当前位置: 仪器信息网 > 行业主题 > >

抵抗蓝光能力

仪器信息网抵抗蓝光能力专题为您整合抵抗蓝光能力相关的最新文章,在抵抗蓝光能力专题,您不仅可以免费浏览抵抗蓝光能力的资讯, 同时您还可以浏览抵抗蓝光能力的相关资料、解决方案,参与社区抵抗蓝光能力话题讨论。

抵抗蓝光能力相关的论坛

  • 【求助】请问pe标记的抗体在荧光显微镜下是用蓝光观察吗?

    [color=#00FFFF][size=4][em09512] 请教大家一下哦,,我用pe荧光标记的抗体 在荧光显微镜是用蓝光去看吗? 那台是nikon的落射荧光显微镜来的,有绿光,蓝光,黄光可选的(那个是激发光的光源吗?), 我用蓝光去看什么都没有,用绿光去看就有一两颗红色一点的东西,那些是什么啊? 我是新手啊,请教大家罗,。。 谢谢。。[/size][/color]

  • 红蓝光结合对黄芩生长和次生代谢的影响机制

    [font=楷体]黄芩([/font][font='Times New Roman',serif]Scutellariabaicalensis Georgi[/font][font=楷体])是一种常见于中国及东亚其他地区的药用植物,其高含量的黄酮类化合物赋予其多种生物活性,包括抗炎、抗菌、抗病毒和抗新冠病毒([/font][font='Times New Roman',serif]COVID-19[/font][font=楷体])等功效。发光二极管([/font][font='Times New Roman',serif]LED[/font][font=楷体])已被公认为能够增强植物生长及次生代谢物积累的有效人工光源,适用于商业植物生产。然而,关于[/font][font='Times New Roman',serif]LED[/font][font=楷体]光对黄芩的影响仍知之甚少。本研究探讨了单色蓝光([/font][font='Times New Roman',serif]B[/font][font=楷体],[/font][font='Times New Roman',serif]460 nm[/font][font=楷体])、单色红光([/font][font='Times New Roman',serif]R[/font][font=楷体],[/font][font='Times New Roman',serif]660 nm[/font][font=楷体])、白光([/font][font='Times New Roman',serif]CK[/font][font=楷体])及不同比例的红蓝光组合([/font][font='Times New Roman',serif]R9B1[/font][font=楷体]、[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]、[/font][font='Times New Roman',serif]R5B5[/font][font=楷体]、[/font][font='Times New Roman',serif]R3B7[/font][font=楷体]、[/font][font='Times New Roman',serif]R1B9[/font][font=楷体])对黄芩生长和黄酮积累的影响。结果表明,在[/font][font='Times New Roman',serif]R:B[/font][font=楷体]比为[/font][font='Times New Roman',serif]9:1[/font][font=楷体]或[/font][font='Times New Roman',serif]7:3[/font][font=楷体]的条件下,黄芩幼苗的全株及根部生物量和黄酮含量较高。靶向代谢组学分析显示,不同处理组间验证了[/font][font='Times New Roman',serif]48[/font][font=楷体]种差异表达代谢物([/font][font='Times New Roman',serif]DEMs[/font][font=楷体]),且与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组上调的[/font][font='Times New Roman',serif]DEMs[/font][font=楷体]数量尤其是黄酮类化合物较多。转录组数据表明,与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组分别有[/font][font='Times New Roman',serif]1412[/font][font=楷体]和[/font][font='Times New Roman',serif]1508[/font][font=楷体]个差异表达基因([/font][font='Times New Roman',serif]DEGs[/font][font=楷体])。[/font][font='Times New Roman',serif]KEGG[/font][font=楷体]通路分析显示,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组中的[/font][font='Times New Roman',serif]DEGs[/font][font=楷体]主要富集于苯丙烷生物合成、植物激素信号传导、黄酮生物合成、淀粉和蔗糖代谢、半乳糖代谢、类胡萝卜素生物合成、玉米素生物合成和氮代谢等通路。[/font][font='Times New Roman',serif]qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=楷体]结果表明,参与黄酮生物合成途径的[/font][font='Times New Roman',serif]SbPAL[/font][font=楷体]、[/font][font='Times New Roman',serif]SbCLL-7[/font][font=楷体]、[/font][font='Times New Roman',serif]SbCHI[/font][font=楷体]、[/font][font='Times New Roman',serif]SbFNS[/font][font=楷体]和[/font][font='Times New Roman',serif]SbOMT[/font][font=楷体]等编码酶在黄芩中的表达显著上调,且与转录组数据一致。最后,[b]通过黄芩中主要黄酮类化合物与编码黄酮代谢途径的转录因子和酶的基因之间的相关性分析,构建了一个共表达网络图,为挖掘与黄酮类合成相关的光响应基因提供了依据[/b]。这是首个关于红蓝光组合如何影响黄芩生长及次生代谢的研究报告。 [/font][font=楷体]黄芩([/font][font='Times New Roman',serif]Scutellariabaicalensis Georgi[/font][font=楷体])是唇形科著名的药用植物,其干燥根部在中国被称为“黄芩”,是最常用的中药材之一,广泛用于抗菌、抗炎、抗病毒和抗肿瘤治疗([/font][font='Times New Roman',serif]Do et al., 2021 Xiang et al., 2022[/font][font=楷体])。黄芩的化学成分主要包括黄酮类、有机酸类化合物和皂苷类,其中黄酮类是其主要活性成分([/font][font='Times New Roman',serif]Miao et al., 2022 Sun et al., 2020a[/font][font=楷体])。