当前位置: 仪器信息网 > 行业主题 > >

地表地物

仪器信息网地表地物专题为您整合地表地物相关的最新文章,在地表地物专题,您不仅可以免费浏览地表地物的资讯, 同时您还可以浏览地表地物的相关资料、解决方案,参与社区地表地物话题讨论。

地表地物相关的资讯

  • 聚光环境 | 水质监测再升级,全覆盖地表水“X”指标
    政策背景《“十四五”国家地表水监测及评价方案(试行)》监测指标为“9+X”,其中:“9”为基本指标:水温、pH、溶解氧、电导率、浊度、高锰酸盐指数、氨氮、总磷、总氮(湖库增测叶绿素a、透明度等指标)。“X”为特征指标:《地表水环境质量标准》(GB3838-2002)表1基本项目中,除9项基本指标外,上一年及当年出现过的超过III类标准限值的指标;若断面考核目标为Ⅰ或Ⅱ类,则为超过Ⅰ或Ⅱ类标准限值的指标。特征指标结合水污染防治工作需求动态调整。相关标准《地表水环境质量标准》(GB3838-2002)表1解决方案聚光科技不断扩充和完善产品体系,经过多年的沉淀,已拥有多个技术平台,包括:原子荧光分析技术、非色散红外分析技术、紫外-可见光全波长吸收光谱技术、酶底物法分析技术、发光细菌法技术、阳极溶出伏安法技术、顺序注射进样技术、间断分析技术、环形注射流路分析技术等。基于这些技术平台开发出数十款水质在线分析仪器,广泛应用于地表水、饮用水、地下水、海洋水、工业过程水、污染源废水等领域。针对《“十四五”国家地表水监测及评价方案(试行)》的监测指标要求,聚光科技应对“X”特征指标具备完整的监测产品体系,满足地表水环境质量标准的要求。特征因子监测产品体系
  • 哈希公司地表水监测解决方案:为地表水安全助力
    近期上海黄浦江松江段水域大量漂浮死猪的情况,引起了人们对饮用水源安全的思考和讨论,地表水是人类宝贵的水源,地表水的质量与人民生活密切相关。然而,层出不穷的地表水污染事件使得公众对水质监控越来越关心。如何确保水质安全以及如何对地表水源实时监测等技术问题也成为了环保业内人士热点讨论的话题。 哈希公司作为水质监测业内一员,一直都对地表水源监测技术的开发投入了相当大的资源。哈希地表水在线监测解决方案,可以为客户提供快速、准确的实时水质监控数据。 地表水常规五参数:提供pH,溶解氧,电导率,浊度,水温等常规水质参数的检测。 蓝色卫士:可根据客户需求最多同时监控8种水质参数,并可自动根据当地水源状况监测出突发的水质变化情况并报警。在添加了客户定制数据库的情况下,蓝色卫士系统还可以根据数据库内容分析水质变化的原因,为相关部门决策及快速反应提供重要的参考依据。 湖泊、水库等浮标式水质检测系统 DREL2800系列便携式水质分析实验室:全面的便携式快速水质分析系统。适用于野外各种环境水质测试要求,也适用于突发事件的快速水质参数检测。 Eclox便携式水质毒性分析仪:快速分析水质综合毒性。克服了传统发光细菌法的使用限制,操作更加简单方便,可以在各种环境下快速提供水质毒性参考。可用于常规检测或突发事件的处置。 document.write("") xno = xno+1 更多信息可以致电哈希公司客户热线电话了解:400-686-8899 / 800-840-6026 更多详情请点击
  • 国家地表水自动监测站运行管理办法
    p style=" text-align: center "   第一章 总 则 /p p   第一条 为了加强地表水自动监测站(以下简称水站)的管理,确保水站长期稳定运行,及时准确地发布水质自动监测数据,发挥水站的实时监控和预警监视作用,按照统一领导、明确职责、密切配合的原则制订本办法。 /p p   第二条 本办法规定了水站的职责分工、资产管理、站点变动、运行维护、数据管理与上报、质量管理、维护维修、责任追究等方面的管理要求。 /p p   第三条 本办法适用于国家环保总局(以下简称总局)投资建设的水站的运行管理。地方投资建设的水站的运行管理可参照此办法。 /p p style=" text-align: center "   第二章 职责分工 /p p   第四条 水站的业务管理工作由中国环境监测总站(以下简称总站)负责,日常运行维护工作由地方环境监测站(以下简称托管站)负责,水站的故障维修和风险保障委托社会专业服务机构负责。各有关省、自治区、直辖市环境监测中心(站)负责协助总站对辖区内的水站进行监督管理。具体职责分工详见附件一。 /p p   第五条 水站的运行维护原则上地市级环境监测站承担。采取自愿托管的原则,由总站委托,按年度签署委托协议。 /p p   第六条 负责水站维修工作的专业服务机构按政府采购相关要求确定。总站与其按年度签定维护维修与风险保障合同,报总局审批执行。 /p p style=" text-align: center "   第三章 运行和质量管理 /p p   第七条 托管站要设立水站的运行管理部门,明确专职人员,建立水站运行管理规章制度。 /p p   第八条 每个水站配备的技术人员必须具有环境监测和相关专业知识,必须参加总站组织的技术培训。总站根据《国家地表水质自动监测站技术人员持证上岗考核制度》(详见附件二)对水站技术人员进行业务考核,通过后持证上岗。 /p p   第九条 水站运行维护技术人员如有变动,须通知总站,并提供替代人员资料,以便安排培训考核工作。 /p p   第十条 托管站对水站应实施“日监视、周巡检”的日常运行管理制度。即每个工作日须有专人实时监视,发现数据异常应及时处理。每日至少一次采集并存取数据,每周至少一次到现场检查维护,记录远程监视及维护维修结果备查。具体实施细则详见附件三。 /p p   第十一条 托管站对水站应实施“周检查、月比对”质量管理制度。即每周一次标准溶液检查测试,每月一次实际水样的实验室比对测试,结果按规定上报。 /p p   第十二条 托管站对上报数据的质量负责。如果在线监测仪器运行出现故障或监测数据质量不符合要求,应采用实验室分析数据。具体实施细则详见附件四。 /p p   第十三条 总站、省(自治区、直辖市)站将实施现场质量管理检查与现场质控考核,定期或不定期发放密码质控样进行考核。 /p p style=" text-align: center "   第四章 数据管理与周报上报 /p p   第十四条 托管站应配备专用计算机,由专职人员负责管理和维护水站的监控软件与原始数据。任何人不得以任何理由弄虚作假、修改监测的原始数据。专用计算机不能用于上网和玩游戏。其他经授权具有水站监控软件的单位必须按总站的管理要求进行远程监视或调取数据,不得以任何理由修改水站任何控制参数。 /p p   第十五条 托管站必须按时上报周报数据。每周一上午12点之前必须完成上周的周报数据传输。水站仪器设备发生故障时上报实验室分析数据。与上周相比较水质发生类别变化时,应核实原因并给予说明。具体要求详见附件五。 /p p   第十六条 托管站在上报总站周报数据的同时,应将周报数据上报本市、本省(自治区、直辖市)环境监测中心(站)。如果在各种公开媒体上发布,发布内容必须与总站发布的一致。 /p p style=" text-align: center "   第五章 设备维修 /p p   第十七条 水站实施故障报修制度。一旦发生故障且托管站无法解决时必须及时向专业服务机构报修。专业服务机构服务程序详见附件六。 /p p   第十八条 仪器设备备品备件采用定期发放与按需订购相结合的方式进行。根据备品备件的使用周期,总站委托专业服务机构定期发放。托管站也可根据实际使用情况提出合理的发放时间。总站根据仪器供货商的报价不定期公布备品备件价格。专业服务机构受总站委托,在巡检或现场维修时,可以对失效的备品备件直接更换。 /p p style=" text-align: center "   第六章 运行经费的使用与管理 /p p   第十九条 水站运行经费来源于国家财政,是保证国家水质自动监测系统正常运行所必需的专项业务工作费用。由总站根据与托管站签定委托运行管理协议书,按年度下拨至各托管站。 /p p   第二十条 运行费实行“专款专用、超支不补”的原则。运行费的使用范围详见附件七。水站运行费不得挪作他用。一经发现,将从下一年度的运行经费中扣除,并上报总局。 /p p   第二十一条 运行经费实行年度决算制度。每年年底之前,托管站根据经费的实际使用情况上报年度决算。总站将不定期派人检查经费的使用情况。 /p p   第二十二条 运行经费根据水站的实际运行时间按比例支付,在下一年度的预算中调整。 /p p style=" text-align: center "   第七章 资产管理 /p p   第二十三条 水站的资产由总站负责按国有资产有关规定统一管理,并进行固定资产建帐。托管站作为水站的管理和使用单位按总站要求管理使用。总站可根据实际情况调配水站仪器设备。 /p p   第二十四条 托管站必须遵守总局、总站有关水站的管理规定,做好水站的运行管理工作。托管站负有水站资产的保护职责。凡是由于保管或使用不当造成的资产损失,由托管站负责赔偿。 /p p   第二十五条 水站仪器设备的使用年限一般为八年。水站仪器设备的变更或报废,由总站负责向总局申请。 /p p style=" text-align: center "   第八章 站点变动 /p p   第二十六条 当水站所在断面的代表性或水文条件发生变化,不能满足建站目的和条件时,或水站由于管理不善、长期不能正常运转时,总站将根据实际情况向总局申请移动或撤消该水站。水站移动所需费用由总局负责。 /p p   第二十七条 受地方建设项目或规划的影响,水站需要迁址时,托管站必须提出书面申请,经总站报总局批准后方可迁址。迁址所需的费用由托管站负责落实。 /p p style=" text-align: center "   第九章 考核与奖惩 /p p   第二十八条 总站负责按年度对水站的运行管理进行量化考核,根据托管站对有关管理规定的执行情况、水站的运行情况、周报上报情况、质量管理情况及经费管理与使用情况进行评分考核。具体考核办法详见附件八。 /p p   第二十九条 对于存在下列行为之一的,总站将采取通报批评、暂停运行费用、申请撤消水站等措施:无正当理由未定期上报水质周报数据 无正当理由长期停止水站运行 擅自更改原始数据 避雷设施未年检或年检不合格且未采取改进措施 违反经费专款专用规定 对水站固定资产管理不善、造成重大损失。 /p p   第十章 附 则 /p p   第三十条 本办法由总站负责解释。 /p p   第三十一条 本办法自发布之日起施行。 /p p 附件: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201710/ueattachment/a56ae4ea-5790-40cb-9b21-a231ef606501.pdf" 水站管理职责分工.pdf /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201710/ueattachment/6157c924-f577-4187-bbc2-bb7ff9ff1ffe.pdf" 持证上岗考核制度.pdf /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201710/ueattachment/545c52da-a768-40dc-8639-28c219af54fd.pdf" 水站日常维护保养细则.pdf /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201710/ueattachment/307392fb-9de9-4357-84a6-fc27f3490ff5.pdf" 质量保证与质量控制实施细则.pdf /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201710/ueattachment/5a3e318e-b3aa-44d3-bda6-c2c0f52d0148.pdf" 周报上报制度.pdf /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201710/ueattachment/a57af86e-eaa9-4938-b8f8-7f715163e372.pdf" 专业服务机构维护维修管理办法.pdf /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201710/ueattachment/b8edb9a4-3da8-4be9-87bb-092800bb9df1.pdf" 运行经费使用与管理办法.pdf /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201710/ueattachment/2747f50f-4242-4c91-95b5-dccf607f231b.pdf" 水站运行考核办法.pdf /a /p
  • 2018年全国地表水水质好转
    p   生态环境部7日通报的全国地表水环境质量状况显示,2018年1月份至12月份,1940个国家地表水评价考核断面中,水质优良(Ⅰ—Ⅲ类)断面比例为71.0%,同比提高3.1个百分点 劣Ⅴ类断面比例为6.7%,同比降低1.6个百分点。 /p p   2018年1月份至12月份,长江、黄河、珠江、松花江、淮河、海河、辽河、西北诸河、西南诸河和浙闽片等十大流域水质优良(Ⅰ—Ⅲ类)断面比例为74.3%,同比提高2.5个百分点 劣Ⅴ类断面比例为6.9%,同比降低1.5个百分点。主要污染指标为化学需氧量、氨氮和总磷。其中,西北诸河、西南诸河水质为优,长江、珠江流域和浙闽片河流水质良好,黄河、淮河和松花江流域为轻度污染,辽河、海河流域为中度污染。与2017年同比,黄河、淮河和海河流域水质有所好转,辽河、松花江流域水质有所下降,其他流域水质均无明显变化。 /p p   2018年1月份至12月份,监测的111个重点湖(库)中,水质优良(Ⅰ—Ⅲ类)湖库占66.7%,同比提高4.2个百分点 劣Ⅴ类水质占8.1%,同比降低2.6个百分点。主要污染指标为总磷、化学需氧量和高锰酸盐指数。 /p p   “老三湖”中,太湖为轻度污染、轻度富营养,主要污染指标为总磷 巢湖为中度污染、轻度富营养,主要污染指标为总磷 滇池为轻度污染、轻度富营养,主要污染指标为化学需氧量和总磷。与2017年同比,滇池水质明显好转,太湖、巢湖无明显变化。 /p p   “新三湖”中,洱海水质为优、中度富营养 丹江口水库水质为优、中度富营养 白洋淀为轻度污染、轻度富营养。与2017年同比,三湖库水质和营养状态均无明显变化。 /p
  • 地表水新标即将实施!污染物检测有新变化?
