当前位置: 仪器信息网 > 行业主题 > >

电子气体

仪器信息网电子气体专题为您整合电子气体相关的最新文章,在电子气体专题,您不仅可以免费浏览电子气体的资讯, 同时您还可以浏览电子气体的相关资料、解决方案,参与社区电子气体话题讨论。

电子气体相关的论坛

  • 电子气体检测装备趋向“智能化”

    3月7日,由中国工业气体工业协会和中国电子气体生产与利用百人会主办的第四届中国电子气体发展高峰论坛暨2024中国电子气体百人会年度论坛在北京召开。与会专家指出,现阶段我国电子气体储运装备还存在不少技术难点,[b]智能化、大型化、全球化[/b]将是未来发展的重要趋势。电子气体是半导体工业中使用的关键材料,主要用于外延、掺杂和蚀刻等工艺过程。[b]电子气体的质量和纯度检测主要采用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]和红外光谱等仪器。[/b]“[b]随着国内半导体及光伏行业的快速发展及生产工艺的快速迭代,电子气体储运装备的种类越来越多,用户对储运装备运输效率的要求也越来越高[/b]。”石家庄安瑞科气体机械有限公司总监宋新海指出,当前我国电子气体储运装备发展的技术难点,主要集中在设计安全、合规使用性、气瓶材料选用、洁净处理、阀门国产化等方面。“电子气体储运装备的设计安全与使用安全强相关。”宋新海举例说,“在阀门选型方面,氧化亚氮和硅烷这两种介质,不管在阀门材料还是在阀门类型的选择上,都大有不同。氧化亚氮采用手动阀门,而硅烷因泄漏到空气就会自燃,所以必须采用‘手动+气动’串联的方式,才能保证介质零泄漏。并且,硅烷在光伏行业应用中会产生细微颗粒,为了减少磨损,阀座也需采用更耐磨的、使用寿命更长的材料。”宋新海强调,电子气体储运装备的发展应建立在合规使用的基础上。目前,国内对10MPa以上高压T瓶的需求越来越大,而我国TSG 23《气瓶安全技术规程》规定,生产制造10MPa以上的高压T瓶需进行“三新”技术评审。据了解,国外标准高压T瓶已在国内实现批量生产,生产技术难点已被攻克。在国内,相关生产厂家也已陆续开始进行相关项目技术评审。在气瓶材料选用方面,不同介质所选用的气瓶材料亦不同。宋新海介绍,目前管束式集装箱用气瓶材料主要有4130x、4142两种材质,氢脆介质(硅烷、氯化氢、磷烷氢等)选用4130x材质,非氢脆介质(一氧化二氮、三氟化氮、六氟化硫等)选用4142材质。另外,在洁净处理方面,国内在生产环节,多采用抛光研磨、清洗等先进工艺,保证气瓶内壁洁净度,以满足客户要求;在组装环节,所有电子气体产品均在洁净室内进行装配,管路采用自动钨极氩弧焊接;[b]在检测方环节,所有漏点均进行氦检检测[/b]。“电子气体没有‘好’介质,大多具有自燃、有毒、氧化性或腐蚀性等特性,对阀门仪表等零部件的材料、密封、寿命等要求极其苛刻。”宋新海指出,目前我国电子气体储运装备领域阀门附件的国产化率还非常低,主要存在三方面问题。一是阀门材料纯度不高,易存在微量泄漏,耐腐能力差。二是一些阀门壁厚均匀性差,在使用一段时间后易出现内漏现象。三是阀门寿命较短,有的甚至才使用1年,就出现各种小问题。谈及未来电子气体储运装备未来发展趋势,宋新海认为,智能化、储运装备大型化、全球贸易将是重点。“[b]智能化方面,温度传感器、压力传感器、定位装置等智能化检测‘神器’[/b],将保障移动储运装备的使用更安全、更高效。储运装备大型化方面,太阳能电池新生产工艺带来磷烷氢用气量的巨大变化,使用管束式集装箱可确保较低的交易频率,以降低使用风险。全球贸易方面,未来将有更多的国内气体销往国外,对储运装备的需求将越来越多、品种越来越多样、洁净技术指标越来越严格。”他说。中国电子气体百人会秘书长洑春干在会议上提到,中国气体协会正积极推行电子气体产业包装、工艺及阀门等部件“安全注册”,以推进我国电子气体产业企业高质量发展,促进国产化生产及使用。据了解,前不久,[b]石家庄安瑞科成功研制全国首台磷烷与氢气混合气管束式集装箱并实现交付[/b]。该管束式集装箱作为全国首台针对磷烷与氢气混合气的专用大容积储运装备,不仅储运量大,且安全性高,将大幅度降低气体公司的运营成本。该公司于2023年投资3亿元建设国内第一条智能化、自动化、数字化高压电子气瓶产品生产线,有望助力半导体芯片及光伏等相关行业高质量发展。[来源:中国石油和化学工业联合会][align=right][/align]

  • 【分享】电子工业用气体国家标准

    电子工业用气体标准[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=91729]GB/T 14600-93电子工业用气体 氧化亚氮[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=91730]GB/T 14601-93电子工业用气体 高纯氨[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=91731]GB/T 14602-93电子工业用气体 氯化氢[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=91732]GB/T 14603-93电子工业用气体 三氟化硼[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=91733]GB/T 14604-93电子工业用气体 氧[/url]

  • 求助微型电子气体流量控制器

    我的朋友要做试验,需要求助微型电子气体流量控制器,不知道那位朋友能够提供帮助。(类似进口[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]用气体流量控制器)谢谢大家

  • 中国计量院出台《电子气检测报警器校准规范》 为危险气体监控预警器提供量值溯源依据

    [align=left] 针对目前我国化学品生产企业和实验室等使用的有毒有害危险气体监控和预警仪器的计量评价需求,日前,中国计量科学研究院(简称“中国计量院”)出台了由能源环境所编制的《电子气检测报警器校准规范》,对相关仪器仪表的示值误差、重复性、漂移、响应时间等技术参数和测量方法进行了明确规定,对校准用计量器具和溯源性提出了确切要求,并就校准结果的[url=http://www.jlck.net/forum-279-1.html]不确定度[/url]来源进行了充分的评估。[/align][align=left] 据了解,随着我国电子科技和制造水平的高速发展,电子工业企业和实验室数量也出现迅猛增长。由于电子工业中会用到多种有毒有害气体,所以在生产和实验场所必须安装相应的监控和预警用的仪器仪表。但目前我国在电子工业气体检测和报警用仪器仪表的计量校准和评价方面,还缺乏相应的技术规范。[/align][align=left] 为此,作为国家级法定计量技术机构和我国最高的计量科学研究中心,中国计量院组织气体计量与检测专家编制了《电子气检测报警器校准规范》,为电子行业报警器的计量校准和量值溯源提供了技术依据。该校准规范的实施将有效保障电子工业企业以及实验室所用电子气检测报警仪器仪表的计量校准和量值溯源的规范性和可靠性,提高电子工业生产和实验场所的监控和管理的科学性和客观性,为确保企业工厂和实验室的安全运行和从业人员的生命和财产安全做出了计量技术支撑[/align]