黄芩苷是黄芩中含量最高的黄酮类化合物之一,也是《中国药典》评估黄芩质量的重要指标之一。最近的研究表明,黄芩提取物和黄芩素具有潜在的抗冠状病毒药物活性([/font][font='Times New Roman',serif]Liu et al., 2021[/font][font=楷体])。黄芩是清肺排毒汤的重要成分,清肺排毒汤是国家卫健委推荐用于新冠肺炎治疗的权威中药方剂(中华人民共和国国家卫生健康委员会[/font][font='Times New Roman',serif], 2021[/font][font=楷体])。目前,黄芩在中国北方广泛种植,对其药用成分的需求不断增加。因此,[/font][b][font=楷体]提高该物种的产量及其黄酮类化合物(包括黄芩素和黄芩苷)含量成为了重要的研究领域。[/font][/b][font=楷体]在多种可控的环境因素中,光是至关重要的因素之一,因为光对植物光合作用具有重要性,不同的光质对植物的生长和发育有显著影响([/font][font='Times New Roman',serif]Chen et al., 2021 Danziger and Bernstein, 2021[/font][font=楷体]),如红光和蓝光更有效地参与植物光合作用([/font][font='Times New Roman',serif]Mccree, 1970[/font][font=楷体])。植物已经进化出一系列光受体来响应光的特定方面,这决定了植物的生长和发育([/font][font='Times New Roman',serif]Ahmad, 2016 de Wit et al., 2016[/font][font=楷体])。在温室园艺中,发光二极管([/font][font='Times New Roman',serif]LED[/font][font=楷体])可以通过发射特定波长的光精确控制光谱组成,已被用于提高作物的产量和质量([/font][font='Times New Roman',serif]Lazzarin et al., 2021 Ma et al., 2021[/font][font=楷体])。例如,研究表明,与白光相比,红光照射下的苹果([/font][font='Times New Roman',serif]Malus domestica[/font][font=楷体])根长、侧根数量和根体积显著增加,而蓝光和白光之间的根指数没有显著差异([/font][font='Times New Roman',serif]Li etal., 2021b[/font][font=楷体])。红光和蓝光通过影响植物的激素水平和信号传导调节其生长和发育。例如,蓝光和红光促进了挪威云杉幼苗中赤霉素和吲哚[/font][font='Times New Roman',serif]-3-[/font][font=楷体]乙酸([/font][font='Times New Roman',serif]IAA[/font][font=楷体])的积累([/font][font='Times New Roman',serif]OuYang et al., 2015[/font][font=楷体])。与单色红光或蓝光相比,两种光的组合能显著刺激植物的光受体,从而影响其生长和发育([/font][font='Times New Roman',serif]Spalholz et al., 2020[/font][font=楷体])。之前的研究表明,单一的红光或蓝光无法促进番茄茎的伸长和生长,但当红蓝光的比例适当时,植物的生长状态达到最佳([/font][font='Times New Roman',serif]Liang et al., 2021[/font][font=楷体])。[/font][font=楷体]红光和蓝光通常用于温室农业种植,不仅影响植物的生长状态,还影响次生代谢物的生成。例如,红光和蓝光通过激活青蒿素合成相关基因的表达提高了黄花蒿([/font][font='Times New Roman',serif]Artemisia annua[/font][font=楷体])中青蒿素的水平([/font][font='Times New Roman',serif]Zhang et al., 2018[/font][font=楷体])。在某些物种中,红光和蓝光对次生代谢的影响有所不同。例如,在贯叶连翘([/font][font='Times New Roman',serif]Hypericum perforatum[/font][font=楷体])中,红光下金丝桃素和黄酮类化合物的含量显著增加,而蓝光和白光处理之间无显著差异([/font][font='Times New Roman',serif]Sobhani Najafabadi et al., 2019[/font][font=楷体])。类似地,红光被证明有效提高了蓝莓([/font][font='Times New Roman',serif]Vaccinium spp.[/font][font=楷体])中的花青素含量([/font][font='Times New Roman',serif]Abou El-Dis et al., 2021[/font][font=楷体])。红蓝光组合可以强烈刺激莴苣([/font][font='Times New Roman',serif]Lactuca sativa cv. "Batavia"[/font][font=楷体])中花青素和黄酮类化合物的积累([/font][font='Times New Roman',serif]Sng et al., 2021[/font][font=楷体])。[/font][b][font=楷体]对于药用植物育种者来说,一个重要的目标是优化活性成分的含量,同时提高产量[/font][/b][font=楷体]。近年来,黄芩黄酮类化合物的生物合成及其调控机制得到了广泛研究([/font][font='Times New Roman',serif]Zhao et al., 2016[/font][font=楷体]),[/font][b][font=楷体]但关于不同波长光对黄芩生长、发育和次生代谢影响的信息仍然缺乏。[/font][/b][font=楷体]本研究利用红光和蓝光及其不同比例组合研究了它们对黄芩的影响。根据植物的形态特征和主要活性成分的含量确定了最佳的红蓝光比例。随后,利用靶向代谢组学和转录组学数据分析了最佳红蓝光组合促进黄芩生长及次生代谢物积累的潜在机制。通过代谢组和转录组数据的整合分析,鉴定了参与黄酮类化合物生物合成和调控的转录因子和酶的潜在光响应基因。[/font][b][font=楷体]本研究结果为黄芩的分子育种及[/font][font='Times New Roman', serif]LED[/font][font=楷体]应用于其优化生长和黄酮类药效的研究奠定了基础。[/font][font=楷体]结果[/font][font='Times New Roman',serif]3.1. [/font][font=楷体]光处理对黄芩生长和生物量的影响[/font][/b][font=楷体]不同光照显著影响了黄芩的生长(图[/font][font='Times New Roman',serif]1A[/font][font=楷体])。