    随着“自动监测为主、手工监测为辅”监测模式的推行,我国地表水环境监测能力与自动预警水平持续提升,配套的多项地表水监测标准得到修订。2022年5月,生态环境部发布《地表水环境质量监测技术规范》(HJ 91.2-2022),该标准适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测,支撑《地表水环境质量标准》(GB 3838-2002)实施,并将于2022年8月1日实施。修订了什么?《地表水环境质量监测技术规范》(HJ 91.2-2022)为首次修订,适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测。与《地表水和污水监测技术规范》(HJ/T 91-2002)相比,本标准明确了总磷监测的现场前处理方法,完善了布点与采样、监测项目与分析方法、监测数据处理、质量保证与质量控制等相关内容,进一步规范地表水环境质量手工监测工作,支撑《地表水环境质量标准》(GB 3838-2002)实施。自动监测市场,再现“新空间”2019 年 5 月,生态环境部印发《地级及以 上城市国家地表水考核断面水环境质量排名方案(试行)》,提出为充分发挥城市国家地表 水考核断面水环境质量排名的倒逼作用,对设置有国家地表水考核断面的所有地级及以上城市水环境治理进行排名。十四五以来,自动为主、手工为辅的融合监测模式更是在全国落地开花。《“十四五”生态环境监测规划》提出开展自动为主、手工为辅的融合监测,以支撑全国水环境质量评价、排名与考核,精准、及时的自动监测数据将作用于各城市排名。与此同时,《生态环境 监测规划纲要(2020-2035 年)》提出建立 9+N 自动监测能力要求,即在常规 9 参数基 础上,增加化学需氧量、五日生化需氧量、阴阳离子、重金属、有机物、水生态综合毒性 等特征指标。不难看出,多方讯号显示水质在线监测仪器市场将迎来新增长。无论是手动监测,还是自动监测,若想精准检测数据,检测人员、仪器分析依然是关键!基于此,仪器信息网将于7月14日举办地表水检测分析技术网络研讨会,届时将邀请领域内权威专家出席,优秀厂商进行技术分享!点击链接报名:https://www.instrument.com.cn/webinar/meetings/surfacewater20220714/详细会议日程(持续更新中):报告时间报告方向报告嘉宾09:30--10:00《地表水环境质量监测技术规范》(HJ 91.2-2022)标准解读标准制定单位专家邀请中10:00--10:30待定吉天仪器10:30--11:00安捷伦质谱技术助力环境监测与保护杜伟安捷伦科技(中国)有限公司 液质应用工程师11:00--11:30微波消解-离子色谱法测定地表水中痕量总磷中国环境监测总站 业务主管/高级工程师14:00--14:30地表水自动监测技术难点解析钟声江苏省环境监测中心 高级工程师16:00--16:30待定孙娟江苏省南京环境监测中心 科室主任/高级工程师
  • 生态环境部通报9月地表水环境质量
    总体情况9月,3641个国家地表水考核断面中,水质优良(Ⅰ~Ⅲ类)断面比例为77.6%,同比上升1.8个百分点;劣Ⅴ类断面比例为1.8%,同比下降1.1个百分点。主要污染指标为总磷、高锰酸盐指数和化学需氧量。图1 9月全国地表水水质类别比例1-9月,3641个国家地表水考核断面中,水质优良(Ⅰ~Ⅲ类)断面比例为81.8%,同比上升1.2个百分点;劣Ⅴ类断面比例为1.2%,同比下降0.9个百分点。主要污染指标为化学需氧量、高锰酸盐指数和总磷。图2 1-9月全国地表水水质类别比例 主要江河水质状况9月,长江、黄河、珠江、松花江、淮河、海河、辽河等七大流域及西北诸河、西南诸河和浙闽片河流水质优良(Ⅰ~Ⅲ类)断面比例为80.3%,同比上升1.7个百分点;劣Ⅴ类断面比例为1.5%,同比下降1.0个百分点。主要污染指标为高锰酸盐指数、化学需氧量和总磷。其中,西北诸河、长江流域和西南诸河水质为优;浙闽片河流、珠江、黄河和辽河流域水质良好;松花江、海河和淮河流域为轻度污染。图3 9月七大流域和西南、西北诸河及浙闽片河流水质类别比例1-9月,长江、黄河、珠江、松花江、淮河、海河、辽河等七大流域及西北诸河、西南诸河和浙闽片河流水质优良(Ⅰ~Ⅲ类)断面比例为83.7%,同比上升1.2个百分点;劣Ⅴ类断面比例为1.0%,同比下降1.0个百分点。主要污染指标为化学需氧量、高锰酸盐指数和总磷。其中,西北、西南诸河、长江流域和浙闽片河流水质为优;珠江、辽河和黄河流域水质良好;淮河、海河和松花江流域为轻度污染。图4 1-9月七大流域和西南、西北诸河及浙闽片河流水质类别比例重点湖(库)水质状况及营养状态9月,监测的208个重点湖(库)中,水质优良(Ⅰ~Ⅲ类)湖库个数占比67.3%,同比上升0.6个百分点;劣Ⅴ类水质湖库个数占比6.2%,同比下降1.0个百分点。主要污染指标为总磷、化学需氧量和高锰酸盐指数。196个监测营养状态的湖(库)中,中度富营养的17个,占8.7%;轻度富营养的44个,占22.4%;其余湖(库)为中营养或贫营养状态。其中,太湖为轻度污染、轻度富营养,主要污染指标为总磷;巢湖为中度污染、中度富营养,主要污染指标为总磷;滇池为轻度污染、中度富营养,主要污染指标为化学需氧量和总磷;丹江口水库和洱海水质均为优、中营养;白洋淀为轻度污染、轻度富营养,主要污染指标为化学需氧量。与去年同期相比,滇池和洱海水质均有所好转,巢湖水质有所下降,太湖、丹江口水库和白洋淀水质均无明显变化;巢湖营养状态有所下降,太湖、滇池、丹江口水库、洱海和白洋淀营养状态均无明显变化。1-9月,监测的210个重点湖(库)中,水质优良(Ⅰ~Ⅲ类)湖库个数占比71.9%,同比下降0.3个百分点;劣Ⅴ类水质湖库个数占比6.2%,同比上升0.9个百分点。主要污染指标为总磷、化学需氧量和高锰酸盐指数。209个监测营养状态的湖(库)中,中度富营养的11个,占5.3%;轻度富营养的46个,占22.0%;其余湖(库)为中营养或贫营养状态。其中,太湖为轻度污染、轻度富营养,主要污染指标为总磷;巢湖为轻度污染、中度富营养,主要污染指标为总磷;滇池为轻度污染、中度富营养,主要污染指标为化学需氧量、总磷和高锰酸盐指数;丹江口水库和洱海水质均为优、中营养;白洋淀为轻度污染、轻度富营养,主要污染指标为化学需氧量。与去年同期相比,滇池水质有所好转,太湖、巢湖、丹江口水库、洱海和白洋淀水质均无明显变化;巢湖营养状态有所下降,太湖、滇池、丹江口水库、洱海和白洋淀营养状态均无明显变化。地级及以上城市国家地表水考核断面排名1-9月,全国地级及以上城市中,柳州、嘉峪关和桂林市等30个城市国家地表水考核断面水环境质量相对较好(从第1名至第30名),乌兰察布、赤峰和吕梁市等30个城市国家地表水考核断面水环境质量相对较差(从倒数第1名至倒数第30名);鄂尔多斯、铜川和榆林市等30个城市国家地表水考核断面水环境质量变化情况相对较好(从第1名至第30名),包头、日喀则和拉萨市等30个城市国家地表水考核断面水环境质量变化情况相对较差(从倒数第1名至倒数第30名)。见附表1~附表4。附表1 1-9月国家地表水考核断面水环境质量状况排名前30位城市及所在水体附表21-9月国家地表水考核断面水环境质量状况排名后30位城市及所在水体注:表中带*水体水质达到《地表水环境质量标准》(GB3838-2002)Ⅰ类或Ⅱ类。附表31-9月国家地表水考核断面水环境质量变化情况排名前30位城市及所在水体
  • 征集对修订环标《地表水环境质量标准》等标准意见
    为贯彻落实《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,加强生态文明建设,适应国家经济社会发展和环境保护工作的需要,保护生态环境和人体健康,完善国家环境质量标准体系,我部决定对国家环保标准《地表水环境质量标准》(GB3838-2002)、《农田灌溉水质标准》(GB5084-92)和《渔业水质标准》(GB11607-89)进行修订。   鉴于该标准对于环境保护和环境质量评价工作有重大影响,与社会公众利益密切相关,为做好标准修订工作,充分了解各有关方面的意见,根据《国家环境保护标准制修订工作管理办法》的有关规定,现就修订该标准公开征集意见。各机关团体、企事业单位和个人均可参照附件一所列问题或其他问题,就修订标准工作向我部提出意见和建议。征集意见截止时间为2009年10月30日。   联系人:环境保护部科技标准司 滕云 冯波   通信地址:北京市西直门内南小街115号   邮政编码:100035   传真:(010)66556213   附件:1.修订国家地表水环境质量标准相关问题      2.地表水环境质量标准      3.农田灌溉水质标准      4.渔业水质标准      5.部分主送单位名单   附件一:   修订国家地表水环境质量标准相关问题   一、现行《地表水环境质量标准》主要存在哪些不适应国家经济社会发展和环境保护工作需要的问题?   二、修订《地表水环境质量标准》的过程中,是否有必要解决国家地表水环境质量标准内容重叠的问题,统一国家水环境质量标准体系,将《农田灌溉水质标准》、《渔业水质标准》和《地下水质量标准》的内容纳入统一的国家水环境质量标准?   三、现行《地表水环境质量标准》中的评价指标数量(109项)应该增加、减少还是保持不变?   四、对调整现行《地表水环境质量标准》的评价指标体系有何具体建议?   五、是否要改变现行《地表水环境质量标准》实行的“单指标评价”方法(即只要有一项指标超标,就判定水体不符合要求并降低评价等级)?   六、是否调整现行《地表水环境质量标准》实行的水域环境功能分类方式?
