当前位置: 仪器信息网 > 行业主题 > >

电泳迁移率实验

仪器信息网电泳迁移率实验专题为您整合电泳迁移率实验相关的最新文章,在电泳迁移率实验专题,您不仅可以免费浏览电泳迁移率实验的资讯, 同时您还可以浏览电泳迁移率实验的相关资料、解决方案,参与社区电泳迁移率实验话题讨论。

电泳迁移率实验相关的资讯

  • 灵敏的迁移率测量方法—相位分析法
    p    strong 来自Testa Analytical Solutions e.K的NanoBrook ZetaPALS是一种使用相位分析光散射方法的高度精确和易于使用的Zeta电位分析仪。 /strong /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201807/insimg/74322ba6-017d-419d-988b-a6b3f373457c.jpg" title=" Nanobrook ZetaPALS.jpg" width=" 500" height=" 347" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 347px " / /strong /p p   基于相位分析光散射(PALS)原理,Nanobrook ZetaPALS被设计用于测量电泳迁移率。Testa analysis公司的Nanobrook ZetaPALS提供了一个优异的平台,用于测定盐浓度低于75毫摩尔离子强度水中的纳米颗粒和胶体的zeta电位。 /p p   这种创新性的仪器被设计用来消除其他zeta电位仪器固有的缺陷。利用PALS配置,NanoBrook ZetaPALS可被用来测量比传统的激光多普勒电泳系统低3个数量级的迁移率。NanoBrook ZetaPALS可以在几秒钟内测量完整的电泳迁移率分布。 /p p   Nanobrook ZetaPALS独特的单元配置消除了电渗效应,因此不需要固定水平、对齐或校准。运用低成本,一次性样品单元,不需要组装或维护,消除了样品交叉污染的可能性。 /p p   NanoBrook Zeta的软件很简单,但操作起来非常直观,同时为希望进行更复杂实验的科学家们提供了高级功能。 /p
  • 仪思奇(北京)科技发展有限公司上海办公室喜迁新址
    随着仪思奇(北京)科技发展有限公司华东地区业务的拓展,仪思奇科技上海办公室于2018年11月26日由闵行区搬迁到上海浦东新区周浦医谷,便于更好的服务于客户,给客户带来更多的便利。仪思奇(北京)科技发展有限公司是一家中关村高新技术企业,公司专注于新能源领域、生物医药、催化基础与应用研究领域的前沿仪器产品和技术的引进与推广;并为用户提供“以应用开发为先导、以维修服务为保障、以先进仪器为核心”的分析测试全面解决方案。仪思奇科技是美国DT、比利时Occhio和法国CAD公司的中国总代理,是上述公司的授权中国技术中心或子公司,并与法国Bio-Logic、美国Biotools建立了行业代理合作关系。周浦医谷是继张江药谷的又一大型产业园区,和张江药谷仅有4站地铁距离,交通便利,设施配套齐全。上海办公室拥有独立的应用实验室,将为周边企事业相关行业客户提供服务。仪思奇(北京)科技发展有限公司致力于将世界先进的仪器介绍到中国。目前重点推广的仪器产品主要有:图像法粒度粒形分析仪和Zeta电位分析仪、超声法粒度分析仪和zeta电位分析仪、高速比表面分析仪、先进的电化学工作站、扫描电化学显微镜系统、手性材料分析仪器等。目前上海办公室拥有新一代IPAC2型全自动蛋白质聚集体计数分析仪(微流成像仪)。它可测定0.3微米~1mm之间的颗粒或透明颗粒,可进行粒度分析、形貌分析和颗粒计数。高分辨CCD传感器保证了图像采集的准确性,可大程度地减小因分辨率引起的图形处理误差,并可避免高速摄像过程中产生的抖动干扰。IPAC2实测蛋白质聚集体Feret最小直径粒度分布图平均粒径(Mean)红色-0.36μm;粉色:0.89μm法国CAD仪器公司的ZetaCompact® 视频追踪式微纳米颗粒ζ电位测定仪则是zeta电位测定的基准仪器。与动态光散射复杂的光学理论不同,这种模块化的zeta电位仪器, 旨在解决从10nm 到50μm粒子的电泳迁移率测量时遇到的所有问题。它采取高精度图像分析方案,具有多路径提取和角度分辨率,在垂直平面内测量悬浊液或乳浊液的电泳迁移率分布,并计算胶体悬浮液的zeta电位(ζ)。这种方法无电渗效应影响,可以得到真正的zeta电位分布。另外,美国DT系列原浓体系超声法粒度和zeta电位分析仪,还可以同时得到流变参数、德拜长度,双电层厚度,电导率,孔隙率,PH值,温度等参数信息。
  • 使用BeNano检测高浓度医用脂肪乳的Zeta电位
    关键词:Zeta电位、高浓度样品、脂肪乳图1. 不同浓度下的医用脂肪乳高浓度样品的Zeta电位测试一直是用户的关注点,而如何阐释测试结果也是困惑用户的问题之一。颗粒体系的Zeta电位取决于颗粒表面的化学组成和溶液环境,例如pH,盐的种类和浓度,表面活性剂等等添加物的种类和含量。在一个稀释的浓度下,Zeta电位和颗粒物的含量之间没有必然联系,然而当体系浓度超过一个临界浓度时,需要考虑到颗粒所携带的电荷对于环境的贡献、颗粒之间的相互作用力等等因素对于测试结果的影响。在这篇应用报告中,我们使用丹东百特仪器公司新推出的BeNano 90 Zeta纳米粒度电位仪检测了分散在水性环境中的不同浓度下的医用脂肪乳的Zeta电位。BeNano中的毛细管电极,具有较短的4mm光程,即使对于浓度较高的样品也可以进行有效测试。原理和设备 电泳光散射技术ELS是利用激光照射在样品溶液或者悬浮液上,检测向前角度的散射光信号。在样品两端施加一个电场,样品中的带点颗粒在电场力的驱动下进行电泳运动。由于颗粒的电泳运动,样品的散射光的频率会产生一个频移,即多普勒频移。利用数学方法处理散射光信号,得到散射光的频率移动,进而得到颗粒的电泳运动速度,即电泳迁移率μ。通过Herry方程,我们把颗粒的电泳迁移率和其Zeta电位ζ联系起来:其中ε为介电常数,𝜂为溶剂粘度,f(κα)为Henry函数,κ为德拜半径倒数,α代表粒径,κα代表了双电层厚度和颗粒半径的比值。丹东百特公司的BeNano 90 Zeta纳米粒度电位仪,使用波长671 nm,功率50 mW激光器作为光源,在90度角进行粒径检测,在12度角进行Zeta电位检测。采用PALS相位分析光散射技术。样品制备和测试条件脂肪乳原液浓度为20% w/v,由于脂肪乳的配方中没有发现盐类,所以使用蒸馏水将脂肪乳样品进行稀释,配置成不同浓度的样品。通过BeNano 90 Zeta内置的温度控制系统开机默认测试温度控制为25℃±0.1℃。样品注入毛细管电极,利用电泳光散射进行Zeta电位测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论图2. 不同浓度脂肪乳的Zeta电位通过图2不同浓度下脂肪乳的Zeta电位曲线可以看出,在2% - 20% w/v较高浓度范围内,样品的Zeta电位值的幅值极低大约在5-7 mV范围内。浓度低于2%时Zeta电位幅值随浓度降低逐渐升高,直至0.5%浓度。临界浓度出现在0.5%左右,0.5% - 0.002%的稀释浓度范围内,Zeta电位在-41mV至-44mV范围内小幅波动,可以认为电位值在这个区间内是稳定的。高浓度下脂肪乳的Zeta电位幅值极低,这可能是由于两个原因造成的。1.由于脂肪乳颗粒浓度非常高,脂肪乳在电场力作用下的电泳运动受限,颗粒之间的相互碰撞和颗粒之间的相互作用力导致电泳速度较慢。2.脂肪乳本身所携带的电荷对于溶液环境做出了不可忽视的贡献,增加了整体溶液环境的离子强度。相对较高的离子强度一定程度屏蔽了脂肪乳颗粒的Zeta电位。3.随着浓度降低,以上两个原因造成的影响逐渐降低,Zeta电位值向真实值回归我们可以认为,在临界浓度0.5%以上的较高浓度范围内检测到的Zeta电位为表观Zeta电位,并不代表体系的真实值。而在一个宽泛的稀释浓度范围内得到的相对稳定的Zeta电位值代表了体系的真实电位水平。结论这个应用报告中,我们采用了丹东百特公司的BeNano纳米粒度及Zeta电位仪对于一系列浓度下脂肪乳样品的Zeta电位进行了表征。结果展示出BeNano独有的光路体系和光程极短的毛细管电极对于高浓度样品的Zeta电位的表征能力。同时我们可以明显的看出颗粒物浓度对于Zeta电位的影响。为了准确的得到体系的Zeta电位,我们建议用户在不改变溶液环境的条件下,将高浓度样品进行一定程度的稀释,如果有必要的话更应该对于未知体系进行浓度滴定实验。
  • 复杂单克隆抗体的对比分析
    p 来自Postnova Analytics英国实验室的讯息: /p p    strong Postnova Analytics发布了一份新海报,比较了两种用于测定单克隆抗体物理化学及生物物理学性质的测试方法——电场流及非对称场流分离色谱法(EAF4-Electrical Asymmetrical Flow Field Flow Fractionation)和体积排阻色谱法(SEC-Size Exclusion Chromatography)的适用性。 /strong /p p style=" text-align: center " strong img title=" 复杂单克隆抗体的对比分析.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/c124cda4-465c-4088-99f8-7208b46db509.jpg" / /strong /p p   据美国国家标准与技术研究院(NIST-U.S. National Institute of Standards and Technology)的工作所述,一种参比单克隆抗体(RM 8671 mAb),被用于比较EAF4-UV-MALS(多重散射聚焦系统Multi Astigmatism Lens System)与SEC-UV-MALS之间分离量化、聚合量化及恢复参数的差异。NIST的这种mAb为治疗用蛋白质表征这一新技术的发展提供了一种代表性的检测分子。 /p p   该海报阐述了EAF4模组如何将抗体及蛋白质分子大小与表面电荷特性(电泳迁移率)的同时测量变为可能。FFF(场流分离色谱Field Flow Fractionation)系统测量显示蛋白质/抗体的聚集只占注入总量的10%,且无聚集体被SEC检测到。研究人员总结到,FFF的开放通道设计会顾及相比SEC更好的注入物的复原,这对于追求量化少量聚集体而言至关重要。 /p p   Postnova Analytics的EAF4技术独创性地将电场流分离色谱和非对称场流分离色谱的原理融合在同一系统中。在EAF2000系统中,电场流和交叉场流被同时应用于FFF通道,通过粒子不同的电泳迁移率,使得按粒子大小与电荷进行色谱分离成为可能。这两种强大分离技术在一个单独平台上的结合,为表征复杂的蛋白质、抗体、病毒,以及环境和带电纳米粒子或高分子打开了大门,而其他技术已证明了这一问题是多么棘手。 /p
  • 高载流子迁移率胶体量子点红外探测器
    短波红外和中波红外波段是两个重要的大气窗口。在该波段范围内,碲化汞胶体量子点表现出良好的光响应。此外,胶体量子点具有易于液相加工制备以及与硅基工艺兼容等优势,因此有望显著降低红外光电探测器的成本。然而,目前胶体量子点红外光电探测器在比探测率、响应度等核心性能方面与传统块体半导体红外探测器相比仍存在一定差距。有效地调控掺杂和迁移率等输运性质是提升量子点红外光电探测器性能的关键。据麦姆斯咨询报道,近期,北京理工大学光电学院和北京理工大学长三角研究院的科研团队在《光学学报》期刊上发表了以“高载流子迁移率胶体量子点红外探测器”为主题的文章。该文章第一作者为薛晓梦,通讯作者为陈梦璐和郝群。在本项工作中,采用混相配体交换的方法将载流子迁移率提升,并且实现了N型、本征型、P型等多种掺杂类型的调控。在此基础之上,进一步研究了输运性质对探测器性能的影响。与光导型探测器相比,光伏型探测器不需要额外施加偏置电压,没有散粒噪声,拥有更高的理论灵敏度,因此是本项工作的研究重点。同时,使用高载流子迁移率的本征型碲化汞量子点薄膜制备了短波及中波红外光伏型光电探测器。实验过程材料的合成:Te前驱体的制备在氮气环境下,称量1.276 g(1 mmol)碲颗粒置于玻璃瓶中,并加入10 ml的三正辛基膦(TOP)中,均匀搅拌至溶解,得到透明浅黄色的溶液,即为TOP Te溶液。碲化汞胶体量子点的合成在氮气环境下,称量0.1088 g(0.4 mmol,氮气环境下储存)氯化汞粉末置于玻璃瓶中,并加入16 ml油胺(OAM),均匀搅拌并加热至氯化汞粉末全部溶解。本工作中合成短波红外和中波红外碲化汞胶体量子点的反应温度分别为65℃和95℃。使用移液枪取0.4 mL的TOP Te溶液,快速注入到溶于油胺的氯化汞溶液中,反应时间分别为4 min和6 min。反应结束后加入20 ml无水四氯乙烯(TCE)作为淬火溶液。碲化银纳米晶体颗粒的合成在氮气环境下,称量0.068 g(0.4 mmol)硝酸,并加入1 mL油酸(OA)和10 mL油胺(OAM)中,均匀搅拌30 min。溶解后,注入1 mL TOP,快速加热至160℃并持续30-45 min。然后向反应溶液中注入0.2 mL TOP Te(0.2 mmol),反应时间为10 min。碲化汞胶体量子点的混相配体交换混相配体交换过程包括液相配体交换和固相配体交换。选择溴化双十二烷基二甲基铵(DDAB)作为催化剂,将碲化汞胶体量子点溶在正己烷中,取4 ml混合溶液与160 μL β-巯基乙醇(β-ME)和8 mg DDAB在N,N-二甲基甲酰胺(DMF)中混合。之后向溶液中加入异丙醇(IPA)进行离心,倒掉上清液,将沉淀物重新溶解在60μL DMF中。固相配体交换是在制备量子点薄膜后,用1,2-乙二硫醇(EDT)、盐酸(HCL)和IPA(体积比为1:1:20)溶液对已成膜的碲化汞胶体量子点表面进行处理。碲化汞胶体量子点的掺杂调控在调控碲化汞胶体量子点的掺杂方面,Hg²⁺可以通过表面偶极子稳定量子点中的电子,所以选择汞盐(HgCl₂)来调控量子点的掺杂状态。在液相配体交换结束后,向溶于DMF的碲化汞胶体量子点溶液中加入10 mg HgCl₂得到本征型碲化汞胶体量子点,加入20 mg HgCl₂得到N型碲化汞胶体量子点。材料表征采用混相配体交换的方法不仅可以提高载流子迁移率还可以通过表面偶极子调控碲化汞胶体量子点的掺杂密度。液相配体交换前后中波红外碲化汞胶体量子点的TEM图像如图1(a)所示,可以看到,进行液相配体交换后的碲化汞胶体量子点之间的间距明显减小,排列更加紧密。致密的排列可以提高碲化汞胶体量子点对光的吸收率。混相配体交换后的短波红外和中波红外碲化汞胶体量子点的吸收光谱如图1(b)所示,从图1(b)可以看出,短波红外和中波红外碲化汞胶体量子点的吸收峰分别为5250 cm⁻¹和2700 cm⁻¹。利用场效应晶体管(FET)对碲化汞胶体量子点的迁移率和薄膜的掺杂状态进行测量,把碲化汞胶体量子点沉积在表面有一层薄的SiO₂作为绝缘层的Si基底上,基底两侧的金电极分别作为漏极和源极,Si作为栅极,器件结构如图1(c)所示。通过控制栅极的极性和电压大小,可以使场效应晶体管分别处于截止或导通状态。图1(d)是N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线。利用FET传输曲线的斜率计算了载流子的迁移率μFET。图1 (a)混相配体交换前后碲化汞胶体量子点的透射电镜图;(b)短波红外和中波红外碲化汞胶体量子点的吸收光谱;(c)碲化汞胶体量子点薄膜场效应晶体管测量原理图;(d)在300K时N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线测试结果。分析与讨论碲化汞胶体量子点光电探测器的制备光伏型探测器不需要施加额外的偏置电压,没有散粒噪声,理论上会具有更好的性能,借鉴之前文献中的报告,器件结构设计为Al₂O₃/ITO/HgTe/Ag₂Te/Au,制备方法如下:第一步,在蓝宝石基底上磁控溅射沉积50 nm ITO,ITO的功函数在4.5~4.7 eV之间。第二步,制备约470 nm的本征型碲化汞胶体量子点薄膜。第三步,取50 μL碲化银纳米晶体溶液以3000 r/min转速旋转30 s,然后用HgCl₂/MEOH(10 mmol/L)溶液静置10 s后以3000 r/min转速旋转30 s,重复上述步骤两次。在这里,Ag⁺作为P型掺杂层,与本征型碲化汞胶体量子点层形成P-I异质结。最后,将器件移至蒸发镀膜机中,在真空环境(5×10⁻⁴ Pa)下蒸镀50 nm Au作为顶层的电极。高迁移率光伏型探测器的结构图和横截面扫描电镜图如图2(a)所示。能级图如图2(b)所示。制备好的探测器的面积为0.2 mm × 0.2 mm。图2 (a)高迁移率碲化汞胶体量子点P-I异质结结构示意图及扫描电镜截面图 (b)碲化汞胶体量子点P-I异质结能带图。器件性能表征为了探究高载流子迁移率短波红外和中波红外光伏型探测器的光电特性,我们测试了器件的I-V曲线以及响应光谱。图3(a)和(b)分别是高迁移率短波红外和中波红外器件的I-V特性曲线,可以看到短波红外和中波红外探测器的开路电压分别为140 mV和80 mV,这表明PI结中形成了较强的内建电场。此外,在零偏置下,高迁移率短波红外和中波红外器件的光电流分别为0.27 μA和5.5 μA。图3(d)和(e)分别为1.9 μm(300 K) ~ 2.03 μm(80 K)的短波红外器件的响应光谱和3.5 μm(300 K) ~ 4.2 μm(80 K)的中波红外器件的响应光谱。比探测率D*和响应度R是表征光电探测器性能的重要参数。R是探测器的响应度,用来描述器件光电转换能力的物理量,即输出信号光电流与输入光信号功率之比。