当前位置: 仪器信息网 > 行业主题 > >

地质演化

仪器信息网地质演化专题为您整合地质演化相关的最新文章,在地质演化专题,您不仅可以免费浏览地质演化的资讯, 同时您还可以浏览地质演化的相关资料、解决方案,参与社区地质演化话题讨论。

地质演化相关的资讯

  • 太赫兹光谱或成为评价地质演化过程的新方法
    流体包裹体是研究矿物演化的重要手段之一。最近,中国石油大学(北京)油气光学探测技术北京市重点实验室的宝日玛副教授利用太赫兹时域光谱技术对石盐体系进行了检测,根据石盐矿物的太赫兹波吸收系数随温度的变化关系,总结出石盐矿物的早成岩期、晚成岩期和近似变质阶段的成岩演化过程,实现了地质成岩成矿的太赫兹光谱表征与评价(如图1所示)。相关成果以“地质成岩成矿演化过程的太赫兹光谱研究”为题发表在近期出版的2015年第8期《中国科学: 物理学 力学 天文学》。  研究表明,盐?水体系中的流体包裹体包含了在自然界中保留的主要流体包裹体类型,能够提供古流体组成的物理化学信息。温度是成岩环境的重要因素之一,通过测试包裹体在成岩过程中的温度影响,能够为矿物演化评价提供详细的信息。  该项研究基于太赫兹光谱能够灵敏反映化合物结构与环境的指纹特性以及快速无损检测的特征,首次应用太赫兹时域光谱技术研究了不同温度生长的石盐晶体的光学性质,得到了石盐晶体的太赫兹吸收谱,建立了石盐矿物在温度环境下的演化模型,总结出石盐矿物的成岩过程,并通过理论模拟进一步验证了演化模型的正确性。  这一研究结果表明太赫兹技术可以成为地质成岩成矿演化过程评价的新方法,有望为环境演化、岩盐矿产成矿规律研究和含盐盆地地质成岩成矿演化过程的评价提供新的参考信息。
  • 我国科学家发现超临界地质流体演化新过程和机制
    流体就像地球内部的“血液”,对于物质和能量的传输发挥重要作用。尤其是在地球深部的高温高压条件下,所形成的超临界地质流体,具有复杂的成分和结构、超常规的物理化学活性,可以促进地球深部物质循环,迁移元素富集成矿。然而超临界流体实验研究难度很高,目前国内外对超临界流体的演化行为仍严重缺乏了解。  在国家重点研发计划“变革性技术关键科学问题”重点专项的支持下,中国科学技术大学倪怀玮教授团队利用水热金刚石压腔原位观测了硅酸盐-水体系超临界流体随温度和压力降低而发生的相分离过程,首次发现超临界流体旋节分解和熔体网络形成机制,旋节分解机制可以极大地提高熔体和流体相分离的效率,熔体网络结构有利于矿物结晶时同时捕获不同比例的硅酸盐熔体和富水流体形成一系列成分有别的流体包裹体,揭示了一种全新的超临界流体演化机制,对岩浆热液矿床的形成具有重要指导意义。
  • 中德人类演化与科技考古联合实验室成立
    5月22日,由中国科学院古脊椎动物与古人类研究所、中国科学院研究生院和德国马普进化人类学研究所共建的人类演化与科技考古联合实验室在京挂牌成立。中科院古脊椎所研究员高星在主持会议时表示,这标志着酝酿已久的实验室建设和相关合作研究取得了实质性的进展。古人类学家吴新智院士表示,这一实验室的建立将会使更多的现代科技手段用于人类演化和科技考古研究的探索,这也是该领域的发展趋势。 据了解,该联合实验室的宗旨是:通过建立实验与技术的共享平台,有效整合和利用相关单位的资源、人才和技术优势,系统运用现代科技手段,开展人类演化与科技考古研究。促进自然科学和人文学科的交叉与协作,加强国际合作与交流,在现代人类起源、演化过程与机制、农业起源、文明起源等重大课题方面取得创新与突破,提高我国相关领域的实验条件、研究水平和学术影响力。 中科院研究生院教授王昌燧介绍了联合实验室规划、研究方向和运行模式。他表示,联合实验室的建设目标是在短期内成为中国科学院重点实验室,10年内建成具有国际影响的国家重点实验室,成为具有国际领先水平的人类起源、演化及科技考古研究中心和高端人才的培养基地。 按照联合实验室的宗旨和学术方向,其实验与研究单元规划为:石器技术与功能分析、古代DNA分析、环境考古、同位素与古代食谱分析、古代残留物分析、动物考古等。随着学科的发展,将适度拓展研究领域、组建新的实验室单元。 按照合作协议,中德双方在资金、设备和材料方面作等同的投入与贡献。德方在古代DNA和同位素分析仪器设备方面提供实质性的支持。联合实验室挂靠中国科学院古脊椎动物与古人类研究所并与研究生院共同管理;实验室主任由三方代表轮流担任;成立学术委员会,对实验室的学术方向和运行过程提供建议与指导。 德国马普学会代表、著名分子遗传学家Svante Paabo介绍了古代DNA分析在尼安德特人研究中取得的进展,并介绍了德中合作的计划与前景。挂牌仪式后,来自中科院地质所、研究生院、古脊椎所、马普学会、加拿大皇家安大略博物馆、加拿大西蒙弗雷泽大学的各领域专家分别作了相关领域的学术报告。
  • 2100 | 末次盛冰期以来长江中游沉积环境驱动的地下水流系统演化
    地下水是水文循环的重要组成部分,广泛用于饮用水、工农业活动以及战略储备。然而,人类活动的加剧(如水利工程建设、地下水过度开采、农药和生活污水排放)以及天然劣质地下水在大型流域中的广泛分布,导致地下水环境恶化。因此,水资源的合理管理和水环境的有效保护至关重要,基于地下水流系统(GFS)理论,全面理解地下水流模式(即更新速率、流径及演化趋势)有助于准确评估水文通量和预测污染物分布。汉江平原是长江流经三峡后第一个接收沉积物的大型河湖盆地。复杂的沉积环境、地下水-地表水强烈相互作用以及人为改造自然环境的共同作用,形成了汉江平原独特的GFS格局。了解汉江平原地下水循环演化及其控制机制,对于促进GFS的实际应用和该地区地下水资源保护具有高度紧迫性和挑战性。基于此,在本研究中,来自中国地质大学(武汉)的研究团队在汉江平原腹地和过渡区进行了相关研究,旨在:(1)基于沉积物粒度特征、粘土孔隙水稳定同位素和古气候指标重建汉江平原第四纪含水层系统的沉积环境;(2)深入理解末次盛冰期(LGM)以来沉积环境驱动的GFS演化模式。作者于2015年和2017年在汉江平原腹地和过渡区钻了两个钻孔G01和G05,深度分别为200 m和185 m。从钻孔中收集沉积物样品,分析其粒度分布,地球化学和矿物成分。并从钻孔G01和G05中分别采集了19个和17个粘土样品,利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取粘土孔隙水,并进一步分析其δ18O。江汉平原第四纪沉积相、河系和主要钻孔分布。【结果】G01(a)和G05(b)钻孔孔隙水δ18O、沉积物OSL年龄、粘土矿物和地球化学指标的垂向分布以及第四纪古气候演化阶段。古气候阶段G01和G05钻孔孔隙水δ18O值、 粘土矿物和沉积物地球化学指标。【结论】基于水文地质条件、粒度分布特征、沉积物年代学、古气候指标和现存地下水年龄等综合分析,阐明了江汉平原沉积环境驱动的GFS演化模式。该研究的主要发现总结如下:在江汉平原第四纪含水层沉积环境的演化历史中,沉积相主要为河流相、湖泊相和河湖相,由中深层含水层的粗粒相过渡到浅层含水层的细粒相。这意味着水动力条件逐渐减弱并趋于稳定。此外,湖泊相沉积层厚度向平原腹地方向增加。自LGM以来,江汉平原气候演化和沉积相之间具有一定的耦合关系。沉积环境从LGM期间深下切侵蚀环境转变为末次冰消期(LDP)快速冲填粗粒沉积物的河流相环境,然后转变为全新世暖期(HWP)具有细粒沉积物的稳定湖泊相环境。这些变化与长江水位的波动密切相关。基于江汉平原现存地下水年龄的分布,自LGM以来,GFS的演化模式可分为三个阶段。阶段I(22-13 ka B.P.),长江水位急剧下降造成的强水势差增加了地下水的驱动力,极大促进了该阶段区域GFS充分发展,其环流深度达到第四纪底部。随着阶段II地下水驱动力的快速削弱(13-9 ka B.P.),区域GFS再循环深度下降至深层含水层上部,而阶段I的区域GFS逐渐深埋于盆地中。作为阶段III(9 ka B.P.至今)稳定在低水位地下水驱动力,阶段I和阶段II的区域GFS保存在盆地深处,被认为是一个停滞系统(地下水年龄在10 -20 ka之间)。此外,区域GFS(地下水年龄为4-10 ka)和中间GFS(地下水年龄为1-6 ka)共同被认为是稳定体系。随着微地形的充分发育,垂直于河流方向的浅层地下水流形成了活跃的局部GFS(地下水年龄 100 a)。
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)
  • 生物地质与环境地质国家重点实验室建设通过验收
    5月11日,生物地质与环境地质国家重点实验室建设顺利通过科技部组织的专家验收,标志着该实验室正式进入运行期。   验收专家组组长、西北大学翟明国院士一行9人,科学技术部基础研究司副司长崔拓、科学技术部基础研究司基地建设处处长周文能、科学技术部基础研究管理中心二处副处长杨晓秋、教育部科技司基础处副处长明媚,湖北省科技厅副厅长郑春白等,中科院院士殷鸿福,校党委书记郝翔、副校长郝芳,生物地质与环境地质国家重点实验室全体工作人员参加验收会议。   崔拓介绍了国家重点实验室定位与主要任务,并结合本次验收评审会,详细介绍了国家重点实验室评审指标体系和评审要求,希望各位专家为国家重点实验室的建设把好关。   郝芳致欢迎辞。他感谢科技部与教育部、湖北省科技厅长期以来对学校科技创新平台建设工作的大力支持,希望专家们为国家重点实验室建设多提宝贵意见与建议,帮助学校建设好国家重点实验室。   郑春白对生物地质与环境地质国家重点实验室取得的成绩表示肯定,他介绍了省科技厅对国家重点实验室建设的管理和投入,并表示今后将进一步加大对国家重点实验室的支持力度。   杨晓秋就国家重点实验室总体要求、建设验收内容和注意事项等作了详细说明。   验收专家组认真听取了生物地质与环境地质国家重点实验室主任童金南教授的建设报告,查阅了相关资料,与实验室学术骨干和相关人员进行了座谈,现场考察了实验室的科研用房、仪器设备、科研进展及工作氛围等建设运行情况。   验收专家组一致认为,经过两年的建设,实验室圆满地完成建设计划任务书中所规定的各项任务,实现了预期建设目标,同意通过验收。在充分肯定实验室建设期所取得的突出成绩的基础上,专家组建议实验室继续加强海外高层次人才的引进和人才培养,加强生物地质与环境地质的深度交叉与融合,力争早日建设成为地球生物学国际高水平研究中心之一。   童金南表示,实验室将以此次验收作为新的起点,在今后的发展中,将进一步凝练实验室研究方向,加强对高水平的研究人才的吸纳和培养,发挥实验室科技创新引领作用和平台建设服务功能,为我国的地球生物学发展做出更大贡献。   郝翔对实验室顺利通过验收表示祝贺,对专家组以及科技部、教育部、湖北省科技厅长期以来对实验室建设的支持表示感谢。他表示,学校将对实验室的发展给予更大的支持。他希望,实验室在各位专家的指导下,进一步凝练方向,集中资源做出特色,把实验室建设成为高水平的科研平台和拔尖创新人才的培养基地。   明媚讲话。她充分肯定了实验室在科研、人才队伍建设、国际学术交流等方面的工作,指出重点实验室要充分利用高校的优势资源,推动拔尖创新人才的培养,并表示教育部将大力支持国家重点实验室的发展。   周文能讲话。他对实验室通过建设验收表示祝贺,他强调,重点实验室建设要在突出特色的同时,注重科研水平的提升,进一步明确定位,凝练学科方向,大力吸引高水平领军人才,结合国家目标和地方需求,不断提升创新能力。   生物地质与环境地质国家重点实验室2011年纳入科技部国家重点实验室建设,致力于从地质时空尺度开展地球科学、生命科学和环境科学交叉前沿领域??地球生物学的研究,其核心是生命与地球环境的相互作用与协同演化,重点探索地球表层系统的生物地质与环境地质事件和过程,目标是构建地球生物学学科体系,在生物与环境协同演化方面取得具有国际影响的系统性原创成果,并为应对社会经济可持续发展所面临的环境恶化和生物危机等重大挑战提供科学依据。实验室新增973项目2项、863课题1项、111项目1项、国家自然科学基金重点项目2项、重大国际合作项目1项。发表SCI论文249篇,高影响因子(IF4)论文29篇,包括以第一完成单位发表的《Science》论文1篇、《Scientific Reports》论文1篇、《Nature Geoscience》论文3篇、《Geology》论文3篇、《Earth and Planetary Science Letters 》论文3篇、《Environmental Science& Technology》论文2篇。作为特邀客座主编组织SCI期刊专辑5部。获得国家科技进步特等奖1项,省部级一等奖3项。实验室主办和承办了5次重要的国际学术会议,推动了我国地球生物学的发展。研究成果被《Science》两次正面评述,入选“2012年度中国高等学校十大科技进展”、“2012年中国科学十大进展”。
  • 宜春烟花实验室满足欧洲烟花检测条件
    3月25日,欧盟烟花认可实验室考察团一行就烟花测试合作对宜春检验检疫局烟花实验室进行了专门访问,详细了解实验室在烟花药剂成分和安全性能检测方面的能力,认为实验室基本满足欧洲烟花标准的检测条件。   今年7月欧盟烟火指令将正式实施,要求所有出口到欧盟国家的烟花爆竹须加贴“CE”标志(欧洲共同市场安全标志)才能进入欧盟市场,企业将为此付出巨额的药剂检测费用。欧盟烟花认可实验室是欧盟授权指定的烟花测试机构,宜春检验检疫局烟花实验室将积极开展与该实验室的沟通联系,争取早日成为其合作伙伴,以降低企业费用,促进我省烟花爆竹出口。
  • 清华大学最新天文观测成果,揭示星系形成演化
    5月5日,清华大学举办新闻发布会介绍,由清华大学天文系牵头的国际团队通过全波段数据,直接探测到早期宇宙中星系周围气体进入星系的详细过程,证实了重元素丰度较高的“循环内流”是驱动星系恒星形成的关键,为理解星系“生态系统”及星系演化迈出重要一步。相关研究成果5月5日在线发表于《科学》。清华大学天文系蔡峥教授团队,通过世界上最大的光学望远镜——“凯克”对距今110亿年的一个巨大气体星云进行了观测。利用凯克望远镜的成像光谱仪——“宇宙网成像器”,清华大学团队成功探测到了星系周围气体的氢元素及多种重元素辐射并进一步计算出重元素的大尺度空间分布。观测表明,星系周围气体已经富含重元素。进一步的光谱和数值模拟分析发现,这些富含重元素的电离气体极为可能是早先被星系中心的黑洞喷射到星系周围,冷却下来后,在引力和环境角动量共同作用下,重新回流入星系,形成“循环冷气体流”。运动学建模进一步表明,循环气体流是朝星系流入的,可以促进和维持恒星形成活动。星系吸积星系外气体,形成恒星的详细过程是当前和未来天体物理学研究的热点。本次发现对星系如何与环境进行物质交换进行了清晰的成像,表明富含重元素的循环气体流可以驱动星系中剧烈的恒星形成活动。该发现为理解星系生态系统、星系形成和演化迈出了关键的一步。未来,结合更大口径、更大视场的光谱巡天望远镜,人们有望揭示星系形成的全貌。