  • 环保部今起公布地表水水质实时监测数据
    国家地表水水质自动监测站是我国地表水环境监测网络的重要组成部分。自1999年至今,已在主要河流的省界断面、入海口、支流汇入口以及重要湖区及国界河流上,建设了100个水质自动监测站,初步形成了覆盖我国主要水体的水质自动监测网络。多年来,在地表水监测预警、跨界污染纠纷处理、省界水质目标考核、保障人民群众用水安全方面,水质自动监测站发挥了重要作用。   为进一步深化环境信息公开工作,充分发挥国家地表水水质自动监测站在环境管理、水污染防治方面的实时监控与预警监视作用,落实省界目标责任制,满足人民群众的环境知情权,积极为环境保护优化经济发展和构建和谐社会提供基础性服务,环境保护部定于2009年7月1日起向社会公开发布国家地表水水质自动监测站的实时监测数据。   本次发布的国家地表水水质自动监测站的实时监测数据,主要指标包括:pH、溶解氧、CODMN、氨氮、TOC。监测频次为每四小时一次,每天动态发布六次监测数据。
  • 地表饮用水源地监测项目将作修改
    关于征求《集中式生活饮用水地表水源地特定项目月监测优选方案》意见的通知 各有关省(自治区、直辖市)环境监测中心(站)、113个环保重点城市环境监测中心(站):   为更好的推进“十二五”环境监测工作的实施,适应“十二五”期间集中式饮用水水源地水质监测工作的需要,考虑有关省(自治区、直辖市)反映的《地表水环境质量标准》(GB3838-2002)中特定项目的前35项月监测情况,我站组织编制了《集中式生活饮用水地表水源地特定项目月监测优选方案》(详见附件)。   根据地表饮用水源地特定监测项目的筛选原则,筛选出的监测项目共30项。其中,含前35项中的19项 新增的11项监测项目均在《地表水环境质量标准》(GB3838-2002)表3中的后45项之列。   请你站结合具体监测任务和监测能力情况,就《集中式生活饮用水地表水源地特定项目月监测优选方案》提出意见。请于11月30日前,将意见或建议电子版发送至邮箱(Email:liwp@cnemc.cn),纸质版请邮寄至总站水室。   联系人:李文攀 电话:010-84943093   二〇一一年十一月十一日   附件:《集中式生活饮用水地表水源地特定项目月监测优选方案》   一、 监测目的   为更好的推进“十二五”环境监测工作的实施,适应“十二五”期间集中式饮用水水源地水质监测工作的需要,结合重点城市的例行监测任务、监测能力,考虑社会反映强烈的有毒有害有机污染物,以全面、准确、客观地反映我国地级以上城市集中式饮用水水源地水质状况为目的,通过调整饮用水水源地例行监测的特定项目,掌握集中式饮用水水源环境状况,为饮用水水源地环境管理提供技术支撑,制定本方案。   二、 监测现状   根据环境保护部历年《关于印发的通知》要求,从2003年开始国家环保重点城市开展集中式饮用水源地水质监测工作。每月对集中式饮用水源地水质实施监测,监测项目为《地表水环境质量标准》(GB3838-2002)表1的基本项目(23项,COD除外)、表2的补充项目(5项),共28项 从2008年开始每月监测表3特定项目中的前35项,合计63项 地下水饮用水源地每月按《地下水质量标准》中23项进行月监测。地表水饮用水源地每年按照《地表水环境质量标准》进行一次109 项全分析。地下水饮用水源地每年按照《地下水质量标准》进行一次39 项全分析。   目前,地表水饮用水源地每月监测的前35项特定项目中多数为挥发性有机物,一些对人体健康影响较大、社会反响较大的监测项目并未列入。根据35项特定项目的例行监测结果,有些监测项目月检测频次低,甚至未检出。因此,依据管理需求和现有监测能力,需对80项特定项目进行优化,筛选出较为全面、准确和客观地反映饮用水水源地水质状况的月监测指标。   三、 监测项目调整原则   本方案调整的监测项目涉及每月对集中式生活饮用水地表水源地按照《地表水环境质量标准》(GB3838-2002)中表3 集中式生活饮用水地表水源地特定项目实施监测的监测指标。   具体筛选调整原则如下:   1.根据历年全分析数据,筛选出检出频次较高的具有代表性的特定项目   2.筛选出毒性较强、对人体健康和环境危害较大的污染物   3.归纳筛选应用广泛,且造成社会反响大、人民群众关注多的污染物   4.监测项目有成熟、可靠的监测分析方法为支撑,其灵敏度能达到环境质量标准要求。   四、 监测项目筛选及说明   根据地表饮用水源地特定监测项目的筛选原则,筛选出的监测项目共30项(见附表2)。其中,含前35项中的19项。包括挥发性卤代烃、甲醛、苯系物、氯苯类、硝基苯类、有机氯农药(林丹、滴滴涕)、除草剂(阿特拉津)、苯并(a)芘、酞酸酯类(增塑剂)、重金属(镍、钒、铊、钴、锑)等十类指标。具体筛选说明如下:   1. 原有监测项目   《地表水环境质量标准》(GB3838-2002)表3前35项中保留的监测项目共19项。具体如下:   挥发性卤代烃:三氯乙烯、四氯乙烯   甲醛   苯系物:苯、甲苯、乙苯、二甲苯、苯乙烯、异丙苯   氯苯类:氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯   硝基苯类:硝基苯、二硝基苯、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯、2,4-二硝基氯苯   上述物质多为化工原料,应用较广泛,具有一定的毒性,且其中大多在近3年集中式生活饮用水地表水源地中检出频次较高。   GB3838-2002表3前35项中其他14项中,除部分挥发性卤代烷烃因常用做萃取溶剂而极易在实验室内检出外,其他项目在近3年集中式生活饮用水地表水源地中检出频次均较低,因此不必每月进行监测,可每年监测一次。   2.新增监测项目   新增的11项监测项目均在《地表水环境质量标准》(GB3838-2002)表3中的后45项之列。具体如下:   有机氯(林丹、滴滴涕):检出频次较高,该类物质为国家严令禁用,危害性极大的持久性有机污染物(POPs)。   阿特拉津:检出频次较高,该物质适用于玉米、高粱、甘蔗等旱田作物除草。尤其是北方玉米产地,施用范围广,施用量大,持效期较长。   苯并(a)芘:虽然检出浓度较低,但检出频次相对较高,并且为强致癌物、对人体健康及环境危害极大。   酞酸酯类(邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯):应用非常广泛、类雌性激素、社会反响大(增塑剂事件)。   重金属(镍、钒、铊、钴、锑):检出频次高、危害大,且为《重金属污染综合防治“十二五”规划》中的控制项目。   五、 分析方法   《地表水环境质量标准》(GB3838-2002)表3前35项的分析方法主要分为以下几类:   (1)挥发性有机物(22项VOCs):三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、苯、甲苯、乙苯、二甲苯、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯,采用吹扫捕集—气相色谱质谱(P&T-GC-MS)法进行分析(GB/T5750.8-2006附录A)   (2)环氧氯丙烷:采用气相色谱(GC-FID)法(GB/T5750.8-2006)或P&T-GC-MS(《水和废水监测分析方法(第四版增补版)》)进行分析   (3)甲醛:乙酰丙酮分光光度法(HJ601-2011)   (4)乙醛、丙烯醛:GC-FID法(GB/T 5750.10-2006)   (5)三氯乙醛:GC-ECD法(GB/T 5750.10-2006)   (6)半挥发性有机物(8项SVOCs):四氯苯、六氯苯、硝基苯、二硝基苯、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯、2,4-二硝基氯苯,采用GC-ECD法(GB/T 5750.8-2006)或P&T-GC-MS(《水和废水监测分析方法(第四版 增补版)》)进行分析。   筛选调整后的30项指标分析方法详见附表2。拟增加的11项指标中,林丹、滴滴涕、阿特拉津、苯并(a)芘、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯等6项有机物指标,均可用液液萃取或固相萃取等方法进行样品前处理后测定 镍、钒、铊、钴、锑等5项重金属指标,均可按照《水和废水监测分析方法》(第四版增补版)中的前处理要求进行消解后进行测定,消解过程中均不加氢氟酸。   无论是调整前的35项,还是调整后的30项监测项目,目前标准样品均较易购得。   六、 组织形式   本方案是按照站长专题会的要求,经水室和分析室开会讨论后编制完成。   附表1 2008-2010年饮用水源地全分析特定项目检出频次序号 特定项目 检出频次 序号 特定项目 检出频次 (1) 钡 447 (41) 乐果 11 (2) 硼 228 (42) 四氯乙烯 11 (3) 锑 223 (43) 硝基氯苯⑤ 11 (4) 钒 206 (44) 1,2-二氯苯 10 (5) 镍 199 (45) 百菌清 9 (6) 钛 193 (46) 苯乙烯 9 (7) 钼 179 (47) 敌百虫 9 (8) 邻苯二甲酸二(2-乙基己基)酯 122 (48) 氯苯 9 (9) 邻苯二甲酸二丁酯 117 (49) 2,4,6-三硝基甲苯 8 (10) 钴 111 (50) 2,4-二硝基氯苯 8 (11) 甲醛 107 (51) 二硝基苯④ 8 (12) 铊 78 (52) 甲基对硫磷 8 (13) 水合肼 70 (53) 甲萘威 8 (14) 铍 65 (54) 三氯苯② 8 (15) 二氯甲烷 61 (55) 三溴甲烷 8 (16) 三氯甲烷 61 (56) 四氯苯③ 8 (17) 苦味酸 43 (57) 1,1-二氯乙烯 7 (18) 四氯化碳 42 (58) 敌敌畏 7 (19) 活性氯 33 (59) 环氧七氯 7 (20) 苯并(a)芘 32 (60) 六氯苯 7 (21) 1,2-二氯乙烷 31 (61) 异丙苯 7(22) 丁基黄原酸 29 (62) 1,2-二氯乙烯 6 (23) 多氯联苯⑥ 28 (63) 2,4-二硝基甲苯 6 (24) 二甲苯① 27 (64) 氯丁二烯 6 (25) 甲基汞 27 (65) 乙醛 6 (26) 林丹 27 (66) 丙烯醛 5 (27) 苯 26 (67) 环氧氯丙烷 5 (28) 乙苯 26 (68) 四乙基铅 5 (29) 微囊藻毒素—LR 24 (69) 苯胺 4 (30) 丙烯酰胺 23 (70) 六氯丁二烯4 (31) 甲苯 22 (71) 氯乙烯 4 (32) 黄磷21 (72) 溴氰菊酯 4 (33) 硝基苯 19 (73) 2,4-二氯苯酚 3 (34) 阿特拉津 17 (74) 马拉硫磷 3 (35) 2,4,6-三氯苯酚 16 (75) 丙烯腈 2 (36) 滴滴涕 15 (76) 对硫磷 2 (37) 三氯乙烯 14 (77) 松节油 2 (38) 1,4-二氯苯 13 (78) 吡啶 1 (39) 三氯乙醛 13 (79) 联苯胺 1 (40) 五氯酚 12 (80) 内吸磷 1 附表2 集中式饮用水源地特定项目水质分析方法 序号 监测项目 拟用监测分析方法/仪器 方法来源 备注 1 三氯乙烯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 2 四氯乙烯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 3 甲醛 乙酰丙酮分光光度法 HJ601-2011 4 苯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 5 甲苯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 6 乙苯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 7 二甲苯① P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 8 苯乙烯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 9 异丙苯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 10 氯苯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A)11 1,2-二氯苯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 12 1,4-二氯苯 P&T-GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GB/T5750.8-2006 (附录A) 13 三氯苯② P&T-GC-MS法 GB/T5750.8-2006 (附录A) 14 硝基苯 GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GC-ECD法 GB 13194-91 15 二硝基苯④ GC-MS法 《水和废水监测分析方法(第四版 增补版)》 GC-ECD法 GB/T5750.8-2006(31.1) 16 2,4-二硝基甲苯 GC-MS法 《水和废水监测分析方法(第四版 增补版) GC-FID法 GB/T5750.8-2006(30.1) 17 2,4,6-三硝基甲苯 GC-MS法 《水和废水监测分析方法(第四版 增补版) GC-FID法 GB/T5750.8-2006(30.1) 18 硝基氯苯⑤ GC-MS法 《水和废水监测分析方法(第四版 增补版) GC-ECD法 GB/T5750.8-2006(31.1) 19 2,4-二硝基氯苯 GC-MS法 《水和废水监测分析方法(第四版 增补版) GC-ECD法 GB/T5750.8-2006(31.1) 20 邻苯二甲酸二丁酯 GC-MS法 《水和废水监测分析方法(第四版 增补版) HPLC 法 GB/T5750.8-2006(31.1) 21 邻苯二甲酸二(2-乙基已基)酯 GC-MS法 《水和废水监测分析方法(第四版 增补版) GC-FID法 GB/T5750.8-2006(12.1) 22 滴滴涕 GC-ECD法 《水和废水监测分析方法(第四版 增补版) GC-MS法 GB/T5750.8-2006(附录B) 23 林丹 GC-ECD法 《水和废水监测分析方法(第四版 增补版) GC-MS法 GB/T5750.8-2006(附录B) 24 阿特拉津 HPLC法 HJ 587-2010 25 苯并(a)芘 HPLC法 HJ 478-2009 26 钴 ICP-AES法 水和废水监测分析方法(第四版增补版) 27 锑 ICP-MS法 EPA 200.8或《生活饮用水标准检验方法》(GB T 5750.06-2006) 原子荧光法 水和废水监测分析方法(第四版增补版) 28 镍 ICP-MS法 EPA 200.8或《生活饮用水标准检验方法》(GB T 5750.06-2006) ICP-AES法 水和废水监测分析方法(第四版增补版) 29 钒 ICP-MS法 EPA 200.8或《生活饮用水标准检验方法》(GB T 5750.06-2006) 石墨炉原子吸收分光光度法 GB/T 14673-1993 (水质 钒的测定 石墨炉原子吸收分光光度法) ICP-AES法 水和废水监测分析方法(第四版增补版) 30 铊 萃取石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) ICP-MS法 EPA 200.8或《生活饮用水标准检验方法》(GB T 5750.06-2006)
  • 终于确定:地表水国控点将以自动监测为主
    p   目前,国家地表水环境监测网共设置国控断面(点位)2767个,其中实施自动监测的点位为310个,占比为11%。随着国家地表水环境质量监测事权上收工作的开始,这些点位是否开展自动监测?手工监测是否有新模式?一系列问题受到广泛关注。 /p p   昨天,环保部地表水环境质量监测事权上收工作视频会展开,环保部副部长翟青正式宣布: /p p    span style=" color: rgb(0, 176, 240) " 一是手工监测全面推行采测分离模式。 /span 中国环境监测总站已针对样品采集发布了招标公告,总金额达2.66亿元。(详见: a href=" http://www.instrument.com.cn/news/20170817/226921.shtml" target=" _blank" title=" " 地表水国控点手工监测招标 总金额达2.66亿 /a ) /p p    span style=" color: rgb(0, 176, 240) " 二是加快推进水质自动站建设。逐步建立以自动监测为主、手工监测为辅的监测模式。 /span 这意味着,未来我国地表水自动监测仪器市场将迎来新一轮高峰,根据目前国家站的建设投资估算,总金额将近50亿元。 /p p   翟青指出,地表水监测事权上收是贯彻落实党中央、国务院生态文明建设和环境保护决策部署的重要举措,是厘清中央和地方事权、化解不当行政干预的必然要求,是提升环境监测能力、减轻基层压力的现实需求,是加强数据应用共享、满足公众和社会需求的重要保障。总体思路是:以“国家考核、国家监测、数据共享”为原则,以确保地表水监测数据质量为核心,以提升水质自动监测能力和水平为任务,以实现监测数据实时共享和信息公开为目标,统一标准规范和质控要求,国家、地方和第三方机构各负其责,分阶段、分步骤开展国家地表水监测事权上收,上收后监测数据实行联网共享并公开。 /p p   具体来说,要完成三方面的任务: /p p   一是全面推行采测分离模式。所谓采测分离,就是将考核断面水质采样和分析测试工作交由不同单位承担,改变现行属地监测模式,从机制上与利益相关方脱钩。 /p p   二是加快推进水质自动站建设。逐步建立以自动监测为主、手工监测为辅的监测模式,提升环境监测能力和自动预警水平。 /p p   三是实行数据联网共享。采测分离数据由承担检测分析任务的实验室直传中国环境监测总站,监测总站与各级环保部门实行数据共享。水质自动站数据也将统一联网并共享。同时开展远程质控和实时监督,确保数据真实、准确,并向社会实时公开发布。 /p p   翟青强调指出,上收工作时间紧、任务重,各地方、各有关单位要按照任务时间节点,倒排工期,确保上收工作顺利完成。 /p p   具体要把握好以下四个方面: /p p   一是要把握上收总体要求,本次上收范围为2050个考核断面,自今年10月起实施采测分离, span style=" color: rgb(0, 112, 192) " 2018年7月底前基本完成自动站建设 /span 。 /p p   二是要严格落实责任,各省(区、市)环境保护厅(局)、各地市人民政府及相关部门、监测总站,要加强协调联动,切实负起各自责任,积极稳妥推进上收工作。 /p p   三是要加强沟通协调,环境保护部专门成立地表水监测事权上收工作领导小组,建立工作调度与督办制度,加强监督检查,对进度缓慢、工作不力的,要现场督办,对工作成效明显的,要予以公开表扬。 /p p   四是要严格纪律要求,提高廉政意识,坚决遵守法律法规和八项规定要求,决不能触碰法律红线。加强监督,公开透明,确保干成事、不出事。 /p
  • 复盘丨地表水水质监测现状与规约
    地表水是人类可利用的宝贵资源,随着人类文明的不断发展,分布于全球各地的地表水系正经历前所未有的挑战。作为世界水质检测、分析和处理领域的价值引领者,赛莱默正致力于为包括中国在内的全球各国和机构提供我们的全套解决方案及得到广泛应用的知识体系。9月11日,由赛莱默分析仪器应用专家赵博老师主讲的在线课程《地表水水质监测现状与规约》,为大家带来关于地表水监测方面的前沿干货,现在就让我们一起领略吧!讲座视频 精彩的课程听不够未来赛莱默分析仪器会不定期邀请行业专家及技术工程师为大家带来更多有价值的课程,敬请关注赛莱默分析仪器官方微信平台!