图3 (a)300 K时短波红外I-V曲线;(b)80 K时中波红外I-V曲线;(c)短波红外及中波红外器件的比探测率随温度的变化;(d)短波红外器件在80 K和300 K时的光谱响应;(e)中波红外器件在80 K和300 K时的光谱响应;(f)短波红外和中波红外器件的响应度随温度的变化。图3(e)和(f)给出了探测器的比探测率D*和响应度R随温度的变化。可以看到,短波红外器件在所有被测温度下,D*都可以达到1×10¹¹ Jones以上,中波红外器件在110 K下的D*达到了1.2×10¹¹ Jones。应用此外,本工作验证高载流子迁移率的短波红外和中波红外量子点光电探测器在实际应用,如光谱仪和红外相机。光谱仪实验装置示意图如图4(a)所示,其内部主要是一个迈克尔逊干涉仪。图4(b)和(c)为使用短波红外和中波红外量子点器件探测时有样品和没有样品的光谱响应结果。图4(e)和图4(f)为样品在短波红外和中波红外波段的透过率曲线。对于短波红外波段,选择了CBZ、DDT、BA和TCE这四种样品,它们在可见光下都是透明的,肉眼无法进行区分,但在短波红外的光谱响应和透过率不同。对于中波红外波段,选择了PP和PVC这两个样品。在可见光下它们都是白色的塑料,但在中波红外光谱响应和透过率不同。图4(d)为自制短波红外和中波红外单点相机的扫描成像。,短波相机成像可以给出材质信息。中波红外相机成像则是反应热信息。以烙铁的中波红外成像为例,我们可以清楚地了解烙铁内部的温度分布。在可见光下,硅片呈现不透明的状态使用自制的短波红外相机成像后硅片呈现半透明的状态。图4 (a)利用高载流子迁移率探测器进行响应光谱测量的原理示意图;(b)和(c)分别是在有样品和没有样品两种模式下用自制探测器所探测到的光谱响应;(d)自制短波红外和中波红外光电探测器的单像素扫描成像结果图;(e)TCE、BA、DDT和CBZ在短波红外模式下的透光率,插图为四种样品的可见光图像;(f)PVC和PP在中波红外模式下的透光率,插图为两种样品的可见光图像。结论综上所述,采用混相配体交换的方法,将量子点薄膜中的载流子迁移率提升到了1 cm²/Vs,相较于之前的研究提升了2个量级。并且通过加入汞盐实现了对量子点薄膜的掺杂调控,分别实现了P型、本征型以及N型多种类型的量子点薄膜。同时,基于本征型高迁移率量子点制备了短波红外和中波红外波段的光伏型光电探测器。测试结果表明,提升量子点的输运性质,有效的提升了探测器的响应率、比探测率等核心性能,并且实现了光谱仪和红外相机等应用。本项工作促进了低成本、高性能量子点红外光电探测器的发展。这项研究获得国家自然科学基金(NSFC No.U22A2081、No.62105022)、中国科学技术协会青年托举工程(No.YESS20210142)和北京市科技新星计划(No.Z211100002121069)的资助和支持。论文链接:https://link.cnki.net/urlid/31. 1 252.o4.20230925.0923.016
  • 仪思奇科技携多款新产品亮相IPB2018
    第十六届中国国际粉体加工/散料输送展览会(IPB2018)作为粉体行业的重要的年度盛会于2018年10月17日在上海世博展览馆盛大开幕。仪思奇科技携多款新产品亮相此次展会。此次参展的主要产品主要有最新一代高分辨率图像法粒度粒形分析仪IPAC2;图像法颗粒跟踪zeta电位分析仪ZetaCompact® ;固体表面电位仪ZetaCAD® 和超声法粒度和zeta电位分析仪。在此次展会上,仪思奇科技首次展出了分辨率可达到0.17微米/像素的图像法粒度粒形分析仪IPAC2。IPAC2图像法粒度和粒形分析仪属于湿法动态分析仪器,其分析范围粒度范围:0.3~1000μm,具有1200万像素CMOS成像系统,可配置自动进样系统。IPAC2可以确定蛋白质药物中污染物来源及聚集体个数,符合药典要求;可对蛋白质中气泡、硅油、异物等进行分类和数量统计,并可用于抛光液中的颗粒计数。OCCHIO公司独有的ghost技术,可以对透明颗粒进行准确成像;强大的软件系统,使得IPAC2具有跟踪和精确计数功能。IPAC2是解决蛋白质、乳液等样品粒度粒形分析的利器。 此次展会上同时展出了图像法zeta电位仪zetaCompact® 和固体表面zeta电位仪ZetaCAD® 。图像法zeta电位分析是用于光散射电泳法和电声法zeta电位分析校准的基准仪器,可用于解决测量从20nm到50μm颗粒的电泳迁移率所遇到的所有问题,并计算胶体悬浮液的zeta电位。众所周知,密度高或粒径大的颗粒会沉积在测量室底部。图像法zeta电位仪zetaCompact® 采取具有角度寻径分辨率的高精度图像分析方案,在垂直平面内测量悬浊液中颗粒的电泳迁移率分布,准确计算zeta值。并且能给出每个颗粒的zeta值,给出真正的zeta电位分布图(如下图),特别适合于乳液、纤维、混合材料、矿浆等样品的测定和分离条件确定。固体表面电位分析仪ZetaCAD® 是基于流动电势和流动电流测量法,从而研究宏观固体表面 Zeta电位。ZetaCAD® 适用于50μm以上的大颗粒、纤维和膜类等平坦的表面,或在一个压力梯度下电解质可以透过的曲面膜或中空纤维样品,包括聚合物、纺织、陶瓷、玻璃等,对不同形状和尺寸的固体及粉末材料均适用。固体表面电位分析仪研究材料的表面电荷,了解材料表面上的电荷状况,帮助科研人员在化学与材料科学领域内改善和调整表面特性。在IPB同期举行的2018第三届上海国际医药粉体制备技术交流会,邀请了国内药用粉体颗粒领域的专家开展高峰论坛,仪思奇科技总经理杨正红先生应邀做《静态图像法粒度和形貌分析技术在药品质量控制中的应用》主题报告。通过此次论坛,仪器厂商交流学习,广大用户互助探讨,进一步加深了对药用粉体颗粒领域颗粒表征技术的理解。仪思奇科技一直秉承创新仪器科技,支撑材料研究的理念;推广最好的仪器,提供最优质的服务为宗旨。
  • QD中国样机实验室引进M91快速霍尔测量仪,极低迁移率材料测量速度提升100倍!
    近期,QD中国样机实验室全新引进Lake Shore公司推出的M91快速霍尔测试仪,该快速霍尔测量系统可以与完全无液氦综合物性测量系统-PPMS® DynaCool&trade 无缝连接。全新的M91快速霍尔测量方案采用革新的一体式设计,相比传统的霍尔效应测量解决方案,显著提高了测量的灵敏度、测量速度以及使用便利性。M91将所有必要的测量信号源和锁相等信号处理功能集于一体,在测量低载流子迁移率样品时相比其他测量手段有显著优势。左):完全无液氦综合物性测量系统-PPMS® DynaCool&trade ,右):M91快速霍尔测试仪QD中国样机实验室M91快速霍尔测试仪集成于完全无液氦综合物性测量系统 M91快速霍尔测试仪能够检测样品电极接触状况并确保测量始终处于最佳样品条件下进行。尤其在测量低载流子迁移率材料时,M91可以更快、更准确地完成相关测量。得益于仪器特有的FastHall技术,消除了在测量过程中翻转磁场的必要性,测量速度可达传统方法的100倍,几秒钟内即可精确测量流动性极低的材料,使得该选件在PPMS上的测量效率大幅提升, 即便是在范德堡测量法(vdP)几何接线的测量过程中,也可以更快地分析低载流子迁移率材料样品。M91快速霍尔测试仪可以直观判定样品接触电极质量FastHall可以覆盖更低的载流子迁移率测量范围 产品特点:✔ 采用FastHall技术,在测量过程中无需进行磁场翻转✔ 全自动检查样品引线接触质量,提供完整的霍尔分析✔ 计算范德堡接线样品以及Hall Bar样品相关参数✔ FastHall测量技术在采用范德堡接线时可将载流子迁移率测量极限缩小到0.001 cm2/(Vs)✔ 可在显示屏直观显示检测过程,并具有触摸操作功能实时执行相关测量指令标准电阻套件——M91可以通过DynaCool杜瓦LEMO接口连接进行测量PPMS与M91的集成示例 标准测量模式下 PPMS DynaCool 采用自带样品托进行测量PPMS样品托电极接线方案该联用方案支持范德堡vdPauw 4引线连接以及Hall Bar 6引线连接模式,样品引线通过样品托底部针脚与PPMS样品腔连接并通过杜瓦侧面Lemo接口连接到M91测量单元上。该方案可以快速适配PPMS DynaCool系统并具有标准电阻测量范围(最大10 MΩ),使用常见的PPMS电学测量样品托即可完成相关测试。左):M91通过多功能杆顶部的接口直接连接;右):M91高阻模式PPMS多功能样品杆左) 高精度电学输运样品杆样品台 右) 样品杆顶部接口左):样品板;右):样品板插座此外,针对有高阻小信号测量需求的客户,QD中国样机实验室也匹配了LakeShore提供的高阻测量方案。该方案通过专用的多功能样品杆将样品板电极引线通过同轴电缆从样品腔顶部引出,从而获得更好的信噪比和更大的电阻测量范围(最大200 GΩ)。M91组件自带的MeasureLINK软件与PPMS MultiVu深度集成,可以与MultiVu工作在同一台主机上亦或是同一局域网下的任意一台主机上对系统进行控制。2K温度下使用PPMS 0-9T扫场的砷化镓二维电子气薄膜,采用范德堡测量法横向及纵向电输运测量结果准确反应了材料的整数量子霍尔效应 传统的直流场霍尔效应测量适用于具有较高迁移率的简单材料,但伴随着载流子迁移率的降低,测量难度增加,精度降低。在光伏、热电和有机物等前景广阔的新型半导体材料中,测量难度就增加了不少。 交流锁相技术结合先进锁相放大器和更长测量窗口,可以提取更小的霍尔电压信号,目前常用于探索低迁移率材料。然而,延长测量间隔会增加热漂移效应带来的误差,并且需要更长的时间来获得结果,有时甚至需要数小时。FastHall 技术有效解决了这些问题,甚至可以在几秒钟内精确测量极低迁移率的材料,极大的拓宽了材料研究测试的范围。为了便于广大客户全面了解和亲身体验M91快速霍尔测试仪,QD中国样机实验室引进了该设备样机,现已安装于公司样机实验室并调试完毕。即日起,我们欢迎对该设备感兴趣的老师和同学来访,我们在QD中国样机实验室恭候大家的到来。相关产品1、M91快速霍尔测试仪https://www.instrument.com.cn/netshow/SH100980/C554347.htm2、完全无液氦综合物性测量系统-DynaCoolhttps://www.instrument.com.cn/netshow/SH100980/C18553.htm
  • 使用插入式电极检测有机体系下样品的Zeta电位
    关键词:Zeta电位、插入式电极、有机溶剂分散体系图1. 插入式电极分散在有机溶剂中的颗粒往往在表面也会带有一定量电荷。这些电荷产生的电势会增加颗粒之间的相互作用力,起到增加系统稳定性的作用。由于有机体系的极性普遍较低,颗粒上携带的电荷量极少,在Zeta电位测试过程中需要施加较强电场才能够引发足够明显的电泳运用,而且测试电极及其配套的样品池需要考虑到对于有机溶剂的耐受性。在这篇应用报告中,我们利用插入式电极,利用BeNano 90 Zeta纳米粒度电位仪检测了分散在甲醇和乙醇环境中的硅颗粒的粒径和Zeta电位。原理和设备 动态光散射技术DLS,也称作光子相关光谱PCS或者准弹性光散射QELS,是利用激光照射在样品溶液或者悬浮液上,通过光电检测器检测样品颗粒布朗运动产生的散射光波动随时间的变化。利用相关器的时间相关性统计学计算可以得到相关曲线,进而得到颗粒的布朗运动速度,即扩散系数D。通过斯托克斯-爱因斯坦方程,我们把颗粒的布朗运动速度和其粒径DH联系起来:其中kB为玻尔兹曼常数,T为环境温度,𝜂为溶剂粘度,DH为颗粒的流体力学直径。电泳光散射技术ELS是利用激光照射在样品溶液或者悬浮液上,检测向前角度的散射光信号。在样品两端施加一个电场,样品中的带点颗粒在电场力的驱动下进行电泳运动。由于颗粒的电泳运动,样品的散射光的频率会产生一个频移,即多普勒频移。利用数学方法处理散射光信号,得到散射光的频率移动,进而得到颗粒的电泳运动速度,即电泳迁移率μ。通过Herry方程,我们把颗粒的电泳迁移率和其Zeta电位ζ联系起来:其中ε为介电常数,𝜂为溶剂粘度,f(κα)为Henry函数,κ为德拜半径倒数,α代表粒径,κα代表了双电层厚度和颗粒半径的比值。丹东百特公司的BeNano 90 Zeta纳米粒度电位仪,使用波长671 nm,功率50 mW激光器作为光源,在90度角进行粒径检测,在12度角进行Zeta电位检测。采用PALS相位分析光散射技术。样品制备和测试条件1#纳米硅粉末样品分散在甲醇分散液中,2#纳米硅样品分散在乙醇分散液中,施加超声波进行分散。通过BeNano 90 Zeta内置的温度控制系统开机默认测试温度控制为25℃±0.1℃,样品注入玻璃粒径池采用动态光散射进行粒径池进行粒径测试。使用插入式电极进行Zeta电位测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论粒径测试图2. 动态光散射检测1#纳米硅样品的粒径分布曲线(上)和2#纳米硅样品的粒径分布曲线(下)通过使用动态光散射技术,得到当前分散条件下同样品的粒径和粒径分布。其中1#样品Z-均直径为365.2±0.8 nm,PDI为0.58;2#样品Z-均直径为41.0±0.3 nm,PDI为0.50。可以看出粒径测试结果具有很好的重复性,两个样品的PDI较大,分布都比较宽,这也可以从样品的粒径分布曲线中看出。图3. 使用插入式电极检测1#(上)样品和2#(下)样品的三次测试的相图通过电泳光散射,得到了样品的Zeta电位信息。图3中展示了三次重复性测试的相图,相图斜率代表了散射光由于电泳运动造成的频率的偏移。可以通过图中曲线看出,分散在甲醇中的1#样品斜率清晰,信噪比良好,而分散在乙醇中的2#样品相图相对嘈杂。对于样品的3次重复性结果列于表1中,可以看到纳米硅样品在甲醇和乙醇溶液环境中Zeta电位为负值,说明样品颗粒携带负电,三次测试结果的重复性较好。颗粒在甲醇环境中的Zeta电位幅值明显高于乙醇环境。
  • 如何1分钟完成厘米级二维材料的载流子迁移率测量
    引言近年来, 石墨烯等二维材料与器件领域的研究和开发取得了日新月异的进展。随着二维材料与器件研究和开发的深入, 研究人员越发清楚地认识到, 二维材料中载流子的传输能力是影响其器件性能的一个至关重要的因素。衡量二维材料载流子传输能力的主要参数是载流子迁移率μ, 它直接反映了载流子在电场作用下的运动能力, 因此载流子迁移率的测量一直是石墨烯等二维材料与器件研究中的重要课题。二维材料载流子迁移率的测量方法迄今为止已有许多实验技术来测量二维材料的载流子迁移率,主要分为四大类, 一是稳态电流方法( 如稳态直流J-V 法和场效应晶体管方法),该方法是简单的一种测量载流子迁移率的方法,可直接得到电流电压特性和器件的厚度等参数。二是瞬态电流方法,如瞬态电致发光、暗注入空间电荷限制电流和飞行时间( TOF) 方法等;三是微波传导技术, 如闪光光解时间分辨微波传导技术和电压调制毫米波谱;四种是导纳( 阻抗) 法。但上述实验方法仍存在一些普遍性问题:1)样品制备要求较高,需要繁杂的电制备;2)只能给出平均值,无法直观的得到整个二维材料面内的载流子迁移率的分布情况,无法对其均匀性进行直观表征;3)测量效率较低,无法满足未来大面积样品及工业化生产的需求。因此,我们亟需进一步优化和开发新的实验技术来便捷快速的获得载流子迁移率。颠覆性的二维材料载流子迁移率测量方法西班牙Das Nano公司采用先进的脉冲太赫兹时域光谱技术创新性的研发出了一款针对大面积(8英寸wafer)石墨烯、半导体薄膜和其他二维材料100%全区域的太赫兹无损快速测量设备-ONYX[2,3],可在1 min之内完成厘米样品的载流子浓度测量。基于反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接测量方法之间的不足和空白。实现了从科研到工业的大面积石墨烯及其他二维材料的无损和高分辨,快速的载流子迁移率测量,为石墨烯和二维材料科研和产业化研究提供了强大的支持。近日,北京大学刘忠范院士团队通过自主设计研发的电磁感应加热石墨烯甚高温生长设备,在 c 面蓝宝石上在 30 分钟内就可以直接生长出了由取向高度一致、大晶畴拼接而成的晶圆高质量单层石墨烯。获得的准单晶石墨烯薄膜在晶圆尺寸范围内具有非常均匀的面电阻,而且数值较低,仅为~600 Ω/□,通过Das Nano公司的ONYX的载流子迁移率测量功能显示当分辨率为250 μm时迁移率依旧高于6,000 cm2 V–1 s–1,且具有很好的均匀性。这是迄今为止,常规缘衬底上直接生长石墨烯的好水平。文章以题为“Direct growth of wafer-scale highly-oriented graphene on sapphire”[4]发表在Science Advances上。图二、电阻及载流子迁移率测量结果 【参考文献】[1] Bardeen J, Shockley W. Deformation Potentials and Mobilities in Non-Polar Crystals[J]. Physical Review, 2008, 801:72-80[2] Cultrera, A., Serazio, D., Zurutuza, A. et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci Rep 9, 10655 (2019).[3] Melios, C., Huang, N., Callegaro, L. et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale. Sci Rep 10, 3223 (2020).[4]Chen, Z., Xie, C., Wang, W. et al. Direct growth of wafer-scale highly-oriented graphene on sapphire. Sci. Adv. (2021).