  • p10气体的作用

    X射线光子通过窗膜射入计数器内作用于惰性气体(Ar),就使这些气体原子接受能量后发生电离,产生电子离子对Ar→Ar++e-,对某一确定的气体而言,如果所有入射的光子都产生电子离子对,则电子离子对的数目与光子的能量成正比,这时的离子对只是初级电离,还达不到被有效检测的程度,还需要气体放大或雪崩。当探测器加以高压在电场的作用下,电子走向阳极丝,而离子走向筒体负极,当加速电子与其他气体原子碰撞产生二次电离,使带电粒子数有了相当大的增加,当电子到达离阳极丝只有几个直径的距离时(约100—200微米),倍增级数加大即Ar原子进一步离子化。在正比计数区,每个初级电子只产生一次雪崩效应,这个经放大后的电荷数仍正比于初级电子数,也即正比于入射光子数,如果将产生的电子电荷计数就测得了入射光子的数目(强度)。在惰性气体中加入淬灭气体(甲烷气)的目的是确保只发生一次雪崩,在工作时甲烷分子和惰性气体一起电离,然后分布在整个探测器空间,当雪崩无法控制时,它起到复合作用,影响电子和离子的重新结合,抑制雪崩的发展。总之,X射线光子进入探测器后经过初级电离和气体放大,一个光子能产生许多电子电离对,其中电子向阳极运动、离子向阴极运动形成电流,最终在电脉冲发生电路上形成电脉冲,探测器输出电脉冲幅值与入射光子能量成正比,而电脉冲的强度与入射光子的数目成正比。

  • 【分享】惰性气体简介

    惰性气体又称稀有气体(rare gas),因为在地壳和大气层中含量很少,除氡外都可作为工业气体由空气分离而制得。通常具有化学惰性,但近年来已能制得氙、氪、氡的一些具有一定稳定性的化合物。  惰性气体共有六种,按照原子量递增的顺序排列,依次是氦、氖、氩、氪、氙、氡。在通常情况下,它们不与其他元素化合,而仅以单个原子的形式存在。在常温下,它们都不会液化。它们全是气体,存在于大气之中。  首先被发现的惰性气体是氩,1894年就被探测到。它也是最常见的惰性气体,占大气总量的1%。其他惰性气体几年之后才被发现,它们在地球上的含量很少。  较大的惰性气体原子,例如氡,它的最外层的电子(参与化合反应者)与原子核离得较远。因此,外层电子与原子核之间的吸引力相对来说比较弱。由于这一原因,氡是惰性气体中惰性最弱的,只要化学家创造出合适的条件,也最容易迫使氡参与化合反应。  较小的惰性气体原子,其最外层电子离原子核比较近。这些电子被抓得比较牢固,使其原子难以与其他原子发生化合反应。  事实上,化学家已经迫使原子比较大的惰性气体——氪、氙、氡,与氟和氧那样的原子进行化合,氟与氧特别喜欢接受其他原子的电子。原子更小一些的惰性气体——氦、氖、氩——已经小到惰性十足的程度,迄今为止任何化学家都无法使它们参与化合反应。  原子最小的惰性气体是氦。在所有各类元素中,它是最不喜欢参与化合反应的,也是惰性最强的元素。甚至氦原子本身之间也极不愿意结合,因而直到温度降到4K时,才能变成液态。液态氦是能够存在的温度最低的液体,它对于科学家研究低温是至关重要的。  氦在大气中只有微量的存在,不过当像铀与钍这样的放射性元素衰变时,也能生成氦。这种积聚过程发生在地下,因而在一些油井中能产生氦。这种资源很有限,不过至今尚未耗尽。  每个氦原子只有两个电子,它被氦原子核束缚得如此之紧,以至要想抓走其中的一个电子,比之任何其他原子而言,要付出更多的能量。面对这样紧的束缚,那么是否能使氦原子放弃一个电子,或与其他原子共享一个电子,从而产生化合反应呢?  为了计算电子的行为,化学家采用了一种被称为“量子力学”的数学体系,这是在20世纪20年代创立的。化学家科克把它的原理应用到对氦的研究中。比如.假设一个铍原子(有四个电子)与一个氧原子(有八个电子)进行化合反应。在化合过程中,铍原子交出两个电子给氧原子,从而使它们结合在一起。用量子力学进行计算的结果表明,铍原子中背对着氧原子的那一侧电子出现的几率非常小。  根据量子力学方程,如果一个氦原子参与进来。它就会与铍原子上电子出现几率非常小的那一侧共享两个电子,从而形成氦-铍-氧的化合物。  迄今为止,还没有其他原子化合反应能够产生俘获氦原子的条件,而且即便是氦-铍-氧,也只有在足以使空气液化的温度条件下,或许能结合在一起。现在对于化学家来说,必须对在极低温度条件下的物质进行研究,看看是否真能够通过实践证实理论,迫使氦参与化合反应,从而打垮这种惰性最强的元素!

