当前位置: 仪器信息网 > 行业主题 > >

电泳光散射

仪器信息网电泳光散射专题为您整合电泳光散射相关的最新文章,在电泳光散射专题,您不仅可以免费浏览电泳光散射的资讯, 同时您还可以浏览电泳光散射的相关资料、解决方案,参与社区电泳光散射话题讨论。

电泳光散射相关的仪器

  • Zetasizer Ultra 纳米粒度仪是用于测量颗粒与分子大小、颗粒电荷和颗粒浓度的系统,在结合了 Zetasizer Pro 和 Lab 特性和优点的基础上,增加了多角度动态光散射技术(MADLS),是 马尔文帕纳科Zetasizer Advance 纳米粒度电位分析仪系列中最智能和灵活的仪器。 这一旗舰型纳米粒度分析仪充分利用了 ZS Xplorer 软件的易用性、高分析速度和数据可靠性等优势,运用多角度动态光散射技术 (MADLS) ,提供与角度无关的高分辨率粒度测量,并且能够测量颗粒浓度*,帮助您更深入地了解样品。*限 Zetasizer Ultra 红标版本 (Red Label)特点和优点Zetasizer Ultra 纳米粒度分析仪融合了功能强大的 DLS 与 ELS 系统,它采用了非侵入背散射 (NIBS) 和多角动态光散射 (MADLS) 技术来测量颗粒与分子大小。 NIBS 的多用性和灵敏度可适用广泛的浓度范围,而 MADLS 则能让您在这些关键测量当中更精细地了解样品粒度分布。Zetasizer Ultra Red Label 的 MADLS 扩展功能可直接分析颗粒浓度。 颗粒浓度的测量适合于各类材料,只需很少稀释,并且使用快捷,这一切使其成为一种理想的筛选技术。Zetasizer Ultra 甚至可以运用于以前非常难测量的病毒和类病毒颗粒 (VLP) 等样品。 Zetasizer Ultra 的关键特性和优点包括:用于高分辨率粒度测量且与角度无关的多角动态光散射法 (MADLS) 可以更深入地展现您的样品粒度分布 动态光散射 (DLS) 用于测量从0.3 nm 到 15 μm 的颗粒和分子的粒度及粒度分布 (使用低容量可抛弃粒度样品池和扩展粒度分析可以测试粒度大于10 μm ;取决于样品和样品制备)电泳光散射 (ELS) 用于测量颗粒和分子的Zeta电位,以显示样品稳定性和/或团聚倾向性非侵入背散射 (NIBS) 技术显著扩大了动态范围,即使是处理非常浓缩的样品,也能实现高灵敏度简单的每峰值浓度/滴度测量(仅限红标Red Label版本)可抛弃型毛细管粒度测量样品池提供了无损、低容量(最低 3 μL)分析,并且粒度上限范围可达到 15 μm具有恒流模式的M3-PALS可以在高导电介质中测量Zeta电位和电泳迁移率以样品为中心的ZS Xplorer软件可以实现灵活的指导式使用,并可轻松构建复杂的模型“自适应相关”算法能生成可靠且可重复的数据,同时计算速度超过以往的两倍,可在减少样品制备的情况下更快速地执行更多可重现的粒度测量,实现更具代表性的样品视图通过深度学习实现的数据质量系统可以评估粒度数据质量问题,并针对如何改进结果提供明确的建议使用静态光散射(90°)测量分子量软件符合 21 CFR Part 11 法规滤光片转盘提供荧光滤光片以及垂直和水平偏振片,以实现分析灵活性可选的 MPT-3 自动滴定仪可帮助研究 pH 值变化的影响一系列可抛弃和可重复使用的样品池可优化不同样品体积和浓度的测量,其中包括新的低容量可抛弃粒度测量池套件,由于它可以抑制对流,所以既能进行样品量小到 3 μL 的粒度测量,也扩展了DLS 测量的粒度上限范围主要应用Zetasizer Ultra 纳米粒度仪应用广泛,包括:学术界 Zetasizer纳米粒度分析仪是全球众多学术实验室的重要分析工具,广泛用于需要分析颗粒或分子大小以及 Zeta 电位的应用领域。 Zetasizer应用领域广泛,被科学文献引用的次数达上万次,成为许多科研机构的核心设备。生命科学和生物制药 在生物制药应用中,温度或pH值变化、 搅拌、剪切和时间都会影响生物分子的 稳定性,造成变性和聚集、功能丧失, 还可能会产生不良免疫反应。Zetasizer纳米粒度仪提供快速的纯度和稳定性筛选,并可协助配方开发, 从而优化流程和产品,消除风险。食品和饮料 Zetasizer纳米粒度分析仪用于分析颗粒粒度和Zeta电位,以改善食品、饮料和调味料的外观及味道,并优化分散和乳化稳定性,从而延长产品保存期限,提高产品性能。纳米材料 Zetasizer纳米粒度分析仪所测量的纳米颗粒粒度分布、分散特性、稳定性和团聚倾向是新纳米材料设计的关键。 此类材料的超大表面积可能会带来新的物理和化学性质,比如更高的催化活性和溶解度,或者出乎意料的光学或毒理学性质。油漆、油墨及涂料 油漆、油墨及涂料配方必须稳定,以使它们在一段时间内不会发生变化或团聚。 Zetasizer纳米粒度仪测量的颗粒粒度和Zeta电位在确定产品特性(例如分散性、颜色、强度、光洁度、耐久性和保存限期)方面起着至关重要的作用。药物和给药粒度和Zeta电位检测有助于确保安全有效的治疗。Zetasizer纳米粒度仪用于表征分散体系、乳化液和乳膏的稳定性和质量,从而减少配方时间,加快新产品上市。消费品改良多种消费品时,需要了解和控制胶体参数,引导颗粒间的相互作用,并改善产品的稳定性和性能。其中一个例子是胶束和乳液的粒度和电荷对化妆品和洗涤剂性能的影响。Zetasizer纳米粒度分析仪可表征表面活性剂的胶束大小、电荷和临界胶束浓度, 并测量乳液的液滴大小和稳定性。
    留言咨询
  • BeNano Zeta电位分析仪是丹东百特仪器公司开发的测量颗粒体系Zeta电位的光学检测系统。BeNano Zeta 系统基于电泳光散射原理,样品分散在样品池中,在样品池两端施加一个电场,通过激光照射到电场中的样品上,光电检测器在 12°角检测样品颗粒电泳运动造成的散射光的多普勒频移,进而得到体系的 Zeta 电位信息。基本性能指标Zeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cm最小样品量0.75mL-1.0mLZeta测试粒度范围2nm-120μm系统参数温控范围-15°C-110°C,精度±0.1°C激光光源50mW高性能固体激光器,671nm相关器最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件检测参数● Zeta电位● Zeta电位分布检测技术● 电泳光散射● 相位分析光散射相关技术相关应用
    留言咨询
  • 仪器简介: 90Plus Zeta纳米粒度及Zeta电位分析仪,粒度测量采用动态光散射原理,是一种准确、快速、便捷的纳米、亚微米粒度分析测试仪器。Zeta电位测量采用电泳光散射原理,带电颗粒在外加电场作用下进行运动,电荷运动使散射光产生频率漂移(多普勒频移),采用频谱漂移分析技术,从而可计算出颗粒的电泳迁移率和Zeta电位。 技术参数: 1.粒度范围:0.3nm~15μm(与折射率,浓度,散射角有关); 2.样品类型:任何胶体范围大小的颗粒(悬浮于清液中);3.样品体积:1~3ml,50μL微量样品池,10μL微量样品池(最新); 4.分子量测定范围:342~2*107Dalton; 5.温控范围:-5℃~110℃,±0.1℃; 6.激光源:35mW固体激光器(可选5mW He-Ne激光器); 7.检测器:APD或PMT;8.相关器:4*1011线性通道,支持两路互相关; 9.自动趋势分析:对时间、温度及其他参数; 10.散射角:15°和90°;11.电泳测量适用粒度范围:0.001-100μm;12.电导率范围:0,20S/m;13.电泳迁移率范围:10 -10-10 -7 m2 /V.s;14.pH测量范围:1-14; 选件: 1.微流变:检测弱结构溶液的粘弹性信息;2.实时在线测量:粒度及Zeta电位实时在线测量;3.自动滴定仪:可对PH值、电导率和添加剂浓度作图;4.粘度计:用于测量溶剂及溶液的粘度; 5.21CFR软件 符合FDA要求的21CFR part II操作模式软件和仪器材料; 主要特点: 1.高灵敏性,粒度测量范围:0.3nm~15μm;2.插入式电极,耐腐蚀,可重复使用; 3.可作为在线检测器与GPC/SEC连接,并通过SLS、DLS、光强和粒径监测聚集过程; 4.综合最新最全的粒度分析方法和模型Particle Solution 粒度测量软件; 5.强大的数据分析功能,可自动研究粒度随时间、温度(蛋白熔点)以及其他参数变化的趋势分析. 典型应用:1.蛋白、缩氨酸、胶束、多糖、药物制备、脂质体、外切酶体;2.聚合物胶乳、微乳液、油包水、水包油体系;3.涂料、颜料、油漆、食品、化妆品配方;4.陶瓷、耐火材料、炭黑、废水处理。
    留言咨询
  • 一、前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。二、汤姆逊散射(Thomson Scattering)基于激光技术发展起来的汤姆逊散射诊断原本用于高温聚变等离子体的测量,借助激光技术和光电探测技术的突飞猛进,汤姆逊散射在近年也大量应用于低温等离子体的密度和电子温度的测量。汤姆逊散射具有空间分辨率高(局域测量),测量值稳定可靠等优点。测量的物理量:电子温度:下限0.1e密度:下限1019m-3.图1. 汤姆逊散射分析系统结构示意图2.1、激光束在等离子体中的束斑大小(束径DLP)激光束经过透镜聚焦,等离子体应该位于透镜的焦点,以达到激光束在等离子体中有最小的束径,最高的功率密度。DLP = f´ q其中f是聚焦透镜的焦距,q是激光束发散角,考虑各种综合因素,实际束径是上述公式的2倍左右。假设使用f=1000mm的聚焦透镜和q=0.5mrad的激光束,DLP大约是1mm。2.2、收集光学系统的光纤的像斑(fP)与等离子体中激光束径DLP的匹配为了有效的收集激光束上的散射光子,光纤的像斑fP应该完全覆盖激光的束径。理想情况是光纤的像斑与DLP尺寸完全相同,并且二者完全重合,这样激光的散射光最大,同时背景非散射光最小。但是考虑到实际的准直的难度,这样的理想条件在有限的资金投入下很难实现。建议fP是DLP的两倍,既能有效的收集散射光子,也能比较容易准直。如果DLP =1mm, fP =2mm是比较合适的。2.3、光纤的芯径、布局和光谱仪以及ICCD的选择汤姆逊散射谱线展宽与温度的关系如下:汤姆逊散射角度 Theta=90度;me是电子质量,c是光速,kB是玻尔兹曼常数,公式右边分母下面:是激光的波长 532nm;分子是谱线展宽,不过是1/e展宽因此汤姆逊散射光谱的半高宽△λ1/e(nm)与等离子体温度Te(ev)的关系可以简化为△λ1/e=1.487×Te1/2Te eV0.10.20.30.4124510△λ1/e nm0.470.530.810.941.492.102.973.324.70表1. 电子温度与汤姆逊散射谱半高宽对应值在光谱仪没有入射狭缝或者入射狭缝宽度超过光纤的芯径的情况下,光纤的芯径实际决定了谱仪的实际分辨率(仪器展宽):△λof = fof ´ LSPfof是光纤的芯径,LSP是谱仪的倒线色散率。针对于此应用,可以考虑选择两款光谱仪,分别是:1、Zolix 北京卓立汉光仪器有限公司的Omni系列 750mm的谱仪,如果使用1200l/mm的光栅,LSP = 1nm/mm。测量电子温度的原则是仪器展宽应该与最低温度的展宽相当,才能有效的测量到最低温度。2、选用207(670mm焦距)光谱仪,在搭配1200l/mm光栅的情况下,LSP=1.24nm/mm,可以满足要求。同时可以考虑搭配1800l/mm光栅,这样的话可以兼容高电子温度和低电子温度的同时测量,以及同时兼顾高分辨和宽光谱。原则上,使用芯径400mm的光纤,△λof=0.4-0.48nm,完全符合0.1eV的测量要求。但是还是建议谱仪安装入射狭缝,靠狭缝来控制分辨率,不仅确保0.1 eV的测量要求,还能实现更低的温度测量。同时在调试阶段,靠狭缝来控制通光量,以免532nm的激光杂散光太强,对ICCD造成破坏。另一方面ICCD的尺寸决定了光纤的排布数量。光纤数量越多,对汤姆逊散射这种微弱光测量是越有利的。在信号很弱的时候,可以把几道合成一道使用,以增加信噪比,提高信号质量。因此在波长覆盖范围(CCD的横向尺寸)满足要求的情况下,ICCD的纵向尺寸应该尽量大一些,以便容纳更多的光纤。选用iStar 334T探测器,这款CCD的尺寸是13.3 ´ 13.3 mm,对焦距目前的光谱仪无论是Omni-750还是207在搭配1200l/mm光栅的情况下,波长覆盖范围是13nm左右,同时纵向13.3mm,容纳的光纤数量也更多,可以做更多的多道光谱。