  • 环保部称近1/4地表水被污染
    中国环保部周一发布的环境监控数据显示,中国近四分之一的地表水仍处于污染状态,甚至不能做为工业用水,而只有不到一半的地表水可以饮用。   环保部网站(www.mep.gov.cn)发布报告称,今年上半年,该部监察员对全国主要河道及湖泊的水样进行检测,仅有49.3%的地表水可以安全饮用,同比提高1.3个百分点。   中国将水质分为六个级别,前三个级别可以安全饮用并用于洗浴。四级和五级地表水占26.4%,六级占24.3%,前者仅能做为工农业用水,而後者完全不能使用。   尽管过去十年间环保部门了颁布更为严格的法律法规,但依然难以遏制数以千计的小型造纸厂、水泥厂、化工厂的污水直接排放至江河,化肥过量使用导致国内湖泊及河流藻类过度繁殖等现象。   环境部称,今年上半年全国环保重点城市空气质量明显好转,二氧化硫同比下降30.2%。但在今年上半年,监测的443个城市中,189个城市出现酸雨。
  • 城市地表水环境质量排名技术规定(试行)
    p   为贯彻落实《国务院关于印发& lt 水污染防治行动计划& gt 的通知》(国发[2015]17号),进一步加强城市水污染防治工作、改善城市地表水环境质量、保障城市饮用水安全,将城市地表水环境质量作为检验水污染防治工作的标准之一,对城市地表水环境质量进行排名,为《水污染防治行动计划》实施提供技术支撑。 /p p style=" line-height: 16px "   全文如下: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201709/ueattachment/0f8b7b22-f5f2-4d0c-9fbc-87696c43f716.pdf" 城市地表水环境质量排名技术规定(试行).pdf /a /p p br/ /p
  • 水纹预警溯源技术助力地表水水质监测
    p   地表水的保护一直是各地环保工作的重点,而我国南方地区因人口密集、经济发达,污染物排放总量居高不下,再加上复杂的水网地形,保护难度更大。近年来,地表水保护有了长足进步。以江苏省为例,在饮用水源地、国控点等地表水重点监控断面已实现自动监测的全覆盖,可实时监测pH、溶解氧、氨氮、总磷、总氮、高锰酸盐指数、蓝绿藻等常规指标。地表水应急预警监测实现了常态化。但常规有机物监测指标(如高锰酸盐指数等)只反映总量,不反映有机物毒性和来源。,所以当前水体管理存在着入侵污染物的性质说不清、变化原因说不透,污染源头更难抓的突出问题。由于地表水污染事件频发,监控污水偷排以及诊断污染来源已成为当前预警监测亟待解决的重点和难点,迫切需要一种新型的在线监测技术。 /p p   三维荧光光谱检测水体中的有机污染物是近年新兴的一项技术,但目前多数研究还只用于监测水体中的有机物浓度,未发现被用来识别污染来源的报道。清华大学研发了污染预警溯源技术,可用于水体水质异常的快速预警以及污染类型的快速诊断。苏州环境监测中心基于该项技术对南方某水体开展在线监测应用,研究了水体的荧光水纹特征、强度规律及荧光强度与常规监测指标的关系,并针对研究期间检测到的水质异常现象进行了污染溯源分析。 /p p   水体中天然有机物的主要成分(如腐殖质、蛋白质以及叶绿素等)都有特征荧光。污水也含有很多FOM,如油脂、蛋白质、表面活性剂、腐殖质、维生素、酚类等芳香族化合物、药品残余及其代谢产物等。由于每种FOM都有特定发光位置,大部分工业和生活污水的水纹也各不相同,可作为污染类型的判断依据。目前,清华大学已将该技术仪器化。该仪器能在15—30 min识别污染类型并发出警报。目前可识别长三角地区的10种主要废水,包括生活污水、印染废水、电子废水、石化废水、焦化废水、造纸废水和金属制造废水等。通常情况下,仪器判定的与已知污染的相似度大于0.9,就可以认定水样受到该种污水的污染。 /p p   水纹预警溯源技术及其在线仪器的应用,增强了水质自动监测站的预警监测能力。预警溯源仪已具备了良好的预警和溯源功能,成功地捕捉了水质异常并确定了污染类型,为环境监管提供了有力的技术支撑。 /p
  • 搞地表水检测?看看行业专家是怎么说的
    p style=" text-align: justify text-indent: 2em " 社会经济的迅猛发展加之人口数目的不断增长,导致地表水污染不断加剧,水资源安全受到了严重的威胁。随着国家对环保问题关注力度的增强,水污染已受到环保部门的高度重视。今年3月底,国家生态环境部新发布了3项水质检测的国家环境保护标准的征求意见函,标准中对水中58种污染物及微生物检测方法做出了明确的规定。 /p p style=" text-align: justify text-indent: 2em " 确保水质的健康安全,做好水质检测工作至关重要。 /p p style=" text-align: justify text-indent: 2em " 鉴于此,仪器信息网( a href=" https://www.instrument.com.cn/" _src=" https://www.instrument.com.cn/" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/ /span /a )联合 strong span style=" color: rgb(255, 0, 0) " 青岛市分析测试学会 /span /strong ,将于 strong 2020年5月13日 /strong 召开“ strong 地表水检测与分析” /strong 主题网络研讨会,携手该领域的专家和一线工作者带来精彩的分享,解读水质检测标准,探讨提高水质检测水平的相关技术,力求可以为水环境的保护尽绵薄之力。 /p p style=" text-align: center text-indent: 2em " span style=" font-family: 微软雅黑 color: rgb(255, 0, 0) " strong span style=" font-family: 微软雅黑 font-size: 18px " 精彩内容抢先看↓↓↓ /span /strong /span /p p strong 一、会议日程 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/11da8250-1ca0-4731-8a64-2e25030c3d13.jpg" title=" 地表水日程.png" alt=" 地表水日程.png" / /p p strong 二、演讲嘉宾阵容 /strong /p p & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/cc857e11-22a0-46b5-997f-73ac6f70fe3c.jpg" title=" 地表水专家.png" alt=" 地表水专家.png" / /p p style=" text-align: justify " strong 三、会议报名 /strong /p p style=" text-align: center " 扫描下方二维码或点击链接: span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/webinar/meetings/DBS2020/" _src=" https://www.instrument.com.cn/webinar/meetings/DBS2020/" style=" color: rgb(0, 112, 192) text-decoration: underline " https://www.instrument.com.cn/webinar/meetings/DBS2020/ /a /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 了解会议详情及报名& nbsp /span /p p span style=" color: rgb(0, 112, 192) " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/02ed3bdb-87a4-4ac5-b593-14daca58d833.jpg" title=" 地表水.png" alt=" 地表水.png" / /p p style=" text-align: center " br/ /p p style=" text-align: center " strong 扫描下方二维码 /strong /p p style=" text-align: center " strong 提前进入“地表水检测”会议群 /strong /p p style=" text-align: center " strong 了解更多会议信息 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 291px height: 464px " src=" https://img1.17img.cn/17img/images/202004/uepic/89239e66-d861-435b-a75c-a6c970a2defa.jpg" title=" 微信图片_20200430134522.png" alt=" 微信图片_20200430134522.png" width=" 291" height=" 464" / /p p br/ /p p & nbsp /p
  • 国家地表水水质自动监测系统介绍
    p   实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制制度落实情况。 /p p   及时、准确、有效是水质自动监测的技术特点,近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,环境保护部已在我国重要河流的干支流、重要支流汇入口及河流入海口、重要湖库湖体及环湖河流、国界河流及出入境河流、重大水利工程项目等断面上建设了100个水质自动监测站,监控包括七大水系在内的63条河流,13座湖库的水质状况。 /p p   现有100个水站分布在25个省(自治区、直辖市),由85个托管站负责日常运行维护管理工作。其中:(1)位于河流上有83个水站,湖库17个 (2)位于国界或出入国境河流有6个,省界断面37个,入海口5个,其他42个。目前还有36个水质自动站正在建设中,水站仪器设备更新项目也在实施中。 /p p    strong 地表水质自动监测站仪器配置与运行方式 /strong /p p   水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。以后将选择部分点位进行挥发性有机物(VOCs)、生物毒性及叶绿素a试点工作。 /p p   水质自动监测站的监测频次一般采用每4小时采样分析一次。每天各监测项目可以得到6个监测结果,可根据管理需要提高监测频次。监测数据通过公外网VPN方式传送到各水质自动站的托管站、省级监测中心站及中国环境监测总站。 /p p   为充分发挥已建成的100个国家地表水质自动监测站的实时监视和预警功能,经研究定于2009年7月1日在互联网上发布国家水站的实时监测数据。 /p p   每个水站的监测频次为每4小时一次,按0:00、4:00、8:00、12:00、16:00 20:00、24:00整点启动监测,发布数据为最近一次监测值。 /p p   每个水站发布的监测项目为pH、溶解氧(DO)、总有机碳(TOC)或高锰酸盐指数(CODMn)及氨氮(NH3-N)共5项。执行《地表水环境质量标准》(GB3838—2002)中相应标准,对每个监测项目的结果给出相应的水质类别。总有机碳(TOC)目前没有评价标准。 /p p   为使水质状况表达容易理解,按水质类别将水质状况分为优(I、II类水质)、良(III类水质)、轻度污染(IV类水质)、中度污染(V类水质)及重度污染(劣V类水质)。 /p p style=" text-align: center " 评价指标在GB3838-2002标准中的标准限值 /p p style=" text-align: right "   单位:mg/L /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/f5b6ff1f-72b5-4ba2-a8c7-44bd05995212.jpg" title=" QQ截图20171027153506.jpg" / /p p   水质自动监测站为在线连续监测设备,在仪器故障检查维修、日常维护校准时将出现数据缺失现象。水质自动监测站在日常运行中也会经常受到停电、洪水、断流、雷击破坏、通讯中断等意外影响,造成水站暂停运行。目前部分水站的仪器设备已运行8~9年,已超过使用寿命,造成故障率较高或停止运行,目前已列更新计划,年底前实施完毕。 /p p    strong 主要监测指标含义 /strong /p p   pH:表征水体酸碱性的指标,pH值为7时表示为中性,小于7为酸性,大于7为碱性。天然地表水的pH值一般为6~9之间,水体中藻类生长时由于光合作用吸收二氧化碳,会造成表层pH值升高。 /p p   溶解氧(DO):代表溶解于水中的分子态氧。水中溶解氧指标是反映水体质量的重要指标之一,含有有机物污染的地表水,在细菌的作用下有机污染物质分解时,会消耗水中的溶解氧,使水体发黑发臭,会造成鱼类、虾类等水生生物死亡。在流动性好(与空气交换好)的自然水体中,溶解氧饱和浓度与温度、气压有关,零度时水中饱和氧气含量可14.6mg/L,25℃为8.25 mg/L。水体中藻类生长时由于光合作用产生氧气,会造成表层溶解氧异常升高而超过饱和值。 /p p   高锰酸盐指数(CODMn):以高锰酸钾为氧化剂,处理地表水样时所消耗的量,以氧的mg/L来表示。在此条件下,水中的还原性无机物(亚铁盐、硫化物等)和有机污染物均可消耗高锰酸钾,常被作为地表水受有机污染物污染程度的综合指标。也称为化学需氧量的高锰酸钾法,以别于常作为废水排放监测的重铬酸钾法的化学需氧量(COD)。 /p p   总有机碳(TOC):代表水体中有机物质含量的另一项综合指标。采用燃烧水样中的有机物,通过测定生成的二氧化碳(CO2)含量,以C元素的量来表示总有机碳的含量。对于化学成分相同的水样,总有机碳与高锰酸盐指数存在一定的相关性。 /p p   氨氮(NH3-N):氨氮以溶解状态的分子氨(又称游离氨,NH3)和以铵盐(NH4+)形式存在于水体中,两者的比例取决于水的pH值和水温,以含N元素的量来表示氨氮的含量。水中氨氮的来源主要为生活污水和某些工业废水(如焦化和合成氨工业)以及地表径流(主要指使农田使用的肥料通过地表径流进入河流、湖库等)。 /p p    strong 应用实例 /strong /p p   随着国家水质自动监测系统的运行,充分发挥了实时监视和预警功能。在跨界污染纠纷、污染事故预警、重点工程项目环境影响评估及保障公众用水安全方面已经发挥了重要作用。 /p p   2002年在浙江-江苏的跨省污染纠纷处理过程中,自动站的连续监测数据在监督企业污染治理和防止超标排放方面发挥了重要作用。 /p p   长江干流重庆朱沱和宜昌南津关水质自动监测站在2003年5~6月三峡库区蓄水期间,共取得库区上下游2520个水质实时数据,为管理部门的决策提供了有力的依据。 /p p   淮河干流淮南、蚌埠及盱眙站成功地全程监视了2001~2006年淮河干流大型污染团的迁移过程,为沿淮自来水厂及时调整处理工艺,保证饮水安全提供了依据,为环境管理及时提供了技术支持。 /p p   汉江武汉宗关自动监测站自建立以来,每年对汉江水华的预警监测都发挥了重要作用,及时通知武汉市主要饮用水处理厂提前做好处理,保障水厂出水达标。 /p p   2007、2008、2009年太湖蓝藻预警监测期间,太湖沙渚、西山和兰山嘴水质自动监测站开展了加密监测,通过水质pH、溶解氧等藻类生长的水质特异性指标预测判断水体的藻类生长状况,为饮用水水质预警提供了大量实时数据,发挥了重要作用。 /p p   2008年四川汶川特大地震发生后,中国环境监测总站立即通过水质自动监测系统远程查看灾区水质状况,将灾区7个水质自动监测站的监测频次由原来的4小时一次调整为2小时一次,在第一时间分析了地震灾区地震前后水质状况,并将灾区水质无明显变化的情况及时向国务院抗震救灾总指挥部上报,并编制《汶川大地震后相关国家水质自动监测站水质监测结果》,每天在互联网上发布自动监测结果,为保障灾区饮用水安全,稳定灾区群众发挥了重要作用。 /p p   2008年北京奥运会期间,利用北京密云古北口自动站(密云水库入口)、门头沟沿河城自动站(官厅水库出口)、天津果河桥自动站(于桥水库入口)、沈阳大伙房水库及上海青浦急水港自动站等国家水质自动监测站对城市的饮用水源实施严密监控,每日以《奥运城市地表水自动监测专报》形式上报环境保护部,为奥运期间饮水安全提供了技术保障。 /p
