当前位置: 仪器信息网 > 行业主题 > >

低浓度气味

仪器信息网低浓度气味专题为您整合低浓度气味相关的最新文章,在低浓度气味专题,您不仅可以免费浏览低浓度气味的资讯, 同时您还可以浏览低浓度气味的相关资料、解决方案,参与社区低浓度气味话题讨论。

低浓度气味相关的资讯

  • 山东出台低浓度废气监测技术规范
    p   为了获得准确的监测数据,必须对监测过程各环节进行全程序的质量保证和质量控制。尤其对实现超低排放的燃煤电厂和工业锅炉(窑炉)等固定污染源进行监测,对监测手段、标准方法、质量控制和保证,都提出了更高的要求。 /p p    strong ●现行的《固定污染源废气监测技术规范》(HJ/T 397-2007)缺少新的监测分析方法、技术和仪器设备方面的规定,已无法满足目前对固定源废气低浓度排放的监测要求和环境管理需要。 /strong /p p strong   新的《技术规范》可以规范、指导废气低浓度排放的监测工作,便于获取更加准确的监测数据,督促排污单位继续加强治污减排力度。 /strong /p p strong   ●固定污染源低浓度排放监测是一个严密、复杂的系统工程,包括监测方案制定、仪器设备和试剂的准备,样品采集和回收、分析,监测数据处理和结果报出等环节。要保证监测数据准确,需要对监测各环节进行全面质量控制。 /strong /p p   山东省质量技术监督局日前发布2015年第12号山东省地方标准公告,发布《固定污染源废气低浓度排放监测技术规范》(以下简称《技术规范》)等地方标准。 /p p   据了解,《技术规范》规定了废气低浓度排放监测的具体要求和内容,包括监测方案的制定、监测条件的准备和对污染源的工况要求等,增加了《固定污染源废气 氮氧化物的测定 非分散红外法吸收法》等方法内容,明确了采样频次和采样时间的要求,补充了废气净化装置性能测试的内容,对废气污染源监测的各个环节制定了质量保证和质量控制方面的要求。 /p p   山东省环保厅副厅长谢锋告诉记者:“《技术规范》填补了废气低浓度排放监测技术规范的空白。其发布实施,可以规范、指导废气低浓度排放的监测工作,便于获取更加准确的监测数据,督促排污单位继续加强治污减排力度。” /p p    strong 现行规范无法满足低浓度排放的监测要求 /strong /p p strong   部分燃煤机组实现超低排放,多项废气监测分析方法陆续出台,许多新的监测技术和仪器在实际监测中应用,现行技术规范缺少新监测分析方法、技术和仪器设备方面的规定 /strong /p p   去年以来,山东省燃煤机组在实现达标排放的基础上,开始试点超低排放技术改造,颗粒物、二氧化硫、氮氧化物排放浓度可分别达到5mg/m3、35 mg/m3、50mg/m3以下,远优于国家要求的燃煤机组污染物排放标准。目前,全省已有19台燃煤机组完成超低排放改造,总装机容量达6415兆瓦,预计今年年底前全省完成超低排放改造的燃煤机组可达62台,总装机容量达11783兆瓦。 /p p   山东省环境监测中心站副站长潘光对记者说:“为了获得准确的监测数据,必须对监测过程各环节进行全程序的质量保证和质量控制。尤其对低浓度排放的固定污染源进行监测,对监测手段、标准方法、质量控制和保证,提出了更高的要求。” /p p   据介绍,近年来,《固定污染源废气 氮氧化物的测定 非分散红外法吸收法》、《固定污染源废气 二氧化硫的测定 非分散红外法吸收法》等多项废气监测分析方法陆续出台。而且,随着环境管理日趋严格和环境污染治理技术的不断进步,许多新的监测技术和仪器设备已在实际监测工作中应用,有的已逐渐成为日常监测的重要手段。 /p p   潘光表示,现行的《固定污染源废气监测技术规范》(HJ/T 397-2007)缺少新的监测分析方法、技术和仪器设备方面的规定,已无法满足目前对固定源废气低浓度排放的监测要求和环境管理需要。为做好固定污染源废气低浓度排放监测,获得有代表、准确的监测数据,编制新的《技术规范》很有必要,具有重要的现实意义。 /p p    strong 先定方案 严格采样 /strong /p p strong   了解固定污染源生产装置的工艺过程和性能等技术资料,确定监测项目和监测方法,接着选择仪器、采样点和采样孔,随后采样、分析处理 /strong /p p   “《技术规范》对废气低浓度排放监测全程工作做了详细规定,主要包括:监测方案制定、监测条件准备,测定方法、采样位置和采样点确定,样品的采集和回收分析,以及监测数据处理等。” 山东省环境监测中心站工程师宋毅倩说。 /p p   《技术规范》要求,监测前要制定监测方案。具体做法是,首先收集相关的技术资料,了解固定污染源生产装置的工艺过程和性能、环保设施的性能,根据污染源的环保设施净化原理、工艺过程,以及主要技术指标和排放的主要污染物种类、浓度范围,结合环境监管需要,确定监测项目和监测方法。 /p p   《技术规范》列举的监测方法主要包括定点位电解法、非分散红外吸收法、紫外吸收法、傅里叶变换红外光谱法。监测仪器由采样管、预处理装置(由过滤装置、加热装置或除水装置组成)、抽气泵、分析仪主机等组成。 /p p   《技术规范》指出,监测分析方法的选用应充分考虑相关排放标准的规定、被测污染源排放特点、污染物排放浓度高低等因素。相关排放标准中有监测分析方法规定的,应采用标准中规定的方法。相关排放标准未规定监测分析方法的,应选用国家环境保护标准和环境保护行业标准规定的方法。根据选用的监测方法以及监测项目的需要,选择确定监测仪器。 /p p   选择了监测方法和仪器,接着选择采样点。《技术规范》规定,采样点位应优先选择在垂直管段,避开烟道弯头和断面急剧变化的部位。手工采样点位应位于自动监测设备采样点下游,且在互不影响测量的前提下,尽可能靠近。专家认为,这样选择采样点的位置,是为了使采取的污染物样品更接近污染源排放的污染物浓度。 /p p   《技术规范》对采样点位置的选定,还规定了具体的计算公式,对采样孔内径大小也做了详细的规定。还区别矩形、正方形烟道和圆形烟道等不同情况,规定了对采样点和采样孔位置的不同选择确定方法。 /p p   为了使采取的污染物样品更准确地反映污染物实际排放情况,《技术规范》要求,必须在生产和环保设施稳定运行的工况下采样。 /p
  • 崂应发布大流量低浓度烟尘/气测试仪(18款)新品
    崂应3012H-D型 大流量低浓度烟尘/气测试仪(18款) 一、产品概述 本仪器应用皮托管平行等速采样法采集固定污染源排气中的颗粒物,用过滤称重法测定烟尘质量,应用定电位电解法定性定量测定烟气成份。可应用于各种锅炉、烟道、工业炉窑等固定污染源颗粒物的排放浓度、折算浓度、排放总量的测定及设备除尘脱硫效率的测定;自动测量烟气动压、烟气静压、流速、流量计前压力、流量计前温度、烟气温度、含湿量、O2、SO2、CO、NO、NO2、H2S、CO2浓度等参数。 产品广泛应用于环保、检测公司、工矿企业(电厂、钢铁厂、水泥厂、糖厂、造纸厂、冶炼厂、陶瓷厂、锅炉炉窑、以及铝业、镁业、锌业、钛业、硅业、药业,包括化肥、化工、橡胶、材料厂等)、卫生、劳动、安监、军事、科研、教育等领域。 