  • Science:科学家测定超高热导率半导体-砷化硼的载流子迁移率
    中国科学院国家纳米科学中心研究员刘新风团队联合美国休斯顿大学包吉明团队、任志锋团队,在超高热导率半导体-立方砷化硼(c-BAs)单晶的载流子扩散动力学研究方面取得进展,为其在集成电路领域的应用提供重要的基础数据指导和帮助。相关研究成果发表在《科学》(Science)上。 随着芯片集成规模的进一步增大,热量管理成为制约芯片性能的重要因素。受到散热问题的困扰,不得不牺牲处理器的运算速度。2004年后,CPU的主频便止步于4GHz,只能通过增加核数来进一步提高整体的运算速度,而这一策略对于单线程的算法无效。2018年,具有超高热导率的半导体c-BAs的成功制备引起了科学家的兴趣,其样品实测最高室温热导率超过1000 Wm-1K-1,约为Si的十倍。c-BAs具有高的热导率以及超弱的电声耦合系数和带间散射,理论预测c-BAs同时具有颇高的电子迁移率(1400 cm2V-1s-1)和空穴迁移率(2110 cm2V-1s-1),这在半导体材料系统中颇为罕见,有望将其应用在集成电路领域来缓解散热困难并可实现更高的运算速度,因而通过实验来确认这种高热导率的半导体材料的载流子迁移率具有重要意义。 虽然c-BAs已被制备,但样品中广泛分布着不均匀的杂质与缺陷,对其迁移率的测量带来困难。一般可以通过霍尔效应,测定样品的载流子的迁移率,而电极的大小制约其空间分辨能力,并直接影响测试结果。2021年,利用霍尔效应测试的c-BAs单晶的迁移率报道结果仅为22 cm2V-1s-1,与理论预测结果相差甚远。具有更高的空间分辨能力的原位表征方法是确认c-BAs本征迁移率的关键。 通过大量的样品反复比较,科研团队确定了综合应用XRD、拉曼和带边荧光信号来判断样品纯度的方法,并挑选出具有锐利XRD衍射(0.02度)窄拉曼线宽(0.6波数)、接近0的拉曼本底、极微弱带边发光的高纯样品。进一步,科研团队自主搭建了超快载流子扩散显微成像系统。通过聚焦的泵浦光激发,广场的探测光探测,实时观测载流子的分布情况并追踪其传输过程,探测灵敏度达到10-5量级,空间分辨能力达23 nm。利用该测量系统,研究比较了具有不同杂质浓度的c-BAs的载流子扩散速度,首次在高纯样品区域检测到其双极性迁移率约1550 cm2V-1s-1,这一测量结果与理论预测值(1680 cm2V-1s-1)非常接近。通过高能量(3.1 eV,400 nm)光子激发,研究还发现长达20ps的热载流子扩散过程,其迁移率大于3000 cm2V-1s-1。 立方砷化硼高的载流子和热载流子迁移速率以及超高的热导率,表明可广泛应用于光电器件、电子元件。该研究厘清了理论和实验之间存在的差异的具体原因,并为该材料的应用指明了方向。 研究工作得到中科院战略性先导科技专项(B类)、国家自然科学基金、国家重点研发计划与中科院仪器设备研制项目等的支持。  图1.c-BAs单晶的表征。(A)c-BAs单晶的扫描电镜照片;(B)111面的X射线衍射;(C)拉曼散射(激发波长532 nm);(D)极微弱的带边发光(激发波长593 nm)及荧光成像(插图,标尺为10微米)。 图2.瞬态反射显微成像和在c-BAs中的载流子扩散。(A)实验装置示意图,激发波长为600 nm探测波长为800 nm;(B)不同时刻的瞬态反射显微成像(标尺1微米);(C)典型的载流子动力学;(D)0.5 ps的二维高斯拟合(E)不同时刻的载流子分布方差随时间的演化及载流子迁移率,误差标尺代表95%置信拟合区间。
  • 美国怀雅特技术公司参展2010 Pittcon并发布新产品
    (SANTA BARBARA, CALIFORNIA-March 1, 2010)美国怀雅特技术公司,世界领先的绝对大分子表征仪及其软件制造商,于2010年2月28日~3月1日在美国Orlando举办的Pittcon展会上推出两款新产品:MÖ BIUζ™ 大分子迁移率测定仪;Optilab T-rEX示差折射率测定仪。 关于MÖ BIUζ™ 大分子迁移率测定仪 MÖ BIUζ™ 大分子迁移率测定仪主要用于如脂质体、病毒粒子(VLPs)、抗体、蛋白质等生物大分子迁移率的测定。该仪器融入Wyatt多项创新专利技术,使得样品测定结果的精度、重复性得到极大保障。与传统的迁移率测定仪或zeta电位仪宽范围的样品测定不同,MÖ BIUζ™ 基于以激光为光源而专门针对于生物大分子迁移率表征。因其能快速、准确、可靠的测定大分子物质迁移率而在Pittcon展会上备受关注。 带电性是所有大分子物质非常重要的基本性质。在胶体悬浮液中,大分子所带电荷的多少以及粒子与界面间的相互作用是关系溶液稳定性的极为重要因素。对于众多生物大分子如蛋白质而言,分子静电间的相互作用直接影响分子构象和性能。由于直接测定界面间电位的方法几乎不可行。因此,利用电泳迁移率表征大分子带电荷性质的测定方法已被越来越多的人们接受。 此外,作为非破坏性检测方法,光散射法还因其全部采用物理学第一原则测定大分子迁移率而备受赞赏。然而,对蛋白质类生物大分子而言,由于其分子尺寸小(98%。此外,使用MÖ BIUζ™ 另一优势,如将2mg/mL溶菌酶或0.5 mg/mL牛血清蛋白测试,其灵敏度较市场上同类产品至少高出2倍。 不仅如此,您还可以选择WyattQELS动态光散射配件同步测定大分子平移扩散系数、流体力学半径以及迁移率。而进样方式您可以任意选择,如手动进样、自动进样、注射泵进样,甚至自动滴定方式。MÖ BIUζ™ 独有的先进智能化温控系统,为试验研究、产品监控提供极大便利性和可操作性。 关于Optilab T-rEX示差折射率测定仪 Optilab T-rEX示差折射率测定仪是美国怀雅特技术公司开发的新一代示差折射率型检测仪。与Optilab rEX相比,其内嵌2GHz处理器(提高~7倍);新一代激光光源,其能量高出近50倍;其独特的双温控制系统,使得温度系统控温能力大幅提高。毫不夸张的说,Optilab T-rEX是目前世界上灵敏度最高的示差折射率型检测仪。此外,其最高检测浓度高达:蛋白质180mg/mL,右旋糖酐220 mg/mL。 详情请登陆网站:www.wyatt.com;www.wyatt.com.cn 电话:010-82292806, 传真:010-82290337 E-Mail:info@wyatt.com.cn
  • 远慕总结:质粒DNA的提取方法
    (一)碱裂解法提取质粒[实验原理]碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA在拓扑学上的差异来分离它们。在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。当加入pH4.8的乙酸钾高盐缓冲液恢复Ph至中性时,共价闭合环状质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,在而线性的染色体DNA的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们缠绕形成网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。[实验仪器与设备]1.恒温培养箱 2.恒温摇床3.台式离心机(最大转速4000rpm) 4.冷冻高速离心机5.高压灭菌锅 6.超净工作台7.微量移液器 8.eppendorf tupe、tip[实验材料]1.葡萄糖 2.三羟甲基氨基甲/烷(Tris)3.乙2胺四乙酸(EDTA) 4.氢氧/化钠5.十二烷基硫酸钠(SDS) 6.乙酸钾7.冰乙酸 8.氯/仿9.乙醇 10.胰RNA酶11.氨苄青霉素 12.蔗糖13.溴酚蓝 14.酚15.β巯基乙醇 16.盐酸17.含pUC18质粒的大肠杆菌附:试剂的配制1.溶液Ⅰ50mmol/L 葡萄糖5mmol/L 三羟甲基氨基甲/烷(Tris) TrisHCl (pH8.0)10mmol/L 乙2胺四乙酸(EDTA)(pH8.0)2.溶液Ⅱ0.4 mol/L NaOH, 2%SDS, 用前等体积混合3.溶液Ⅲ5mmol/L 乙酸钾 60 ml冰乙酸 11.5 ml水 28.5 ml4.TE缓冲液10mmol/L TrisHCl1 mmol/L EDTA(pH8.0)5.70%乙醇(放-20℃冰箱中,用后即放回)6.胰RNA酶将RNA酶溶于10mmol/L TrisHCl(pH7.5)、15mmol/L NaCl中,配成10mg/ml的浓度,于100℃加热15min,缓慢冷却至室温,保存于-20℃。7.终止液:40%蔗糖、0.25%溴蓝酚8.酚[实验步骤](一) 提取质粒1.将2ml含相应抗生素的LB液体培养基加入到试管中,接入含质粒的大肠杆菌,37℃振荡培养过夜。2.取1.5ml培养物倒入微量离心管中,4000rpm,离心2min。3.吸去培养液,使细胞沉淀尽可能干燥。4.将细菌沉淀悬浮于100μl溶液Ⅰ中,充分混匀,室温放置10 min。5.加200μl溶液Ⅱ(新鲜配制),混匀内容物,将离心管放冰上5 min。6.加入150μl溶液Ⅲ(冰上预冷),盖紧管口,颠倒数次使混匀。7.1200rpm,离心15 min,将上清转至另一离心管中。8.向上清中加入等体积酚:氯/仿(去蛋白),反复混匀,12000rpm,离心5min,将上清转移到另一离心管中.9.向上清加入2倍体积乙醇,混匀后,室温放置5-10min。12000rpm离心5min。倒去上清液,把离心管倒扣在吸水纸上,吸干液体。10.用1ml70%乙醇洗涤质粒DNA沉淀,振荡并离心,倒去上清液,真空抽干或空气中干燥。11.加50μl TE缓冲液,其中含有20μg/ml的胰RNA酶,使DNA完全溶解,-20℃保存。(二)琼脂糖凝胶电泳检测DNA[实验原理]琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(ethidum bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。琼脂糖凝胶有如下特点:(1) DNA的分子大小 在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。(2) 琼脂糖浓度 一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。(3) 电压 低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。(4) 电泳温度 DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。(5) 嵌入染料 荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。(6) 离子强度 电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。对于天然的双链,常用的几种电泳缓冲液有TAE、TBE等,一般配制成浓缩母液,室温保存,用时稀释。[实验仪器与设备]1. 恒温培养箱2. 琼脂糖凝胶电泳系统3. 高压灭菌锅 4. 紫外线透射仪[实验材料]1.三羟甲基氨基甲/烷(Tris) 2.硼/酸3.乙2胺四乙酸(EDTA) 4.溴酚蓝5.蔗糖 6.琼脂糖7.溴化乙锭 8.DNA marker9.DNA样品[实验步骤]1.缓冲液的配制① 5×TBE(5倍体积的TBE贮存液)配1000ml 5×TBE:Tris 54g硼/酸 27.5g0.5mol/l EDTA 20mlPh8.0② 凝胶加样缓冲液(6×)溴酚蓝 0.25%蔗糖 40%③溴化乙锭溶液(EB) 0.5μg/ml2.制备琼脂糖凝胶按照被分离DNA的大小,决定凝胶中琼脂糖的百分含量。可参照下表:琼脂糖凝胶浓度 线性DNA的有效分离范围0.3% 5-60 kb0.6% 1-20 kb0.7% 0.8-10 kb0.9% 0.5-7 kb1.2% 0.4-6 kb1.5% 0.2-4 kb2.0% 0.1-3 kb3.胶板的制备(1) 用高压灭菌指示纸带将洗静、干燥的玻璃板的边缘(或电泳装置所皿备的塑料盘的开口)封住,形成一个胶膜(将胶膜放在工作台的水平位置上,用水平仪校正)。(2) 配制足够用于灌满电泳槽和制备凝胶所需的电泳缓冲液(1×TBE)。准确称量的琼脂糖粉。缓冲液不宜超过锥瓶或玻璃瓶的50%容量。 在电泳槽和凝胶中务必使用同一批次的电泳缓冲液,离子强度或pH值的微小差异会在凝胶中形成前沿,从而大大影响DNA片段的迁移率 。(3) 在锥瓶的瓶颈上松松地包上一层厚纸。如用玻璃瓶,瓶盖须拧松。在沸水浴或微波炉中将悬浮加热至琼脂糖溶解。注意:琼脂糖溶液若在微波炉里加热过长时间,溶液将过热并暴沸。应核对溶液的体积在煮沸过程中是否由于蒸发而减少,必要时用缓冲液补充。(4) 使溶液冷却至60℃。加入溴化乙锭(用水配制成10mg/ml的贮存液)到终浓度为0.5ug/ml,充分混匀。(5) 用移液器吸取少量琼脂糖溶液封固胶模边缘,凝固后,在距离底板0.5-10mm的位置上放置梳子,以便加入琼脂糖后可以形成完好的加样孔。如果梳子距玻璃板太近,则拔出梳子时孔底将有破裂的危险,破裂后会使样品从玻璃板之间渗透。(6)将剩余的温热琼脂糖溶液倒入胶模中。凝胶的厚度在3-5mm之间。检查一下梳子的齿下或齿间是否有气泡。(7)在凝胶完全凝固后(于室温放置30-45分钟) ,小心移去梳子和高压灭菌纸带,将凝胶放入电泳槽中。低熔点琼脂糖凝胶及浓度低于0.5%的琼脂糖凝胶应冷却至4℃,并在冷库中电泳。(8)加入恰好没过胶面约1mm深的足量电泳缓冲液。4.加样DNA样品与所需加样缓冲液混合后,用微量移液器,慢慢将混合物加至样品槽中。此时凝胶已浸没在缓冲液中。 一个加样孔的最大加样量依据DNA的数量及大小而定,一般为20-30μl样品。已知大小的DNA标准,应同时加在凝胶的左凝胶的左侧和右侧孔内。确定未知DNA的大小。测量未知DNA的大小时,要所有样品都用相同的样品缓冲液。5.电泳在低电压条件下,线形DNA片段的迁移速度与电压成比例关系,但是,在电场增加时,不同相对分子质量的DNA片段泳动度的增加是有差别的。因此,随着电压的增加,琼脂糖凝胶的有效分离范围随之减小。为了获得电泳分离DNA片段的最大分辨率,电场强度不应高于5V/cm。当溴酚蓝指示剂移到到距离胶板下沿约1-2cm处,停止电泳。
  • 首台国产纳米颗粒Zeta电位分析仪由丹东百特和华南师大联合研制成功