如果已有更大面阵的CCDsCMOS或高速相机,可以考虑使用Zolix 卓立汉光的IIM系列镜头耦合像增强模组与之配合,达到类似ICCD的功能和效果,同时获得更大的相机选取自由度;IIM 内部可以选择25mm 尺寸的增强器,1:1耦合到CCD, 可以获得更大的成像面,双层增强器也可以获得更高的增益;光纤的布局是一字型密集排布,在13mm的长度内,尽量的密布尽可能多的光纤。同时光纤应该严格排列在一条直线上,整排光纤的偏心距小于20mm。2.4、收集透镜的选择等离子体中心到透镜的距离L和光纤的芯径,及像斑决定了收集透镜的焦距。举例如下:如果像斑要求是fP =2mm,光纤芯径400mm, 则物像比是4,如果L=320mm, 则透镜的焦距就是320/4=80mm。同时如果观测的等离子体范围是50mm,那光纤一字排开的范围就是50mm/4=12.5mm。这个宽度和连接谱仪一侧的光纤束的尺寸很接近了,连接收集透镜一侧光纤也应该是密集排布,这样两端容纳的光纤数量就是匹配的。2.5、瑞利散射的滤除与使用瑞利散射信号通常也可以用来测试重粒子的相关信息比如中性原子。但是相比于瑞利散射法来说,作为弹性散射的汤姆逊散射法更多用于自由电子的测试。和离子与原子相比,由于自由电子的速度更快,质量更轻,因此具备更宽的光谱展宽。比较强的杂散光信号与更强的瑞利散射信号则可以通过例如布儒斯特窗、笼式结构或者黑丝挡板的方式滤除掉。图2 滤除瑞利散射的笼式结构示意光路因此在实际的测试过程中,如何合理地使用这些信号为等离子体诊断服务,则是另一个相关的话题。如图3[1]所示,为实际测试过程中得到的瑞利与汤姆逊散射信号如图4[2]所示,为实际测试过程中得到的滤除瑞利散射后的汤姆逊散射信号图3 包含瑞利散射与汤姆逊散射的实测信号图4 滤除瑞利散射后的汤姆逊信号2.6其他附属部件光电倍增管谱仪第二出射口配宽度可调的狭缝三维调整光学支架,用以调节镜头的方位和方向三、整体解决方案汇总推荐根据用户需求,一般推荐的配置如下:光谱仪:Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750i光谱仪搭配1200l/mm和1800l/mm的全息光栅高光通量光谱仪,搭配120*140mm 或110*110mm 的大尺寸,高分辨率的1200l/mm光栅和1800l/mm光栅探测器:ICCD, 18mm 增强器,13*13mm 探测面;Zolix卓立汉光 公司的IIM-A系列 镜头耦合像增强模组,配合更大面阵的CCD或sCMOS相机, 18mm或25mm 的大面积增强器,灵活的CCD 相机选择; DG645数字延迟脉冲发生器:用于系统触发控制标准A光源,用于系统强度校准其他的配件:包括多道光纤,收集光路,可以后续一并考虑,先购买标准部件参考文献[1] Yong WANG, Cong LI, Jielin SHI, et al. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Sci. Technol. 19 (2017) 115403 (8pp) [2] Ma P, Su M, Cao S, et al. Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020.
    留言咨询
  • 百特BeNano 180 Zeta Pro纳米及Zeta电位仪是BeNano90 + BeNano180 + BeNano Zeta三合一的顶级光学检测系统。该系统中集成了背向+90°动态光散射DLS、电泳光散射ELS和静态光散射技术SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta电位,高分子和蛋白体系的分子量信息等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等领域的基础研究和质量分析与控制。基本性能指标粒径测试原理动态光散射粒径范围0.3nm-15μm★样品量3μL-1mL★检测角度173° & 90° & 12°分析算法Cumulants、通用模式、CONTIN、NNLSZeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cmZeta测试粒度范围2nm-120μm分子量测试分子量范围342Da-2×107Da★微流变测试频率范围0.2-1.3×107 rad/s★测试能力均方位移、复数模量、弹性模量、粘性模量、蠕变柔量趋势测量模式时间和温度粘度测试粘度范围0.01cp-100cp★折光率范围1.3-1.6★系统参数温控范围-15°C-110°C,精度±0.1°C冷凝控制干燥的空气或氮气激光光源50mW高性能固体激光器,671nm相关器最快25 ns采样,最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件检测参数● 颗粒体系的光强、体积、面积和数量分布● 颗粒体系的Zeta 电位及其分布● 分子量● 分布系数PD.I● 扩散系数D● 流体力学直径DH● 颗粒间相互作用力因子kD● 溶液粘度检测技术● 动态光散射● 静态光散射● 电泳光散射相关技术 相关应用
    留言咨询
  • 百特纳米粒度及Zeta电位仪BeNano 180 Zeta是BeNano 180 + BeNano Zeta的二合一光学检测系统。该系统中集成了背向动态光散射DLS、电泳光散射ELS和静态光散射技术SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta电位,高分子和蛋白体系的分子量信息等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等领域的基础研究和质量分析与控制。基本性能指标粒径测试原理动态光散射粒径范围0.3nm-10μm★样品量40 μL – 1 mL★检测角度173° & 12°分析算法Cumulants、通用模式、CONTIN、NNLSZeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cmZeta测试粒度范围2nm-120μm分子量测试分子量范围342Da-2×107Da★微流变测试频率范围0.2-1.3×107 rad/s★测试能力均方位移、复数模量、弹性模量、粘性模量、蠕变柔量趋势测量模式时间和温度粘度测试粘度范围0.01cp-100cp★折光率范围1.3-1.6★系统参数温控范围-15°C-110°C,精度±0.1°C冷凝控制干燥的空气或氮气激光光源50mW高性能固体激光器,671nm相关器最快25 ns采样,最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件 检测参数● 颗粒体系的光强、体积、面积和数量分布● 颗粒体系的Zeta电位及其分布● 分子量● 分布系数PD.I● 扩散系数D● 流体力学直径DH● 颗粒间相互作用力因子kD● 溶液粘度检测技术● 动态光散射● 静态光散射● 电泳光散射相关技术相关应用
    留言咨询
  • BeNano 90 Zeta 纳米粒度及Zeta电位分析仪是BeNano 90 + BeNano Zeta二合一的光学检测系统。该系统中集成了动态光散DLS、电泳光散射ELS和静态光散射技术SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta电位,高分子和蛋白体系的分子量信息等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等领域的基础研究和质量分析与控制。基本性能指标粒径测试粒径范围0.3nm-15μm★样品量3μL-1mL★检测角度90° & 12°分析算法Cumulants、通用模式、CONTIN、NNLSZeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cmZeta测试粒度范围2nm-120μm分子量测试分子量范围342Da-2×107Da★趋势测量模式时间和温度粘度测试粘度范围0.01cp-100cp★折光率范围1.3-1.6系统参数温控范围-15°C-110°C,精度±0.1°C冷凝控制干燥空气或者氮气激光光源50mW高性能固体激光器,671nm相关器最快25 ns采样,最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件检测参数● 颗粒体系的光强、体积、面积和数量分布● 颗粒体系的Zeta电位及其分布● 分子量● 分布系数PD.I● 扩散系数D● 流体力学直径DH● 颗粒间相互作用力因子kD● 溶液粘度检测技术● 动态光散射● 电泳光散射● 相位分析光散射● 静态光散射相关技术相关应用
    留言咨询
  • 仪器简介: ZetaPlus采用的是电泳光散射原理:带电颗粒在外加电场作用下进行运动,电荷运动使散射光产生频率漂移(多普勒频移),采用频谱漂移分析技术,从而可计算出颗粒的电泳迁移率和Zeta电位。 技术参数: 1.电泳测量适用粒度范围:0.001-100μm 2.样品体积:0.18~1.5ml 3.pH值测量范围:1-14 4.电导率范围:0-20S/m 5.电泳迁移率范围:10-10~10-7m2/V.s 6.温度控制:-5 ~110℃,±0.1℃ 7.电场强度:0~3.2 kV/m 8)电极:耐腐蚀性开放式电极,电极材料纯钯; 9.激光源:35mW固体激光器(可选5mW He-Ne激光器); 10.检测器:PMT或APD; 11.自动趋势分析:对时间、温度及其他参数; 选件: 1.粒度升级:具有粒度纳米粒度测量功能;4.自动滴定仪:可对PH值、电导率和添加剂浓度作图;5.介电常数仪:直接测最溶剂的介电常数值;6.粘度计:用于测量溶剂及溶液的粘度; 7.21CFR软件 符合FDA要求的21CFR part II操作模式软件和仪器材料; 主要特点:ZetaPlus是简单、方便而且准确的电泳迁移率测量仪器,其独特的开放式样品池设计与频谱漂移分析技术相结合,使其具有极高的分辨率,足以分辨等电点附近的多峰电泳分布情况。它的革新之处是从根本上消除了传统Zeta电位测量仪器中固有的电渗误差的影响,从而使测量变得准确而方便。 典型应用:1.蛋白、缩氨酸、胶束、多糖、药物制备、脂质体、外切酶体;2.聚合物胶乳、微乳液、油包水、水包油体系;3.涂料、颜料、油漆、食品、化妆品配方;4.陶瓷、耐火材料、炭黑、废水处理。
    留言咨询
  • 动态光散射纳米粒度及zeta电位分析仪原理当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射纳米粒度及zeta电位分析仪技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。动态光散射纳米粒度及zeta电位分析仪性能特点1、高效的光路系统:采用固体激光器和一体化光纤技术集成的光路,充分满足空间相干性的要求,极大地提高了散射光信号的信噪比。2、高灵敏度光子探测器:采用计数型光电倍增管或雪崩光电二极管,对光子信号具有极高的灵敏度和信噪比; 采用边沿触发模式对光子进行计数,瞬间捕捉光子脉冲的变化。3、大动态范围高速光子相关器:采用高、低速通道搭配的结构设计光子相关器,有效解决了硬件资源与通道数量之间的矛盾,实现了大的动态范围,并保证了相关函数基线的稳定性。4、高精度温控系统:基于半导体制冷技术,采用自适应PID控制算法,使样品池温度控制精度达±0.1℃。5、数据筛选功能:引入分位数检测异常值的方法,鉴别受灰尘干扰的散射光数据,并剔除异常值,提高粒度测量结果的准确度。6、优化的反演算法:采用zui优拟合累积反演算法计算平均粒径及多分散系数,基于非负约束正则化算法反演颗粒粒度分布,测量结果的准确度和重复性都优于1%。纳米粒度及zeta电位分析仪测量纳米粒度及zeta电位分析仪是表征分散体系稳定性的重要指标zeta电位愈高,颗粒间的相互排斥力越大,胶体体系愈稳定, 因此通过电泳光散射法测量zeta电位可以预测胶体的稳定性。动态光散射纳米粒度及zeta电位分析仪原理带电颗粒在电场力作用下向电极反方向做电泳运动,单位电场强度下的电泳速度定义为电泳迁移率。颗粒在电泳迁移时,会带着紧密吸附层和部分扩散层一起移动,与液体之间形成滑动面,滑动面与液体内部的电位差即为zeta电位。Zeta电位与电泳迁移率的关系遵循 Henry方程,通过测量颗粒在电场中的电泳迁移率就能得出颗粒的zeta电位。纳米粒度及zeta电位分析仪性能特点1.利用光纤技术集成发射光路和接收光路,替代传统电泳光散射的分立光路,使参考光和散射光信号的传输不受灰尘和外界杂散光的干扰,有效地提高了信噪比和抗干扰能力。2.先对散射光信号进行频谱预分析,获取需要细化分析的频谱范围,然后在窄带范围内进行高分辨率的频谱细化分析,从而获得准确的散射光频移。3.基于双电层理论模型,求解颗粒的双电层厚度,获得准确的颗粒半径与双电层厚度的比值,再利用最小二乘拟合算法获得精确的Henry函数表达式,进而有效提高了纳米粒度及zeta电位分析仪的计算精度。Henry函数的取值:当双电层厚度远远小于颗粒的半径,即ka1,Henry函数近似为1.5。双电层厚度远远大于颗粒半径时,即ka1,Henry函数近似为1.0。使用最小二乘曲线拟合算法对Wiersema计算的精确Henry函数值进行拟合, 得到优化Henry函数表达式.强大易用的控制软件ZS-920系列纳米粒度及zeta电位分析仪的控制软件具有纳米颗粒粒度和zeta电位测量功能,一键式测量,自动调整散射光强, 无需用户干涉,自动优化光子相关器参数,以适应不同样品,让测量变得如此轻松。控制软件更具有标准化操作(SOP)功能,让不同实验室、不同实验员间的测量按照同一标准进行,测量结果更具有可比性。测量完成自动生成报表,以可视化的方式展示测量结果,让测量结果一目了然。动态光散射纳米粒度及zeta电位分析仪的技术指标