二、执行标准n GB/T 16157-1996 固定污染源排气中颗粒物和气态污染物采样方法n HJ/T 48-1999 烟尘采样器技术条件n HJ 57-2017 固定污染源废气 二氧化硫的测定 定电位电解法n HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法n HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法n HJ 870-2017 固定污染源废气 二氧化碳的测定 非分散红外吸收法n HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法n JJG 680-2007 烟尘采样器技术条件n JJG 695-2003 硫化氢气体检测仪n JJG 968-2002 烟气分析仪检定规程 n DB13/T 2375-2016 固定污染源废气低浓度颗粒物的测定 重量法三、产品特点控制系统n 可完成固定污染源废气中浓度低于20mg/m3的颗粒物测定n 气体传感器修正补偿技术:烟气测量具有气体交叉干扰自动修正算法,最大限度地避免了交叉干扰对测量结果的影响,保证了测量精度n 气体传感器量程根据校准量程可调,扩展传感器的使用范围n 采用工业级嵌入式控制器设计,抗静电能力强n 精确电子流量计控制,实时监测计温、计压,自动调节流量n 微电脑控制等速跟踪采样,专有调节方式,响应时间快n 仪器内置弹性气容,提高采样流量稳定性n 具有防倒吸功能,可防止采样结束后采集的烟尘被倒吸出来,保证采样数据的准确性n 实时记录设备工作状态数据,具有采样过程停电记忆功能n 针对温度变化引起的流量误差做了温度补偿,保证测量的准确度n 含湿量检测多模式:兼容干湿球法和阻容法两种测量模式n 具有烟尘采样和烟气测量同步运行功能n 具备故障自检功能,可对仪器功能进行检测并提示故障,方便用户的维护、使用n 具备气密性自动检测功能,可自动诊断气路的气密性动力系统n 高效采样泵,耐腐蚀,流量可达110Lmin,连续运转免维护,适应各种工况,具有过载保护功能n 精密压力传感器搭配稳定的流量控制,可实现超低流速的稳定跟踪n 独特高效气水分离器设计,高效除湿,令硅胶利用率大大高于同类其他仪器n 高效粉尘过滤功能:烟尘烟气采样气路均使用高效粉尘过滤器,极大的降低了流量传感器和采样泵系统的故障率。过滤系统采用透明窗设计,易观察,易更换操作系统n 智能化的软件参数标定设计n 工业级防尘防水键盘,操作方便,特别适用于恶劣工况n 带有中文输入法,方便用户输入采样地点等信息n 采用5.7寸宽温LCD显示屏,适用于野外环境温度,良好人机交互界面,让工作更轻松n 丰富的人机接口:具备RS232、USB等接口,支持数据通信,U盘数据转存输出n 皮托管正、负取压接嘴采用硅橡胶双联管连接,耐候性强,减少管路连接,操作方便n 提供USB接口,可将采样数据文件导出,同时支持升级仪器主板程序n 选用蓝牙高速低噪音微型热敏打印机,轻松掌握实时数据n 预留物联网模块接口,可扩展联网功能其他n 一体化电化学传感器模块,可根据需要自主选配进口传感器,SO2传感器具有高低双量程选择,最多可同时测量7种气体n 多种供电方案:仪器内置电池,并支持交、直流两种供电方式n 内置充电管理:交流供电时可同时工作及给仪器内部电池充电n 直流输出带载:通过直流输出线可以直接给低浓度烟尘多功能取样管或阻容法含湿量检测器供电n 一体称重滤膜式烟尘取样管:适合低浓度烟尘采样*说明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、内置大容量充电锂电池,支持交、直流两种供电方式,可同时给主机和加热取样管供电(24v) 2、便携升级、体积缩小40% 3、具有烟尘采样和烟气测量同步运行功能,最多可同时测量7种气体 4、采用高效芯泵,空载流量可达110L/min,负载20Kpa时流量不低于60L/min ,寿命长,耐腐蚀、连续运转免维护、具有过载保护功能 5、兼容干湿球法和阻容法两种测量模式,并且可以连阻容法烟气含湿量检测器直接读取数据 大流量低浓度烟尘/气测试仪(18款)
  • 崂应发布大流量低浓度烟尘/气测试仪(18款)新品
    崂应3012H-D型 大流量低浓度烟尘/气测试仪 一、产品概述 本仪器应用皮托管平行等速采样法采集固定污染源排气中的颗粒物,用过滤称重法测定烟尘质量,应用定电位电解法定性定量测定烟气成份。可应用于各种锅炉、烟道、工业炉窑等固定污染源颗粒物的排放浓度、折算浓度、排放总量的测定及设备除尘脱硫效率的测定;自动测量烟气动压、烟气静压、流速、流量计前压力、流量计前温度、烟气温度、含湿量、O2、SO2、CO、NO、NO2、H2S、CO2浓度等参数。 产品广泛应用于环保、检测公司、工矿企业(电厂、钢铁厂、水泥厂、糖厂、造纸厂、冶炼厂、陶瓷厂、锅炉炉窑、以及铝业、镁业、锌业、钛业、硅业、药业,包括化肥、化工、橡胶、材料厂等)、卫生、劳动、安监、军事、科研、教育等领域。 二、执行标准n GB/T 16157-1996 固定污染源排气中颗粒物和气态污染物采样方法n HJ/T 48-1999 烟尘采样器技术条件n HJ 57-2017 固定污染源废气 二氧化硫的测定 定电位电解法n HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法n HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法n HJ 870-2017 固定污染源废气 二氧化碳的测定 非分散红外吸收法n HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法n JJG 680-2007 烟尘采样器技术条件n JJG 695-2003 硫化氢气体检测仪n JJG 968-2002 烟气分析仪检定规程 n DB13/T 2375-2016 固定污染源废气低浓度颗粒物的测定 重量法三、产品特点控制系统n 可完成固定污染源废气中浓度低于20mg/m3的颗粒物测定n 气体传感器修正补偿技术:烟气测量具有气体交叉干扰自动修正算法,最大限度地避免了交叉干扰对测量结果的影响,保证了测量精度n 气体传感器量程根据校准量程可调,扩展传感器的使用范围n 采用工业级嵌入式控制器设计,抗静电能力强n 精确电子流量计控制,实时监测计温、计压,自动调节流量n 微电脑控制等速跟踪采样,专有调节方式,响应时间快n 仪器内置弹性气容,提高采样流量稳定性n 具有防倒吸功能,可防止采样结束后采集的烟尘被倒吸出来,保证采样数据的准确性n 实时记录设备工作状态数据,具有采样过程停电记忆功能n 针对温度变化引起的流量误差做了温度补偿,保证测量的准确度n 含湿量检测多模式:兼容干湿球法和阻容法两种测量模式n 具有烟尘采样和烟气测量同步运行功能n 具备故障自检功能,可对仪器功能进行检测并提示故障,方便用户的维护、使用n 具备气密性自动检测功能,可自动诊断气路的气密性动力系统n 高效采样泵,耐腐蚀,流量可达110Lmin,连续运转免维护,适应各种工况,具有过载保护功能n 精密压力传感器搭配稳定的流量控制,可实现超低流速的稳定跟踪n 独特高效气水分离器设计,高效除湿,令硅胶利用率大大高于同类其他仪器n 高效粉尘过滤功能:烟尘烟气采样气路均使用高效粉尘过滤器,极大的降低了流量传感器和采样泵系统的故障率。过滤系统采用透明窗设计,易观察,易更换操作系统n 智能化的软件参数标定设计n 工业级防尘防水键盘,操作方便,特别适用于恶劣工况n 带有中文输入法,方便用户输入采样地点等信息n 采用5.7寸宽温LCD显示屏,适用于野外环境温度,良好人机交互界面,让工作更轻松n 丰富的人机接口:具备RS232、USB等接口,支持数据通信,U盘数据转存输出n 皮托管正、负取压接嘴采用硅橡胶双联管连接,耐候性强,减少管路连接,操作方便n 提供USB接口,可将采样数据文件导出,同时支持升级仪器主板程序n 选用蓝牙高速低噪音微型热敏打印机,轻松掌握实时数据n 预留物联网模块接口,可扩展联网功能其他n 一体化电化学传感器模块,可根据需要自主选配进口传感器,SO2传感器具有高低双量程选择,最多可同时测量7种气体n 多种供电方案:仪器内置电池,并支持交、直流两种供电方式n 内置充电管理:交流供电时可同时工作及给仪器内部电池充电n 直流输出带载:通过直流输出线可以直接给低浓度烟尘多功能取样管或阻容法含湿量检测器供电n 一体称重滤膜式烟尘取样管:适合低浓度烟尘采样*说明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、内置大容量充电锂电池,支持交、直流两种供电方式,可同时给主机和加热取样管供电(24v) 2、便携升级、体积缩小40% 3、具有烟尘采样和烟气测量同步运行功能,最多可同时测量7种气体 4、采用高效芯泵,空载流量可达110L/min,负载20Kpa时流量不低于60L/min ,寿命长,耐腐蚀、连续运转免维护、具有过载保护功能 5、兼容干湿球法和阻容法两种测量模式,并且可以连阻容法烟气含湿量检测器直接读取数据 大流量低浓度烟尘/气测试仪(18款)
  • 如何准确测定铝合金中的高浓度和低浓度添加元素?