  • 电控针阀在透射电子显微镜样品杆气体流量和真空压力控制中的应用

    电控针阀在透射电子显微镜样品杆气体流量和真空压力控制中的应用

    [size=16px][color=#339999][b]摘要:针对环境扫描/透射电子显微镜对样品杆中的真空压力气氛环境和流体流量精密控制控制要求,本文提出了更简单高效和准确的国产化解决方案。解决方案的关键是采用动态平衡法控制真空压力,真空压力控制范围为1E-03Pa~0.7MPa;采用压差法控制微小流量,解决了以往采用质量流量控制器较难对混合气体和微小流量准确控制的难题,可实现气体和液体在0.005sccm~10slm范围内的流量的高精度控制。[/b][/color][/size][align=center][size=16px][color=#339999][b]============================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在环境扫描/透射电子显微镜(ESEM/ETEM)技术应用中,常会在研究对象附近创造出一个气氛环境,以研究固体和气体在原子尺度上相互作用过程中发生的现象。这种气氛环境通常为负压低真空或高于一个大气压的正压压力,由一个称之为环境样品杆“environmental sample holder”的密封形式的特殊气体样品架来提供。典型的环境样品杆结构如图1所示,其具有两个进出端口,用于气体或液体流入和流出位于样品架尖端的空腔。[/size][align=center][size=16px][color=#339999][b][img=典型的电子显微镜样品杆,550,208]https://ng1.17img.cn/bbsfiles/images/2023/09/202309111733107508_954_3221506_3.jpg!w690x261.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 典型的电子显微镜样品杆[/b][/color][/size][/align][size=16px] 一般电子显微镜样品杆及其进气控制装置需具有以下功能:[/size][size=16px] (1)样品杆具有独立的气氛环境和很好的密封性,极低的漏率使得电子显微镜能正常工作在超高真空条件下。[/size][size=16px] (2)进入样品杆的一种或多种气体,采用一个或多个质量流量控制器(MFC)来控制流量,且每个MFC需要根据进气气体进行独立校准。[/size][size=16px] 在实际研究过程中,上述功能的电子显微镜样品杆进气控制装置还存在以下几方面的问题需要解决:[/size][size=16px] (1)无法实现真空压力的精密控制,即无法为被测样品提供稳定的真空压力环境,且随着反应过程的进行以及温度变化和反应气体的挥发,无法使真空压力不受影响并保持稳定。[/size][size=16px] (2)对于原子尺度上的研究,通常会涉及到纳米粒子的气体反应,这就要求进出样品杆的气体流速低至0.005 SCCM或更低,且始终保持稳定,这是采用MFC无法控制实现的。此外,由于MFC是针对特定的气体种类来进行校准,所以复杂的气体混合物或未知的气体混合物不能被精确地计量。[/size][size=16px] 因此,考虑到上述现有技术的问题,本文提出一种能准确控制样品杆内部真空压力环境以及全量程控制通过样品杆的气体流速的解决方案,且流速的控制与气体种类无关。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 针对电子显微镜气体样品杆内的真空压力控制,解决方案的基本原理是动态平衡法,使得样品杆的进气流量与排气流量达到不同的平衡状态,实现不同真空压力的精密控制。[/size][size=16px] 针对电子显微镜气体样品杆内的混合气体流量控制,解决方案的基本原理是压差法,使得样品杆的进出气口两端形成恒定压差,调节出气口开度大小来是实现不同微小流量的精密控制。[/size][size=16px][color=#339999][b]2.1 真空压力控制[/b][/color][/size][size=16px] 气体样品杆的真空压力控制装置如图2所示,整个装置主要由电控针阀、真空计、真空压力控制器和真空泵组成。装置中配置了两个电控针阀,分别用来调节进气流量和排气流量。真空计用来测量样品杆内的真空度,控制器采集真空计信号与设定值对比,驱动针阀来进行恒定控制。[/size][align=center][size=16px][color=#339999][b][img=气体样品杆真空压力控制装置,600,290]https://ng1.17img.cn/bbsfiles/images/2023/09/202309111733596359_8287_3221506_3.jpg!w690x334.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 气体样品杆真空压力控制装置[/b][/color][/size][/align][size=16px] 在此真空压力控制装置的具体使用过程中,需注意以下几点:[/size][size=16px] (1)此控制装置可实现宽泛范围内的真空度控制,如从1Pa~0.1MPa(绝对压力),且可以轻松达到±1%的控制精度。但需要注意的是需要至少采用两只电容真空计来覆盖整个范围,如果控制精度要求不高,可直接使用一只测量精度较差的皮拉尼等真空计来覆盖全真空度范围。[/size][size=16px] (2)此控制装置也可实现正压压力的精密控制,如从0.1MPa~0.7MPa(绝对压力),可以轻松达到±0.5%的控制精度。具体应用时,可以将真空计处增加一个正压压力传感器。[/size][size=16px] (3)控制装置中的真空压力控制器需要是两通道的高精度控制器,控制器可连接两只真空度传感器并驱动两个电控针阀,并可在两只真空计之间进行自动切换。在具体控制过程中,低真空(1000Pa~0.1MPa)范围内,具体控制方式是恒定进气针阀开度而自动调节排气针阀开度;在高真空(1Pa~1000Pa)范围内,控制方式是100%排气针阀开度而自动调节进气针阀开度。[/size][size=16px] (4)如果需要对气体样品杆内进行更高真空度(1E-04Pa~1Pa)范围的控制,则需更换真空计和进气针阀并增加分子泵等,关键是需将进气针阀更换为阀门开度更小(微米量级)和进气流量更低的可变泄漏阀。[/size][size=16px] (5)如果采用非电容式真空计作为真空度传感器来进行真空度控制,要求真空压力控制器需具有输入信号线性处理功能,这是因为除了电容式真空计外,其他形式的真空计输出的都是非线性信号,要实现准确的真空度控制,就要求真空压力控制器具有多点拟合线性化处理功能。[/size][size=16px][color=#339999][b]2.2 微小流量控制[/b][/color][/size][size=16px] 气体样品杆的微小流量控制装置结构如图3所示,整个装置主要由电控针阀、流量计、PID调节器、压力控制器和上下游气罐组成。装置中配置了两个气罐分别来恒定气体样品杆进出口两端的压力以形成压差,然后PID调节器根据设定值来调节电控针阀实现流量的精密控制。[/size][align=center][size=16px][color=#339999][b][img=气体样品杆精密流量控制装置,690,262]https://ng1.17img.cn/bbsfiles/images/2023/09/202309111734506728_6036_3221506_3.jpg!w690x262.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 气体样品杆精密流量控制装置[/b][/color][/size][/align][size=16px] 在此微小流量精密控制装置的具体使用中,需注意以下几方面的内容:[/size][size=16px] (1)因为流量控制是基于压差法,所以只需能提供稳定的压力差,且调节电控针阀的开度就可实现流量控制。压力差精密可控,且针阀的开度也可自动调节,这是保证微小流量精密控制的关键。[/size][size=16px] (2)另外决定微小流量精密控制的因素是流量计和PID调节器的精度,因此在采用满足流量测量范围要求的高精度流量计的同时,还需采用高精度的PID调节器,如24位AD和16位DA。[/size][size=16px] (3)同样,为了实现稳定的高精度的压差供给,需要对上下游气罐的压力进行精密控制。简单的方法是通过双通道的PID调节直接设定两个压力控制器为不同的压力控制值,采集压力控制器内部自带的压力传感器信号进行控制。如果要求实现更高精度的压差控制,则需在上下游气罐上增加更高精度的压力传感器并分别与PID调节器连接。[/size][size=16px] (4)图3所示的气体样品杆流量控制装置同样适用于液体的流量控制,同样可以实现液体微小流量的高精度控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,采用本文解决方案中真空、压力和流量控制装置,可实现以下功能:[/size][size=16px] (1)真空压力控制范围为1E-03Pa~0.7MPa(绝对压力),1E-03Pa~1Pa真空度范围内的控制精度可达±15%,1Pa~0.1MPa真空度范围内的控制精度可达±1%,0.1MPa~0.7MPa范围内正压压力控制精度可达0.5%。上述控制精度主要由真空计和压力传感器的测量精度决定。[/size][size=16px] (2)流量控制范围为0.005sccm~10slm,控制精度可达±1%,主要由流量计测量精度决定。流量控制装置可适应于气体和液体。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 何谓气体传感器-四种气体传感器的检测原理