    留言咨询
  • 可变角度光散射仪(广角动/静态光散射仪)用于颗粒表征。LS Spectrometer是一种可变多角度光散射仪器(V-MALS)。在LS Spectrometer中,检测器安装在可移动的臂上,可以对几乎任何角度进行精确调整,从而提高测量灵敏度。LS Spectrometer结合专利的调制三维技术(Modulated 3D)(无稀释测量)和CORENN(改进的聚集检测),实现了市场上全面的纳米颗粒表征。- 它能测量什么?&bull 颗粒大小&bull 多分散性&bull 颗粒形状&bull 粘度&bull 分子量&bull 样品结构- 可变多角度光散射(V-MALS)与带有固定角度传感器的多角度光散射(MALS)仪器不同,LS Spectrometer的检测器安装在样品池周围的旋转臂上,因此可以精确可变地调整到10°至150°之间的任何选定散射角。这有助于显著提高颗粒大小、聚集检测、第二维里系数、颗粒形状或分子量等参数测量的灵敏度。 - 无稀释样品测量-调制三维技术(Modulated 3D)DLS和SLS技术都是基于仅检测到单次散射光的假设。然而,随着颗粒浓度的增加,多重散射增加并逐渐主导信号。这在DLS和SLS中都引入了无法检测的系统误差。无论重复测量多长时间或多少次,都无法消除或检测到此错误。为了克服这个问题,LS Instruments开发了可选的调制三维技术,可以有效抑制多重散射。调制三维互相关技术使用两个激光束同时进行两个散射实验,虽然单次散射的贡献是相同的,但在两个实验中多重散射的贡献不同。通过对信号进行互相关,从而抑制了多重散射。三维 LS Spectrometer是一款同时为DLS和SLS提供该技术的仪器。- 算法用于改进复杂样品中的聚集和颗粒检测CORENN算法是一种新的机器学习算法,用于从DLS测量中提取粒度分布(PSD)。CORENN是一种利用先进的信号近似技术和对信号噪声的独特理论估计的DLS反演算法,可以得到极其可靠的结果。这种稳健的方法使最终用户能够从真实的DLS实验中获得真实的粒度分布(PSD)。下图显示了4nm和45nm的颗粒混合物的DLS测量结果,只有CORENN算法能够准确得到这两个分布。- 用去偏振动态光散射(Depolarized DLS)表征各向异性粒子这是一种可以轻松地表征各向异性粒子的技术,并越来越受到科学家的关注:一组两个偏振器可以通过简单的DLS测量来表征样品的旋转动力学和各向异性粒子的纵横比。- 温度控制我们强大的温度循环器使您能够精确控制样品中的温度。与其他循环器相比,它显著减少了加热和冷却时间。它可以通过LsLab软件进行预编程,以实现不同温度下的一系列测量。- 样品转角仪许多适用于光散射的凝胶状样品显示出非遍历(non-ergodic)行为,从而导致测量误差。LS Instruments公司开发了一种样品转角仪,可以用适当的速度旋转非遍历样品,以获得正确的结果。此外,样品转角仪也可用于使样品偏离旋转中心,从而能够使用方形样品池,样品中散射光的光程可以减少到小于200微米,这显著减少了多重散射。
    留言咨询
  • 动态光散射仪 400-860-5168转6108
    动态光散射仪是基于激光散射的装置,不同于激光小角散射测量,动态光散射主要对时间维度进行记录,已达到动力学研究的目的。1、激光波长:350-800 nm2、功率:1-50 mW3、时间分辨率:sub μs级4、粒度测量范围:1 nm – 10 μm5、探测器类型:点探测器6、可探测散射角度:90°、165°7、时间分辨能力:优于1 μs8、原位温度范围:-196 ~ 300 °C应用领域: 1、溶液动力学2、生物分子动力学3、化学反应动力学
    留言咨询
  • 激光小角散射仪 400-860-5168转6108
    激光散射属于光散射的重要分支,其特点在于利用激光作为光源。激光的最大优势在于极高的亮度、极小的发散角和优异的相干性,高亮度使激光散射信号远高于其他类型的散射技术;极小的发散角使激光散射非常适合进行小角散射研究,最大化该技术对表面轮廓和形状分布的灵敏度;优异的相干性使激光散射易于应用在动力学研究,即动态光散射。1、激光波长:350-800 nm2、功率:1-50 mW3、粒度测量范围:20 nm – 2 μm4、探测器类型:可选零维点探测器、一维阵列探测器、二维面探测器5、单次测量时间:0.1 s – 60 s6、样品环境:高低温(-196~300 °C)、真空、空气等应用领域:1、金属表面分析2、高分子薄膜3、溶液动力学
    留言咨询
  • 马尔文 Zetasizer系列 纳米粒度电位仪在全世界被广泛应用于纳米颗粒、胶体及蛋白质尺寸、zeta电位测量及分子表征。Zetasizer 系列仪器使用动态光散射技术测量自纳米级以下至几微米的颗粒与分子粒度,使用电泳光散射技术测量电动电势及电泳迁移率,并使用静态光散射技术测量分子量。 Zetasizer 系统提供了一系列型号,包括全新的 Zetasizer Pro 和 Ultra。 这两种系统拥有前所未有的易用性和灵活性,以及强大的用户指导和新颖的测量技术(例如 MADLS 和颗粒浓度)。马尔文 Zetasizer系列 纳米粒度电位仪在全世界被广泛应用于纳米颗粒、胶体及蛋白质尺寸、zeta电位测量及分子表征。Zetasizer APS精度zui高的自动化蛋白质粒度测量Zetasizer μV可添加至任何SEC(尺寸排阻色谱)系统的模块化粒度及分子量检测器。Zetasizer WT zata 电位的在线测量 - 控制您的混凝程序!Zetasizer AT使用动态光散射在线测量粒度Zetasizer 系列分为高性能级与标准级两类系统,包含粒度分析仪、zeta 电位分析仪、分子量分析仪、蛋白质迁移率及微观流变学测量组合。 对应于您应用及预算要求,从粒度小于一纳米的颗粒/分子到几微米的颗粒。此类系统采用动态光散射法测量粒度及微流变;采用电泳光散射法测量ZETA电位及电泳迁移率;采用静态光散射法测量分子量。 此外,该系统还可在流量配置中使用,与GPC/SEC系统连接,作为色谱粒度检测器使用。Zetasizer APS将20μL的样品从各个孔转移至精密的石英流动池中进行测量。 样品池环境得到了优化,使温度控制与光学清晰度更为精确,从而保证了zui准确的测量结果。 这意味着,可使用任何行业标准型一次性或可重复使用型孔板,而不用担心影响测量结果的孔板透明性或擦痕。Zetasizer μV是一种高灵敏度双功能光散射检测器。 它可作为PALS检测器与任何GPC/SEC系统配合使用(包括Viscotek),得出jue对粒度信息(通过DLS)和jue对分子量信息(通过SLS)。 另外,在试管模式中,它适合检测聚集物和通过DLS监测聚集物的形成。 Zetasizer μV可通过一个8μl 的石英流通样品池和标准色谱管连接至任何GPC/SEC系统和浓度检测器。 这样,就可以测量jue对粒度、jue对分子量、聚集与结合情况(与另一个浓度检测器配合使用时)。在试管模式中,只需从设备上卸下流动池并插入盛有样品的标准试管即可批量测量颗粒和分子尺寸(通过DLS)。Zetasizer WT 将 Malvern Panalytical 行业ling先的电泳光散射技术与二十年内累积的在线测量专业知识相结合,推出一款专用在线 zeta 电位分析仪,zhuan供水处理厂使用。工作不再凭猜测 - 精确而可靠的 [mV] 结果,提供jing准的投药控制范围。在水源水质变化引起过滤问题前即对变化作出响应!尽量减少化学品用量,形成稳定絮凝。 不再需要过量投药!Zetasizer Ultra 综合了全球功能zui强大的 DLS 与 ELS 系统,它采用了非侵入背散射 (NIBS) 和独特的多角动态光散射 (MADLS) 技术来测量颗粒与分子粒度。 NIBS 的多用性和灵敏度可测量广泛的浓度范围,而 MADLS 则能让您在这些关键测量当中更精细地了解样品粒度分布。MADLS 的扩展能够直接分析颗粒浓度。 颗粒浓度的测量无需校准,适合于广泛的材料,无需或只需极少稀释,并且使用快捷,这一切都使其成为一种理想的筛选技术。 这是 Zetasizer Ultra 的一项独特功能,甚至可以运用于以前非常难测量的病毒和 VLP 等样品。Zetasizer Ultra 还利用 M3-PALS 技术提供了灵敏度zui高的电动电势和电泳迁移率测量。 我们具有极高性价比的一次性折叠毛细管样品池允许使用我们的zhuan利扩散障碍法在极低样品量的情况下进行测量,并且不会产生直接样品电极接触。 此类测量提供的信息可以极好地指出样品稳定性以及/或者聚集倾向。增加的恒流模式可在高导电性介质中测量电泳迁移率和电动电势,从而减少由于较高离子浓度下的电极极化而出现的错误。
    留言咨询
  • JS94系列微电泳仪(Zeta电位仪)的详细资料:首部《胶体颗粒zeta电位分析 电泳法通则》国家标准发布,标准号:GB/T 32668-2016,该国家标准于2016年11月1日起实施。其显微电泳法是根据上海中晨数字技术设备有限公司研发生产的JS94系列微电泳仪(zeta电位仪)编写,标准第16页图片就是上海中晨JS94系列微电泳仪(zeta电位仪)的软件界面。 上海中晨数字技术设备有限公司研发生产的微电泳仪(Zeta电位仪)已面世26年,是国家创新基金无偿扶持项目。该仪器可用于测定分散体系颗粒物的固-液界面电性(ζ电位),也可用于测量乳状液液滴的界面电性,也可用于测定等电点、研究界面反应过程的机理。通过测定颗粒的Zeta电位,求出等电点,是认识颗粒表面电性的重要方法,在颗粒表面处理中也是重要的手段。JS94系列微电泳仪(Zeta电位仪)采用显微电泳法、所见即所得,测量Zeta电位更准确。可广泛应用于化妆品、选矿、造纸、医疗卫生、建筑材料、超细材料、环境保护、海洋化学等行业,也是化学、化工、医学、建材等专业的重要教学仪器之一。 JS94系列微电泳仪(zeta电位仪)主要型号(表1)型号适用体系主要粒径范围(微米)显微光学系统分辨率含税价格(人民币元)JS94H水性体系0.5~20高倍显微光学系统4pixel/μm50000+4000JS94H2水性体系和有机体系0.5~20高倍显微光学系统4pixel/μm61200+4000JS94J水性体系0.1~10日本WKD高倍显微光学系统12pixel/μm68200+4000JS94J2水性体系和有机体系0.1~10日本WKD高倍显微光学系统12pixel/μm79500+4000JS94K水性体系0.2~50日本连续变倍光学系统,适用于更宽范围颗粒的测量8pixel/μm81800+4000JS94K2水性体系和有机体系0.2~50日本连续变倍光学系统,适用于更宽范围颗粒的测量8pixel/μm94000+4000注1:以上价格含专用配套电脑,含仪器主机、实验操作软件、仪器标配组件、大陆地区主要城市免费上门安装调试培训、一年保修服务及终身维护、软件终身免费升级,含税运。 一、JS94系列微电泳仪(Zeta电位仪)标配组件1、USB制式数字CCD 1个2、银电极 1个3、铂电极 1个4、POM电极 1个(仅JS94H2型、JS94J2型、JS94K2型)5、电泳杯 10个6、米字标 1个7、应用软件和操作手册电子版 1套8、操作手册纸质版 1份9、预装应用程序和驱动程序的数据采集处理微机操作终端 1台 二、JS94系列微电泳仪(Zeta电位仪)共性参数1、采用显微电泳法,符合GB/T 32668-2016《胶体颗粒zeta电位分析 电泳法通则》2、功耗:150W 电源输入电压:220V 50Hz3、适用环境:防震平台 适用温度范围:室温到35℃,读取精度0.14、测数准确度:系统误差在5%以内5、pH范围:一般应用在下2.0~12.0,亦可在1.6~13.0范围内使用6、杯型开放式电泳装置,配套特制电极支架7、可测量分散体系zeta电位和等电点 三、JS94系列微电泳仪(Zeta电位仪)仪器特点1、仪器采用新设计的新型简便的电泳池,采用0.5cm 厚的玻璃杯,电极内置在池内。