    金属铝(Al)以其独有的特性广泛应用于众多各领域。将Al与硅(Si)、铁(Fe)、铜(Cu)和锌(Zn)等元素结合制成铝合金,通常非铝添加元素占总合金重量的15%。与纯铝相比,铝合金的物理特性得到明显增强,如具有更好的强度,更优异的导电性和焊接性等;也可添加不同的量的其它元素,得到具有特殊性质的铝合金。铝的大多数工业应用为铝合金,鉴于铝合金应用广泛和组分多样,伦敦金属交易所(LME)列出了四种铝合金组成规格,主要用于欧洲、亚洲和北美。在所列规格中,主要添加组分是Si、Cu、Zn和Fe,占组成重量的百分比通常大于1%。因此,必须以比其它元素更高的精度来测定这四种元素。珀金埃尔默Avio® 系列 ICP-OES是进行铝合金检测实验室的理想选择,可根据伦敦金属交易所的高水平和低水平铝合金规格要求测量铝合金中的添加元素。使用电荷耦合检测器(CCD),可同时提供背景和分析物测量;对于铝合金中的主要成分(高浓度添加元素)通过使用较长读取时间和线性插入法校准,可以获得±2%以内的准确度;对于次要成分(低浓度添加元素)通过使用较短的读取时间和线性法校准,可以获得±5%以内的准确度。本文使用Avio 200 ICP-OES测定LME规格要求的铝合金中的添加组分。欲详细了解Avio 200 ICP-OES是如何根据LME规格要求在测定金属铝锭中的杂质元素中体现其优越性,扫描下方二维码即刻获取《按照伦敦金属交易所指南使用Avio 200 ICP-OES分析铝合金中的添加元素》和《Avio 200 电感耦合等离子体发射光谱仪》产品手册。
  • 新业XY-650HZ低浓度恒温恒湿称重系统特点
    新业XY-650HZ低浓度恒温恒湿称重系统特点新业XY-650HZ低浓度恒温恒湿称重系统特点结构特点1、 内室采用镜面不锈钢制作,半圆弧四角易清洁,箱内搁板间距调。2、 微电脑温湿度控制器控温(控湿)精确,稳定可靠。3、 7吋触摸屏,操作简单,清晰显示。4、 强迫式循环风道,确保工作室温湿度均匀。 5、 风道内安装有加热器、制冷器、除湿器、加湿器、温湿度传感器。6、 大尺寸玻璃门观察窗,箱内安装有照明灯,观察方便。7、 制冷系统与箱体隔离,减少压缩机震动对测量的影响。8、 加湿器内置,减少整体称重系统占用空间。产品安装调试1、运输中注意不要在前面板玻璃上用力,也不要用力碰撞箱体。禁止倒置或与地面大于45°的斜放。2、设备落地后,应放置平稳。如地面不平应予以修正。底部四角安装万向轮,定位后可逆时针方向旋转把手固定仪器。如需移动仪器,需顺时针旋转把手后再行移动仪器!3、避免阳光直射或高温潮湿的地方使用仪器,使用环境温度保持在 10-30℃。4、本设备应远离电磁干扰源,并应将设备的接地线有效接地。5、本设备在正常运行时,箱内载物摆放应不影响空气流通以保证箱内空气流通、温度均匀。6、电源为AC 220V50HZ,必须使用10A三芯插座,并有可靠接地线,不得擅自使用二芯插座。7、电源线不要紧靠后面,也不要让仪器或其他物品压在电源线上,以免损伤电源线。
  • 崂应助力2016年固定污染源低浓度颗粒物手工监测培训班
    为提高国家固定污染源低浓度颗粒物手工监测技术水平,根据环保部2016年度业务培训计划,中国环境监测总站于2016年11月29日到12月1日,在环保部北京会议与培训基地举办了2016年固定污染源低浓度颗粒物手工监测培训班。青岛崂应相关技术人员有幸以授课主讲的身份为此次培训班服务。参与此次培训的学员主要包括各省、自治区、直辖市环境监测中心(站),新疆生产建设兵团环境监测中心站固定污染源废气监测技术人员等共计80余人。培训的内容涵盖了低浓度颗粒物标准内容、环节要点及质控措施;现场采样操作及质控行为、在线仪器检测、调试、验收时的手工比对流程和要求等,旨在通过从理论基础到操作细节的全面深入培训,切实提高一线技术人员的理论水平和操作人员的动手能力,兼承2016年工作之总结,顺启2017环保之新序。 培训班现场崂应在此次培训班中主要担任了“低浓度颗粒物采样器和采样枪的结构”及“设计和低浓度颗粒物采样技术要点”的主讲任务。“崂应3012H-D型 便携式大流量低浓度烟尘自动测试仪”与“崂应1085D型 低浓度烟尘多功能取样管”等相关产品曾获得多个奖项,而崂应也曾多次为客户提供完备的低浓度颗粒物采样的技术解决方案,在相关领域有着极为丰富的理论和实践经验。此次授课中,崂应主讲人员从实际出发,深入浅出,通俗易懂的讲解,配合大量的事实依据和数据支持,获得了一众学员的广泛认可。 崂应副总经理王启燕讲课现场 学员与崂应王启燕交流沟通能够应邀参与中国环境监测总站培训班的主讲工作,充分说明了中国环境监测总站领导对于崂应的认可,这对于崂应人而言,无疑是值得骄傲的;在过去,崂应人孜孜不倦的以“为国家服务”为经营宗旨,默默无闻的奉献和耕耘;在未来的环保大潮中,崂应人将一如既往,奏响凯歌,扬帆远航!
  • 山东攻克低浓度颗粒物测定 新方法填补国内空白
    日前,《山东省固定污染源废气低浓度颗粒物的测定重量法》发布实施,填补了国内低浓度颗粒物测定空白。要加快燃煤锅炉和工业炉窑现有除尘设施升级改造,确保颗粒物排放浓度稳定达标排放,新方法的出台无疑将大大推进山东节能减排工作进程。   &ldquo 《山东省固定污染源废气低浓度颗粒物的测定重量法》(以下简称《重量法》)的发布实施,填补了国内测定固定污染源废气中颗粒物浓度50mg/m3的方法空白,为执行最高允许颗粒物排放浓度限值10mg/m³ 以下提供了判别监测方法标准。&rdquo 山东省环保厅副厅长谢锋如是说。   据了解,《重量法》日前已由山东省环保厅和省质监局发布为山东省推荐性环境保护地方标准,并于日前实施。   原标准有缺陷 亟待制定新标准   按照国家《大气污染防治行动计划》和山东省《大气污染防治规划一期(2013~2015)行动计划》的要求,要加快燃煤锅炉和工业炉窑现有除尘设施升级改造,确保颗粒物排放浓度稳定达标排放。   山东省大部分单机装机容量30万千瓦以上机组采用了双室四电场静除尘器和炉外湿法脱硫的除尘技术,颗粒物浓度低于50mg/m³ 。部分电厂对现有除尘设施进行或将要进行升级改造,将静电除尘器改造为电袋复合除尘、纯布袋除尘、电除尘器内部改造或增加湿式电除尘,颗粒物浓度低于30mg/m³ ,有些甚至设计达到5mg/m³ 。同时,国家和山东省近期颁布的《火电厂大气污染物排放标准》(GB13223-2011)和《火电厂大气污染物排放标准》(DB37/664)等一系列标准中均把固定源废气中颗粒物排放浓度降至30mg/m³ 以下。   随着环境管理日趋严格和环境污染治理技术的不断进步,现有颗粒物监测方法GB/T16157,已逐渐暴露出不能准确测量和不适应低浓度颗粒物监测的缺陷,已不能满足对固定源颗粒物排放监管和环境管理的需要。   山东省从2013年开始,就已经在全国率先着手开展低浓度颗粒物的方法储备和现场实际验证,具备了比较丰富的监测经验,积累了大量的监测数据,取得了比较好的效果,为《重量法》的制定奠定了良好基础。   据了解,低浓度颗粒物的采样及分析技术在国外发达国家已开展了研究,检测方法主要是手工称重法。但目前国内还没有关于低浓度颗粒物检测的方法标准,所以无法对其进行规范。   国内大部分标准方法均将GB/T16157作为测量固定源颗粒物浓度的依据,方法测定低于50mg/m3的颗粒物时误差较大,在低浓度颗粒物采样和分析中,无法准确定量,产生的误差降低颗粒物采样准确度,对测定结果产生较大影响。因此,《重量法》的制定对山东省低浓度颗粒物的测定方法规范具有重要意义。   制定原则和测定方法有哪些?   《重量法》编制负责人、山东省环境监测中心站的潘光说,本着科学性、先进性和可操作性为原则,在原《固定污染源排气中颗粒物测定与气态污染物采样方法》基础上,按照国家《大气污染防治行动计划》和山东省《大气污染防治规划一期(2013~2015)行动计划》的有关要求,同时参考美国、欧盟的相关标准,在我国现有标准、规定和监测站实际工作要求的基础上,结合山东省实际情况和当前的科学技术水平,不断深入研究和完善,制定了《重量法》。   据了解,《重量法》技术要求的制定原则,一是方法的测定内容、基本要求、测定原理等需满足相关环境标准和环保工作的要求 二是测定方法具有可实施性,通过标准规定的检测方法,有效监测山东省地方规定的排放标准限值,保证高准确度,满足目前环保工作的需要 三是测定方法具有普遍适用性、功能完整性。   低浓度颗粒物测定的方法原理是遵循等速采样原理,使进入采样嘴排气的流速等于测点排气的流速 采用滤膜替代滤筒,以减少捕获颗粒物介质的自重,GB/T16157中使用的1#滤筒自重约2g,3#滤筒自重约1g,而直径47mm的玻璃或石英纤维滤膜自重0.2mg。由称重法确定颗粒物的质量和采集颗粒物的抽气体积来计算颗粒物浓度。   如何规范低浓度颗粒物测定?   《重量法》涉及到采样工况、采样位置和采样点,基本与GB/T16157的规定一致,但规定测孔直径为100mm,采样平台在GB/T16157的基础上提出了更具体的要求,特别强调在采样平台要设置低压配电箱,以满足采样时供电的需要。   采样时间是保证采集颗粒物样品的时间代表性,颗粒物量是保证称量的准确性。当排气中颗粒物浓度低时,需要通过延长采样时间或在规定的时间内增大采样体积获得足够质量的颗粒物。除加热采样系统中有关部件到选择的温度、滤膜的毛面朝上放置、每个样品采样时间不小于30min(对于执行颗粒排放限值低于20mg/m³ 的固定污染源,采样体积不小于1m3)外,其余应符合GB/T16157相关规定。在每个系列测量后制备一个全程空白样品。采样完毕后,用密封帽将采样嘴密封放回原容器中带回实验室。   在样品分析中,根据不同的测试需求可选用整体称重或分体称重,对两种称重方式做了详细的说明,要求全程空白值应当单独报告,不得从测量颗粒物结果中扣除全程空白值。   《重量法》提出,要注意标识、手套、测试工况、防止污染、滤膜托架加热、颗粒物测定结果判断、有效数据个数等事项。称重前对称量部件或盛称量部件的容器进行标识,每一个标识必须保持唯一性和可追溯性。采样前后,处理(放置、安装、取出、标记、转移)和称重称量容器以及称量部件时应戴无粉末、抗静电的一次性手套。应在排污企业设施正常运行,工况达到设计规模或稳定出力或有关大气污染物排放标准规定的条件下测试颗粒物浓度和排气参数。