    p    /p p style=" text-align: center" img style=" width: 555px height: 300px " src=" http://img1.17img.cn/17img/images/201706/insimg/074ac78d-0ea5-4e88-b269-cd52086effa0.jpg" title=" 1.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 555" / /p p & nbsp & nbsp & nbsp 2017年6月5日,丹东百特研发中心实验室中,一台造型大方厚重的纳米颗粒Zeta电位分析仪样机——BT-Zeta100有条不紊地在试验台上配合着研发工程师进行着一次次 Zeta电位测试,随着测试的进行,一组组Zeta电位的结果展现出良好的重复性和准确性,标志着这台Zeta电位分析仪首次惊艳亮相就有不俗的表现,宣告了首台国产Zeta电位分析仪研制成功。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/560ca0fb-765f-4d3c-93e8-971a04e8215e.jpg" title=" 2.jpg" / /p p   首台国产Zeta电位分析仪的研制成功,是丹东百特与华南师范大学合作的最新成果。早在2014年8月,丹东百特就与华南师范大学签订联合研发Zeta电位分析仪的协议并成立了项目组。两年来,以韩鹏教授为首的华南师范大学Zeta电位项目组,在测试原理、光学系统、信号分析处理等方面做了大量研究工作。以李晓光为首的百特Zeta电位项目组在技术路线、控制系统、仪器结构、软件设计等方面进行了积极的探索,双方密切联系,定期互访,及时将最新的研究成果融合到样机系统当中。经过两年多的联合攻关,攻克了电渗影响、电场分布不均、实时相关信号处理、极性判断等一系列技术难题,终于研制出了具有商业化前景的首台国产Zeta电位分析仪。经过与多种国外同类仪器的对比测试,样机在重复性、准确性和分辨力等主要性能指标上达到国外同类产品先进水平,项目取得了圆满成功。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/96d57911-1569-48d6-870e-e3595621aa44.jpg" style=" width: 420px height: 300px " title=" 3.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 420" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/9abb43a1-65ec-4501-8acd-139e613eaf2b.jpg" style=" width: 420px height: 300px " title=" 4.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 420" / /p p   BT-Zeta100型Zeta电位分析仪是基于电泳光散射(ELS)原理测量纳米颗粒材料Zeta电位的,它不仅能测量纳米颗粒的Zeta电位,同时具有测量纳米粒度分布和分子量功能,是一个集粒度、分子量和Zeta电位于一体的高端纳米颗粒分析仪器,能充分满足纳米材料主要物理性能分析,同时符合多项ISO国际标准。 /p p   BT-Zeta100采用了自主创新的微流控技术与自适应光子相关技术,保证了仪器的高测量精度和宽测量范围,并申请了多项发明专利。此外,仪器的核心技术还包括小型光源组件、具有独特结构的Zeta电位样品池、高灵敏度光电探测模组、高精度温控系统、光学空间调制模块等。BT-Zeta100是具有完全自主知识产权的产品,它的研制成功,结束了中国纳米颗粒Zeta电位分析仪器完全依靠进口的历史,为中国纳米材料研究、生产与应用提供科学准确经济实用的测试手段,对促进中国纳米科技的发展具有重要意义。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/1e6cc984-0ea7-4aaf-b40e-ff55bdfe2e93.jpg" style=" width: 528px height: 300px " title=" 5 (2).jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 528" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/a0208129-00ff-4165-9008-d72a482de047.jpg" style=" width: 528px height: 300px " title=" 6.png" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 528" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/2d792810-34a6-41c7-bf2a-c5c8ff3ce1ef.jpg" style=" width: 534px height: 300px " title=" 7.png" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 534" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/0a244707-0b27-45e0-9893-05fc8f60928e.jpg" style=" width: 528px height: 300px " title=" 8.png" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 528" / /p p   strong  附:Zeta电位小常识: /strong /p p   1、什么是Zeta电位?测试Zeta电位的意义和作用是什么? /p p   悬浮于液体中的纳米颗粒表面都存在电荷,这些电荷会影响颗粒周围区域的离子分布,因此每个粒子周围都存在双电层,分别是固定层和滑动层,滑动层上的电位为Zeta电位。 /p p   Zeta电位的大小反映胶体体系的稳定性趋势。Zeta电位的绝对值越大,悬浮液体系越稳定,悬浮液体系稳定与不稳定的分界线是Zeta电位± 30mv,Zeta电位大于+30mv或小于-30mv的悬浮液体系是稳定的,Zeta电位在+30mv到-30mv是不稳定的。 /p p   通过Zeta电位的测试,可以帮助工程师找到阻止颗粒絮凝、保持悬浮液稳定的配方,同样也可以帮助工程师找到促使颗粒絮凝(废水处理),加速颗粒沉淀的方法。 /p p style=" text-align: center" img style=" width: 357px height: 300px " src=" http://img1.17img.cn/17img/images/201706/insimg/1ec38feb-e1e0-48b4-a4d0-bcdbd902bbc2.jpg" title=" 9.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 357" / /p p   2、电泳光散射Zeta电位测试原理 /p p   电泳光散射Zeta电位测试原理是通过激光多普勒测速技术对颗粒的电泳迁移率进行测试,然后运用所测的电泳迁移率及Henry函数进行计算得到Zeta电位的。当激光光束照射在固定电场作用下产生定向运动的带电粒子时,根据多普勒效应,粒子产生的散射光频率将会有微小的变化。利用光学相干技术,就能够使散射光频率变化转换为光强的波动变化,接着由光强的波动频率得到颗粒的运动速度。一方面,结合固定电场的方向和粒子的运动速度大小,得到粒子的带电极性。另一方面,结合固定电场的大小和粒子的运动速度大小算出粒子在单位电场中的运动速度,即电泳迁移率,再根据Henry函数计算出Zeta电位。 /p
  • 【新品发布】丹东百特再出新品纳米粒度电位仪BeNano 90 Zeta
    近日,丹东百特仪器有限公司隆重推出全新BeNano系列纳米粒度及Zeta电位分析仪,该系列由丹东百特历时多年研究,且凝聚校企科研力量打造而成。BeNano系列纳米粒度电位仪包括三个型号:BeNano 90,BeNano Zeta 和BeNano 90 Zeta,其核心产品BeNano 90 Zeta集动态光散射(DLS)、电泳光散射(ELS)和静态光散射技术(SLS)三种技术于一体,既能测量颗粒的粒度和Zeta电位,又能测量聚合物的分子量,可广泛应用于药物及药物释放体系、生命科学和生物制药、油漆油墨和涂料、食品和饮料、纳米材料以及学术领域等。综合各方表现,BeNano 90 Zeta 堪称为一款“精准,智能,值得信赖”的全新纳米粒度及Zeta电位分析仪。BeNano 90 Zeta另外,BeNano系列纳米粒度电位仪具有众多突出特点,主要包括以下几点:(1)高速测试能力:更快的测试速度,所有结果可以随后编辑处理(2)高性能固体激光器光源:高功率、极佳的稳定性、长寿命、低维护(3)智能光源能量调节:根据信噪比,软件智能控制光源能量(4)光纤检测系统:高灵敏度,有效增加信噪比(5)相位分析光散射:准确检测低电泳迁移率样品的Zeta电位(6)可抛弃毛细管电极:极佳的Zeta电位测试重复性,避免较交叉污染(7)毛细管极微量粒径池:3-5μL极微量样品检测和更高的大颗粒测试质量(8)智能结果判断系统:智能辨别信号质量,消除随机事件影响(9)宽泛的温度控制范围:-10℃~110℃ 温控满足用户测试需求(10)高稳定性设计:结果重复性极佳,不需日常光路维护(11)灵活的动态计算模式:多种计算模型选择涵盖科研和应用领域
  • 仪思奇科技携多款新产品亮相IPB2018
    p style=" text-align: left "    strong 仪器信息网讯 /strong 第十六届中国国际粉体加工/散料输送展览会(IPB2018)作为粉体行业的重要的年度盛会于2018年10月17日在上海世博展览馆盛大开幕。仪思奇科技携多款新产品亮相此次展会。此次参展的主要产品主要有最新一代高分辨率图像法粒度粒形分析仪IPAC2 图像法颗粒跟踪zeta电位分析仪ZetaCompact& reg 固体表面电位仪ZetaCAD& reg 和超声法粒度和zeta电位分析仪。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/dbe558f5-0cc2-482e-bc59-1e906a0375c0.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   仪思奇科技一直孜孜以求致力于把最先进的颗粒分析技术引入国内市场,让新老客户了解到最先进的图像粒度分析技术水平和丰富准确的多种zeta电位解决方案。 /p p   在此次展会上,仪思奇科技首次展出了分辨率可达到0.17微米/像素的图像法粒度粒形分析仪IPAC2。IPAC2图像法粒度和粒形分析仪属于湿法动态分析仪器,其分析范围粒度范围:0.3~1000μm,具有1200万像素CMOS成像系统,可配置自动进样系统。IPAC2可以确定蛋白质药物中污染物来源及聚集体个数,符合药典要求 可对蛋白质中气泡、硅油、 异物等进行分类和数量统计,并可用于抛光液中的颗粒计数。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/9280db65-be36-4cb2-a14f-62c51b85cf24.jpg" style=" width: 278px height: 226px " title=" 2.jpg" alt=" 2.jpg" width=" 278" vspace=" 0" height=" 226" border=" 0" / img src=" https://img1.17img.cn/17img/images/201810/uepic/5c2c4772-0542-4202-9fc0-c570dbbdbf46.jpg" title=" 4.jpg" alt=" 4.jpg" style=" width: 301px height: 226px " width=" 301" vspace=" 0" height=" 226" border=" 0" / /p   OCCHIO公司的ghost技术,可以对透明颗粒进行准确成像 强大的软件系统,使得IPAC2具有跟踪和精确计数功能。IPAC2是解决蛋白质、乳液等样品粒度粒形分析的利器。在此次展会上同时展出了图像法zeta电位仪zetaCompact& reg 和固体表面zeta电位仪ZetaCAD& reg 。 br/ p   图像法zeta电位分析是用于光散射电泳法和电声法zeta电位分析校准的基准仪器,可用于解决测量从20nm到50μm颗粒的电泳迁移率所遇到的所有问题,并计算胶体悬浮液的zeta电位。众所周知,密度高或粒径大的颗粒会沉积在测量室底部。图像法zeta电位仪zetaCompact& reg 采取具有角度寻径分辨率的高精度图像分析方案,在垂直平面内测量悬浊液中颗粒的电泳迁移率分布,准确计算zeta值。并且能给出每个颗粒的zeta值,给出真正的zeta电位分布图(如下图),特别适合于乳液、纤维、混合材料、矿浆等样品的测定和分离条件确定。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/adca1b37-2fdf-479a-88ac-f57ec219d4ce.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p   固体表面电位分析仪ZetaCAD& reg 是基于流动电势和流动电流测量法,从而研究宏观固体表面 Zeta电位。ZetaCAD& reg 适用于50μm以上的大颗粒、纤维和膜类等平坦的表面,或在一个压力梯度下电解质可以透过的曲面膜或中空纤维样品,包括聚合物、纺织、陶瓷、玻璃等,对不同形状和尺寸的固体及粉末材料均适用。固体表面电位分析仪研究材料的表面电荷,了解材料表面上的电荷状况,帮助科研人员在化学与材料科学领域内改善和调整表面特性。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/85b56c53-053a-4dc3-a0b5-ceaa7807ae1c.jpg" title=" 6.jpg" alt=" 6.jpg" style=" width: 501px height: 375px " width=" 501" height=" 375" / /p p   在IPB同期举行的2018第三届上海国际医药粉体制备技术交流会,邀请了国内药用粉体颗粒领域的专家开展高峰论坛,仪思奇科技总经理杨正红先生应邀做《静态图像法粒度和形貌分析技术在药品质量控制中的应用》主题报告。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/028003a3-bf04-4655-9773-f6b5d5221810.jpg" style=" " title=" 7.jpg" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/7d628684-2d2c-42f7-8e8e-ef327a8f95ae.jpg" style=" " title=" 8.jpg" / /p p br/ /p p br/ /p
  • ISO颗粒表征专家许人良解读《Zeta电位测定操作指南》国家标准
    Zeta 电位通常用于研究液体介质中颗粒分散体系的等电点(IEP)和表面吸附,并作为比较不同样品静电分散稳定性的指标。Zeta电位不是可直接测量的量,而是使用适当理论确定的量。此外,Zeta电位不是悬浮颗粒的固有属性,而是取决于颗粒和介质属性,以及它们在界面上的相互作用。介质的化学成分和离子浓度的任何变化都会影响这种界面平衡,从而影响Zeta电位。因此,样品制备和测量过程都会影响测定结果。为了避免zeta电位测量操作问题使测量结果出现误差,需要一个统一的zeta电位测量操作指导原则。近期,GB/Z 42353-2023《Zeta电位测定操作指南》发布实施,提供了使用光学电泳迁移法或电声法测定Zeta电位的样品制备和测量过程的操作指南。本文特邀该标准主要起草人、ISO颗粒表征专家许人良博士对标准进行解读。一、背景近年来,Zeta电位这个参数越来越多地出现在各行各业。Zeta电位的测定不仅被用于科学探索,产品研发的理论设计、各个阶段的试验、最终产品的参数设定,在生产中也越来越多地被用于过程控制,以及中间产品或最终产物的质量控制,关于Zeta电位的在线测定也有所报道。而在化学工业出版社2023年出版《Zeta电位实用指南》专著之前,国内外尚缺乏有关Zeta电位的专业书籍,在相关领域的专业图书中涉及的Zeta电位专业知识也不尽详细。高等教育中除了胶体化学专业课程,一般本科物理化学教学中涉及Zeta电位的很少,致使很多使用者不能完全理解这一参数的物理意义,难以正确地进行样品制备与测量、阐释测量结果,从而将测量结果应用到所要解决的理论或实践问题中去。与其他颗粒表征的参数不同,Zeta电位不是通过直接测量得到的,而是通过测量某个物理量,然后使用某一理论模型得到的;Zeta电位不仅是颗粒表面的特性,而与颗粒的浓度以及所处的介质性质也密切有关。由于这两个特性,在Zeta电位的测定以及数据阐释中,普遍存在错误的操作、计算与结论。基于上述原因,及时制定发布《Zeta电位测定操作指南》国家标准,为广大科技工作者提供正确的Zeta电位测定操作指导,是极其重要与必要的。本标准等同采用由ISO TC24/SC4制定的ISO/TR 19997:2018《Guidelines for good practice in zeta-potential measurement》,填补了国内现有标准的空白,为胶体颗粒Zeta电位测定标准化奠定了良好的基础;对正确使用Zeta电位测定技术与数据解释,具有重要的参考价值。本标准制定了用于测定Zeta电位的样品制备和测定过程的一般指导原则,有望统一国内的测试方案,在科研、医药、化工等领域有着重要意义。二、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。主要参与单位有山东理工大学、上海市计量测试技术研究院、中机生产力促进中心有限公司、河南中科智能制造产业研发中心有限公司。2021年4月,标准起草工作组组建,讨论了具体的工作过程,拟定了相应的工作计划和各单位承担的工作内容。此标准的编制工作依据《标准化工作导则第1 部分:标准化文件的结构和起草》,《标准化工作导则 第2 部分:以ISO/IEC标准化文件为基础的标准化文件起草规则》,以及《国际单位制(SI)和国际单位制多功能与某些其它单位的使用推荐规程》等国家标准。