  • 地质地球所火星研究团队关于天问一号火星探测最新研究成果发表
    9月26日,中科院地质地球所火星研究团队召开“祝融号巡视雷达揭秘火星浅表结构”媒体解读会,解读“天问一号”火星探测最新研究成果。   2021年5月15日,我国首次火星探测任务“天问一号”携带的“祝融号”火星车在乌托邦平原南部预选着陆区成功着陆,开启巡视探测工作。乌托邦平原是火星最大的撞击盆地,曾经可能是一个古海洋,预示着火星早期可能存在过宜居环境。这里的地质如何演化?现今具有怎样的地下结构?地下是否存在水或冰?我所联合中国科学院国家空间科学中心和北京大学,利用“祝融号”获得的第一手科学探测数据分析结果,通过最新《自然》论文,报道了围绕这些重要科学问题取得的突破性进展。研究表明,“祝融号”火星车着陆区火表数米厚的风化层下存在两套向上变细的层序,可能反映了约35-32亿年以来多期次与水活动相关的火表改造过程。现今该区域火表以下0-80米未发现液态水存在的证据,但不排除存在盐冰的可能。   详细的火星地下结构和物性信息是研究火星地质及其宜居环境演化的关键依据。我国“天问一号”携带的“祝融号”火星车次表层探测雷达能够对巡视区地下浅层结构进行精细成像,深化我们对乌托邦平原演化、地下水/冰分布等关键科学问题的认识。   “祝融号”火星车搭载的次表层探测雷达是世界上首次在火星乌托邦平原实施的巡视器雷达探测。到目前为止,人类在地外天体上共开展了四次巡视雷达探测。其中,我国嫦娥三号和嫦娥四号分别实现了对月球正面和背面浅表结构的精细探测。美国毅力号和我国“祝融号”火星车于2021年先后开启了火星巡视雷达探测。不同的是,毅力号的探测区域为杰泽罗撞击坑边缘,其实际最大探测深度为15米。“祝融号”火星车探测区域为乌托邦平原南部,雷达频带较宽,其实际最大探测深度达80米。   在最新的研究中,科研人员对前113个火星日、探测长度达1171米的“祝融号”火星车低频雷达数据展开了深入分析,获得了浅表80米之上的高精度结构分层图像和地层物性信息,发现该区域数米厚的火壤层之下存在两套向上变细的层序。第一套层序位于地下约10-30米,含有较多石块,其粒径随深度逐渐增大。距今大约16亿年以来的短时洪水、长期风化或重复陨石撞击作用可能导致了这一套向上变细沉积层序的形成;第二套层序位于地下约30-80米,其石块粒径更大(可达米级)且分布更为杂乱,反映了更古老、更大规模的火表改造事件。基于前人撞击坑统计定年结果推测,这次改造事件可能发生在距今35-32亿年前,与乌托邦平原南部的大型洪水活动有关。   “祝融号”火星车次表层探测雷达的主要目标之一是探测乌托邦平原南部现今是否存在地下水/冰。低频雷达成像结果显示,0-80米深度范围内反射信号强度稳定,介质具有较低的介电常数,排除了巡视路径下方含有富水层的可能性。热模拟结果也进一步表明,液态水、硫酸盐或碳酸盐卤水难以在“祝融号”火星车着陆区地下100米之内稳定存在,但目前无法排除盐冰存在的可能性。   研究所高度重视“天问一号”火星探测的研究工作,在“天问一号”科学探测数据发布后,第一时间组织全所行星科学领域的科研人员,成立所内火星探测研究工作任务团队,开展多学科交叉的优势队伍协同攻关,全面开展开“天问一号”载荷数据的综合分析和研究。此次发表于《自然》的论文文章,是该团队取得的首批研究成果,也是研究所前沿科学联合攻关模式下的新收获。由国家航天局探月与航天工程中心发布的“天问一号”科学探测数据,为本次火星研究工作提供了坚实的数据保障。
  • 中国地质科学院2023年度十大科技进展出炉:涉及光谱一项
    3月2日,在中国地质科学院2024年科技创新工作会议上,中国地质科学院2023年度十大科技进展正式公布。其中,涉及X射线荧光光谱仪科技进展成果一项。中国地质科学院2023年度十大科技进展成果序号成果名称牵头单位主要完成人1西藏陆相火山岩区发现首例高硫化浅成低温热液型金矿中国地质科学院矿产资源研究所陈伟、唐菊兴、宋扬等2大数据研究范式揭示岩浆深部物源时空演化及其成矿制约中国地质科学院地质研究所王涛、童英、郭磊等3青藏高原大型地震断裂带的变形机制中国地质科学院地质研究所李海兵、王焕、张蕾等4华南地壳架构控制关键金属成矿系统的形成和就位中国地质科学院地质研究所张智宇、侯增谦、吕庆田等5西藏南部新生代东西向伸展作用的深部岩浆作用响应中国地质科学院地质研究所曾令森、高利娥、胡古月等6柴达木盆地卤水钾盐迁聚规律与找矿新突破中国地质科学院矿产资源研究所张永生、侯献华、郑绵平等7CNX-808波长色散X射线荧光光谱仪研发与产业化国家地质实验测试中心邓赛文、陶迪、李松等8二氧化碳地质封存与利用场地多尺度精细评价方法中国地质科学院(院部)何庆成、李采、郭朝斌9华北燕辽大火成岩省和哥伦比亚超大陆巨型裂谷系及其资源效应中国地质科学院地质力学研究所张拴宏、赵越、杨振宇等10“化学地球”大科学计划揭示全球化学元素分布循环规律中国地质科学院地球物理地球化学勘查研究所王学求、张必敏、周建等中国地质科学院2023年度十大科技进展成果简介一、西藏陆相火山区发现首例高硫化浅成低温热液型金矿1.创新应用斑岩-浅成低温热液成矿理论,集成遥感高光谱、化探、物探等技术方法手段,首次在西藏多旋回火山深覆盖区发现高硫化浅成低温热液型金矿-鑫龙金矿(矿体视厚度达55米,真厚度约10.5米,平均品位17.97g/t)。2.在外围发现郎美拉中硫型金矿以及鑫龙东铜、茶仑铅银等矿点,证实了该地区存在斑岩-浅成低温热液型铜金成矿系统,为后续西藏陆相火山岩区斑岩-浅成低温热液型铜金矿找矿突破提供重要支撑。二、大数据研究范式揭示岩浆深部物源时空演化及其成矿制约1.创建国内首个岩浆岩数据库及研究平台,核心数据和平台功能在某些方面已优于国际已有数据库。2.编制发布了全球岩浆岩图、亚洲岩浆岩图、深时岩浆岩图等。3.探索创新“数据+编图+研究”三位一体的研究范式,构建了亚洲花岗岩时空演化格架,提出亚洲大陆3种方式、5阶段的聚合模式;通过全球8个典型造山带同位素数据分析与填图,揭示其深部物质架构,量化显生宙巨量地壳生长及其成矿制约,提出造山带分类和物质造山带新概念,丰富地壳生长理论。4成果突显了新的研究范式在解决重大科学问题方面的重要作用。成果发表于 Nature旗下的 Commun. Earth Environ.及 Natl. Sci. Rev.、Geology、Earth Sci. Rev.、GRL、GR等期刊。三、青藏高原大型地震断裂带的变形机制1.首次发现大地震可在地壳浅部含水断层泥中发生熔融作用;确定了龙门山映秀-北川断裂带晚三叠世逆冲-左行走滑的大地震活动,揭示了汶川茂县断裂带存在大地震活动和还原性孕震环境,并确定了新生代时期存在三期不同构造变形阶段,提供了青藏高原东缘不存在下地壳流机制的新证据;发现强震频发的鲜水河断裂带具有长期蠕滑变形行为,提出深部流体促进弱断层局部强化从而诱发地震的新机制。2.评审专家认为成果改变了传统观点,在断层动力学方面提供了新见解,为完善断裂作用理论做出有益贡献。3.成果提高了对大型断裂带变形作用和强震发生机制的认识,为地震危险性评估提供了科学依据,服务支撑国家重大工程建设。4.成果发表在《Geology》《Tectonics》《Earth-Science Reviews》《Geophysics》《Gondwana Research》等刊物上。四、华南地壳架构控制关键金属成矿系统的形成和就位1.聚焦华南陆块,首次开展了大陆尺度的中酸性岩浆岩锆石Hf同位素填图,重新界定了板块及成矿带的边界和重要矿床的空间归属。结合地震波速层析成像结果,刻画了华南陆块呈现新生、古老和再造地壳并置的空间架构,认为新生地壳和再造地壳均形成于元古代和中生代多阶段的不同动力学背景下。与花岗岩相关的W–Sn–Nb–Ta和REE矿床产于再造地壳域,多阶段的地壳改造和中生代地壳高温熔融事件导致这些关键金属元素被释放到壳源岩浆中。与W–Sn矿床相比,REE矿床主要产于有较多新生幔源物质注入的强改造地壳块体中。斑岩/矽卡岩/浅成低温热液型Cu–Au矿床产于富Cu的新生地壳域,而火山岩型U矿和斑岩/层控型Ag–Pb–Zn成矿系统却更多的产于古老地壳域及其边缘。依据构造–岩浆活动史和地壳属性,研究认为江南造山带西南段和南岭以北的三角区是W–Sn–Nb–Ta矿床的勘查远景区,而云开地体是Cu–Au矿床勘查的有利靶区。2.此项研究示范性证明,同位素填图技术方法在刻画地壳物质架构和金属矿床形成、就位等方面具有重要作用。研究成果发表在《Geology》国际地学刊物上。五、西藏南部新生代东西向伸展作用的深部岩浆作用响应1.发现了喜马拉雅造山带首例中新世幔源碳酸质岩浆岩;确定了最老的~30Ma钾镁煌斑岩;揭示了藏南岩石圈顺次部分熔融作用。这些新发现限定了藏南裂谷系的启动不晚于~30Ma,为检验喜马拉雅构造演化与深熔作用的耦合关系提供了关键证据,为解译世界上陆内伸展作用过程中岩石圈深部熔融的精细模式提供了典型实例。2.研究成果发表在《Chemical Geology》《Geological Society of America Bulletin》和《Lithos》等国际主流刊物上。六、柴达木盆地卤水钾盐迁聚规律与找矿新突破1.通过古气候、古构造和Sr同位素物源分析,认为柴达木盆地北部上新世-早更新世古盐湖沉积的含钾盐岩,由反冲构造推至阿尔金山上,再经淋滤溶解形成的含钾卤水储集在阿尔金山麓带砂砾层中,创新完善了“承袭式”成钾理论。2.通过地震剖面解译识别出黑北凹地深部赋存巨厚的砂砾型储卤层,资源所钾盐团队会同柴综院实施“探采一体化”柴钾1井,探获下更新统1021.95m巨厚优质松散砂砾储卤层、稳定涌水量8586m3/d、氯化钾平均含量0.53%的高产工业品位卤水钾矿。大浪滩-黑北凹地有望形成继察尔汗、罗布泊之后中国第3个亿吨级大型钾盐资源基地。3.指挥中心西宁中心创新应用盐湖“反S型”迁聚规律,拓展了马海盐湖老矿区外围找矿新空间。七、CNX-808波长色散X射线荧光光谱仪研发与产业化1.创造性地提出并实现了波谱、能谱和元素分布分析一体化功能。2.首次实现了高端X射线仪器国产化和产业化,拥有完全自主知识产权,整体性能达到国内领先水平,打破了国外高端XRF仪器的长期垄断,可完全替代进口产品,促进了中国高端分析仪器的发展。产品具有制样简单、精度高、绿色环保、能同时进行多元素快速分析等特点,可满足地质调查、钢铁、建材、矿山、新材料等分析领域的需求,实现了Be-U,0.0001%-100%的宽范围无机元素测试。现已成功实现产业化,取得了良好的社会和经济效益,提升了我国在该领域的国际影响力。3.研究成果获中国分析测试协会2023年BCEIA金奖。八、二氧化碳地质封存与利用场地多尺度精细评价方法1.针对咸水层、枯竭油气藏为封存目标的场地,从封存容量及可注入性、盖层封闭性及封存安全、场地建设影响及经济性三个方面,创新了统一的、分阶段二氧化碳地质封存场地选址指标体系,兼具科学性与易操作性,牵头编制形成《二氧化碳地质封存场地评价指标体系》国家标准(报批稿)。2.构建了场地封存性能多尺度评价方法,通过分子-孔隙-岩心-场地多尺度静态-动态综合评价技术体系,有效克服了前期评价与工程实际存在较大误差的难题,研发了自主知识产权的大规模数值模拟软件GPSFLOW,实现了千万级网格规模高效、精细评价,进一步揭示了二氧化碳多场耦合作用下的运移规律,为注入方案设计、实时监测和预测提供了强大的工具。应用于低渗油气藏驱替提高采收率工程取得显著成效。结合我国油气藏实际地质条件,在重大工程场地开展二氧化碳注入与驱替提高采收率试验,提出兼顾经济效益与环境效益的协同优化方案,有效指导实际工程,为国家碳达峰碳中和战略提供了重要的地质科技支撑。九、华北燕辽大火成岩省和哥伦比亚超大陆巨型裂谷系及其资源效应1.在华北克拉通新识别出一个侵位于13.2亿年并由大规模辉绿岩床群构成的燕辽大火成岩省。2.确定华北燕辽与北澳代理姆大火成岩省是被大陆裂解分割开的同一个大火成岩省,建立了华北与北澳克拉通在哥伦比亚超大陆中18~13亿年的长期连接关系。3.首次提出晚前寒武纪全球性黑色页岩系与大火成岩省可能有时空及成因联系,并可作为地层断代标志,为晚前寒武纪地质年代表划分及界限年龄限定提供了新思路。4.首次厘定了哥伦比亚超大陆中形成于14~13亿年,长度15000千米的巨型裂谷系,提出该裂谷系是哥伦比亚超大陆裂解的重要标志,并控制了世界典型超大型稀土矿床的形成,具有较好的稀土及金属成矿潜力。5.成果发表在《EPSL》《Geology》《PR》和《科学通报》等刊物。十、“化学地球”大科学计划揭示全球化学元素分布循环规律1.实施“化学地球”大科学计划, 提出元素大范围迁移和循环理论,制订国际标准6 份;建立覆盖全球1/3陆地面积的地球化学基准网,制作第一张《全球地球化学基准图》,揭示全球关键化学元素分布规律;建立首个化学属性“数字地球”,实现科学数据大众化应用。2.全球地球化学基准委员会主席 David Smith 认为“中国地球化学基准图对科学界具有持久价值,对实现戈尔德施密特厘定地球化学元素分布规律愿景具有重要贡献”。“化学地球”大数据平台受广泛关注,网站点击量达670万次。3.成果涵盖与战略资源、生态环境、全球变化和绿色发展等有关的60个关键元素地球化学基准图,为全球战略资源成矿物质背景、全球土壤碳基准与碳循环、全球重金属风险状况、绿色土地分布等提供了权威科学数据。
  • 一探亿年|地质科学与探索未知世界的电子探针技术 ——访中国地质科学院矿产资源研究所陈振宇研究员