  • 《山东省固定污染源 低浓度颗粒物的测定 重量法》正式发布实施
    2014年9月22日,由山东省环境监测中心站等单位编制的《山东省固定污染源废气 低浓度颗粒物的测定 重量法》(DB37/T 2537-2014)正式发布实施。此前山东省环境保护厅与山东省质量技术监督局组织召开了该方法标准专家审查会,与会专家一致同意通过审查。该方法标准是我国首次发布实施的低浓度颗粒物测定方法标准,也是山东省首次制定环境保护监测方法标准。标准规定了测定固定污染源废气中低浓度颗粒物的手工重量法,扩展了相关国家标准中低浓度颗粒物的测定方法。经现场验证,该方法操作性强,适用于固定污染源低浓度颗粒物的测定。标准的制定实施对于山东省乃至全国做好燃煤电厂超低排放技术应用试点新技术推广以及加快推进大气污染防治工作具有非常重要的意义。 来源:山东省环境监测中心站
  • 大方科技发布大方科技超低浓度烟尘连续监测系统新品
    一、系统组成 DCM-100系列超低浓度烟尘在线监测系统是专为超低浓度烟尘监测量身打造的一款系统,具有极高的灵敏度和系统可靠性,符合我国环保政策对超低浓度烟尘监测的相关要求。系统主要由采样探头、预处理单元、测量单元、二次仪表、风机单元等组成。烟道内烟尘经过采样探头单元抽取到测量单元以供分析,并将分析后的废气排回烟道。预处理单元主要为烟尘加热,使烟尘温度在露点温度之上,消除液态水滴对测量的影响。测量单元完成对抽取烟尘的分析计算。风机单元则主要是对射流泵提供动力。二次仪表箱与测量单元完成实时通讯,显示测量结果、系统运行状态、报警信息等,并控制整套系统的加热、标定等功能。 二、测量原理 DCM-100系列超低浓度烟尘在线监测系统采用抽取式技术路线,从烟道中抽取部分烟气,经过探杆取样管,进入加热室预热到140℃以上,预热后的测试气体被送入测量池进行测量,然后通过射流泵和探杆排气管回到原烟道。 测量采用激光前向散射原理,激光器发射的激光束经过测量池,激光束照射烟尘颗粒,产生散射,收集散射面特定角度的前向散射激光信号,该散射信号与烟尘浓度成函数关系,以此计算烟尘浓度。通过前向散射信号接收,可获得极高的烟尘浓度检测灵敏度。 三、系统特点 1.采用抽取预处理结合激光前向散射技术,具有极高的灵敏度和可靠性,适合湿烟气的超低浓度在线监测; 2.量程可调,0~10.0mg/m3,0~200.0 mg/m3根据需求设定; 3.抽取样气经过恒温预热,消除湿烟气冷凝引起的测量误差; 4.连续的清洁空气吹扫,保护内部光学器件不受污染; 5.高端智能控制技术使用,实现零点和满量程自动标定以及光学表面污染的自动监测和校正; 6.便利的人机交互功能,二次仪表采用7.0英寸,800×480图形点阵,64K色触摸屏,时尚大气; 7.运行数据可存储,仪表具有SD卡存储功能; 8.配备上位机软件,运行和维护极其方便; 9.简洁并人性化的界面设置,操作方便、功能强大。 四、行业应用 燃煤锅炉烟气脱硫下游粉尘排放测量; 垃圾湿式净化器和垃圾焚烧厂粉尘排放测量; 工业生产过程中湿废气的粉尘含量等。 创新点:1、本设备采用石英导光棒作为光信号收集方式和传输方式。相较于直接使用光纤耦合的光信号收集方式,本设备采用的导光棒对入射光的角度不敏感,光信号的接收面积更大,使得在相同的噪声背景、相同的粉尘浓度下信噪比更高。相较于使用环形或其他形式反光镜的光信号收集方式,本设备采用的导光棒能够更有效的采用吹扫气保护,而反光镜方式的反光镜面积更大,形状不规则不容易进行吹扫保护,更容易受到污染,导致可靠性降低。另外采用石英导光棒作为光信号收集方式调光更容易、简单,导光棒耐高温等性能优于光纤、反光镜。 2、本设备具有一种可折叠校准机构,可在设备运行时自动将校准机构移动至测量光路,从而完成对光路的污染情况检查,对设备的零点、量程自动校准,全过程无需人为干预。 大方科技超低浓度烟尘连续监测系统
  • 关于固定污染源低浓度颗粒物测定方法标准,你应该知道的几件事
    p    span style=" color: rgb(0, 112, 192) " 为什么要针对低浓度颗粒物测定制定一个新标准? /span /p p   目前,许多地方已根据政府工作报告中提出的“推进燃煤电厂低浓度排放改造”要求,确定了相关规定,明确颗粒物排放不得高于 10 mg/m3,某些省份规定不得高于 5 mg/m3。 /p p   我国现阶段颗粒物监测方法采用GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》,在颗粒物浓度较低、烟气湿度较大的情况下,此方法易造成监测结果不准确,主要原因是:(1)沉积在采样嘴及采样管前段的颗粒物无法回收,导致结果偏低 (2)在湿烟气情况下长时间采样容易造成滤筒纤维损失或破损,产生的误差降低颗粒物采样准确度。 /p p   为解决这些问题,满足现行污染源排放的监测需求,总站制定了《固定污染源废气 低浓度颗粒物测定 重量法》标准。 /p p    span style=" color: rgb(0, 112, 192) " 低浓度颗粒物方法标准的技术路线是什么? /span /p p   标准的技术路线为“烟道内过滤-恒温恒湿平衡-整体称重”。 /p p   烟道内过滤,就是在烟道或烟囱内对颗粒物进行等速采样,并将颗粒物截留在位于烟道或烟囱内的过滤介质上的方法。目前国际上主要有烟道内过滤和烟道外过滤两种方式,和烟道内过滤比,烟道外过滤存在仪器结构复杂,方法检出限高,现场工作量较大的缺点。 /p p   恒温恒湿平衡,就是样品在采样前后要在温度20± 1℃、湿度50± 5% RH的状况下稳定后称量,和以往的冷却干燥称量方式相比,恒温恒湿平衡可以有效减少称量波动,提高称量的稳定性。 /p p   整体称重,就是将滤膜封装在金属采样头内采样,并将采样头整体在采样前后进行称量的方式。这种方式能有效避免滤膜破损,并保证沉积在采样嘴及采样管前段的样品得到回收。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/c5fe7ff7-4aee-43fc-9f79-1fb023f4b0ec.jpg" title=" 微信图片_20170706105924.png" / /p p style=" text-align: center " 整体式采样头结构图 /p p    span style=" color: rgb(0, 112, 192) " 这个标准的方法检出限是多少? /span /p p   当采样体积为 1 m3(标准状态下的干废气)时,本标准方法检出限为 1.0 mg/m3。 /p p    span style=" color: rgb(0, 112, 192) " 什么是测量系列? /span /p p   本标准提出了测量系列的概念,测量系列指在工况基本相同、污染处理设施保持稳定运行的条件下,在同一采样平面内进行的一系列测量。也即是说,测量系列内的样品,采集时的锅炉和污染处理设施运行是基本相同的。 /p p    span style=" color: rgb(0, 112, 192) " 什么是全程序空白?它有什么意义? /span /p p   本标准提出了全程序空白的概念,全程序空白指除采样过程中采样嘴背对气流不采集废气外,其它操作与实际样品操作完全相同获得的样品。 /p p   采样全程序空白时,采样嘴应背对废气气流方向,采样管在烟道中放置时间和移动方式与实际采样相同。全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次。为防止在采集全程序空白过程中空气或废气进入采样系统,必须断开采样管与采样器主机的连接,密封采样管末端接口。 /p p   全程序空白是一种质控措施,是衡量样品在测定过程中是否受到污染的一种手段。任何低于全程序空白增重的样品均无效。全程序空白增重除以对应测量系列的平均体积不应超过排放限值的10%。另外,颗粒物浓度低于方法检出限时,对应的全程序空白增重应不高于 0.5 mg,失重应不多于 0.5 mg。 /p p    span style=" color: rgb(0, 112, 192) " 什么是同步双样?同步双样的意义是什么? /span /p p   本标准提出了同步双样的概念,可作为衡量测定是否准确的一种质控措施。同步双样是指固定污染源颗粒物测量过程中,使用同一测量系列(使用同一采样孔采样时)或在同一时间使用两个对称的测量系列(使用不同的采样孔时)得到的两个样品。 /p p   也就是说,同步双样的两个样品在采集过程中的任何时刻均处于大致相同的位置(同一采样孔)或烟气状态基本相同、对于烟道采样平面基本对称的位置(不同采样孔)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/632eeb9a-5c45-4487-9709-3c4efa06f35d.jpg" title=" 微信图片_20170706105930.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/3746759c-aebf-4554-acf4-fc2c9109524d.jpg" title=" 微信图片_20170706105934.jpg" / /p p style=" text-align: center " strong 采样头现场安装 /strong /p