与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,红蓝光组合处理组的植株高度显著低于[/font][font='Times New Roman',serif]CK[/font][font=楷体]组和单色光处理组(图[/font][font='Times New Roman',serif]1B[/font][font=楷体])。与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,单[b]色红光处理下,黄芩全株和根部的生物量分别增加了[/b][/font][b][font='Times New Roman',serif]1.44[/font][font=楷体]倍和[/font][font='Times New Roman',serif]1.77[/font][font=楷体]倍,而单色蓝光处理组则无显著差异[/font][/b][font=楷体]。[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]处理下,全株和根部生物量分别是[/font][font='Times New Roman',serif]CK[/font][font=楷体]组的[/font][font='Times New Roman',serif]2.23[/font][font=楷体]倍和[/font][font='Times New Roman',serif]3.53[/font][font=楷体]倍,[/font][font='Times New Roman',serif]2.04[/font][font=楷体]倍和[/font][font='Times New Roman',serif]3.45[/font][font=楷体]倍(图[/font][font='Times New Roman',serif]1C[/font][font=楷体]、[/font][font='Times New Roman',serif]D[/font][font=楷体])。数据表明,与单色光处理和[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,红蓝光组合显著抑制了植株高度。然而,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]处理显著增加了黄芩幼苗全株和根部的生物量,而在较高比例的蓝光处理下,植物生长受到抑制。 [b][font='Times New Roman',serif]4.1. [/font][font=楷体]适当的红蓝光组合促进黄芩的生长和主要活性成分的积累[/font][/b][font=楷体]植物对红光和蓝光的反应具有物种特异性([/font][font='Times New Roman',serif]Izzo et al., 2020 Kong and Zheng, 2020 Liang et al., 2021[/font][font=楷体])。例如,在红蓝光组合处理下,贯叶连翘([/font][font='Times New Roman',serif]Hypericum perforatum L.[/font][font=楷体])的根、叶和花的生物量随着红光比例的增加而增加,尤其是在[/font][font='Times New Roman',serif]100%[/font][font=楷体]红光处理下([/font][font='Times New Roman',serif]Karimi et al., 2022[/font][font=楷体])。在单色蓝光处理下,四周龄的豆薯幼苗的生物量显著高于单色红光、绿光和白光处理([/font][font='Times New Roman',serif]Chung et al., 2019[/font][font=楷体])。本研究得出结论,单色红光相比[/font][font='Times New Roman',serif]CK[/font][font=楷体]显著促进了黄芩根部和全株的生长,而蓝光对生长没有显著影响(图[/font][font='Times New Roman',serif]1[/font][font=楷体])。[/font][font='Times New Roman',serif]Yeo[/font][font=楷体]等([/font][font='Times New Roman',serif]2021[/font][font=楷体])研究了在单色红光、蓝光和白色[/font][font='Times New Roman',serif]LED[/font][font=楷体]光处理下黄芩幼苗的初级和次级代谢物变化,发现白光[/font][font='Times New Roman',serif]LED[/font][font=楷体]最有效地促进了黄酮类物质(如黄芩苷、黄芩素和汉黄芩素)的生产。不同比例的红蓝光组合能够更好地控制植物生长和次生代谢物的生成([/font][font='Times New Roman',serif]Bantis et al., 2018 Chen et al., 2019 Li et al., 2021a[/font][font=楷体])。例如,适当比例的红光和蓝光可以显著促进大麻([/font][font='Times New Roman',serif]Cannabis sativa L.[/font][font=楷体])的生长和大麻二酚的积累([/font][font='Times New Roman',serif]Wei et al., 2021[/font][font=楷体])。在另一种唇形科著名药用植物丹参([/font][font='Times New Roman',serif]Salvia miltiorrhiza Bunge[/font][font=楷体])中,[/font][font='Times New Roman',serif]R[/font][font='Times New Roman',serif]=7:3[/font][font=楷体]的比例不仅促进了其生长,还促进了酚酸的生成([/font][font='Times New Roman',serif]Zhang et al., 2020[/font][font=楷体])。本研究发现,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组相比[/font][font='Times New Roman',serif]CK[/font][font=楷体]组或其他处理组,更有利于黄芩的生长和黄酮类物质的积累(图[/font][font='Times New Roman',serif]1[/font][font=楷体],图[/font][font='Times New Roman',serif]2[/font][font=楷体]),这与丹参的研究结果类似([/font][font='Times New Roman',serif]Zhang et al., 2020[/font][font=楷体])。[/font][b][font='Times New Roman',serif]4.2. [/font][font=楷体]组合光可激活黄芩的黄酮类合成途径[/font][/b][font=楷体]多种在黄芩根部参与黄酮类合成途径的关键酶基因,如[/font][font='Times New Roman',serif]SbPALs[/font][font=楷体]、[/font][font='Times New Roman',serif]SbC4H[/font][font=楷体]、[/font][font='Times New Roman