电泳杯与内置电极经精密的微流场计算、表面处理,组成一套与传统的电泳池完全不一样电泳装置。测试时样品用量极少,每次仅 0.5ml,易于清洗,使用方便,经济实用。2、采用经过精心设计的电极支架,与电泳杯紧密配合,形成一个杯形开放式电泳装置,电极采用银、铂和钛金属丝制成,经表面处理后工作状态稳定。3、制作精良的米字标,置入电泳杯后放在三维平台上,调整三维平台,在计算机屏幕看到清晰的米字图像,便找到测定位置,没有静止层问题。4、该电泳仪采用半导体发光近场光学系统,功率仅几十微瓦,不会因发热而影响测量环境和测量精度,并调整了光学系统,加大了放大倍率 ,采用波长较短的蓝光和绿光,因此可以看清更小的颗粒。5、采用恒压低频转换电源, 可以防止极化,同时又可大大提高测量速度。正负换向时间为0.30秒至1.20秒连续可调,采样时间仅需 3~10秒。电极间电压可根据需要调节。6、采用温度采样探头, 自动连续对环境温度进行采样, 返回计算机,自动调整参数,用于计算Zeta电位。采用计算机多媒体技术, 在给定的节拍下, 自动对经放大1200倍的超细颗粒连续“拍照”,提供双向共四幅灰度图像进行分析计算。 四、显微电泳法测量zeta电位和光散射电泳法测量zeta电位的优缺点如果需要比较显微电泳法测量zeta电位和光散射法测量zeta电位的优缺点,参见《精确和准确——关于zeta电位两种测量方法的讨论》。国内外微电泳仪(zeta电位仪)对比表(表2)Zeta电位上海中晨JS94系列(采用显微电泳法)进口(采用光散射电泳法,多为激光衍射法)测量方法采用视频测量技术,全部分析过程均是“所见即所得”,所以数据一定是准确的,想做错都难,是实测值。一般采用激光衍射测量技术,“在ISO13320国际标准中,特别提出如果颗粒粒径小于几十微米,需采用米氏理论,输入正确的样品折射率和吸收率以便能获得更为准确的结果”。由此可见该类仪器测量的zeta电位是需要在正确的折射率和吸收率等参数支持下才能得出的计算值。测量对象是测量zeta电位最准确的仪器之一。但受其测量方法限制,只能逐个观察带电颗粒形状和粒径,无法生成整个分散体系的粒径分布直方图。是测量整个分散体系中粒径分布直方图最好的仪器之一,但其附带的测量zeta电位功能只具有参考意义。适用范围由于无需测量整个体系的粒径分布,只需截取部分部分不沉降的带电颗粒来表征整个分散体系中带电颗粒的zeta电位,因此被测样品只需有部分带电颗粒的粒径在0.1~50微米之间即可。“当颗粒小到几百纳米时,其衍射光强对于角度几乎完全失去依赖性”。样品准备样品无需预处理,即便极端情况(比如浓稠不透光样品)仅需稀释即可。不少样品需要按照操作手册做预处理,并获得该样品正确的折射率和吸收率数据,以便得到zeta电位的计算值。注2:上表中蓝字表述引用自《仪器快讯》2009年10月刊-《激光粒度仪的技术现状与仪器选用》(马尔文仪器有限公司秦和义)五、上海中晨数字技术设备有限公司简介 上海中晨数字技术设备有限公司获2019年度国家科技进步二等奖。公司依托国内高校和科研单位,广泛采用国内外有关专家的新科技成果,着重胶体与界面、粉体技术、纺织纤维等性能测量技术产品的开发。本公司产品可广泛用于化妆品、选矿、造纸、医疗卫生、建筑材料、超细材料、环境保护、海洋、化工、石油、喷涂、油漆油墨、印染、纺织、集成光学、液晶显示器等行业。公司的客户群不仅包括国内各大高等院校和科研院所,而且还包括苹果、3M、西部数据WD、富士康、三星电子、日月光、HOYA光学、友达光电、飞利浦、LG化学等一大批跨国企业,以及中石油、中石化、中海油、华为、比亚迪、宁德时代、京东方、隆基股份、欣旺达、德赛电池、合力泰、长电科技、华天科技、天合光能、长信科技、OPPO、VIVO、宁夏东方、水晶光电、彩虹控股、威远生化等上市公司,及国内的海关、防疫检验、质量监督检验所、博物馆、医疗机构等政府事业单位,产品远销美国、日本、韩国、巴西、马来西亚、泰国、印度、印度尼西亚、新加坡、智利和我国香港、澳门、台湾地区等。 公司研发和生产接触角测量、表界面张力测量、Zeta电位测量、LB膜界面测量、单纤维测量、束纤维测量、织物测量、显微测量、试验机定制等八大系列60多种专业仪器,拥有其软、硬件自主知识产权,能够保障用户的售后维护、升级、服务的权利。 中晨的注册商标“powereach”意为“力量源于每个人”,体现了上海中晨“以人为本、员工和用户是公司很大的财富”的核心价值观和企业文化。
    留言咨询
  • 广角散射光测量仪DH软件标配功能:测试方式:可控制机器,在一次测试下完成ISO ASTM GB JIS 四种标准的测试数据显示数据图表:提供测试数据列表,为批量化检测提供数据列表,便于查看批量测试锯数据列表:提供测试列表数据分析列表,更直观的反应测试过程和批量测试样品状况透射比:测试显示内容包括T.T(全部透射比)、P.T(平行光透射比)广角散射及雾度、浊度:DIF(散射光透射比)、Haze(广角散射雾度值)、Trub(10mm比色皿浊度值)原始数据处理:支持数据导入和导出,保存为Txt文本的测试原始数据。标准自动判断:支持excel测试列表导出,同时可按选择的各种标准独立导出。标准报告:支持眼镜耐磨性能PDF报告,雾度值测试PDF报告客户化修正值:提供用户自定义修正数值功能净重:净重20kg使用环境:15°~40℃,低于80% R.H.(无冷凝)功率:25W(VA),待机功率10W外接控制:可选配脚踏开关或快捷按键电源:88~264V AC|47~63Hz或125~373V DC精度+重复性测试数值可选配0.001%显示;重复性测试连续30次偏差不超过0.03%**重复性受环境温度影响**ρV反射比 d/d方式反射率测试,等同di/8°几何条件。含镜面反射的测试SCI.广角散射均匀度自动每90°旋转测试4方向计算出Haze均匀值。**仅DF-1R 型号**
    留言咨询
  • BeNano Zeta电位分析仪是丹东百特仪器公司开发的测量颗粒体系Zeta电位的光学检测系统。BeNano Zeta 系统基于电泳光散射原理,样品分散在样品池中,在样品池两端施加一个电场,通过激光照射到电场中的样品上,光电检测器在 12°角检测样品颗粒电泳运动造成的散射光的多普勒频移,进而得到体系的 Zeta 电位信息。基本性能指标Zeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cm最小样品量0.75mL-1.0mLZeta测试粒度范围2nm-120μm系统参数温控范围-15°C-110°C,精度±0.1°C激光光源50mW高性能固体激光器,671nm相关器最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件检测参数● Zeta电位● Zeta电位分布检测技术● 电泳光散射● 相位分析光散射相关技术相关应用
    留言咨询
  • 仪器简介: 90Plus Zeta纳米粒度及Zeta电位分析仪,粒度测量采用动态光散射原理,是一种准确、快速、便捷的纳米、亚微米粒度分析测试仪器。Zeta电位测量采用电泳光散射原理,带电颗粒在外加电场作用下进行运动,电荷运动使散射光产生频率漂移(多普勒频移),采用频谱漂移分析技术,从而可计算出颗粒的电泳迁移率和Zeta电位。 技术参数: 1.粒度范围:0.3nm~15μm(与折射率,浓度,散射角有关); 2.样品类型:任何胶体范围大小的颗粒(悬浮于清液中);3.样品体积:1~3ml,50μL微量样品池,10μL微量样品池(最新); 4.分子量测定范围:342~2*107Dalton; 5.温控范围:-5℃~110℃,±0.1℃; 6.激光源:35mW固体激光器(可选5mW He-Ne激光器); 7.检测器:APD或PMT;8.相关器:4*1011线性通道,支持两路互相关; 9.自动趋势分析:对时间、温度及其他参数; 10.散射角:15°和90°;11.电泳测量适用粒度范围:0.001-100μm;12.电导率范围:0,20S/m;13.电泳迁移率范围:10 -10-10 -7 m2 /V.s;14.pH测量范围:1-14; 选件: 1.微流变:检测弱结构溶液的粘弹性信息;2.实时在线测量:粒度及Zeta电位实时在线测量;3.自动滴定仪:可对PH值、电导率和添加剂浓度作图;4.粘度计:用于测量溶剂及溶液的粘度; 5.21CFR软件 符合FDA要求的21CFR part II操作模式软件和仪器材料; 主要特点: 1.高灵敏性,粒度测量范围:0.3nm~15μm;2.插入式电极,耐腐蚀,可重复使用; 3.可作为在线检测器与GPC/SEC连接,并通过SLS、DLS、光强和粒径监测聚集过程; 4.综合最新最全的粒度分析方法和模型Particle Solution 粒度测量软件; 5.强大的数据分析功能,可自动研究粒度随时间、温度(蛋白熔点)以及其他参数变化的趋势分析. 典型应用:1.蛋白、缩氨酸、胶束、多糖、药物制备、脂质体、外切酶体;2.聚合物胶乳、微乳液、油包水、水包油体系;3.涂料、颜料、油漆、食品、化妆品配方;4.陶瓷、耐火材料、炭黑、废水处理。
    留言咨询
  • 显微电泳法Zeta电位分析仪特点1.传统测量原理:通过传统微电泳方法测量胶体颗粒的zeta 电位。与激光光散射法相比,没有黑盒子。2.通过激光暗场照明观察纳米颗粒:502的独特的超显微镜设计提供了一个高对比度的图像,即使是纳米粒子。依赖于颗粒对悬浮介质的相对折射率不同,可测量小至20nm的颗粒。3.在静止层观察颗粒:高水平的激光光学系统和高性能的CCD摄像头可以仅观察静止层的颗粒。其提供的高精度结果不受电渗流的影响。4.水平设置的长方形电泳池:水平放置的长方形电泳池提供了一个高度精确的结果。因为这样的布局几乎不存在由于池壁附近颗粒沉淀引起电渗流非对称化。显微电泳法Zeta电位分析仪原理-旋转棱镜技术 当光线通过一个直角棱镜,目标物体似乎移动了,因为当棱镜缓慢旋转时,光的轨迹偏离了原来的位置。502型的显微镜有一个与内置检流计结合的棱镜(旋转棱镜),其旋转速度和旋转方向棱镜均可以调节。在有格栅的电视监视器上观察粒子。当我们施加电场时,颗粒产生电泳运动。当我们使用旋转棱镜技术调节所观察到的粒子看上去静止不动时,颗粒的zeta电位值(摄氏20度,水系统)将通过数字显示出来。显微电泳法Zeta电位分析仪技术参数原理:1、用户调整旋转棱镜至静止图像。或用秒表测量的粒子的运动时间2、测量范围:± 100毫伏3、粒径适用范围:一般20nm~50μm,依赖于颗粒折射率和沉降状况4、样品量:8毫升5、光学系统: ● 光源:632.8 nm的氦氖激光器 ● 显微镜的放大倍率:×280 ● 电视显示器:CCD单色相机和8.4” 单色液晶显示器6、电泳池: ● 截面:1 ×10毫米 ● 材质:纯二氧化硅 ● 电极距离:4.88cm ● 电场强度:30 V / cm ● 阳极:钼 ● 阴极:钯 ● 电极隔室材质:聚甲醛
    留言咨询