    所谓[url=https://www.isweek.cn/category_11.html]气体传感器[/url],是一种可以检查出目视不到的气体存在的传感装置。在以家用天燃气丙烷气体报警器为主的空调与空气洁净器、汽车等领域广泛得到应用。现在工采网小编对4种气体检测原理进行说明。[b][b][b]一、半导体气体传感器工作原理[/b][b]简单的架构[/b][/b][/b][url=http://news.isweek.cn/wp-content/uploads/2021/12/shikumi.gif][img=shikumi,300,280]http://news.isweek.cn/wp-content/uploads/2021/12/shikumi.gif[/img][/url][b][b][b]STEP1[/b][/b][/b]在洁净的空气中,氧化锡表面吸附的氧会束缚氧化锡中的电子,造成电子难以流动的状态。[b][b][b]STEP2[/b][/b][/b]在泄漏的气体(还原性气体)环境中,表面的氧与还原气体反应后消失,氧化锡中的电子重获自由,受此影响,电子流动通畅。[b][b][b]传感器的检测原理[/b][/b][/b]当氧化锡粒子在数百度的温度下暴露在氧气中时,氧气捕捉粒子中的电子后,吸附于粒子表面。结果,在氧化锡粒子中形成电子耗尽层。由于气体传感器使用的氧化锡粒子一般都很小,因此在空气中整个粒子都将进入电子耗尽层的状态。这种状态称为容衰竭(volume depletion)。相反,把粒子中心部位未能达到耗尽层的状态称为域衰竭(regional depletion)。使氧气分压从零(flat band开始按照小([O[sup]-[/sup]](Ⅰ))→中([O[sup]-[/sup]](Ⅱ))→大([O[sup]-[/sup]](Ⅲ)))的顺序上升时,能带结构与电子传导分布的变化如下图所示([O[sup]-[/sup]]:吸附的氧气浓度)。在容衰竭(volume depletion)状态下,电子耗尽层的厚度变化结束,产生费米能级转换[i][i]p[/i][/i]kT,电子耗尽状态往前推进则[i][i]p[/i][/i]kT增大,后退则pkT缩小。[b][b][b]■ 随着吸附的氧气浓度增加半导体粒子的耗尽状态在推进[/b][/b]能带结构[/b][table][tr][td][img]http://www.figaro-china.com/img/development/handoutai/zu1.jpg[/img][/td][td][table][tr][td]x[/td][td]:[/td][td]半径方向的距离[/td][/tr][tr][td]qV(x)[/td][td]:[/td][td]势垒[/td][/tr][tr][td][i]a[/i][/td][td]:[/td][td]离子半径[/td][/tr][tr][td][O[sup]-[/sup]][/td][td]:[/td][td]吸附氧气的浓度[/td][/tr][tr][td]E[sub]C[/sub][/td][td]:[/td][td]传导带下端[/td][/tr][tr][td]E[sub]F[/sub][/td][td]:[/td][td]费米能级[/td][/tr][tr][td][i]p[/i]kT[/td][td]:[/td][td]费米能级转换[/td][/tr][/table][/td][/tr][/table][b]传导电子分布[/b][table][tr][td][img]http://www.figaro-china.com/img/development/handoutai/zu2.jpg[/img][/td][td][table][tr][td][e][/td][td]:[/td][td]电子浓度[/td][/tr][tr][td]N[sub]d[/sub][/td][td]:[/td][td]施子密度[/td][/tr][/table][/td][/tr][/table]容衰竭(volume depletion)状态下球状氧化锡粒子表面的电子浓度[e][sub]S[/sub]可用施子密度Nd、粒子半径[i]a[/i]以及德拜长度L[sub]D[/sub]通过式子(1)表示。如果[i]p[/i]增大则[e][sub]S[/sub]减少,[i]p[/i]减少则[e][sub]S[/sub]增大。[e][sub]S[/sub]=N[sub]d[/sub] exp{-(1/6)([i]a[/i]/L[sub]D[/sub])[sup]2[/sup]-[i]p[/i]} ... (1)由大小、施子密度相同的球状氧化锡粒子组成的传感器的电阻值R,可使用flat band时的电阻值R[sub]0[/sub],通过式子(2)表示。[e][sub]S[/sub]减少则将增大,[e][sub]S[/sub]增大则将缩小。R/R[sub]0[/sub]= N[sub]d[/sub]/[e][sub]S[/sub] ... (2)使用了氧化锡的半导体式气体传感器,就是这样通过氧化锡粒子表面的[O[sup]-[/sup]]的变化来体现电阻值R的变化。置于空气中被加热到数百度的氧化锡粒子,一旦暴露于一氧化碳这样的还原性气体中,其表面吸附的氧气与气体之间发生反应后,使[O[sup]-[/sup]]减少,结果是[e][sub]S[/sub]增大,R缩小。消除还原性气体后,[O[sup]-[/sup]]增大到暴露于气体前的浓度,R也将恢复到暴露于气体前的大小。使用氧化锡的半导体式气体传感器就是利用这个性能对气体进行检测。[b][b][b]二、催化燃烧式气体传感器工作原理[/b][/b][/b]催化燃烧式气体传感器由对可燃气体进行反应的检测片(D)和不与可燃气体进行反应的补偿片(C)2个元件构成。如果存在可燃气体的话,只有检测片可以燃烧,因此检测片温度上升使检测片的电阻增加。 相反,因为补偿片不燃烧,其电阻不发生变化(图1)。这些元件组成惠斯通电桥回路(图2),不存在可燃气体的氛围中,可以调整可变电阻(VR)让电桥回路处于平衡状态。 然后,当气体传感器暴露于可燃气体中时,只有检测片的电阻上升,因此电桥回路的平衡被打破,这个变化表现为不均衡电压(Vout)而可以被检测出来。此不均衡电压与气体浓度之间存在图3所示的比例关系,因此可以通过测定电压而检出气体浓度。[b]■ (图1)测定电路[/b][img=,621,257]http://www.figaro-china.com/img/development/sesshoku/img1.jpg[/img][b]■ (图2)测试电路[/b][img=,297,255]http://www.figaro-china.com/img/development/sesshoku/img2.jpg[/img][b]■ (图3)[/b][img=,297,255]http://www.figaro-china.com/img/development/sesshoku/img3.jpg[/img][b][b][b]三、电化学气体传感器工作原理[/b][/b]传感器元件构成与电极反应式[/b][img=,621,255]http://www.figaro-china.com/img/development/denkikagaku/shiki.jpg[/img]传感器由来自贵金属催化剂的检测极、对极与离子传导体构成。当CO等检测对象气体存在时,在检测极催化剂上与空气中的水蒸气发生(1)式所示的反应。CO + H[sub]2[/sub]O → CO[sub]2[/sub]+ 2H[sup]+[/sup] + 2e[sup]-[/sup] …(1)检测极与对极接通电流(短路)后,检测极产生的质子(H+)与同时产生的电子(e-)分别通过离子传导体与外部电线(引线)各自到达对极,在对极上与空气中的氧之间发生(2)式所示的反应。(1/2)O[sub]2[/sub] + 2H[sup]+[/sup] + 2e[sup]-[/sup] → H[sub]2[/sub]O …(2)也就是说此传感器构成了由(1)(2)反应式形成的(3)反应式的全电池反应,可以认为是将气体作为活性物质的电池。CO + (1/2)O[sub]2[/sub] → CO[sub]2[/sub] …(3)当做气体传感器使用时,接通检测极与对极的电流,来测定其短路电流。[b]CO浓度检测原理公式[/b][img=,254,236]http://www.figaro-china.com/img/development/denkikagaku/co.jpg[/img]对流过外部电路的短路电流与气体浓度的关系,通过传感器进行适当的扩散控制(控制气体的流入量),呈现出式子(4)这样的比例关系(右图)。I = F × (A/σ) × D × C × n …(4)这里 I:短路电流;A:扩散孔面积;σ:扩散层长度;D:气体扩散系数;C:气体浓度;n:反应的电子数量[b]特长[/b]反应式(1)所示的氧化电位由于比氧化电极电位的基准值(2H+ + 2e- ? H2)要低(拥有较低电位),因此此反应不需要消耗来自外部的电压、温度等其他能量,可以有选择地进行,与别的检测方式相比在干扰性、重复性、节电方面要优越得多。[b][b][b]四、NDIR气体传感器工作原理[/b][b]NDIR(非色散型红外线)式气体传感器的工作原理[/b][/b][/b]NDIR(non-dispersive infrared)式气体传感器是通过由入射红外线引发对象气体的分子振动,利用其可吸收特定波长红外线的现象来进行气体检测的。红外线的透射率(透射光强度与源自辐射源的放射光强度之比)取决于对象气体的浓度。[img]http://www.figaro-china.com/img/development/ndir-type/zu01.png[/img]传感器由红外线放射光源、感光素子、光学滤镜以及收纳它们的检测匣体、信号处理电路构成。在单光源双波长型传感器中,在2个感光素子的前部分别设置了具有不同的透过波长范围阈值的光学滤镜,通过比较可吸收检测对象气体波长范围与不可吸收波长范围的透射量,就可以换算为相应的气体浓度。因此,双波长方式可实现长期而又稳定的检测。[b]检测原理[/b]用中波段红外线照射气体后,由于气体分子的振动数与红外线的能级处于同一个光谱范畴,红外线与分子的固有振动数发生共振后,在分子振动时被气体分子所吸收。气体浓度与红外线透射率的关系可通过下述朗伯-比尔定律进行说明。对于NDIR式气体传感器来说,对象气体的吸光度ε与光程d是不变的,在与成为对象的气体吸收能(波长)一致的光谱范畴,通过测定红外线的透射率[i]T[/i],即可得到对象气体的浓度c。[img]http://www.figaro-china.com/img/development/ndir-type/zu02.png[/img]来自放射源的入射光强度[i]I[/i][sub]0[/sub],是通过使用不吸收红外线的零点气体校准后设定的。吸光度ε是利用已知浓度的对象气体进行校准后进行初始设定的。[b]特长[/b]因为红外线是根据目标气体固有的红外能量(波长)被吸收的,所以气体选择性非常高成为其最大的特长。即使在高浓度的对象气体中长时间进行暴露,也从原理上避免了灵敏度的不可逆变化。