  • 地表水总磷现场检测前处理介绍
    一、总磷及其前处理介绍水体富营养化造成的水生态系统问题是地表水等常见危害。而水体富营养化主要是磷、氮等物质促使藻类和其他水生生物繁殖迅猛,使水体透明度、溶解氧等指标异常,造成地表水水质超标,引起生态危害。生态环保部公布的《全国地表水质量状况》中指出总磷也是我国地表水主要污染指标之一。环保总站引发的《地表水总磷现场前处理技术规范(试行)》通知指出:总磷在测试前需先进行样品处理后再采集检测总磷指标。而原水处理参照的重要指标就是浊度值。例如一般水体,当遇到藻类聚集先进行63微米过滤筛网然后根据浊度值选择自然沉降或者离心操作。当浊度低于200NTU自然沉降处理30min而后取上清液;介于200~500NTU自然沉降处理60min而后取上清液;大于500NTU进行2000rpm离心处理2min而后取上清液;感潮河段浊度值200NTU以下选用自然沉降处理30min而后取上清液,浊度200NTU以上用2000rpm离心处理1min而后取上清液。 二、总磷样品浊度测试步骤仪器:WZB-175型便携式浊度仪和DGB-401型多参数水质分析仪试剂:浊度标液、总磷工作试剂包、总磷校准液样品:上清液WZB-175浊度测试流程如下:DGB-401总磷测试流程:三、仪器介绍雷磁WZB-175和DGB-401便携式仪器可对地表水浊度、总磷等进行精|准有效测量。其中WZB-175便携式浊度仪符合国标GB 1075和ISO7027标准要求,采用LED光源,量程高达1000NTU;DGB-401内置总磷、总氮、氨氮、COD等多参数检测功能等,两款仪器详情如下WZB-175便携式浊度仪WZB-175便携式浊度计依据ISO 7027 、HJ 1075等标准进行设计,采用850 nm红外LED光源,通过比率校正的方式,有效降低颜色对于浊度测量的干扰。外观新颖,小巧便携,使用方便,可以广泛应用于地表水、工业用水、饮用水、饮料、景观水、游泳池水、废水等样品的浊度检测。 【主要特点】● LED光源,采用850 nm波长,满足ISO 7027和HJ 1075标准;● 采用散射-透射光测量原理,多方向接收散射光信号,比率校准,自动色度补偿;● 量程自动切换,自动调零;● 支持零点和最多6点校准;● 支持平均测量功能;● 支持存储2000组测试数据,符合GLP规范;● 支持USB通讯,支持连接PC进行数据采集;● 支持电池供电和USB供电,支持电源管理,支持自动关机;● IP65防护等级,良好防水防尘性能;● 配套提供浊度校准溶液。 【技术参数】型号技术参数WZB-175光源850 nm LED,满足ISO 7027标准测量范围(0~20.00)NTU,(20.0~200.0)NTU,(200~1000)NTU分辨率0.01 NTU,0.1 NTU,1 NTU示值误差±6%重复性±0.5%零点漂移±0.5% FS/30min示值稳定性±0.5% FS/30min防护等级 IP65尺寸(mm),重量(kg)220×100×80, 0.8 DGB-401型多参数水质分析仪 【主要特点】● 内置420nm、470nm、620nm、700nm四个LED光源,寿命长,精度高;● 采用分光光度法,内置高低化学需氧量(COD)、氨氮、总磷、总氮5个检测项目,检测项方法直接调用,无需进行波长选择;● 支持单点和多点校准,支持用户编辑校准曲线;● 支持吸光度和浓度两种测量方式;● 支持两种读数方式:Smart-Read功能(智能判别终点),Cont-Read功能(连续测量); ● 每个检测项目可存储测量结果各200套,符合GLP规范,支持数据查阅、删除和打印;● 支持USB通讯,支持连接PC进行数据采集;● 支持电池供电和USB供电,支持电源管理功能,可设置自动关闭光源和自动关机;● IP65防护等级,良好防水防尘性能;● 支持固件升级,支持恢复出厂设置,允许功能扩展和应用拓展。 【技术参数】测量参数测量方法光源波长测量范围(mg/L)示值误差重复性低COD重铬酸钾法470nm0.0~150.0mg/L±8%3%高COD重铬酸钾法620nm150.0~1500mg/L±8%3%氨氮纳氏试剂法420nm0.000~4.000mg/L,可扩展至 300mg/L±10%3%总磷钼酸盐分光光度法700nm0.000~1.000mg/L,可拓展至25.00mg/L±10%3%总氮过硫酸盐氧化法420nm0.000~30.00mg/L,可扩展至300mg/L≤10mg/L:±1 mg/L;>10mg/L:±5%;3%
  • 地表水监测仪器需求或将主要来自地方省市
    仪器信息网讯 2014年4月18日,中国科学仪器行业的“达沃斯论坛”——2014中国科学仪器发展年会(ACCSI 2014)于北京召开,作为发展年会的分会场之一,环境监测仪器技术论坛也在同期召开。此次会议上,中国环境监测总站工程师姚志鹏就《我国地表水和饮用水环境监测管理与技术》做了报告,报告就我国水环境监测网络体系、国控地表水环境监测网络体系、地表水环境监测网现状等进行了全面的介绍分析。 中国环境监测总站工程师姚志鹏讲解我国地表水和饮用水环境监测技术   针对较多人问到的水质自动监测站建设情况,姚志鹏透露,目前国家已在大江大河的省界断面和重要国界河流建设了149个地表水水质自动监测站,监测频次为4小时一次,监测项目为常规五参数、高锰酸盐指数、总有机碳、氨氮等。水质自动监测站需要建设费用、运行维护费用,持续监测生成的海量数据也需要处理,而相关费用大多已投入到大气监测方面,即使是水质自动监测站的一些比较旧的水质监测仪器的更新有些也因此搁置,因此目前来看,“十二五”期间,国控地表水水质自动监测站建设将会比较少,增建站点的可能性比较小,而一些地方省市的建设力度则是比较大的,如河南、江苏等,其省内包括浮标站在内的自动监测站就已经增加到二百多个甚至三百多个。   姚志鹏也为参加会议的业内人士介绍了最受关注的水质监测相关政策法规如“水十条”等的情况,他透露,《地表水环境质量标准》的修订工作或为“水十条”让路,因而其修订工作将大幅延期。《地表水和污水监测技术规范》的修订工作也在进行之中,过去的旧规范把地表水和污水的检测标准融合在一起,比较注重其科学性,但对实际应用中的可操作性考虑的不够,如果完全严格按照规范进行水质监测,很难去完成检测工作,但如果不按规范进行检测,检测数据又不具有法律效力,因此新规范的修订将更注重其实际应用,修订工作最快可能于2015年完成。
  • 新地表水环境质量标准 GB3838-2002 定制混标标样
    地表水环境质量标准 GB3838-2002 定制混标标样 我们公司一直致力于地表水环境质量标准 GB3838-2002 定制混标,并且根据实际情况不断改进,在原来有机物前35项定制二种有机物混标基上,增加了6种有机磷(替代原有机磷7种),12种氯苯类混标,10种硝基苯类混标。非常适合我国现有地表水有机项目检测。 混标 组分 规格 备注 12种氯苯类订制混标 1,2- 二氯苯;1,4- 二氯苯;1,3- 二氯苯;氯苯;1,2,3- 三氯苯;1,2,4- 三氯苯;1,3,5- 三氯苯;1,2,3,4- 四氯苯;1,2,3,5- 四氯苯;1,2,4,5- 四氯苯;五氯苯;六氯苯(100ppm) 200ppm甲醇溶剂*1ml 地表水氯苯类混标 10种硝基苯类混标 2,4-二硝基氯苯;2,4,6-三硝基甲苯;2,4-二硝基甲苯;邻硝基氯苯;间硝基氯苯;对硝基氯苯;邻二硝基苯;间二硝基苯;对二硝基苯;硝基苯; 2000ppm甲醇溶剂*1ml 6种有机磷订制混标 甲基对硫磷 对硫磷 马拉硫磷 乐果 敌敌畏 内吸磷 100ppm甲醇溶剂*1ml 原有机磷7种组分中敌百虫组分干扰敌敌畏测定,敌百虫本身物质不稳定,剔除敌百虫组分 25种VOC订制混标 地表水前35项挥发性 100ppm甲醇溶剂*1ml 地表水前35项挥发性 24种SVOC订制混标 地表水前35项半挥发性 500ppm甲苯溶剂*1ml 地表水前35项半挥发性 8种有机氯订制混标 4,4' -DDD、4,4' -DDE、4,4' -DDT、2,4' -DDT、&alpha -HCH、&beta -HCH、&gamma -HCH、&delta -HCH 50ppm甲苯甲醇溶剂*1ml 国产 8种苯系物混合标液 苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、苯乙烯、异丙苯 1000ppm甲醇 进口订制 除标注国产以为,均为进口订制混标,保证可溯源性。 我公司可以提供GB3838-2002其它所有标样,有任何疑问请随时与我们公司联系。
  • 科学岛团队在地表水质的光谱监测技术方面取得新进展
    近日,中科院合肥物质院智能所光谱智能感知团队提出了一种基于紫外可见光谱(UV-Vis)和近红外(NIR)光谱数据融合策略,用于地表水质的快速高精度检测。相关研究成果已在分析化学领域期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上发表。   水质参数的实时监测对地表水污染的防治具有重要意义。化学需氧量(COD)、氨氮(AN)和总氮(TN)是反映地表水污染程度的关键指标。紫外-可见(UV-Vis)光谱和近红外(NIR)光谱作为两种快速、简便、多组分的分析技术,在水质监测中具有传统化学检测方法无法比拟的优势。   为了进一步提高光谱方法检测水质的精确性,科研团队开发出一种基于UV-Vis和NIR光谱数据融合(UV-Vis-NIR)的地表水质检测策略。研究人员首先对70份不同污染程度的河流样本进行光谱采集和化学测定,通过UV-Vis与NIR光谱的初级融合获得UV-Vis-NIR融合数据,采用不同的变量选择算法优化地表水污染指标的UV-Vis-NIR融合模型。研究结果表明,基于UV-Vis-NIR数据融合策略的地表水中COD、AN和TN的光谱预测准确性明显优于单一光谱技术的预测结果。此外,在不同的优化条件下,这一方法的检测结果相比单一光谱法更为稳定,因而该方法具有更好的鲁棒性。这项研究成果有利于光谱的水质在线监测技术进一步推广应用。   徐琢频博士为第一作者,王琦研究员和张鹏飞副研究员为通讯作者。本工作得到合肥市关键共性技术研发项目、国家自然科学基金等项目的支持。图1 基于近红外和紫外可见光谱数据融合的地表水主要污染物检测示意图
  • 便携式离心机|地表水总磷现场前处理工作
    上海净信现场便携式离心机JX-L02是根据中国环境监测总站要求研发,满足《地表水总磷现场前处理技术规定(试行)》的文件参数要求。体积小巧、手提式设计、耗电量低,适用于现场操作,也可使用车载电源或蓄电池为其供电,是一款地表水总磷现场前处理的产品。环保总站发表的《地表水总磷现场前处理技术规范(试行)》通知指出:总磷在测试前需先进行样品处理后再采集检测总磷指标,而原水处理参照的重要指标就是浊度值。例如一般水体,当遇到藻类聚集先进行63微米过滤筛网然后根据浊度值选择自然沉降或者离心操作。①当浊度低于200NTU自然沉降处理30min而后取上清液;②介于200~500NTU自然沉降处理60min而后取上清液;③大于500NTU进行2000rpm离心处理2min而后取上清液;④感潮河段浊度值200NTU以下选用自然沉降处理30min而后取上清液,浊度200NTU以上用2000rpm离心处理1min而后取上清液。净信便携式离心机JX-L02完全能够满足《地表水总磷现场前处理技术规定(试行)》的文件参数。在运行过程中是转速是定制的2000rpm,设定离心时间可在1s~99min自由设定,单次离心的水样可达1L~2L。整机采用人体工学设计,外观大气美观。操作简单,一键式操作,免维护。zuei佳三角平衡点牢牢地固定在底部,使整套系统运行极为平稳,超低噪音,高可靠性,高稳定性。在产品设计时充分考虑到用户防水防潮的需求,产品内部采用独创的复合多层环保高密度材料,具有极强的隔音隔热作用;风道结构采用独创的半圆弧形特殊点位结构使其达到zuei佳的散热传热效果。离心腔腔内与盖子风道形成循环风道系统,内部电路全部采用悬挂式设计,可自动进行通风循环散热。目前我国生态环境的发展受到越来越多的关注,保护环境已成为国民的一项事业,也因此环境监测体系要不断完善,以满足环境保护各项措施的实施。在环境检测体系中,关于地表水的监测是其重要组成部分,地表水的监测与人们日常饮水安全息息相关。目前,环境监测中地表水的监测,其问题突出表现在检测数据难以达标,监测期间缺乏管理及环境分析水平不足,工作人员采样监测不便利等方面。在这种问题的影响下,则会直接影响环境监测中地表水监测的整体效果。水质采样、前处理与监测工作都需要相应的仪器设备,净信现场便携式离心机会给工作人员带来更多的便利。
  • 通知公告|关于征集地表水无人监测技术测试单位的通知
    为加快建设现代化生态环境监测体系,全面提升空天地海一体化生态环境监测能力,有序推进国家网地表水无人监测,测试“无人采样与无人实验室分析”监测技术的可行性,提高国家网运行质量与效率,推动新技术应用。中国环境监测总站(以下简称总站)拟开展第一阶段地表水无人监测测试工作。本次测试主要为验证无人采样设备与人工采样的水样代表性、无人实验室与手工分析实验室的数据一致性。欢迎符合申报条件且具备履约能力的测试单位报名参加。具体内容详见附件。相关咨询:陈鑫 18611696797、沈嘉豪 15010136816附件:附件1:地表水无人监测技术测试方案.docx附件2:申报材料目录及申请表.docx关于征集地表水无人监测技术测试单位的通知.pdf
  • 地表水国控监测点位由759个调整为972个
    总站水字[2012]101号   关于按照“十二五”地表水国控点位   开展监测工作的通知   各省、自治区、直辖市环境监测中心(站):   根据环保部“关于印发国家地表水、环境空气监测网(地级以上城市)设置方案的通知”(环发[2012]42号)的有关精神,地表水国控监测点位由759个调整为972个(详见附件)。请各省(自治区、直辖市)于2012年6月份起,每月按照新点位开展地表水环境质量监测工作,监测数据按照原有方式报送。并于6月1日前,报送本辖区内监测点位的经纬度和2010年以来的监测数据至总站水室邮箱water@cnemc.cn,经纬度按照“度、分、秒”的格式报送,监测数据报送格式参照附表1和附表2。   联系人:姚志鹏电话:010-84943091   沈 欣010-84943177   二〇一二年五月九日   附件1:国家城市环境空气质量监测网点位.pdf   附件2:各省市点位信息填报表.rar   附件3:监测数据报送格式.doc
