床I期剂量爬坡试验。APG-1387也被用于治疗乙型肝炎,临床前研究表明APG-1387可显著降低HBV DNA和HBV表面抗原。 /p p   strong  关于乙型肝炎 /strong /p p   乙型肝炎是一种病毒感染,可以攻击肝脏,并可能引起急性和慢性疾病。乙型肝炎患者和HBV携带者是本病的主要传染源,HBV可通过母婴、血和血液制品、破损的皮肤黏膜及性接触传播。感染HBV后,由于受病毒因素、宿主因素等影响,会出现不同的结局和临床类型,后期可能发展成肝硬化或肝癌。 /p p   strong  关于亚盛医药 /strong /p p   亚盛医药是一家全球领先的处于临床阶段的新药研发企业,致力于在肿瘤、乙肝及与衰老相关的疾病等治疗领域开发创新药物。公司拥有自主研发的蛋白-蛋白相互作用靶向药物设计平台及100多项国际发明专利。公司研发产品管线主要专注细胞凋亡路径关键蛋白的抑制剂,通过抑制BCL-2、IAP或MDM2-p53等,重启肿瘤细胞的凋亡程序 第二代和第三代的针对癌症治疗中出现的激酶突变体的抑制剂 与肿瘤治疗有密切相关性的表观遗传学靶点的抑制剂等。公司现有六个新药项目已进入到中国、美国及澳大利亚的I-II期临床开发阶段,其中包括APG-1252,一个新型、强效的BCL-2/BCL-xL双重抑制剂。 /p
  • 施一公课题组利用冷冻电镜获得3.8埃哺乳动物凋亡体Apaf-1三维结构
    p   十一月五日,施一公院士课题组在国际权威刊物《Genes & amp Development》发表一项最新研究成果,题为“Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1”。在这项研究中,研究人员通过单粒子的低温EM分析,在3.8埃的原子级分辨率上,确定了一个完整的哺乳动物凋亡体Apaf-1的三维结构。 /p p   程序性细胞死亡(细胞凋亡),对于多细胞生物发育和组织动态平衡,是必不可少的。细胞凋亡是由引发剂和效应物caspase的连续激活进行的。效应物caspase的主要功能——比如哺乳动物的caspase-3,是通过对维持生命的蛋白造成众多裂口而杀死细胞。另一方面,引发剂caspase的主要作用,是切割从而激活特异性效应物caspase。 /p p   在哺乳动物细胞中,引发剂caspase-9负责caspase-3的激活。引发剂caspase的自动催化激活,主要依赖于一个特定的多蛋白复合物。对于caspase-9来说,这个多蛋白复合物被称为凋亡体,包括凋亡蛋白酶激活因子1(Apaf-1)和细胞色素c(CytC)之间的一个异二聚体的七个拷贝。因为caspase-9对于大多数已知形式的内凋亡是必不可少的,因此,阐明其激活机制,一直是程序性细胞死亡机理研究的中心任务。实现这一目标的第一步,是阐明凋亡体装配的机制。 /p p   在正常的哺乳动物细胞中,Apaf-1作为一个ADP结合的自动抑制单体而存在。为了响应各种形式的内在细胞死亡刺激,CytC从线粒体释放到细胞质中,在那里CytC结合单体Apaf-1,并为齐聚反应做好准备。ADP通过dATP或ATP的替换,可导致显著的构象变化,从而使Apaf-1形成一个有活性的heptameric凋亡体。只有激活的凋亡体才能够促进caspase-9的自动催化激活。CytC如何与Apaf-1相互作用?这些相互作用如何促进核苷酸交换和Apaf-1的齐聚反应?凋亡体介导的caspase-9激活的机制是什么?尽管经过了严谨的调查研究,但这些问题一直都是神秘的。 /p p   已有研究在9.5和21埃范围的分辨率上,阐明了Apaf-1凋亡体的低温电子显微镜(cryo-EM)结构。这些结构允许单个结构域的布局,但不能解释控制凋亡体功能的特异性相互作用。单体的、ADP结合的Apaf-1的X射线结构,为Apaf-1自动抑制的基础,提供了一个原子的视图。总之,这些结构观测提出了一个推测性模型,可描绘凋亡体的组装。但是,这个模型的EM结构分辨率相对较低,缺乏支持性的生化数据。 /p p   在这项研究中,研究人员通过单粒子的低温 a href=" http://www.instrument.com.cn/zc/1139.html" target=" _self" title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 电子显微镜 /span /a (cryo-EM),确定了一个完整的哺乳动物凋亡体的原子结构(3.8埃分辨率)。结构分析连同结构引导的生化表征,揭示了细胞色素c如何通过与WD40重复的特异性相互作用,而解除Apaf-1的自动抑制。与自动抑制的Apaf-1的结构对比,揭示了dATP结合如何触发一系列的构象变化,从而导致凋亡体的形成。总而言之,这些研究结果,阐释了细胞色素c和dATP介导的Apaf-1激活的分子机制。 /p p   相关论文连接: /p p    a href=" http://genesdev.cshlp.org/content/early/2015/11/05/gad.272278.115" _src=" http://genesdev.cshlp.org/content/early/2015/11/05/gad.272278.115" http://genesdev.cshlp.org/content/early/2015/11/05/gad.272278.115 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/0b1a7156-61ec-4b31-832c-225066c2c525.jpg" title=" 图.jpg" / /p
  • 导致珍贵的干细胞死亡的元凶是谁?
    养过细胞的人都知道优质血清的重要标准之一是内毒的含量。血清由于其复杂的成分是不可代替的,但它也难以控制外界因素的影响内毒素过高会是实验室珍贵的细胞凋零。例如:干细胞体外培养实验,由于干细胞的原始性,它们对内毒素非常敏感,所以,当血清内毒素偏高时,细胞很容易死亡,需要在试用前提早参看该批次《检测报告》,以决定是否入围进行试用。又例如:基因敲除相关的细胞实验,培养的细胞要尽可能保持其原始状态,任何引导细胞衰老或凋亡的试剂,都会让后续的实验结果“失之毫厘,谬以千里”。所以,选择极低内毒素的血清,至关重要。同样,例如:原代培养,杂交瘤融合,细胞转染,难养细胞在体外的增殖(肝细胞,神经细胞,内皮细胞等)....这些细胞的培养都需要内毒素更低的血清,如果内毒素过高,对细胞造成的损害,会大大影响后续实验结果。还有一些细胞,实验室比较常用,经常复苏,培养,冻存,如此,血清会经常作用于细胞;还有的细胞需要培养的时间较长,血清会长时间作用于细胞;还有细胞典藏等项目,都需要使用更低内毒素的血清,以避免内毒素长久对细胞的毒性影响。因此,我们在挑选优质血清的时候内毒素是我们应该优先考量的条件之一。
  • 邀请函 | 中国细胞生物学学会细胞死亡研究分会2021年第一届学术年会与您相约桐庐
    中国细胞生物学学会细胞死亡研究分会2021年第一届学术年会将于2021年6月2-5日在浙江桐庐海博大酒店(二楼桐庐会堂A厅)举办,此次大会由中国细胞生物学学会细胞死亡研究分会主办,浙江大学、上海市细胞生物学学会和细胞学会会展部联合承办。北京深蓝云生物科技有限公司将携带相关产品亮相在此次会议,我们将在6号展位恭候您的参观咨询。程序性细胞死亡是生物体最基本的生命活动。越来越多的证据表明程序性细胞死亡的方式具有多样性,以细胞凋亡及程序性细胞坏死为代表的多种细胞死亡方式广泛参与生物体发育和疾病过程,并扮演不同的角色。全面系统的研究多种细胞死亡方式,能够推动对不同细胞死亡方式机制的深入了解,为细胞死亡相关疾病的临床诊治提供重要依据。详情请登录:https://www.cscb.org.cn/meeting/celldeath2021/查看。细胞死亡实时形态学监测全电动化解决方案Revolution正倒置一体电动化智能显微成像系统☑ 电动化智能程序:电动追焦,锁焦,多点样品导航和重访。☑ 高清晰全景图像: 双sCMOS相机,多焦面叠加,多视野整合,多维成像。☑ HYPERSCAN高速:同步无刷直线伺服电机和相机,数秒钟完成全景扫描。☑ 卓越的光学性能:大视野,大景深,多物镜、多荧光立方可选。☑ 一体化机身结构:正倒置一体,全能型显微镜,方便安放和运输。☑ 人性化数据交互:互联网+现场和远程实时共揽、延时摄影和图像分享。细胞死亡信号通路及激活和抑制因子数字PCR解决方案naica® 全自动微滴芯片数字PCR系统数字PCR技术(Digital PCR)无需标准品和标准曲线即可对起始样品中靶标核酸进行绝对定量。深蓝云展台产品展示naica® 下一代数字PCR平台naica® 全自动微滴芯片数字PCR系统,以Sapphire芯片(全自动)或Opal(高通量)芯片为耗材,形成由25,000-30,000个微滴组成的单层二维阵列,该单层微滴阵列形成后直接进行PCR扩增实验。反应完成后对微滴进行三通道成像,从而对起始核酸浓度进行绝对定量。仅需2.5小时即可获取结果。▲ naica® 微滴芯片数字PCR系统Echo正倒置一体显微镜Echo正倒置一体显微镜兼具正置和倒置显微镜的功能,方便小巧,一机多能,可以非常便利地通过旋转实现正倒置配置的切换;无传统目镜设计,拥有明场,相衬,荧光,偏光等观察方式,可兼容活细胞观察,病理切片,免疫组化,免疫荧光,荧光原位杂交等。▲ Echo正倒置一体显微镜Azure Cielo™ 实时荧光定量PCR系统Azure Cielo™ 实时荧光定量PCR系统来自于美国Azure Biosystems公司,配备高品质温度模块,采用光纤和CMOS的检测系统,高能LED的激发,提供高灵敏和可靠的数据。▲ Azure Cielo™ 实时荧光定量PCR系统深蓝云生物科技将携带相关产品亮相此次大会,恭候您的参观咨询!与您不见不散——展位:6号
  • Life Tech Tali 成像型多色细胞分析仪 快速细胞分析新技术
    Tali&trade 成像型多色细胞分析仪 快速细胞分析新技术 Tali&trade 成像型多色细胞分析仪能让你随时,简便快速的检测GFP和RFP表达,判断细胞存活率和细胞凋亡。 抢先体验 Tali&trade 成像型多色细胞分析仪 立即注册,您将最先收到 Tali&trade 成像型多色细胞分析仪的最新资料。 通知我最新产品信息
  • 库尔特 细胞研究不可或缺的细胞体积分析
    生物、药物等许多的研究均需要通过观察细胞体积的变化或细胞数目增减的来判断和评估实验的效果。由于细胞所处环境的改变可促使其自身体积做出相应的变化,以便适应改变后的环境大致新的平衡。由于并不能清晰地知道该种细胞体积变化规律,因此必须检测其体积或细胞数目随条件、时间的变化。   细胞的发育与细胞分裂周期级数递增均需要连续不断的细胞增殖。   在培养液中正在增殖的细胞在其分裂前其体积将增大至原体积的两倍。然而对细胞发育与分裂的速度作如何调整才能保证细胞体积的不变并不明确。因此,测量细胞的体积的变化对了解与控制细胞的发育和周期非常重要。   细胞的死亡   细胞的增殖与细胞的死亡之间需要一个精细的平衡以保持足够的细胞数量。该种平衡容许细胞作最佳的状态调节以适应各样机能变化的需求。细胞死亡有两种清晰的机制,坏死与凋亡。坏死是一个病理生理的机制,包括细胞膨胀以及细胞膜破裂而释出内容物。凋亡则是一个程序式死亡的机制。凋亡的特征之一就是细胞收缩。细胞有缺陷的凋亡与过度凋亡,两者同样会导致严重疾病。   渗透压的补偿   任何种类的细胞都有可能因处于不利环境而死亡。细胞犹如多孔的网筛极易因渗入已溶解于周围环境的化学物而使渗透压受影响。细胞内外环境中该些溶解物颗粒数目的不平衡,将会导致水份透进细胞而使其体积涨大,或者是水份从细胞渗出使其体积收缩。   当细胞或微生物遭遇环境的变化,它们都会尝试通过自身调节来适应新的环境。   细胞平均体积(MCV)的变化   当细胞或微生物遭受环境变化时,它们将通过自身调整以图适应新的环境。一些例子中细胞需要改变自身体积以便达到适合的目标。   由贝克曼库尔特公司出品的Multisizer 3 库尔特细胞特性分析仪是目前最权威的细胞体积、细胞计数的分析仪器,应用文献多不胜数。无可逾越的领先技术更使Multisizer 3 成为分辨率最高的仪器。国外的用户统计表明,Multisizer 3 已成为细胞实验室必备的研究工具。   自华莱士• 库尔特先生发明 库尔特原理 以来,该原理已广泛应用于材料、生物、医学、制药等众多的领域。目前生物领域的细胞计数标准就是库尔特原理。美国材料实验协会ASTM将库尔特原理定为生物细胞计数的标准(ASTM-F2194)。国际血液学标准化委员会亦指定库尔特原理为计算红细胞与白细胞的标准实验室方法 (Clin. lab. Haemat. 1988. 10, 203-212.)。   作为库尔特原理及技术应用的鼻祖,美国贝克曼库尔特公司始终保持着技术领先的优势。† 库尔特计数仪(Coulter Counter)无论在研究还是在质量控制的应用均具有深远的影响力。在权威的研究机构及其发表的学术文献当中,库尔特计数仪均担当着不可或缺的角色。   多年来贝克曼库尔特公司在市场上推出了一系列的库尔特计数仪(Coulter Counter),如:ZM、TA II、Multisizer II等系列型号,为科研与产品控制的实验室颗粒/细胞的检测提供最可靠的分析手段。Multisizer 3 型库尔特颗粒/细胞计数及粒度分析仪为当今所有计数仪、粒度分析仪当中分辨率最高的仪器。   库尔特原理(Coulter Principle)   又称为电感应区技术。   悬浮于弱电解液中的细胞被抽吸而经过一个小孔,因产生外加电压而形成“感应区”。细胞经过小孔时,细胞的体积替代了电解液的相应体积。因相应体积的电解液被替代,小孔感应区产生电压脉冲而导致电阻的改变。脉冲的强度与细胞的体积成比例的关系 。   Multisizer 3 先进的DPP 数码脉冲处理器,使测量过程中的数以百万计的脉冲信号无须经压缩而保存。数据因无损失而能实现再分析功能。DPP的功能使得Multisizer 3 能够实时监测样品在分析过程中的原始变化。   DPP同样可用于检测细胞体积的改变。在许多的生化过程中细胞体积是一个重要的参考因素。如细胞发育、细胞周期、细胞死亡、渗透压的补偿、致病机理和吞噬作用等。Multisizer 3 可以观测细胞粒径与体积从几秒到几小时内的变化。   DPP技术在低温生物学中的应用   这是在冷冻过程中受渗透压影响的细胞,其平均体积(MCV)的分布曲线和20秒内连续的脉冲峰值平均值的变化。   择任意的脉冲群可以将一个粒度分布“分割”成多重的分布。因此,可获得在分析全程中的某一时段的粒度分布。如图示,可获得细胞的平均直径随时间的变化。   使用Beckman Coulter 的Multisizer™ 3 库尔特体积粒度分析仪将能方便而精确地测量细胞平均体积(MCV)的各种变化。