  • 标准气体的分析准度

    标准气体是浓度均匀的,良好稳定和量值准确的测定标准,它们具有复现,保存和传递量值的基本作用,在物理,化学,生物与工程测量领域中用于校准测量仪器和测量过程,评价测量方法的准确度和检测实验室的检测能力,确定材料或产品的特性量值,进行量值仲裁等。标准气体是供用户作定量标准的,由于标准气体属于标准物质,是量值测定的标准,具有复现、溯源、仲裁、保存和传递量值的作用。标准气体、混合气体广泛地应用于基础科学、大气污染、医学诊断、石油化工、冶金地质、原子能、微电子、光电子等诸多领域。因此,配气的准度在标准气生产中意义重大,否则用户无法用此来进行质量的分析与控制。早在1981年国际标准化组织(IS0)就制定了标准气体制备的国际标准,1985年我国也将该标准视同为国家标准(GB5274—85)。该标准明确要求标准气体在出厂时必须在制备证书上注明组分的相对不确定度。由于不确定度贯穿气体配制过程的各个环节, 因此,对配气人员来讲,能正确理解不确定度公式的真正含义意义重大。

  • 仪器仪表,气体流量计

    ?仁荷微电子科技有限公司主要从事质量流量器的研制、开发、制造、销售以及售后等相关的服务。产品包括超高质量的气体质量流量控制仪器及测量仪器、气体工艺解决方案和全球服务支持方案。本公司产品气体质量流量控制器广泛应用于工业气体、石油、化工、医疗、电子及微电子、半导体、太阳能光伏、各类实验室、研究所、生物医药、标准检测等各类高新技术领域,为客户提供各种气体管道输送系统的全面服务。深受广大客户的肯定及认同。我公司生产的气体质量流量控制器所使用的技术全由我们独家技术,具有自主知识产权,产品的每一个部件都有我们自己设计制作,且已取得了多项技术专利申请?,气体质量流量控制器每一个部件我们都以精益求精的质量服务广大客户,让客户体验到自动化流量控制设备带来的改变,为现有的产品技术升级提供基础服务。?致力于为客户开发“生产工艺最优化和成本化”的解决方案及相关产品。并且能在最短的时间内提供优质的售后服务。