  • 《地表水自动监测技术规范》征求意见
    关于征求国家环境保护标准《地表水自动监测技术规范》(征求意见稿)意见的函 各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定国家环境保护标准《地表水自动监测技术规范》。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面修改意见返回我部科技标准司。征求意见截止时间为2010年4月30日。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   附件:1《地表水自动监测技术规范》(征求意见稿)   2.《地表水自动监测技术规范》(征求意见稿)编制说明
  • 地表水重金属专项监测方案征求意见
    关于征求《地表水重金属专项监测方案》意见的通知   总站水字[2011]177号   内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省、重庆市、贵州省环境监测中心(站):   为配合《重金属污染综合防治“十二五”规划》的实施,结合2011年6月在京召开的重金属专项监测研讨会的有关精神,我站编制了《地表水重金属专项监测方案》(征求意见稿)(详见附件)。方案中监测断面由各省环境监测中心(站)根据重点区域情况设置,同时总站增加了部分重点区域内的国控监测断面(含“锰三角”地区15个监测断面),共计299个。   现就《地表水重金属专项监测方案》向你站征求意见,同时,请你站补充监测断面表中相关断面的具体地理位置(表中指标项为“所在地区”具体到某县、某乡镇、某村)和经纬度(详见方案中表5)。请于8月21日前,将意见或建议电子版发送至总站水室邮箱(Email:water@cnemc.cn),纸质版请邮寄至总站水室。   根据安排,我站拟定于今年9月份正式开展地表水重金属专项监测工作,具体开展时间和工作安排,我站将另行通知。   联系人:姚志鹏 电话:010-84943091   附件:《地表水重金属专项监测方案》(征求意见稿)   二〇一一年八月五日   地表水重金属专项监测方案   (征求意见稿)   中国环境监测总站   二〇一一年八月   一、 目的   为配合《重金属污染综合防治“十二五”规划》(以下简称“规划”)的实施,结合重点地区、重点企业重金属排放状况,以全面、准确、客观地反映重点地区地表水重金属污染状况为目的,通过开展重点地区地表水重金属专项监测工作,及时发现重点地区地表水重金属污染状况和潜在风险,为重金属环境治理提供数据支持和技术支撑,制定本方案。   二、 监测范围和期限   监测范围主要是《重金属污染综合防治“十二五”规划》中重点省份(内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省)的重点地区(名单见附表1)、“锰三角”地区和其他存在重金属污染风险的地区,同时增加重金属经常超标的国控地表水监测断面和饮用水源地断面。   地表水重金属专项监测工作,原则上由地市级环境监测站承担监测任务,结合《重金属污染综合防治“十二五”规划》开展为期5年的专项监测工作。   三、 监测断面设置原则   监测断面(点位)设置原则上采用现有国控、省控、市控断面,各省环境监测中心(站)结合本辖区内重点区域污染源排放情况设置监测断面(点位),主要原则如下:   1、重点区域内受现有或潜在重金属污染风险的主要干流、湖(库)体及一级支流的的国控、省控、市控断面   2、重点区域内受重金属污染潜在影响的河流型或湖库型的集中式饮用水源地   3、重点区域内受重金属重点污染源影响的河流设置监测断面。   4、将“锰三角”监测断面纳入到重金属专项监测之中   四、 监测指标   开展重金属监测工作前,各承担重金属监测工作的单位每年开展一次重金属全分析监测工作,筛选重金属特征污染物,作为当年度的选测指标。   1、监测指标   监测指标包括必测和选测指标,必测指标为:铅、汞、镉、铬(六价)、砷 选测指标:铜、锌、硒、镍、钒、铊、锰、钴、锑或其他当地特征污染物。   2、每年在枯水期开展一次重金属全分析工作,监测指标为:铅、汞、镉、铬(六价)、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑及当地特征污染物。   3、底泥监测,每年开展一次底泥全分析监测,监测指标与水体相同,监测结果不参与评价,作为水体中重金属含量的参考。   五、 监测方法   1.分析方法   我国重金属监测的标准分析方法主要以分光光度法和原子吸收分光光度法为主。由于我国环境监测仪器的分析能力近年来有较大提高,因此本工作主要推荐使用国内应用较多的原子吸收法、原子荧光法以及较先进的电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体-质谱法(ICP-MS)作为分析方法。   当选择原子荧光法、原子吸收法、电感耦合等离子体发射光谱法(ICP-AES)分析地表水中重金属指标时,可依据我国水环境中重金属监测常用标准分析方法进行(表1、表2)。由于我国目前缺少电感耦合等离子体-质谱法(ICP-MS)的现行标准分析方法,故选择电感耦合等离子体-质谱法分析地表水中重金属指标时,本监测方案推荐统一采用EPA标准分析方法 200.8(1994)《Determination Of Trace Elements In Waters And Wastes By Inductively Coupled Plasma - Mass Spectrometry》(电感耦合等离子体-质谱法测定水和废物中痕量元素)。   必测与选测重金属指标的推荐标准分析方法见详见表1、表2。   表1 5种必测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铅 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 汞 冷原子吸收分光光度法 HJ 597-2011水质 总汞的测定 冷原子吸收分光光度法 冷原子荧光法 HJ/T 341-2007 水质 汞的测定 冷原子荧光法(试行) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镉 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铬(六价) 二苯碳酰二肼分光光度法 GB7467-87水质 六价铬的测定 二苯碳酰二肼分光光度法 砷 氢化物发生 原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 表2 9种选测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铜 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锌 火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 硒 石墨炉原子吸收分光光度法 GB/T 15505-1995水质 硒的测定 石墨炉原子吸收分光光度法 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镍 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钒 石墨炉原子吸收分光光度法 GB/T 14673-1993水质 钒的测定 石墨炉原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铊 萃取石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锰 火焰原子吸收分光光度法 GB 11911-89水质 铁、锰的测定 火焰原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钴 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锑 原子荧光法 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8   2.前处理方法   2.1 样品采集   样品采集后均现场沉降30分钟,取上清液保存,24小时内回实验室分析。如现场不具备沉降条件的,可在24小时内回实验室沉降30分钟后取上清液测定。24小时内不能及时分析的,需酸化保存。   2.2 样品制备   样品均按照水和废水监测分析方法(第四版增补版)中前处理要求(除非国标有特殊规定要求),消解后上仪器进行测定。所有前处理消解过程中均不加氢氟酸。选用ICP-MS方法分析地表水中重金属元素时,前处理过程按照EPA200.8方法中相关要求进行消解处理,详见表3。   表3 ICP-AES与ICP-MS分析样品的前处理方法 监测项目 监测方法 前处理方法 方法来源 铅、镉、砷、铜、锌、镍、钒、锰、钴 电感耦合等离子体发射光谱法(ICP-AES) 取一定体积的均匀样品(自然沉降30min取上层非沉降部分),加入(1+1)硝酸若干毫升(视取样体积而定,通常每100mL样品加5.0mL硝酸)置于电热板上加热消解,确保溶液不沸腾,缓慢加热至近干取下冷却,反复进行这一过程,直到试样溶液颜色变浅或稳定不变。冷却后加入硝酸若干毫升,再加入少量水,置电热板上继续加热使残渣溶解。冷却后用水定容至原取样体积,使溶液保持5%的硝酸酸度。 水和废水监测分析方法(第四版增补版) 铅、汞、镉、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑 电感耦合等离子体-质谱法(ICP-MS) 前处理时,将水样摇匀,量取(100±1)ml水样于250ml烧杯中。加入2ml(1+1)硝酸和1.0ml(1+1)盐酸于上述烧杯中。电热板(置于通风柜中)上加热消解,加热温度不得高于85℃。消解时,烧杯应盖上带架的表面皿,或采取其他措施,保证样品不受通风柜周边的环境污染。在85℃持续加热,直至样品蒸发至20ml左右。在烧杯口盖上表面皿,以减少过多的蒸发,并保持轻微持续回流30min。待样品冷却后,将其全部转移至50ml容量瓶或A级具塞比色管中,用试剂水定容,加盖,摇匀保存。若消解液中存在一些不溶物可静置过夜或离心以获得澄清液。样品在上机前,应调节水样中氯离子的浓度,取20ml已制备的样品于50ml容量瓶中,用试剂水定容,混匀若溶液中溶解性固体含量>0.2%,需要进一步稀释,以防固体颗粒堵塞采样锥和截取锥。若执行的是直接加入程序,内标在上机前即加入样品中。因为无法估计不同基体对被稀释溶液稳定性的影响,所以一旦样品前处理完毕,应尽快进行分析。 EPA 200.8   3.方法选择原则   3.1各承担重金属监测工作单位依据现有实验室仪器条件,选择相应的重金属标准分析方法(表1,表2),具备ICP-MS与ICP-AES的监测单位可优先选用推荐的ICP-MS与ICP-AES标准分析方法,监测项目和前处理步骤见表3及方法文本。   3.2 若ICP-AES、火焰原子吸收分光光度法等方法检出限高于或接近地表水环境质量标准《GB3838-2002》中该重金属标准限值时,应选择检出限较低,灵敏度较高的石墨炉原子吸收分光光度法或ICP-MS方法。   3.3 若承担监测的单位不具备实验室仪器条件的,也可选用分光光度方法(国标)进行分析。   六、 监测时间频次   手工监测:每月1—10日 逢法定假日监测时间可后延,最迟不超过每月15日。每月开展一次。   重金属全分析在每年枯水期开展一次。   七、 数据报送及报告编制   各有关环境监测站20日前向相关省(自治区)环境监测中心(站)报送水质监测数据。数据报送参照附表3、4,各省(自治区)环境监测中心(站)审核后,在每月25日前暂以excel格式数据通过FTP(地址ftp://11.200.0.101)报送中国环境监测总站水室。“锰三角”地区监测结果按照原有的方式报送。   重金属全分析结果通过FTP报送总站水室。   八、 数据报送格式   报送监测数据时,若监测值低于检测限,在检测限后加“L”,未监测项目填写“-1”,超标项目由相关监测站组织核查,并向总站报送超标原因分析,数据报送格式表见附表4、5。   九、 质量控制和保证   监测数据实行三级审核制度,省站对报送的监测结果负责。   质量保证按照《地表水和污水监测技术及规范》(HJ/T 91-2002)及《环境水质监测质量保证手册》(第二版)有关要求执行。   十、 附表   表1:重金属污染重点区域 序号 省份 重点区域 1 内蒙古 巴彦淖尔乌拉特后旗 2 赤峰巴林左旗 3 赤峰克什克腾旗 4江苏 无锡惠山区 5 泰州姜堰市 6 泰州靖江市 7 泰州海陵区 8 浙江 温州鹿城区 9 温州平阳县 10 宁波鄞州区 11 宁波余姚市 12 嘉兴海宁市 13 台州玉环县 14 湖州长兴县 15 江西 赣州大余县 16 赣州南康市 17 上饶市上饶县 18 上饶弋阳县 19 赣州章贡区-赣县 20 南昌进贤县 21 赣州崇义县 22 河南 焦作济源市 23 三门峡灵宝市 24 安阳龙安区 25 洛阳栾川县 26 焦作孟州市 27 三门峡义马市 28 周口项城市 29 湖北 黄石市区 30 黄石大冶市及周边 31 襄樊谷城县 32 十堰郧县 33 荆门钟祥市 34 孝感大悟县 35 湖南 株洲清水塘及周边地区 36 湘潭竹埠港及周边地区 37 郴州三十六湾及周边地区 38 长沙七宝山地区 39 娄底冷水江地区 40 岳阳原桃林铅锌矿及周边地区 41 意义按桃江安化涉砷锑地区 42怀化沅陵、辰溪、溆浦等涉砷镉地区 43 邵阳邵东县 44 永州东安县 45 张家界慈利县镍钼矿开采区 46 常德石门县雄黄矿地区 47 广东 韶关乐昌市 48 韶关浈江区 49 清远清城区 50 珠三角电镀区 51 韶关大宝山矿区及周边区域 52 韶关凡口铅锌矿周边 53 汕头潮阳区 54 广西 河池金城江区 55 河池南丹县 56 河池环江县 57 四川 凉山会东县 58 凉山会理县 59 德阳什邡市 60 凉山西昌县 61 内江隆昌县 62 宜宾翠屏区 63 绵阳安县 64 云南 昆明东川区 65 红河个旧市 66 曲靖会泽县 67 怒江兰坪县 68 文山马关县 69 昆明安宁市 70 曲靖陆良县 71 保山腾冲县 72 红河金平县 73 玉溪易门县 74 陕西 安康旬阳县 75 宝鸡凤县 76 渭南潼关县 77 宝鸡凤翔县 78 商洛商州区 79 汉中略阳县 80 汉中宁强县 81 商洛洛南县 82 商洛镇安县 83 宝鸡陈仓区 84 甘肃 白银市 85 金昌金川区 86 陇南成县 87 酒泉瓜洲 88 陇南西和县 89 陇南徽县 90 嘉峪关甘肃矿区 91 酒泉玉门市 92 酒泉肃北县 93 西宁湟中县 94 海西格尔木市 95 西宁城东区 96 西宁大通县 97 吴中青铜峡市 98 锰三角地区 贵州松桃县、重庆秀山县、湖南花垣县   表5 重金属监测断面表(略)   表6 锰三角地区监测断面表(略)   表7 河流监测断面数据报送格式表(略)   表8 湖库监测点位数据报送格式表(略)
  • 浙江136处地表水水质监测数据 可网上实时查看