  • 大隅良典诺奖新技术可检测“细胞自噬”状态
    日本科学家大隅良典凭借细胞自噬机制研究获得今年诺贝尔生理学或医学奖。日本研究人员最新发明了一种可以简单检测细胞自噬状态的新技术,将有助于利用细胞自噬机制开发新药。  细胞自噬机制是指细胞在应对短暂生存压力时,可通过降解自身非必需成分来提供营养和能量,从而维持生命。细胞自噬也可能降解潜在毒性蛋白来阻止细胞损伤,或阻止细胞凋亡进程。细胞自噬机制与阿尔茨海默病等许多疾病相关。  据日本媒体报道,东京大学教授水岛升等人在新一期美国《分子细胞》杂志网络版上发表了有关细胞自噬机制的最新研究成果。水岛升曾在诺奖得主大隅良典的实验室工作,是大隅良典的重要助手和学生。  研究人员利用基因编辑手段使细胞产生萤光蛋白,发现随着细胞自噬的进展,萤光从蓝逐渐变为绿、黄、红三色,这样一来就可以实时测定细胞自噬的状态。在动物细胞实验中,研究人员测试了多种药物,结果发现有47种药物能促进细胞自噬,还有43种药物能阻碍细胞自噬。  研究人员表示,对于依赖细胞自噬发病的癌症类型,阻碍细胞自噬的药物可以成为有效的抗癌剂。而另外一些疾病则可以针对性地使用能诱导细胞自噬的药物。未来这一技术有望应用到和细胞自噬机制有关的药物研发中。
  • 一天三篇CNS,Incucyte开启细胞研究新速度
    Incucyte® 发CNS文章速度又提升了!2024年3月13日,《Nature》和《Cell》分别发表了2篇和1篇研究文章,均应用到了Incucyte® 。值得指出的是,这些成就并不是个例:2023 一周3篇Nature:Incucyte上演科研帽子戏法!2022一天四篇Nature | Incucyte助力罕见病研究这些里程碑式的成就再次说明了Incucyte® 因其简单的实验设置和分析、丰富的应用方向使得很多用户对其爱不释手,在体外细胞水平的实验中发挥着重要功能。接下来,就让我们一起来看看这三篇文章。Nature阿尔茨海默病新机制斯坦福大学[1]APOE基因编码的蛋白参与将脂肪滴运送到神经细胞中。APOE 有四种变体,即APOE1、APOE2、APOE3和APOE4,其中APOE4能将最多的脂肪带入脑细胞。本文发现,APOE4/4基因型的阿尔茨海默病患者中,大脑的小胶质细胞会更容易进入一种积累脂滴(LD,lipid droplets)的异常状态(LDAM)。在这种状态下的小胶质细胞受到淀粉样蛋白(Aβ)和其它先天免疫因子刺激后,会激发神经细胞中Tau蛋白的磷酸化和细胞死亡。这项研究揭示了APOE4基因诱发阿尔茨海默病的全新作用机制,并且提供了潜在的治疗策略。研究人员将APOE4/4基因型和APOE3/3基因型iPS细胞分化为小胶质细胞,使用中性脂质荧光染料对小胶质细胞进行Incucyte® 实时活细胞成像。结果显示,与APOE3/3相比,APOE4/4中LD的积累更大。当用Aβ处理APOE4/4时,LD的积累进一步增加。这说明APOE4 AD风险等位基因的存在加剧了LD积累。在这项研究中,Incucyte® 不仅可以观察到脂质荧光染料在细胞中聚集的图像,还可以统计实时定量曲线。图1. (b)APOE3/3和APOE4/4 ±Aβ细胞中脂质荧光染料的实时定量曲线;(c)实验终点平均脂斑荧光强度;(e)原代大鼠小胶质细胞未经处理(左)或fAβ处理(右)之后脂质体染料图像;(d)终点数据只需选用合适的染料,Incucyte® 就能捕捉并记录下细胞的每一种活动。Nature巨噬细胞吞噬机理华盛顿大学医学院[2]在发育过程中以及炎症或组织损伤发生时,巨噬细胞通过吞噬并处理多个凋亡尸体(胞葬作用),以实现组织稳态。本研究发现对于人类和小鼠巨噬细胞,RNA聚合酶Pol II控制的暂停/释放在体外和体内连续吞噬作用中是必需的。有趣的是,阻断Pol II暂停/释放并不妨碍Fc受体介导的吞噬作用、酵母摄取或细菌吞噬作用。巨噬细胞使用Pol II暂停/释放作为一种机制,以迅速改变它们的转录程序,高效处理摄入的凋亡尸体,并进行连续的吞噬作用。作者利用了Incucyte® 实时活细胞成像分析方法,实时展示了暂停Pol II可以增强巨噬细胞的胞葬作用。利用pH敏感染料标记凋亡的细胞,当凋亡的细胞被巨噬细胞吞噬的时候,会在酸性环境下产生荧光,荧光信号越强吞噬能力越强。在Hoxb8来源的巨噬细胞中通过CRISPR-Cas9技术基因缺失负延长因子NELF-B和NELF-CD,可以破坏Pol II的暂停,使巨噬细胞的胞葬作用的增强;这种增强的胞葬作用对阻断肌动蛋白聚合(加入Cytochalasin D,一种有效的肌动蛋白聚合抑制剂,胞葬作用依赖肌动蛋白介导的质膜重塑)仍然敏感(图2g)。巨噬细胞可以通过不同的表面受体和分子机制进行不同类型的吞噬作用。巨噬细胞的吞噬作用受到Pol II暂停/释放抑制剂flavopiridol影响 而巨噬细胞Fc受体介导的吞噬作用不受暂停/释放抑制剂flavopiridol的影响(图2h)。图2. (g)Incucyte® 分析检测WT和NELF缺陷巨噬细胞与凋亡Jurkat 细胞共孵育后的胞葬动力学;(h)巨噬细胞吞噬凋亡的细胞和巨噬细胞通过Fc受体介导吞噬处理的胸腺细胞Incucyte® 实时活细胞成像分析有明场、红、绿3个通道,支持选择多种荧光试剂在不同条件下的使用,从而获得不同条件下的实时动力学曲线。Cell新细胞群的发现加州大学旧金山分校[3]本文发现了一类I型干扰素(IFN-Ⅰ)响应性的小胶质细胞亚群(IRMs),这一类独特的小胶质细胞在大脑皮层的发育和感觉功能中发挥重要作用。作者发现在发育应激时有一种特殊类群的小胶质细胞数量明显增加。进一步研究发现这一类群的细胞在皮层重塑期间高度活跃,可发挥吞噬神经元的作用,而在正常大脑发育过程中罕见。作者通过一系列实验发现这一特殊类群小胶质细胞自身的IFN-Ⅰ信号以及dsRNA信号转导导致其对神经元的吞噬作用,在维持大脑健康中发挥着重要作用。原代小胶质细胞吞噬试验中利用Incucyte® 实时活细胞成像分析系统来跟踪分析。小鼠原代小胶质细胞进行的体外吞噬试验显示,poly(I:C)处理可加速消化凋亡细胞(图3J和3K),而 Ifnar1 缺失则会降低消化效率(图3L和3M)。这些数据表明,IFN-I 信号增强了小胶质细胞消化能力,这与体内 IRMs 经常同时吞噬和消化多个细胞的观察结果一致。图3. 向小胶质细胞中加入吞噬染料标记的凋亡细胞,每小时采集一次,采集24 小时;使用 Incucyte® 活细胞分析软件对图像进行阈值处理,并使用红色通道(溶酶体内的凋亡尸体)的综合强度与小胶质细胞表面积(用明场确定)的归一化值进行分析(G)体外小胶质吞噬作用实验设计;(H)典型的吞噬Incucyte® 实时分析示意图:前端是吞噬作用,后端是消化作用,用线性相中峰前斜率的线性回归斜率来估计吞噬效率(m1),用峰后斜率来估计消化效率;(I)添加吞噬染料标记的凋亡细胞24小时后WT小胶质细胞培养的代表性图像(左),WT小胶质细胞中添加poly(I:C)(中),Ifnar1缺失的小胶质细胞(右);(J)和(L)代表实时吞噬染料信号强度;(K)和(M)表示小胶质细胞消化速率Incucyte® 通过连续采集,可以实时显示1天内小胶质细胞发生的吞噬和消化过程(信号先上再下),捕捉细胞每个细节。总而言之,在上述研究中体现出Incucyte® 实时活细胞分析系统的独特优势:1. 自动检测,提升实验效率满足密集时间点以及长时间监测的需求,一次实验得到大量数据,解放人力,是从事细胞研究不可或缺的工具。2. 分析简便,提升数据质量软件采集及分析模块配合荧光检测试剂,得到高度可靠的数据。实时检测整个细胞死亡/凋亡曲线,在细胞死亡状况较为接近的情况下,仍然在大量数据的前提下得到确切的结论。3. 6板位设计,多实验同步开展内设6个板位,可以分别独立设置检测程序,满足6组不同实验或多人实验同时检测的需求。 -参考文献-[1] Haney MS, Pálovics R, Munson CN, et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer's disease microglia. Nature. 2024 628(8006):154-161. doi:10.1038/s41586-024-07185-7[2] Tufan T, Comertpay G, Villani A, et al. Rapid unleashing of macrophage efferocytic capacity via transcriptional pause release. Nature. Published online March 13, 2024. doi:10.1038/s41586-024-07172-y[3] Caroline C. Escoubas, Leah C. Dorman, Phi T, et al.Type-I-interferon-responsive microglia shape cortical development and behavior,Cell, Published:March 14, 2024DOI:https://doi.org/10.1016/j.cell.2024.02.020
  • 从技术论坛管窥流式细胞仪技术与市场
    1973年,BD公司与美国斯坦福大学合作,研制开发并生产了世界第一台商用流式细胞仪FACSⅠ 1979年,北京师范大学引进了中国第一台流式细胞仪(FACS Ⅲ) 1983年河北肿瘤研究所引进了中国第一台分选型流式细胞仪(FACS420)……  追溯历史,流式细胞仪走过了42年的发展历程(1973-2015),在这四十多年的发展历程中,流式细胞仪器在结构上发生了一系列的演变:由简单到复杂、由单激光到多激光、由单色到多色、由分析到分选、由空气激发到石英杯激发、由标配型到特殊定制型等。总体来说,流式细胞仪的硬件发展远超科研发展需要,但应用技术相对滞后。  在第八届中国生命科学公共平台管理与发展研讨会的流式细胞仪技术论坛上,北京大学医学部分析仪器中心细胞室吴后男主任不仅介绍了流式细胞仪的发展历程,还指出了未来的发展趋势。据其介绍,未来流式细胞仪趋向于多色标记、多参数、更精细、微观指标观察、稀有细胞或多功能特性细胞的研究,向高难度、挑战性技术迈进。  而据第三军医大学医学分析测试中心万瑛教授介绍,多色流式(Multi-color Flow Cytometry)指同时使用多种(四色以上)颜色荧光标记的流式检测与分析,该技术是随着新荧光分子的不断问世和流式细胞仪分析参数的增加而出现的,是目前实现多参数细胞表型检测的主要手段。  不过,传统的流式技术主要基于对荧光发射光谱的检测,但荧光基团发射光谱一般比较宽,其间往往会发生重叠。不仅限制了检测通道的数量(110个,检测范围88-210Da 无漏光,通道间相互影响小于0.3%,无需计算补偿 背景低,标记元素在细胞内含量极低(1原子/细胞)等。不过,目前国内的CyTOF产品还比较少。  大家都知道,最近的诺贝尔医学奖给了两位干细胞研究者,John Gurdon和Shinya Yamanaka,以奖励他们在干细胞研究和体细胞重编程领域的卓越贡献,而流式细胞术天生就是在临床和研究领域分析、鉴定和分离干细胞和祖细胞的理想工具。近20年来,随着流式细胞仪及其检测技术的日臻完善,样品制备、细胞标记、软件开发等方面不断获得新突破,使得流式细胞仪已广泛应用于免疫学、生物化学、生物学、肿瘤学以及血液学等方面的研究和临床常规工作,成为细胞分选,细胞周期分析,DNA倍体测定,免疫活性细胞分型纯化,血细胞分型分类,药物在细胞中的分布,细胞凋亡等工作中重要的研究工具。  从仪器类型上来说,目前市面上销售的主要是两种流式细胞仪,一种是分析式流式细胞仪,细胞样本经这种仪器分析后最终进入废液桶,不能回收利用 另一种是分选型流式细胞仪,它既能进行流式分析,还能对分析的目的细胞进行分选。总体来说,市场上分析型的产品多于分选型。  相关调研报告预计,2012年全球流式细胞仪的市场为30亿美元,预计2020年市场规模将达到65亿美元,2012到2020年间复合年增长率为30.9%。而据相关网站预计,2016年我国流式细胞仪发展规模将达到7.1亿元,市场主要被BD和Beckman两家企业占领。第八届中国生命科学公共平台管理与发展研讨会的流式细胞仪技术论坛现场撰稿:叶建
  • 亚低温对细胞的影响
    亚低温对细胞的影响亚低温对细胞的影响,无论是动物实验研究,还是临床实践,绝大多数研究都表明28℃~35℃的亚低温具有积极的作用。(一般哺乳类与禽类细胞在体外培养的适宜温度是37~38℃)探讨亚低温对缺氧缺糖星形胶质细胞活力的影响方法:原代培养大鼠大脑皮层星形胶质细胞,设亚低温组(34℃)和常温组(37℃),同时于缺氧缺糖条件下培养,在相应时间点观察细胞形态,并用台盼兰排染法检测细胞存活率,四甲基偶氮唑盐(MTT)比色法检测细胞活力。结果,亚低温组各项指标均优于常温组(P〈0.01)。结论:亚低温对缺氧/缺糖星形胶质细胞具有保护作用。(参考文献)更有其它研究表示,亚低温可保护脑组织,减轻脑外伤后神经功能障碍,改善预后,已普遍应用于临床;亚低温培养可有效保持肝细胞形态和维持肝细胞功能,有望为临床生物人工肝治疗提供一种较好的肝细胞保存和运输方法;亚低温可以通过抑制细胞凋亡,抑制凋亡相关基因的表达等机制发挥对缺氧缺血性脑损伤的保护作用。如今亚低温的研究和应用已经十分广泛和深入,目前研究得比较多的是在脑复苏和脑损伤、心脏手术方面的应用。这些研究进一步加深了人们对于低温保护作用的理解,并为其在临床上的应用带来新的思路。右图为胰岛细胞培养阶段。胰岛细胞分离制备流程:胰腺切取、器官修剪、胰腺灌注、器官消化、组织收集、组织纯化、胰岛收集、细胞培养、胰岛移植WIGGENS能提供采用帕尔贴制冷套件的全尺寸低温型二氧化碳培养箱,从40L-120L-180L-260L-650-850L多种类型可供选择,温度范围20℃~60℃,为您的神经干细胞、肿瘤细胞等提供均匀稳定的亚低温环境,方便多种细胞培养研究!