  • 崂应为湖北省污染源低浓度颗粒物监测技术培训班助力技术服务
    为了提高全省固定污染源低浓度颗粒物监测技术水平,湖北省环境监测中心站于2016年11月24日到25日在武汉市举办了“2016年全省固定污染源低浓度颗粒物监测技术培训班”,来自湖北省各地级市环境监测站的学员参加了此次培训,以期进一步夯实业务基础,提高业务能力,崂应有幸为本次培训提供技术支持工作。培训班开班仪式 本次培训湖北省环境监测中心站邀请了中国环境监测总站及山东省环境监测中心的相关专家进行授课,共分为两大部分,理论加模拟实训,理论部分主要包括“固定污染源低浓度颗粒物测定方法”及“超低排放监测注意事项探讨”,实训部分主要演示整个超低排放监测技术的过程及注意事项,并让学员亲自动手实操,不仅能够做到理论实践相结合,更可以通过深入探讨,进一步发现问题和解决问题,从而有效的达到此次培训的目的。培训班理论授课现场 超低排放监测工作,作为国家长期重点关注的环保技术和方向,艰巨而迫切;而超低排放监测相关企业则任重而道远。而崂应不仅具有深厚的理论基础,更有丰富的实践经验,能够为客户提供完备的超低排放监测技术解决方案。也因此获得了此次机会。 低浓度颗粒物监测实训环节中,首先由崂应技术人员进行模拟实训,最后由学员独立操作。在学员认真的学习和崂应人员耐心细致的讲解下,实训环节顺利完成,同时也宣告了此次培训班的完美落幕。崂应技术人员实操演示崂应技术人员与学员现场交流互动 寒冬已至,北燕业已南归,而崂应人则“注定做劳燕,重任从天!”
  • 众瑞仪器发布ZR-3260D型低浓度自动烟尘烟气综合测试仪新品
    ZR-3260D型低浓度自动烟尘烟气综合测试仪(A款,小型化)产品简介:ZR-3260D型低浓度自动烟尘烟气综合测试仪(A款,小型化),用于固定污染源中颗粒物(含超低浓度) 的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量及折算浓度、排放总量的计算等。适用范围:各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定;该仪器配合油烟采样管,可以进行油烟采样;选配沥青烟采样管,可以进行沥青烟采样;各类除尘设备效率的测定;烟道排气参数(动压、静压、温度、流速、标干流量等)的测定;烟气含氧量、空气过剩系数的测定;干、湿球温度的测定;烟气连续测量仪器准确度的评估和校准;各种锅炉、工业炉窑的SO2、NOx排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定(可选);其它可应用的场合。工作条件工作电源: 交流220V±10%,50Hz;环境温度: (-20~ 45 )℃;环境湿度: 0% ~95%;适用环境: 非防爆场合;电源接地线应良好接地;野外工作时,应有防雨、雪、尘以及日光爆晒等侵袭的措施。 执行标准HJ 57-2017 固定污染源废气 二氧化硫的测定定电位电解法GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法HJ/T 48-1999 烟尘采样器技术条件HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法JJG 968-2002 烟气分析仪JJG 680-2007 烟尘采样器JJG 518-1998 皮托管检定规程Q/0212 ZRB014-2015 自动烟尘烟气综合测试仪HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法 技术特点仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;烟气测试流量控制满足HJ/T 46 的要求;具备烟道信息数据库,自动记忆烟道工况配置信息,支持汉字输入,可快速提取历史数据;同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况;内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利;板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;支持手机APP无线操控,支持蓝牙通信功能和外置蓝牙高速打印机;准确电子流量计控制,实时监测计温,计压,自动调节流量;微电脑控制等速跟踪采样,专有调节方式,响应时间快;具备操作导航功能,引导用户快速完成整个采样过程;皮托管正负取压接嘴与连接管路进行颜色标识区分,便于操作;具备烟尘系统气密性和整机故障自检与报警功能,方便用户使用及维护;具有气路缓冲功能,实现真正防倒吸,保证采样数据的准确性;主机可视化优质尘滤芯、逃逸水陷阱一体化设计,有效滤尘且便于更换,进一步除水,保护气路及采样泵;具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;标配电池25.9V 6AH,仪器功耗更低,20L/min,-8kPa负载时≥3小时 30L/min,-8kPa负载时≥2小时。可扩展备用电池输入。;具备DC24V输入和DC24V输出接口,可外接电源使用,亦可为外部附件提供电源。具有大于AC250V过压保护功能,避免因接入电压过高而造成仪器损坏。加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。可选配无线通讯和定位,支持手机APP操作。预留2种湿度测量方法(阻容法和干湿球法)的接口。选配部分可扩展β射线吸收法和微振荡天平法测量的烟尘直读模块,以及可扩展直读称量单元,实现烟尘浓度现场自动测量;可配备阻容法含湿量测量仪,代替干湿球法独立测量湿度,无需外部动力抽取;烟气预处理器,可有效进行脱水、除尘, 增强烟气成分检测准确度;创新点:1、仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正 2、便携性好,外形尺寸:(长275× 宽170× 高265)mm,重量6.8kg(含电池),相较于众瑞上代产品体积和重量减少40%以上。 3、获得国家计量器具型式批准证书CPA;获得中国环境保护产品认证证书(编号:CCAEPI-EP-2018-640) 经过生态环境部环境监测仪器质量监督检验中心检测认证检测合格(报告编号:质(认)字NO.2018-154) 4、同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况; 5、内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利高效; 6、板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储; 7、烟气传感器类型、数量、维护日期动态管理,气体传感器自动配置,同时传感器供电无需更换电池,自动充电,增加传感器电池电量报警,提示用户注意,确保传感器处于安全状态; 8、交直流电压供电,支持外接电源箱供电或AC/DC桌面电源适配器供电,采用220V供电、充电,具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样; 9、标配电池25.9V 6AH,仪器功耗更低,20L/min,-8kPa负载时≥ 3小时 30L/min,-8kPa负载时≥ 2小时。可扩展备用电池输入。 ZR-3260D型低浓度自动烟尘烟气综合测试仪
  • 山东省发布《山东省固定污染源废气 低浓度颗粒物的测定 重量法》