  • 废水中砷的测定——砷铋钼蓝光度法

    原理如下:取一定量的废水,砷总量在200ug以内,用高锰酸钾氧化成As5+,在酸性环境中,加入钼酸铵—硝酸铋—酒石酸钾钠混合显色剂和还原剂抗坏血酸,还原成砷铋钼蓝比色,本方法主要干扰因素为硅和磷,弱酸性中,可生成硅铋钼蓝干扰,调高酸度,则硅不干扰;同条件下,磷铋钼蓝也干扰,可以同时取一份试液,将高锰酸钾改为硫代硫酸钠-亚硫酸钠溶液,将As5+还原为As3+,以此作为参比,扣除磷的吸光度则为砷的吸光度,消除磷的干扰。问题:在酸性环境中,硫代硫酸钠易析出单质硫,这个问题没有解决,大家出出主意看怎么实施,主要是不知道溶液中到底是多少价的砷,还有就是其中会有磷的干扰,如果单独只有砷,则加高锰酸钾氧化即可还有砷锑钼蓝和磷锑钼蓝光度法,这里就不讨论了

  • 【原创大赛】防蓝光眼镜,真的需要吗?

    【原创大赛】防蓝光眼镜,真的需要吗?

    [font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]相信大家去买眼镜的时候都被推荐过[/font]“防蓝光眼镜”,不管是给孩子买还是自己买,这种眼镜好像都成了必选。好像选了它,才对眼睛更好,甚至还能防近视。[/color][/font][font=Calibri] [/font][font=Calibri][color=#5a5a5a][font=宋体]可是实际上,大部分消费者可能连蓝光是什么都不太清楚。[/font][/color][/font][font=Calibri] [/font][font=Calibri][color=#5a5a5a][font=宋体]今天我们打算好好和大家说说蓝光、防蓝光眼镜,以及镜片蓝光检测笔的一些[/font]“[font=宋体]套路[/font][font=Calibri]”[/font][font=宋体]。由于内容需要花一定的时间理解,我们先把结论放在开头:[/font][/color][/font][font=宋体][/font][font=宋体][/font][b][font=宋体][/font][font=Calibri][font=宋体]1、防蓝光眼镜不是必须的,[/font][/font][font=微软雅黑][font=微软雅黑]防蓝光[/font]≠防近视,目前没有蓝光导致近视的直接证据,[/font][font=Calibri][font=宋体]儿童和成人都不需要额外防蓝光;[/font][/font][font=微软雅黑][font=微软雅黑]2、保护视力的最佳方法是合理使用电子产品,平时采用[/font]20-20-20规则(详情在最后展示)远眺休息,保护眼睛[/font][font=Calibri][font=宋体];[/font][/font][font=Calibri][font=宋体]3、如有特殊的工作要求需要防蓝光眼镜,尽量选择大牌。[/font][/font][/b][font=Calibri] [/font][font=Calibri] [/font][font=宋体][/font][font=宋体]什么是蓝光?什么是蓝光?[/font][font=Calibri] [/font][font=宋体][color=#5a5a5a][font=宋体]蓝光是可见光的一部分,波长在[/font] 400~500 nm范围内,颜色呈蓝色和紫色,是可见光中能量最高,最接近紫外线的部分。[/color][/font][font=宋体][/font][img=,690,575]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091636482459_3700_1834892_3.png!w690x575.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]生活中我们经常会接触到蓝光,比如太阳光、电视、电脑、平板、手机、[/font]LED灯等,这些光源中都有蓝光分布。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]蓝光的危害在[/font]GB/T 20145-2006 | 标准中有提到。[/color][/font][font=宋体][/font][img=,690,179]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091637476971_5530_1834892_3.png!w690x179.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]对视网膜有害的蓝光波段,是主要集中在[/font]( 415~455nm )之间的高短波蓝光。[/color][/font][b][font=宋体][color=#5a5a5a]长期过量的蓝光光辐射,可对眼底视网膜造成慢性光损伤[/color][/font][/b][font=宋体][color=#5a5a5a]。[/color][/font][font=宋体][/font][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091637566075_4599_1834892_3.png!w690x387.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a]如果夜间长时间看冷色调的电子屏幕,比如手机,平板,电脑等,会扰乱人的自然睡眠节奏。尤其是正处于生长发育阶段的儿童和青少年,睡前建议减少电子产品的使用。[/color][/font][font=宋体][/font][img=,690,502]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638083466_4523_1834892_3.png!w690x502.jpg[/img][font=Calibri][color=#5a5a5a] [/color][/font][font=宋体][color=#5a5a5a]蓝光也不是只有害处。它会影响人体的生物钟,具有调节昼夜节律的作用。白天,蓝光比较多,而傍晚则显著减少,所以人会形成白天工作、晚上休息的习惯。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]同时它对产生暗视力以及影响屈光发育等有重要作用。[/color][/font][font=Calibri] [/font][font=Calibri] [/font][font=宋体][/font][font=宋体]蓝光眼镜与检测笔蓝光眼镜与检测笔[/font][font=宋体][/font][font=宋体][color=#5a5a5a]市面上的防蓝光眼镜,主要有两种,一种是[/color][/font][b][font=宋体][color=#5a5a5a]膜层防蓝光[/color][/font][/b][font=宋体][color=#5a5a5a][font=宋体],即在镜片表面镀一层膜[/font],将有害蓝光进行反射。[/color][/font][font=宋体][/font][font=微软雅黑][color=#5a5a5a]一种是[/color][/font][b][font=微软雅黑][color=#5a5a5a]基材防蓝光[/color][/font][/b][font=微软雅黑][color=#5a5a5a],通过在镜片基材加入防蓝光因子,从而将有害蓝光进行吸收阻隔。[/color][/font][font=宋体][/font][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638191422_6149_1834892_3.png!w690x387.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]而对于防蓝光眼镜来说,真正需要阻隔的,是能穿透眼球晶状体到达视网膜的高能短波蓝光,即[/font]( 415~455nm )波段的蓝光。[/color][/font][font=宋体][/font][font=宋体][/font][font=宋体][color=#5a5a5a]因此,[/color][/font][b][font=宋体][color=#5a5a5a]阻隔这部分的蓝光,才是防蓝光眼镜的意义所在[/color][/font][/b][font=宋体][color=#5a5a5a]。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]近些年来,青少年近视问题越来越严重,配防蓝光眼镜的人也越来越多了。