    地球诞生至今,数十亿年演变间蕴藏下浩瀚信息。生命和物种形同过客,不断在岩石和矿物中留下信息,这些信息都吸引着地质学家们不断探索、认识地球的组成和结构,揭开地球及其生物界演变规律。地质科学的快速发展,离不开先进科学仪器技术的助力,电子探针 (EPMA)便是其中一类高端的“常规武器”。近日,仪器信息网走进中国地质调查局所属的中国地质科学院矿产资源研究所,采访了在矿物学和电子探针技术两方面都有深入研究的陈振宇研究员。矿产资源研究所是我国专门从事矿产资源基础研究与应用的公益类科研机构,承担了大量包括战略性关键金属矿产资源在内的矿产资源基础研究与应用方面的重大科研和地质调查项目。陈老师详细分享了他眼中的地质科学,以及促进了地质科学数十年发展的电子探针技术。与“矿物学”和“电子探针”结缘陈振宇回顾道,进入“矿物学”领域要从上大学开始说起。1995年,陈振宇考入中国地质大学(北京),本科学习的专业是无机非金属材料(宝石学),宝石学是矿物学的一个分支,矿物学则属于地质科学的一个分支学科。进入“电子探针”领域则始于1999年在中国地质科学院的硕士研究生阶段,在这里,陈振宇师从我国电子探针领域著名的先驱级人物——周剑雄研究员。同时,陈振宇也成为周老师正式招收的唯一的亲传弟子(当时,地科院招生名额很少,甚至很多知名老师直到退休都没能带学生),硕士毕业后就留在电子探针实验室工作直到现在。中国地质科学院矿产资源研究所陈振宇研究员工作两年后,陈振宇继续攻读在职博士,博士导师是我国著名的矿床地质学家陈毓川院士和王登红研究员,博士期间主要研究内容是中国大陆科学钻探工程(CCSD)钻孔岩心以及苏鲁超高压变质岩的矿物学研究;随后又到北京大学地空学院跟随张立飞教授做博士后,主要工作是新疆西天山超高压变质岩的矿物学研究。虽然在变质岩矿物学方面也取得了一些成果和新认识,但考虑到变质岩矿物学研究在矿产资源研究所属于“非主流”方向,大概十年前就开始转向与花岗岩和伟晶岩有关的矿床矿物学研究。目前,陈振宇主要从事两方面工作:一是矿床矿物学研究,研究内容主要是通过对矿物的详细研究来揭示矿床的成因、寻找可能具有找矿指示意义的信息,以及考察评价矿床的综合利用价值。这些工作,都离不开包括电子探针、扫描电镜、透射电镜等等这些微束分析仪器和技术,这就涉及到另一方面的工作,即微束分析技术的应用及其标准化研究。微束分析技术通过对矿物的显微形貌、结构和成分的分析研究,来揭示矿物的成因机理、形成时的物理化学条件、元素的赋存状态等等,在地质科学中起着非常重要的作用,极大地推动了地质科学的发展。微束分析技术在钢铁、材料、生物等很多领域也发挥重要作用,为了让全国范围甚至全球范围不同厂家、不同实验室的微束分析结果具有更好的可比性和科学性,就需要对微束分析技术及其相关的参考物质进行标准化。在周剑雄老师的引领下,陈振宇从参加工作开始就参与到了微束分析的标准化工作中。目前已负责编写了多项电子探针/扫描电镜相关的国家标准,参与研制了多个电子探针/扫描电镜的标准样品(标准物质)。地质科学:将今论古、见微知著将今论古、见微知著,野外调研是基础地质科学一个很重要的特点是“将今论古、见微知著”。一方面,地质科学涉及到几十亿年的地质演化历史,但地质工作者只能从现今看到的地质现象和采集到的地质样品来研究地质历史上发生的地质事件;另一方面,在野外地质调查研究的基础上,通常还需要在实验室内从细小矿物的尺度甚至是更显微的尺度去研究一块岩石、一个岩体、一个矿床、甚至一个地体的成因和演化过程。矿物是组成岩石和矿床的基本单元,绝大多数矿床的有用组分都赋存在特定的矿物里面。所以,矿产资源研究工作者,需要对矿床中的矿物开展详细的研究工作,主要研究内容包括成因矿物学、找矿矿物学和工艺矿物学等。成因矿物学即研究矿物的成因机制、矿物形成时的物理化学条件等等;找矿矿物学主要研究矿床的一些指示性矿物学特征,并利用这些指示性特征来进一步找矿;工艺矿物学则主要是研究成矿元素的赋存状态、矿石矿物的分选条件等等。野外地质调研实拍(陈老师供图)与其他科研领域相比,除了“将今论古、见微知著”,地质科学还有一个很重要的特点是要开展详细的野外调查工作。陈振宇表示,其室内研究工作都是建立在野外调研的基础上的,没有扎实的野外基础,室内研究工作做的再细致,也是空中楼阁。中国地质科学:近十年蓬勃发展,与国外尚有差距由于担任中国地质学会矿物学专业委员会秘书长、中国矿物岩石地球化学学会新矿物及矿物命名专业委员会秘书,陈振宇有机会在去年参加了由中国科学院和国家自然科学基金委员会联合组织编写的“地质学学科发展战略”。据此次战略研究报告,我国目前的地质科学研究在有些方面,如古生物学、地层学、沉积学、黄土沉积与全球变化、石笋与全球古季风演变、青藏高原隆升、碰撞与成矿规律、华北克拉通破坏、中亚造山带、前寒武纪地质等等处于世界领先地位。另外,从文献计量学角度,最近十年,是我国地质科学蓬勃发展的阶段。2010-2019年我国发表地质相关论文总量位居世界第二,其中2018-2019年已经跃居世界第一。但同时,战略研究报告也指出,我国地质科学与国外还存在不少差距,主要表现在以下四个方面:一是学科质量上的差距,二是地质思维上的差距、三是地质观测、探测和分析技术上的差距、四是地质学领军人物上的差距。电子探针:地质科学的“常规武器”“见微知著”背后的科学仪器陈振宇表示,“见微知著”是地质科学的主要工作之一,所以在地质科学研究过程中利用到的科学仪器种类也比较多。简单划分可分为物理分析和化学分析两大类,常用仪器包括电子探针、扫描电镜、透射电镜、X射线衍射仪、X射线荧光光谱仪、红外光谱仪、拉曼光谱仪,以及各种质谱仪等等。JSM-IT500 扫描电子显微镜资源所实验室使用的几代日本电子电子探针产品,上至下、左至右:JSM-35(840)、JXA-733、JXA-8800R、JXA-8230、JXA-iHP200F资源所目前主要有矿物微区物质组分与结构实验室、同位素地球化学实验室、成矿模拟实验室三个地质实验平台,基本配置了以上提及的仪器品类。以使用率比较高的电子探针为例,资源所在近五十年以来,一共安装了日本电子的五代产品,亲历了日本电子在电子探针产品型号的不断迭代升级,也见证了电子探针技术近五十年的快速发展。五代产品依次为:约1975年购置首台JSM-35(840)、1982年购置JXA-733系列、1999年购置JXA-8800系列、2010年购置JXA-8230系列、2020年购置JXA-iHP200F系列。地质科学的“常规武器”:电子探针技术科学的进步在很大程度上依赖于科学仪器技术的发展。大致上世纪六七十年代,矿物学迎来快速发展,其中一个很重要的原因,就是当时电子探针等微束分析技术的发展,并得到很好的利用。电子探针最早诞生于上世纪50年代末,至上世纪七八十年代便已发展得比较成熟。电子探针的主要功能是用于研究固体物质表面或近表面范围内的元素组成及分布、显微形貌和结构。和其他仪器技术相比,电子探针的主要优势至少有几个方面:一是方便快捷而且相对便宜;二是应用范围广,可以应用于各种固态物质和材料;三是分析方式多样,可以进行点分析、线分析、面分析,获得样品在某一个点的,某一条线的或某一个区域的元素成分变化;四是微区、微量,可以获得微米级范围的元素成分特征,并且能够跟显微形貌和结构相对应;五是分析过程几乎不损坏样品。电子探针进行元素面扫描图像案例地质历史演化过程中的很多信息都记录在矿物这个微小的介质中,电子探针等微束分析技术的应用,使得地质科学可以从更微观的角度去解码矿物中记录的各种信息,从而研究岩石、矿床的成因和地质演化过程,做到真正的“见微知著”。通过微束分析技术的应用,也获得了很多新的找矿信息,可以更方便地找到更多的矿床;另外,也为矿床的开采和利用提供了重要的数据。国内电子探针应用现状:约60%应用于地质科学据介绍,国内所有电子探针仪器中,大概有60%左右是应用在地质科学领域,不少地质类高校学院或研究所都拥有两三台电子探针,这也从另一个方面说明了电子探针在地质科学中的重要性。电子探针在地质科学中的应用面非常广,主要包括矿物学、岩石学和矿床学的应用研究,其中又可以细分很多具体的方面,比如前面提到的成因矿物学、找矿矿物学、工艺矿物学等等。除了地质科学领域,电子探针还主要应用于冶金行业、新材料研发领域(如航空发动机、锂电、汽车等痕量元素检测或轻元素分析等)经过60多年的发展,电子探针分析技术日趋完善。地质科学方面,电子探针初期主要是做矿物的主量元素分析,但目前已经拓延了更多的应用,包括应用于矿物的微量元素分析,还包括用来做一些矿物的地质年龄测定。以往地质测年,主要是用同位素方法测量,电子探针则是通过测母体和子体元素的含量,精确到一定程度,就可以推算地质形成年龄。以往,轻元素定量分析是电子探针的一个弱项,但近些年,随着分光晶体的改进,已经可以开展系列定量分析工作,许多相关团队研究都取得了很好的进展。近年来,国内很多电子探针实验室在微量元素分析、副矿物化学测年、变价元素分析及轻元素分析方面都开展了很好的工作,涌现出了一些年轻的技术研发和应用专家。但同时也看到,有些实验室由于各种原因,仪器购置后并没有得到很好的开发利用。陈振宇负责的电子探针实验室是国内开放程度和利用率最高的电子探针实验室之一,除了为本单位和其他科研院所和高校提供高效高质的技术服务之外,近年来也在金红石、石英的微量元素分析、晶质铀矿的化学定年、含轻元素Be矿物的定量分析及稀土矿物分析等方面开展了卓有成效的工作。近几年,国内电子探针的购置数量以每年十几台的数量在持续稳定增长,总的来说,电子探针现在已经成为地质科学、材料科学中比较高端的“常规武器”。电子探针的标准现状、未来技术趋势标准化现状:我国微束分析标准化工作走在国际前列作为全国微束分析标准化技术委员会副主任委员,陈振宇也分享了以电子探针为代表的我国微束分析标准化情况。全国微束分析标准化技术委员会TC38(前身为全国电子探针分析标准样品标准化技术委员会)成立于1984年,从“TC38”这个数字就可以看出,此标委会是国内成立比较早的一个技术委员会。在标委会人员的共同努力下,于1992年在国际标准化组织ISO下面成立了国际微束分析标准化技术委员会TC202,并由中国担任秘书国和委员会主席,这也说明我国的微束分析标准化工作已走在国际前列。目前全国微束分析标准化技术委员会(包括表面分析分技术委员会)制订的国家标准有100项左右,每年都会开展一些新的标准制订或老标准的修订工作,每年也都会举行一次全国性的微束分析标准的宣贯会议。陈振宇表示,近些年标委会吸收了不少年轻有为并对标准化工作热心的专家,也使得微束分析的标准化工作注入了新的活力。未来在国际标准的制订中,相信也会有更多的中国专家更深入地参与进来,更好地提高我国在微束分析国际标准中的地位。技术发展:场发射电子探针应用、微量元素分析等陈振宇认为,近年来,场发射电子探针越来越普及,但目前场发射电子探针最突出的优点(高空间分辨率和低电压下稳定大束流)还没有被很好的开发利用起来,这可能是未来技术发展的一个方向;另外,微量元素分析、副矿物化学测年、变价元素分析、轻元素分析及稀土元素分析方面虽然取得了一些进展,但仍然还有较大的改进和提高空间;还有软X射线分析谱仪的开发和应用,可能会让电子探针开启一些新的测试模式,包括元素的价态分析等。利用软X射线对玄武岩矿物中Fe-L元素进行面分布分析和化学状态分析陈振宇老师谈电子探针技术发展关于发展建议,一方面是继续深入研究微量元素分析、副矿物化学测年、变价元素分析、稀土元素方向及轻元素分析等方面的新技术,并尽可能使新技术规范化、标准化,研发相应的标准样品;另一方面是很多实验室应该更好地掌握常规的、日常的分析方法,要把仪器充分运转起来,发挥应有的作用(国内目前大概有两百多台电子探针,但整体利用情况并不是很好)。后记近十年来,国内电子探针市场规模得到快速发展,当前市场保有量约200多台,而据悉,日本全国在多年前电子探针保有数量已超千台。与此同时,在透射电镜尤其是高端球差校正等方面,无论是增长还是保有,中国市场近年来已远超日本。各种类型的扫描电子显微镜数量更是达到惊人的五六千台之多,而扫描电镜在元素定量分析能力方面的短缺已开始为许多实验室的深刻认识,这就促使了许多实验室开始有了引进电子探针仪的想法,2021年度预计将有25个用户购买电子探针,个别单位甚至将拥有4台电子探针。这反映出电子探针的巨大增长潜力之余,更反映出电子探针在地质、冶金、新材料等基础技术领域的应用发展获得了更多的关注与重视。
  • FT-ICR MS助力石油地质样品精细组成分析
    中国石化石油勘探开发研究院无锡石油地质研究所引进了傅立叶变换离子回旋共振质谱(Fourier transform ion cyclotron resonance mass spectrometry, FT-ICR MS),该仪器超导磁体强度为12T(特斯拉)。FT-ICR MS具有超高的分辨率( >200 万)、质量准确度(<0.3×10-6),可以精确确定石油分子中所含的C、H、O、N、S及它们主要同位素组成,结合所配置的电喷雾电离源(ESI)、大气压光电离源(APPI)及大气压化学电离源(APCI),该仪器可以在分子层面上实现对石油地质样品弱极性的多环芳烃、含硫化合物及中、高极性的NSO杂原子化合物的精细组成分析。与传统的气相色谱质谱仪(GCMS)相比,该仪器可以突破样品沸点限制,对未经分离的原油样品进行直接分析,大大拓展了对有机大分子极性化合物的检测范围,可以对分子量在100~10 000 Da 的极性化合物进行检测,获取复杂有机混合物中化合物类型、分子式、相对丰度及分子缩合度(DBE)等信息。在石油勘探开发研究领域,该技术主要应用于:(1)石油组学研究,包含非烃、沥青质中NSO等化合物组成剖析;(2)油气田排出水中有机质组成分析;(3)烃源岩沉积环境及热演化特征研究;(4)油源对比和油气运移示踪研究;(5)高酸稠油成因和次生改造研究;(6)非常规领域中页岩油、致密油成藏示踪研究等。由于石油地质样品中的NSO杂原子化合物包含有丰富的地质地球化学信息,该技术将极性化合物的检测范围拓展到分子量更大、极性更强的石油分子,研究成果推动了大分子非烃地球化学学科的发展,理论和应用价值巨大;同时,该技术形成的一些创新性成果已成功应用于常规和非常规油气勘探开发领域。日前,中国石油大学(北京)史权教授在仪器信息网网络讲堂做演讲报告,题为“面向分子炼油的质谱分析技术”,详细视频可点击此处观看。
  • 同位素地质研究专用仪器成功研发