    我们通常所说的固定污染源废气,也就是工业废气在排放时是需要经过处理的,必须要达到国家废气对外排放标准。 废气对人体的危害是极大的,世界卫生组织称,2012年空气污染造成约700万人死亡(部分人死亡原因与室内/外空气污染均有关),也就是全球每八位死者中就有一位。大气污染物对人体的危害是多方面的,主要表现是呼吸道疾病与生理机能障碍,以及眼鼻等粘膜组织受到刺激而患病。 为了控制工业废气排放浓度,各级政府分别出台相关奖励措施给予限排企业一定的补贴。山东省在全国率先制定《山东省固定污染源废气 低浓度颗粒物的测定 重量法》以弥补对低浓度颗粒物检测的空白。 我公司生产的“崂应3012H-D型 便携式大流量低浓度烟尘自动测试仪”正是针对此类烟尘检测的仪器,自上市来深受广大用户好评,此次标准的修订我公司应邀前往参与意见审核,经多次会谈与现场测试终于促成“标准”的出台。 采样中的滤膜是什么材质的? 我们通常采用的滤膜有石英滤膜和玻璃纤维滤膜等等。 石英滤膜由超纯的石英纤维素制成,不含玻璃纤维或黏合剂树脂。纯石英合成物可防止滤膜与酸性气体发生反应,这使得石英滤膜非常适用于重金属浓缩物及少量颗粒的检测。石英膜同时具有良好的重量和结构稳定性。像我们的产品“废气智能重金属采样仪”、“废气智能二噁英采样仪”等采用的就是石英滤膜。 玻璃纤维(glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。其主要成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。玻璃纤维滤膜中含有少量的易燃烧或易解灰化物质,在烟尘的高温采样过程中会产生滤筒失重现象,因此,必须对滤筒进行高温处理。由于纤维滤膜成本较低深受广大用户的青睐。像我们的产品“自动烟尘(气)测试仪”、“空气/智能TSP综合采样器”采用的就是玻璃纤维滤膜。
  • 众瑞仪器发布ZR-3260D型低浓度自动烟尘烟气综合测试仪新品
    产品简介ZR-3260D型低浓度自动烟尘烟气综合测试仪(A款,小型化),用于固定污染源中颗粒物(含超低浓度) 的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量及折算浓度、排放总量的计算等。适用范围:各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定;该仪器配合油烟采样管,可以进行油烟采样;选配沥青烟采样管,可以进行沥青烟采样;各类除尘设备效率的测定;烟道排气参数(动压、静压、温度、流速、标干流量等)的测定;烟气含氧量、空气过剩系数的测定;干、湿球温度的测定;烟气连续测量仪器准确度的评估和校准;各种锅炉、工业炉窑的SO2、NOx排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定(可选);其它可应用的场合。工作条件工作电源: 交流220V±10%,50Hz;环境温度: (-20~ 45 )℃;环境湿度: 0% ~95%;适用环境: 非防爆场合;电源接地线应良好接地;野外工作时,应有防雨、雪、尘以及日光爆晒等侵袭的措施。 执行标准HJ 57-2017 固定污染源废气 二氧化硫的测定定电位电解法GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法HJ/T 48-1999 烟尘采样器技术条件HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法JJG 968-2002 烟气分析仪JJG 680-2007 烟尘采样器JJG 518-1998 皮托管检定规程Q/0212 ZRB014-2015 自动烟尘烟气综合测试仪HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法 技术特点仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;烟气测试流量控制满足HJ/T 46 的要求;具备烟道信息数据库,自动记忆烟道工况配置信息,支持汉字输入,可快速提取历史数据;同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况;内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利;板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;支持手机APP无线操控,支持蓝牙通信功能和外置蓝牙高速打印机;准确电子流量计控制,实时监测计温,计压,自动调节流量;微电脑控制等速跟踪采样,专有调节方式,响应时间快;具备操作导航功能,引导用户快速完成整个采样过程;皮托管正负取压接嘴与连接管路进行颜色标识区分,便于操作;具备烟尘系统气密性和整机故障自检与报警功能,方便用户使用及维护;具有气路缓冲功能,实现真正防倒吸,保证采样数据的准确性;主机可视化优质尘滤芯、逃逸水陷阱一体化设计,有效滤尘且便于更换,进一步除水,保护气路及采样泵;具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;标配电池25.9V 6AH,仪器功耗更低,20L/min,-8kPa负载时≥3小时 30L/min,-8kPa负载时≥2小时。可扩展备用电池输入。;具备DC24V输入和DC24V输出接口,可外接电源使用,亦可为外部附件提供电源。具有大于AC250V过压保护功能,避免因接入电压过高而造成仪器损坏。加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。可选配无线通讯和定位,支持手机APP操作。预留2种湿度测量方法(阻容法和干湿球法)的接口。选配部分可扩展β射线吸收法和微振荡天平法测量的烟尘直读模块,以及可扩展直读称量单元,实现烟尘浓度现场自动测量;可配备阻容法含湿量测量仪,代替干湿球法独立测量湿度,无需外部动力抽取;烟气预处理器,可有效进行脱水、除尘, 增强烟气成分检测准确度;创新点:1、仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正 2、便携性好,外形尺寸:(长275× 宽170× 高265)mm,重量6.8kg(含电池),相较于众瑞上代产品体积和重量减少40%以上。 3、获得国家计量器具型式批准证书CPA;获得中国环境保护产品认证证书(编号:CCAEPI-EP-2018-640) 经过生态环境部环境监测仪器质量监督检验中心检测认证检测合格(报告编号:质(认)字NO.2018-154) 4、同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况; 5、内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利高效; 6、板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储; 7、烟气传感器类型、数量、维护日期动态管理,气体传感器自动配置,同时传感器供电无需更换电池,自动充电,增加传感器电池电量报警,提示用户注意,确保传感器处于安全状态; 8、交直流电压供电,支持外接电源箱供电或AC/DC桌面电源适配器供电,采用220V供电、充电,具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样; 9、标配电池25.9V 6AH,仪器功耗更低,20L/min,-8kPa负载时≥ 3小时 30L/min,-8kPa负载时≥ 2小时。可扩展备用电池输入。 ZR-3260D型低浓度自动烟尘烟气综合测试仪
  • 用Sievers M9 TOC分析仪进行低浓度电导率线性研究
    介绍美国药典USP 要求报告制药用水的电导率。要求用校准的仪器准确测量制药用水的电导率,电导率必须符合USP 规定的规格和操作参数。配置了样品电导率检测功能的Sievers® M9总有机碳(TOC)分析仪可以同时报告阶段1电导率和TOC。M9分析仪完全符合USP 和规则要求。USP 规定的在25°C下的阶段1电导率限值为1.3 μS/cm。在如此低的电导率水平下,很难确认电导计和探头或在线测量装置的性能。低电导率的样品和标样容易被容器或空气中的二氧化碳所污染,污染物会溶解到样品中,并在样品中分解。为了避免对低浓度标样所受污染进行不必要的调查,同时确保电导率测量的可靠性和准确性,本文中的研究证明了M9分析仪在低电导率下的线性。而对于较高的电导率来说,可以在日常分析中确认仪器的性能。M9 分析仪在低电导率下的线性Sievers分析仪进行了以下研究,证明了Sievers M9 TOC分析仪在测量样品电导率时的线性和准确性,特别是在低电导率下测量样品电导率的线性和准确性。在Sievers“电导率和TOC两用样品瓶(DUCT,Dual Use Conductivity & TOC)”中,用高纯度的去离子水将市面上买得到的100 μS/cm氯化钠(NaCl)标样稀释至9种不同浓度。Sievers DUCT样品瓶带有专利的内涂层,可防止通过浸出或吸收,对电导率和TOC造成影响。测量结果如图1和图2所示。所有数据均经空白矫正,且温度补偿至25°C。图2具体显示了低于10 μS/cm的电导率测量值,表明了M9分析仪在低电导率水平下的线性和准确性。图1:1至100 μS/cm的实测与预期的电导率比较图2:1至10 μS/cm的实测与预期的电导率比较结论研究结果表明了Sievers M9 TOC分析仪在很宽的电导率动态范围内的样品电导率测量的高准确性和线性。因此,用户可以用M9分析仪来测量阶段1样品电导率以达到USP 要求,即使在低电导率水平下也可以放心使用M9分析仪。研究证明了M9分析仪对10 μS/cm以下的样品电导率的测量具有高线性度和准确性,而对于较高电导率水平(如25 μS/cm)来说,可以对M9分析仪的电导率准确性进行日常确认,以最大限度减少确认标样污染造成的影响。使用Sievers M9分析仪来同时测量TOC和电导率,可以简化实验室流程,帮助公司能够提高工作效率。Sievers分析仪,赞3◆ ◆ ◆联系我们,了解更多!