  • 【分享】金属中气体分析

    金属中气体分析 gas analysis in metals   金属中的气体主要是氧、氢、氮,通常以金属化合物、固溶体、气孔或气泡形式存在。气体的含量即使低至10ppm,对许多种金属的力学和物理性能仍有影响。因此超纯金属和半导体材料等中的气体含量甚至要低至 ppb级。气体分析已有50年的历史,约在30年代在精炼钢工艺过程中研究脱氧剂效果时,开始分析金属中气体。最初应用氢还原法测定钢铁中氧,应用真空加热法测定钢中氢等。1945年以后随着真空技术的发展,用真空熔融法测定氧,准确度大为提高。常用的气体分析方法有以下几种。   熔融抽取法 高温熔融抽取法应用最广,可单独或同时测定氧、氢、氮。已应用于分析钢铁、铁合金、有色金属及其合金、贵金属、难熔金属、稀土金属、半导体材料中的气体。金属在真空或惰性气体介质中,在高温条件下抽取气体。金属中的氧化物热稳定性高,加热难以完全分解,须用石墨碳还原成一氧化碳形式抽取,至于氢和氮则分别以氢分子和氮分子的形式抽取。首先加热石墨坩埚,达到2000℃以上,使之脱气。然后降低至操作温度测定空白值,空白值要低并稳定。投入试样抽取气体,必要时加浴料。脱气温度、时间,操作温度,浴料种类和用量,试样重量,抽取时间等等,可采用实验法找出最佳条件。真空熔融法准确度高,是气体分析的标准方法,但设备和操作繁杂,分析时间长,真空检漏费事。采用惰性气体载流,则设备简单,操作方便,分析速度快。分析的准确度和灵敏度取决于所用装置的结构和测定仪器的精度、操作条件、空白值等。试样须仔细制备,确保表面光洁,无发纹、裂纹、夹杂物、油污等。氢在金属中易于扩散逸出,最好制样后保存在液氮中,并及时分析。此法灵敏度一般可达ppm级、0.1ppm级或更高。  用高温熔融抽取法抽出的气体通过加热的氧化铜或五氧化二碘,使一氧化碳氧化为二氧化碳,氢氧化为水,以便分离和测定。测定气体的方法有:①[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法。将抽取的气体转移到硅胶色谱柱或分子筛色谱柱,用氩作载气,将一氧化碳、氢、氮分离,进入钨丝热导池测量,可同时测定氧、氢、氮的含量。②冷凝微压法。在真空系统内测定除去水汽和二氧化碳气前后的压差,计算氢、氧的含量。③质谱法。将抽取出的气体导入气体分析用的质谱计,测定氧、氢、氮。④库仑法。将二氧化碳导入一定pH的微碱性高氯酸钡电解液中,由于吸收二氧化碳而使pH改变,最后用恒定脉冲电流滴定,使pH复原,从消耗的电量求出含氧量。⑤电导法。电导池中,氢氧化钠溶液吸收二氧化碳后,电导发生变化,测量电导的改变,求出含氧量。⑥红外吸收法。将极性分子一氧化碳或二氧化碳导入红外线吸收池内,按红外线吸收量测定含氧量。⑦非水滴定法。将二氧化碳导入非水溶剂丙酮,用氢氧化钾甲醇溶液滴定,求出氧量。   化学分析法 氢还原法 用于粉末样品中氧和氮的测定。样品在高纯氢气流下加热还原,氧与氢反应生成水,可用重量法或卡尔菲休容量法测定。氮与氢反应生成氨,在酸性介质中吸收后用容量法、光度法、库仑法或离子选择性电极测定。   燃烧法 用于金属氢化物或含氢量高的金属。试样在高温下通氧燃烧,氢与氧生成水,再行测定。   凯氏法定氮 将试样溶于酸,氮转化为氨,在碱溶液中用蒸镏法分离氨,吸收于酸溶液中。测定方法同氢还原法。此法操作简单,适用范围广,灵敏度可达10-6左右。   其他方法 此外还有测定氧的硫化法、卤素法、溴碳法、汞齐法、铝法等;测定氮的氧化熔融法、还原碱溶法、卤化法、电解法等等。  物理分析法 试样可不经加热抽取或化学反应,直接用物理分析方法测定,主要有放射化分析法(活化法),同位素稀释法,火花源质谱法,发射光谱法等。物理法灵敏度较高,但设备昂贵。  固体电解质浓差电池法 此法用于监测熔化了的金属和合金中的氧、氮、氢的含量,能在冶炼过程中直接连续测定。   金属表面的气体分析 分析表面和近表面的气体对研究金属材料是极关重要的。方法有带电粒子束活化分析法和瞬发辐射分析法,利用光子束与电子束的表面分析仪器如化学分析用的电子能谱(ESCA)、紫外光电子能谱(UPS),俄歇电子能谱(AES),电子能量损失谱(LEED)和穆斯堡尔谱,二次离子质谱(SIMS),扫描电镜(SEM)等。

  • 气体中金属杂质如何吸收、测定?

    目前,气体尤其是高纯气体一般都有气体杂质的分析方法,但是高纯气体中的金属杂质分析却很少涉及,我在网上查找相关内容,发现有一篇文献,说可以用电子级的盐酸来吸收气体中的金属杂质,不知道该方法是否可行?另外是否还有其他的吸收方式呢?

  • 热场为什么能减少气体吸附针尖?

    冷场日立S-4800和日本电子J6335F都必须每天做Flashing去除针尖表面气体分子,而“热场工作温度是1800K,能避免气体分子吸附在针尖,所以做Flashing”,为什么温度提高了,就减少了气体分子吸附针尖,?还有冷场中,气体分子为什么总是会吸附在针尖上?