    我国大型高端质谱仪器一直以引进为主,受国外技术封锁,一些用于高精度同位素分析和核科学研究的质谱仪器引进十分困难,且价格高昂。  为了推动我国高端质谱仪器的自主研发,针对目前宇宙样品及地球化学珍贵样品稳定同位素、稀土元素微区原位分析的难题,国家重大科学仪器设备开发专项设立“同位素地质学专用 TOF-SIMS(飞行时间二次离子质谱)科学仪器”项目,由中国地质科学院地质研究所国家科技基础条件平台北京离子探针中心牵头实施。  据了解,根据记者掌握的情况,项目研制的两台分别用于稳定同位素分析和稀土元素分析的TOF-SIMS-SI和TOF-SIMS-REE仪器,将为岩石成因学、矿床成因学、地球环境、气候变化、月球及行星演化等热点研究领域提供最先进的技术支撑。  专家称,用于高精度同位素丰度分析的TOF-SIMS 是一项全新的技术,它的成功研制,将是质谱学技术划时代的里程碑,同时将进一步推动地球化学和宇宙化学向更微的空间发展。像 SHRIMP 的诞生一样,这项新技术的诞生将带来一系列重要的科学成果,特别是将直接为我国探月工程在获得月球样品后的分析研究工作奠定坚实的技术基础。  据介绍,经过近4年的技术攻关,北京离子探针中心联合中国科学院大连化学物理研究所和吉林大学等单位完成了两台TOF-SIMS仪器的整体设计,对一次离子源等关键部件进行了设计加工和单独调试,并完成了TOF-SIMS专用系统控制软件和数据处理软件的开发和优化。  自2014年8月起,项目组开始对两台TOF-SIMS整机进行总装配和总调试工作。2015年6月,TOF-SIMS整机的质量分辨率可达12000(m=106)。截至2015 年初,项目共取得新装置 12套、核心部件20个;新申请专利 33项,获专利授权8项(其中发明专利2项);登记软件著作权3项;发表论文24篇,取得了重要的阶段性成果。  一是首次将飞行时间二次离子质谱(TOF-SIMS)技术应用于精密同位素分析和元素丰度测定。近年来,随着离子接收系统在技术上取得突破性进展,北京离子探针中心和相关合作单位在国内率先尝试将 TOF技术应用于高精度同位素分析仪器的研发。  二是开发了一套适用于珍贵地质样品(如月岩、宇宙颗粒等)高灵敏度、高分辨率同位素分析的小束斑氧离子一次源和离子光学系统。  三是开发了提高地学样品分析灵敏度的二次中性粒子激光后电离技术。实验结果表明,在优化条件下,飞秒后电离技术可使信号提高60 倍。  四是研发了高分辨TOF质量分析器。有效解决了双聚焦SIMS质谱的低离子通过率、体积庞大、成本高昂的不足。  五是开发了一套满足超高真空环境下高精度同位素分析要求的创新型三维样品台及样品传送系统。  项目组专家表示,该科研项目尽管取得了一定的成效,但该仪器目前尚处于研发阶段,待目标仪器的技术指标达到任务书的设计要求后,项目组将启动以下两项应用示范研究工作:一是应用TOF-SIMS-SI仪器分析金属硫化物(黄铁矿、闪锌矿等)的硫同位素,探讨典型铜矿床铜的富集和矿床形成机理 二是应用TOF-SIMS-REE仪器对月岩和月球陨石样品中锆石的稀土含量和配分模式进行分析,以探讨月岩中锆石的成因 测定月岩样品和月球陨石中锆石的Ti元素含量,估算其结晶时的温度,从而推算撞击事件的温度。  据中国矿业报记者了解到,2015年8月,项目组已将TOF-SIMS-REE仪器应用于纯金属样品铜和银的同位素丰度分析,分析精度可达 1%。
  • 科学仪器助力中国科大在复杂有机团簇分子的形成和演化研究取得新进展
    记者从中国科学技术大学获悉,该校地球和空间科学学院甄军锋、秦礼萍团队,提出了一条星际大分子自下而上的生长过程中复杂有机化合物的形成气相生长的路径,为进一步深入了解它们在星际介质中的化学演化行为提供了理论和实验数据支持。研究成果于日前在国际学术期刊天文与天体物理学报《天文与天体物理学》上发表。 星际复杂有机分子被认为是更复杂的有机化合物的一部分,甚至是生命物质的重要组成部分。有机分子已知存在于恒星形成区域和行星形成的原行星盘中。然而,气相中的游离有机分子在紫外光照射下容易被破坏,单个紫外光子的能量就能够解离这些分子。多环芳香烃化合物及其衍生物可能在复杂有机化合物的演化过程中发挥重要作用,大型的多环芳香烃化合物分子或团簇以及非常小的尘埃颗粒可以有效地保护这些气相有机分子,避免其被紫外光解离破坏掉。中国科大供图 研究团队利用自主搭建的实验仪器平台研究有机分子-多环芳香烃团簇在离子-分子碰撞反应过程中的稳定性和堆积形成的途径:大质量的多环芳香烃阳离子和有机分子作为反应物的形成和演化途径,对多环芳香烃有机分子团簇的形成过程进行了一系列的理论计算。 实验及理论研究表明,复杂的有机分子或其他相关生命前分子可以有效地吸附在星际介质中的小尘埃颗粒上。根据实验及理论计算结果,有大量反应途径会产生非常复杂的具有三维结构的大质量的分子团簇。这些分子团簇为星际介质中自下而上中的大型复杂生命前分子提供了可能的形成和化学进化途径,表明气相星际物质在自下而上的生长过程中可以直接形成大型复杂的有机衍生物。这种有趣生命前分子团簇的产生,为有机物分子在星际空间中的演化过程提供了更深入的理解。 研究结果还表明,有机分子可以积聚在星际介质中的小尘埃颗粒上,同时这一积聚过程也支持了生命前分子可以通过彗星、陨石或星际尘埃颗粒输送到地球这一观点。
  • Nature:广谱抗体再添抗疫新武器 北大团队破解新冠病毒演化趋势
    自新冠病毒奥密克戎变异株出现以来,其子代变异株井喷式涌现,并呈现出“趋同演化”的趋势,大量中和抗体药物和康复者血浆已经“被逃逸”,这给新冠疫情的防控带来了十分严峻的考验。“趋同演化”现象的形成机制以及演化终点亟需深入探究。北京大学生物医学前沿创新中心(BIOPIC)、北京昌平实验室曹云龙研究员/谢晓亮教授课题组联合中国食品药品检定研究院王佑春课题组于2022年12月19日在《自然》(Nature)杂志在线发表了题为“Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution”的研究论文,系统地探究了新冠病毒受体结合域(RBD)“趋同演化”的机制,并前瞻性地对病毒未来突变演化方向进行了预测,为广谱疫苗和抗体药物的设计与研发提供了宝贵的理论与数据支持。研究人员对不同免疫背景人群中分离得到的抗体进行了大规模中和测定和逃逸图谱表征,发现病毒趋同进化产生的变异株几乎逃逸了目前所有中和抗体药物、疫苗接种者或康复者血浆,包括BA.5突破感染者血浆。并且,由于“免疫印迹”现象的存在,奥密克戎亚型变体突破感染后产生的抗体多样性逐渐降低,特别是BA.5突破感染,这提示基于BA.5变异株研发的疫苗加强针不能对新出现变异株产生良好的交叉防感染保护效果。另外,研究者基于抗体的大规模中和测定和逃逸图谱表征的数据建立了一个计算模型,对病毒演化方向进行了合理预测。尽管这些新突变株,特别是其中的XBB、BQ.1.1和CH.1.1等支系具有前所未有的免疫逃逸能力,作者团队此前筛选出的广谱中和抗体药物组合SA55+SA58,特别是SA55,仍然强效中和所有主要突变株和未来短期内可能流行的突变株,且能同时具有治疗和预防作用,是目前唯一已知能够高效中和所有新突变株的、处于临床阶段的药物抗体,相关论文此前于12月初发表于知名生命科学期刊《细胞报道》(Cell Reports)。该抗体具有广谱中和能力强、将很难被未来变异株逃逸、半衰期长等特征,将特别适用于不适合接种疫苗的老年人、免疫缺陷人群等群体的防护。本研究最早于2022年9月16日在线发布于bioRxiv预印本平台,是世界首篇系统性研究新冠病毒“趋同演化”机制,预测病毒进化方向的研究论文,在国际学术界引起了广泛关注。病毒的持续突变演化使得多种较高增长优势的变异株陆续涌现,BA.2.3.20、BA.2.75.2及其支系,乃至最近出现的BQ.1.1和XBB等变异株相比于BA.5都具有更高的增长优势。尽管它们的进化过程各不相同,处于奥密克戎的不同支系,但其受体结合结构域(RBD)上的突变都集中于R346、K356、K444、V445、G446、N450、L452、N460、F486、F490、R493和S494等位点,呈现出“趋同演化”的趋势(图1)。图1 奥密克戎亚型变体RBD蛋白携带的突变中和测定的数据提示“趋同演化”产生的变异株具有极强的逃逸能力,绝大多数中和抗体药物都被以XBB为代表的变异株逃逸(图2),包括此前已初步进入国内市场的阿斯利康公司Evusheld(“恩适得”)预防抗体药物。由于此类新突变株的流行,美国FDA也取消了礼来公司Bebtelovimab(贝特洛韦单抗)的使用授权。唯一的例外是作者团队开发的SA55抗体,它是目前唯一对包括XBB和BQ.1.1等在内的所有突变株仍旧有效的进入临床阶段的抗体药物(图3)。图2 奥密克戎亚型对中和抗体药物的逃逸情况图3 广谱中和抗体SA55和SA58血浆中和数据也显示,XBB,CH.1.1和BQ.1.1.10(或BQ.1.18)等毒株不仅逃逸了三针灭活疫苗接种者的血浆,也几乎完全逃逸奥密克戎BA.1/BA.2/BA.5突破感染者的血浆样本,显示出极大的免疫逃逸能力(图4)。图4 奥密克戎亚型逃逸疫苗接种者与康复者血浆中和为了探究不同奥密克戎变异株呈现“趋同演化”现象的具体机制,团队从BA.1、BA.2或BA.5突破感染康复者体内富集了抗原特异性记忆B细胞,发现其中大部分记忆B细胞交叉结合新冠原始株和奥密克戎变异株,印证了之前作者团队报道的存在于奥密克戎突破感染中的“免疫印迹”现象。基于高通量深度突变扫描技术,团队对不同来源的3051个交叉结合新冠原始株与奥密克戎变异株的抗体进行了突变逃逸图谱测定与聚类分析(图5a),发现奥密克戎特别是BA.5变体突破感染刺激产生的有效中和抗体种类明显减少,产生的主要是E2.2、E3和F1等不竞争ACE2结合表位且中和能力较弱的抗体(图5b-d)。图5 奥密克戎亚型变异株突破感染刺激产生抗体的表位表征基于抗体逃逸图谱、抗体中和活性、RBD突变对于ACE2亲和力变化等数据,团队建立了一个模型,分别计算了BA.2和BA.5突破感染刺激产生抗体的突变逃逸图谱(图6a),结果显示,BA.5突破感染刺激产生抗体的突变逃逸位点显著减少,表明其结合表位多样性明显减少。这提示,免疫印迹现象使得奥密克戎变异株突破感染刺激产生中和抗体表位多样性降低,导致免疫压力集中,从而加速了病毒的趋同进化。在此基础上,研究者基于2022年8—9月真实世界的主流免疫状态,基于计算模型预测了BA.2.75和BA.5的进化趋势(图6b),这在随后趋同进化产生的新毒株中得到验证。图6 免疫印迹效应加速了抗体逃逸突变的趋同进化另外,研究人员基于BA.2.75和BA.5突变株的预测进化趋势,设计了携带不同RBD和NTD预测突变组合的假病毒(图7a),并测定了这些假病毒对不同中和抗体药物和血浆样本的中和情况及ACE2亲和力(图7b-g),结果显示,对BA.5或BA.2.75突变株最少引入5个突变就可以逃逸包括BA.5突破感染者在内的不同免疫状态下的几乎所有血浆样本。并且,合成的假病毒与之后真实世界流行的BQ.1.1支系、CH.1.1支系等高度相似,验证了预测模型的准确性。图7 趋同逃逸突变的累积能够几乎完全逃逸BA.1/BA.2/BA.5突破感染血浆的中和作用本研究揭示了“免疫印迹”造成的奥密克戎突破感染刺激产生抗体表位多样性降低,进而导致免疫压力集中化,促使新冠病毒RBD蛋白发生趋同演化的现象,这些积累趋同进化突变的病毒在获得极强突变逃逸能力的同时,也保持了较高ACE2亲和力。本研究中的预测方法为预测病毒突变演化趋势、开发广谱疫苗和抗体药物提供了参考资料,且具有扩展到其他体系的潜力。同时,研究结果也提示,基于BA.5突变株研发的疫苗对于其他变体的交叉保护效果很可能不够理想,进一步开发设计能够克服免疫印迹、激活广谱中和抗体的新型疫苗至关重要。而以SA55+SA58抗体组合为代表的广谱中和抗体既可以通过鼻喷给药方便快捷地在呼吸道建立短效预防,又可以通过注射实现感染初期的治疗和中长期预防,特别适用于保护高风险的医护人员以及不宜接种疫苗的免疫缺陷人群和老年人。SA55与SA58已经授权给科兴生物进一步开发,初步的单盲随机对照试验显示,喷雾吸入一次提供的即时保护可维持6—12小时,预防感染效率可达到80%以上,且成本较低,方便使用,目前正在进行更严谨的临床试验,预计将来可以大规模推广。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员,北京大学博士研究生简繁冲、王菁、宋玮良,中国食品药品检定研究院于原玲为Nature论文的共同第一作者。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员、谢晓亮教授、中国食品药品检定研究院王佑春研究员为Nature论文的共同通讯作者。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员,北京大学博士研究生简繁冲、张志莹、阿依江伊斯马衣,地坛医院郝晓花博士,北京协和医学院鲍琳琳研究员为Cell Reports论文的共同第一作者。北京昌平实验室、北京大学曹云龙研究员、谢晓亮教授、肖俊宇教授,北京协和医学院秦川教授,地坛医院金荣华院长为Cell Reports论文的共同通讯作者,北京大学、昌平实验室、动物所、中检院、科兴公司等单位的相关科研人员为共同作者。本系列研究得到科技部、昌平实验室基金、国家自然科学基金和北京市科技计划支持。参考文献[1] Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature (2022).[2] Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature (2022).[3] Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature (2022).[4] Cao, Y. et al. Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep. (2022)专家点评:清华大学医学院祁海教授:这一工作深入探究了构成当前新冠大流行的多个奥密克戎毒株对人类群体免疫的逃逸规律。曹云龙/谢晓亮联合团队发现,多个奥密克戎株亚型在受体结合蛋白上都显现出相同或类似的逃逸突变。这些突变,在保证病毒结合其受体的同时,躲避了之前中和抗体的抑制作用。这说明,人群序贯疫苗接种和自然感染所构建起的群体免疫,的确在阻断并降低既往毒株感染;同时,这种群体免疫的压力,也为未来病毒变异留下了越来越少的潜在逃逸路径。那么,我们是否可以根据已有的群体免疫状态和现有毒株的受体结合蛋白,来预测未来最有可能出现的逃逸突变呢?曹云龙/谢晓亮联合团队利用他们开发的一种高通量深度突变扫描(DMS)方法,分析、鉴定了BA5和BA2可能逃逸群体免疫的突变。非常重要的是,他们预测出来的突变,确实出现在了其它具有流行潜力的毒株上。曹云龙/谢晓亮联合团队这项研究所提供的这种预测能力,可以帮助我们更高效地设计广谱抗新冠疫苗,也会使我们更可能为所有潜在逃逸现有群体免疫的毒株准备好“特效药”。中国科学院生物物理所王祥喜研究员:新冠病毒一直在持续性进化,衍生出多种突变株;然而在奥密克戎出现之后,新冠病毒的演变速度明显加快。近半年来,就有BA.5、BF7、BA.2.75、BQ、XBB等近十种新突变株在一些国家成为主要流行突变株。这些新突变株往往其传染性和抗体逃逸能力都在增强。总体来讲,人类对新冠病毒的研究是被动地跟着病毒跑,一个新突变株出现后再去了解它的病毒特性,去探究新突变株对现有疫苗和药物的影响。如何前瞻性预测病毒演变的方向,提前预判未来一段时间内可能出现的突变株具有重要的战略意义。2022年12月19日,北京大学谢晓亮/曹云龙团队联合中检院王佑春团队在Nature上发表题为“Imprinted SARS-CoV-2 humoral immunity induces convergent OmicronRBD evolution”的研究论文,这是该团队继新冠中和抗体、新冠疫苗效果评估、追踪新突变株免疫逃逸特性后,又一系统性而创新性工作。该项研究有五点重要发现:1)从庞大的数据库中分析出近期有几十个新突变株其生长优势超越BA.5,且这些突变株有一定的共性,在某些特定位点携带相同或相似的突变,呈现趋同进化规律;2)这些新突变株展示出极强的抗体逃逸特性,基本逃逸国际上已批准上市的抗体药物;3)一个抗体对组合SA55/SA58(也是该团队的研究成果)依然高效中和这些新突变株;最后两点更精彩:4)从原始株感染康复者、BA.1/BA.2/BA.5突破感染者等不同免疫背景分离2000余株抗体,并绘制出不同免疫背景下抗体谱系特征。相对之前的免疫背景,BA.5突破感染者的主要中和抗体类别相对单一,非中和抗体比例提高,更容易滋生病毒变异去逃逸宿主免疫;5)利用高通量酵母展示技术精准绘制出抗体免疫逃逸图谱,与BA.2突破感染的免疫背景相比,BA.5突破感染中和抗体的免疫逃逸位点相对集中且大多出现在近期出现的突变株上。实验数据与真实世界监测结果高度一致。这一研究成果能够实现对未来一段时间内新突变株的精准预测,预先了解这些新突变株的病毒特性能够为科学精准防控留出宝贵的时间窗口。