  • 检测超低浓度葡萄糖 仿生离子通道布满“摄像头”
    记者28日从杭州医学院获悉,该校许秋然研究员团队联合华中科技大学科研人员,研发出一种基于亚微米通道异质膜的固态纳米通道生物传感器,实现了对不同pH值和线性范围为1皮摩/升—0.1微摩/升的超低浓度葡萄糖的无酶检测。相关研究论文近期发表于国际期刊《化学工程杂志》。活体细胞进行新陈代谢,会与周围环境进行物质交换,细胞膜上由特殊蛋白质组成的离子通道,就是这种物质交换的重要途径。在免疫反应、病原体感染等人体生理、病理变化活动中,细胞膜对糖类的识别起到重要作用。通过离子通道对糖类的分析检测,可以深入了解细胞间糖的选择性跨膜吸收和转运,作为生命科学、临床医学等领域研究的关键参数。此前,糖类检测技术均是基于100纳米孔径以下的纳米通道有可识别的电化学信号,但纳米通道空间有限,电阻较高,目标分子响应信号弱。科研人员持续追求高灵敏度、低检测限的糖类检测技术。本次研究中,该团队设计了一种仿生离子通道,选择具有耐高温、良好吸附性和透水性等特性的阳极氧化铝多孔通道膜AAO,作为这一通道的基底;通过聚多巴胺—金纳米颗粒多层组装的方法,在AAO通道内壁上原位生成并固定了大量可调节大小和密度的金纳米颗粒;通过将大量的糖分子探针修饰在金纳米颗粒的表面,制得了具有ICR特性,并对糖类响应良好的亚微米通道孔径的异质膜。“通俗地讲,修饰探针分子,相当于在仿生离子通道墙壁上安装了摄像头。AAO孔径269纳米,具有更大的修饰空间和流体运输通道,可输出更强的目标分子响应信号。”许秋然解释道,具有ICR特性,相当于给摄像头输入识别程序,更易识别细胞中糖类的电化学信号特征。许秋然表示,这一方法具有通用性,可据此研发出检测仪器,糖类检测仅是抛砖引玉,提供一个具体的检测案例。异质膜作为基底具有普适性,可拓展检测范围,通过修饰分子探针,对氨基酸、蛋白质、DNA等物质进行检测,好比给摄像头输入不同的程序,让它识别不同的对象。
  • QbD1200+ 实验室 TOC 测定仪:精准、可靠的低浓度有机碳测量仪器
    在现代工业和科学研究中,水质管理已成为许多行业的核心关注点。无论是制药行业、电力生产,还是环境监测和食品饮料加工,水中的有机碳含量都直接影响着产品的质量和安全性。因此,准确测量和控制水质中的有机污染物至关重要。总有机碳(TOC)测定仪能够提供高精度、快速、可靠的有机污染物测量,帮助各行业确保产品和过程的质量。TOC 测定仪的使用具有以下几个原因:确保产品质量和安全制药行业:制药用水如纯化水和注射用水必须严格控制有机碳含量,以确保药品的纯度和安全性。TOC 测定仪能够满足药典标准的要求,提供精确的水质监控。食品与饮料行业:生产过程中使用的水质直接影响产品的质量和安全。TOC 测定仪用于监测生产用水中的有机污染物,确保最终产品符合食品安全标准。优化生产工艺和设备维护电力行业:在发电厂中,冷却水和锅炉水的有机碳含量是重要参数。过高的有机物会导致结垢和腐蚀,影响设备运行效率和寿命。TOC 测定仪帮助发电厂优化水质管理,减少维护成本。半导体制造:超纯水在半导体制造过程中至关重要。TOC 测定仪用于检测超纯水中的有机碳含量,确保其达到合格的纯度标准。保障公共健康和环境安全自来水公司:自来水的有机碳含量必须在安全范围内,以保护公众健康。TOC 测定仪用于监控自来水的有机碳含量,确保供水安全。环境监测:TOC 测定仪用于监测地表水、地下水和废水中的有机污染物含量,帮助识别和控制污染源,保障生态系统的健康。在了解了 TOC 测定仪的重要性和应用领域后,我们可以看到,选择一款性能强、操作简便、维护成本低的 TOC 测定仪对许多行业来说都是十分重要的。而QbD1200+ 实验室 TOC 测定仪正是为满足这些需求而设计的。QbD1200+ 是一款采用 UV 紫外灯和过硫酸盐氧化方法的先进实验室 TOC 测定仪,量程范围为 0-100 ppm,专为处理低浓度样品的行业设计,包括制药、电力、疾控和自来水行业。该仪器以其高重复性、准确的测量结果、简便的操作和低廉的使用成本,满足相关药典和法规的要求,有效解决了低浓度 TOC 测量中常见的问题,如重复性差、使用成本高、维护复杂和校准时间长等。QbD1200+ 实验室 TOC 测定仪的主要特点高重复性QbD1200+ TOC 测定仪可减少不同样品测量间的干扰,确保测量结果的一致性和高重复性。测量结果准确支持多个不同传感器的持续监测,提供启动自检和按需诊断报告,具备超量程复原功能,确保测量结果的准确性。操作简单易维护配备 10.4 英寸彩色触摸屏,用户界面直观,向导式软件界面使操作简便。自带自动调整测量范围/稀释功能,即便不提前获知样品浓度也能完成测量。仅需一种试剂即可完成测量和分析(可自配或从哈希采购)。使用成本低试剂成本低,维护频率低,每年一次维护即可,无需单独配备计算机。快速校准校准过程仅需 2 小时,内置用于 USP 和 EP 的自动系统适应性测试和用于 JP 的 SDBS 验证程序,节省时间。QbD1200+ 实验室 TOC 测定仪通过其卓越的性能和可靠性,为制药、电力、疾控、自来水等行业提供了高效、低成本的解决方案,是低浓度 TOC 测量的理想选择。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多TOC分析仪相关的产品,Welcome to consult~咨询有惊喜哦!
  • 新型SERS检测平台可实现不同种类低浓度毒品的高灵敏检测
    p   中科院合肥物质科学研究院5日消息,该院科研人员提出一种新型检测平台,能够准确定位和捕获毒品分子痕迹,实现了不同种类低浓度毒品的高灵敏检测。相关成果近日发表在《Chemistry-A European Journal》上。& nbsp /p p   这种新型检测平台由该院智能所杨良保研究员等人提出,是一个新型的NaCl晶体诱导的SERS检测平台。 /p p   利用SERS技术进行物质检测时,活性基底起着至关重要的作用。传统的方法是在溶液状态下进行检测,聚集体会逐渐长大至发生沉降,导致信号减弱;并且同一样品不能进行多次检测。另外,检测时激光聚焦容易受外界环境和水的波动干扰,SERS信号会被溶液削弱。 /p p & nbsp /p p & nbsp /p p   基于上述传统液相的SERS检测方法面临的问题,杨良保研究员等提出了利用大体积微米级NaCl晶体诱导纳米级银溶胶聚集体自组装;由于毛细力的作用,大量痕量的毒品分子进入聚集体内,从而实现高效准确定位的检测。这种微米级NaCl晶体可作为模板,获取有效检测区域的光学位置,避免了大面积扫描图谱以获得高质量的待测物SERS信号。 /p p   另外,氯离子还可以替换掉银纳米颗粒表面的活性物质,降低SERS基底的背景信号。通过上述氯化钠晶体诱导的高灵敏可控检测,科研人员得到了高质量的海洛因、冰毒和可卡因的SERS图谱。 /p p   据介绍,这种检测方法不仅可以使纳米颗粒聚集体以一种可控的方式形成SERS热点区域,提供有效的SERS增强;还可以发展成为一种无标记的高灵敏检测其他类型毒品分子或毒品添加剂的通用方法 /p
  • 聚焦场流分离技术 解决低浓度细颗粒物分析表征难题 ——访中国科学院生态环境研究中心谭志强研究员
    随着环境污染问题日益严峻,污染物的微细化趋势明显,环境基质中细颗粒污染物的检测与控制成为当下环境管理的重大挑战。场流分离技术,起源于上世纪60年代,具有分离范围广、分离效率高等优点,在解决环境基质中低浓度细颗粒物分析检测难题方面展现出独特的技术优势和广阔的应用前景。中国科学院生态环境研究中心谭志强研究员及团队多年来一直致力于场流分离技术的研究及应用,特别是应用场流分离技术在低浓度细颗粒物分离分析中做出了突出成果。近期,仪器信息网与谭志强就其研究成果进行了深入交流。受访人:中国科学院生态环境研究中心谭志强研究员仪器信息网:能否请您介绍一下您本人的研究经历以及您目前主要从事的研究方向。谭志强:我本人的研究经历与金属元素密不可分。2005年我考入四川大学攻读硕士学位,第一次接触分析仪器研制这个研究方向,非常感兴趣。当时,为了解决野外现场痕量铜、铅、镉等重金属离子的快速检测问题,参与了便携式钨丝电热原子吸收光谱分析仪的研制和开发工作,为实现原子吸收光谱仪走出实验室做了一点工作。 2008年考入中国科学院生态环境研究中心攻读博士学位,继续从事重金属污染物现场快速检测研究,开发了一系列基于金纳米探针的灵敏、快速、准确检测汞、铜、砷等离子的分析方法。 2011年博士毕业后,我继续在生态环境研究中心从事博士后研究。围绕解决纳米材料环境安全性研究中低浓度细颗粒物分析表征的难题,开始从事基于场流分离技术的金属细颗粒物分离分析新方法开发和仪器研制。