  • 特种气体工艺系统的一般性要求

    [b]特种气体工艺系统一般性要求 [color=#00b0f0] [/color][/b]一般工艺气体都是储存在钢瓶中,钢瓶作为气源相对方便使用。过去无论是在半导体生产车间,抑或是科研单位的实验室,钢瓶总是出现在需要的地方,而没有一个统一的规划布置。随着半导体行业的蓬勃发展,对其配套项目也提出了更高要求。比如在集中供气系统中一般要有专用装置储存钢瓶,在过去十多年中,盖斯帕克没有发明集中供气之前,特种气体供应没有形成有效的系统,钢瓶凌乱,管理混乱,不相容气体混放等问题比较严重,极大的影响到用气安全。彼时,随着半导体、微电子行业的发展壮大,特气系统的工艺要求也越来越规范,本文从宏观方面探讨整个系统设计初期需要注意的问题。特种气体工艺系统的硬件需求:储存、供气的气瓶柜、气瓶架、集装格。气体分配用阀门箱、阀门盘。辅助氮气吹扫系统。尾气处理装置。工艺气体的储存方式比较多样,有槽车、鱼雷管拖挂车、集装格、杜瓦罐、各类储罐等。实验室、科研单位、一般半导体生产厂用的特气多用钢瓶存储。特种气体工艺系统的设计应满足电子产品生产工艺对特气工艺的参数、污染控制、使用安全的要求。不相容的特种气体的排气管道不应该接入同一排气系统。不相容的特种气体的排风管道不应接入同一排风系统。

  • 气体传感器

    公司介绍嘉兴立特电子科技有限公司是美国德康气体检测设备中国总代理。全面经营代理美国德康公司的各类气体探测器、气体报警控制系统、气体在线流程分析仪。美国德康公司通过ISO9001:2000质量体系认证,产品获得北美认证(CSA)、加拿大认证(UL)、泛美认证(UL)。德康公司在红外线气体探测器、金属氧化物(MOS)半导体H2S气体探测器、光离子智能化气体探测器、电化学有毒气体探测器和催化燃烧型可燃气体探测器等系列产品成为行业的先行者,产品应用范围几乎覆盖整个工业领域。即使面对最具难度和挑战性的工业环境,德康的气体探测技术和产品仍能提供实用而经济的服务,在激烈的市场竞争中占据领先地位。以德康中国总代理立特电子科技有限公司为核心,建立区域代理制度,由立特电子科技有限公司负责中国地区所有事务,包括德康产品的客户咨询、销售、物流、技术培训、安装调试、维护维修等综合业务。为在中国设立研发中心与制造中心创造前期条件。主要的产品包括:电化学有毒气体探测器、金属氧化物(MOS)半导体技术H2S探测器、氧气探测器、催化燃烧型可燃气体探测器、红外线可燃气体及二氧化碳气体探测器、光离子智能VOC蒸汽探测器、气体流程在线分析仪、气体探测报警控制系统、系统集成等。美国德康气体检测设备---世界一流产品,全球最长质保期。诚征全国各地经销代理商!网址:www.jxlead.com公司总部: 地址:嘉兴市勤俭路404号勤俭商务楼6楼 电话: 0573-3911600、2079566、2072559传真: 0573-2079055手机:13957368831上海分公司:地址:上海市闵行区贵都路209号28-301电话:021-54432596、28370595 手机:13761410320西北分公司:地址:西安市新城区东新街234号4-16电话:029-87928928传真:029-87421917手机:13991810572产品介绍催化燃烧型可燃气体探测器美国德康公司的催化燃烧型可燃气体探测器是设计用以监视和探测周围空气中可燃气体浓度在爆炸下限从0~100%LEL的范围内的变化。该传感技术是催化燃烧型,传感器探头可在现场更换。该技术对于可燃性气体普遍适用性,对于种类繁多的可燃性气体有敏锐的反应。DETCON传感器气敏元件经特殊设计有防中毒功能,能在多数工业环境中可靠工作五到十年。该产品主要有三种型号:FP-424C、FP-524C、FP-624C(Microsafe 智能化传感器, 4-20MA输出,RS-485通讯接口,带三个报警继电器 无干扰操作界面)。 电化学有毒气体探测器美国德康公司的电化学有毒气体探测器是设计用以探测周围空气中存在的多种有毒气体浓度的变化。该传感技术是电化学型,传感器探头可在现场更换。该探测器探测有毒气体的种类及检测范围都是在业内首屈一指的。本传感器气敏元件在多数工业坏境下工作寿命在两年以上。该产品主要有四种型号:DM-200IS、DM-400IS、DM-500IS、DM-600IS(Microsafe 智能化传感器, 4-20MA输出,RS-485通讯接口,带三个报警继电器 无干扰操作界面)金属氧化物(MOS)半导体硫化氢探测器美国德康公司的金属氧化物(MOS)半导体H2S气体探测器被设计用以探测周围空气中硫化氢气体的浓度,它的测量范围从标准型的0-20/50/100PPM(可在工作现场调节)到高测量范围型的1,000-10,000PPM。该产品采用金属氧化物半导体传感技术,可动态地显示硫化氢气体浓度的变化。其敏感性可从十亿分之一到百分之一。该技术生产的气敏元件由于自身消耗极小,带温度补偿功能,特别适合在恶劣环境和恶劣气候条件下应用(海上、陆上石油钻井平台,沙漠中,热带气候环境等),拥有十年质保期――世界最长质保期。该产品有三种型号:TP-424C、TP-524C、TP-624C(Microsafe 智能化传感器, 4-20MA输出,RS-485通讯接口,带继电器 无干扰操作界面)氧气探测器美国德康公司的氧气探测器是被设计用于监控缺氧状况及在过程气体中检测氧气浓度的探测器。标准的缺氧监控范围是在体积比0-25%之间,而对过程气体的含氧量检测的范围则在0-1%和0-30%之间。Detcon公司的氧气探测器气敏元件采用空气电池式电化学传感技术。这种探测器气敏元件的使用寿命为两年半到三年。该产品有四种型号:DM-200、DM-434、DM-534、DM-634(Microsafe 智能化传感器, 4-20MA输出,RS-485通讯接口,带继电器 无干扰操作界面)红外光学气体探测器美国德康公司的一系列红外线光学气体浓度探测器是基于先进的光学传感技术设计的,用以探测可燃性烷烃类气体或二氧化碳气体的探测器。这种传感器以无干扰、智能化为特征。简单的菜单式校准及模块化设计和组装简化了安装、维护和调试。这种独特的红外线光学气体传感器经实践证明反应敏锐、工作稳定可靠且所需的阶段性维护最少。此外,DETCON公司的产品质量保证决定了拥有本产品的最低运作成本。该产品主要有四种型号:IR-522 、IR-622(烷烃类) IR-540、IR-640(二氧化碳)(Microsafe 智能化传感器, 4-20MA输出,RS-485通讯接口,带继电器 无干扰操作界面)Model1000 型系列在线流程分析仪美国德康公司的 Model 1000 型系列在线流程分析仪是用以对天然气中的硫化氢和二氧化碳气体浓度提供准确及连续测量的仪器。Model 1000型适用于天然气开采、运输、储藏设备上,维护成本低,现场校验手段简便,部件采用模块化设计,节省了空间。Model 1000型是Detcon 悠久的气体探测器研究及制造历史与一系列先进设计理念相结合的产物。这种操作简便、经济实惠、功能强大的分析仪器,等同于那些价格数倍于它的其它分析技术产品。主要特性l连续测量,运行时间长l操作简便l校准维护简便l价格低廉l无有害废物产生l可选的标准样气l标准输出为:4-20MA,RS-485, 三个继电器l电气分类等级为Class 1 Division 1 Group C, 和 Group D