  • 力学所孙成奇团队在微结构和损伤演化的准原位EBSD观测研究中取得新进展
    疲劳研究的一个核心问题是疲劳裂纹萌生和损伤演化的微观过程。因此,量化和表征不同取向晶粒/晶界的变形/损伤与循环周次之间的关系,对于揭示疲劳机理、建立准确的疲劳寿命模型具有极其重要意义。然而,现有的原位扫描电子显微镜(Scanning Electron Microscope, SEM)或原位电子背散射衍射(Electron Backscattered Diffraction, EBSD)方法,难以实现大载荷、高频率、不同应力比等条件下微结构和损伤演化研究。 力学所非线性力学国家重点实验室微结构计算力学课题组孙成奇研究员等将常规试验机(如MTS试验机)与EBSD观测技术相结合,发展了一种可以实现大载荷、高频率、不同应力比下微结构和损伤演化的准原位EBSD观测方法,并研究了深海载人潜水器耐压舱用钛合金和增材制造钛合金在(保载)疲劳载荷下的变形和损伤行为。 研究发现,α晶粒中是否能形成孪晶取决于晶粒的晶体学取向和加载条件,一定程度的保载应力促进可以发生孪生的α晶粒中孪晶的形成(图1a);观测到随着循环周次增加α晶粒中取向差增大和亚晶粒的形成(图1b),以及α晶粒中由于孪生而形成亚晶粒的过程(图1c),为循环载荷下位错滑移和孪晶的形成都可以诱导晶粒的细化提供了直接证据。 研究也表明,一定程度的最大应力保载有利于脆性微裂纹的形成,但如果保载应力高或保载时间长,保载引起的塑性变形会抑制脆性微裂纹的增长,并诱导延性破坏模式。该研究从微观尺度解释了保载应力和保载时间不同而导致的不同失效机制。     图1 a: 发生孪晶的α晶粒c轴与施加轴向应力之间夹角和柱面滑移施密特因子(Schmid Factor, SF)关系; b:α晶粒内取向差变化和亚晶粒形成;c: 孪晶增长和亚晶粒形成相关研究得到国家自然科学基金基础科学中心“非线性力学的多尺度力学研究”项目(11988102)等支持。部分研究结果与北交大合作完成,主要研究成果发表在Int. J. Fatigue 2023, 176: 107897;Int. J. Fatigue 2023, 175: 107821
  • 山东将建成地质环境监测网络和地下水信息管理服务系统
    p   山东省地矿局近日制定出台《关于加强全局地下水及地质环境监测工作的意见》,山东将逐步建成覆盖地下水、地热、地质灾害、海洋地质等领域的地质环境监测网络,建成集数据采集、传输、存储、管理、分析与发布为一体的区域地下水及地质环境监测信息管理服务系统。 /p p   地下水及地质环境监测是客观反映地下水、地质环境质量状况和变化趋势的重要依据。山东省地矿局建局60年来积累的宝贵监测数据资料,与生态文明建设契合度最高、关联度最紧、呼应性最强,是生态文明建设的重要基础和支撑,在地质灾害防治、地下水和地热资源合理开发利用、重大工程建设地质安全、环境保护等方面发挥着重要作用,广泛地服务于生态环境、水利、城建、规划、自然资源、农林业、海洋等各个领域。山东将通过全面提升地下水及地质监测工作的质量和手段,拓展监测领域,加快提升装备和信息化水平,推进成果应用和转化,逐步建成地质环境监测网络和区域地下水及地质环境监测信息管理服务系统,为地质灾害防治、地质环境保护、资源环境承载力评价预警等提供技术支撑,为水文地质调查评价和地下水演化研究奠定基础。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/ce808ff3-b0ce-4ed2-be6a-376d2bf91e49.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • 涉及23种重点监测设备,《二氧化碳地质封存监测技术指南》征求意见稿公布
    咸水层二氧化碳地质封存技术是支撑我国碳中和目标必不可少的地学方案之一,被认为是化石能源领域实现碳中和目标的“兜底”技术。该技术的推广应用,对于助力全球及我国碳中和目标实现,具有重大的战略意义和经济价值。科学实施监测工作,能够为封存工程可靠、稳定运行提供保障,为量化、核查二氧化碳封存量提供依据,为防控二氧化碳泄漏等环境风险提供预警,但目前尚缺乏技术标准依据。 在鄂尔多斯盆地十万吨/年咸水层封存工程示范、新疆准东千吨级二氧化碳强化咸水开采与封存先导性 试验等示范实践基础上,结合国外商业或示范工程经验、二氧化碳驱油技术类比,编制本文件,为国内咸水层二氧化碳地质封存示范工程和产业化推广提供依据。《二氧化碳地质封存监测技术指南》确定监测对象、内容及指标,明晰相应的监测技术手段、监测频次,布设监测点,制定固定设备安装与运行维护计划。检测内容包括气体注入流量与成分、储层流体、二氧化碳泄漏(底面注入设施泄漏、井筒完整性、水环境影响、土壤环境影响、大气环境影响)、地表形变、诱发地震监测。需要布设监测点的类型和位置常见监测技术特点及其成熟度监测技术手段或设备监测目的和使用范围技术局限及适用性技术成熟度远程开放路径红外激光气体分析空气中 CO2浓度分布对于复杂的天气背景,难以准确计算浓度,不适于监测少量的泄漏研发技术便携式红外气体分析器空气中 CO2浓度分布不能准确计算泄漏量成熟技术机载红外激光气体分析空气中 CO2浓度分布距离地面较远,监测准确度受影响成熟技术红外二极管激光仪地表空气中 CO2流量应用范围小成熟技术涡度相关微气象地表空气中 CO2流量准确地调查大型区域,费用高,耗时长成熟技术土壤气体分析浅层土壤内 CO2浓度和通量准确地调查大型区域所需费用高,耗时长成熟技术土壤气体流量浅层土壤内 CO2通量适用于在有限空间进行瞬时测量成熟技术地下水和地表水水质分析水中 CO2含量及水质变化需要考虑水流量的变化成熟技术InSAR+GNSS地表变形适用于地表工程地质条件较稳定的区域成熟技术浅层二维地震CO2在地表浅层的分布情况在不平坦地面无法监测,对达到溶解平衡的 CO2无法监测成熟技术三维地震地层表征与地质结构、CO2分布等若流体与溶解的岩石之间阻抗对比小,无法 很好成像成熟技术VSPCO2在井间的运移分布仅限井间区域及井周区域成熟技术微地震地层的微地震行为,获取裂隙 扩展背景噪声的剥离成熟技术电法监测空隙流体的电阻变化分辨率和深度范围有待提高成熟技术电磁法CO2分布运移,监测地下土壤、水、岩石的电导率金属矿物的影响较大,对 CO2敏感成熟技术电阻层析成像CO2运移与反应带运移,监测地下导电性变化监测CO2运移还不完善成熟技术多参数测井监测岩性和流体特征,通过伽马、中子、电阻、波速等多种 参数演化监测范围局限在钻井周边成熟技术重力监测监测CO2垂直运移情况无法成像溶解的 CO2,同时精度有限研发技术地球化学方法监测地层内流体组分一般基于钻井取样技术监测地层内流体组分变化,监测范围有限成熟技术井下压力/温度监测地层内压力与温度变化更换井下仪表代价较高成熟技术环空压力监测监测套管和油管的泄漏情况测量时需要暂停注入成熟技术深井取样监测CO2运移与反应带运移及演化基于钻孔监测成熟技术示踪监测CO2运移与地下水运移需要与深部取样监测同步成熟技术注:技术成熟度划分采用三级:成熟技术、研发技术与概念技术。成熟技术是在共性领域内成功商用的技术,在CO2 地质封存领域大规模应用,但仍然需要进一步改进与深化;研发技术在共性领域内未成功商用,在CO2地质封存 领域内仍需要大幅度改进才能够大规模应用;概念技术在共性领域未大规模实施,CO2地质封存领域还未示范。附件:20_WD_2403575_二氧化碳地质封存监测技术指南.pdf
  • 刺突糖蛋白结构揭示新冠病毒演化新线索,或助疫苗设计
    p style=" text-align: justify line-height: 1.75em text-indent: 2em " 施普林格· 自然旗下专业学术期刊《自然-结构和分子生物学》最新发表一篇病毒学研究论文称,通过对新型冠状病毒(SARS-CoV-2)及其近缘蝙蝠病毒RaTG13的刺突糖蛋白 strong (刺突糖蛋白可以让病毒与细胞结合并进入细胞) /strong 结构进行比较研究,为进一步了解新冠病毒刺突的演化过程提供了信息,这对疫苗设计或具借鉴意义。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 413px " src=" https://img1.17img.cn/17img/images/202007/uepic/b316467b-3f03-46b6-b0df-d15b9cd8871f.jpg" title=" 111.png" alt=" 111.png" width=" 600" height=" 413" border=" 0" vspace=" 0" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   该论文指,研究人员认为蝙蝠冠状病毒可能是新冠病毒的演化前体,此前研究发现蝙蝠病毒RaTG13与新冠病毒的亲缘关系是已知关系中最近的。不过,尚不清楚新冠病毒如何演化到可以感染人类,也不清楚它是通过某个中间宿主还是直接传播给了人类。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   论文通讯作者、英国伦敦弗朗西斯· 克里克研究所病毒学研究专家Antoni Wrobel和Donald Benton及其同事,通过 strong 比较新冠病毒 /strong 和 strong RaTG13的刺突糖蛋白 /strong 发现, strong 两者虽然结构相似 /strong , strong 但新冠病毒刺突糖蛋白的形式更稳定,与人受体蛋白ACE2的亲和力要高出1000倍左右。 /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   他们还发现新冠病毒刺突上的 strong 弗林蛋白酶切位点可能对病毒有利 /strong ,因为 strong 它可能会促进病毒与细胞上受体的结合。 /strong 基于这些观察结果, strong 论文作者认为与RaTG13相似的蝙蝠病毒不太可能感染人类细胞,这也支持了新冠病毒是不同冠状病毒基因组重组后演化而来的理论。 /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   论文作者指出,他们进行研究的新冠病毒刺突糖蛋白分辨率高,几近完整,比之前报道的结构有更多的外部环(loop),这对于疫苗研发设计或许具有重要意义。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong 关于刺突糖蛋白(spike glycoprotein) /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 刺突即病毒包膜的糖蛋白。有些病毒除了具有包膜外,还有包膜突起。病毒包膜突起的化学本质多为糖蛋白,其功能各不相同。有的是病毒粒子的吸附蛋白,与病毒的吸附有关;有的是病毒的融合蛋白,可以促进病毒包膜与细胞膜融合,与病毒的侵入有关。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 关于论文《SARS-CoV-2 and bat RaTG13 spike glycoproteinstructures inform on virus evolution andfurin-cleavage effects》,点击附件了解更多。 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202007/attachment/5b4a8287-977a-42ff-8b2d-858c8fe5345c.pdf" title=" SARS-CoV-2 and bat RaTG13 spike glycoprotein.pdf" SARS-CoV-2 and bat RaTG13 spike glycoprotein.pdf /a /p p br/ /p
  • Nature子刊:原位拉曼光谱用于电解质演化捕捉