本标准共进行了一项验证实验,对聚苯乙烯的浓溶液采用均衡稀释法进行稀释,在一系列浓度条件下测量样品的Zeta电位,说明均衡稀释法使得样品的特性除了颗粒浓度外,其余的都保持原样,颗粒的Zeta电位在稀释过程中没有改变。经过广泛征求修改意见与评审会专家意见,并经过相关实验验证,本标准最终于2023年3月发布, 并于10月1日起实施。三、主要内容本标准首先概括性地介绍了Zeta电位的定义与特性,主要用途,以及主要测量技术。强调了从不稳定悬浮液到稳定悬浮液转变的临界Zeta电位值,只在有限的应用中才得到证实,需要小心使用。并建议以监测和关联第二被测量(例如粒度分布,浊度,黏度等)以验证由Zeta电位测量得到的结论。本标准分两章详细地描述了样品制备与测定的不确定度与误差来源。样品制备:Zeta电位测定起始于取样。只有当测试样品能够代表某一材料批次,且取样量足够时,在该样品中测到的实验值才适用于该批次。在大多数的应用中,样品必须保持稳定状态,例如没有沉淀、团聚等现象,否则所测量的实验值只能代表某一时间段的状态。除了悬浮液样品制备中的一般做法以外,由于颗粒的Zeta电位取决于颗粒以及分散介质,如果不采取特殊措施,简单的稀释可能会改变介质的化学成分,从而影响颗粒Zeta电位。样品制备需要遵循的程序是能从原始体系变为可用于测量的稀释样品后,Zeta电位不变。这就要求在稀释时,不仅原始体系和稀释后体系之间的颗粒及其表面保持相同,而且介质保持相同的电化学性质,有相同的pH值和各种离子浓度,也即除了颗粒浓度,悬浮液的其他特性都不变。使用去离子水进行简单稀释是一种常见的误导性且通常不正确的制备Zeta电位测量样品的方法。样品稀释可以遵循所谓的平衡稀释方法,即使用与原始体系中相同的液体作为稀释剂。如果处理得当,平衡稀释会导致样品中唯一修改的参数是颗粒浓度。理论上只有基于平衡稀释的样品制备过程才能产生与初始体系有相同Zeta电位的稀释样品。得到用于平衡稀释的液体有三种方法。第一种方法包括使用重力沉降或离心法提取上清液。然后用此清液或“母液”将初始样品稀释至所选测量技术的最佳程度。该方法适用于相对于介质有足够密度差的颗粒。对于用第三相(乳化剂)稳定的通常不混溶的油相和水相的乳液,离心方法不适用。通常将其稀释到匹配的离子背景中,使在初始的浓的和稀释后的悬浮液有相同的离子背景。该稀释剂可通过了解分散剂相中的离子组成(离子、离子表面活性剂)获得。第三种可能更适合纳米和生物胶体的方法是使用透析。透析膜需要对离子和分子具有渗透性,但对胶体颗粒不具有渗透性。如果样品需要稀释,建议在不同浓度下进行一系列测量,这样可以观察到颗粒-颗粒相互作用的影响或其他稀释效应。通常,由颗粒-颗粒相互作用引起的受阻运动会减少表观运动,从而使测量的Zeta电位绝对值偏小,而不同程度的稀释可能会观察到不同的Zeta电位,直至稀释到颗粒间的相互作用不再影响到测量值。无论是初始样品还是经过制备(稀释)的样品,必须对其稳定性进行一系列按时间顺序进行的测量。如果遇到测量值随时间而变,则除了报告测量值之外,还需报告变化率。通常在实验报告中需要详细说明样品是如何处理的,以及稀释剂是如何制备的。可以对样品进行多次稀释和测量,以证明所采用的方法是稳定和可重复的。测定的不确定度与误差来源:为了保证测量的准确性,强烈建议仪器制造商或其指定人员定期对仪器进行性能验证。当使用电泳光散射法测量时,必须保证在测量区有足够的颗粒,而不会由于沉降而使颗粒都沉到底部。当电泳速度很小时,使用可测量极小电泳迁移率的相位分析光散射法。操作人员不正确的参数输入也是可能的误差来源。Zeta电位测量对清洁度和少量污染物(如多价离子或浸出材料)的存在特别敏感,这些污染物可能不会显著影响电导率或pH值,但却会影响Zeta电位的测量。可能的污染源有:1)用于稀释或样品制备的介质(通常为水)的质量;2)前一个样品在样品池内的残留,特别是当前后两个样品的离子浓度相差很大时,简单的冲洗可能是不够的;3)用于实验的任何玻璃器皿或其他容器内壁所残留的离子;4)介质在测量温度下显著挥发或蒸发而导致介质的变化;5)气泡(在灌装过程中或者过滤过程中形成,或者从溶解空气中产生,或者由于电化学反应而产生,例如在电极表面发生电解)的存在会扭曲电场,并导致错误的电导率测量,或受障碍的电泳运动;6)水中二氧化碳的溶解对悬浮液pH与电导率的影响。其他会影响测量结果的因素主要来自于所加的电场:1)由于所加电场后产生焦耳热。焦耳热可以同时引起温度升高和温度梯度,两者都会影响zeta电位测量过程中的电泳和电渗;2)当电流通过样品时所导致的样品变化,特别是对蛋白质和蛋白质类生物分子(如DNA),或颗粒表面包覆有生物分子或其他易受影响涂层的样品;3)电场作用导致电极表面的氧化还原反应,从而影响某些生物样品。减轻该问题可以考虑几种解决方法,包括减少电场的施加时间,用微弱的电场,使用短脉冲电压,使用较低活性的电极材料(如将金换成钯),或同时监测粒径大小,当观察到显著的变化趋势时,停止测量,等等。Zeta电位是由电泳迁移率计算得来的。用于计算的合理理论和公式极大程度上取决于悬浮液的环境,商业仪器使用的理论计算ζ电位一般假定颗粒为光滑的刚性圆球,对非理想颗粒,应谨慎使用。四、进一步阅读本标准仅对如何正确测定Zeta电位提出了一些指导,如果想要系统地了解Zeta电位的定义、物理含义、计算方式、测定方法,以及一些典型的应用,可以参考由化学工业出版社出版、许人良所著的《Zeta电位实用指南》。该书涵盖了有关Zeta电位与电动现象的最新发展,提供了诸多最终能用于解释实验结果的公式,并附有对于这些公式的理论基础以及数学推导与公式演变过程的较详细的参考资料。
  • 人和科仪年终庆——SIM凝胶成像分析系统优惠啦
    新年将至,上海人和科学仪器有限公司开展SIM凝胶成像分析系统年终优惠活动。 西盟国际公司,是全球首屈一指的专业生物技术公司,以经营实验室设备和基础医学设备为主。凭借突出的技术优势使其产品广泛应用于全球科研和工业的实验室。同时,西盟国际通过自己专业的培训和国际科学交流,建立了完善的国际经销网络和服务体系。 SIM 凝胶成像分析系统能够观察分析各种透明或不透明的电泳图像,如EB染色胶,蛋白胶,放射自显影、斑点印迹等,满足定性,定量分析的迫切需要,为凝胶图像分析提供了先进简便的解决方法。现人和科仪SIM 凝胶成像分析系统BIO-PRO 200E现货促销,超高性价比!震撼价查询 SIM凝胶成像分析系统介绍 凝胶成像原理及操作 实验员将EB等染色剂染色过的凝胶放暗室中的紫外透射工作台上,打开紫外灯EB染色过的凝胶经过紫外面线照射后在暗室中会发出荧光,我们称之为&ldquo 凝胶图像&rdquo 。调节相关的光圈、焦距,将图像调节清楚,发出荧光的凝胶图像被高像素的科研级专业摄像机捕捉,Bio-capt采集卡及采集软件将图像输入计算机,在计算机为我们通过Bio-1D分析软件进行分子量、RF值微量滴定等数据分析。 应用范围 凝胶成像系统的应用范围实际上非常广,能对各种透明或不透明的成像都能提供方便、迅速、准确的处理,包括蛋白质条带、斑点密度、蛋白质或DNA/RNA分子定量、电泳迁移率、PCR、自动菌落计数、酶标板测定、物距测量、遗传关系等 凝胶成像系统的组成 ◆第一部分:控制系统 控制系统有两种规格:B型控制器系统和T型控制器系统。控制系统的主要作用是控制凝胶图像系统的工作和运行。 ◆第二部分:光源系统 光源系统有三种规格:1)312nm紫外透射工作台;2)254nm紫外反射灯;3)365nm紫外反射灯。左右侧灯每个灯上分别装有一只254nm、365nm的紫外灯管,这样光从左右两侧发出,紫外光源的作用是:紫外光照射经EB染色的凝胶会发出明亮的荧光。不同波长的紫外光对不同染色的凝胶激发作用也不尽相同。 ◆第三部分:暗室 暗室的主要作用是:经紫外光激发的EB胶发出的荧光在暗室中更加明亮,便于摄像机抓拍。 ◆第四部分:图像采集系统 图像采集主要由摄像机镜头及Bio-capt图像采集软件组成。摄像机的主要作用是抓拍发出荧光的凝胶图像。摄像机必须由高像素对弱光拍摄能力强的科研级相机。监控用的民用级及工业级摄像机用来对凝胶图像的抓拍均不清晰。Bio-capt图像采集系统的作用是将摄像机抓拍下来的凝胶图像传输入计算机。 ◆第五部分:Bio-1D分析软件 Bio-1D分析软件的主要作用是在计算机内对凝胶图像进行分子量、RF值等数据的分析。 特点 ◇高像素科研级专业摄像机,分为140万、200万、300万像素CCD,采集暗室弱光能力更强。 ◇T型控制器,四种模式,方便用于不同实验。 ◇紫外灯光强度75-100%无极可调,保护蛋白样品不变性,保护胶不弥散。 ◇灯定时功能,定时关灯,保护紫外灯,延长紫外灯寿命。 ◇推拉式工作台,人性化设计,方便室外操作及清洁。 ◇独特的风扇及密闭风道设计,保护蛋白样品不变性,保护胶不弥散。 ◇多种标配光源,侧灯可90度弯曲旋转,选择最清晰图像(其他品牌侧灯为非标配) ◇门双层胶条,避免伤害实验人员,还可加强暗室环境,加强采集效果。 BIO-CAPT专用于图像采集软件 功能: 摄取图像,在不同格式下(TIFF、BitMap、JPEG、PICT、PCX、GIF、Targa)捕捉图像。 存诸图像,在目录菜单中显示图像并做表面标记 处理图像,旋转,镜像,倒置,亮度,对比 BIO-1D分析软件 图像前处理功能 1、Word操作功能 2、泳道精确度设置 3、手动自动检测条带 计算分析系统 4、分子量MW 5、迁移率RF 6、遗传树分析 7、浓度值OD 8、微量滴定板分析 9、菌落计数 图像增强功能 文件处理功能 11、打印设计 12、报告设计 13、输出格式多样化 14、结果总汇 15、其他功能:软件可自由安装于多台电脑,同时分析;多种预设染料颜色标记显示;多幅图像合并显示并分析功能;软件免费升级 注:专利密闭风道设计和电脑(见上图)需另行收费 人和科仪将陆续有优惠活动推出,敬请期待! 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息。 上海人和科仪欢迎经销商合作洽谈! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现&ldquo 为客户创造更多价值&rdquo 的承诺。主要代理品牌:IKA、BROOKFIELD、GRABNER、ILMVAC、MIELE、MEMMERT 、KOEHLER、SIEMENS、EXAKT、COLE-PARMER、ATAGO、YAMATO、ESPEC等。】
  • 仪思奇科技应用实验室开始正式对外样品测试服务
    日前获悉, 为满足广大客户需求,仪思奇(北京)科技发展有限公司北京应用实验室已经对外正式服务,可以接受多功能超声粒度及Zeta电位分析仪和图像法粒度粒形分析仪委托样品测试。一、 500nano XY 彩色粒度和形貌分析仪:目前,流行的粒度分布测定方法是激光衍射法,但是最近新修订的GBT19077-2016《粒度分析:激光衍射法》(即ISO13320:2009)指出:激光粒度分析仪只能用于球形颗粒的检测,对于非球形颗粒误差较大,其结果受到颗粒形貌的极大影响,误差来源包括颗粒的光学各向异性、颗粒的非球形和表面粗糙度、荧光等,对极少量大颗粒灵敏度不够,可靠性范围在粒度分布的5%~95%之间。随着计算机技术的进步和计算机视觉技术的迅猛发展,以欧奇奥仪器公司为代表的新一代图像法粒度和形貌分析仪用“眼”看世界,正在逐步取代流行了二十年的激光粒度仪。它没有理论假设,只有对颗粒的定义,因此,能够准确地反映样品的真实粒度及其分布,并且能对颗粒形貌进行准确地定量分析,给出各种形貌分布图。目前,实验室拥有的500nano XY静态法图像分析仪代表着粒度和形貌分析的最高水平,可以对0.2 ~ 3000微米范围内的样品进行透射、反射和彩色分析,可以提供宏观、介观和微观的颗粒形貌参数,分析参数多达80个,具体参数如下:l 干法:0.2 μm-3000 μm 湿法:0.2μm-300 μml 完全符合ISO-13322-1规范l 无需理论及样品参数设定, 给出最真实的分析结果l 干法和湿法两用, 具备颗粒计数功能l 分析快速、操作简便,80个以上粒径和形貌分析参数l 不仅可利用透射光分析,还可以利用反射光进行分析二、DT-1202 超声粒度和zeta电位分析仪:美国分散科技公司(Dispersion Technology,Inc,DTI)专注于非均相体系表征的科学仪器业务。 DTI开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 ζ电位、流变学、固体含量、孔隙率,包括CMP浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,药物乳剂等,并可应用于多孔固体,是高浓度、高粘度或有色胶体体系的最佳测量手段。应用实验室现有的DT-1202 超声粒度和zeta电位分析仪实际是一台高度集成的超声/电声谱分析仪,不仅可以测定原浓体系黑色浆料的粒度分布和zeta电位(粒度范围:5nm~1mm,体积浓度可达50%),适应高粘度样品的测定(可达20,000 cP),而且可在一台仪器上完成pH、温度、电导率及流变性质的测定。该仪器可同时执行ISO 20998/ ISO13099标准,利用电学和声学方法,可以在分散液、微乳液、具有液体分散介质的多孔材料等多相体系中测定Zeta电位。对Zeta电位值和分散相的质量分数(包括稀释和浓缩体系)没有限定,颗粒粒径和孔径大小可以在微米量级或纳米范围,对颗粒或孔隙的几何形状也没有特殊的限制。液体分散介质可以是水相或者非水相,可具有任意的液体电导率、介电常数或化学成分。颗粒自身可以导电也可以不导电,胶体的双电层可以分离也可以互相重叠,双电层厚度或其它性质没有限制。因此,对于电池浆料及其类似体系具有广泛的适用性。除此之外,我们还可以计算在ISO13099标准中与体系颗粒电学性质相关的以下参数: 1. Debye:即德拜长度(Debye length),电解液中双电层的特征长度,单位是nm。它反映了胶体颗粒外层紧密层+扩散层的厚度,即双电层厚度。双电层厚度可以直接表明胶体颗粒带电多少、带电离子水化膜的厚薄和ζ电位的大小,它们直接影响着分散体系的稳定性和流变性。2. Du:杜坎数(Dukhin number),无量纲,反映表面电导率对电动、电声现象及多相体系电导率和介电常数的贡献,是双电层极化状态的表面过剩导电率的表征参数。它描述了颗粒的表面电导率和周围流体的体电导率之间的比率。 3. Surface charge:双电层的面电荷密度。单位面积界面上的电荷,由液体体相离子的特异吸附,或表面基团解离所致。表面电荷密度的单位是C/ cm2 (库伦/厘米2)。具体可分析项目和参数见表1表1 超声/电声谱分析仪分析应用一览表超声衰减法电声学法执行标准ISO-20998 / GBT 29023ISO-13099 / GBT32671测量项目声衰减曲线(1-100MHz)纵向流变的声衰减曲线(1-100MHz),声速CVI电流强度CVI电流相位CVI电流强度、水相电导率CVI电流、非水电导率理论模型ECAH等五种理论模型Navier-Stokes 理论Smoluchowski 经典理论 (球形颗粒)先进CVI水相理论(任意颗粒)*非水或纳米胶体理论(任意颗粒)应用条件(假设)是唯一测定体积黏度的方法。- Ka 1 (标准ka 10)- Du 3电导率0.001 S/mKa 各向同性项:l 在1-100MHz频率范围内的纵向伸缩粘度l 纵向伸缩粘性模量 G”l 牛顿流体的体积粘度l 纵向伸缩弹性模量 G’l 液体压缩率l 由声速导出分散相的体积%l 动力粘度各向异性项:l 亚微米尺度固体的体积分数l 结构化系统中颗粒键合的Hook(胡克)参数l 微粘度l 大颗粒散射系数 l Zeta电位(mV)l 动态迁移率l 粒径(从CVI电流)l 粒径标准差l 粒径(从CVI相位)l 电导率l 德拜长度(1/k)l Kal Zeta电位l Du (杜坎数)l MW弛豫频率l 对导电和非导电颗粒的Henry-Ohshima电泳迁移率l 表面电荷密度(C/cm2)l 每个颗粒上的平均电荷(C/Particle)l Zeta电位(mV)测试范围5nm -1000um介质粘度 (cP):可到20,000介质微粘度 (cP):可到100Zeta电位:无限制水相电导率:0.0001 S/m ~ 10 S/m非水电导率:10-11 S/m ~ 0.0001 S/m此外,该仪器还可以通过电声电震法测定多孔材料的孔隙率和表面zeta电位。 仪思奇(北京)科技发展有限公司致力于在新能源领域、生物医药领域和催化化工领域的新型高端仪器分析技术的推广,同时联合高校、企业以及中科院相关领域的专家学者研制和设计催化行业急需的仪器,以仪器分析全面解决方案支撑前沿材料研发和生产、促进科研院所材料研发成果的产业化。 欢迎来电来函垂询! 咨询电话:010-81706682邮箱:zhyang@insearch-tech.com xingkai.zhang@insearch-tech.com