有部分眼镜店,在顾客配镜选购时,会拿出[/font]“[/color][/font][font=宋体][color=#5a5a5a]防蓝光镜片[/color][/font][font=宋体][color=#5a5a5a]”和“[/color][/font][font=宋体][color=#5a5a5a]蓝光测试笔[/color][/font][font=宋体][color=#5a5a5a]”来演示,比如这样:[/color][/font][font=宋体][/font][img=,690,417]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638296366_4857_1834892_3.png!w690x417.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]底下放个卡片,用[/font]“[/color][/font][font=宋体][color=#5a5a5a]蓝光笔[/color][/font][font=宋体][color=#5a5a5a]”照射,镜片能够阻挡光源,使其透不过去,就证明是“防[/color][/font][font=宋体][color=#5a5a5a]蓝光眼镜[/color][/font][font=宋体][color=#5a5a5a]”。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]我们征集了同事的两副眼镜试了一下,结果一个[/color][/font][font=微软雅黑][color=#5a5a5a]透不过去[/color][/font][font=宋体][color=#5a5a5a],一个[/color][/font][font=微软雅黑][color=#5a5a5a]能透过[/color][/font][font=宋体][color=#5a5a5a]。[/color][/font][font=Calibri][color=#5a5a5a] [/color][/font][img=,600,360]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638391898_2894_1834892_3.png!w600x360.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a]乍一看非常直观,但是这里有个问题。这个笔发出的光,到底是什么波段的光?[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]“[/color][/font][font=宋体][color=#5a5a5a]蓝光测试笔[/color][/font][font=宋体][color=#5a5a5a]”的标签上,用小字标明了其光源波长在 405 nm±10。[/color][/font][font=宋体][/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638499917_6180_1834892_3.png!w690x517.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]也就是说,通过测试笔验证,只说明该镜片能挡住[/font] 405 nm±10 波长的蓝光,[/color][/font][font=微软雅黑][color=#5a5a5a][font=微软雅黑]并不能判定是否能挡住[/font] 415~455nm 波段的蓝光。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]而在我们的生活中,不管是[/font]LED灯还是电子产品(手机、平板、电脑等),发出的蓝光波峰在 450nm 左右。[/color][/font][font=宋体][color=#5a5a5a]这种笔只是利用了波段不同的差异[/color][/font][font=宋体][color=#5a5a5a]而已。[/color][/font][font=宋体][/font][img=,690,604]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639006871_3105_1834892_3.png!w690x604.jpg[/img][font=Calibri][color=#5a5a5a] [/color][/font][font=Calibri] [/font][font=宋体][/font][font=宋体]防蓝光眼镜真的需要吗?防蓝光真的需要吗?[/font][font=Calibri] [/font][font=宋体][color=#5a5a5a][font=宋体]市面上的防蓝光眼镜,之前由于缺乏统一的标准,质量参差不齐。值得一提的是,防蓝光的国家标准已经于今年[/font] 7 月 1 日正式实施,标准中明确列出了 4 种不同光谱范围的光透射比要求。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]相信之后的防蓝光眼镜市场,可以得到不错的规范。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]撇开这些不说,关于防蓝光眼镜这事儿,我们想给大家一些小建议:[/color][/font][font=Calibri] [/font][font=宋体]01[/font][b][font=宋体][color=#5a5a5a]防蓝光眼镜不是必须的。[/color][/font][/b][font=宋体][/font][font=宋体][color=#5a5a5a]儿童还处在生长发育期,由于部分防蓝光眼镜底色偏黄,可能会影响视觉发育,不建议日常采用防蓝光措施。[/color][/font][font=Calibri] [/font][font=宋体]02[/font][font=宋体][color=#5a5a5a][font=宋体]防蓝光[/font]≠防近视。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]目前没有蓝光导致近视的直接证据,因此家长不必过分担忧所谓的[/font]“蓝光危害”。 [/color][/font][img=,690,604]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639271418_5252_1834892_3.png!w690x604.jpg[/img][font=Calibri] [/font][font=宋体]03[/font][b][font=宋体][color=#5a5a5a]成人也不需要额外的防蓝光措施。[/color][/font][/b][font=宋体][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]如果出现视疲劳等症状,多远眺,减少连续用眼时间即可。推荐[/font] [/color][/font][b][font=宋体][color=#5a5a5a]20-20-20 规则[/color][/font][/b][font=宋体][color=#5a5a5a][font=宋体],也就是每隔[/font] 20 分钟,远眺至少 20 英尺(约 6 米)以外的物体,至少停留 20 秒。[/color][/font][font=宋体][/font][img=,690,431]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639431832_8093_1834892_3.png!w690x431.jpg[/img][font=Calibri] [/font][font=宋体]04[/font][font=宋体][color=#5a5a5a]对于有特殊要求,比如长期高强度的电脑工作者等,如果一定要配防蓝光眼镜,尽量选择大品牌。[/color][/font][font=宋体][/font][font=Calibri] [/font][img=,539,76]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091640014951_2539_1834892_3.png!w539x76.jpg[/img][font=Calibri] [/font][font=Calibri] [/font][font=宋体][color=#5a5a5a]眼睛是我们生来就获得的美妙礼物,要保护好它,其实没有多么难。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]睡前减少电子产品的照射,避免在背景光比较差的环境下玩手机、看书,每隔[/font] 20 分钟远眺休息眼睛,这些都可以给眼睛带去保护。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]现在,[/color][/font][b][font=宋体][color=#5a5a5a]放下手机,一起去看这美丽世界吧[/color][/font][/b][font=宋体][color=#5a5a5a]~[/color][/font][align=center][font=微软雅黑] [/font][/align]