  • 超分辨成像技术看清细胞“刽子手”的行刑过程
    近日,中国科学院院士、厦门大学教授韩家淮和厦门大学副教授陈鑫团队借助单分子定位超分辨成像技术“随机光学重建显微镜(STORM)”,首次揭示了“坏死小体”在细胞中的组织结构特征及其对细胞死亡的决定作用,为人类相关疾病治疗干预提供了新思路。相关论文已在《自然细胞生物学》上发表。超清成像技术让推论“眼见为实”细胞是生命体的基本功能单元,而决定细胞命运的关键一环是细胞的程序性死亡。在细胞程序性死亡中,有一种形式叫“坏死样凋亡”,其中起决定作用的一个重要信号处理枢纽就是“坏死小体”复合物。“坏死小体”在死亡细胞中的结构究竟如何?“坏死小体”如何精准发力决定细胞死亡命运?这些涉及多个核心分子(RIP1/RIP3/MLKL)的招募激活和信号放大/转变等复杂过程。由于细胞体尺寸非常微小,例如哺乳动物细胞一般在几十微米,要观察到其内部“坏死小体”的精准调控机制难度可想而知。在此前的研究中,科学家曾借助常规共聚焦荧光显微镜,观察到细胞死亡过程会产生大小不等的“坏死小体”点状信号,提示了该信号枢纽很可能存在动态组装过程。但“坏死小体”在细胞中是如何精准处理复杂信号,进而决定细胞死亡的始终是一个未解的谜团。韩家淮院士和陈鑫团队借助于蓬勃发展的超分辨成像技术,尝试了多种目前较成熟的技术流派,最终找到了精准观察“坏死小体”运行机制的利器——单分子定位超分辨成像技术(STORM)。研究人员通过对STORM成像全流程进行细致优化,在生物样本上实现了优于常规共聚焦显微镜10倍以上的分辨率(13—18纳米定位精度)。这些技术的提升使许多原本看不见、看不清的研究对象变得清晰明朗,让原来靠推测得到的结论“眼见为实”。“坏死小体”这样杀死细胞在历时8年的研究中,团队成员成功观察到死亡细胞中的“坏死小体”由初始点团样结构演化为直径约50纳米,长度约200—600纳米的规则棒状结构的组装模式,并且在该规则棒状结构中呈现出明显的由RIP1/RIP3组成的马赛克状分布。进一步的观察研究发现,只有马赛克状分布中的RIP3区域满足一定的尺度要求(如四聚体及以上),才能有效地诱导下游效应分子MLKL发生多聚化,进而靶向细胞膜导致细胞死亡发生。同时,通过抑制关键因子RIP1的激酶活性可以阻碍“坏死小体”的有序马赛克样棒状结构的产生,从而抑制细胞死亡。此外,RIP3激酶活性缺失导致的细胞死亡模式转变也有赖于该结构中的RIP1多聚化程度,这提示了团队发现的“坏死小体”马赛克样组织结构很可能是细胞内控制死亡方式的信号选择模块。“该结果在细胞原位揭示了关键信号枢纽纳米尺度上的组织特性及其对信号传递/放大/转换的贡献,为发展特异性抑制程序性细胞死亡的干预手段提供了潜在的切入点,希望我们的发现能够对帕金森病、多发性硬化症等神经退行性疾病、脓毒症等病原菌感染性疾病的临床应对和治疗有所帮助。”韩家淮介绍。有望解析更多生物大分子复合物细胞内数量众多的生物大分子复合物都是控制生命活动的核心功能枢纽,如DNA复制/转录起始复合物和细胞器膜上的各类转运复合物等。现代生物学的理论基石——细胞学说诞生至今已近两百年,但人类始终无法彻底解析任一细胞在稳态/应激条件下的分子水平精细结构,自然也无法随心所欲地改造/控制细胞,实现保障人类健康和社会进步的宏伟目标。目前单颗粒冷冻电镜技术是解析蛋白质结构的利器,但面对细胞内结构巨大、成分复杂、高度异质的功能复合物,其仍存在较明显局限性。韩家淮院士和陈鑫团队的工作证明纳米尺度光学成像是解析此类大型生物大分子复合物的组织特征和功能模式的可行方案之一。
  • Muse智能触控细胞分析仪新品问世
    默克密理博秉承一贯的创新理念,突破流式研发的思维定式,带来了革命性创新一代Muse&trade 智能触控细胞分析仪。内置Pad版触屏式电脑,结合全面的预置细胞分析常规实验方案,为您开创前所未有的流式操作新体验。您只需动动手指,即可实现包括:细胞计数,细胞活性,细胞周期,细胞凋亡等在内的细胞分析常规实验。分分钟让您体验悦动指尖的细胞分析艺术。 除此之外,默克密理博还将为Muse&trade 平台不断开发更多细胞分析的预置实验方案,近期8个预置实验方案即将推出:涉及Caspase 凋亡通路、线粒体损伤、免疫分型、淋巴细胞活力分析、细胞信号通路、DNA损伤等多个研究应用领域。用户将全部免费获得预置实验方案的软件升级。 请欣赏Muse 智能触控细胞分析仪介绍视频 申请试用 | 索取MUSE资料 | 询价 更多详情,请点击此处 默克密理博:新流式,新思维 &mdash &mdash 全新的流式平台,全新的学术思维
  • Countstar2017北方区细胞荧光分析技术交流活动
    2017年7月17日至20日,Countstar北京办事处的产品经理陆续拜访了黑龙江干细胞存储中心、哈尔滨医科大学肿瘤医院等新老客户。针对当前细胞检测存在操作繁琐,使用成本高等问题,Countstar产品经理携带Countstar全自动细胞荧光分析仪,通过对客户提供的细胞样本进行检测,为大家成功演示了借助荧光检测技术,快速实现细胞转染、凋亡、CD marker等参数的检测过程,准确稳定的实验结果得到了工作人员的肯定。另外,Countstar产品经理们还向客户询问了细胞计数仪的日常使用情况,并为客户提供了常规的维保培训,以此为客户提供更好的使用体验。
  • Cytek®Amnis®量化成像流式技术应用——细胞外囊泡篇
    细胞外囊泡(Extracellular Vesicles, EVs)作为蛋白质、mRNA、miRNA、脂质等信息物质在细胞间转运的载体, 是细胞与细胞间通讯的重要媒介,参与大量正常生理和病理过程,包括感染性疾病、自身免疫性疾病、心血管和其他炎症性疾病、癌症和凝血障碍等,因此研究EV在人类健康和疾病中的作用具有重要意义。EVs常分为三类外泌体 (30-150 nm) ,在胞体内区室中形成多囊泡小体,随后与质膜融合后从细胞中释放。微囊泡或微粒 (100-1000 nm) ,这是质膜起泡/出芽以及随后从细胞中释放的结果。凋亡小体 (1000-5000 nm) ,由凋亡细胞释放。目前还没有特异性标记物可以最终鉴定不同类型的囊泡。因此,我们把这些小的生物颗粒统称为细胞外囊泡。细胞外囊泡示意图EVs检测研究表明,不同疾病状态下,组织器官释放到体液中的EVs的数量及所包裹的物质是完全不一样的,因而通过检测分析EVs的特性即可对相关疾病进行精准诊断、预后判断及指导治疗。EVs具有尺寸小、异质性高且数量巨大等特点,一直以来,检测灵敏度都是EVs研究中的一个重大挑战。虽然一些关于EVs的检测是利用传统流式细胞术开展的,但也暴露出了明显的局限性,一方面由于传统流式仪器更适用于检测细胞,而细胞表面结合的荧光分子数量远远多于EVs表面;另一方面,一些传统流式仪器在检测小于500 nm单个颗粒上表现吃力。因此,想要准确的检测EVs,就需要更强大且具备高通量功能的检测工具。Amnis® 成像流式的技术优势近年来,随着Amnis® 成像流式技术的发展,越来越多的研究利用这项技术解决了EVs检测这一难题。Amnis® 技术的核心是使用时间延迟积分CCD (TDI-CCD)进行信号检测。与光电倍增管(PMT)相比,CCD具有更大的动态范围、更低的“噪声”和更高的量子效率,使其更适合测量微弱信号。与传统流式细胞术相比,这种方法信号整合时间更长,噪音低,灵敏度大幅增加,对研究EVs具有独特的优势。Amnis® 技术EVs应用案例分享以下研究体现了Amnis® 成像流式技术在小颗粒检测中的高灵敏度特点。检测脂质体和微球流式技术对比用常规流式技术 (A-B)和成像流式技术 (C-D)获得的200 nm大小的荧光标记脂质体和不同尺寸的聚苯乙烯珠(220、450、880和1300 nm)。Amnis® 成像流式可以清晰地分辨出缓冲液背景信号(灰色)以上的所有脂质体(粉色),而常规流式仅能通过荧光分辨出一小部分脂质体。健康人类供体的血浆微粒检测(a)从6名健康供体中获取无血小板血浆,并使用CD235(红细胞)、CD41(血小板)、CD45(白细胞)和CD146(内皮细胞)标记物进行染色以确定微粒细胞的来源。(b)利用CD14(单核细胞)、CD66b(中性粒细胞)和CD3(淋巴细胞)标记物进一步对白细胞微粒进行表型分析,以确定其来源细胞。下方是图库中事件的代表性图片。(c)表为N = 6例供体的绝对计数±SEM。如图所示,Amnis® 成像流式技术可实现不同来源的外泌体的精准鉴定与计数。单核细胞内化外泌体检测(a)用Amnis® 成像流式技术分析PKH67标记的外泌体。BF和FITC荧光图像(E)所示。(b) PKH67预标记外泌体与外周血单个核细胞共孵育。使用Amnis® IDEAS® 软件内化功能测量外泌体的内化程度。Amnis® 成像流式技术不仅实现了PKH67标记的外泌体鉴定,同时也实现了单个核细胞内化外泌体检测,且呈现直观图像佐证结果准确性。小结综上,Amnis® 成像流式技术做到了真正意义上的流式数据可视化。既具备传统流式可大量检测样本的特点,又利用高灵敏度TDI-CCD技术针对每个检测到的外泌体颗粒进行成像,并可通过海量形态学数据分析EVs与亲本细胞或靶细胞间的相互作用。Cytek® Amnis® ImageStream® x Mk II 成像流式细胞分析仪以上研究均通过 Cytek® Amnis® ImageStream® X Mk II 仪器完成。通过将流式细胞术的表型分析能力、高速度和高灵敏度等优势,与荧光显微镜技术在细胞形态学细节的洞察力和针对细胞功能研究的深度有机结合在一起,Amnis® ImageStream® XMk II 平台可高速获取每个细胞的多个图像,包括明场、暗场 (SSC) 和多达 10 色荧光标记。ImageStream® X Mk II 通过高分辨率成像,可以定位荧光蛋白表达位置(细胞膜、细胞质或者细胞核),实现超乎想象的广泛应用需求。技术特点应用广泛:样本利用率高达 95%,可以更高效的方式分析稀有细胞。简单易用:简单友好的用户界面,可实时观察全部细胞图像和统计学数据。配置灵活:最高可升级至 6 根激光器。功能强大:提供数百种量化成像分析参数,实现无与伦比的广泛应用。参考文献:Erdbrügger, Uta, and Joanne Lannigan. "Analytical challenges of extracellular vesicle detection: A comparison of different techniques." Cytometry Part A 89.2 (2016): 123-134.Headland, S., Jones, H., D'Sa, A. et al. Cutting-Edge Analysis of Extracellular Microparticles using ImageStreamX Imaging Flow Cytometry. Sci Rep 4, 5237 (2014). https://doi.org/10.1038/srep05237.Clark, R. Imaging flow cytometry enhances particle detection sensitivity for extracellular vesicle analysis. Nat Methods 12, i–ii (2015). https://doi.org/10.1038/nmeth.f.380.Gurunathan, S. Kang, M.-H. Jeyaraj, M. Qasim, M. Kim, J.-H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019, 8, 307.https://doi.org/10.3390/cells8040307.