    在目前的电池研究工作中迫切需要改进的分析工具来识别锂离子电池的退化和失效机制。然而,了解并最终避免这些有害机制需要持续跟踪不同电池组件中的复杂电化学过程。为了达到这样的目的,剑桥大学Tijmen G. Euser教授团队报导了一种原位光谱方法,该方法能够在具有石墨阳极和LiNi0.8Mn0.1Co0.1O2阴极的锂离子电池的电化学循环过程中监测碳酸盐基液体电解质的化学性质。通过在实验室级别的软包电池内嵌入空心光纤探针,我们通过无背景拉曼光谱证明了液体电解质物质的演化。光谱测量的分析揭示了碳酸盐溶剂和电解质添加剂的比例随电池电压的变化,并在跟踪锂离子溶剂化动力学方面表现出极大的潜力。原位电解质监测可以促进研究复杂的化学途径和实际电池中化学物质之间的串扰现象。一个关键的例子是在没有初始碳酸亚乙烯酯(VC)的样品中出现了亚乙烯基拉曼谱带,这表明虽然亚乙烯基物质在阳极被消耗,但它们也在循环过程中通过碳酸亚乙酯(EC)氧化产生。本工作所提出的操作方法有助于更好地理解当前锂离子电池的局限性,并为研究不同电化学储能系统中的降解机制拓展了前景。原位拉曼如何表征电解质演化过程测试装置:图1. 具有空心光纤耦合拉曼分析设备的锂离子软包电池在拉曼装置中(图 1a),10-15 厘米长的空芯光纤的近端被封装在一个定制的微流体单元中,允许光线和流体进入光纤(图 1b, c)。纤维的远端安装并密封在软包电池的电极之间。使用两层单层PE聚合物隔膜(MTI)来避免纤维和电极之间的直接接触(图1d)。简化的空芯光纤(图 1c)经过优化,可在充满电解质时引导拉曼泵浦光和信号波长范围内的光。光纤的 36 µm 宽纤芯区域既可用作波导通道,又可用作微流体通道,其内部体积低至 30 nL/cm。自动注射泵用于根据需要从软包电池中取样和注入电解液。使用底部填充的 10x 0.3 NA 显微镜物镜将拉曼泵浦激光(785 nm 连续波,图1a)发射到填充电解质的光纤芯中。拉曼信号沿光纤的长度产生,一部分以反向传播的光纤模式被捕获,并被引导回邻近的光纤端面。产生的拉曼光的 CCD 图像(图 1c 中的右侧图像)显示大部分拉曼光是在中空光纤芯内产生和引导的。每次光学测量后,电解质样品被注入回软包电池中。由于需要避免任何电池扰动,需要 22 分钟的单次采样间隔(在 C/10 C 速率下大约是完全放电时间的 4%)。定期重复采样以达到在较长时间内监测电解质的目的(典型的充电-放电形成周期需要超过 10 小时)。测试结果分析:图2. 空心光纤中的在线拉曼测量。(a) 从光纤端面发出的拉曼光(左,图像比例尺为 50 µm)和光谱色散图像(右) (b) 在连续样品渗透期间跟踪的拉曼光谱。红色虚线表示泵何时开启;t1-a表示样品流体到达纤芯的时间。 白色虚线表示泵何时关闭,然后是样品注射器的开关。水平实线表示获取 c 中所示光谱的时间 (c) 得到不同溶剂混合物的光谱。与电池化学相关的突出显示的拉曼谱带是 893 cm-1处的碳酸亚乙酯呼吸模式(深红色虚线)、740 cm-1处的 PF6 阴离子模式(绿色虚线)和以 1628 cm-1为中心的碳酸亚乙烯酯 -HC = CH- 谱带(不存在于这些溶液和光谱中)。阴影区域表示与锂溶剂化机制相关的 1700-1850 cm-1处的 EC 和 EMC 带, 插图 i 展示了由 IPA 的拉曼强度(819 cm-1)监测的样品交换时间和 EMC 骨架(~900 cm-1)模式(c中的箭头)。插图 ii 显示了 1700-1850 cm-1处的 EC 和 EMC 波段。纤维芯内的动态交换和拉曼光谱首先在没有软包电池的情况下针对一系列电解质成分和典型溶剂进行了非原位测试(图 2)。光谱仪 CCD 记录近端面图像和光谱分散的光纤图像(图 2a)。在整个实验过程中,以每个光谱 20 秒的积分时间连续记录光谱。为了能够同时监测多个拉曼波段,我们在光谱范围、分辨率和信号强度之间进行了最佳权衡(图 2b)。最初,纤维填充有异丙醇 (IPA),其拉曼光谱如图 2b-c 所示。更换注射器以交换样品,泵流速设置为 5 µL/min (0.083 µL/s) 以渗入纤维芯。一旦拉曼信号稳定,注射泵就会关闭。 样品交换后系统的流体稳定时间目前约为 400 秒(对应于约 33 µL 的流量,图 2c)。此处依次渗透到纤维中的样品是 IPA、碳酸甲乙酯 (EMC)、碳酸亚乙酯 (EC) 和 EMC 的 3:7 混合物,以及商用电池级液体电解质溶液 LP57(即 EC 中的 1.0 M LiPF:EMC 3:7 v/v)。对于每个样品,在 410 和 2182 cm-1 之间获取相对宽带的拉曼光谱(图 2c)。拉曼光谱清晰显示了各种电解质成分特征。 首先,在 LP57 电解质中可以清楚地看到 PF6- 阴离子拉曼谱带在 740 cm-1 处的光谱位置。PF6- 峰在 ~720 cm-1 处与 EC 骨架模式部分重叠。检测 PF6- 很有意义,因为它的分解是基于一种发生在 NMC811 等富镍正极的表面的降解机制。此外,PF6- 很容易与电解质分解反应中产生的水发生反应。 其次,893 cm-1 处的 EC 呼吸模式与分子的环结构完整性有关。最后,1700-1850 cm-1 之间的阴影(宽紫色)带对应于 EMC 和 EC/VC 中羰基(C = O)键的拉曼峰,其光谱位置随锂离子溶剂化动力学而变化。此外,还标记了(弱)光谱带在 1628 cm-1(灰色虚线)处的预期位置,这是由于亚乙烯基 –HC = CH 添加剂 VC 的振动。因此,通过在装置中使用低密度衍射光栅,我们可以同时监测许多重要的电解质成分。图3. 循环过程中的电池电解质拉曼光谱演变。(a) 在 LiNi0.8Co0.1Mn0.1O2(NMC811) - 石墨锂离子软包电池的形成周期期间操作拉曼光谱,其电解质包含 LP57 + 2 wt.% VC。将电池恒流充电至 4.3 V,恒电位保持在 4.3 V,然后放电 (b) 拉曼光谱演化显示电池电解质的一系列拉曼模式中空纤维嵌入由 LiNi0.8Co0.1Mn0.1O2 (NMC811) 阴极和石墨阳极组成的软包电池中,以监测其在循环期间电解质的化学变化。每个圆形电极的有效面积为 1.54 cm2(直径 14 mm),并被一层聚合物隔膜覆盖。HC 纤维放置在两个分隔层之间,以保护电极表面免受纤维的机械损伤(图 1d)。将电池密封并填充 100 µL LP57,并添加 2 wt.% VC。尽管 HC 纤维在两个隔膜之间产生了微小的间距,但总电极表面与电解质的体积比 (~15 cm2/mL) 仍然非常接近于研究环境中常规组装的软包电池。将电池恒流充电至 4.3 V,在 4.3 V 下恒电位保持 1 小时,最后以 C/10 (18.5 mA g-1NMC) 的循环速率放电至 3.5 V。为确保在纤维芯中进行完全的样品交换,每 22 分钟从电池中提取 24 µL 体积的微量样品(大约是内部纤维体积的 50 倍),通过纤维内拉曼光谱进行分析,然后重新注入软包电池。我们从EC分子从正极到负极的穿过隔膜的扩散时间(td)来监测电极过程。假设聚合物隔膜的曲折度为 2.5,液体扩散系数为 10-6 cm2/s,这导致分子从一个电极到另一个电极的扩散时间为 td = 445 s(~7 分钟)。与之前的实验一样,我们使用宽光谱窗口(640-2340 cm-1,粗光栅)同时跟踪一系列化学物质。在第一个电化学循环期间,拉曼光谱的演变被测量为电池电压(红色曲线)的函数,在此期间预计会由于 EEI 形成而发生许多化学变化(图 3a)。在 PF6-、EC 呼吸模式和 EMC 和 EC/VC 中的羰基 (C = O) 键的谱线中观察到清晰的特征,如图 2b 所示。此外,在~1628 cm-1 处检测到(弱)亚乙烯基-HC = CH-拉曼谱带。在整个循环过程中收集完整的拉曼光谱可以对电解质盐和溶剂及其相互作用进行详细分析。总结:循环过程中碳酸酯溶剂的C=O拉伸模式相关的拉曼光谱变化,以及亚乙烯基-(C=C)双键浓度的变化等信号都可以由原位拉曼装置检测得到。对这些信号的获取和分析有助于研究电解质中的溶剂和盐成分在电池循环中的变化,揭示电池性能降解的机理,对开发长寿命的电池系统具有非常重要的意义。参考文献:Ermanno Miele et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 2022.DOI: 10.1038/s41467-022-29330-4
  • 中国地质大学开发同时测定嫦娥五号月壤粒度和矿物组成的新方法
    月壤的粒度和矿物组成对于解释轨道遥感光谱数据和理解月球岩浆活动和空间风化过程具有重要意义。自20世纪70年代以来,科学家开始使用各种手段来研究月壤样品,但前人所采用的方法通常需要消耗较多样品,并且难以同时获得矿物组成和粒度、形貌等方面的信息。近日,《中国科学:地球科学》中、英文版同时在线发表了中国地质大学(武汉)佘振兵和汪在聪教授团队对嫦娥5号月壤粒度和矿物组成的研究成果,第一作者为博士生曹克楠。该研究团队基于拉曼光谱微颗粒分析技术,开发了以极低的样品消耗量同时测定颗粒样品粒度和矿物组成的新方法,并成功运用于嫦娥5号月壤样品的研究(图1)。图1 用拉曼光谱自动微颗粒分析技术同时测定月壤粒度和矿物组成的流程研究人员将约30μg的嫦娥5号样品分散于镀铝载玻片上(图1a),然后用用50倍物镜在暗场反射光模式下对月壤颗粒进行大面积图像拼接和景深合成,根据获得图像中不同位置的亮度来自动识别颗粒并重建颗粒分布图(图1b)。获得了粒度信息后,选择其中1~45μm的月壤颗粒进行自动拉曼分析获得高信噪比的光谱(图1c),并通过团队自建的月壤矿物光谱数据库对颗粒进行自动识别,获得每一种矿物相的粒度和体积等信息(图1d, 图2),计算得出矿物模式丰度。图2 对6mm×3mm范围内7307个月壤颗粒矿物组成和分布的重建结果不同颜色代表不同的矿物对24881个颗粒的分析结果显示,嫦娥5号月壤平均粒度为3.5μm,并且呈单峰式分布(图3a),表明其具有较高的成熟度。尽管大多数颗粒的粒径很少(6μm),但大于8μm的颗粒占总体积的90%以上(图3b)。图3 嫦娥5号月壤粒度分布特征在对嫦娥5号月壤的矿物模式丰度进行研究后,研究人员发现在1~45μm粒度范围内的矿物组成为:辉石(39.4%)、斜长石(37.5%)、橄榄石(9.8%)、铁钛氧化物(1.9%)、玻璃(8.3%)等(图4a),该结果与前人通过x-射线粉晶衍射分析所得出的结果基本一致。此外,还发现随着粒度变小,月壤中的橄榄石和辉石含量逐渐减少,而斜长石含量增加:粒径在20~45μm之间的月壤样品中辉石含量最高(49%), 其次是斜长石(32%)、橄榄石(11%)和玻璃(8%),而铁钛氧化物、磷酸盐和硅质矿物则未出现;随着粒度的减少,斜长石的丰度逐渐增加, 而辉石和橄榄石的丰度显著下降(图4b-4c)。这种趋势在阿波罗样品中也普遍存在(图4d),可能是在空间风化过程中(如微陨石撞击),斜长石比镁铁质矿物更容易破碎所导致的。图4 嫦娥5号月壤的矿物组成((a)~(c))及其与阿波罗月壤对比(d)该研究还识别出了月壤中的一些微量矿物相,例如磷灰石、石英、方石英和斜方辉石等,其中斜方辉石的发现为首次报道,这表明嫦娥5号月壤中可能含有极少量来自于月球高地的物质。上述成果为解译嫦娥5号着陆的风暴洋北部地区光谱遥感数据提供了地面真值参考,为理解月球该区域深部和表面演化历史提供了新的视角。该方法优点在于:(1)每次仅需约30μg样品,在获取多维度信息的同时将样品损耗降到了最低,并且样品制备流程简单,极大地降低了该环节可能带来的样品污染问题;(2) 可以在短时间内快速建立一个矿物粒度和组成的多元化信息数据库,有助于发现稀有的矿物相;(3) 进一步发展将为未来火星和小行星等其他天体返回的微颗粒样品进行快速分析提供技术支撑。致谢 该研究使用的样品由中国科学院国家天文台提供,分析测试在中国地质大学(武汉)生物地质与环境地质国家重点实验室完成,所采用的仪器为WITec α300R型共聚焦拉曼光谱和ParticleScout(v5.3.14.106)自动微颗粒分析系统。研究得到了国家航天局民用航天技术预研究项目(D020205)、国家自然科学基金项目(42172337)和生物地质与环境地质国家重点实验室项目(GBL12101)的支持。
  • 国际首次!我科学家“拍摄”到光生电荷转移演化全时空图像
    太阳能高效利用是洁净能源研究的科学“圣杯”。10月12日,《自然》在线发表了一项关于太阳能光催化研究的重要进展。通过综合集成多种可在时空尺度衔接的技术,中国科学院大连化学物理研究所李灿院士、范峰滔研究员等科研人员,对光催化剂纳米颗粒的光生电荷转移进行了全时空探测,在国际上首次“拍摄”到光生电荷转移演化全时空图像。“这项研究为突破光解水催化剂电荷分离的‘瓶颈’,提供了新的认识和研究策略。”李灿强调。太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,有望为实现“双碳”目标提供重要的解决途径,受到全世界关注。“虽然在过去半个世纪的光催化研究中,人们在光催化剂制备和光催化反应研究方面做出了巨大努力,但由于光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,人们对该过程的基本机制一直不清楚。”李灿坦言。光催化过程中,光照射到催化剂上时,催化剂内部会产生光生电荷,即光生电子和空穴。光生电子和空穴需要从微纳米的催化剂颗粒内部分离,并转移到催化剂的表面,启动化学反应。光催化过程的核心科学挑战在于如何实现光生电荷的高效分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一过程的微观机制极具挑战性。“长期以来,我们团队一直在致力于解决这一问题。在这项研究中,我们在时空全域追踪了光生电荷在光催化剂纳米颗粒中分离和转移演化的全过程。”李灿说。为更好地了解纳秒范围内光生电荷在催化剂内部的分离机制,研究人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度可以从一个表面移动到另一个表面。随后,为了直接观察光生电荷的转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在催化剂表面含有缺陷的晶面。“通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜、瞬态表面光电压光谱和表面光电压显微镜等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,时空追踪电荷转移的能力将极大促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。“这是基础研究的重大突破。未来,这个成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。