  • 【求助】请教:有谁做过硅钼蓝光度法测硅的 请进

    我目前在做硅钼蓝光度法,方法如下:将金属溶解,冷却,定容至50ml容量瓶。分取10ml,在分取后的溶液中加标(硅),加盐酸羟胺低温还原,保温10min,放置30min。过滤。滤液体积不大于35ml,加钼酸铵,热水浴加热2min,冷却,加硫酸(1+9),草酸,抗坏血酸,显色10min后测定,我目前在做回收率。每次的回收率差别很大,重现性不好,请各位高手指点,我该怎样才能做好?请问钼黄在正常室温中5-10分钟能正常显色吗?我目前用的方法是热水浴加热2分钟,然后冷却,我发现水冷和自然冷却相差很大,大家遇到过吗,请教了,谢谢!

  • 【讨论】猪肉为什么会发蓝光

    【讨论】猪肉为什么会发蓝光

    [img]http://ng1.17img.cn/bbsfiles/images/2010/02/201002261053_202654_1641058_3.jpg[/img][b]  “发光猪肉”重现家乐福 检疫站:无法检验 质疑:“待定猪肉”该不该继续销售 调侃:吃了蓝光猪肉会不会变阿凡达? 家乐福超市:暂不下柜 动物检疫站:待送检更高级别部门[/b]  市民在家乐福超市长沙五一店买回的猪肉会发出蓝光以后(详见2010年2月9日A08版),引起了市民高度关注,很多市民纷纷来电询问这些蓝光猪肉最后的处理结果,这样的“待定猪肉”是不是还在家乐福销售?会不会对人体造成伤害? 记者2月24日采访了长沙市动物检疫站卫监科的胡鹏辉队长,他表示:“由于市里暂时没有相关检测项目,建议向更高一级部门送检。”[color=#f10b00]20楼、21楼、23楼、24楼有最新更新。目前认为是发光杆菌引起的。[/color]

  • 【分享】高同型半胱氨酸血症致胰岛素抵抗机理研究取得创新进展

    [center]高同型半胱氨酸血症致胰岛素抵抗机理研究取得创新进展[/center]胰岛素抵抗是糖尿病前期症状,广泛危害人类健康,但其机制尚未完全阐明。北京大学医学部生理与病理生理学系王宪教授领导的研究室从脂肪细胞因子的角度,就抵抗素在致炎因素高同型半胱氨酸血症促进脂肪组织胰岛素抵抗发病机制中的作用,进行了系列研究并取得创新进展。研究成果论文最近已发表在本领域国际顶级杂志《糖尿病》(《Diabetes》)上。 研究结果显示,在小鼠饮水中补充同型半胱氨酸造成高同型半胱氨酸血症模型4周后,可以观察到任意血糖的明显升高和胰岛素敏感性的显著下降;同型半胱氨酸处理的脂肪细胞,对胰岛素刺激下的葡萄糖摄取能力亦明显降低。高同型半胱氨酸血症小鼠附睾白色脂肪组织中抵抗素基因及蛋白表达显著上调,血中的抵抗素水平显著增高;给予原代培养的大鼠附睾脂肪细胞同型半胱氨酸刺激,结果发现同型半胱氨酸可以呈时间、剂量依赖性上调脂肪细胞中抵抗素的表达。抵抗素是脂肪组织特异性分泌的脂肪细胞因子,具有强烈的致胰岛素抵抗作用,与2型糖尿病的发生密切相关。以上结果证实,致炎因素高同型半胱氨酸血症的致胰岛素抵抗作用是通过抵抗素来实现的,从而为阐明高同型半胱氨酸血症致胰岛素抵抗发生的机制提供了新证据。 据该研究室李茵博士介绍,同型半胱氨酸是体内蛋氨酸脱甲基生成的一种含巯基的氨基酸,如果与同型半胱氨酸代谢有关的酶或辅助因子(如叶酸和维生素B12等)缺乏,则会使同型半胱氨酸代谢受阻,导致高同型半胱氨酸血症。亚洲人可能因遗传和环境因素的不同,高同型半胱氨酸血症的发病率明显高于欧洲人。我国现阶段由于精细食品的过度加工,造成大量B族维生素流失,同型半胱氨酸代谢受阻,高同型半胱氨酸血症的发病率显著增加。因此,该研究成果将有助于阐明胰岛素抵抗的发生和发展中致炎因素高同型半胱氨酸的作用和地位,为早期预防与缓解胰岛素抵抗的发生、发展和今后筛选干预胰岛素敏感性的药物提供新途径。信息来源:中国医药报