  • TSI公司发布新一代MacroIMS高分子离子迁移率谱仪
    世界精密测量仪器的生产商TSI公司宣布了其新一代MacroIMS高分子离子迁移率谱仪的上市。 MacroIMS高分子离子迁移率谱仪3982是一款全新的可快速测量高分子的分子量和粒径的仪器,并具有非常高的分辨率。MacroIMS高分子离子迁移率谱仪系统是由来自TSI公司的纳米颗粒分析核心技术中发展而来,经过验证,该系统可用于各种生化分析,包括抗体聚合、脂蛋白、病毒、疫苗、类病毒颗粒、聚合物以及纳米颗粒胶体等。 这款新一代的产品具有许多上一代产品所不具有的独特优势,例如通过直接与LC泵和自动取样器相连,新产品能够实现自动分析;并采用了软X射线电离技术,摆脱了为实现电荷中和需要使用放射源的缺陷;而且该设备可自动发现组分;它具有更快的扫描速度,并配备了基于色谱分析的具有扩展分析工具的软件。 TSI公司高级全球产品经理Erik Willis先生说,“这款MacroIMS高分子离子迁移率谱仪的优势就在于它能够分析那些对质谱仪来说粒径过大的高分子和纳米粒子,而且具有光散监测仪所无法达到的高测量精度和分辨率。这款MacroIMS高分子离子迁移率谱仪是对液态色谱分析、场流分析、AUC分离以及质谱分析的有力补充。” 如果您想了解更多信息或寄送样品至本公司进行分析,请点击http://www.tsi.com/Products/Macromolecule-Analyzers/Other/MacroIMS-Macroion-Mobility-Spectrometer-3982.aspx。
  • 欧美克仪器正式入驻中国机械总院颗粒表征联合实验室
    近日,中国机械总院怀柔科技创新基地中国机械总院雁栖湖基础制造技术研究院(简称基础院)正式揭牌成立。基础院地处北京市怀柔区中高路9号,总占地面积超100,000平方米。内部研发、实验、试生产、会务和生活起居区域一应俱全。新落成的实验中心将按照符合CNAS标准的相关配置进行运营。珠海欧美克仪器有限公司、罗姆(江苏)仪器有限公司、福建强纶新材料股份有限公司、弗尔德(上海)仪器设备有限公司、苏州纽迈分析仪器股份有限公司有幸参与到基础院此次实验中心颗粒表征联合实验室的共建工作中,并与基础院展开深度合作。同时,专门开设了基础院和欧美克仪器联合的颗粒表征实验室并计划在将来对相关颗粒表征检测工作的推进以及相关检测人员的培训贡献力量。怀着激动的心情,欧美克仪器销售总监吴汉平先生及北区销售经理李宏成先生作为欧美克代表与全国颗粒表征与分检及筛网标准化技术委员会委员单位成员、颗粒表征专家代表共同出席了揭牌仪式。中国机械总院雁栖湖基础制造技术研究院是中国机械研究总院为落实国家推进装备制造业“产业基础高级化、产业链现代化”战略要求,在中机生产力促进中心有限公司的总体架构基础上,整合集团国家级重点实验室、国家级工程研究中心在京创新资源,成立的一家装备制造业基础共性技术研究机构。基础院测试技术与装备研究所致力于为汽车、机器人、航空、兵器、船舶、轨道交通、风电、石油化工等领域用户提供规划-标准-测试-装备-软件-咨询全套传动系统解决方案。以试验检测为桥梁,帮助企业构建产品全寿命周期一体化体系,从而提高工艺水平、提高产品性能、降低制造成本、缩短开发周期、减少售后赔付,全方位提高产品竞争力,推动行业高质量发展。颗粒表征联合实验室的成立依托怀柔基地零部件试验检验和标准验证能力建设,在丰富基础院服务颗粒表征领域技术能力的同时,将有力推动颗粒表征标准、方法和检测技术研究与应用,促进颗粒表征标准人才培养。目前,基础院欧美克颗粒表征联合实验室已配备了多款欧美克仪器最新的激光粒度分析仪、纳米粒度电位仪、颗粒图像系统和颗粒计数器等多款颗粒表征检测分析设备。纳米科学与技术是当今国家战略新兴科技领域之一。纳米技术在材料制备、分析、功能化材料等方面有着独特优势,被广泛应用于生物医学、环境保护、信息技术、人工智能、新能源、新材料等领域。得益于服务新能源、制药以及各工业领域三十年的粒度粒形检测技术的积累,珠海欧美克仪器有限公司在成功引进和吸收马尔文帕纳科 (Malvern Panalytical)纳米颗粒表征技术后,于2023年8月正式推出全新升级的NS-90 Plus纳米粒度分析仪和NS-90Z Plus纳米粒度及电位分析仪,以更优越的粒度和电位分析性能,新颖易操作的新软件界面满足广大纳米材料、制剂开发和生产用户的颗粒粒度和Zeta电位的测试需求!NS-90Z Plus纳米粒度及电位分析仪在上一代NS-90Z的基础上进一步优化了光学电子测量技术和分析性能,同时融合马尔文帕纳科恒流模式下的M3-PALS快慢场混合相位检测分析技术,有效缓解电极极化的影响,使得结果重现性更好,准确性更高,且可获得电位分布的信息。相比上一代产品,NS-90Z Plus能满足具有更高电导率的样品的Zeta电位和电泳迁移率测试,同时可以提高电位样品池的使用次数。▲ 快慢场混合相位检测Zeta电位分布、相位、频移及电压和电流图而Topsizer激光粒度分析仪作为一款全自动干、湿二合一激光粒度分析仪,具有量程宽、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿,是广受客户赞誉的国产高性能干、湿法激光粒度仪。该款仪器湿法测试范围0.02-2000um,干法测试范围0.1-2000um,能够满足绝大多数材料粒度检测要求。Topsizer型号激光粒度仪自上市以后,广受锂电池、生物制药、精细化工等行业用户的青睐。除了对欧美克品牌和技术的信赖外,还因为Topsizer系列产品保证了测试结果和分析能力与国内外、行业上下游黄金标准保持一致,这不仅为用户节省了方法开发和方法转移上的时间和成本,重要的是可避免粒度检测不准带来的经济损失和风险,无论在研发、过程控制还是质量控制上,都能够为用户带来真正的价值。此次联合实验室的成立将进一步融合多方资源,不断提高科研水平和创新能力,扩大国产仪器在颗粒表征领域的核心竞争力和影响力。欧美克仪器也将肩负中国颗粒表征领域的先导及创新者的职责,以材料粒度检测技术推进产业智能质造发展,为实现产业技术向低碳、数字、智能化的高质量发展贡献欧美克力量!
  • 精准+智能——记优秀新品百特BeNano 90 Zeta纳米粒度及Zeta电位分析仪
    为了将在中国仪器市场上推出的、创新性比较突出的国内外仪器产品全面、公正、客观地展现给广大的国内用户,同时,鼓励各仪器厂商积极创新、推出满足中国用户需求的仪器新品,仪器信息网自2006年发起“优秀新品”评选活动,至今已成功举办十六届。发展至今,该奖项也成为了国内外科学仪器行业最权威的奖项之一,获奖名单被多个政府部门采信。2022年度“优秀新品”评选活动正在进行中,2022下半年入围名单已公布(详情链接)。值此之际,一起再来回顾下往届年度优秀新品奖获得者们吧! 本期带您回顾的是2021年度“优秀新品”获奖产品:百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪。2021年度共有711台仪器参与“优秀新品”奖项评选,在“技术评审委员会主席团”的监督下,经仪器信息网“专业编辑团”初审、“网络评审团”评审、“技术评审委员会”终审,确定12台仪器获奖。其中,百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪脱颖而出。百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪介绍如下:BeNano 90 Zeta是BeNano系列纳米粒度及Zeta电位分析仪中的一员,是百特历经12年,经过不懈研发投入而推出的第四代该类产品。BeNano 90 Zeta集动态光散射(DLS)、电泳光散射(ELS)和静态光散射技术(SLS)三种技术于一体,能准确的检测颗粒的粒径及粒径分布、Zeta电位、高分子和蛋白体系的分子量信息等参数,可广泛应用于药物及药物释放体系、生命科学和生物制药、油漆油墨和涂料、食品和饮料、纳米材料以及学术领域等。综合各方表现,BeNano 90 Zeta堪称为一款“精准,智能,值得信赖”的纳米粒度及Zeta电位分析仪。此外,BeNano系列纳米粒度及Zeta电位分析仪具有众多突出特点,主要包括以下几点:(1)高速测试能力:更快的测试速度,所有结果可以随后编辑处理;(2)高性能固体激光器光源:高功率、极佳的稳定性、长寿命、低维护;(3)智能光源能量调节:根据信噪比,软件智能控制光源能量;(4)光纤检测系统:高灵敏度,有效增加信噪比;(5)相位分析光散射:准确检测低电泳迁移率样品的Zeta电位;(6)可抛弃毛细管电极:极佳的Zeta电位测试重复性,避免较交叉污染;(7)毛细管极微量粒径池:3-5μL极微量样品检测和更高的大颗粒测试质量;(8)智能结果判断系统:智能辨别信号质量,消除随机事件影响;(9)宽泛的温度控制范围:-10℃~110℃ 温控满足用户测试需求;(10)高稳定性设计:结果重复性极佳,不需日常光路维护;(11)灵活的动态计算模式:多种计算模型选择涵盖科研和应用领域。百特产品总监宁辉发表获奖感言:
  • 250万!华南理工大学高性能样本处理、生物分子分析及红外激光成像系统采购项目
    项目编号:GZZJ-ZFG-2023078项目名称:华南理工大学高性能样本处理、生物分子分析及红外激光成像系统采购项目预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:包组号序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)(一)1高性能样本处理系统1台组织破碎及均化、代谢物提取及蛋白质组学分析、RNA提取、纳米粒子微粉的制备、细胞/孢子或细胞器的裂解、复合物分离、ADME/Tox等。人民币250万元2生物大分子分析仪1台2.1用于二代测序或三代测序过程中基因组DNA和文库的质控(定性定量);2.2用于用于高通量片段分析如SSR/CAPS/RAPD/AFLP分析;2.3用于常规DNA/RNA或扩增产物片段大小定性定量分析;2.4质粒DNA分析;2.5RNA定性定量分析,含体外合成的RNA完整性分析、smal RNA分析;3全自动氨基酸分析仪1台一次进样可分析18种以上氨基酸。4双色红外激光成像系统1台Western blots分析、多色荧光Western blots分析、多色EMSA(电泳迁移率变化分析)、微孔板In-Cell Western分析、凝胶In-Gel Western分析、考马司亮蓝凝胶扫描、蛋白双向电泳扫描、蛋白芯片扫描、Northern/Southern blots、Membrane arrays、核酸与蛋白相互作用研究、组织切片扫描、器官扫描成像等。经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。境外货物:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 马尔文携颗粒表征拳头产品亮相第七届世界颗粒学大会
    (2014年5月14日,中国上海)全球材料表征领域的领先企业英国马尔文仪器公司,将亮相于5月19至22日在北京举办的第七届世界颗粒学大会(The 7th World Congress of Particle Technology,简称WCPT7)(马尔文展位号:18)。马尔文将在本次大会中展示公司引领业界的动态光散射(DLS)仪器系统ZetasizerNano ZSP,以及NanoSight NS300纳米颗粒跟踪分析仪。作为大会的主赞助商之一,马尔文还将针对颗粒表征领域的技术前沿在大会中发表独到见解。   &ldquo 世界颗粒学大会&rdquo 是由美国、英国、德国、日本、澳大利亚等多国科学家联合发起的世界颗粒学研究及技术领域最主要的会议之一,自1990年开始举办,每四年举办一次,分别在欧洲/非洲、亚洲/澳洲、美洲三个地区轮流举办。第七届世界颗粒学大会将于本月在北京国际会议中心召开,本次会议为该系列会议首次在中国举办。   马尔文中国区总经理秦和义表示:&ldquo 在颗粒表征领域,马尔文在颗粒粒度、颗粒形状、Zeta电位、分子量、分子结构、流变特性以及化学成分的测量方面拥有丰富经验。世界颗粒大会是我们与业界分享成果,共同进步的理想平台。&rdquo   马尔文公司本次带来两款颗粒表征领域的先进产品:动态光散射系统ZetasizerNano ZSP,以及NanoSight NS300纳米颗粒分析仪。   马尔文ZetasizerNano是一系列设计紧凑的光散射仪器,其出众的性能和简便的操作使之在近十年来一直是工业和学术界的宠儿,这些优点在该系列最高规格产品ZetasizerNano ZSP上得到完美体现。马尔文ZetasizerNano ZSP独具蛋白质测量和微观流变学测量两项功能,可实现对各种粒度表征、蛋白质电泳迁移率、纳米颗粒及Zeta电位的测量,并拥有系列产品中最高的测量灵敏度。   马尔文NanoSight NS300纳米颗粒分析仪采用独特的纳米颗粒跟踪分析技术(简称:NTA),可对10&ndash 2000nm 范围内的纳米颗粒进行快速实时动态检测,其测量的参数包括颗粒粒径、浓度、Zeta电位和颗粒的聚集。   在本届世界颗粒学大会期间,三位来自马尔文公司的业界专家,包括全球大客户经理Steve Ward-Smith博士、应用经理Alan F. Rawle先生、以及产品经理宁辉先生,将发表相关学术文章,并做现场报告。   &ldquo 一直以来,马尔文仪器公司致力于将创新的技术与有力的服务支持相结合,确保分析仪器的精确性和效率,推动研发和生产的开展。从制药、蛋白质研究到涂料、油墨和印刷工业,马尔文先进的颗粒表征技术将确保各关键下游产业在颗粒参数的获取和控制中保持领先优势,&rdquo 秦和义表示说。   马尔文、马尔文仪器均为马尔文仪器有限公司的注册商标。 马尔文新型动态光散射系统Zetasizer Nano产品系列 马尔文NanoSight NS300纳米颗粒跟踪分析仪(专利可视化NTA技术)   关于马尔文仪器   马尔文提供材料表征技术和专业知识,使得科学家和工程师们能够了解和控制分散体系的性质,这些体系包括蛋白质和聚合物溶液、微粒和纳米粒子悬浮液和乳液,以及喷雾和气溶胶、工业散装粉末和高浓度浆料等。马尔文的材料表征仪器用于研究、开发和制造的所有阶段,提供帮助加快研究和产品开发、改善和保证产品品质以及优化过程效率的关键信息。   马尔文的产品体现了开发最新技术创新的动力以及充分利用现有技术的承诺,应用领域从医药和生物医药、到化学品、水泥、塑料和聚合物、能源及环境等。   马尔文的产品和系统被用于检测颗粒大小、颗粒形状、Zeta电位、蛋白质电荷、分子量、分子大小和构象、流变性能和化学测定。   马尔文仪器公司总部位于英国马尔文,在欧洲、北美、中国、日本和韩国等主要市场都设有分支机构,在印度设有合资企业,拥有遍布全球的经销网络和应用实验中心。www.malvern.com.cn
  • 聚焦可升级性!马尔文帕纳科推出新品纳米粒度电位仪家族