    本月起,浙江136处地表水的水质监测数据网上实时可查。据省环保厅消息,浙江省地表水水质自动监测数据发布平台于8月1日正式上线。登录这个水质数据发布平台会发现,它与浙江省此前发布的空气质量监测数据发布平台类似,都是在一张地图上标记出所有自动监测站点的位置,并实时显示每个站点的监测数据。据了解,此次上线的地表水断面自动监测站点一共136个,这些站点覆盖全省钱塘江、京杭大运河等8大水系主要流域水体。其实时数据、日报数据和月报数据均可随时查到。具体数据包含了pH酸碱度、溶解氧、高锰酸盐指数、总磷、氨氮5项指标。每个监测站点会因为不同监测数据的好坏,按一类至劣五类分成蓝、浅蓝、绿、黄、橙、红,一共六种颜色,使市民登录后,一眼便可看出这里的水好不好。目前,打开发布平台,可以看到采集情况。如杭州市九溪水厂于8月2日20点采集情况:pH监测值为7.14,蓝色;溶解氧为7.34mg/l,淡蓝色;高锰酸盐指数为2.5mg/l,淡蓝色;总磷浓度为0.217mg/l;黄色;氨氮浓度为0.21mg/l,淡蓝色。这也就意味着,在钱塘江边供应杭州饮用水的主力军九溪水厂的地表水,除总磷一项指标为四类外,其他都达到一二类水平。来源:水之守护者微信
  • EZ1009 六价铬分析仪在地表水站的应用
    EZ1009 六价铬分析仪在地表水站的应用哈希公司背景介绍铬是环境风险较高的重金属元素之一,特别是六价铬,具有致癌致畸毒性和生物富集性。健康的自然水体中六价铬本底值非常低,一般不具有环境风险和健康风险。冶金、皮革制造等工业活动是引起水体中六价铬超标的主要原因之一,此外水体酸化也会导致土壤中六价铬成分析出,从而引起六价铬超标。桂林是以山水闻名的旅游城市,工业虽少,但地处西南酸雨带, 六价铬在部分流域依然是重点关注参数。在桂林几处地表水站安装有 EZ 系列六价铬分析仪。应用情况客户现场安装的是 EZ1009 标准版本:量程 0-500ppb、1 路进样、1 路 mA 输出,水样在前端进行沉淀预处理。现场六价铬每小时测试一次,由运维商定期更换试剂并进行校准。日常数据一般小于 10ppb,偶尔由于降雨会增加水样浊度,进而导致结果偏离日常值。水样经前端水泵打入集成样品管,由仪器自带样品经蠕动泵吸入。试剂除必需成份外还配有纯净水用于管路冲洗。目前已应用一年半的时间,运维商主要工作为定期添加试剂及更换备件。需要注意的是样品的预处理,本案例中仅采用简单的静置沉淀处理,难以解决汛期水样浊度及色度上升带来的浊度干扰,建议可采用微滤预处理以消除类似干扰。现场安装示意图如图 1 所示。▲ 图1 现场安装图▲ 图2 现场部分时间监测数据现场数据表明,该地地表水六价铬指标大多数情况满足《地表水环境质量标准》(GB3838-2002)中I类水要求,少数情况下满足II类水标准。对于水中六价铬含量的波动,EZ1009能够较为准确的进行监测反馈,这也体现了其优异的性能。总结EZ1009 六价铬分析仪能够实现地表水六价铬的在线监测需求。客户现场情况表明EZ1009 性能稳定、维护量少,能够在较短的时间内提供准确的数据。整体而言,其优异的性能得到了客户的认可。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 生态环境部发布2020上半年全国地表水质量状况
    p style=" text-indent: 2em " 一、总体情况 /p p   6月,1940个国家地表水考核断面中,水质优良(Ⅰ-Ⅲ类)断面比例为71.4%,同比上升0.6个百分点 劣Ⅴ类断面比例为2.5%,同比下降2.9个百分点。主要污染指标为化学需氧量、高锰酸盐指数和总磷。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/c9cc0f08-31e3-4cbd-bdcf-6ec4b3765ae0.jpg" title=" 图一.png" alt=" 图一.png" / /p p style=" text-align: center "    strong 图1 2020年6月全国地表水水质类别比例 /strong /p p   1-6月,1940个国家地表水考核断面中,水质优良(Ⅰ-Ⅲ类)断面比例为80.1%,同比上升5.6个百分点 劣Ⅴ类断面比例为1.1%,同比下降3.2个百分点。主要污染指标为化学需氧量、总磷和高锰酸盐指数。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/c7fba79e-fa49-4ef4-95bb-97040c0b148e.jpg" title=" 图二.png" alt=" 图二.png" / /p p style=" text-align: center "    strong 图2 2020年1-6月全国地表水水质类别比例 /strong /p p style=" text-indent: 2em " 二、主要江河水质情况 br/ /p p   6月,长江、黄河、珠江、松花江、淮河、海河、辽河等七大流域及西北诸河、西南诸河和浙闽片河流Ⅰ-Ⅲ类水质断面比例为75.1%,同比上升1.4个百分点 劣Ⅴ类为1.9%,同比下降3.2个百分点。主要污染指标为化学需氧量、高锰酸盐指数和总磷。其中,西北和西南诸河水质为优,长江流域、浙闽片河流、珠江流域和黄河流域水质良好,松花江、辽河、淮河和海河流域为轻度污染。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2ae82a5d-d8bf-4b7b-b70d-3fac1346a12f.jpg" title=" 图三.png" alt=" 图三.png" / /p p style=" text-align: center " strong 图3 2020年6月七大流域和西南、西北诸河及浙闽片河流水质类别比例 /strong /p p   1-6月,长江、黄河、珠江、松花江、淮河、海河、辽河等七大流域及西北诸河、西南诸河和浙闽片河流Ⅰ-Ⅲ类水质断面比例为83.8%,同比上升5.9个百分点 劣Ⅴ类为0.7%,同比下降3.8个百分点。主要污染指标为化学需氧量、高锰酸盐指数和五日生化需氧量。其中,西北诸河、长江流域、浙闽片河流、西南诸河和珠江流域水质为优,黄河和松花江流域水质良好,淮河、海河和辽河流域为轻度污染。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/b32dc896-e6f8-4d49-b24a-b9cd7e6d821c.jpg" title=" 图四.png" alt=" 图四.png" / /p p style=" text-align: center " strong 图4 2020年1-6月七大流域和西南、西北诸河及浙闽片河流水质类别比例 /strong /p p style=" text-indent: 2em " 三、重要湖(库)水质状况及营养状态 br/ /p p   6月,监测的112个重点湖(库)中,Ⅰ-Ⅲ类水质湖(库)个数占比为71.4%,同比上升2.6个百分点 劣Ⅴ类水质湖(库)个数占比为7.1%,同比下降1.2个百分点。主要污染指标为总磷、化学需氧量和高锰酸盐指数。 监测富营养化状况的97个重点湖(库)中,6个湖(库)呈中度富营养状态,占6.2% 19个湖(库)呈轻度富营养状态,占19.6% 其余湖(库)未呈现富营养化。其中,太湖为轻度污染、轻度富营养,主要污染指标为总磷 巢湖水质良好、轻度富营养 滇池为重度污染、中度富营养,主要污染指标为化学需氧量、总磷和高锰酸盐指数 洱海水质良好、中营养 丹江口水库水质为优、中营养 白洋淀为轻度污染、轻度富营养,主要污染指标为化学需氧量、高锰酸盐指数和总磷。与去年同期相比,巢湖水质有所好转,滇池水质有所下降,太湖、洱海、丹江口水库和白洋淀水质无明显变化 丹江口水库营养状态有所好转,太湖、巢湖、滇池、洱海和白洋淀营养状态均无明显变化。 /p p   1-6月,监测的112个重点湖(库)中,Ⅰ-Ⅲ类水质湖(库)个数占比为75.9%,同比上升9.8个百分点 劣Ⅴ类水质湖(库)个数占比为5.4%,同比下降1.9个百分点。主要污染指标为总磷、化学需氧量和高锰酸盐指数。监测富营养化状况的109个重点湖(库)中,5个湖(库)呈中度富营养状态,占4.6% 19个湖(库)呈轻度富营养状态,占17.4% 其余湖(库)未呈现富营养化。其中,太湖为轻度污染、轻度富营养,主要污染指标为总磷 巢湖水质良好、轻度富营养 滇池为中度污染、中度富营养,主要污染指标为化学需氧量和总磷 洱海和丹江口水库水质为优、中营养 白洋淀为轻度污染、轻度富营养,主要污染指标为化学需氧量。与去年同期相比,巢湖和洱海水质有所好转,滇池水质有所下降,太湖、丹江口水库和白洋淀水质无明显变化 滇池营养状态有所下降,太湖、巢湖、洱海、丹江口水库和白洋淀均无明显变化。 /p p style=" text-indent: 2em " 四、地级及以上城市国家地表水考核断面排名 br/ /p p   参加排名的全国地级及以上城市,覆盖2050个国控断面(其中1940个为国家地表水考核断面,110个为入海控制断面)。6月,全国地级及以上城市中,来宾、桂林和张掖等30个城市国家地表水考核断面水环境质量相对较好(从第1名至第30名),沧州、阜新和赤峰等30个城市国家地表水考核断面水环境质量相对较差(从倒数第1名至倒数第30名) 1-6月,全国地级及以上城市中,张掖、金昌和柳州等30个城市国家地表水考核断面水环境质量相对较好(从第1名至第30名),铜川、沧州和邢台等30个城市国家地表水考核断面水环境质量相对较差(从倒数第1名至倒数第30名) 营口、吕梁和辽源等30个城市国家地表水考核断面水环境质量变化情况相对较好(从第1名至第30名),铜川、大庆和赤峰等30个城市国家地表水考核断面水环境质量变化情况相对较差(从倒数第1名至倒数第30名)。 /p
  • 赛默飞:提供完整解决方案提高地表水监测质量
    p   地表水作为人类生活用水的重要来源之一,关系着人们的饮用水安全和国民经济的可持续发展。有效地检测地表水环境对于水资源的保护工作意义重大,地表水的各项检测数据可以反映出地表水的污染情况,也是环境监测的重要指标。近日生态环境部发布的四项国家环境保护标准征求意见稿中就有一项是《地表水监测技术规范》,这意味着国家可能有新的标准发布。那么,目前我国地表水的检测现状是什么样的?未来又将如何发展呢?为了帮助相关用户学习、了解地表水的分析方法与检测技术的最新进展等内容,仪器信息网特别策划了“ strong 地表水检测与分析技术进展 /strong ”专题,并邀请到赛默飞世尔科技(中国)有限公司水质分析仪器产品经理步万里就相关问题发表看法。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/43c3bdde-7427-4a70-a21e-c36a5d37927e.jpg" title=" 产品经理步万里.png" alt=" 产品经理步万里.png" / /p p style=" text-align: center " 步万里:赛默飞世尔科技,水质分析仪器产品经理 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:请您介绍一下地表水检测与分析技术的相关情况、主要检测内容和行业现状。 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 目前地表水检测依据的主要技术标准是《地表水环境质量标准》(GB 3838-2002),涉及的监测项目共109项。其中主要的测量参数如下表,标黄的是必测项目,蓝色的是选测项目。 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" margin-left: 10px border-collapse: collapse border: none " align=" center" tbody tr style=" height:2px" class=" firstRow" td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 常规五参数 /span /strong strong /strong /p /td td width=" 435" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" span style=" background-color: rgb(255, 255, 0) " strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " pH /span /strong strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " 、电导率、溶解氧、浊度、水温 /span /strong /span strong /strong /p /td /tr tr style=" height:1px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 营养盐及有机污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:yellow background:yellow" 高锰酸盐指数 span COD sub Mn /sub /span 、化学需氧量 span COD sub Cr /sub /span 、氨氮、总磷、总氮 /span /strong strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 、 span style=" background:aqua background:aqua" 硝酸盐氮 /span /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 无机阴离子 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 氰化物、氟化物、硫化物、氯化物、硫酸根 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 重金属类 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 铜、铅、锌、镉、砷、汞、六价铬、铁、锰、钴、镍、锑 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 有机类污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 石油类、阴离子表面活性剂、以及苯、卤代烃、芳香烃等 span 18 /span 种挥发性有机物 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 细菌学指标 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 粪大肠菌群 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 其它 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 叶绿素、藻密度 /span /strong /p /td /tr /tbody /table p   《地表水自动监测技术规范(试行)》(HJ 915-2017)则定义了地表水水质自动监测系统建设、运行和管理等方面的技术要求。 /p p   关于地表水监测行业的情况,最近几年地表水监测行业发展迅速。2015年,国务院办公厅发布了《生态环境监测网络建设方案》,明确提出坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局 2016年,环保部发布了《“十三五”国家地表水环境质量监测网设置方案》,新增1795个国控断面,调整后新国控断面(点位)共2767个,包括河流断面2424个,湖库点位343个,共监测1366条河流和139座湖库。据我了解,现在全国从事在线自动水质监测仪器生产企业约300家,有近200家的产品拥有CCEP认证。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:目前在地表水相关检测项目中哪些值得重点关注?检测的特点和难点在哪里? /strong /span /p p    strong span style=" color: rgb(255, 0, 0) " 步万里: /span /strong 目前在地表水的检测中我认为有高锰酸钾指数、COD sub Cr /sub 和重金属测量这3个项目值得重点关注。 /p p   高锰酸盐指数:市场上大部分为两种测量原理,高锰酸盐氧化-比色法和高锰酸盐氧化-电位滴定法两种,后者更接近国标法《水质-高锰酸盐指数的测定》GB 11892-89。但目前考核高锰酸盐指数数据时,使用葡萄糖还是草酸钠会得出完全不同的结果,因此急需国家对此方法做一定程度的明确规定。 /p p   COD sub Cr /sub :主要是废液的二次污染问题,目前是根据新标准HJ 35X-2019来进行废液分离,但如何判定清洗废液是否完全无害还没有统一的标准,在数次清洗后,我们发现清洗废液仍能检测出痕量重金属,因此建议此检测项目使用独立的废液回收系统。 /p p   重金属测量:由于现有技术的局限性,目前的难点是如何找到测量准确度、运维成本小的方法,且能够满足国标要求。以阳极溶出伏安法为例,用这种方法检测重金属存在维护量大,试剂有毒有害,运行不稳定等技术成熟度的问题。 /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:贵公司在地表水检测方面可以提供哪些产品组合和解决方案?相比于同类产品,优势在哪里? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 赛默飞世尔科技作为科学服务领域的世界领导者,始终以帮助客户“使世界更健康、更清洁、更安全”为使命。在地表水检测方面赛默飞有多款仪器可以满足需求,并且可以提供完整的地表水监测方案: /p p style=" text-indent: 2em " strong 6800微型水质在线自动监测系统 /strong ,占地仅需1平米,可测量五参数和高锰酸盐指数、氨氮、COD sub Cr /sub 、总铜、总镍、六价铬、总磷、总氮、氰化物等参数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/965278ba-7a12-41c8-b4a6-7ad901e50ec8.jpg" title=" 6800_300.jpg" alt=" 6800_300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" strong 6800微型水质在线自动监测系统 /strong /a /p p style=" text-indent: 2em " strong 3106 COD化学需氧量自动监测仪 /strong ,可自动切换量程,无需重复校准 IP66防护等级。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a055647e-b9a8-4bfc-bb57-8fc0b7126529.jpg" title=" 在线 Orion 3106 COD.jpg" alt=" 在线 Orion 3106 COD.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _blank" strong 3106 COD化学需氧量自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3131 高锰酸盐指数自动监测仪 /strong ,氧化还原电位滴定法,不受浊度计色度的影响 油浴加热,安全、均匀 双高精度注射泵,1/10000精度。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/65ba7005-38d0-4a7c-a430-5928b8bd8808.jpg" title=" 3131.png" alt=" 3131.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" strong 3131 高锰酸盐指数自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3150 总磷/总氮水质在线自动监测仪 /strong ,可自动切换量程 可灵活配置总磷、总氮单参数或二合一 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a9ee1662-9b8a-44fc-afa4-18ece49c0e3a.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _blank" strong 3150 总磷/总氮水质在线自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 2240 氨氮自动监测仪 /strong ,氨气敏电极法测量原理,不受水样浊度和色度的影响 测量范围最高可达1000mg/L 采用标准加入法自动进行校正,适用于低浓度或背景复杂样品。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2f915c3d-814c-4dfe-85c6-f718a9f91fe3.jpg" title=" 2240.jpg" alt=" 2240.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" strong 2240 氨氮自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 8010cX 氨氮自动监测仪 /strong ,水杨酸分光光度法原理 可自动切换量程,且无需新校准 高精度注射泵保障了高精度测量 IP65防护等级。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/debbbd89-2cde-449d-9b63-29ef3bc15c4a.jpg" title=" 8010.jpg" alt=" 8010.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _blank" span & nbsp 8010cX 氨氮自动监测仪 /span /a /p p style=" text-indent: 2em " strong 3300重金属水质在线自动监测仪 /strong ,可自动切换量程 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c37245d-5a68-429e-9e67-ed6b06305048.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" strong span 3300重金属水质在线自动监测仪 /span /strong /a /p p style=" text-indent: 2em " strong MPC 20在线多参数通用控制器 /strong ,可同时测量常规五参数、水中油、叶绿素、蓝绿藻、UV全光谱等参数 IP65防护等级。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a90a8649-20d0-4cd2-a92c-1a45472a895f.jpg" title=" MPC 20 正面.jpg" alt=" MPC 20 正面.jpg" / /p p style=" text-align: center " img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/77478974-1f45-463e-9712-de3175b53ce6.jpg" title=" MPC 20 下.jpg" / /p p style=" text-align: center " strong span MPC 20在线多参数通用控制器 /span /strong /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:生态环境部在6月1日发布了《地表水监测技术规范(征求意见稿)》,原《地表水和污水监测技术规范》(HJ/T 91-2002)中涉及 /strong /span span style=" color: rgb(0, 112, 192) " strong 地表水监测的部分将会废止,您觉得新标准实施后将会带来怎样的变化?请问从厂商角度会怎么应对呢? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 此次《征求意见稿》内容更新了地表水监测项目分析方法、完善了监测数据处理、质量控制与质量保证,这些对仪器的测量性能和稳定性都提出了更高的要求,这些都会促进厂商改进仪器的设计,以满足将来新的现场要求。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您觉得在地表水检测与分析技术方面,未来的发展趋势有哪些?会出现哪些新的需求? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 我认为地表水自动监测站和分析仪器未来的发展趋势是主机更加紧凑、小型化 试剂使用量减少、维护量减少 为了应对上面提到的新法规带来的变化,未来相关仪器会增加自动质控功能、废液分离功能等。 /p p   随着技术和市场的发展,将会涌现更多创新技术,以提高分析仪器/系统的智能化、网络化、无人化。检测方面可能会新增测量参数,如水中油、叶绿素、藻密度等。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 小结: 此次仪器信息网就地表水检测与分析技术方面的问题咨询了步万里经理,他和我们分享了在地表水检测中需要关注的检测项目,以及《地表水监测技术规范(征求意见稿)》将给仪器厂商和市场带来的变化。面对标准上对测量性能和稳定性要求的提升,厂商们也在积极跟进,升级相关检测仪器的性能来满足地表水检测的需要。他还对地表水检测技术的发展做了展望,预测随着环境的变化以及对地表水质要求的提高,未来在检测项目中可能会出现新增的测量参数。 /span /p
  • 地表水国控断面水质监测质量管理规定(暂行)
    p style=" text-align: center " strong 地表水国控断面水质监测质量管理规定(暂行) /strong /p p   为进一步规范环境质量监测工作,加强地表水国控断面水质监测质量控制,根据《地表水和污水监测技术规范》和《环境监测质量管理规定》等规定,在现行地表水水质监测有关要求的基础上,制定本规定。 /p p   中国环境监测总站(以下简称“总站”)负责地表水国控断面水质监测(以下简称“水质监测”)的技术指导和质量监督,各省、自治区、直辖市环境监测中心(站)(以下简称“省级站”)负责辖区内水质监测的技术指导和质量监督,协助总站技术指导和质量监督,水质监测任务承担单位(以下简称“监测单位”)按照相关技术规定和质量控制要求开展监测工作,对上报的监测数据质量负责。 /p p   一、总站 /p p   1、每年抽取5-10个监测单位进行现场检查,检查内容包括监测能力、管理制度及执行情况、质量管理体系建立及运行情况、实际监测工作、质量控制措施的合理性及其实施情况、检测报告和原始记录等方面。抽查省界断面时,相关省级站人员共同参加。 /p p   2、每年组织一次全体监测单位参加的质量控制考核或能力验证,确定考核或验证项目和发放样品,编制考核或验证报告并予以公布。 /p p   3、视情况组织开展同步监测。 /p p   4、年终编制全国国控断面水质监测数据质量评估总报告。 /p p   5、将监测数据质量作为国家评比与考核监测单位工作的重要内容之一。对监测数据多次出现问题或不合格的监测单位,向国家环保总局提出取消国控网补助经费和调整监测单位的建议。 /p p   二、省级站 /p p   1、每年对辖区内的监测单位进行一次现场检查,检查内容包括监测能力、管理制度及执行情况、质量管理体系建立及运行情况、实际监测工作、质量控制措施的合理性及其实施情况、检测报告和原始记录等方面。检查工作应以评估水质监测质量为目标,结合监测工作的实际情况和工作重点,检查内容的侧重可以不同,但不同年度的检查重点应有所区别。 /p p   2、帮助监测单位解决监测工作中的技术问题。协助监测单位查找总站质控考核或能力验证中不合格或不满意结果的原因,并将原因分析和解决情况报告总站。 /p p   3、每年选取2-5个监测单位开展同步监测或结果比对。视情况开展辖区内的质控考核或能力验证。 /p p   4、每年编制辖区水质监测数据质量评估报告,并报送总站。 /p p   5、对监测数据多次出现问题或不合格的情况及时向总站报告。 /p p   三、监测单位 /p p   1、所有监测人员均应按照《环境监测人员持证上岗考核制度》的要求持证上岗。没有上岗证的人员,只能在持证人员的指导和监督下开展工作,其工作质量由持证人员负责。 /p p   2、监测单位应通过计量认证,监测项目应为计量认证项目。 /p p   3、监测仪器须进行计量检定、校准或核查,且在有效期内使用。 /p p   4、检测报告、原始记录、原始数据及仪器核查报告等应按有关规定归档保存。 /p p   5、监测数据的精密度和准确度均应实施质量控制。 /p p   每个监测项目质量控制样品的比例应不少于样品量的10%~20% 每批样品至少进行一次精密度质量控制,每月至少做一个准确度质控样品。 /p p   每批样品须做一个实验室空白 需要进行前处理的监测项目应做全程序空白 空白样品测定值明显偏高时,应仔细检查原因并消除影响因素。 /p p   6、监测单位应由本单位的质量管理部门或人员以密码样的方式对监测工作实施外部质量控制,应有外部质量控制计划,每月均须进行外部质量控制。 /p p   7、各项质量控制措施实施后,均应进行结果评定。只有结果评定为合格或满意时,方可认定对应的监测样品测定有效,否则应查找原因,并在消除影响因素后重新测定。 /p p   质量控制结果随监测数据一同上报。 /p p   8、负责本单位监测质量的自我监督,每年至少进行一次水质监测报告质量审查,并保留记录。 /p p   9、每年编制本单位的监测数据质量评估报告,并报送总站和省级站。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制