  • 复旦大学附属儿科医院150.00万元采购流式细胞仪,细胞计数器
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 流式细胞仪,细胞计数器 开标时间: 2021-11-30 10:00 采购金额: 150.00万元 采购单位: 复旦大学附属儿科医院 采购联系人: 朱老师 采购联系方式: 立即查看 招标代理机构: 上海沪港建设咨询有限公司 代理联系人: 刘未 代理联系方式: 立即查看 详细信息 复旦大学附属儿科医院流式细胞仪公开招标公告 上海市-徐汇区 状态:公告 更新时间:2021-11-07 复旦大学附属儿科医院流式细胞仪公开招标公告 发布日期:2021-11-07 项目概况 复旦大学附属儿科医院流式细胞仪 招标项目的潜在投标人应在上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口)获取招标文件,并于2021年11月30日 10点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:21工080543(代理机构内部编号) 项目名称:复旦大学附属儿科医院流式细胞仪 预算金额:150.0000000 万元(人民币) 最高限价(如有):150.0000000 万元(人民币) 采购需求: 1.标的的名称:复旦大学附属儿科医院流式细胞仪 2.项目基本概况介绍:本项目拟采购流式细胞仪一台,用于细胞分型、细胞凋亡和周期分析、细胞表面抗原的免疫学分析、细胞因子多重分析等,用于血液样本、体液样本、培养细胞样本、组织样本的流式细胞分析。(具体内容及所应达到的具体要求,详见招标文件第三章 技术规格及要求相应规定为准。) 合同履行期限:要求合同生效的90天内交货,到货后以院方通知30天内安装调试完成,并提供至少三年的原厂整机维保。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目面向大、中、小、微型等各类供应商采购。 3.本项目的特定资格要求:3.1具有承接本项目必须具备的资质证明文件(1)投标产品具备国家相关行业主管部门颁发的有效期内的医疗器械注册证(备案凭证)(2)投标人具备与本次招标内容相适应的医疗器械经营许可证(备案凭证),如投标人是投标货物制造厂家,则具备与本次招标内容相适应的医疗器械生产许可证(备案凭证)替代;3.2投标人未被列入“信用中国”网站(www.creditchina.gov.cn)失信被执行人名单、重大税收违法案件当事人名单和中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单;3.3投标人与项目参与各方(采购人或代理机构或参与本项目其他的供应商或与之关联单位)不存在控股、管理等利害关系;3.4本项目不接受联合体投标。 三、获取招标文件 时间:2021年11月08日 至 2021年11月12日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外) 地点:上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口) 方式:本项目实行网上(以邮件形式)报名,符合条件的单位在获取采购文件时间内将下列有效报名资料彩色扫描后发送至liu331517378@163.com。提交资料审核通过后,按要求缴纳费用并填写信息提交(快递)报名材料至上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口)。招标文件工本费500元/本,售后不退。获取采购文件需提交的资料:1.供应商的证明文件(如:营业执照)(加盖公章的复印件);2.法定代表人授权书(原件)及被委托人身份证(加盖公章的复印件);3.“信用中国网”(www.creditchina.gov.cn)信用信息报告(加盖公章)及“中国政府采购网”(www.ccgp.gov.cn)政府采购严重违法失信行为记录(截图并加盖公章),查询显示时间不早于本公告发布之日,若存不良记录需提供完整的处罚信息。以上资料如有缺漏,代理机构将拒绝接受其报名。如需现场报名请先咨询预约招标业务人员,否则不予接待。采购代理机构对报名资料的审验并不作为投标单位资格条件的最终认定,投标单位对报名资料的真实性、有效性负责,原件开标现场备查。评审时仍由评标委员会对投标单位的资格证明材料进行资格审核,不符合招标资格条件的投标单位将被拒绝。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年11月30日 10点00分(北京时间) 开标时间:2021年11月30日 10点00分(北京时间) 地点:上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 鼓励节能、环保政策:在性能、技术、服务等指标同等条件下,优先采购属于国家公布的节能、环保清单中产品。扶持鼓励福利企业政策:在同等条件下优先采购福利企业(提供福利企业证书)的产品和服务。扶持中小企业政策:小型、微型企业产品价格扣除比例:6%。监狱企业、残疾人福利性单位视同小型、微型企业。 如果潜在供应商认为本供应商资格条件或采购内容中存在倾向性或排斥性的内容,可以在投标截止时间10天前以书面形式向上海沪港建设咨询有限公司提出,并附相关证明资料。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:复旦大学附属儿科医院 地址:上海市闵行区万源路399号 联系方式:朱老师 电话021-64932646 2.采购代理机构信息 名 称:上海沪港建设咨询有限公司 地 址:上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口) 联系方式:刘未、褚利18721731902、15901825520 3.项目联系方式 项目联系人:刘未 电 话: 18721731902 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:流式细胞仪,细胞计数器 开标时间:2021-11-30 10:00 预算金额:150.00万元 采购单位:复旦大学附属儿科医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海沪港建设咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看详细信息 复旦大学附属儿科医院流式细胞仪公开招标公告 上海市-徐汇区 状态:公告 更新时间: 2021-11-07 复旦大学附属儿科医院流式细胞仪公开招标公告 发布日期:2021-11-07 项目概况 复旦大学附属儿科医院流式细胞仪 招标项目的潜在投标人应在上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口)获取招标文件,并于2021年11月30日 10点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:21工080543(代理机构内部编号) 项目名称:复旦大学附属儿科医院流式细胞仪 预算金额:150.0000000 万元(人民币) 最高限价(如有):150.0000000 万元(人民币) 采购需求: 1.标的的名称:复旦大学附属儿科医院流式细胞仪 2.项目基本概况介绍:本项目拟采购流式细胞仪一台,用于细胞分型、细胞凋亡和周期分析、细胞表面抗原的免疫学分析、细胞因子多重分析等,用于血液样本、体液样本、培养细胞样本、组织样本的流式细胞分析。(具体内容及所应达到的具体要求,详见招标文件第三章 技术规格及要求相应规定为准。) 合同履行期限:要求合同生效的90天内交货,到货后以院方通知30天内安装调试完成,并提供至少三年的原厂整机维保。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目面向大、中、小、微型等各类供应商采购。 3.本项目的特定资格要求:3.1具有承接本项目必须具备的资质证明文件(1)投标产品具备国家相关行业主管部门颁发的有效期内的医疗器械注册证(备案凭证)(2)投标人具备与本次招标内容相适应的医疗器械经营许可证(备案凭证),如投标人是投标货物制造厂家,则具备与本次招标内容相适应的医疗器械生产许可证(备案凭证)替代;3.2投标人未被列入“信用中国”网站(www.creditchina.gov.cn)失信被执行人名单、重大税收违法案件当事人名单和中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单;3.3投标人与项目参与各方(采购人或代理机构或参与本项目其他的供应商或与之关联单位)不存在控股、管理等利害关系;3.4本项目不接受联合体投标。 三、获取招标文件 时间:2021年11月08日 至 2021年11月12日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外) 地点:上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口) 方式:本项目实行网上(以邮件形式)报名,符合条件的单位在获取采购文件时间内将下列有效报名资料彩色扫描后发送至liu331517378@163.com。提交资料审核通过后,按要求缴纳费用并填写信息提交(快递)报名材料至上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口)。招标文件工本费500元/本,售后不退。获取采购文件需提交的资料:1.供应商的证明文件(如:营业执照)(加盖公章的复印件);2.法定代表人授权书(原件)及被委托人身份证(加盖公章的复印件);3.“信用中国网”(www.creditchina.gov.cn)信用信息报告(加盖公章)及“中国政府采购网”(www.ccgp.gov.cn)政府采购严重违法失信行为记录(截图并加盖公章),查询显示时间不早于本公告发布之日,若存不良记录需提供完整的处罚信息。以上资料如有缺漏,代理机构将拒绝接受其报名。如需现场报名请先咨询预约招标业务人员,否则不予接待。采购代理机构对报名资料的审验并不作为投标单位资格条件的最终认定,投标单位对报名资料的真实性、有效性负责,原件开标现场备查。评审时仍由评标委员会对投标单位的资格证明材料进行资格审核,不符合招标资格条件的投标单位将被拒绝。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年11月30日 10点00分(北京时间) 开标时间:2021年11月30日 10点00分(北京时间) 地点:上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 鼓励节能、环保政策:在性能、技术、服务等指标同等条件下,优先采购属于国家公布的节能、环保清单中产品。扶持鼓励福利企业政策:在同等条件下优先采购福利企业(提供福利企业证书)的产品和服务。扶持中小企业政策:小型、微型企业产品价格扣除比例:6%。监狱企业、残疾人福利性单位视同小型、微型企业。 如果潜在供应商认为本供应商资格条件或采购内容中存在倾向性或排斥性的内容,可以在投标截止时间10天前以书面形式向上海沪港建设咨询有限公司提出,并附相关证明资料。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:复旦大学附属儿科医院 地址:上海市闵行区万源路399号 联系方式:朱老师 电话021-64932646 2.采购代理机构信息 名 称:上海沪港建设咨询有限公司 地 址:上海市徐汇区斜土路2358号(车行入口)斜土路2364号(人行入口) 联系方式:刘未、褚利18721731902、15901825520 3.项目联系方式 项目联系人:刘未 电 话: 18721731902
  • 会议预告|细胞命运决定与人类疾病国际研讨会
    细胞命运决定是生命个体的生死决定,对所有的生命个体都至关重要。神经细胞的过早衰亡导致神经退化性疾病,肿瘤细胞的死亡逃逸奠定了肿瘤的发生发展。研究细胞的生死决定几乎涵盖了所有的重要生命活动和人类重大疾病。珀金埃尔默可提供从无标记到多标细胞组学智能解决方案,以及从2D到3D的飞跃模拟生理微环境方案。更多信息请关注珀金埃尔默市场开发经理张薇的报告。时间:2019年10月13日13:00–13:15地点: 上海交通大学医学院东院懿德楼报告题目: 在细胞表型3.0时代,助您更深入了解细胞命运为进一步凝练科研方向,聚焦国际前沿科学问题,上海交通大学医学院联合上海交通大学医学院联合细胞分化与凋亡教育部重点实验室、癌基因与相关基因国家重点实验室和《NEJM医学前沿》(《新英格兰医学杂志》中文版),于2019年10月11日-14日,在上海交通大学医学院懿德楼召开“细胞命运决定与人类疾病国际研讨会”。本次研讨会将邀请细胞命运决定国际前沿领域(凋亡,自噬,坏死,衰老及肿瘤代谢)国际顶尖的科学家以及研究人员共聚一堂,旨在探讨细胞命运决定的最前沿、最激动人心的科研方向。会议详情请点击链接:http://www.cfdchina.org关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 流式大咖说|FSC与SSC在流式细胞术中的应用——西南医院马清华副研究员
    仪器信息网特别策划话题:#3i流式大咖说#(点击查看),邀请高校、科研院所、临床、生物技术企业等流式技术研发、应用专家分享技术心得和经验,方便生命科学领域研究人员了解相关技术应用进展、学习仪器使用方法。本期,西南医院西南癌症中心流式平台负责人马清华副研究员带我们了解FSC与SSC在流式细胞术中的应用。FSC与SSC在流式细胞术中的应用作者:西南医院 马清华 副研究员流式细胞术利用细胞大小和粒度定义细胞群特征。细胞大小用前向散射光FSC(Forward Scatter)测量,细胞的粒度用侧向散射光SSC(Side Scatter)测量。FSC收集细胞折射后向前散射的光,所以FSC除了测量细胞大小,还与核质比、膜形貌和其他细胞特征相关;SSC收集垂直于激光束的散射光以及细胞内部颗粒的散射光,所以SSC可以反映细胞复杂性和粒度,如下图。1.细胞亚群的分类 FSC和SSC一般以线性模式运行,范围从0到250000。大细胞具有较高的FSC和SSC值,位于FSC/SSC图的右上部分(如粒细胞)。红细胞等小细胞具有较低的FSC值,由于实验中红细胞已被溶解,其碎片出现在散点图左下角;淋巴细胞是小细胞,颗粒不大,因此FSC和SSC值较低。单核细胞更大,颗粒更大,细胞群在FSC轴上进一步向右移动,在SSC轴上向上移动一点,因此它们的FSC和SSC值更高。顾名思义,粒细胞是颗粒状的,也很大,所以它们有很高的FSC和SSC值。2.判定细胞活性状态 FSC/SSC不仅可以对细胞群进行分类,而且有助于排除细胞碎片和死细胞, 用于细胞活性状态的判定。通常死细胞与细胞碎片的FSC和SSC较低,而凋亡细胞的FSC会变小SSC变大。如下图,通过FSC与SSC判断,A图细胞活性差,基本是死亡细胞与凋亡细胞(P1门内为89.6%);B图中细胞群分为两群,P1门中的细胞群为凋亡及死亡细胞(27%),P2门中的细胞活性状态好。FSC/SSC常被应用于判定分选前及检测时的细胞活性状态、分选后细胞的活性状态以及原代细胞提取的活性状态。FSC/SSC是否能够真实的反应细胞死活状态呢,我们用7AAD对B图的细胞进行分析,从下图可以看出P门中有95.2%的7AAD-细胞,而P1门中有52.5%的7AAD-细胞。虽然P1门中有52.5%的7AAD-细胞,但是从图中可以发现其细胞大部分集中于左下角。这与7AAD的染色原理有很大的关系。7AAD 是经典的核酸染料,判断细胞的活性通常依赖于其插入DNA。7AAD不能穿透完整的细胞膜,但可以通过细胞凋亡过程中形成的膜裂口和孔隙。7AAD可以使任何缺乏完整膜的细胞都能被核染色。但是,在严重受损的细胞后期如细胞凋亡的晚期,只有含有核酸的凋亡小体才能够被7AAD染成阳性,其余的细胞碎片没有或含有低的DNA含量,这部分群体将会成为7AAD-群体事件。所以FSC/SSC可以用于判定活死细胞。3.排除细胞双链体FSC与SSC信号脉冲由信号处理器把脉冲信号高度(Height)、面积(Area)和宽度(Width)定量为一定的数值。这些数据有流式细胞仪的配置计算机工作站进一步分析处理。因此,可以通过面积信号、宽度信号、高度信号对双链体的细胞进行处理。一般用FSC-H/FSC-A、FSC-H/FSC-W以及SSC-H/SSC-W处理双链体细胞。 小结 FSC与SSC是流式细胞术的基本术语。科研工作者充分利用好FSC/SSC,能够轻松的判断分选及检测前细胞活性状态、细胞分选后细胞活性状态、免疫细胞分群等,同时还可以利用FSC/SSC去除细胞中的黏连体细胞。【个人简介】西南医院西南癌症中心流式平台负责人 马清华 副研究员现任西南医院西南癌症中心流式平台负责人,主要从事流式细胞平台的运行管理、用户培训以及流式细胞分选及分析工作。目前,承担省部级课题一项,参与多项国家级课题。以第一或通讯作者发表流式细胞术相关SCI论著2篇,参与多篇高分SCI论著的发表,并参编专著 1 部。(本文编辑:刘立东KOL) 相关推荐:流式大咖说|量化成像分析流式在水生生物研究中应用——中国科学院水生生物研究所高级工程师 汪艳流式大咖说|流式检测中最易忽视的时间参数——首都医科大学中心实验室副主任技师 徐晓雪 流式大咖说|技术干货|如何去黏连?流式新手绕不开的数据处理难题 流式大咖说|流式细胞技术平台发展与使用心得分享中科院分子细胞卓越中心 俞珺璟博士【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)