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 近日,马尔文帕纳科在经典的Zetasizer Nano系列产品的基础上进行了全面整合和升级,正式推出全新Zetasizer Advance系列纳米粒度电位仪。 /p p style=" text-align: justify text-indent: 2em " Zetasizer Nano最早是马尔文帕纳科于2003年推出的纳米粒度电位仪,该系列产品针对不同的行业和应用需求,提供了多种型号,在市场上赢得了广泛的认可。 /p p style=" text-align: justify text-indent: 2em " Zetasizer Advance系列主要包括三个核心产品:Zetasizer Lab,Zetasizer Pro和Zetasizer Ultra,每种型号都有两种子型号:用于常规样品研究的蓝标版本和用于更具挑战性的样品研究的红标版本。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 400px height: 297px " src=" https://img1.17img.cn/17img/images/202007/uepic/eb1b31d7-2374-41e9-9a0b-756766231a92.jpg" title=" 5470_637314578820891435KE.jpg.jpg" alt=" 5470_637314578820891435KE.jpg.jpg" width=" 400" height=" 297" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong Zetasizer Advance系列 /strong /p p style=" text-align: justify text-indent: 2em " 据马尔文帕纳科中国区纳米材料产品专家王云鹏表示, Zetasizer Advance系列产品具有众多创新点:具有恒流模式的 M3-PALS 可在高导电介质中测量电泳迁移率和Zeta电位。“自适应相关”新算法,识别稳态与瞬态伪影数据,分析速度是以往的两倍以上。低容量粒度样品池,可实现极低容量(低至3 µ L)分析。Zetasizer Ultra还应用了独特的多角度动态光散射(MADLS)技术,可提供与角度无关的粒度结果,其中红标版本可进行创新的颗粒浓度测量,无需校准。 /p p style=" text-align: justify text-indent: 2em " 马尔文帕纳科纳米材料产品经理Darrell Bancarz表示,Zetasizer Advance系列产品针对客户的反馈而重新设计,具有极大的灵活性和众多附加功能,适应各种需求。“Zetasizer Advance系列产品最令人瞩目的特点之一是可升级性。如果客户的需求临时发生变化,他们可以随时升级到更高规格的型号。这将让我们的用户充满信心,因为马尔文帕纳科的产品可以不断适应客户的新挑战和工作流程,为他们提供有力支持。” /p p style=" text-align: justify text-indent: 2em " “在这一新系列产品的设计中,我们最大程度地提高了其升级的便捷性。对于大多数需要升级的客户而言,可以在现场完成升级服务。在成熟的光散射类仪器市场上,这是独特的系列产品。” Bancarz总结道。 /p
  • TSI推出新一代Scanning Mobility Particle Sizer(SMPS)扫描电迁移率粒径谱仪,可测量粒径范围低至1nm
    精确测量仪器领域的全球领导者TSI公司宣布推出该款新型1nm Scanning Mobility Particle Sizer(SMPS)扫描电迁移率粒径谱仪。 TSI的SMPS扫描电迁移率粒径谱仪被广泛应用于测量1微米以下的气溶胶粒径分布的标准。和3777型纳米增强仪和3086型差分静电迁移率分析仪配套使用,SMPS粒径谱仪能够测量纳米的粒径范围扩展至1nm。 当整合到SMPS扫描电迁移率粒径谱仪中后,3777型1nm纳米增强仪让研究者能够以高分辨率并且快速地测量纳米级气溶胶的数量浓度和粒径。3777型纳米增强仪,和TSI的3086型 1nm-DMA差分静电迁移率分析仪已经被最优化,能够将散逸损失降至最低,且能够和SMPS粒径谱仪整合,测量1nm到50nm的粒径,并且能够与3081A型长差分静电迁移率分析仪配套使用测量1nm到1 μm的粒径。 “该款1nm 凝聚粒子计数器让研究者能够在气体到颗粒转换过程边界进行测量,”TSI颗粒物测量仪器的高级全球产品经理Jürgen Spielvogel如是说。应用包括材料科学研究、大气和气候研究、基础气溶胶研究、颗粒物成核与生长研究以及其他各类研究。关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • HORIBA出席2017 ChinaNANO(中国国际纳米科学技术会议)
    8月29日,第七届中国国际纳米科学技术会议(ChinaNANO)在北京召开,HORIBA Scientific 赞助并应邀出席。自05年首届举办后,中国国际纳米科学技术会议已经发展成为具有较强世界影响力的综合性品牌国际会议。本次大会碳纳米管分会,HORIBA 资深工程师丁欣为大家带来报告:Tip enhanced optical spectroscopy,详细介绍了针尖增强拉曼光谱(TERS)技术在碳纳米管和其他二维材料中的应用。传统显微拉曼能够提供接近光学衍射限的亚微米级空间分辨率,使用同区域成像可在同一系统上获得拉曼成像图和AFM图(形貌、相位、电学等)。HORIBA AFM-Raman联用系统在实现同区域成像的同时,可以获得纳米尺度下的化学信息和物理信息,为纳米级光学世界提供解决方案。HORIBA 工程师丁欣会场外 HORIBA 也特别展出了SZ-100纳米粒度仪,并专设技术人员交流答疑。纳米科技的研究与发展是一个永不停歇的追求,从分子到原子水平对样品粒径进行控制,可以获得更新、更好、更先进的材料和产品,SZ-100系列纳米粒度仪可提供精细粒度检测,助力纳米科技研究。SZ-100系列纳米粒度仪的光学系统与光学元件,提供更强的信号强度(波长更短)和宽的动态范围;先进的信号处理系统可以将光学信号高效的转化为电泳迁移率及Zeta电位,无需人工计算或比对粒子运动速度。HORIBA展台大会共计有来自全球30多个国家和地区的2000多名代表出席,HORIBA 高品质科学仪器和全方位的产品介绍获得与会者的一致好评。如果您想了解更多关于此次推介产品的信息,可以点击此链接:http://www.horiba.com/cn/scientific/products/ 获取详细资料! 附大会主题报告题Carbon NanomaterialsInorganic Nanomaterials and metal-organic FrameworksSelf-Assembly and Soft NanomaterialsNanocatalysisNano-Composites and ApplicationsEnergy NanotechnologyEnvironmental Nanoscience and NanotechnologyNanophotonics and Plasmonics2D Materials beyond Graphene and NanodevicesNanocharacterizationStandards and MetrologyModeling and Simulation of NanostructuresNanobiotechnology and NanomedicineNanotechnology for Bioimaging and DiagnosticsSafety and Health of NanomaterialsPrinting of Nanomaterials and ApplicationsOptoelectronic nanomaterials and devicesBioinspired Interfacial Materials and DevicesHORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 技术解读:给药系统的脂质体表征
    马尔文仪器公司的高级应用科学家Pauline Carnell和技术支持经理Mike Kazsuba探讨了纳米颗粒跟踪分析技术以及光散射技术在表征脂质体作为药物载体中的应用及效果。   脂质体是一种重要的给药载体,已获批用于多种治疗配方。脂质体由磷脂质组成,具有单层或多层结构,拥有亲水内层和疏水外层,可制成不同大小的颗粒。这些颗粒可进行生物降解,基本无毒。最为重要的是,它既能封装亲水物质,又能封装疏水物质。此外,通过修饰脂质体表面,还可对特定生理部位进行靶向给药,延长脂质体在体内的留存时间,并可用于设计诊断工具。   正如其他类似的研究,应用脂质体的关键在于确保其物理特性与用途相符。例如,脂质体进入人体后会如何反应?脂质体是否足够稳定从而保证靶向性?粒度是否适合临床应用,或者是否会在血液循环中消失?   了解脂质体制剂的粒度、浓度和zeta电位能帮助人们预测它在生物体内的变化趋势,而带电脂质体与相反电性的分子关系也能通过测量两者产生的聚合物的zeta电位进行监控。这些因素对药物传输的有效性具有显著影响,尤其是当药物配方研究员认为某种脂质体适合传输载体时,应综合考虑以上因素。因此,能提供全面数据的分析系统对配方设计过程大有裨益。纳米颗粒跟踪分析技术和动态光散射技术正是其中两种重要的分析方法,为脂质体研究提供重要信息。   纳米颗粒跟踪分析技术   纳米颗粒跟踪分析技术(NTA)使用激光散射来检验溶液中的纳米粒度。使用该分析方法,研究人员能够观察到单个粒子并跟踪其布朗运动轨迹,从而基于单个粒子在短时间内快速制出每个粒子的粒径分布图。 图1:纳米颗粒跟踪分析技术效果展示图   使用科学数码摄相机可以捕捉溶液中颗粒的散射光,仪器软件可逐帧跟踪每个颗粒的运动轨迹。 图2: 图中光点为布朗运动中的粒子   颗粒的运动速度与由斯托克斯-爱因斯坦方程计算出来的球体等效流体力学半径相关。NTA技术能逐粒计算粒度,且因有影像片段作分析基础,用户可精确表征实时动态。 图3:斯托克斯-爱因斯坦方程   NTA技术能让研究人员在同一时间观察单个纳米颗粒,因此除基础的粒度分析以外,还能测定每个脂质体的相对光散射强度等。将数据结果与另行测得的粒度数据绘成坐标图,能够更加细致地分辨出由不同折射率(RI)或材料构成的颗粒。凭借这一独特功能,研究人员可探究纳米级药物输送载体(如脂质体)所封装的内容是否有所不同:空心脂质体的折射率(光散射能力)可能低于载有较高折射率物质的脂质体。这样的差异让人们得以区分大小相似的脂质体。此外,NTA的单个粒子检测系统使得颗粒浓度测量成为可能。   粒度和zeta电位   脂质体与细胞在体内发生作用的位置很大程度上是由脂质体的粒度决定。掌握脂质体制剂的zeta电位有助于预测脂质体在体内的变化趋势。颗粒的zeta电位是指颗粒在特定媒介中获得的总电荷。以基因治疗为例, zeta电位的测量可用于优化特定脂质体与各种DNA质粒的比率,从而将配方的聚集度降到最低。 图4:阳离子脂质体(带正电)与DNA(质粒)的络合   动态光散射(DLS)是一项相对成熟的、广泛应用的脂质体表征技术。此外,由于zeta电位也是一项重要参数,能够同时测量粒度和zeta电位的分析系统也日渐普及,马尔文仪器公司的Zetasizer Nano系统正是其中之一。一般而言,研究人员使用动态光散射技术测量粒度,采用激光多普勒微电泳技术测量zeta电位。   由颗粒布朗运动产生的光散射也是DLS技术的核心所在。DLS技术测量散射光强度随时间变化产生的波动,并确定颗粒的扩散系数。在此基础上利用斯托克斯-爱因斯坦方程将数据转化为粒度大小分布情况。   使用激光多普勒微电泳技术测量zeta电位时,向分子溶液或颗粒分散液施加电场,这些颗粒便会以一定的速率移动,而该速率正与zeta电位相关。通过测定该速率能够计算出电泳迁移率,并据此算出颗粒的zeta电位和zeta电位分布。   结论   脂质体的物理表征对于理解脂质体在各种应用中的适用性十分重要,快速、可重复的表征是研发及质量管控过程中的一个重要考虑因素。本文介绍的技术能够提供脂质体制剂的粒度、浓度、zeta电位等补充信息。(结束)   作者:马尔文仪器公司高级应用科学家Pauline Carnell、马尔文仪器公司技术支持经理Mike Kazsuba   联系地址:   Malvern Instruments Ltd   Grovewood Road, Malvern   Worcestershire WR14 1XZ UK   T: +44 (0) 1684 892456   F: +44 (0) 1684 892789   www.malvern.com
  • 欧美克发布NS-Zeta 电位分析仪新品,助力解锁微纳米材料性能优化关键
    “国之大器 始于毫末”,纳米科学与技术是当今国家战略新兴科技领域之一。近年来,纳米材料市场的增长势头强劲。全球纳米材料市场规模在2023年已达到595.87亿元人民币,而中国市场规模则为113.22亿元。预计到2029年,全球纳米材料市场规模将以11.20%的复合年增长率增长至1135.98亿元,显示出巨大的市场潜力和增长动力。而纳米Zeta电位测量在纳米材料研发制备中占据着举足轻重的地位,它如同纳米世界的“电荷导航仪”,精准揭示纳米颗粒在介质中的表面电荷特性,为纳米材料的性能优化,制剂和浆料的稳定性提升及高效应用提供了不可或缺的科学依据。应粉体工业广大用户的颗粒材料表面修饰活化评价、乳液浆料稳定性预测和复杂制剂工艺配方的优化、矿物浮选及污水处理等需求,珠海欧美克仪器有限公司在成功引进和吸收马尔文帕纳科 (Malvern Panalytical)颗粒表征技术的NS-90Z Plus 纳米粒度及电位分析仪基础上,于2024年9月10日最新推出NS-Zeta 电位分析仪,能满足纳米至微米广阔范围内颗粒样品的Zeta电位的测试需求。欧美克NS-Zeta 电位分析仪产品核心参数:● Zeta 电位范围:无实际限制● 适用测试的粒径上限:不小于100μm (取决于样品)● 最高样品浓度:40% w/v (取决于样品及样品池)● 最小样品容积:20μL● 最高样品电导率:260mS/cmNS-Zeta 电位分析仪是一款高性价比的纳微米颗粒Zeta电位的表征仪器,适用于对电位及电位分布表征有较高灵敏度需求的材料分析。例如蛋白质、聚合物、胶体、乳液、悬浮液及各种复杂配方制剂体系等样品的测试分析。* NS-Zeta 可以根据需要购买升级动态光散射技术的粒径测试功能模块。典型应用&bull 精细化工行业纳米材料、表活、低聚物等的开发和生产质控&bull 药物分散体系、乳液和疫苗等制剂配方和工艺开发&bull 脂质体和囊泡的开发&bull 矿物堆浸及浮选&bull 钻井泥浆及陶瓷浆料&bull 电极浆料及助剂的稳定性表征&bull 涂覆材料稳定性能预测&bull 墨水、碳粉、染料和颜料性能改进&bull 优化水处理中絮凝剂的使用&bull 胶体、乳液、浆料稳定性评价&bull 确定多种复杂制剂的混合、均质等加工工艺参数恒流模式的M3-PALS快慢场混合相位检测技术NS-Zeta 融合马尔文的M3-PALS技术除了可消除电渗影响外,新升级的恒流模式下还实现了更高电导率样品测试的可能。恒流模式能有效缓解电极极化的影响,与可切换的高频、低频混合分析模式一起,使得结果重现性更好,准确性更高,且可获得电位分布的信息。相比上一代纳米粒度及电位分析仪产品,NS-Zeta 能满足具有更高电导率的样品的Zeta电位和电泳迁移率测试,同时可以提高电位样品池的使用次数。快慢场混合相位检测Zeta电位分布、相位、频移及Zeta电压和电流图高光学性能、稳定且长寿命的气体激光光源采用进口高稳定He-Ne气体激光器确保数据的重现性,波长632.8nm,功率4mW。NS-Zeta 所使用的气体激光管采用硬封装工艺确保激光管中氦氖气体惰性工作物质终身无损失,激光管寿命达到10年以上,且在生命周期内其光学品质几乎没有变化,确保了测试数据始终可信,且无需用户校准。由于He-Ne气体激光器相干性能显著优于半导体固体激光器,仅需较低的功率即可产生满足测量需求的散射光信号,同时具有更低的杂散光噪声使样品分析灵敏度更高。升级的专家指导功能提升测试水平NS-Zeta 测试后会在数据质量指南模块下自动生成智能化专家指导意见,为如何进一步优化测试或样品处理提供可行方案建议。该技术可以同时协助用户快速判读更准确的Zeta电位和电位分布结果,有利于减少测试数据的错误,及时发现和改善因方法或环境发生变化而引起的测试质量变化。典型测试结果:硅溶胶的Zeta电位及分布NS-Zeta 具有良好的电位和电位分布数据的重现性。纳米Zeta电位测量在生物医药、环境保护、能源存储等多个前沿纳米材料的应用中展现出了无可替代的重要性。在生物医药领域,纳米药物载体的稳定性和靶向性直接关系到治疗效果,纳米Zeta电位测量能够精确评估这些载体的表面电荷状态,进而优化其分散性和生物相容性,提升药物的递送效率和疗效。在能源材料方面,纳米Zeta电位测量对于理解电池材料中的电荷传输机制和界面稳定性具有关键作用,有助于开发更高性能、更长寿命的储能设备。此外,在环境科学中,纳米Zeta电位测量被用于监测水体和土壤中的纳米颗粒污染,评估其环境行为和生态风险,为环境保护提供科学依据……在“十四五”规划和2035年远景目标纲要中,纳米材料行业被明确列为战略性新兴产业之一,强调了其在高新技术领域的重要性和对经济发展的推动作用。得益于服务新能源、制药以及各工业领域31年的粒度粒形检测与样品质量控制技术的积累,珠海欧美克仪器有限公司结合思百吉集团先进的研发管理经验,坚强的技术支持后盾和全球化供应链体系,先后推出纳米粒度及Zeta电位的全系列分析仪器,深受新材料行业客户的青睐。随着NS-Zeta 电位分析仪的隆重上市,结合NS-90Z plus 纳米粒度及电位分析仪及NS-90 Plus 纳米粒度分析仪等系列产品,必将为新兴科技领域行业客户提供了更完整、高效、专业的粉体粒度检测整体解决方案,助力行业客户创新驱动、高值发展、成就微观无限潜能!