  • 纳米粒径及Zeta电位分析仪Nicomp Z3000介绍 NICOMP 380 Z3000纳米粒径与电位分析仪采用先进的设计理念优化结构设计,充分有效地融合了动态光散射(Dynamic Light Scattering, DLS)和电泳光散射(ELS)技术,即可以多角度(步长0.9μm )检测分析液态纳米颗粒系的粒度及粒度分布,又可以小角度测量Zeta电位。粒度测试范围:粒度测试范围:0.3 nm – 10 μm。 NICOMP 380 Z3000纳米粒径与电位分析仪通过检测分析胶体颗粒的电泳迁移率测量Zeta电位。Zeta电位是对颗粒之间相互排斥或吸引力的强度的度量,是表征胶体分散系稳定性的重要指标,Zeta电位(正或负)越高,体系越稳定。Zeta电位表征的是粒子之间的排斥力。由于大部分的水相胶体体系是通过粒子之间的静电排斥力来保持稳定的,粒子之间的排斥力越大,粒子越不容易发生聚集,胶体也会越稳定。NICOMP 380 Z3000结合了动态光散射技术(DLS)和电泳光散射法(ELS),实现了同机测试纳米粒子分布和Zeta电势电位。 应用行业:磨料、化学机械抛光液、陶瓷、粘土、涂料、污染监测、化妆品、乳剂、食品、液体工作介质/油、墨水、 乳液、色漆、制药粉体、颜料、聚合物、蛋白质大分、二氧化硅以及自组装TiO_2纳米管(TNAs)等 自动滴定仪NICOMP 380 Z3000纳米粒径与电位分析仪在增加自动滴定模块后,可以一次性使用同一样品在不同PH值或不同离子浓度的条件下进行一系列测试,实现了在等电点测试的技术难题。 相位分析光散射法PALS(Phase Analyze Light Scattering)技术PSS 于 2004 年推出ling先的 PALS 技术,用相位(Phase)变化的分析取代原 先频谱的漂移,不仅使 Zeta 电位分析的精度及稳定性有了显著的提高,而且突破了水相体系的限制,对油、有机物体系同样能提供 Zeta 电位的分析。NICOMP 380 Z3000 纳米粒径与电位分析仪特点同机测试悬浮液体的粒径分布以及ZETA电势电位Zeta电位运用了多普勒电泳迁移原理以及zui新的相位分析散射法可以测试水相和有机相的样品检测范围宽广,亚微米颗粒均可以被检测样品测试量小高辨析率结果重现性好,误差小于1%100 % 样品可回收li用可搭载自动滴定仪, 自动稀释器和自动进样器无须校准一次性进样,避免交叉污染样品可选配大功率激光发生器以及jun品级APD雪崩二极管检测器来检测粒径小于1nm的颗粒 技术参数:粒径检测范围粒度分析:0.3 nm - 10 μmZeta电位检测范围粒度0.3 nm-100 μm分析方法粒径:动态光散射,Gaussian 单峰算法和 Nicomp 无约束自由拟合多峰算法;电位:电泳光散射(ELS)技术和相位分析光散射法pH值范围2 - 12温度范围0℃ - 90 ℃激光光源(可选)5 mW氦氖光源;15 mW, 35 mW,50 mW激光光源;100 mW激光光源(红);20 mW,50 mW,100 mW激光光源(蓝/绿)检测角度(可选)90°或 多角度(10°- 175°,可选配)检测器(可选)PMT(光电倍增管),CMP(4倍增益放大)APD雪崩二极管(7倍增益放大)高浓度样品背散射175°背散射可用溶剂水相,绝大多数有机相样品池标准4 mL样品池(1cm×4cm,高透光,石英玻璃或塑料);1mL样品池(玻璃,高透光率微量样品池,zui小进样量10μL)选配模块高浓度背散射;自动稀释模块,自动进样器,多角度检测器,高能激光发生器,高增益检测器,21CFR PART11规范软件,在线模块。分析软件Windows 兼容软件;符合 21 CFR Part 11 规范分析软件(可选)验证文件有电压220 - 240 VAC,50Hz 或100 - 120 VAC,60Hz计算机配置要求Windows XP及以上版本windows操作系统,40Gb硬盘,1G内存,光驱,USB接口,串口(COM口)外形尺寸56 cm * 41 cm * 24cm重量约26kg(与配置有关)电泳光散射法(ELS)与粒子的动电(Zeta)电位: ELS 是将电泳和光散射结合起来的一种新型光散射。它的光散射理论基础是 准弹性碰撞理论,只是在实验时在式样槽中多加一个外电场,带电粒子即以固定 速度向与带电粒子电性相反的电极方向移动,与之相应的动力光散射光谱产生多普勒漂移,这一漂移正比于带电粒子的移动速度,因此实验测得谱线的漂移,就 可以求得带电粒子的电泳速度,从而求得ζ-电位。相位分析光散射法PALS(Phase Analyze Light Scattering)技术PSS 于 2004 年推出ling先的 PALS 技术,用相位(Phase)变化的分析取代原 先频谱的漂移,不仅使 Zeta 电位分析的精度及稳定性有了显著的提高,而且突破了水相体系的限制,对油、有机物体系同样能提供 Zeta 电位的分析。动态光散射原理 Nicomp 380纳米粒径分析仪采用动态光散射(Dynamic Light Scattering, DLS)原理来获得范围在0.3 nm到10 μm的胶体体系的粒度分布。DLS是通过一定波长的聚焦激光束照射在悬浮于样品溶液的粒子上面,从而产生很多的散射光波。这些光波会互相干涉从而影响散射强度,散射强度随时间不断波动,二者之间形成一定的函数关系。粒子的扩散现象(或布朗运动)导致光强不断波动。光强的变化可以通过探测器检测得到。使用自相关器分析随时间而变的光强波动就可以得到粒度分布系数(Particle size distribution, PSD)。单一粒径分布的自相关函数是一个指数衰减函数,由此可以很容易通过衰减时间计算得到粒子扩散率。zui终,粒子的半径可以很容易地通过斯托克斯(Stokes-Einstein)方程式计算得到。如下是Nicomp 380纳米粒径分析仪的检测原理简图: 大部分样品一般都不均匀,往往会呈现多分散体系状态,即测出来的粒径正态分布范围会比较大,直观的呈现是粒径分布峰比较宽。自相关函数是由多组指数衰减函数综合组成,每一个指数衰减函数都会因指数衰减时间不同而存在差异,此时计算自相关函数就变得不再简单。Nicomp 380纳米粒径分析仪巧妙运用了去卷积算法来转化原始数据,从而得出zui接近真实值的粒度分布。Nicomp 尤其适合测试粒度分布复杂的样品体系,li用一组独特的去卷积算法将简单的高斯正态分布模拟成高分辨率的多峰分布模式,这种去卷积分析方法,即得到PSS粒度仪公司独有的粒径分布表达方法—Nicomp分布(Nicomp Distribution)。有些仪器的高斯分析模式可以使用基线调整参数的功能,以此来补偿测试环境太脏而超出仪器灵敏度的问题。高斯分析模式也可以允许使用者指定“固体重量模式”或者“囊泡重量模式”来分析带有小囊泡的胶体体系,比如脂质体。Nicomp分析方法是一种专li的高分辨率的去卷积算法,它首次在1990年提出并应用于分析和统计粒径分布。在历史上已经证明Nicomp分析方法能够精确分析非常复杂的双峰样品分散体系(比如 2:1比例),甚至是三峰样品分散体系。在科学研究中,找到粒子聚集分布的杂峰是非常有用的。 NICOMP 380 Z3000纳米粒径与电位分析仪广泛适用于检测悬浮在水相和有机相的颗粒物。
    留言咨询
  • 一、前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。二、汤姆逊散射(Thomson Scattering)基于激光技术发展起来的汤姆逊散射诊断原本用于高温聚变等离子体的测量,借助激光技术和光电探测技术的突飞猛进,汤姆逊散射在近年也大量应用于低温等离子体的密度和电子温度的测量。汤姆逊散射具有空间分辨率高(局域测量),测量值稳定可靠等优点。测量的物理量:电子温度:下限0.1e密度:下限1019m-3.图1. 汤姆逊散射分析系统结构示意图2.1、激光束在等离子体中的束斑大小(束径DLP)激光束经过透镜聚焦,等离子体应该位于透镜的焦点,以达到激光束在等离子体中有最小的束径,最高的功率密度。DLP = f´ q其中f是聚焦透镜的焦距,q是激光束发散角,考虑各种综合因素,实际束径是上述公式的2倍左右。假设使用f=1000mm的聚焦透镜和q=0.5mrad的激光束,DLP大约是1mm。2.2、收集光学系统的光纤的像斑(fP)与等离子体中激光束径DLP的匹配为了有效的收集激光束上的散射光子,光纤的像斑fP应该完全覆盖激光的束径。理想情况是光纤的像斑与DLP尺寸完全相同,并且二者完全重合,这样激光的散射光最大,同时背景非散射光最小。但是考虑到实际的准直的难度,这样的理想条件在有限的资金投入下很难实现。建议fP是DLP的两倍,既能有效的收集散射光子,也能比较容易准直。如果DLP =1mm, fP =2mm是比较合适的。2.3、光纤的芯径、布局和光谱仪以及ICCD的选择汤姆逊散射谱线展宽与温度的关系如下:汤姆逊散射角度 Theta=90度;me是电子质量,c是光速,kB是玻尔兹曼常数,公式右边分母下面:是激光的波长 532nm;分子是谱线展宽,不过是1/e展宽因此汤姆逊散射光谱的半高宽△λ1/e(nm)与等离子体温度Te(ev)的关系可以简化为△λ1/e=1.487×Te1/2Te eV0.10.20.30.4124510△λ1/e nm0.470.530.810.941.492.102.973.324.70表1. 电子温度与汤姆逊散射谱半高宽对应值在光谱仪没有入射狭缝或者入射狭缝宽度超过光纤的芯径的情况下,光纤的芯径实际决定了谱仪的实际分辨率(仪器展宽):△λof = fof ´ LSPfof是光纤的芯径,LSP是谱仪的倒线色散率。针对于此应用,可以考虑选择两款光谱仪,分别是:1、Zolix 北京卓立汉光仪器有限公司的Omni系列 750mm的谱仪,如果使用1200l/mm的光栅,LSP = 1nm/mm。测量电子温度的原则是仪器展宽应该与最低温度的展宽相当,才能有效的测量到最低温度。2、选用207(670mm焦距)光谱仪,在搭配1200l/mm光栅的情况下,LSP=1.24nm/mm,可以满足要求。同时可以考虑搭配1800l/mm光栅,这样的话可以兼容高电子温度和低电子温度的同时测量,以及同时兼顾高分辨和宽光谱。原则上,使用芯径400mm的光纤,△λof=0.4-0.48nm,完全符合0.1eV的测量要求。但是还是建议谱仪安装入射狭缝,靠狭缝来控制分辨率,不仅确保0.1 eV的测量要求,还能实现更低的温度测量。同时在调试阶段,靠狭缝来控制通光量,以免532nm的激光杂散光太强,对ICCD造成破坏。另一方面ICCD的尺寸决定了光纤的排布数量。光纤数量越多,对汤姆逊散射这种微弱光测量是越有利的。在信号很弱的时候,可以把几道合成一道使用,以增加信噪比,提高信号质量。因此在波长覆盖范围(CCD的横向尺寸)满足要求的情况下,ICCD的纵向尺寸应该尽量大一些,以便容纳更多的光纤。选用iStar 334T探测器,这款CCD的尺寸是13.3 ´ 13.3 mm,对焦距目前的光谱仪无论是Omni-750还是207在搭配1200l/mm光栅的情况下,波长覆盖范围是13nm左右,同时纵向13.3mm,容纳的光纤数量也更多,可以做更多的多道光谱。如果已有更大面阵的CCDsCMOS或高速相机,可以考虑使用Zolix 卓立汉光的IIM系列镜头耦合像增强模组与之配合,达到类似ICCD的功能和效果,同时获得更大的相机选取自由度;IIM 内部可以选择25mm 尺寸的增强器,1:1耦合到CCD, 可以获得更大的成像面,双层增强器也可以获得更高的增益;光纤的布局是一字型密集排布,在13mm的长度内,尽量的密布尽可能多的光纤。同时光纤应该严格排列在一条直线上,整排光纤的偏心距小于20mm。2.4、收集透镜的选择等离子体中心到透镜的距离L和光纤的芯径,及像斑决定了收集透镜的焦距。举例如下:如果像斑要求是fP =2mm,光纤芯径400mm, 则物像比是4,如果L=320mm, 则透镜的焦距就是320/4=80mm。同时如果观测的等离子体范围是50mm,那光纤一字排开的范围就是50mm/4=12.5mm。这个宽度和连接谱仪一侧的光纤束的尺寸很接近了,连接收集透镜一侧光纤也应该是密集排布,这样两端容纳的光纤数量就是匹配的。2.5、瑞利散射的滤除与使用瑞利散射信号通常也可以用来测试重粒子的相关信息比如中性原子。但是相比于瑞利散射法来说,作为弹性散射的汤姆逊散射法更多用于自由电子的测试。和离子与原子相比,由于自由电子的速度更快,质量更轻,因此具备更宽的光谱展宽。比较强的杂散光信号与更强的瑞利散射信号则可以通过例如布儒斯特窗、笼式结构或者黑丝挡板的方式滤除掉。图2 滤除瑞利散射的笼式结构示意光路因此在实际的测试过程中,如何合理地使用这些信号为等离子体诊断服务,则是另一个相关的话题。如图3[1]所示,为实际测试过程中得到的瑞利与汤姆逊散射信号如图4[2]所示,为实际测试过程中得到的滤除瑞利散射后的汤姆逊散射信号图3 包含瑞利散射与汤姆逊散射的实测信号图4 滤除瑞利散射后的汤姆逊信号2.6其他附属部件光电倍增管谱仪第二出射口配宽度可调的狭缝三维调整光学支架,用以调节镜头的方位和方向三、整体解决方案汇总推荐根据用户需求,一般推荐的配置如下:光谱仪:Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750i光谱仪搭配1200l/mm和1800l/mm的全息光栅高光通量光谱仪,搭配120*140mm 或110*110mm 的大尺寸,高分辨率的1200l/mm光栅和1800l/mm光栅探测器:ICCD, 18mm 增强器,13*13mm 探测面;Zolix卓立汉光 公司的IIM-A系列 镜头耦合像增强模组,配合更大面阵的CCD或sCMOS相机, 18mm或25mm 的大面积增强器,灵活的CCD 相机选择; DG645数字延迟脉冲发生器:用于系统触发控制标准A光源,用于系统强度校准其他的配件:包括多道光纤,收集光路,可以后续一并考虑,先购买标准部件参考文献[1] Yong WANG, Cong LI, Jielin SHI, et al. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Sci. Technol. 19 (2017) 115403 (8pp) [2] Ma P, Su M, Cao S, et al. Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020.