  • 死细胞染料超低价现货大促销
    Propidium iodide (PI)和7-aminoactinomycin D (7-AAD)是最常用的死细胞指示剂,可用于荧光显微镜、激光共聚焦、流式细胞仪检测等实验方法。为答谢广大客户对联科的支持和厚爱,联科生物特推出原装进口(Life Technologies)的死细胞染料优惠大酬宾,超低价现货供应PI和7-AAD 死细胞染料。PI通过嵌入碱基与DNA结合,对序列几乎没有偏好性,每4-5个碱基对可结合一个染料。PI也能与RNA结合,通过核酸酶处理可区分RNA和DNA染色。一旦PI与核酸结合,其荧光可增强20-30倍,最大激发光为535nm,最大发射光为617nm。PI为膜不通透性,无法透过活细胞膜,可用于鉴定死细胞或复染及细胞周期检测等。图1 人Jurkat T细胞经Alexa Fluor 488 annexin V和PI染色。人Jurkat T细胞经1 μM camptothecin处理,早期的凋亡细胞磷脂酰丝氨酸(PS)外翻,与Alexa Fluor 488 annexin V(绿色)结合,晚期凋亡细胞和坏死细胞可被PI染色(红色)。7-AAD可与DNA结合,该复合物由488 nm激光激发,最大发射光为647 nm。7-AAD可被活细胞排斥,但也可用于固定破膜的细胞。7-AAD可用于细胞周期检测、死细胞鉴定等实验。7-AAD与DNA的GC区选择性地结合,在多线染色体和染色质中产生不同的带型,用于染色体带型研究。图2 人Jurkat T细胞经10 μM camptothecin处理4h(右图)或未处理(左图),用流式细胞仪进行分析。Camptothecin处理的细胞具有更高比例的凋亡细胞(A)。L=活细胞;D=死细胞。名称 货号 规格 目录价(¥) 促销价(¥) Propidium Iodide - FluoroPure Grade P21493 100 mg 2210 1000 7-Aminoactinomycin D (7-AAD) A1310 1 mg 1916 800 阅读原文:http://www.liankebio.com/ProductCenterShow/articleID/2014070008.html
  • 前沿评述│厦门大学杭纬课题组——单细胞质谱成像技术的新进展
    近期,厦门大学杭纬教授在JACS上发表了题为“Nanoscale three-dimensional imaging of drug distributions in single cells via laser desorption post-ionization mass spectrometry”的高水平论文,中央民族大学再帕尔阿不力孜教授对该课题组近些年的工作进行了评述。中央民族大学 再帕尔阿不力孜教授再帕尔• 阿不力孜:中央民族大学原副校长,现任药学院院长、中央民族大学生物成像与系统生物学研究中心负责人、“质谱成像与代谢组学”国家民委重点实验室主任,二级教授。中国医学科学院药物研究所研究员、博士生导师,天然药物活性物质与功能国家重点实验室副主任,北京协和医学院药物分析学系主任。北京市政协常委,国务院学位委员会第七届药学学科评议组成员,教育部科技委药学与中医药学部委员;中国分析测试协会副理事长,中国化学会质谱分析专业委员会副主任委员等。首批“新世纪百千万人才工程”国家级人选,享受国务院政府特殊津贴专家,国家民委领军人才。APSB、RCM、JANPR以及《分析化学》、《药学学报》、《化学进展》、《质谱学报》、《分析测试学报》和《分析仪器》等国内外学术期刊编委。长期从事基于质谱技术的分析方法、新技术及其生物医药的应用研究。曾担任国家“863”计划项目首席专家,现任国家重点研发计划项目负责人。作为主要作者发表学术论文约120篇。获得教育部自然科学奖一等奖(第3完成人);以第一完成人分别获得北京市科技进步二等奖1项,中国分析测试协会科学技术奖二等奖3项、一等奖1项、特等奖1项等。随着1997年R. Caprioli教授等首次将MALDI-TOF MS技术用于生物组织中多肽和蛋白质成像分析后,极大地推动了质谱成像技术(MSI)的发展。这20多年来,因不同原理及多种类型MSI技术的发展及其应用领域的拓展,使其成为质谱领域乃至分析化学、分子影像技术以及生物医药等领域的前沿与热点方向之一而备受关注。此外,单细胞水平的研究可以揭示生命活动规律、疾病发病机制、药物靶向治疗等重大科学问题,是当前生命科学中最热点的研究领域之一。目前,从分析化学与技术角度来看,荧光显微镜技术在单细胞分析领域的应用最为普遍,但该技术因需引入能发荧光的探针分子,这为单细胞内源物质、小分子药物及其代谢物的发现与表征带来了严重的限制。与之相比,质谱成像技术以其免标记、多元素/分子同时检测等优点,为单细胞分析提供了新的研究手段。其中,SIMS技术因具有高空间分辨率等优势发挥着重要作用;而应用面更广的MALDI-MSI等激光解吸电离质谱技术常常受限于空间分辨率等关键问题,遇到巨大挑战。为解决激光解吸电离质谱单细胞成像技术面临的空间分辨率等瓶颈问题,近年来,厦门大学杭纬课题组相继研发出3个新技术,并取得了一系列的创新成果。1)针尖增强解吸质谱仪的研制。创新性地将激光照射贵金属针尖所产生等离激元共振增强效应作为解吸机制,并采用自制的TOF MS质量分析器,展现了纳米尺度弹坑并采集相应质谱信号的能力和重现性,实现了多种无机盐残留物的多元素分析,获得了50 nm横向分辨率的钾盐残留物质谱成像。该方法为化学组成在纳米尺度的分析与成像提供了新的途径。2)近场解吸成像质谱仪的研制。采用有孔光纤传导激光、光纤尖端开孔仅200 nm以及尖端的瞬逝光进行解吸等手段,通过原子力自动控制光纤尖端到样品表面的距离,无需使用探针,获得空间分辨率为250 nm的多种药物在单细胞内的分布成像结果。该质谱仪将近场解吸的分子通过深紫外激光后电离,具有离子效率高、传输性好等特点,达到amol级绝对检出限;克服了样品表面起伏产生误信号的问题,精准实现形貌和化学成分清晰的共成像图。3)微透镜光纤激光解吸电离质谱仪的研制与单细胞质谱成像分析新进展。首先,该课题组研制了微透镜光纤激光解吸电离质谱仪(MLF-LDPI-TOF MS),即借助物理研磨手段,在单模光纤的一端加工得到曲率半径极小的微球面(R=4.5 μm),以此微球作为微型平凸透镜,将激光聚焦在样品表面,实现对样品的解吸与离子化,并通过自主研制的飞行时间型质量分析器进行检测。因采用极短的焦距,在样品表面获得采样弹坑直径约为350 nm的结果。通过将抗癌药物柔红霉素(DRB)负载在叶酸修饰的Fe3O4颗粒表面并与癌细胞共同培养,对不同培养时间的癌细胞进行质谱成像分析,同时获得细胞内纳米颗粒、纳米颗粒表面的叶酸修饰基团和所负载药物在细胞器水平上的分布,直观地揭示出药物随着培养时间的增加,从纳米颗粒表面释放、进入细胞核,并最终诱导癌细胞凋亡这一动态过程的结果。该课题组进一步采用MLF-LDPI-TOF MS技术,成功实现单细胞3D成像分析,在纳米尺度实现了2种抗肿瘤药物在单个细胞内三维空间分布成像,获得500 nm×500 nm×500 nm的空间分辨率。通过采用微透镜光纤实现在细胞表面纳米尺度的采样,并引入157 nm后电离激光提高了离子化效率、检测灵敏度及电离源的信号稳定性。同时提出了一种基于嵌入式均匀圆形聚苯乙烯微球的三维定位方法,可用于准确重构还原药物在单细胞内的三维分布分析。在此基础上,通过自主设计具有三通结构的样品剥蚀池,将微透镜光纤激光采样技术与ICP-MS相结合,构建微透镜光纤激光溅射-ICP-MS的单细胞质谱成像技术平台,实现低至400 nm空间分辨率的生物组织和单细胞内多种化合物的质谱成像分析。该装置还可实现可调分辨率的成像模式,如对同一小鼠小肠剖面组织切片进行从500 nm至10 μm空间分辨率的药物成像分析,高分辨模式的成像能够更直观、更精准地描绘出小肠组织内微小细节和药物的分布,获得小肠对药物的吸收和作用机理相关的关键信息。此外,将HeLa细胞与金纳米棒、卡铂等药物同时培养后进行成像分析,结果发现金纳米棒主要位于细胞的溶酶体内;而卡铂药物被癌细胞摄取后主要分布在细胞核内,通过与核内DNA的相互作用诱导癌细胞的凋亡。杭纬课题组长期致力于激光溅射/解吸质谱技术与装置的研制,其中在基于激光解吸电离的高空间分辨质谱成像技术中,微透镜光纤激光解吸电离质谱技术尤为出色。该技术首次提出了一种经济可靠、操作简单、普适性强、具有纳米空间分辨率的激光解吸电离质谱成像手段,其空间分辨率远超目前商品化的激光采样质谱技术,并成功实现了对细胞内多种元素和分子在细胞器水平上的可视化分析与定位,有望在生命科学、医学和药学等多个领域拓展应用。doi: 10.7538/zpxb.2022.2000杭纬:厦门大学南强特聘教授,厦门大学化学化工学院教授、博士生导师。主要从事分析仪器的研究和发展,包括质谱仪器的研制、信号检测新技术的开发、离子源及其接口技术的研究、其他分析仪器与质谱分析法的联用新技术;分析仪器的应用,包括以质谱为核心的各种分析仪器在生物、医药、环境、材料、冶金、矿产、安检和商检等领域的应用。在Sci. Adv., J. Am. Soc. Chem., Angew. Chem. Int. Ed., ACS Nano, Anal. Chem.等期刊发表SCI论文170余篇。主持国家自然科学基金国家重大科研仪器研制项目、科学仪器基础研究专款、面上项目和国家863计划等课题以及美国能源部、国土安全部、疾病防治与预防中心资助课题。
  • 科学家开发出治疗疾病的新型细胞疗法
    博士Eric T. Ahrens表示,起初我们想观察这种技术联合作用对于新型细胞疗法的效果,而我们可以通过反馈细胞活性、改善剂量等途径来改善细胞疗法的效率;当前并没有有效的方法对人类机体中的细胞进行成像,早先可以利用基于金属离子的血管MRI对比制剂和放射性同位素来成像,但是其在体内就不能够对细胞进行有效区分了。hz-E10044 human soluble cluster of differentiation 28,sCD28 ELISAkit 人可溶性CD28(sCD28)检测试剂盒 hz-E10045 Human lymphocyte factor ELISAkit 人淋巴细胞因子检测试剂盒 hz-E10046 Human thymus activation regulated chemokine,TARC ELISAkit 人胸腺活化调节趋化因子(TARC/CCL17)检测试剂盒 hz-E10047 Human Neural cell adhesion molecule ligand 1,NCAM-L1 人神经细胞粘附分子配体1(NCAM-L1/CD171)检测试剂盒 ELISAkit hz-E10048 Human Cobra venom neuronal protective factor,CVNPF ELISAkit 人神经保护因子(CVNPF)检测试剂盒 hz-E10049 Human soluble Tumor Necrosis Factorαreceptor,sTNFαR 人可溶性肿瘤坏死因子α受体(sTNFαR)检测试剂盒 ELISAkit hz-E10050 Human soluble cytokine receptor,sCKR ELISAkit 人可溶性细胞因子受体(sCKR)检测试剂盒 hz-E10051 Human soluble Factor-related Apoptosis ligand,sFASL/Apo-1 人可溶性凋亡相关因子配体(sFASL)检测试剂盒 ELISAkit hz-E10052 Human inhibitor of apoptosis,IAP ELISAkit 人细胞凋亡抑制因子(IAP)检测试剂盒 hz-E10053 Human colony-stimulating factor,CSF ELISAkit 人集落刺激因子(CSF)检测试剂盒 hz-E10054 Human monocyte interferon gamma inducing factor,MIGF 人γ干扰素诱导单核细胞因子(MIGF/CXCL9)检测试剂盒 ELISAkit hz-E10055 Human Interferon inducible T-cell Chemoattractant,I- 人干扰素诱导T细胞趋化因子(ITAC/CXCL11)检测试剂盒 TAC ELISAkit hz-E10056 Human cluster Of differentiation,CDl4 ELISAkit 人CD14分子(CDl4)检测试剂盒 hz-E10057 Human apoptosis inducing factor,AIF ELISAkit 人凋亡诱导因子(AIF)检测试剂盒 hz-E10058 Human leukocyte common antigen,LCA/CD45 ELISAkit 人白细胞共同抗原(LCA/CD45)检测试剂盒 hz-E10059 Human cluster Of differentiation,CD4 ELISAkit 人CD4分子(CD4)检测试剂盒 hz-E10060 Human Placenta Cadherin,P-cad ELISAkit 人P钙黏蛋白/胎盘钙黏蛋白(P-cad)检测试剂盒 hz-E10061 Human Keratinocyte Growth Factor,KGF ELISAkit 人角化细胞生长因子(KGF)检测试剂盒 hz-E10062 Human Platelet-Derived Growth Factor-BB,PDGF-BB ELISAkit 人血小板衍生生长因子BB(PDGF-BB)检测试剂盒 hz-E10063 Human CXC-chemokine ligand 16,CXCL16 ELISAkit 人CXC趋化因子配体16(CXCL16)检测试剂盒 研究者表示,这项研究中他们利用全氟碳化合物(PFC)示踪技术和非侵入性磁共振成像成技术进行结合来直接检测标记细胞的氟原子,自然状态下氟原子在机体中的浓度极低,这就可以利用MRI技术对氟标记的细胞进行观察;而本文中研究者首次通过患者的白细胞制备了被修饰和标记的树突细胞,随后研究者将这些细胞注入到4期结直肠癌患者的机体中来刺激机体抗癌T细胞免疫反应。
  • 间充质干细胞治疗的前世今生