  • 【好书推荐】《颗粒表征的光学技术及应用》
    颗粒业内有句行话:万物皆颗粒。鸟瞰各行各业,还真难找得到一个不与颗粒打交道的领域。甚至表面上看起来与颗粒毫无关系的行业,人们其实也一直在与颗粒材料打交道。例如,编程码工使用的键盘是用塑料颗粒材料制成的,显示器的荧光粉本身就是颗粒;再如,音乐作曲者使用的纸张、笔墨也都与颗粒有关。几乎所有材料,从原料到成品,总有一个阶段处于颗粒态。由于颗粒材料的多样性与多分散性,人们甚至将颗粒称为物质的第五态, 颗粒材料的物理特性表征也具有与其他化学分析、物理测量不同的独特性。颗粒与材料品质紧密相关。例如,巧克力的颗粒度需要与味蕾之间的距离吻合,可口可乐中风味液滴的密度必须与水一致,牙膏中碳酸钙的硬度与颗粒度要适当,定时释放肥料颗粒的大小与溶解度有一定的规格等。如何表征颗粒?技术概貌:颗粒表征技术成百上千,仅粒径测量就曾有400多种。现在仍在普遍使用的表征颗粒粒度、数量、表面特性、内部孔径的技术就有十几种。这些技术有着相当广泛的日常应用,例如新材料的研发过程、生产过程的质量控制、或商业贸易上下家的衡量指标等。仅在中国,每年新安装的各类颗粒表征仪器据估计当在数千台甚至上万台。不足:颗粒表征作为对各行各业如此重要的领域,现有的高等教育却很少涉及,甚至专门教授与这些技术有关基础知识的研究生课程也不太多见,集中论述这些技术的中文书籍更是少之又少。现状:这一实践与教育的脱节,造成了很多在工作中涉及颗粒表征的工作者不完备的专业知识体系与错误的应用实践,例如在用动态光散射测量纳米颗粒粒径或用电泳光散射测量颗粒表面电位时,用纯净水进行样品稀释,或者在激光粒度法测量颗粒粒度时,用高压气体分散药物晶体。颗粒材料领域专著出版扫码即可优惠购买为了填补上述空白,为广大颗粒表征技术使用者提供普及版读物,作者精心挑选了当今应用最广的六种颗粒表征技术,从历史起源、物理原理、数学基础、仪器构造、操作要点、数据处理阐释等方面对这些技术做了全面的介绍。这六种方法分别是光学计数法、激光粒度法、光学图像分析法、颗粒跟踪分析法、动态光散射法、电泳光散射法,它们都与光与和颗粒之间的作用有关。对光与和颗粒作用的系统研究始于1936年化学诺贝尔奖获得者彼得• 德拜(数学家大卫• 希尔伯特的学生阿诺尔德• 索末菲的第一位博士生)1908年的博士论文。作为这些技术的铺垫知识与辅助资料,颗粒表征中的样品准备、基本数据统计知识、光散射在颗粒表征中的基本原理、几乎所有其他常用的颗粒表征技术,以及这些技术的标准化现状,也特别另立章节介绍。这是一本别无二版的、系统介绍当代颗粒表征技术的专著。本书可供欲了解与掌握当代颗粒表征技术的教师、本科生、研究生、科学家、技术专家、仪器操作人员阅读与学习参考,为他们提供坚实的颗粒表征理论基础与丰富的实践参考。读者不但可以从中学习这些技术的物理基础以及仪器工作原理,而且通过了解每种技术的实际操作与实用细节,可以在应用过程中避免常犯的错误,不断改进仪器操作的正确性、测量数据的准确性、重复测量的精确性。本书作为进入颗粒表征技术领域的引荐读物,除了汇集了作者经年累积的丰富知识与资料外,还引用了上千篇中外文献。这些跨越两个多世纪(1809—2021)的文献,除了与该技术的最初发明有关的以及里程碑式的重要论文,还有大量与这些技术的最新动态与发展有关的报道,为有志于进一步探索发展颗粒表征技术、成为承前启后新一代的颗粒人提供一些可借鉴的方向与途径。 作者简介本书作者 许人良作者专业背景:在过去半个世纪里,作者许人良在德拜的关门弟子朱鹏年与当代荧光胶体化学大师魏尼克的教诲指导下,除了进行高分子物理与胶体化学的研究,还从搭建全角度动静态光散射仪器为起点,涉足纳秒级相关器、米氏理论的收敛分析、拉普拉斯转换的技术探讨、光导纤维频移器等颗粒表征的多个领域,发明了从电泳光散射测量中剥离布朗运动以得到真实表面电荷分布曲线的方法以及颗粒表征方面的数个专利,填补了颗粒在水中的德拜长度与水化层厚度之间关系的实验验证空白,其中的一些论文几十年来一直在不断地被引用。进入美国首台动态光散射仪器生产公司后,作者曾先后在全球三家主要颗粒表征仪器公司内担任技术、商务、管理的各类主要职务,对多种仪器的设计、试验、投产、应用有第一手感性认识与全方位了解;作者并在过去近30年中,参与制定了多项颗粒表征技术的国际标准、美国国家标准以及中国国家标准,时刻关注着这一领域的最新发展。目录预览第1章 颗粒体系与颗粒表征 / 0011.1 颗粒与颗粒体系 / 0011.2 样品制备 / 0061.3 颗粒测量数据及其统计分析 / 018参考文献 / 032第2章 光散射的理论背景 / 0352.1 光散射现象与技术 / 0352.2 光散射理论要点 / 0392.3 其他光学技术 / 059参考文献 / 069第3章 光学计数法 / 0813.1 引言 / 0813.2 仪器构造 / 0833.3 测量结果与数据分析 / 098参考文献 / 108第4章 激光粒度法 / 1134.1 引言 / 1134.2 仪器 / 1214.3 数据采集与分析 / 1414.4 测量精确度与准确性 / 153参考文献 / 161第5章 光学图像分析法 / 1695.1 引言 / 1695.2 图像获取 / 1715.3 图像分析 / 1815.4 颗粒形状表征 / 1875.5 仪器设置、校准与验证 / 193参考文献 / 196第6章 颗粒跟踪分析法 / 1996.1 引言 / 1996.2 仪器与测量参数 / 2006.3 样品与数据 / 2086.4 颗粒跟踪分析法的其他考虑因素 / 217参考文献 / 219第7章 动态光散射法 / 2217.1 引言 / 2217.2 仪器组成 / 2237.3 数据分析 / 2417.4 测量浓悬浮液 / 263参考文献 / 269第8章 电泳光散射法 / 2818.1 引言 / 2818.2 zeta电位与电泳迁移率 / 2828.3 电泳光散射仪器 / 2898.4 数据分析 / 3068.5 相位分析光散射 / 315参考文献 / 317第9章 颗粒表征的标准化 / 3239.1 文本标准 / 3249.2 标准物质、参考物质与标准样品 / 3329.3 标准化组织 / 345参考文献 / 349第10章 其他颗粒表征技术概述 / 35110.1 电阻法:计数与粒度 / 35110.2 沉降法:粒度 / 35810.3 筛分法:分级与粒度 / 36110.4 色谱方法:分离与粒度 / 36310.5 超声分析 / 36610.6 气体物理吸附:粉体表面积与孔径 / 37010.7 压汞法:孔径分析 / 37410.8 空气渗透法:平均粒度 / 37510.9 毛细管流动孔径分析法:通孔孔径 / 37510.10 气体置换比重测定法:密度 / 37710.11 核磁共振技术 / 37810.12 流动电位测量:zeta电位 / 37910.13 共振质量测量:计数与粒度 / 38010.14 亚微米气溶胶测定:计数与粒度 / 38110.15 颗粒表征技术小结 / 381参考文献 / 382附录1 符号 / 392附录2 Mie理论的球散射函数 / 395附录3 常用液体的物理常数 / 397附录4 常用分散剂 / 402附录5 用于分散一些粉体材料的液体与分散剂 / 404
  • 新边界 新境界——马尔文帕纳科Zetasizer Advance新品成功发布
    2021年1月15日,马尔文帕纳科Zetasizer Advance系列纳米粒度电位仪新品发布会,在仪器信息网品牌合作伙伴超级品牌日成功举办。2020年,仪器信息网联合其品牌合作伙伴隆重推出 “超级品牌日 ”活动,围绕用户的需求,结合仪器厂商的品牌理念、价值及核心竞争力,仪器信息网与厂商强强联手,策划了一系列 “品牌&用户”活动。2021年,超级品牌日将继续发挥其作用,帮用户发现好品牌、好技术;帮厂商提升产品和品牌的关注度、美誉度。本次马尔文帕纳科新品发布会,则是2021年第一个超级品牌日。本次马尔文帕纳科新品发布会,报名参会人数达500人。发布会现场,具有多种创新设计的Zetasizer Advance系列纳米粒度电位仪终于揭开了神秘面纱,并受到大家广泛关注,吸引众多用户踊跃提问,参与互动。下面,就让我们一起来回顾一下本次发布会现场的精彩时刻。发布会由马尔文帕纳科中国区市场经理胥康主持。活动伊始,马尔文帕纳科中国区总经理梁东致开幕词,他首先对参加本次线上发布会的用户表示欢迎和感谢,随即详细介绍了马尔文帕纳科的悠久历史。马尔文帕纳科是微观领域的分析专家,隶属于精密仪器仪表及过程控制设备的制造商思百吉集团,2017年由享誉全球的仪器厂商英国马尔文和荷兰帕纳科公司合并组建。2019年,马尔文帕纳科公司升级为思百吉集团业务平台,同年收购国际领先的Concept Life Sciences公司 ;2020年,马尔文帕纳科亚太卓越应用中心落户上海。此外,马尔文帕纳科产品线涵盖材料微观到宏观范围的表征,包括粒度表征、X射线分析、物性测量仪器及制样设备,应用领域非常广泛。马尔文帕纳科全球技术支持经理Mike Kaszuba 博士为大家详细介绍了Zetasizer的发展历程。Zetasizer的故事始于1971年的K7023相关器,这是世界上第一台商用的相关器,同时奠定了动态光散射技术设备的硬件基础;1983年,马尔文帕纳科第一代Zetasizer发布,命名Zetasizer Ⅱ;2000年,开发了用于测量Zeta电位的M3专利技术;2001年,推出第一台包含非侵入式背散射技术(NIBS)的HPPS;2003年,重磅发布Zetasizer Nano系列,该系列提升并设定了Zeta电位测量的标准,发布至今被科学文献引用超过6.4万次;2018年,推出Zetasizer Pro&Ultra,并获得著名的红点设计奖;在此基础上,2020年隆重推出Zetasizer Advance 系列,包括Lab,Pro,Ultra三个型号,根据样品和应用要求,每种型号又分为Blue Label和Red Label 两个版本。南京大学化工学院教授王元元作《纳米晶体表界面化学修饰技术最新进展》主题报告。王元元团队的研究方向之一为通过合成、耦合胶体纳米晶体,进而搭建薄膜纳晶器件。目前通过油相合成的纳米晶,表面带有长链有机配体,会阻碍颗粒间的载流子传输,降低器件有效材料的填充密度。对此,王元元在报告中分享了两个改善表面配体的设计案例及检测手段,在这过程中,需借助马尔文帕纳科的Zetasizer纳米粒度电位仪,通过测量Zeta电势判断配体交换是否完成。随后,马尔文帕纳科应用专家张瑞玲带来题为《纳米粒度和Zeta电位测量技术的最新进展及其应用》的主题报告。她为参会用户详细介绍了纳米粒度测量原理——动态光散射技术(DLS)及Zeta电位测量原理——电泳光散射技术(ELS),当前,动态光散射技术面临一些技术挑战,如多重光散射、测量位置、灰尘及大颗粒、测量过程中沉淀、样品本身的荧光等,都会严重影响测量结果。而更加专业灵活的Zetasizer Advance 系列纳米粒度电位仪,兼备一系列创新技术,可有效解决以上难题,主要包括以下几点:(1)非侵入式背散射技术(NIBS)-可有效降低大颗粒、灰尘的影响, 对样品稀释造成的误差容忍度较高, 可以自动适应不同浓度和不同灵敏度的样品。(2)具有恒流模式的PALS-M3-在高导电介质中测量电泳迁移率和Zeta电位。(3)“自适应相关”算法-测试速度可达上一代产品的3倍,并且可识别稳态与瞬态伪影数据,生成可靠且可重复的数据。(4)MADLS技术-Ultra采用MADLS多角动态光散射技术,从前向角(13°)、侧向角(90°)、背向角(173°)全方位获取样品信息,并将三个角度的结果合并起来,提供更加完整的PSD报告;且得到的结果和角度无关,提高了宽分布样品的分辨率。(5)颗粒浓度测量技术-Ultra-Red可基于MADLS技术,测量颗粒浓度,适用于所有均质样品或者宽分布样品。(6)滤光片-用户可自由选择荧光滤光片改善荧光样品的测试,提高信噪比。(7)低容量可抛弃粒度样品池与扩展粒度分析-Lab和Ultra的侧向角测量模式具备新的扩展粒度分析选项,结合低容量可抛弃粒度样品池,能够测量和显示直径达10 µm甚至更高的结果(0.3 nm-15 µm)。(8)可升级性-Zetasizer Advance系列可以在现场完成从基础型号向高端型号的升级,无需返厂,即可提升仪器价值。新品揭幕及现场演示俗话说,说得好不如做得好,Zetasizer Advance产品应用专家特进行了现场演示,为大家展示新品的技术亮点,回放视频如下:亚太卓越应用中心开放日本次新品发布会上,除了精彩的技术和应用分享之外,还专门设置了用户福利,即马尔文帕纳科亚太卓越应用中心开放日。该应用中心于2020年8月落成启用,具有1600平米的实验室面积,配备了包含元素分析、结构分析、物性分析等马尔文帕纳科最完备的新款仪器,并配有样品制备室、钢瓶室等配套设施,及先进的多媒体教室,可为客户提供良好的培训环境。作为全球四个应用中心之一的亚太卓越应用中心,必将为中国用户带来更多应用开发、样品测试、课程培训等专业服务。马尔文帕纳科定于2021年4月9日举行亚太卓越应用中心开放日活动,活动除了安排学术报告等交流活动,还将安排明星产品的演示环节,欢迎广大用户莅临现场,亲身感受世界级材料表征实验室。扫描下方二维码即可一键报名。更多关于新品及发布会精彩内容,请点击“新边界 新境界”马尔文帕纳科新品专题查看。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制