  • 亚甲基蓝光度法测定溶液硫化物浓度

    求对亚甲基蓝光度法毕竟熟悉的同志!最近在学习这个方法,身边没有熟悉这个方法的同学,我想问一下显色后可以放置多久,溶液基质对硫化物浓度测试有什么影响?什么杂质对它的影响大?

  • 8种食物抵抗电脑辐射 让你快乐上网

    8种食物抵抗电脑辐射 让你快乐上网电脑族们在日常饮食里多吃一些对自己身体好的食物,就能帮助降低长时间坐在电脑前带来的身体伤害和营养缺乏!电脑辐射污染会影响人体的循环系统、免疫、生殖和代谢功能,严重的还会诱发癌症、并会加速人体的癌细胞增殖。食疗的效果虽然不是立竿见影的,但它绝对能让你长期受益,尤其是那些抗辐射、保护视力、增强体质、补脑的食物。1、电脑对视力危害很大,平时多吃些明目的食物,比如枸杞、菊花、决明子,而且菊花可以降火,平时多喝些菊花茶、决明子茶,可以清心明目,而且枸杞清肝明目,能防止视力衰退。2、绿茶可以防辐射。平时喝绿茶能减少电脑屏幕X射线的辐射危害,而且茶里富含茶多酚,可以吸附捕捉身体里因为电脑辐射产生的放射性物质,把他排出体外,相当于给身体排毒。 3、维生素。尤其是维生素E和维生素C,他们都是抗氧化的维生素,给皮肤穿上天然防辐射衣哦,维生素A和β胡萝卜素则很好的保护眼睛,防止细胞癌变,所以平时多吃蔬菜水果,或者吃维生素合剂也行,非常适合"懒人",简简单单就能全面补充到所需的营养成分。4、像MM可以多吃些富含胶原弹性的食物,比如海带、海参、紫菜、肉皮、鸡爪。里面的胶原物质有一种黏附作用,它可以把体内的辐射性物质黏附出来排出体外,而且其中的弹性物质还具有修复受损的肌肤的功能,可以美颜。 5、多吃西红柿等红色水果。番茄红素是迄今为止发现的抗氧化能力最强的类胡萝卜素!清除自由基能力非常强,可以抗辐射,延缓衰老,爱漂亮的MM绝对不能错过,但是一定要煮熟了才吃,否则是无效的。6、玩电脑的时候还要多吃些含硒的食物,比如芝麻、黄芪、麦芽、鸡蛋,硒能阻断身体过氧化反应而抗辐射、延缓衰老,像芝麻同时含有维生素E,双管齐下效果更好,坚持吃还能让头发变得乌黑。 7、假如你是脑力劳动者,比如说搞创意的、设计师什么的,可以多吃些榛子,它富含氨基酸和不饱和脂肪酸,可以提高记忆力、判断力、改善视神经,让人更加聪明。不过也不能吃太多,20个左右已经足够了。 8、其实坐在电脑前的人一定要吃多大蒜!它里面的含硫化合物有奇强的杀菌消炎作用!可以说是天然抗生素,而且还能排毒清肠,既能保证肠胃健康,还能帮你保持体型!此外,大蒜还能防治心脑血管疾病,这可是对电脑族们,加班族们最大的威胁!如果担心味道太重可以吃强力大蒜素片,天然提取的最好。

  • 手机蓝光诱发的后天性红绿色盲。

    台湾媒体曝光全球首例玩手机变色盲患者。一名高中女生每天玩手机超10小时,夜里常关灯躺在床上看视频。随后多次过马路时将绿灯看成黄灯,险些被车撞。经检查,女孩被确诊患上手机蓝光诱发的后天性红绿色盲。

  • 有没有GB/T 223.59铋磷钼蓝光度法的详细过程啊

    各位大师有没有GB/T 223.59-2008铋磷钼蓝光度法的详细过程啊?国标上写得不清不楚,也没有老师傅指导,一个人摸索摸索,做不出来烦死了http://simg.instrument.com.cn/bbs/images/default/em09504.gifhttp://simg.instrument.com.cn/bbs/images/default/em09504.gif