  • 行业会议丨第一届构造地质学与地球动力学青年学术论坛(昆明,3月24-25日)
    2018年3月24日-25日,TESCAN将参加在云南大学举办的“第一届构造地质学与地球动力学青年学术论坛”,我们诚邀您莅临参观交流! 为更好传承“构造地质学论坛”的学术精神与会议特色,促进构造地质学与地球动力学研究领域的学科发展,提升构造地质学方法、理论创新与前沿突破;着重展示我国青年学者最新进展和成果,并增进老、中、青学者间的思想与学术交流,促进青年学者的进一步成长。经讨论决定于2018年3月24日~25日在云南大学召开“第一届构造地质学与地球动力学青年学术论坛“。 论坛旨在聚集我国构造地质学与地球动力学领域的一流科学家和广大青年学者,以岩石圈深部结构与动力过程、俯冲与碰撞过程、克拉通与造山带演化、大陆变形与流变、盆山耦合作用、新构造过程与地质灾害、圈层相互作用与构造地貌响应等领域为主题,展示前沿科研成果、进行学术交流,拓宽构造地质学与地球动力学研究的科学思路。 第一届构造地质学与地球动力学青年学术论坛 会议时间:2018年3月24-25日 会议地点:昆明云南大学云大宾馆 现场活动—TESCAN免费SEM测样抽奖活动 活动时间:2018年3月24日-25日活动地点:昆明云大宾馆TESCAN展位奖品设置:一等奖—倾国倾城+免费SEM测样二等奖—国色天香三等奖—风华绝代想要免费SEM测样?想要体验SEM、EDS、CL、Raman于一体的独特应用,还有FIB-SEM+TOF-SIMS分析的双重惊喜? 想要了解快速完成矿物相以及解离度分析(含4700种数据库)的自动矿物分析系统? 想要赢取倾国倾城、风华绝代、国色天香的精美礼品? 欢迎莅临TESCAN展台,等你一探究竟!现场抽奖活动礼品数量有限,先到先得喔~
  • 三峡工程引发水质、地质等问题须持续关注
    从立项之初到建设至今,三峡工程始终与争议相伴。   1986年6月启动、历时两年8个月的三峡工程论证工作与可行性研究(简称“原论证”)对于该工程进入正式建设阶段起了决定性的推动作用,一直以来都是争议的焦点之一。   2010年12月17日,中国工程院三峡工程阶段性评估项目组终于对原论证的结论给出了明确的评估意见。中国工程院原副院长、评估专家组组长沈国舫代表专家组表示:“实践证明,‘原论证’的总结论和建设方案是完全正确的。”其“建比不建好,早建比晚建好”的总结论 推荐水库正常蓄水位175米 “一级开发,一次建成,分期蓄水,连续移民”的建设方案,为党中央、国务院和全国人大的决策提供了科学依据,并经受了工程建设和初期运行的实践检验。   不过,与此同时,项目组也指出:“三峡工程是一项巨大的综合性工程,其运行的效益和影响的显示还需要一个较长的过程才能充分显现出来。本次评估只是一个阶段性工作。”   在12月17日首次发布的《三峡阶段性评估报告综合卷》中,专家组指出,未来三峡工程还有三大重要问题需要给予持续关注。   水质问题成隐患   在项目组给出的评估意见中,生态环境专题属于科学和工程技术学科,又与经济社会发展有着极为密切的联系。项目组认为,目前看来,三峡工程生态环境问题及其影响基本上没有超出“原论证”报告的预测范围,在定量的预测上有些出入,但尚不至于产生大的不良后果。   原估计不足或始料未及的问题主要有:库区结构性污染突出,污染物排放量远高于原预测 没有注意到影响区、上游区污染物排放和水质的不利影响 对农村面源污染估计不足。   沈国舫表示:“尽管到目前为止,三峡干流部分的水质仍保持在较好水平,但部分支流及其向干流汇入区域的水质已有明显恶化迹象。对这个问题如不从更广泛的角度加以认知和对待,必将对未来造成巨大的隐患。”   据了解,三峡库区水质的好坏和变化,不仅取决于库区内的污染物排放和污染治理状况,同时也与上游来水的质量密切相关。三峡库区上游流域面积大,接纳的城市生活污水和农村面源排放的氮磷污染物多,相当一部分回流到库区,是导致库区一级支流富营养化的重要原因。   三峡总公司原总经理、中国工程院院士陆佑楣指出,随着三峡地区经济的发展,目前三峡库区人口有倒流的现象。而依据项目组的意见,为保证三峡库区拥有良好的生态环境,应将三峡库区列为“控制性”、“保护性”发展区域,严格控制人口规模,达到“零增长”,尽可能实现负增长,同时将库区列为农业现代化重点先行区,采取综合措施减少面源污染。   两院院士潘家铮大力呼吁,为了三峡水库以及长江的水质,长江沿岸的百姓一定要改变千百年来将长江当做“天然下水道”的做法。   中国长江三峡集团公司总经理陈飞告诉《科学时报》记者,当前的一个不合理现象是,库区和上游城镇已经建设了大量污水处理和垃圾处理系统,却没有真正地运行起来。他强调,三峡水库的水质问题不仅是三峡库区的问题,也是长江流域180万平方公里几亿人口应共同关注的问题。   地质灾害三五年内要充分重视   在阶段性评估项目组出具的报告中,专家对三峡工程的热点问题进行了认真分析,指出三峡不会成为“第二个三门峡” 川渝大旱和暴雨等与三峡工程没有必然联系 总体上讲,三峡工程不会引起长江口的盐水入侵增加等等。   其中,有关地质灾害的话题成为大家关注的重点。专家组得出如下结论:汶川地震并非由三峡水库蓄水触发 库区地质灾害是可以控制的 三峡蓄水后,长江中下游的河势总体上未发生巨大变化,“崩岸”现象虽较蓄水前有所增多,但采取切实措施是可以保证堤防安全的。   项目组指出,三峡河谷发育历史表明,该地区滑坡崩塌地质灾害是自然演化的过程,环境比较脆弱,环境容量有限,崩塌、滑坡灾害是一个必然要发生的动力地质现象。   依照国内外已有水库蓄水的经验,推断三峡水库蓄水175米后至运行初期的3~5年内,可能会产生滑坡及涌浪灾害,应予以充分重视。地质灾害防治将是一项长期的艰巨任务,5年后也仍需予以监控治理。   移民安居致富任重道远   三峡工程移民人数众多,情况复杂,是三峡工程建设的难点和关键,也是社会关注的焦点。   据悉,三峡移民搬迁安置从1993年开始,按不同高程分段实施。截至2008年6月底,三峡库区175米高程以下移民搬迁任务已全部完成,淹没涉及的12座城市和114座集镇已完成整体搬迁。累计搬迁移民逾120万人。外迁到四川、江苏、上海等12个省份的20万移民已基本融入了当地生活。   沈国舫代表项目组表示,截至目前,三峡库区移民工作已经取得阶段性成果,移民“搬得出”的任务已基本完成,但是要真正实现“稳得住、逐步能致富”的目标还任重而道远。   据介绍,当前三峡库区还存在这样一些问题:由于耕地少,库区“人多地少”的基础性矛盾比工程建设前更加突出,部分后靠农村移民耕地资源严重不足且质量不高,生产生活困难。库区产业发展基础差,支柱产业尚未形成产业链,经济总量低、竞争力弱,导致城镇失业率高,移民劳动力就业困难,同时移民社会保障问题突出。   项目组认为,三峡库区存在的上述问题,直接影响到库区经济发展和社会稳定。从建设环境友好型和资源节约型社会的要求出发,最根本的出路是减少库区人口。   为此,项目组建议,要大力创造三峡库区人口外向型转移的机遇和机制。对口支援的省份要制定有效吸纳三峡库区劳动力的机制,制定劳动力转移指标,为库区劳动力长期居住和创业创造有利的环境和条件,以此逐步减少库区人口,改善库区生态环境。
  • 科学家首次“拍摄”到光催化剂光生电荷转移演化的全时空图像
    太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,是科学领域“圣杯”式的课题,并受到全世界关注。在过去半个世纪的光催化研究中,科学家在光催化剂制备和光催化反应研究方面做出了努力,但光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,因而关于该过程的基本机制一直不清楚。  日前,中国科学院院士、中科院大连化学物理研究所研究员李灿,研究员范峰滔等揭开了这一谜团。研究人员综合集成多种可在时空尺度衔接的技术,对光催化剂纳米颗粒的光生电荷转移进行全时空探测,揭示了复杂的多重电荷转移机制,“拍摄”到光生电荷转移演化全时空影像。该研究明确了电荷分离机制与光催化分解水效率之间的本质关联,为突破太阳能光催化反应的“瓶颈”提供了新的认识和研究策略。10月12日,相关研究成果发表在国际学术期刊《自然》(Nature)上。  光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一全过程的微观机制颇具挑战性。“长期以来,我们的团队前赴后继致力于解决这一问题,在这个工作中,集成多种先进技术和理论,在时空全域追踪了光生电荷在纳米颗粒中分离和转移演化的全过程。”李灿说。  光催化过程中,光生电子和空穴需要从微纳米颗粒内部分离,并转移到催化剂的表面,从而启动化学反应。范峰滔介绍,在如此微小的物理尺度上,光催化剂往往缺乏分离电荷所需的驱动力,因此,实现高效的电荷分离需要一个有效的电场。为了在光催化剂颗粒中形成一个定向重排的电场,科研人员将一种特定的缺陷选择性地合成到颗粒的特定晶面,有效促进了电荷的分离。为了更好地剖析纳秒范围内高效电荷分离机制,科研人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度就可以选择性的转移到特定晶面区域,且电子在超快的时间尺度上可以从一个表面移动到另一个表面。  “长期以来光催化中的主导电荷分离机制很难解释跨越如此大空间尺度超快电荷转移。”范峰滔说,“我们将超快的电荷转移归因于新的弹道传输机制,其中载流子以极高的速度传播,在与晶格发生作用之前就已经跨越了整个粒子。”  进一步,为了直接观察电荷转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在含有缺陷的晶面。研究表明,晶面上光生电子和空穴的有效空间分离是由于时空各向异性的电荷转移机制共同决定的,这一复杂机制可以通过各向异性晶面和缺陷结构来可控的调整。  “通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,“时空追踪电荷转移的能力将促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。”  “未来,这一成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。  该项工作得到国家自然科学基金委“人工光合成”基础科学中心项目、中科院稳定支持基础研究领域青年团队计划、国家重点研发计划及大连化学物理研究所创新基金等的支持。
  • 地质地球所发布嫦娥五号月壤样品单颗粒分析工作流程图
    嫦娥五号月壤样品虽然微小,但每个小颗粒从一定程度上相当于一个独立的小岩块,其矿物组成、表面形貌、内部结构和化学成分均蕴含丰富的“月球演化和太空风化”等信息。将月壤颗粒分门别类并挑选出来,可用于有目的地开展其它科学研究。与电子束和离子束等微束分析方法相比,μXRF依托X-射线分析技术,穿透性强,化学灵敏度高,且不需要对样品及其表面进行复杂的预处理,因而能在微米尺度下,快速获得月壤颗粒的化学元素组成及各种元素的分布特征,用于挑选各种类型的目标颗粒。无论是机械抛光与SEM结合,还是XRM与FIB-SEM联合,均能将目标矿物暴露到一个平整的截面,既适用于SIMS(微米分辨率的元素和同位素)分析,也同样适用于不同尺度和不同类型的微区分析,如显微拉曼(Raman,微米分辨率的化合物和矿物相鉴定)、SEM(纳米分辨率的形貌、结构和成分分析)、电子探针(EPMA,纳米分辨率的主、微量元素定量分析)、纳米二次离子质谱(NanoSIMS,亚微米到纳米分辨率的元素和同位素分析),还能直接用于FIB-SEM的精准微切割,制备微纳尺寸的“薄片”或“针尖”样品,用于更为精细的同步辐射扫描透射X-射线显微镜(STXM,纳米分辨率的化学成分、元素价态和磁学分析)、透射电镜(TEM,亚纳米到原子分辨率的形貌、结构、成分、矿物相和微磁学分析)和原子探针(APT,原子分辨率的元素和同位素分析)研究。 基于样品挑选和后续分析的共性,中国科学院地质与地球物理研究所等提出针对嫦娥五号月壤以及未来行星返回样品的单颗粒综合分析的“六步走”工作流程图:步骤1:单颗粒样品显微操作,制备成样品阵列,利用μXRF技术快速扫描分析挑选目标颗粒,并按照后续分析测试需要制备成不同类型单颗粒样品(如树脂包埋、机械抛光或表面导电处理)。步骤2:目标颗粒样品的3D-XRM/FIB-SEM联合分析,在微纳米尺度上获得样品三维形貌、结构和成分信息。步骤3:目标颗粒样品的SEM综合分析,在微纳尺度上获得样品的表面形貌、结构和化学成分信息。步骤4:目标颗粒截面样品的综合微区分析(如SEM、Raman、EPMA、SIMS、NanoSIMS),在微纳尺度上获得样品截面的形貌、结构、矿物相、化学成分(包括主量、微量元素及其同位素)等信息。步骤5:利用先进的FIB-SEM技术,对目标颗粒样品中感兴趣的微区域进行三维重构分析,以及对其进行精准微切割,制备微纳尺寸的“薄片”或“针尖”样品。步骤6:综合利用同步辐射STXM、先进的TEM和APT技术,在纳米到原子水平,对“薄片”或“针尖”样品开展形貌、结构、矿物相、化学成分、元素价态、元素同位素和微磁学等综合分析。 需要指出的是,该研究提出的“六步走”工作流程,并不能涵盖嫦娥五号和未来行星返回样品所需的所有技术,也并不是一成不变和标准程式化的,在实际工作中需要根据样品特性或具体科学目标进行调配和改进。例如,可将步骤1、步骤2/步骤4结合,快速寻找富锆颗粒并精准定位含锆矿物,开展样品的微区同位素年代学和地球化学等研究工作。将步骤1、步骤3、步骤5和步骤6结合,选定特定类型单颗粒样品,开展太空风化、行星矿物学和微磁学等研究工作。此外,该研究提出的“六步走”工作流程按照“先无损,后微损”“先单颗粒,后微纳米尺度,最后原子水平”“先侧重表面,后开展内部结构”的分析思路,将现有的多种显微学和显微谱学技术,在分析的时间节点上进行了排列组合,可对同一个样品获得不同尺度下多种信息,因而也同样适用于各种地球珍贵样品(如来自地球早期、深部或深海等来之不易、不可重现的微小样品)的综合研究。 相关成果发表在Geoscience Frontier上。研究得到科技部重点研发计划、中科院前沿科学重点研究项目、地质地球所重点部署项目和国家自然科学基金资助。
  • 春节中的化学:烟花何以五彩缤纷