    近几十年来,医疗技术快速发展,对人们健康做出了巨大贡献,但是越来越多难以治愈的疾病,如癌症、糖尿病、心血管疾病和老年痴呆症等发病率也在不断攀升,而以化学药物和手术治疗为支柱的传统西医学发展逐渐遭遇瓶颈。 20世纪末以来,以干细胞技术为核心、被科学界誉为第三次医学革命的再生医学成为了人们治愈此类疾病的新希望。全球干细胞领域领军人物哈佛大学资深医学专家威廉.雷德博士说:“再生医学是继药物、手术治疗后的又一场医学革命,他拥有治愈疾病、器官再生、延长生命的潜能。并且可以完全颠覆我们的行医方法”。 一、间充质干细胞间充质干细胞(MSC)是一类早期未分化细胞,具有自我更新、自我复制、无限增殖及多向分化潜能等特点,可通过分泌细胞因子,减少炎症、减少组织细胞凋亡、促进内源性组织器官的干祖细胞增殖及进行免疫调节,从而作为种子细胞达到修复组织器官的效果。 目前间充质干细胞治疗各种疾病的临床试验在世界范围内都在如火如荼的进行中,截止目前,clinicaltrial.gov网站注册应用的间充质干细胞相关的临床试验超过950项,中国临床试验注册中心注册的间充质干细胞临床试验超过150项。 二、间充质干细胞治疗优势多向分化:具有强大的增殖能力和多向分化潜能;免疫调节:免疫原性低,有免疫调节功能,使用不引起免疫排斥反应,且可抑制排斥反应;数量丰富:各组织中含量丰富,易于采集。繁殖力强:经体外培养可达10亿个,供多次使用。安全可靠:基因稳定,不易突变,多次传代扩增后仍具有干细胞特性。适用面广:适用范围广泛,几乎可用于治疗所有的组织损伤、衰老及退行性病变。三、临床产品示例1.移植物抗宿主病:TEMCELL2016年2月,Mesoblast公司的药物在日本获批上市,商品名称TEMCELL。TEMCELL是一款骨髓来源的间充质干细胞产品,主要批准用于儿童和成人的移植物抗宿主病。这是日本国内首个获批的异体细胞治疗药物。2.骨关节炎治疗药物:CartistemMedi-post公司的Cartistem是通过分离间充质干细胞,培养并制成商品化的药物。主要用于治疗由于年龄、创伤、退行性及疾病引起的骨关节炎。爱必信为您提供优质的无血清培养基,助力细胞治疗!爱必信无血清培养基优点:1.无外源动物蛋白成分,大大降低各类病毒、霉菌和支原体等的污染风险。2.全程无血清生产,极大降低批次间差异。3.可用于原代分离,且培养过程无需包被培养板。4.扩增效率高,24h左右增殖翻倍,节省培养时间。5.内毒素 abs9416 成软骨检测染液 100ml 462 abs9415 成骨检测染液 100ml 462 abs9413 无血清细胞冻存液(治疗级) 100ml 1712 abs9417 无血清细胞冻存液(科研级) 100ml 662 abs9402 Xeno-Free人间充质干细胞培养基 100ml/500ml 998/3108 abs9401 Xeno-Free人间充质干细胞培养基(无酚红) 100ml/500ml 998/3108 abs9405 人多能干细胞分化培养基 500ml 2289 abs9404 人多能干细胞完全培养基 500ml 3444 abs9403 人多能干细胞条件培养基 500ml 2772 abs9409 人多能干细胞消化液 100ml 305 abs9420 人脂肪干细胞无血清培养基(无酚红) 500ml 2548 abs9419 人脐带间充质干细胞无血清培养基(无酚红) 500ml 2548 abs9407 人间充质干细胞成脂分化试剂盒 100ml 1953 abs9418 人间充质干细胞成软骨分化试剂盒 100ml 2069 abs9406 人间充质干细胞成软骨分化试剂盒 100ml 2069 abs9408 人间充质干细胞成骨分化试剂盒 100ml 2541 abs9412 ES/iPS细胞冻存液 100ml 1943Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)... 爱必信(上海)生物科技有限公司联系邮箱:info@absin.cn公众平台:爱必信生物
  • 正常皮肤细胞中存在大量癌症相关突变的启示
    《科学》杂志发表的一项最新研究显示,正常皮肤存在的癌症相关基因突变数量高的惊人。这一研究结果有助于揭示细胞如何癌变的,表明分析正常组织对于理解癌症起源具有重要意义。研究发现,每个正常面部皮肤细胞都携带着数以千计的突变,主要是因暴露于阳光下导致。来自4位无癌志愿者的样本中,大约25%皮肤细胞携带至少一个癌症相关基因突变。对234份活检样本的基因测序发现有3760个突变,每平方厘米皮肤上就有100多个与癌症相关基因突变。带有突变基因的细胞克隆的细胞群,已长到正常增殖细胞群的两倍,不过这些细胞都未出现癌变。桑格研究所彼得坎贝尔博士认为,基因序列分析技术对理解癌症发生,尤其是从正常细胞向癌症细胞转化的过程十分重要,研究发现某些癌症相关突变确实能促进细胞增殖,如果这种细胞基因突变继续发生,将有可能出现真正的癌变过程。但到底需要多少这种突变,目前仍不清楚。研究发现这些光照音符的突变和皮肤鳞状细胞癌相关,但与黑色素瘤关系不大。样本取自4位年龄在55-73岁的志愿者,都接受过手术切除部分影响视力的眼睑皮肤。由于眼睑暴露于阳光下,这是积累了一生的突变。研究人员估计,被阳光直接照射的皮肤细胞平均每天都会在基因组中出现一个新突变。血液样本分析表明,没有癌症的人基因突变数量很低,只有少部分人血液细胞中携带致癌基因突变。由于阳光照射,皮肤细胞更易发生基因突变,预计每个成年人皮肤中都有成千上万个皮肤癌相关基因突变。这项研究还证明,用正常组织能更好地理解癌症发生的源头。启示:首先,基因突变,哪怕是癌症相关基因突变,不是癌症产生的全部条件。从正常皮肤细胞中发现大量癌症相关基因突变,那么在癌症组织中发生的突变也不一定是导致癌症的所有原因。美国目前倡导的精准医疗,正是针对这些癌症相关突变进行精准治疗,那么其效果不仅不能保证,而且显然会有一些错误的目标。既然正常组织中都存在大量癌症相关突变,那么这些突变如果作为精准打击目标,显然是多余的浪费的。也有一种可能,癌症相关突变也许是细胞生存的策略,一直有一种困惑,癌症细胞相关改变和机体应对损伤的自身保护往往使用同样一套工具,例如癌症细胞不容易发生细胞凋亡,而抗凋亡是许多组织避免损伤的最重要方式。因此所谓癌变,可能是一种适应外界环境付出的一种代价。好比心脏功能,如果组织存在血液灌流不足,需要增加血压,血压增加导致心脏负担增大,于是引起心脏肌肉肥厚,促进了心脏的力量,但是这同时导致心脏自身需要更多能量维持,最终无法维持,导致心脏功能衰竭。
  • 我国科学家揭示细胞程序性坏死及免疫稳态调控新机制
    近日,中国科学院上海营养与健康研究所研究员章海兵团队在Cell Death and Differentiation上在线发表题为Caspase-8 auto-cleavage regulates programmed cell death and collaborates with RIPK3/MLKL to prevent lymphopenia的研究成果。该研究揭示了细胞凋亡起始蛋白caspase-8的自我剪切抑制细胞程序性坏死并协同坏死关键蛋白RIPK3/MLKL抑制淋巴细胞减少的免疫缺陷性疾病的发生。   细胞程序性坏死(Necroptosis)是一种由激酶RIPK1/RIPK3的级联磷酸化调控的促炎细胞死亡形式。细胞程序性坏死通过MLKL蛋白聚合在膜上打孔裂解细胞膜,执行细胞死亡并释放损伤相关分子模式(DAMPs)触发炎症反应。已知细胞程序性坏死参与调控系统性炎症反应综合征(SIRS)、系统性红斑狼疮及自身免疫性的淋巴增生综合征(ALPS)等多种疾病。因此,对于细胞程序性坏死机制及其生物学意义的研究对于相关疾病的防治具有重要意义。  Caspase-8是天冬氨酸特异的半胱氨酸蛋白酶,最初被鉴定为细胞凋亡途径的起始蛋白。近几年的研究表明,caspase-8通过剪切RIPK1来抑制细胞程序性坏死。除此之外,caspase-8还参与细胞免疫稳态调控。临床上Caspase-8基因突变的病人会出现免疫缺陷疾病,并伴有免疫系统紊乱,表现为多器官的免疫细胞浸润并出现肉芽肿。研究发现Caspase-8通过其催化活性发挥功能,并且caspase-8的完全激活需要进行自我剪切。因此,探究caspase-8的自我剪切在调控免疫稳态中的作用机制,对于深入了解caspase-8的作用机制及相关临床疾病的治疗具有重要意义。  该研究中,研究人员首先发现在细胞程序性坏死刺激条件下,caspase-8的自我剪切出现诱导性增强,因此推断caspase-8的自我剪切可能参与程序性坏死的调控。通过构建caspase-8自我剪切突变小鼠(Casp8ΔE385/ΔE385)发现,该小鼠可以抵抗细胞凋亡诱导的急性肝损伤,但高度敏感于程序性坏死诱导的全身炎症反应综合征(SIRS),该结果在动物水平证明caspase-8自我剪切可以促进细胞凋亡并抑制程序性坏死。同时,研究人员进一步通过分离原代细胞实验证明caspase-8自我剪切负调控死亡复合体II的形成和稳定,从而抑制细胞程序性坏死的发生。此外,研究人员发现Casp8ΔE385/ΔE385小鼠患有轻微的脾脏肿大及CD8+T淋巴细胞减少性疾病(T cell lymphopenia)。在Casp8ΔE385/ΔE385小鼠中同时敲除坏死关键蛋白RIPK3/MLKL时,Casp8ΔE385/ΔE385Ripk3-/-和Casp8ΔE385/ΔE385Mlkl-/-小鼠出现更为严重的脾脏肿大及淋巴结肿大,其脾脏、淋巴结、外周血以及骨髓中的B细胞和T细胞及其各亚群均出现明显减少,鉴定为淋巴细胞减少的免疫缺陷性疾病(lymphopenia)。研究人员通过减少Casp8ΔE385/ΔE385Ripk3-/-和Casp8ΔE385/ΔE385Mlkl-/-小鼠中另一坏死调控蛋白RIPK1的表达剂量可以逆转上述表型,证明RIPK1在调控淋巴细胞减少疾病中的剂量调控效应。  该研究发现caspase-8通过自我剪切破坏死亡复合体II的稳定性,进而抑制细胞程序性坏死的发生。同时证明了caspase-8通过自我剪切协同坏死调控蛋白RIPK1/RIPK3/MLKL抑制淋巴细胞减少的免疫缺陷性疾病的发生,为免疫系统稳态调控的研究及淋巴细胞减少为特征的免疫缺陷性疾病的治疗提供新思路。  论文链接
  • 清华大学林金明教授:微流控探针诱导化学质膜穿孔用于单细胞蛋白质递送
    将小分子、核酸、蛋白质和药物导入细胞是监测和了解细胞行为以及生物功能的重要途径。然而,质膜是阻止外源分子进入细胞的生物屏障。因此,如何在保持细胞活力的同时高效地将外源分子递送到细胞中是细胞生物学领域的一个重要课题。为了克服现有大规模细胞内递送方法的弱点,例如细胞活性和递送效率不一致,主要基于膜破坏介导机制的微技术已成为一种有前景的解决方案。利用化学质膜穿孔进行单细胞递送的尚未得到广泛研究。2024年4月26日,清华大学化学系林金明教授团队在《ACS Applied Materials & Interfaces》杂志在线发表了题为“Chemical Plasma Membrane Perforation Generated by a Microfluidic Probe for Single-Cell Intracellular Protein Delivery”的工作。该研究使用微流控探针将含有毛地黄皂苷和货物的溶液精确地作用到单细胞上。毛地黄皂苷与质膜中的胆固醇结合诱导质膜穿孔,货物通过孔进入细胞。碘化丙啶 (0.67 kDa) 和 FITC-葡聚糖 (10、40 和 150 kDa) 可以在3分钟内成功引入单细胞,同时保持细胞活力。两种蛋白质(细胞色素C和亲环素A)被递送进入细胞,并观察到它们在细胞中得生理功能。图1. 微流控探针诱导单细胞化学质膜穿孔首先,利用Comsol Multiphysics软件对微流控探针形成的微区域进行数值模拟。使用荧光素(扩散系数=500 μm2 /s)来指示溶质扩散。结果表明,注入的溶液可以被完全吸出,并且溶质被限制在液滴状微区域内而不会扩散。微区内溶质浓度分布均匀。计算了基质上的剪切应力,低剪切应力不会对细胞造成额外的机械损伤。实验在与模拟相同的条件下进行,使用荧光素显示微流控探针产生的微区域,与浓度分布模拟结果一致。溶液的连续流动使微区中毛地黄皂苷和货物的浓度几乎恒定,有利于维持递送过程的连续性和稳定性。图2. 流体的数值模拟通过微流控探针进行碘化丙啶(PI)的细胞内递送来验证该方法的可行性以及优化递送条件。尝试使用 20-100 μg/mL 毛地黄皂苷将 PI 递送至U87细胞。随着毛地黄皂苷浓度的增加,ts(PI开始进入时间)和tm(PI进入速度最大时间)逐渐减少,表明细胞穿孔加速。当毛地黄皂苷浓度为60 μg/mL时,ts约为20 s,1 min内即可观察到清晰的荧光。此外,还尝试了不同的PI浓度进行细胞内递送,较高的PI浓度也使得PI能够更快地进入细胞。还测试了流速对递送结果的影响。注入流量保持2 μL/min,抽出流量在6~14 μL/min之间调整。当抽吸流速大于8 μL/min时,进入细胞的PI量随着流速的增长而显着增加。图3. 毛地黄皂苷浓度、PI浓度和流速对细胞内递送的影响为了证明该方法的效率和通用性,使用该方法将PI递送至U87、HUVEC和A549细胞。当递送时间为20秒时,三种类型的细胞几乎不发出荧光。随着递送时间逐渐增加,细胞的相对荧光强度显着增加,递送处理50 s后观察到强烈的红色荧光。由于洋地黄皂苷的作用,质膜逐渐透化,PI通过质膜上形成的孔继续进入细胞。还检查了该方法递送大分子的能力,使用不同分子量(10、40和150 kDa)的 FITC-葡聚糖作为货物。FITC-葡聚糖可以在3min内进入细胞,并且FITC-葡聚糖进入的量随着递送时间的增加而增加。图4. PI和FITC-葡聚糖递送的结果在验证了这种方法用于单细胞胞内递送的可行性后,作者尝试了细胞内蛋白质递送。Cyt C ( Mw = 13 kDa) 是线粒体中的一种蛋白质,可将电子转移到呼吸链以维持ATP的产生。当cyt C释放到细胞质中时,它会引发细胞凋亡。由于外源cyt C在正常情况下不能进入细胞,利用微流控探针将cyt C递送至A549中作为抗肿瘤药物以诱导细胞凋亡。对照组和仅用毛地黄皂苷或cyt C处理的细胞之间未观察到caspase-3水平和Hoechst 33342染色结果的显着差异。毛地黄皂苷诱导的质膜穿孔不会引起细胞凋亡。仅用cyt C处理的细胞中caspase-3的水平也没有增加,表明正常情况下cyt C不能穿过质膜进入细胞激活凋亡途径。然而,在进行毛地黄皂苷介导的cyt C递送的细胞中,caspase-3水平显著增加,蓝色荧光显著增强。细胞形态发生明显变化,细胞体积缩小,并形成凋亡小体。这些结果表明,递送的cyt C成功诱导细胞凋亡,并且外源蛋白可以通过微流控探针有效地引入细胞内并发挥作用。图5. Cyt C被递送至A549以诱导细胞凋亡为了进一步探索这种方法在细胞研究中的潜力,作者利用它来研究肿瘤耐药性。CypA (M w = 18 kDa) 是一种广泛存在的细胞内蛋白质,可充当抗氧化剂。最近有报道称CypA通过重塑细胞氧化状态介导结直肠癌耐药。BCNU是一种常用的抗肿瘤药物,其诱导细胞毒性的机制之一是谷胱甘肽还原酶的抑制导致ROS的积累。利用微流控探针将CypA递送到U87中,研究CypA对胶质瘤耐药性的影响。与对照组相比,未经CypA递送的细胞经BCNU处理1小时后ROS水平显着升高,并且细胞形态发生改变。对于递送CypA的细胞,ROS含量显着低于未递送细胞,并且细胞保持正常形态。结果表明,递送的CypA在细胞中具有抗氧化作用,这可能增强U87对BCNU的耐药性。抑制CypA表达可能是治疗神经胶质瘤的潜在方法。图6. CypA对胶质瘤耐药性的影响总结作者开发了一种基于开放式微流控探针的方法,以方便高效地实现单细胞递送。该方法通过使用化学试剂对单个细胞进行质膜穿孔,将最大分子量为150 kDa 的外源货物递送到细胞中。与载体介导或场辅助递送方法相比,该方法不需要对货物进行额外处理,无需物理场辅助的温和递送条件也避免了对货物和细胞的额外损伤。作者展示了使用微流控探针进行cyt C和CypA的细胞内递送,证明了该方法能够研究外源蛋白质对细胞生命活动的影响。未来,各种货物(肽、蛋白质、mRNA、DNA、质粒、细胞器等)可以通过这种方法导入细胞内,调节细胞的生理功能和命运。而且该方法不需要昂贵的设备,操作简单,有望成为单细胞递送的一种理想方法。清华大学化学系林金明教授为该论文的通讯作者,清华大学化学系2022级博士生宋扬为本论文的第一作者。该研究受到国家重点研发计划(No.2022YFC3400700)和国家自然科学基金(No.22034005)的支持。关于林金明教授工学博士,分析化学专业。1984年福州大学毕业,1992年在日本昭和大学国际交流基金的资助下前往该大学药学部从事访问研究。1994年获得日本政府奖学金转入东京都立大学攻读博士学位,1997年3月获得工学博士学位,同年留校任教,2000年入选中国科学院“百人计划”,受聘中科院生态环境研究中心研究员、博士生导师;2001年获得国家杰出青年科学基金,2002年3月底回国工作,2004年入选清华大学“百名人才引进计划”,受聘清华大学化学系教授、博士生导师。2008年受聘教育部长江学者特聘教授,2014年入选英国皇家化学会会士。目前主要从事微流控芯片质谱联用细胞分析、化学发光/荧光免疫分析、复杂样品前处理分析、空气负离子检测与健康评估等研究。已培养博士研究生43名(含联合培养,其中留学生2名)、硕士研究生28名、博士后11名(其中留学生3名)、访问学者10名(其中外国访问学者1名)。
  • 连发3篇hiPSC文章,单细胞可视化培养系统颠覆传统,分离效率高达100%!