  • JGP:细菌如何抵抗氟化物

    近日, Christopher Miller不是一个牙医,但他专注于研究氟化物。他在布兰代斯大学的两项实验室研究中提供了关于细菌抵抗氟化物毒性机制这一新的见解,这个信息可能最终帮助制定出治疗有害细菌性疾病的新策略。尽管大多数动物细胞免受直接接触氟化物,但这种物质是一种严重威胁单细胞生物,如细菌和酵母的有毒元素。因此,他们的血浆膜带有两种不同类型的蛋白质来帮助消除细胞不需要的氟化物:氟/氢原子逆向运输蛋白使用能量来激活氟化物泵“上坡”离开细胞,特殊氟化物”Fluc”离子通道调解氟化物的消极“下坡”活动来穿过细胞膜。“Fluc”离子通道被Miller和他的同事们首次发现于2013年。在九月份的JGP问题中,他们提供第一份定量数据资料演示这些被动的渠道如何保护细菌免受氟化物侵扰。作者发现,当外部环境是酸性时氟化物累积在缺少”Fluc”离子通道的大肠杆菌中。在酸性环境中,氟化物以氢氟酸的形式进入细胞——这很容易渗透到细胞膜中,分解细胞的低酸度;“Fluc”离子通道为高度带电氟离子提供了一个逃生途径。他们还发现,细菌一旦被高浓度氟化物侵染就会停止增殖,表明带有抗生素的“Fluc”离子通道是一种可以有效减缓细菌增长的方式。在8月份出版的《JGP》中,Miller和他的同事们发现了关于氟/氢逆向转运的新信息,这是CLC蛋白总科的一部分,以出口氯化物而闻名。作者探讨了为什么这种内部调整对氟化物具有高度选择性——这对其功能至关重要,因为氯化物在环境中大量存在,并且能够确定关键结构差异可以解释对氟化物具有优先选择性。J Gen Physiol. 2014 Sep;144(3):257-61. doi: 10.1085/jgp.201411243. Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. Ji C, Stockbridge RB, Miller C.

  • 【分享】多吃这些食物抵抗过敏!

    蜂蜜:   专家提出,每天喝一勺蜂蜜就可以远离伤风、气喘、瘙痒、咳嗽及干眼等季节性过敏症状。   蜂蜜能够预防过敏的原因有两个:一是其中含有微量的蜂毒。蜂毒是蜜蜂体内的一种有毒液体,但在临床上被用于支气管哮喘等过敏性疾病的治疗。二是蜂蜜里面含有一定的花粉粒,经常喝会对花粉过敏产生一定的抵抗能力。 大枣:   日本学者研究发现,红枣中含有大量抗过敏物质———环磷酸腺苷,可阻止过敏反应的发生。   凡有过敏症状的患者,可以经常服用红枣。服用方法为:1.红枣10枚,水煎服,每日3次。2.生食红枣,每次10克,每日3次。3.红枣10枚,大麦100克,加水煎服,日服2-3次。以上均服至过敏症状消失为止。大枣水煎时掰开煎为好,煎熬时不宜加糖。 金针菇: 经常食用金针菇有利于排除重金属离子和代谢产生的毒素和废物,能有效地增强机体活力。 新加坡的研究人员发现,金针菇菌柄中含有一种蛋白,可以抑制哮喘、鼻炎、湿疹等过敏性病症,没有患病的人也可以通过吃金针菇来加强免疫系统。不久前,台湾的科研人员也进行过类似试验,期望用金针菇来解决当地近1/3人群罹患的过敏性疾病。 胡萝卜: 最近,日本专家发现胡萝卜中的β-胡萝卜素能有效预防花粉过敏症、过敏性皮炎等过敏反应。 据有关报道,日本专家通过实验鼠研究发现,β-胡萝卜素能调节细胞内的平衡,使实验鼠较难出现过敏反应。

  • miRNA缺失或能有效抵抗肥胖

    来自美国弗吉尼亚理工大学和德州大学西南医学中心的研究人员发现,微小的RNA链(microRNA, miRNA)影响我们的细胞如何燃烧脂肪和糖。这一发现为生物学家们开始寻找治疗肥胖症和相关的健康问题打下基础。根据这周发表在PNAS期刊上的一项研究,当两种miRNA从小鼠的遗传物质中缺失时,依赖高脂肪饮食的小鼠抵抗肥胖。这项发现提示着靶向这两种特异性的miRNA的治疗方法可能有助于抑制肥胖流行症。一度被认为是垃圾DNA,研究人员如今知道miRNA在基因如何影响人类健康和行为方面发挥着重要作用。它们已知与心脏病、糖尿病、丙型肝炎、淋巴瘤和乳腺癌相关联。尽管之前已知miRNA与肥胖者相关联,但是这些新的发现是第一次确定miRNA和细胞代谢之间存在关联。德州大学西南医学中心研究人员对小鼠进行基因改造而不能产生miR-378和它的表亲miR-378*,从而导致相对苗条的动物也能够快速地将细胞食物转化为能量。

  • 缺维生素A D和对多种感染性疾病的抵抗力差有关

    多项研究发现,缺维生素A和维生素D,和对多种感染性疾病的抵抗力差有关。这不仅与新冠病毒有关,还和支原体肺炎有关。缺乏这两种维生素的人,会有更大风险感染严重的支原体肺炎,新冠病毒重症的风险也会增加。

  • 猪肉半夜发蓝光,怀疑是生猪被喂食过量含磷饲料

    猪肉半夜发蓝光,怀疑是生猪被喂食过量含磷饲料

    http://ng1.17img.cn/bbsfiles/images/2011/12/201112122132_337576_1641058_3.jpg 猪肉半夜发蓝光,北京通州区动物检验检疫所工作人员表示,荧光猪肉很可能是生猪在饲养环节即被喂食过过量含磷饲料,也可能是感染了荧光菌。 你知道原因吗?北京通州区动物检验检疫所工作人员说法有道理吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制