    一、爆竹中的化学   中国民间有&ldquo 开门爆竹&rdquo 一说。即在新的一年春节到来之际,家家户户开门的第一件事就是燃放爆竹,以&ldquo 噼里啪啦&rdquo 的爆竹声除旧迎新。春节燃放爆竹的同时,民间还喜欢放烟花。烟花没有爆竹清脆的声响,但却有变幻无穷、色彩纷呈的图案。绚丽多彩的烟花与声声爆竹相辉映,将节日的夜空装点得热闹非凡。   我国人民燃放烟花爆竹已有二千多年历史。每逢喜庆日子,人们为了增加节日的欢乐气氛,燃放烟花爆竹。   爆竹的主要成分是什么?烟花在空中爆炸时,为什么会绽放出五彩缤纷的火花?燃放烟花爆竹可以增加节日的喜庆气氛,但是近几年来,我国许多大、中城市相继做出禁止燃放烟花爆竹的决定。这是为什么呢?   爆竹的主要成分是黑火药,含有硫磺、木炭粉、硝酸钾,有的还含有氯酸钾。制作烟花时是在火药中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色,所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。   当烟花爆竹点燃后,木炭粉、硫磺粉、金属粉末等在氧化剂的作用下,迅速燃烧,产生二氧化碳、一氧化碳、二氧化硫、一氧化氮、二氧化氮等气体及金属氧化物的粉尘,同时产生大量光和热、而引起鞭炮爆炸。纸屑、烟尘及有害气体伴随着响声及火光,四处飞扬,使燃放现场硝烟弥漫,硫氧化物、氮氧化物、碳氧化物等严重污染空气。这些气体对人的呼吸道及眼睛都有刺激作用。燃放鞭炮不仅污染空气,飞扬的纸屑、烟尘落在地面上,还会影响清洁卫生。同时爆炸声如雷贯耳,据测定单个闪光雷爆炸时,其噪声至少在130分贝(dbA)以上,成为噪声公害。此外,每逢春节,由于燃放鞭炮而引起火灾,炸伤手臂、面部或眼睛的事故屡见不鲜。因此,禁止燃放烟花爆竹,对于保护环境,维护人民的正常生活秩序,都是十分有利的。   二、五彩缤纷的烟花   过春节时,家家户户都喜欢烟花。烟花是由筒壳体(纸、塑料、薄金属片等材料制成),烟火剂,封口物质,附件(如尾翼底座、横担、轴、杆),点火装置(如引线、擦火板、电点火头等)组成。它利用烟火剂燃烧或爆炸时产生的光、色、音响、气动、发烟等效应,使烟花成为一种供观赏品。   烟花是在火药(主要成分为硫黄、炭粉、硝酸钾等)中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色(即&ldquo 焰色反应&rdquo ),所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。   除了金属和金属化合物外,人们还会在烟花里加入不同剂量的氧化剂、助光剂和黏合剂。氧化剂在燃烧时会产生大量氧气,起到助燃和使烟花颜色更加鲜艳的作用 助光剂能大大提高烟花的亮度 黏合剂则用来将粉末状的化合物组成大小不一的光剂颗粒。如果把这些颗粒按一定的规则排列,就可以制成不同图案的烟花。如&ldquo 向阳花&rdquo 中间一圈放上发黄色光的颗粒,周围放上发绿色光的颗粒,到天空爆炸后,就会形成一朵绿叶扶衬的向日葵,美丽极了。   烟花的颜色是由于不同金属灼烧,发生焰色反应颜色不同造成的。烟花是利用各种金属粉末在高热中燃烧而构成各种夺目的色彩的。使用不同金属就能产生不同效果,发出不同颜色的光芒   焰色反应:   钠(Na):黄 锂(Li):紫红 钾(K):浅紫 铷(Rb):紫   铯(Cs):紫红 钙(Ca):砖红色 锶(Sr):洋红 铜(Cu):绿   钡(Ba):黄绿   烟花爆竹的种类   按燃烧效果不同,可将烟花产品分为以下十类:   (1)喷花类:燃放时以喷射火苗、火花为主的产品   (2)旋转类:燃放时烟花主体自身旋转的产品   (3)升空类:燃放时,由定向器定向升空的产品   (4)吐珠类:从同一筒体有规律地发射多珠的产品   (5)线香类:用装饰纸或薄纸筒裹装烟火药或在铁丝、竹杆、纸片上涂敷烟火药形成的线香状产品   (6)地面礼花类:放置在地面,从筒体内发射并在空中爆发出焰药效果的产品   (7)烟雾类:产生烟雾效果为主的产品   (8)造型玩具类:产品外壳制成多种形状,燃烧时或燃烧后能模仿所造形象或动作的产品   (9)小礼花弹类(直径不大于38mm):弹体从发射管中发射到空中后,能爆发出各种花型图案或其他效果的产品。
  • 南方科大郑智平/杨烽/张新瑜Adv. Sci.:原位环境电镜揭密液态金属与单原子催化剂动态演化
    南方科技大学杨烽团队与郑智平讲席教授/张新瑜团队展开合作,利用环境球差透射电子显微镜(ETEM)耦合原位谱学的方法,在高温反应环境中,从原子层次上揭示了过渡金属单原子和多孔碳载体的起源和动态演化过程,阐明了液态金属作为重要中间物种,在形成单原子催化剂和刻蚀多孔碳结构中起到的关键作用。从原子尺度研究催化剂在反应环境中的表/界面结构及其动态演变对合理设计催化剂和揭示反应机理具有重要意义。在金属催化剂合成过程中原位揭示金属物种的演化过程、认识金属在载体表面的行为是催化剂结构精确控制的关键。高温热解是一种常用来制备金属单原子催化剂的方法。然而,在高温(500-1000 ℃)以及含碳环境中,相比于贵金属(Pt、Rh、Ag等),非贵金属过渡金属(Fe、Co、Ni)纳米颗粒表现出更加复杂的动态行为,如:熔融、碳扩散、团聚、结构演化等,从而对理解和揭示这一类单原子催化剂制备过程中的结构控制机理带来挑战。另一方面,在高温(500-1000 ℃)过程中原子层次的原位表征也存在较大困难。原位环境球差透射电子显微镜(ETEM)可以从原子尺度研究工况条件下催化剂的结构和演化等过程,尤其是适合于组成、结构不均一体系的局域表征;耦合原位电子能量损失谱(EELS),还可以提供物种价态变化等信息;此外,具有原子分辨的原位球差暗场电镜也非常适合于热场环境中金属单原子的研究。作者利用原位ETEM,在200-1000℃追踪了金属有机框架化合物前驱体(Co/Zn-ZIF)热解产生Co单原子的过程。研究发现热解过程中Co金属物种表现为团聚、分散、再团聚、升华的动态过程(图1)。耦合原位EELS监测了该过程中元素的化学演变(图2),发现升温至500℃时金属Zn已经升华消失;框架中的C逐渐转化为石墨化碳;在700 ℃,碳载体中原子级均匀分散的Co与C相互作用,形成类似Co 2 C的配位结构。而这种Co-C相互作用相对较弱,在更高温度850℃重新团聚成金属Co纳米颗粒(图3)。ETEM研究表明在850℃金属Co纳米颗粒熔化,并在载体中流动、扩散,刻蚀出多孔/缺陷碳结构,同时与碳载体发生反应生成碳化物(CoC x )(如下式);Co (l) + C (ZIF) → CoC x + C 1−x (defect∕porous structure)在这一液态金属扩散过程中,伴随着金属Co原子被刻蚀后的C-N缺陷位点锚定,形成单原子结构(图3)。原位HAADF-STEM和非原位XAFS表征进一步证实了上述过程,研究发现单原子Co在多孔CN x 载体上具有良好的稳定性,而剩余的CoC x 颗粒在高温1000 ℃逐渐升华(图4)。这类单原子Co催化剂在乙基苯选择性氧化模型反应中展示出优异的催化性能和稳定循环性。该工作近期在线发表在 Advanced Science ,并被选入Hot Topic: Carbon, Graphite, and Graphene。论文第一作者是南方科技大学研究助理张璐瑶,共同第一作者是博士研究生李岩岩、博士后张蕾;通讯作者是南方科技大学的郑智平讲席教授、杨烽助理教授、张新瑜研究助理教授。原位电镜数据在南方科技大学皮米中心收集,XAFS数据在北京同步辐射光源收集。该工作得到了国家自然科学基金、北京分子科学国家研究中心、科技部重点研发计划、广东省和深圳市项目的资助。图1. 原位ETEM表征Co/Zn-ZIF在200-1000 ℃的热解过程和金属物种行为。图2. 室温-1000 ℃原位EELS表征前驱体热解形成金属单原子过程中的化学变化图3. 原位ETEM表征熔融Co纳米颗粒扩散和刻蚀碳载体形成多孔结构,单原子锚定示意图图4. 1000 ℃原位HAADF-STEM表征金属团簇升华与单原子的稳定性。WILEY论文信息:Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon DissolutionLuyao Zhang#, Yanyan Li#, Lei Zhang#, Kun Wang, Yingbo Li, Lei Wang, Xinyu Zhang*, Feng Yang*, Zhiping Zheng*Advanced Science
  • X射线成像和光谱任务探测器即将发射 有助揭示宇宙的演化和时空结构
    XRISM艺术图。图片来源:欧洲空间局据报道,X射线成像和光谱任务(XRISM)探测器将于9月7日发射,以观测宇宙中能量最高的天体和事件,从而揭示宇宙的演化和时空结构。XRISM任务由日本宇宙航空研究开发机构、美国国家航空航天局和欧洲空间局(ESA)携手开展。  X射线源于宇宙中能量最强的爆炸和最热的地方,如包围宇宙的最大组成部分——星系团的超高温气体。XRISM可探测这种气体发出的X射线,以帮助天文学家测量这些星系团的总质量,从而揭示有关宇宙形成和演化的信息。  XRISM对星系团的观测也将使科学家深入了解宇宙如何产生和分布化学元素。星系团内的热气是宇宙历史上恒星诞生和死亡的残骸,通过研究这些气体发射的X射线,XRISM将发现气体中含有哪些元素,并绘制出宇宙中这些元素或金属的富集情况。  与此同时,XRISM将更仔细地观察单个X射线发射源,以探索基础物理学。该任务将测量来自密度极高的天体发出的X射线光,如位于一些星系中心的超大质量活跃黑洞,这将有助于科学家了解这些天体是如何扭曲周围时空的,以及以接近光速的速度喷出的粒子“风”在多大程度上影响宿主星系。
  • 圆满落幕|“第六届现代地质及矿物分析测试新技术与应用”网络研讨会成功举办
    2024年8月22日,仪器信息网成功举办了“第六届现代地质及矿物分析测试新技术与应用”网络研讨会,吸引了近700名专业人士参会观看。本次会议在热烈的讨论和积极的氛围中圆满结束,为地质和矿物分析领域的专家、学者和技术人员提供了一个交流新技术、新应用的平台。岩石矿物分析检测是矿产资源勘探、开发与利用的关键环节,通过运用现代先进的检测方法与技术手段,更好地掌握矿产资源的分布格局与储量情况,为资源的合理、高效开发利用提供坚实的技术支撑与决策依据。多位在地质及矿物分析测试领域具有丰富经验的专家和学者,通过线上平台带来了精彩的报告和分享。锂矿作为一种关键的战略性资源,在多个领域发挥着至关重要的作用。核工业北京地质研究院正高级工程师(二级)郭冬发凭借多年一线分析经验指出,野外现场锂含量测定主要采用GD-OES和LIBS方法,具有设备便携、测定快速的优点;盐湖水、锂矿石和锂地质调查样品中锂含量实验室分析主要采用AAS、ICP-OES和ICP-MS法进行测定,具有经济、准确、高效的优点;锂同位素分析则采用化学分离后,用MC-ICP-MS和TIMS分析,具有精密度高的优点。地质样品检测领域汇聚了XRF、LA-ICP-MS、直读光谱、原子探针、TIMS等多元化分析方法,每种技术均以其独特优势助力科研深入。布鲁克(北京)科技有限公司应用科学家陈剑峰展示了公司平插能谱仪和微区XRF的创新设计,如何简化地矿元素与晶体结构的分析流程,确保数据可靠,为科研工作者配备了强大的分析工具。针对地矿中稀土元素的分析难题,德国斯派克分析仪器公司销售经理杨阳分享了其独特的偏振技术与强大软件解决方案,有效提升了分析精度。固体样品的激光原位剥蚀技术逐渐由纳秒向飞秒发展,飞秒激光剥蚀系统具有脉宽短、热效应小、分馏小的特点,在地质和环境等领域已成为至关重要的原位采样工具。上海凯来仪器有限公司自研的国产新型飞秒激光剥蚀系统GenesisGEO,是全国首台全自研国产飞秒激光系统。副总经理梁燕生动的为大家分享了国产新型飞秒激光剥蚀系统的原理、操作要点、最新进展及其在地质研究中的应用,展示了国产仪器的飞速发展态势与强硬实力。另外,激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)副矿物U-Th-Pb定年技术,为精确厘定地质演化历史、探讨成岩成矿等研究提供了重要的时间参数。中国地质大学(武汉)副研究员罗涛深入探讨了该技术在元素分馏校正、普通铅校正、非基体匹配分析和标准样品研发等方面取得的新进展。战略性矿产资源是国家经济发展的重要支撑,但含量低、多伴生、赋存状态复杂,样品制备过程中存在局部“微”不均匀现象。湖北省地质实验测试中心正高级工程师董学林通过改进实验室样品制备技术,研制合适的缓冲剂,优化仪器性能,建立了固体进样电弧直读光谱技术测定锂、铍、铌、钽等元素方法,拓展了该技术在战略性矿产分析领域的应用范围。原子探针层析技术(APT)是一种在原子尺度上提供样品化学组成和元素三维分布的技术,具有极高的空间分辨率和较低的检出限,非常适用于揭示成矿元素原子尺度赋存状态。由于原子探针样品制备、测试过程与以往的原位分析方法不同,中国地质科学院地质研究所副研究员谢士稳对APT基本原理、样品处理流程、针尖制备进行介绍,阐述近年来APT在矿床研究中的代表性应用成果及其潜在应用前景。热电离质谱(TIMS)一种采用热电离方式的质谱技术,具有低干扰和高灵敏度等特点,是公认的同位素分析技术“标杆”,为高精度同位素年代学和同位素示踪研究奠定基础。中国地质大学(武汉)副研究员冯兰平探讨了TIMS在仪器测试和数据校正方面的最新进展,深入分析其在超低含量和超高精度同位素分析中的应用潜力。此外,标准物质是实现样品分析量值传递、分析过程质量控制、分析方法确认、实验室能力考核评价等工作的重要工具,是确保实验测试结果准确可靠的关键技术手段。随着战略性矿产资源勘查、开发利用和测试技术的进步,标准物质研制受到越来越多关注,战略性矿产标准物质体系不断建设完善。国家地质实验测试中心研究员许春雪介绍了国内外现有战略性矿产标准物质的发展情况,分析了当前工作中存在的不足并提出展望。在研讨过程中,参会人员积极互动,通过线上提问和讨论的方式,与专家们就感兴趣的话题进行了深入的交流。现场讨论热烈,氛围良好。本次会议的成功举办,不仅为地质和矿物分析领域的新技术和新应用提供了展示和交流的平台,更为地质分析科学的持续发展注入了新的活力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制