    人类诱导多能干细胞 (hiPSC) 是通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞进行重新逆分化得到的多能干细胞。传统的hiPSC细胞系构建与培养过程操作复杂、耗材昂贵且费时费力。特别是对于异质编辑细胞池中构建的克隆hiPSC系的培养,受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件要求苛刻,操作步骤繁琐,无法充分保证单克隆性。为应对hiPSC细胞系构建与培养过程中的诸多挑战,iotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化培养系统isoCell,构建了用于 hiPSC细胞系培养的平台。该平台采用全自动化流程,操作条件温和,对单细胞无损伤,具有高通量、自动化、高成活率等优势,可确保分选出的细胞100%为单细胞。柏林医学大学多能干细胞和类器官研究中心的Harald Stachelscheid团队使用isoCell在Stem Cell Research期刊上发表了三篇构建不同功能的hiPSC细胞系的科研应用文章,展示了isoCell在hiPSC细胞系构建和培养方面的优势。图1 单细胞可视化培养系统isoCell实物图 1. 以isoCell为核心的hiPSC细胞培养平台isoCell系统组成的细胞培养平台是基于GRID技术的高度自动化的实验平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小(耗材少),光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。图2 GRID实物图 isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落,在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。图3 isoCell操作流程图 2. 生成具有 SLC16A2:G401R 或 SLC16A2 敲除的 iPSC系X染色体相关的AHDS综合征的发病特点是由编码甲状腺激素转运蛋白MCT8(单羧酸转运蛋白8)的SLC16A2基因突变引起精神运动发育严重受损。该团队使用CRISPR/Cas9技术(靶向 SLC16A2 的外显子3)将AHDS患者错义变体G401R和新型敲除缺失变体 (F400Sfs*17) 引入男性健康供体的hiPSC系(BIHi001-B)。通过isoCell培育成功地获得了SLC16A2基因敲除的hiPSC单克隆细胞系(BIHi001-B-7)和(BIHi001-B-8),并证明了这些新细胞系在模拟 MCT8 缺陷对人类神经发育的影响方面的实用性。文章以Generation of iPSC lines with SLC16A2:G401R or SLC16A2 knock out为题发表于Stem Cell Research期刊上。图4 WB验证SLC16A2 敲除的hiPSC系无法表达SLC16A2蛋白 3. 生成 THRB-GS(E125G_G126S) 和 THRB-KO 人类 iPSC 系以研究非典型甲状腺激素信号传导THRB是一种依赖甲状腺激素 (TH) 结合来调节基因表达的核受体。相同的受体也可以介导细胞质中信号通路的激活。目前尚无法区分这两种机制中的哪一种是造成 TH 生理效应的原因。该团队结合基因编辑与isoCell的单细胞培养基技术,成功建立了一种在 THRB DNA 结合域中具有两个突变 (E125G_G126S) 的hiPSC 细胞系(BIHi001-B-2/3),该突变消除了THRB的核受体作用,因此可以用该细胞系专门研究THRB的信号通路激活作用。该团队还生成了 THRB 敲除细胞系(BIHi001-B-6)以消除所有 THRB 效应。通过比较WT结果和这两种细胞系,将甲状腺激素的影响归因于潜在的机制。文章以Generation of THRB-GS(E125G_G126S) and THRB-KO human iPSC lines to study noncanonical thyroid hormone signalling为题发表于2024年2月的Stem Cell Research期刊上。图5 基因测序验证BIHi001-B-2/3和BIHi001-B-6细胞系敲除或突变了对应基因 4. 使用 CRISPR-Cas9 生成了两个 BAX/BAK 双敲除人类诱导多能干细胞系 (iPSC)脑缺血损伤很多是由于脑缺血状态下细胞凋亡导致的。Bcl-2基因相关的X 蛋白 (BAX) 和BCL2 拮抗因子(BAK)是 BCL2 家族的两个促凋亡因子,BAX 和BAK是线粒体凋亡的执行基因,与细胞凋亡密切相关。该团队使用 CRISPR-Cas9技术构建了两个 BAX/BAK 双敲除人类诱导多能干细胞BIHi005-A-17和BIHi250-A-1,并通过isoCell培养获得了对应的hiPSC单克隆细胞系。所得细胞系核型正常,具有典型的形态并表达未分化状态的典型标记,并通过基因技术验证了细胞系已敲除BAK基因。在后续的研究中,研究人员就可以将该BAX/BAK 双敲除的hiPSC细胞系广泛应用于脑缺血等细胞凋亡相关领域的发病机制与治疗干预机制研究中。文章以Generation of two human induced pluripotent stem cell lines with BAX and BAK1 double knock-out using CRISPR/Cas9为题发表于2024年4月的Stem Cell Research期刊上。图6 通过基因测序及WB验证BIHi005-A-17和BIHi250-A-1以敲除BAK与BAX基因 5. 结论以isoCell构建的hiPSC细胞培养平台可以对hiPSC细胞进行全自动化且温和地单细胞培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且节省培养耗材。isoCell的培养条件温和,在以上案例中协助科研人员构建了多个基因改造hiPSC单克隆细胞系,成活率高。 单细胞可视化培养系统isoCell的优势:✔ 全自动化流程✔ 操作条件温和,对单细胞无损伤✔ 全培养、分析流程可追踪✔ 单细胞率高达100%✔ 单克隆细胞系构建成活率高✔ 结构紧凑,体积小,节省耗材单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigeneticimmunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验:为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师通过拨打电话010-85120280、发送邮件info@qd-china.com、点击此处或扫描下方二维码参观试用!扫描上方二维码/点击此处,即刻咨询/体验! 用户名单用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)“使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”相关产品1、单细胞可视化分选培养系统—isoCellhttps://www.instrument.com.cn/netshow/SH100980/C551413.htm
  • 从3D类器官到单细胞——珀金埃尔默邀您参加2020中国细胞生物学会年会
    细胞的3D模型培养能够更好地模拟微环境、细胞间相互作用和体内生物过程。相较于生化检测和2D模型,3D模型可提供更具生理相关性的条件。此外,其形态学和功能分化程度更高,这也赋予了它们更接近体内细胞的特征。如今越来越多的研究人员正在应用3D细胞培养、微组织和类器官技术来填补2D细胞培养与体内动物模型之间的差距。 特别是类器官的研究和使用,类器官(Organoid)是源自干细胞的体外衍生3D细胞聚集体,具有类似器官结构和功能。近年来,3D类器官培养技术逐渐成熟,正在成为药物筛选、个性化治疗和发育研究的重要模型。然而,细胞的3D培养技术面临着诸多挑战:首先,培养一致的、可再现的3D 微组织十分困难,尤其是类器官的培养;此外,大而厚的细胞样品成像难度极高;同时,处理3D细胞实验产生的海量数据则是最为严峻的挑战。针对3D微组织样品,使用传统的冰冻切片染色成像或直接使用共聚焦显微镜进行成像都有很多挑战:冰冻切片成像无法获得立体样品的全部信息,特别是Z轴的细胞位置信息;共聚焦显微镜有较高的光毒性和光漂白,不能对立体样品反复多层的成像,成像的层数有很大限制;此外,这两种拍摄方法获取的大量图片还需借助其他分析软件对其数据进行分析和统计,分析通量很低;最重要的是,这两种方法扫描速度都很慢,通量很低,一个3D微组织的扫描分析时间长达几个小时,极大的限制了3D微组织研究的开展。高内涵细胞成像能够在保持细胞结构和功能完整性的前提下,对细胞和亚细胞层次进行多通道、多靶点的荧光全面扫描,检测细胞形态、生长、分化、迁移、凋亡、代谢途径及信号转导等各个环节,在单一实验中获取大量相关信息。在细胞凋亡、细胞周期、细胞毒作用、受体蛋白转位、蛋白相互作用等方面都有很好的应用,被证明是细胞生物学,癌症研究,病原生物学,药物研发,系统生物学,心血管疾病研究,干细胞研究,神经细胞研究等领域的重要研究工具。PerkinElmer公司提供的高内涵细胞成像分析系统,它采用Nipkow转盘扫描技术配以高灵敏度sCMOS探测器,能够快速捕捉到细胞内发生的生物学过程,更因其降低光漂白和光毒性的特点,配合水浸式高数值孔径物镜,可以实现对活细胞、小型模式生物和3D微组织样品进行高通量的共聚焦高分辨率成像。再结合强大的Harmony分析软件,能够对细胞和亚细胞层面各种复杂的表型进行群体性统计分析研究。该系统在细胞生物学研究领域有着非常广泛的应用。PerkinElmer高内涵系统的3D方案不仅仅局限于3D微组织,包括模式生物、细胞伪足等立体结构都可以通过高内涵系统完成全面的检测和分析: 珀金埃尔默的单细胞ICP-MS技术,基于业界最快的的细胞脉冲信号读取速度(可达100000点每秒),能定量单个细胞中低至阿克级别的金属和纳米颗粒含量,测定细胞群中金属质量分布和含金属细胞的数量,从而评估与量化细胞群的异质程度。适用于人体、动物、植物等各种组织器官细胞的深入研究。例如,含金属药物和纳米颗粒越来越广泛的应用于癌症的治疗和检测,单细胞ICP-MS可进行精细跟踪,掌握病变组织在细胞层面上对药物的吸收和代谢,有助于了解癌症机理和提升治疗水平。两株卵巢癌细胞系A2780( 顺铂敏感型)和A2780/CP70 (顺铂耐药型)随时间变化顺铂摄入量 生物体中的铜含量通过非常有效而复杂的稳态机制得以严格调控,该机制可控制元素的吸收、分布和排出。目前数据得到的细胞铜稳态模型只是一个“骨架” ,用SC-ICP-MS来测量外周血单核细胞(PBMC)中的铜(Cu)含量,对了解稳态机制的失调或失衡可能导致生物体功能异常,并可能与某些疾病(例如炎症、哮喘、衰老过程、癌症等)方面提供了进一步研究的有效手段。外周血单核细胞(PBMC)中铜的含量应用领域举例:3D微组织类器官目前的应用主要集中在肿瘤研究(药筛模型、药筛、肿瘤免疫、个体化医疗)、干细胞和发育生物学、体外模型研究(感染模型、毒性评价)、材料及给药研究等方面:肿瘤研究2019年6月17日,Cell Death and Disease杂志在线发表了钱其军研究组的研究成果Modified CAR T cells targeting membrane proximal epitope of mesothelin enhances the antitumor function against large solid tumor。该工作致力于优化肿瘤CAR T免疫疗法。MSLN(Mesothelin,间皮素)是嵌合抗原受体(CAR)T治疗的诱人抗原,MSLN中的表位选择至关重要。在这项研究中,作者使用修饰的piggyBac转座子构建了两种针对MSLN的I区(meso1 CAR,也称为膜远端区域)或MSLN的III区(meso3 CAR,也称为膜近端区域)的两种类型的CAR系统。其中,meso3 CAR T细胞在激活后表达更高水平的CD107α,并在体外针对表达多种MSLN的癌细胞产生更高水平的白介素2,TNF-α和IFN-γ。之后,作者构建了胃癌和卵巢癌3D肿瘤细胞模型,并用该模型来测试这两种CAR T系统,通过PerkinElmer Opera Phenix高内涵系统完成3D肿瘤 CART杀伤系统的成像和分析,最终证明在3D细胞水平,meso3 CAR T细胞比meso1 CAR T细胞具有更高的杀伤作用。后续的研究中,作者借助PerkinElmer Xenogen IVIS成像系统,在胃癌NSG小鼠模型中进一步进行验证,同样证明与meso1 CAR T细胞相比,meso3 CAR T细胞介导的抗肿瘤反应更强。我们进一步确定meso3 CAR T细胞可以有效地抑制体内大卵巢肿瘤的生长。总体而言,本研究证明meso3 CAR T细胞疗法在治疗MSLN阳性实体瘤方面比meso1 CAR T细胞疗法具有更好的免疫疗法,为实体瘤的免疫治疗提供了新的有效的CAR T疗法。干细胞与发育生物学2018年11月,英国的格拉斯哥大学癌症科学研究所在Nature Communication杂志发表了名为《The Phospholipid PI(3,4)P 2 Is an Apical Identity Determinant》的文章,本文主要以MDCK囊肿为模型,研究了上皮细胞的极化机制,最终发现PI(3,4)P2磷脂酶是决定上皮细胞极化发生的重要分子,并阐明了其调控机制。在本文中,作者首先发现磷酸酯修饰酶PI(3,4)P2的分布在上皮细胞极化的过程中是至关重要的,接下来,他们用PI(3,4)P2的分布作为表型,筛选哪些蛋白的敲除影响其分布。该过程是通过PerkinElmer的Opera Phenix高内涵系统来实现的,作者先通过高内涵系统的预扫描成像功能对微球进行智能的层切式扫描,选取横截面最大的那一层,然后把细胞分区域,分细胞核、细胞质、内侧、外侧和细胞连接处等等,然后计算每个区域的荧光强度。作者使用此方法去分析一些突变过的微球的磷脂酶分布,发现一些重要的上游蛋白(如PIP蛋白)被敲掉后,会发生显著的定位变化。除此以外,作者还利用高内涵系统分析了微球的空腔表型,MDCK囊肿包含多少个空腔直接反映了其功能是否正常,只有极化正常发生的囊肿才能有正常的空腔。同样的,作者使用高内涵预扫描成像功能对所有球做了层切式扫描,选取有空腔的这些层,把它们压到一起,然后通过算法选出空腔,分析其数量。作者也用该方法做了一系列基因的筛选,筛选到几个显著影响空腔形成的基因,并在后续阐明了其调控机制。 体外模型研究——肝损伤模型2018年,王韫芳课题组在新刊Advanced Biosystems杂志上发表封面文章,研究展示一种新型的药物性肝损伤研究模型——LBS微肝球模型(Liver biomatrices scaffolds, LBSs)。该模型在HepaRG细胞的基础上引入天然脱细胞肝脏支架,可进行肝细胞的长期3D培养。在LBS提供的肝组织特异微环境下,新模型具有更高的生理相关性和毒理预测敏感度。作者使用PerkinElmer Operetta CLS 高内涵筛选系统,深入评估了8种抗抑郁药物的肝毒性。结合特定的染料组合,从细胞活力、凋亡、胆汁蓄积、脂肪变、氧化应激和线粒体毒性6个方面检测药物处理对微肝球模型的影响。其中的许多参数都使用了复杂的高内涵分析方法。结果证明LBS微肝球模型能高度特异预测药物肝毒性和协助进一步的毒理机制研究。本研究还用到了PerkinElmer的Engisht多功能成像酶标仪,研究利用Alamarblue法追踪不同培养条件下细胞活力的变化。PerkinElmer提供的分子及细胞水平检测方案贯穿本论文药物肝毒性研究的整个过程。从微肝球模型的细胞增殖、酶活分析,再到3D模型的功能验证和毒理学多指标分析,PerkinElmer均能提供针对性的应用方案。材料及给药研究2019年6月,爱尔兰都柏林大学学院生物与环境科学学院&康威研究所在Small杂志发表名为《A High‐Throughput Automated Confocal Microscopy Platform for Quantitative Phenotyping of Nanoparticle Uptake and Transport in Spheroids》的文章。该研究利用PerkinElmer高内涵Opera Phenix系统,构建了完整的在3D微组织层面研究纳米载体摄取和运输的模型。作者首先进行3D微组织培养和高内涵拍摄的优化,主要研究了培养条件和固定方法对不同浓度的基质胶的影响,并根据该实验结果确定了培养方法、固定方法和基质胶浓度及用量。此外,作者也通过顺式到反式高尔基标记物(GM130、GalT和TGN46)的分布染色考察了高内涵的拍摄质量,证明PerkinElmer高内涵系统确实有极高的分辨率,用来研究纳米颗粒的摄取情况是足够的。接下来,作者通过Harmony软件对层切扫描图片进行重构分析,获取最大亮度投影和3D重构视图,在此基础上定量测量球状体中NP吸收和渗透。最后,作者选择了在纳米颗粒胞吞作用中有功能的蛋白,通过RNAi沉默进行潜在基因筛选,确定该模型可用于评估3D微球NP的摄取和运输过程。 更多详细内容,欢迎您莅临8月4日在中国细胞生物学学会2020年全国学术大会上举办的午餐会,干货报告、午餐礼遇、惊喜礼品等您来参与。点击下方链接完成签到,即可在会议期间至珀金埃尔默展台(T3)领取精美礼品一份。http://suo.im/6tarYZ