    留言咨询
  • 产品描述工作原理:粒度分布:动态光散射仪(Dynamic Light Scattering, DLS)ZETA电位:多普勒电泳光散射原理(Doppler Electrophoretic Light Scattering, DELS)检测范围:粒径范围:0.3nm-10.0μmZETA电位: +/- 500mV Nicomp 380 Z3000系列纳米激光粒度仪是在原有的经典型号380ZLS&S基础上升级配套而 来,采用动态光散射(Dynamic Light Scattering, DLS)原理检测分析颗粒的粒度分布,同机采用 多普勒电泳光散射原理(Doppler Electrophoretic Light Scattering, DELS)检测ZETA电位。粒 径检测范围 0.3nm – 10μm,ZETA电位检测范围为+/- 500mV。其配套粒度分析软件复合采用了 高斯( Gaussian)单峰算法和拥有专利技术的 Nicomp 多峰算法,对于多组分、粒径分布不均匀 分散体系的分析具有独特优势。ZETA电位模块使用双列直插式方形样品池和钯电极,一个电极可以 使用成千上万次。另外,采用可变电场适应不同的样品检测需求。既保证检测精度,亦帮用户大大 节省检测成本。技术优势1、PMT高灵敏度检测器;2、可搭配不同功率光源;3、双列直插式电极和样品池,可反复使用成千上万次;4、钯电极;5、精确度高,最接近样品真实值;6、复合型算法: 高斯(Gaussion)单峰算法与专利的Nicomp多峰算法自由切换 相位分析法(PALS)和频谱分析法(FALS)自由切换7、快速检测,可以追溯历史数据;8、结果数据以多种形式和格式呈现;9、符合USP,CP等个多药典要求;10、无需校准;11、复合型算法:(1)高斯(Gaussion)单峰算法与专利的Nicomp多峰算法自由切换12、模块化设计便于维护和升级;(1)可自动稀释模块专利(选配);(2)搭配多角度检测器(选配);(3)自动进样系统(选配);
    留言咨询
  • 工作原理: 粒度分布:动态光散射仪(Dynamic Light Scattering,DLS) ZETA电位:多普勒电泳光散射原理(Doppler Electrophoretic Light Scattering,DELS) 检测范围: 粒径范围:0.3nm-10.0μm ZETA电位:+/-500mV Nicomp 380 Z3000系列纳米激光粒度仪是在原有的经典型号380ZLS&S基础上升级配套而来,采用动态光散射(Dynamic Light Scattering,DLS)原理检测分析颗粒的粒度分布,同机采用多普勒电泳光散射原理(Doppler Electrophoretic Light Scattering,DELS)检测ZETA电位。粒径检测范围0.3nm–10μm,ZETA电位检测范围为+/-500mV。其配套粒度分析软件复合采用了高斯(Gaussian)单峰算法和拥有专利技术的Nicomp多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。ZETA电位模块使用双列直插式方形样品池和钯电极,一个电极可以使用成千上万次。另外,采用可变电场适应不同的样品检测需求。既保证检测精度,亦帮用户大大节省检测成本。 技术优势 1、PMT高灵敏度检测器; 2、可搭配不同功率光源; 3、双列直插式电极和样品池,可反复使用成千上万次; 4、钯电极; 5、精确度高,最接近样品真实值; 6、复合型算法:高斯(Gaussion)单峰算法与专利的Nicomp多峰算法自由切换相位分析法(PALS)和频谱分析法(FALS)自由切换 7、快速检测,可以追溯历史数据; 8、结果数据以多种形式和格式呈现; 9、符合USP,CP等个多药典要求; 10、无需校准; 11、复合型算法: (1)高斯(Gaussion)单峰算法与专利的Nicomp多峰算法自由切换 12、模块化设计便于维护和升级; (1)可自动稀释模块专利(选配); (2)搭配多角度检测器(选配); (3)自动进样系统(选配);
    留言咨询
  • 百特BeNano 180 Zeta Pro纳米及Zeta电位仪是BeNano90 + BeNano180 + BeNano Zeta三合一的顶级光学检测系统。该系统中集成了背向+90°动态光散射DLS、电泳光散射ELS和静态光散射技术SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta电位,高分子和蛋白体系的分子量信息等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等领域的基础研究和质量分析与控制。基本性能指标粒径测试原理动态光散射粒径范围0.3nm-15μm★样品量3μL-1mL★检测角度173° & 90° & 12°分析算法Cumulants、通用模式、CONTIN、NNLSZeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cmZeta测试粒度范围2nm-120μm分子量测试分子量范围342Da-2×107Da★微流变测试频率范围0.2-1.3×107 rad/s★测试能力均方位移、复数模量、弹性模量、粘性模量、蠕变柔量趋势测量模式时间和温度粘度测试粘度范围0.01cp-100cp★折光率范围1.3-1.6★系统参数温控范围-15°C-110°C,精度±0.1°C冷凝控制干燥的空气或氮气激光光源50mW高性能固体激光器,671nm相关器最快25 ns采样,最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件检测参数● 颗粒体系的光强、体积、面积和数量分布● 颗粒体系的Zeta 电位及其分布● 分子量● 分布系数PD.I● 扩散系数D● 流体力学直径DH● 颗粒间相互作用力因子kD● 溶液粘度检测技术● 动态光散射● 静态光散射● 电泳光散射相关技术 相关应用
    留言咨询
  • 百特纳米粒度及Zeta电位仪BeNano 180 Zeta是BeNano 180 + BeNano Zeta的二合一光学检测系统。该系统中集成了背向动态光散射DLS、电泳光散射ELS和静态光散射技术SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta电位,高分子和蛋白体系的分子量信息等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等领域的基础研究和质量分析与控制。基本性能指标粒径测试原理动态光散射粒径范围0.3nm-10μm★样品量40 μL – 1 mL★检测角度173° & 12°分析算法Cumulants、通用模式、CONTIN、NNLSZeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cmZeta测试粒度范围2nm-120μm分子量测试分子量范围342Da-2×107Da★微流变测试频率范围0.2-1.3×107 rad/s★测试能力均方位移、复数模量、弹性模量、粘性模量、蠕变柔量趋势测量模式时间和温度粘度测试粘度范围0.01cp-100cp★折光率范围1.3-1.6★系统参数温控范围-15°C-110°C,精度±0.1°C冷凝控制干燥的空气或氮气激光光源50mW高性能固体激光器,671nm相关器最快25 ns采样,最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件 检测参数● 颗粒体系的光强、体积、面积和数量分布● 颗粒体系的Zeta电位及其分布● 分子量● 分布系数PD.I● 扩散系数D● 流体力学直径DH● 颗粒间相互作用力因子kD● 溶液粘度检测技术● 动态光散射● 静态光散射● 电泳光散射相关技术相关应用
    留言咨询
  • BeNano 90 Zeta 纳米粒度及Zeta电位分析仪是BeNano 90 + BeNano Zeta二合一的光学检测系统。该系统中集成了动态光散DLS、电泳光散射ELS和静态光散射技术SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta电位,高分子和蛋白体系的分子量信息等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等领域的基础研究和质量分析与控制。基本性能指标粒径测试粒径范围0.3nm-15μm★样品量3μL-1mL★检测角度90° & 12°分析算法Cumulants、通用模式、CONTIN、NNLSZeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cmZeta测试粒度范围2nm-120μm分子量测试分子量范围342Da-2×107Da★趋势测量模式时间和温度粘度测试粘度范围0.01cp-100cp★折光率范围1.3-1.6系统参数温控范围-15°C-110°C,精度±0.1°C冷凝控制干燥空气或者氮气激光光源50mW高性能固体激光器,671nm相关器最快25 ns采样,最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件检测参数● 颗粒体系的光强、体积、面积和数量分布● 颗粒体系的Zeta电位及其分布● 分子量● 分布系数PD.I● 扩散系数D● 流体力学直径DH● 颗粒间相互作用力因子kD● 溶液粘度检测技术● 动态光散射● 电泳光散射● 相位分析光散射● 静态光散射相关技术相关应用
    留言咨询
  • Nanolink SZ901系列是真理光学在SZ900基础上基于多年的科研成果开发的新一代纳米粒度和Zeta电位分析系统,采用动态光散射(DLS)和电泳光散射(ELS)原理分别进行纳米粒度测量和Zeta电位分析,被广泛应用于有机或无机纳米颗粒、乳液、高分子聚合物、胶束、病毒抗体及蛋白质等样品的颗粒表征及样品体系稳定性及颗粒团聚倾向性的检测和分析。Nanolink SZ901的杰出性能和主要特点包括:◆ 经典90°动态光散射技术测量粒径,测量范围覆盖0.3nm – 15μm◆ 激光多普勒电泳技术用于Zeta电位分析,可准确预知分散体系的稳定性及颗粒团聚的倾向性◆ 加持自动恒温技术的最高功率可达50mW, 波长638nm的固体激光光源,仪器即开即用◆ 独创的激光光源与照明光及参考光的一体化及光纤分束技术◆ 独创的信号光与参考光的光纤合束及干涉技术◆ 集成光纤技术的高灵敏度和极低暗电流(20cps)的光子检测器◆ 常规温度控制范围可达0°C - 90°C, 最高可选120°C, 精度±0.1°C◆ 新一代高速数字相关器,动态范围大于1011 ◆ 冷凝控制 – 干燥气体吹扫技术技术指标:型号Nanolink SZ901测量原理动态光散射(DLS)、静态光散射(SLS)、电泳光散射(ELS)粒径测量角度90°粒径测量范围0.3nm -15μm*粒径准确度优于±1% (平均粒径,NIST可溯源标准样品)粒径重复性优于±1% (平均粒径,NIST可溯源标准样品)粒径测量最小样品浓度0.1mg/ml粒径测量最小样品量3ul*Zeta电位测量范围-600mV - +600mV最大电导率270mS/cm适用Zeta电位测量的粒径3nm – 100μm*电导率准确度±10%分子量范围340Da-2 x 107Da温度控制范围0°C - 90°C (120°C可选)温度控制精度±0.1°C光源集成恒温系统及光纤耦合的最大功率50mW, 波长638nm固体激光器相关器高速数字相关器,自适应通道配置检测器高灵敏度APD系统重量17kg外形尺寸365mm x 475mm x 180mm(LxWxH)注:* 取决于样品及样品池选件