  • 【原创】红外气体传感器应用于瓦斯发电

    瓦斯或称煤层气,实际上是一种非常规天然气,其主要成分是甲烷CH4。CH4瓦斯易爆,煤矿开采时的瓦斯爆炸给人们的生命财产带来严重祸殃,瓦斯直排大气,其温室效应是CO和CO2的多倍。我国煤层瓦斯资源十分丰富,是继俄罗斯和加拿大之后的第三大储量国。据悉,我国煤矿埋深在2 km 以内的瓦斯估计有30×1012 ~35×1012 M3,其热值较高,煤矿瓦斯每立方米可发电1~ 3.2 kW • h。。我国每年煤矿排出的瓦斯总量大约为135亿m3,可产生470亿kWh电能。而现在利用煤矿瓦斯发电产生的发电量仅为20亿kWh左右,大部分瓦斯都被直接排放到大气中,既浪费了资源,也污染了环境。因此大力发展瓦斯发电,不仅能缓解我们能源紧张问题,而且还可以保护环境,取得巨大的经济效应。我国瓦斯发电技术已经比较成熟,尝试和推广瓦斯发电可以拓展瓦斯应用领域,达到“以抽保用,以用促抽”的目的,保证矿井安全生产,保护环境,实现科学发展。国内现在已有多家瓦斯发电厂,相信不久将会更多,瓦斯发电主要关键技术有电控燃气混合器技术,贫燃技术,数字式点火技术,全电子控制技术。电控燃气混合器技术是针对煤矿瓦斯浓度不稳定、压力波动大的特点而采用先进的电子控制系统。首先,发电机组混合器腔内的氧传感器提供精确控制信号,通过步进电机控制空气和瓦斯的流量,实现对空燃比的精确控制,即甲烷与氧气的体积比为1:2。在机组运行过程中,甲烷的含量控制在5% 一16%爆炸极限之间,电子点火后,甲烷在气缸内充分爆炸做功,内燃机活塞上下往复运动,带动曲轴旋转,从而发电机转子切割磁力线发出电能。这种技术使内燃机无条件地适应了煤矿瓦斯的特点,解决了因瓦斯不稳定而影响发电机组功率波动大的问题。毫无疑问,在电控燃气混合技术中是要用到气体传感器的,只有有气体传感器的存在,才能把气体浓度信号传送给电子控制系统,使电机控制进气量,控制燃烧比,最大的利用热能,适应煤矿瓦斯浓度不稳定、压力波动大的问题。因此好的气体传感器在此技术中至关重要。武汉四方光电科技有限公司(www.gassensor.com.cn)专业生产红外气体传感器和红外气体分析仪器。该公司红外气体传感器采用非分光红外吸收光谱法(NDIR)技术,结合嵌入式的硬件和软件技术,可实现不同浓度、不同气体的高精度连续检测。公司产品已经广泛应用到机动车尾气检测、连续污染物监测系统CEMS、沼气分析、冶金炉气分析、红外可燃气体检测、石油天然气勘探等诸多领域。此外,瓦斯中可能含有H2S和水,这两种气体含量要严格控制,否则对管道及发动机的金属部件产生腐蚀,特别是对铜质及铝质部件腐蚀更为严重,因此,H2S的浓度监测也非常重要,四方光电的产品相信也能派上用场。总之,瓦斯发电在我国这样一个煤炭大国将是一个非常有前景的产业,而气体传感器相信也是推动这一产业进步的技术之一。[color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 气体纯度方面的要求

    [b][导读][/b]色谱仪气体纯度方面的的选择[b]气体纯度方面的要求[/b]在一般情况下选择气体纯度时,主要取决于:①分析对象:分析石油产品时,一次可以分离分析一百多种组分。②检测器:检测器是用来监测出柱后分离的所有组分,随时间不同,流出的组分不同,并以模拟信号显示出来,达到分离效果。一般常用检测器有热导检测器,氢火焰检测器,电子捕获检测器和硫磷检测器等。分析不同的样品需要不同的检测器。③色谱柱:色谱柱的主要作用就是把分析样品分离出来。根据样品需要在柱里停留时间的分析要求可以分为填充柱和毛细管柱。建议在分析测定时,中高档仪器尽可能使用纯度高的气体。这样不但可以提高灵敏度,而且会延长色谱仪寿命,并且能保护好色谱柱,避免不必要的反复冲洗;要是长期使用纯度低的气体,在分析浓度低、精度高的样品时,要想保证仪器的高灵敏度基本上是不可能的,对测定结果也会有很大的误差。而对于低档色谱仪,通常也只作定性或常规定量分析,若选用纯度高的气体,只会徒增运行成本,也是对资源的一种浪费。所以我们在选用气体的纯度方面上,只要达到或略高于相应的要求就足够了,这样不但可以达到分析要求,还可以起到保护仪器的作用,还不会增加测试成本。

  • 【转帖】气体检漏仪的特点

    气体检漏仪又称为SF6检漏仪,SF6气体检漏仪,SF6气体定性检漏仪,卤素检漏仪,卤素定性检漏仪等。 气体检漏仪采用最新电子电路,经特殊设计,能满足当前和将来检测多种开关、全封闭组合电器等装置中SF6气体的渗漏,仪器测试为定性分析。操作员只需打开开关,该检漏仪就会编程,马上可以搜索多种气体。当渗漏的气体挨近检漏仪时,类似计算机的报警器就给出报警信号,报警速度和频率随泄漏量增大而增强。在污染的大气环境中,该检漏仪重新标定极为迅速,可以防止给出错误读数。内置特殊的微型高效泵有助于减少渗漏响应时间。

  • 电化学气体传感器应用出现的问题

    在现实实验中,发现用电化学气体传感器在冲入底气为氮气的情况下,CO传感器得到的数据的先上升至顶点后下降,SO2是一直上升来着,查找资料发现,电流i=Z × F × S × D ÷δ × C(Z:电子转移数 F:法拉第常数S:气体扩散面积D:扩散常数δ:扩散层厚度C:被测气体浓度)安照上面的公式来看,这些数据都是知道的,为什么还会出现电流变化。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制