  • 中科院分子细胞卓越中心俞珺璟博士:流式细胞技术平台发展与使用心得分享
    生命科学基础研究与人类健康和社会经济发展密切相关,在科学和经济社会领域中的重要性日渐增强。Science 曾发布125 个挑战全球科学界的重要基础问题,其中涉及生命科学的问题约占 54%。生命科学研究过程离不开各类科学仪器的帮助,今年,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展、学习仪器使用方法。本篇为中国科学院分子细胞科学卓越创新中心细胞分析技术平台副主任俞珺璟撰写,俞老师根据多年工作经验,详细介绍了流式细胞术的发展,并分享了长期工作中仪器使用的心得体会。以下为供稿内容:流式细胞术最初诞生于20世纪60年代末,发展之初主要应用于计数和评估颗粒的大小。随着硬件和软件的不断升级发展以及各种荧光试剂的迭代更新,流式细胞术作为一种能够对细胞群、细胞亚群及单个细胞或者颗粒进行多参数、快速的定性/定量的分析手段,已经被深入应用于细胞生物学、免疫学、病毒学、肿瘤生物学、传染病检测、食品和环境监控及生物制药等多个研究领域。流式细胞技术部门作为中国科学院分子细胞科学卓越创新中心细胞分析技术平台的一个重要分支,从成立最初的只有一台2激光4色流式细胞检测仪和2激光7色流式细胞分选仪发展至今已经具备了高低不同配置的流式细胞检测仪8台、流式细胞分选仪7台、高活性全自动磁珠分选仪1台(http://sjzx.sibcb.ac.cn/Cn/Index/pageView/catid/32.html/list/48 ),最大程度地满足中心及周边乃至全国科研院所在流式细胞仪方面的实验需求。平台流式的建设和发展与流式技术的不断更新、科研方向的转变是息息相关的。现就平台在流式方面的使用心得进行分享及对未来流式潜在的需求做一些展望。一、流式细胞检测传统流式细胞仪的硬件系统通常由一个或者多个激光器组成的光照系统、二向色镜以及带通/长通滤光片组成的分光光学器件、高灵敏度光电倍增管(PMT)或雪崩光电二极管组成的检测系统组成。传统流式细胞仪内一个激光器可以搭配2个或多个PMT通道,一个PMT对应一个检测通道,接收发射光谱的峰值信号。激光器越多检测通道越多,可检测荧光信号也越多。平台根据中心各课题组的实验需求配置了不同型号的基于传统检测原理的流式细胞检测设备。1.1 细胞內源荧光蛋白或自发荧光的流式细胞检测细胞内源荧光蛋白或自发荧光的检测主要包括三个方面的应用:1.细胞系转染质粒后阳性比例的检测;2.组织来源带有内源性荧光标记蛋白的细胞比例情况,例如细胞示踪实验;3.细胞自发荧光的测定,比如细胞富含某类化合物,而该类化合物具有较强的自发荧光,可以作为该类细胞的识别标志物。这三类实验基本只用单色或者两色的流式设备配置就可以开展实验。通常转染了只带有GFP标签蛋白的质粒细胞进行流式检测时,只需有488nm激光器,但是如果有mCherry之类的荧光蛋白,必需要有561激光器进行激发。如果带有GFP和mCherry两种融合荧光蛋白的小鼠组织来源细胞进行实验时,要注意两种荧光蛋白的表达水平,尤其是mCherry表达强而GFP表达弱时,mCherry的荧光溢漏会影响GFP通道,所以要利用合适的单荧光样品管作为单染管进行补偿调节。对于一些自发荧光的细胞,例如富含维生素A的细胞类型,可以用405nm激光器激发,450/50带通滤光片进行收集。对于这些荧光蛋白检测的实验,平台需要配备405nm/488nm/561nm的流式检测设备即可。1.2 常规细胞生理健康的流式细胞检测细胞凋亡、倍型、周期是流式平台做的最多的和细胞生理健康相关的实验。细胞凋亡实验一般会采用PI/Annexin V-FITC双指数染色,只有488nm激光器的设备就可以满足实验需求,但是如果有488nm/561nm独立光斑的仪器就可以省略调补偿的过程。细胞倍型一般会采用Hoechst 33342进行染色,以区分单倍体、二倍体等。Hoechst和双链DNA结合后最大激发波长为350nm,最大发射波长为461nm,因此需要配备了355nm激光器的设备,450/50带通滤光片收集。细胞周期一般会采用PI染色的方法,488nm或者561nm激光器都可以激发。因此,对于细胞生理健康的检测,如果使用上述染料基本配备355nm/488nm/561nm激光器的流式检测设备即可。1.3 多色流式细胞检测平台在多色流式细胞检测上主要围绕免疫细胞、造血干细胞、成体干细胞等的分型鉴定。多色流式检测从配色方案设计、设备选择、样品制备、上机和数据分析,过程相对更为复杂。因此,平台配备了4激光12色,4激光14色,5激光18色,5激光19色,5激光28色等多参数流式细胞仪,以满足各种实验需求。在实验过程中,如果多色实验,补偿调节依然是许多用户困惑的地方。如何获得正确的补偿矩阵是保证后期样品数据分析准确性的前提。现在的流式细胞分析仪基本都具备自动调节补偿的功能,因此可以用样品来确定各检测通道的电压后,用补偿微球进行补偿调节可以避免细胞阳性群不明显的困扰。随着仪器光路结构/检测器、电子元器件和分析软件的不断迭代,光谱流式技术的实用性得到了发展。在2005年的时候,Robinson等人提出了可以通过使用棱镜或光栅系统进行分光,配合32通道PMT或CCD检测器阵列可实现500-800nm波长范围内的全光谱信号检测技术。与棱镜分光相比,光栅分光系统可以通过单缝衍射原理对复合荧光实现均匀色散分光,在保证荧光信号真实性的基础上确保所有波段的荧光信号可以同时到达PMT检测器阵列中,实现全光谱信号检测的时空一致性,确保染料光谱的真实性。全光谱流式细胞仪可以跨越所有激光线,检测到可见光波长范围内(360-920nm波长)的全光谱信息,获得每一种荧光的整个发射光谱信息,最后利用WLSM算法(最小加权二乘法)对多个光谱进行拆分,获得每个单一荧光探针的完整光谱信号,从而避免使用传统的补偿计算矩阵,收集到更加全面与准确的荧光信号。因此,通过引入光谱流式技术,可以避免传统流式实验中高参数实验的补偿困扰。比如,通过光谱流式,平台已经实现了小鼠肠道23色免疫细胞分析方案、28色肿瘤免疫细胞亚群分析实验等。但是值得注意的是,光谱流式需要正确的光谱信息,比如样品固定会影响光谱信号,所以固定前后需要建立不同的荧光光谱库。1.4 高通量流式细胞检测流式分析上样方式除了传统的5ml流式管上样外,现在的注射泵和蠕动泵进样方式还可以支持1.5ml EP管上样。而对于一些高通量筛选的时候,尤其是悬浮细胞,利用高通量上样器可以很好地解决这类实验数据采集问题。尤其是带有声波聚焦技术的出现,可以将待测细胞精确聚焦在样本流的中心位置,每个细胞样本都可以准确地聚焦在激光检测区,即使在高流速1ml/min进样速度也能保证信号的变异系数较小,数据质量更高。同时伴随注射泵式的上中下三点混匀模式和推入式进样可以最大限度避免细胞堵塞,从而实现提高样本通量的同时,保证读取样品速度及获取的数据质量和精度。平台配备这种高通量流式检测设备可以提升科研的效率,有效节约科研工作者的时间成本。二、流式细胞分选2.1 传统流式细胞分选常规流式细胞分选早期是基于空气激发原理,此类流式分选仪低压高频的分选特点保证样品分选速度快,对分选后细胞的活性保持得更好。但是它需要手动校准光路和液路,对仪器操作者的技术要求很高,对环境条件的要求也比较苛刻。随着技术发展,现在大型仪器平台都会配备基于石英杯激发原理的流式分选仪,因为是固定光路,只需对仪器进行基本的质控校准和液滴延迟校准,使得分选仪开机工作变得相对简便。加电式的分选模式基本对细胞的活性都会有损伤,所以在分选速度、纯度和活性三者之间如何进行条件优化也是对仪器操作者的一种考验。对激光器的配置要求可以根据实验需求来决定。以我们平台为例,因为有大量的分选实验涉及单倍体细胞的分选,需要使用核酸染料Hoechst 33342,以区别不同倍型细胞中处于不同减数分裂时期的细胞,因此需要功率可调的355nm激光器进行激发,保证此类核酸染料的激发效率。根据DNA浓度和DNA构型,使用450/50(Hoechst Blue)和670/30 (Hoechst Red)带通滤光片双指数显示获取数据。但是核酸染料的使用也往往造成管路、流动室等位置会有样品或染料残留,需要更多的维护时间和人力成本,同时不可避免地减少了可使用机时。因此从平台的用户群角度出发,可以将355nm激光器和405nm激光器分开配置到两台设备,这样可以兼顾保证核酸染料用户群和多色分选用户群的使用需求,也最大程度地避免了两类样品的交叉污染。2.2 芯片式流式细胞分选芯片式流式分选仪最大的特点在于“分选芯片-喷嘴一体化”代替传统的石英杯与喷嘴,因此避免了因流动室或喷嘴支架无法更换造成的样品残留和污染。更换了新的芯片后,可以真正将样本在流动室中的残留率降低到零,这种设计对细胞移植和生物危害性样本分选等对交叉污染零容忍的分选应用更为友好。传统流式细胞分选仪在实验前须对仪器进行一系列复杂的调试步骤,包括光路校准,液流断点优化、侧液流校准和液滴延迟计算等,对仪器操作人员的依赖性更大,普通用户短时间内难以掌握。微流体芯片分选仪已经实现了上述所有调试和校准步骤自动化,并能在分选过程中对液滴状态进行实时监控和自动调节,简化了仪器操作过程,保证了每日仪器状态的稳定性,而且还能匹配不同规格的微流体芯片(70um,100um,130um)可以适用于更多的细胞类型。校准模式中还设计了大液滴模式,液流会更加稳定,更加适用于大细胞和多孔板(96或者384孔板)的分选。鉴于这种芯片式流式分选的特性,平台中一些抗体的单克隆筛选,384孔板测序建库,原代神经细胞等实验会借助这种分选平台进行。2.3 磁珠分选免疫磁珠分选主要基于细胞表面抗原能与连接有磁珠的特异性单抗相结合,在外加磁场中,通过抗体与磁珠相连的细胞被吸附而滞留在磁场中,而没有这种表面抗原的细胞由于不能与连接着磁珠的特异性单抗结合而没有磁性,先被洗脱下来,撤离了磁场后,带有抗体的细胞再被洗脱下来。因此,可以快速地分选得到阴选和阳选的细胞。作为一种功能较为独立的分选设备,磁珠分选主要应用于简单抗体标记的细胞分选和稀有细胞样品前期的富集,提高目的细胞的比例,可以帮助缩短在后期的流式细胞分选的时间提高获取细胞的纯度。分选后细胞纯度高、活性大,通过阳选,还能有效去除细胞碎片。但是对于一些需要内源蛋白标记的细胞还不能通过这种技术实现快速的分选。三、流式平台管理心得和未来可提升空间第一、 在流式使用方面,日常的维护是必不可少的,特别是使用频率特别高或者使用核酸染料样品较多的设备,可以将仪器维护频率提高到一周一次大清洗,同时在每一个用户实验结束后配合使用高浓度clean液-Rinse液-去离子水的冲洗流程,最大程度地保证管路和流式室的清洁,保证仪器正常的使用状态。第二、 对流式技术人员的要求日渐提升,除了会日常的开关机、维护、指导学生上机实验外,需要技术人员对不同样品的特性有更多的认知,判断其数据采集或分选过程中结果不如预期的潜在关键所在,此外还需要具备简单故障排除和硬件故障断定的能力,以缩短流式维修时间成本。第三、 平台设备需要密切结合用户群的实验特性、使用频次、科研目的等关键指标进行合理的配置,同时也要关注平台的技术空白和短板,予以填补和提升。第四、 随着对外泌体、病毒、细菌、亚细胞结构如线粒体等天然纳米颗粒检测需求的提升,可识别直径小于100nm颗粒的纳米级流式细胞术因其在外泌体研究、囊泡运输、纳米药物开发等方面的应用,可以作为纳米尺度小颗粒检测的金标准。第五、 随着光谱分析技术的提升,解决了光谱数据实时解析的问题后,整合了空气激发、低压高频、全自动校准、生物安全等功能的全光谱流式细胞分选仪势必在高参数高速流式分选中发挥更重要的作用。最后,国产流式技术团队在整机开发、配套试剂、技术能力、科研应用、售后服务等方面的不断提升,例如国产光谱流式、国产质谱流式在科研平台的落地化比例逐年上升。作者简介:俞珺璟 细胞分析技术平台副主任/高级工程师俞珺璟,中国科学院分子细胞科学卓越创新中心(生物化学和细胞生物学研究所)细胞分析技术平台副主任,博士,高级工程师。2004-2009中国科学院生物物理研究所获博士学位;2007-2009年美国密苏里州Stowers Institute for Medical Research访问学者;2010-2018在中国科学院生物物理所感染与免疫重点实验室从事细胞生物学及天然免疫学相关研究;2018年9月加入中科院生物化学和细胞生物学研究所细胞分析平台,副主任,主要负责流式平台仪器运维、大型仪器理论及实操培训,承担院级功能开发研制项目等,曾作为特邀主编,编撰《流式细胞术实验手册》,已在线发表于Bio-Protocol。2021年被评选为"中国科学院关键技术人才"。相关阅读:细胞生物学研究的利器——仪器平台负责人经验谈点击进入话题页面
  • Life Technologies 2012流式细胞技术进展讲座邀请函
    Life Technologies 2012流式细胞技术进展讲座邀请函 马上报名 Life Technolgoies 美国生命技术公司将于2012年10月29日、10月30日、11月1日、11月2日和11月8日下午分别在北京、天津、济南、南京和广州举办Life Technolgoies 2012 流式细胞技术进展讲座。 本次技术讲座以流式细胞技术进展为主题,主要介绍Life Technologies旗下Molecular Probes® 品牌流式细胞荧光标记和流式抗体新产品新技术, 讲座的另一个主题是报告Life Technologies旗下Applied Biosystems® Attune® 声波聚焦流式细胞技术平台的最新发展和最新应用,尤其是高速自动化流式细胞分析和软件分析的最新发展。我们还将与您一起分享Life Technologies公司流式细胞技术平台的多种学习工具及技术资源。 本次技术讲座特邀Life Technologies旗下Molecular Probes® 美国总部从事流式细胞试剂和应用研究20年的华裔资深专家Yu-Zhong Zhang博士和Life Technologies中国区流式细胞技术专家做流式细胞技术进展专题演讲。 时间 演讲题目 报告人 13:30-13:40 欢迎,演讲嘉宾/日程安排介绍 杨林森,科研市场经理,Life Technologies Greater China 13:40-14:20 Molecular Probes® 流式细胞试剂最新进展 Yuzhong Zhang Ph.D Senoir R&D Scientist, Molecular Probes, US 14:20-15:00 Applied Biosystems® Attune® 声波聚焦流式细胞仪技术和应用特色,Attune® 声波聚焦流式细胞仪自动进样器新产品上市报告 杨林森,科研市场经理,Life Technologies Greater China 15:00-15:15 咖啡/茶歇 15:15-16:00 Attune® 声波聚焦流式细胞仪在细胞周期,细胞增殖细胞凋亡干细胞分析和植物基因组大小分析中的应用 Yuzhong Zhang Ph.D Senoir R&D Scientist, Molecular Probes, US 16:00-16:40 Life Technologies流式细胞技术与应用网上教育和实验工具资源演示 冯彦斌/艾文青/Peter Chang,Life Technologies Greater China 流式产品技术支持专家 16:40-17:00 抽奖活动和问题解答 查看详细活动安排 » Follow Life Technologies: FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2012 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. TaqMan® is a registered trademark of Roche Molecular Systems, Inc., used under permission andlicense. In compliance with federal regulations, we hereby disclose that this email communication is for commercial purposes. View the Life Technologies privacy policy. Life Technologies中国区办事处 销售服务信箱:sales-cn@lifetech.com 技术服务信箱:cntechsupport@lifetech.com 客户服务热线: 800-820-8982 400-820-8982 www.lifetechnologies.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制