    留言咨询
  • SZ901纳米粒度及Zeta电位分析仪产品介绍: SZ901纳米粒度及Zeta电位分析仪是在SZ900基础上基于多年的科研成果开发的新一代纳米粒度和Zeta电位分析系统,采用动态光散射(DLS)和电泳光散射(ELS)原理分别进行纳米粒度测量和Zeta电位分析,被广泛应用于有机或无机纳米颗粒、乳液、高分子聚合物、胶束、病毒抗体及蛋白质等样品的颗粒表征及样品体系稳定性及颗粒团聚倾向性的检测和分析。 SZ901的性能和主要特点包括:◆经典90°动态光散射技术测量粒径,测量范围覆盖0.3nm – 15μm◆激光多普勒电泳技术用于Zeta电位分析,可预知分散体系的稳定性及颗粒团聚的倾向性◆加持自动恒温技术的功率可达50mW, 波长638nm的固体激光光源,仪器即开即用◆激光光源与照明光及参考光的一体化及光纤分束技术◆ 信号光与参考光的光纤合束及干涉技术◆ 集成光纤技术的高灵敏度和极低暗电流(20cps)的光子检测器◆ 常规温度控制范围可达0°C - 90°C, 可选120°C, 精度±0.1°C◆新一代高速数字相关器,动态范围大于10¹ ¹ ◆冷凝控制–干燥气体吹扫技术技术指标:测量原理动态光散射(DLS)、静态光散射(SLS)、电泳光散射(ELS)粒径测量角度90°粒径测量范围0.3nm -15μm*粒径度优于±1% (平均粒径,NIST可溯源标准样品)粒径重复性优于±1% (平均粒径,NIST可溯源标准样品)粒径测量小样品浓度0.1mg/ml粒径测量小样品量3ul*Zeta电位测量范围-600mV - +600mV电导率270mS/cm适用Zeta电位测量的粒径3nm – 100μm*电导率度±10%分子量范围340Da-2 x 107Da温度控制范围0°C - 90°C (120°C可选)温度控制精度±0.1°C光源集成恒温系统及光纤耦合的功率50mW, 波长638nm固体激光器相关器高速数字相关器,自适应通道配置检测器高灵敏度APD系统重量17kg外形尺寸365mm x 475mm x 180mm(LxWxH)
    留言咨询
  • 动态光散射纳米粒度及zeta电位分析仪原理当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射纳米粒度及zeta电位分析仪技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。动态光散射纳米粒度及zeta电位分析仪性能特点1、高效的光路系统:采用固体激光器和一体化光纤技术集成的光路,充分满足空间相干性的要求,极大地提高了散射光信号的信噪比。2、高灵敏度光子探测器:采用计数型光电倍增管或雪崩光电二极管,对光子信号具有极高的灵敏度和信噪比; 采用边沿触发模式对光子进行计数,瞬间捕捉光子脉冲的变化。3、大动态范围高速光子相关器:采用高、低速通道搭配的结构设计光子相关器,有效解决了硬件资源与通道数量之间的矛盾,实现了大的动态范围,并保证了相关函数基线的稳定性。4、高精度温控系统:基于半导体制冷技术,采用自适应PID控制算法,使样品池温度控制精度达±0.1℃。5、数据筛选功能:引入分位数检测异常值的方法,鉴别受灰尘干扰的散射光数据,并剔除异常值,提高粒度测量结果的准确度。6、优化的反演算法:采用优拟合累积反演算法计算平均粒径及多分散系数,基于非负约束正则化算法反演颗粒粒度分布,测量结果的准确度和重复性都优于1%。纳米粒度及zeta电位分析仪测量纳米粒度及zeta电位分析仪是表征分散体系稳定性的重要指标zeta电位愈高,颗粒间的相互排斥力越大,胶体体系愈稳定, 因此通过电泳光散射法测量zeta电位可以预测胶体的稳定性。动态光散射纳米粒度及zeta电位分析仪原理带电颗粒在电场力作用下向电极反方向做电泳运动,单位电场强度下的电泳速度定义为电泳迁移率。颗粒在电泳迁移时,会带着紧密吸附层和部分扩散层一起移动,与液体之间形成滑动面,滑动面与液体内部的电位差即为zeta电位。Zeta电位与电泳迁移率的关系遵循 Henry方程,通过测量颗粒在电场中的电泳迁移率就能得出颗粒的zeta电位。纳米粒度及zeta电位分析仪性能特点1.利用光纤技术集成发射光路和接收光路,替代传统电泳光散射的分立光路,使参考光和散射光信号的传输不受灰尘和外界杂散光的干扰,有效地提高了信噪比和抗干扰能力。2.先对散射光信号进行频谱预分析,获取需要细化分析的频谱范围,然后在窄带范围内进行高分辨率的频谱细化分析,从而获得准确的散射光频移。3.基于双电层理论模型,求解颗粒的双电层厚度,获得准确的颗粒半径与双电层厚度的比值,再利用小二乘拟合算法获得精确的Henry函数表达式,进而有效提高了纳米粒度及zeta电位分析仪的计算精度。Henry函数的取值:当双电层厚度远远小于颗粒的半径,即ka1,Henry函数近似为1.5。双电层厚度远远大于颗粒半径时,即ka1,Henry函数近似为1.0。使用小二乘曲线拟合算法对Wiersema计算的精确Henry函数值进行拟合, 得到优化Henry函数表达式.强大易用的控制软件ZS-920系列纳米粒度及zeta电位分析仪的控制软件具有纳米颗粒粒度和zeta电位测量功能,一键式测量,自动调整散射光强, 无需用户干涉,自动优化光子相关器参数,以适应不同样品,让测量变得如此轻松。控制软件更具有标准化操作(SOP)功能,让不同实验室、不同实验员间的测量按照同一标准进行,测量结果更具有可比性。测量完成自动生成报表,以可视化的方式展示测量结果,让测量结果一目了然。动态光散射纳米粒度及zeta电位分析仪的技术指标
    留言咨询
  • 光散射法可见异物伞棚灯产品特点:YH-OFM-0301型光散射法可见异物分析仪是由胤煌科技公司自主设计研发生产,主要用于注射液(安瓿瓶、西林瓶)中的可见异物(玻璃屑、金属屑、纤维、毛发、白点、白块等)的自动检测,并出具相应的检测报告。采用手动单只进样方式,通过高速旋转样品,并进行动态图像采集和分析,从而检测样品中的可见异物,完全满足《中国药典》2020版通则收载的光散射法检测要求。仪器可通过可见异物标准粒子进行标定,从而确保检测精度的准确性。软件具备权限管理和审计追踪功能,并可导出和备份数据和报告。光散射法可见异物伞棚灯性能特点:• 完全满足《中国药典》2020版通则收载的光散射法检测要求;• 可检测西药、中成药和其他生物制品;• 采用双光源系统照射检测,有效保证了样品中杂质的显现;• 采用高分辨率远心镜头,采样图像清晰,采样和图像处理速度高达125f/s。• 可将待检测样品建立成独立的数据库并可备份保存,有效的进行数据存储和后期调用;• 可采用标准粒子进行仪器校正,保证仪器使用的长久性;• 历史检测结果可保存成独立报告,方便打印;• 检测过程图像全程显示,并可保存检测视频,方便用户后期进行报告追溯;• 全中文操作页面,操作简单方便,检测过程可实时观察;• 检测样品规格可覆盖安瓿瓶和大部分的西林瓶;• 待测样品可进行手动进样检测方式,采用机电一体化设计,有效保证样品放置稳定性;• 具备三级权限管理与工作日志功能,符合国家数据完整性要求,并可对工作日志进行导出为PDF文档,方便用户进行审核;• 可选配不同的安装固定座以满足不同规格样品的检测;技术参数:• 检测光源:双光源检测系统• 分辨率:1920×1280• 检测瓶规格:1ml~20ml安培水针剂;1ml~30ml西林瓶(特种规格需咨询定制)• 检测速度:1~2只/分钟 • 检测分辨率:10um以上标准微粒• 环境温度:室温-50.0℃• 相对湿度:不大于65%• 标准粒子大小:10ml规格40μm和60μm• 电源功率:220V±10% AC 50Hz 80W
    留言咨询
  • NS-90Z Plus纳米粒度及电位分析仪产品介绍:NS-90Z Plus纳米粒度及电位分析仪是珠海欧美克仪器有限公司在成功引进和吸收马尔文帕纳科 (Malvern Panalytical)纳米颗粒表征技术后,在上一代NS-90Z的基础上进一步优化了光学电子测量技术和分析性能的一款新产品。NS-90Z Plus具有更优越的粒度和电位分析功能,能满足广大纳米材料、制剂开发和生产用户的颗粒粒度和Zeta电位的测试需求。NS-90Z Plus纳米粒度及电位分析仪采用动态光散射技术测量粒子和颗粒的粒度,采用电泳光散射技术测定颗粒Zeta电位和电位分布,同时兼有静态光散射技术用于测定蛋白质与聚合物等的分子量。NS-90Z Plus融合马尔文帕纳科恒流模式下的M3-PALS快慢场混合相位检测分析技术,提升了仪器的电位分析性能,升级了兼容多种样品池 (选配) 功能,可分析样品浓度和粒度范围也得到了明显提升。与此同时,仪器广泛采用全球化供应链的优质光电部件及Scrum软件迭代升级开发模式,使其具有高品质并能随用户需求变化升级管理和报表功能。进口雪崩式光电二极管(APD)检测器、He-Ne气体激光器光源和高性能相关器等优质硬件,加上精确的内部温控装置、密闭光纤光路设计以及先进的软件算法,共同保障了数据的高重现性、准确性和灵敏度。NS-90Z Plus支持SOP标准化操作,具有兼容CFDA GMP《计算机化系统和确认与验证》要求的审计、权限管理及电子签名功能以及具有测试数据质量智能反馈和优化建议,方便用户使用。工作原理:NS-90Z Plus纳米粒度及电位分析仪在一种紧凑型仪器中集成了三种测试技术:动态光散射技术NS-90Z Plus 纳米粒度及电位分析仪使用经典的90°角动态光散射(Dynamic Light Scattering/DLS)技术来测量粒子和颗粒的粒度。该技术利用光电检测器测量样品中粒子由布朗运动所产生的散射光强涨落信号,通过数字相关器计算得到相关函数(Correlation Function)以分析颗粒的扩散速率,再以斯托克斯-爱因斯坦(Stokes-Einstein)方程计算出颗粒的粒径与分布。本技术所测量的粒径为流体动力学等效直径,通过相同扩散速率的硬球进行等效直径计算而得。动态光散射法也称为光子相关光谱法(Photon Correlation Spectroscopy/PCS)。NS-90Z Plus动态光散射光路图电泳光散射技术 NS-90Z Plus使用电泳光散射(Electrophoretic Light Scattering/ELS)技术测量颗粒滑移层的Zeta电位。颗粒在人为施加的电场作用下做电泳运动,其电泳运动速率和Zeta电位直接相关,以亨利方程进行表述。NS-90Z Plus使用恒流模式下的快慢场混合激光多普勒相位分析法(Mixed mode measurement, phase analysis light scattering/M3-PALS),成功解决了毛细管电渗对测试的影响,并且在一次测试过程中同时得到Zeta电位平均值和电位分布曲线。电泳光散射技术可测量最大粒径至100μm左右的样品的Zeta电位 (取决于样品属性及制备) 。Zeta电位的概念图NS-90Z Plus电泳光散射光路图静态光散射技术 NS-90Z Plus纳米粒度及电位分析仪使用静态光散射(Static Light Scattering/SLS) 技术以非侵入式表征溶液及胶体中的蛋白质单体、聚集体或聚合物等粒子的摩尔质量,即分子量。在德拜法分子量计算的描述中,粒子产生的散射光强度正比于重均分子量的平方以及粒子浓度。通过使用德拜法测量一组浓度梯度的样品静态散射光强度,可以计算蛋白质与聚合物的分子量。与动态光散射技术不同的是,静态光散射技术是测量一段时间内散射光的平均强度。分子量单位为 Da(Dalton) 或g/mol。NS-90Z Plus静态光散射德拜图法分析纳米粒子分子量用途: NS-90Z Plus纳米粒度及电位分析仪是一款高性价比的纳米颗粒粒径和纳微米颗粒Zeta电位的表征仪器,适用于对粒度和电位分布表征有较高灵敏度需求的材料分析,以及需要与使用90散射角粒径测试系统结果相同的应用。该仪器适用于对分子、蛋白质、聚合物、胶体、乳液、悬浮液及各种复杂配方制剂体系等样品的测试分析。典型应用:&bull 胶体和乳液表征&bull 药物分散体系、乳液和疫苗等制剂配方和工艺开发&bull 脂质体和囊泡的开发&bull 蛋白质及其聚集体的评价&bull 电极浆料及助剂的粒径、分散和稳定性表征&bull 涂覆材料分散性能预测&bull 纳米金等高电导率溶胶的改性&bull 墨水、碳粉、染料和颜料性能改进&bull 优化水处理中絮凝剂的使用&bull 胶体、乳液、浆料稳定性评价&bull 确定多种复杂制剂的混合、均质等加工工艺参数性能特点:【先进的高信噪比光学设计】 NS-90Z Plus纳米粒度及电位分析仪在一台紧凑仪器中集成了电泳光散射、动态光散射和静态光散射三种光学原理技术。通过优化的光学设计、光纤光路传输设计及高性能光源、信号采集和处理硬件,提高了散射光信号识别能力并减少了杂散光干扰,确保了仪器测试结果的高准确性、灵敏度和重现性,拓展了适宜的样品测试范围。动态光散射粒径测量示意图【易使用、免维护的系统设计】 NS-90Z Plus采用密闭式光路设计防止污染,日常使用主机无需维护。采用可替换的多种类可选的比色皿样品池,使用简便,可同时制备多个样品依次检测,效率更高。亦可清洗样品池重复使用,无需复杂的仪器或探测装置的维护。比色皿样品池【高光学性能、稳定且长寿命的气体激光光源】 采用进口高稳定He-Ne气体激光器确保数据的重现性,波长632.8nm,功率4mW。He-Ne气体激光器的光束发散角、单色性、温度电压波动稳定性、相干性皆远优于半导体固体激光器。NS-90Z Plus所使用的气体激光管采用硬封装工艺确保激光管中氦氖气体惰性工作物质终身无损失,激光管寿命达到10年以上,且在生命周期内其光学品质几乎没有变化,确保了测试数据始终可信,且无需用户校准。由于He-Ne气体激光器相干性能显著优于半导体固体激光器,仅需较低的功率即可产生满足测量需求的散射光信号,同时具有更低的杂散光噪声使样品分析灵敏度更高。仪器可在330000:1的动态范围内通过衰减器自适应调节激光强度。【报告可自定义多种参数输出】 NS-90Z Plus具有完备的纳米粒度和Zeta电位分析功能。可以输出Z平均直径、多分散指数PI、各粒径分布峰的峰值粒径和含量等参数,同时可输出体积和数量分布 (使用全范围米氏理论(Mie Theory)计算) 。可输出Zeta电位、电位分布等参数。可自定义报告【高性能检测器】 使用高量子效率(QE)的雪崩式光电二极管(APD)检测器,QE≥80%@632.8nm,灵敏度远高于光电倍增管(PMT)且噪音更低。高成本的优质APD部件保障了仪器卓越的测试性能。APD性能图【研究级数字相关器】 使用高速数字相关器,多于4000通道, 1011动态线性范围,最短采样时间间隔可低至25ns,结合先进的相关算法,最短子测量时间可缩短至1.68s。典型相关曲线示意图【精确的内部控温系统】 独立的帕尔贴循环温控装置可在0-120℃范围内任意设定,升温降温速度快,控制精度最高可达0.1℃,保障测试结果高重现性。【恒流模式的M3-PALS快慢场混合相位检测技术】 NS-90Z Plus融合马尔文帕纳科的M3-PALS技术除了可消除电渗影响外,新升级的恒流模式下还实现了更高电导率样品测试的可能。恒流模式能有效缓解电极极化的影响,与可切换的高频、低频混合分析模式一起,使得结果重现性更好,准确性更高,且可获得电位分布的信息。相比上一代产品,NS-90Z Plus能满足具有更高电导率的样品的Zeta电位和电泳迁移率测试,同时可以提高电位样品池的使用次数。快慢场混合相位检测Zeta电位分布、相位、频移及电压和电流图【升级的专家指导功能提升测试水平】 NS-90Z Plus测试后会在数据质量指南模块下自动生成智能化专家指导意见,为如何进一步优化测试或样品处理提供可行方案建议。该技术可以同时协助用户快速判读更准确的粒度、Zeta电位和电位分布结果,有利于减少测试数据的错误,及时发现和改善因方法或环境发生变化而引起的测试质量变化。数据质量指南【具有符合CFDA GMP《计算机化系统和确认与验证》要求的审计、权限管理与电子签名等功能】用户权限配置和管理功能示意图审计追踪功能示意图【功能丰富的软件优化用户体验】 提供标准化操作程序(SOP)简化常规测量;自动配置各种样品的最佳硬件和算法设置,亦可手动设置;操作简单,无须准直、校正或额外保养;智能化,可自动判断数据报告的质量并给出优化建议。1. 使用先进SCRUM软件迭代 开发模式,基于当前主流软件开发技术的新颖界面设计,操作简单易用,可根据行业应用和法规变化不断升级软件以与之匹配。2. 全自动硬件设置和测量:只需最简单的培训即可设置仪器,包括样品池位置、数据记录、分析和结果显示。电位测试的设置界面(部分)及分析模型选择示意图3. 支持SOP标准化操作程序,避免了测试操作和参数设置的不一致,从而提高数据的重现性。 SOP标准化操作程序4. 智能化测量数据的系统评估:仪器分析软件可根据测试条件和结果自动智能判断数据报告的质量,并针对质量不佳的测试给出改善建议。包含测试报告的质量评价、问题产生的原因、如何使用这些数据、如何改进这些数据等等。5. 打印或屏幕显示报告使用简单;含报表设计器,只需在指定的位置选择所需的结果图表,就可根据不同的需要定制不同的报告。自定义报表功能演示6. 样品数据和结果存储在测量文件中,方便进行数据的比较。7. 数据分析:数据以图形或表格的形式呈现且可一键导出;多种分析模式可供选择,以适合包括单分散样品、宽分布样品在内的多种样品测试;具有多种数据分类、分组、排序、筛选、统计和趋势分析功能。Z-均粒径值趋势图8. 具有完善的介质粘度数据库,并可根据给定的温度自动计算常见缓冲体系的粘度。介质粘度数据库典型测试结果:1. NS-90Z Plus良好的重现性——60nm标号乳胶微球标样 (Thermal,标称值:62±3nm)2. NS-90Z Plus提升了粒径上限分析性能——10μm标号标样的测试**:采用微毛细管样品池进行粒度分析。3. NS-90Z Plus卓越的分辨力——60nm、200nm双标样混合样品4. NS-90Z Plus电位和电位分布的测量——ZTS1240电位标样 可用于粒径测试 可用于Zeta电位测试 可用于分子量测试标配附件:12mm方形聚苯乙烯样品池(DTS0012) 可替换型,无污染最少样品量1mL适用于水或乙醇作为分散介质的粒度测试可搭配可选的通用“插入式”样品池套件(ZEN1002)用于Zeta电位测试折叠毛细管样品池(DTS1070)可替换型,无污染使用扩散障碍法时,可实现最少样品量20μL的测试适用于水或乙醇作为分散介质的Zeta电位测试可使用标准化的微量无渗鲁尔接头,搭配MPT-3自动滴定仪(ZSU1001)使用恒流模式下可用于测试数百次低电导率样品12mm方形玻璃样品池(PCS8501) 最少样品量1mL玻璃材质,适用于绝大多数水性或非水性溶剂或介质的测试可选配附件:微毛细管样品池(ZSU1002)由样品池基座和可替换型方形微毛细管组成最少样品量3μL可更准确地测试1μm以上的颗粒粒径测量上限最高可拓展至15μm通用“插入式”样品池套件(ZEN1002)最少样品量0.7mL可搭配12mm方形聚苯乙烯样品池(DTS0012)用于水性样品的测试可搭配12mm玻璃样品池(PCS1115)用于水性或非水性样品的测试便于多样品同时制样,加快测试流程高浓度Zeta电位样品池套件(ZEN1010)适用于无法稀释或高浓度的水性样品的测试可搭配MPT-3自动滴定仪(ZSU1001)使用技术参数:【粒径】1. 测量范围*:0.3nm - 10μm (取决于样品)2. 测量原理:动态光散射法(DLS)3. 重复性误差:≤ 1% (NIST可追溯胶乳标样)4. 最小样品容积*:20µ L5. 最小样品浓度:≤ 1mg/mL (取决于样品)6. 最高样品浓度:40% w/v (取决于样品)7. 最小子测试时间:1.68s【分子量】8. 分子量测量范围: 980 - 2×107 Da (取决于样品),静态光散射德拜法342 - 2×107 Da (取决于样品), 动态光散射计算【Zeta电位】9. Zeta 电位范围:无实际限制10. 适用测试的粒径上限:不小于100μm (取决于样品)11. 最大电泳速率:>+20μ.cm/V.s / <-20μ.cm/V.s12. 测量原理:电泳光散射法(ELS)13. 最高样品浓度:40% w/v (取决于样品)14. 最小样品容积:20μL15. 最高样品电导率:260mS/cm16. 检测技术:快慢场混合模式相位分析(M3-PALS),恒流模式【系统】17. 激光光源:高稳定He-Ne气体 激光器,波长632.8nm,功率 4mW。18. 整机激光安全:I类19. 检测角度: 90,1320. 检测器:雪崩式光电二极管(APD)检测器,QE80%@632.8nm21. 相关器:采样时间 25ns - 8000s,多于4000通道,1011动态线性范围22. 冷凝控制:干燥氮气或空气吹扫 (需外接气源)23. 温度控制范围:0 - 120 ℃24. 温度控制最高精度:± 0.1 ℃25. 具有兼容CFDA GMP《计算机化系统和确认与验证》的审计、权限管理及电子签名功能【重量与尺寸】26. 主机尺寸:322×565×245 mm (W×D×H)27. 主机净重:19 kg【运行环境】28. 电源要求: AC 100 - 240V, 50 - 60Hz,4.0A29. 功率:最大值100W,典型值45W30. 推荐计算机最低配置: Intel Core i5 2.5Ghz及以上,4GB内存,250G硬盘,显示分辨率1440×900 32bit及以上31. 计算机接口: USB 2.0或更高32. 推荐操作系统: Windows 10或Windows 11专业版33. 环境要求:温度10 - 35℃,湿度:35 - 80%, 无冷凝*可选微毛细管样品池扩展粒度分析上限至15μm的样品,最小样品量仅需3μL.**尽管我们已竭力确保本材料中信息的正确性和完整性,仍保留随时更改本材料中任何内容的权利。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制