我们率先在国内开展了中空纤维流场流分离技术的研究,先后研制了四代基于中空纤维流场流分离技术的细颗粒分离纯化仪器(图1),这些仪器的分离性能逐渐优化,应用范围不断扩大(如从金属到碳质细颗粒),自动化程度逐步提高,为从纳米至微米不同尺寸细颗粒的分析表征提供了可靠技术支撑。图1 自主研制细颗粒分离纯化仪器实物照片非常荣幸,我们的工作得到了国内仪器研制专家的认可,我本人于2019年获得中国仪器仪表学会 “朱良漪分析仪器创新奖”之“青年创新奖”。最近,我们开始从事电场流分离技术的研究,为实现同尺寸、不同表面修饰剂细颗粒的分离提供了有效手段。仪器信息网:场流分离技术当前在国内外的研究及应用现状如何?在细颗粒物分析中有怎样的应用前景?谭志强:场流分离技术最早由美国犹他大学Giddings教授在上个世纪60年代提出,早期主要用于高分子聚合物、胶体矿物等的分离,现在已经拓展到生物大分子、纳米颗粒、病毒等领域。理论上,场流分离可分离尺寸从1nm~100 μm的细颗粒,所以可作为高效分离纯化细颗粒的有效手段。和色谱分离技术类似,场流分离技术也包括一系列分支技术,比如流场流分离、热场流分离、离心场流分离、电场流分离等。理论上,这些分支技术的分离性能都普遍高于尺寸排阻色谱。流场流分离是目前这些分支技术中理论最为成熟、应用最广泛的一种。流场流分离又可细分为对称流场流分离、非对称流场流分离以及中空纤维流场流分离等。其中,非对称流场流分离被美国国家标准与技术研究院(NIST)推荐为稳定可靠且应用前景广阔的纳米细颗粒分离方法。针对环境样品基质复杂、目标细颗粒物浓度低、高度动态等特点,我们的研究工作主要是围绕中空纤维流场流分离技术。与其他流场流分离系统相比,中空纤维流场流分离系统的分离能力更强,而且非常容易与高灵敏检测器(如ICPMS)直接联用,因此更适用于环境基质中低浓度细颗粒的分离分析。另外,所用中空纤维膜分离通道成本低,而且非常容易更换,这有助于该技术的推广和普及。除了分离范围宽和分离度高以外,场流分离仪器通道内没有固定相填料,而且常采用简单基质溶液(如纯水)作载流,这样可以最大程度保证目标物的无损分离,因此可用于揭示真实环境中细颗粒的赋存状态。这个特点也使得场流分离技术在蛋白质、外泌体、病毒等生物细颗粒的分离分析中具有巨大的应用前景。而且,这种载流也有利于将场流分离仪器直接与后续高灵敏检测器在线联用。离线收集的分离组分也非常容易用于其他检测方法的直接分析。另外,中空纤维流场流分离采用管壁上布满微孔的中空纤维膜作为分离通道,不仅可实现样品基质的在线净化,还可以实现共存离子组分的同时分析。比如为实现环境中痕量银纳米颗粒的形态分析,我们将研制的中空纤维流场流分离仪与紫外可见吸收检测器、动态光散射、电感耦合等离子体质谱在线联用(HF5-UV-vis-DLS-ICPMS)(图2),实现了μg/L浓度水平的5种不同粒径(1.4 nm、10 nm、20 nm、40 nm和60 nm)银纳米颗粒以及2种不同形态(游离或弱结合态和强结合态)银离子的在线分离、识别、表征及定量分析,为实际水环境中不同形态银的浓度水平调查提供了准确、可靠、高灵敏的分析方法,也为深入研究环境相关浓度水平银纳米颗粒和银离子的环境行为和归趋奠定了基础。图2 HF5-UV-vis-DLS-ICPMS在线联用系统示意图及工作原理图[1]仪器信息网:您和团队开展场流分离技术相关研究的契机是什么?回顾您过去在相关领域的研究经历,取得了哪些标志性的成果?谭志强:环境细颗粒的粒径范围涵盖纳米到微米级。近年来的研究已经证实,细颗粒的环境和生物安全性与其浓度水平和环境行为密切相关。由于环境中的细颗粒含量通常处于痕量或超痕量水平,且环境基质复杂,因此环境基质中低浓度细颗粒的分析表征极为困难,这严重制约了对环境相关浓度细颗粒的物理化学转化过程的研究,进而限制了人们对环境中细颗粒生成和转化规律的认识。因此,建立环境基质中低浓度细颗粒的高灵敏度分析方法既是当前环境化学亟待解决的关键科学问题,同时也是深入研究低浓度细颗粒环境和生物安全性的“卡脖子”技术问题。基于前面提到的HF5-UV-vis-DLS-ICPMS在线联用系统,我们系统研究了环境相关浓度(如10 μg/L)银纳米颗粒的典型物理化学转化过程。比如,在银纳米颗粒团聚行为研究中,直观表征到天然有机质在颗粒表面形成的冠结构,且发现低浓度银纳米颗粒比在高浓度下具有更长的稳定时间。另外, 我们发现在光照天然有机质还原银离子生成银纳米颗粒过程的研究中,发现光照环境相关浓度银离子仅生成大量小粒径(如2.3 nm)银纳米颗粒,而高浓度银离子下则同时生成大量小粒径和大粒径(如8.4 nm)银纳米颗粒。在银纳米颗粒和银离子的相互转化研究中,发现污水处理厂进水中银离子主要以巯基化合物形式存在,并未检测到以往在高浓度下研究报道的硫化银,而银纳米颗粒并未发生明显的化学变化(如硫化)。上述研究表明,环境相关浓度下银纳米颗粒和银离子的环境行为与高浓度情况下的研究结果存在显著差异,这也突出了细颗粒环境行为研究应从环境相关浓度水平出发的必要性。最近,我们基于偏置循环电场流分离-紫外可见吸收检测器-电感耦合等离子体质谱在线联用系统(BCyElFFF-UV-vis -ICPMS),研究了水环境中银纳米颗粒环境冠形成及对其生物效应影响(如图3所示)。我们首次使用偏置循环电场流分离技术对相同尺寸、不同修饰剂的银纳米颗粒进行了分离。根据这两种不同修饰剂银纳米颗粒洗脱时间差异、分级组分的离线分析表征以及理论计算结果,阐明了不同修饰剂银纳米颗粒表面环境冠结构形成机理,揭示了环境冠结构对银纳米颗粒生物效应的影响机制。这项工作表明,循环电场流分离技术可为监测银纳米颗粒表面结构的微小变化以及高效分离纯化银纳米颗粒及其衍生物(如表面含环境冠、蛋白冠等结构)提供了可靠技术支撑。图3 基于电场流分离系统的银纳米颗粒环境冠形成及其生物效应研究新方法[2]仪器信息网:在之前取得科研成果的基础上,您和您的团队还有哪些规划?接下来您团队的研究重点还有哪些?谭志强:基于目前已经建立的不同尺寸、不同表面性质细颗粒的分析表征方法,未来我们将从形貌、尺寸、形态变化多角度对细颗粒分析表征,开展真实环境中细颗粒的老化或风化过程、细颗粒与矿质颗粒物异质团聚行为、细菌或细胞对细颗粒摄入过程及转化等方面的研究,探索解决细颗粒生物地球化学过程和生物效应研究中的关键科学问题,为准确评估细颗粒物生态环境健康风险提供重要依据。除了在环境领域应用外,我们还将继续拓展场流分离技术在环境毒理、生物医学、纳米农业等领域的应用。近年来,我们与国家纳米科学中心、中国农业大学、中国科技大学等研究团队开展了广泛合作,并且取得了系列有国际影响力的创新成果。仪器信息网:目前国内场流分离技术应用和研究相对较为小众,您认为这主要是受限于哪些因素,未来场流分离技术还有哪些应用和发展空间?谭志强:我个人认为主要有以下几方面原因:首先与其他分离技术相比,比如色谱技术,这个技术的发明距今还不足60年,仍然是一种相对比较新的分离技术。我国学者对场流分离技术的关注和研究起步更晚。上世纪80年代,中国科学院化学所高玉书研究员较早开始关注场流分离技术,后来高老师去美国继续开展场流分离技术研究工作。很长时间国内场流分离技术研究几乎处于空白状态。非常高兴的是,进入21世纪后越来越多的研究团队开始从事场流分离技术的相关研究。据不完全统计,目前国内有十余个科研团队在从事场流分离技术研究和应用方面的工作,这已经引起了国际场流分离技术会议委员会的关注,多次邀请我们参加相关国际学术会议。其次,目前全球能够生产场流分离仪器的公司极少,国内市售场流分离仪器几乎全部来自国外进口。这些仪器的价格远高于其他常规分离仪器(如液相色谱)。由于国际贸易摩擦,近年来这些进口仪器的关税不断提高,这对进口仪器设备在价格上也有一定影响。另外,进口场流分离仪器国内维修工程师的短缺也影响了场流分离仪器的大量普及。因此,亟需我们加快国产场流分离仪器的研制和专业技术人员队伍建设,逐渐实现进口替代。这也是我们团队一直在努力的一个方向。另外,场流分离在国内的应用领域还是比较窄,场流分离的应用潜力有待进一步挖掘。场流分离技术在环境保护、生物医学、食品安全、材料制备等领域具有广阔的应用前景,这需要各个学科领域学者的共同努力。比如,去年国务院办公厅印发的《关于新污染物治理行动方案的通知》(国办发 [2022] 15号)中,已经明确把微塑料已经正式被列入第四类新污染物。国家自然科学基金委今年也启动了“微塑料的环境化学行为与效应”专项项目。对这种新污染物的识别和定量是对其环境健康风险科学评估和精准施策的前提。我们最近的研究表明,环境中还存在大量的纳塑料,它们的迁移能力更强,环境健康风险可能更大,治理起来也更加困难。目前应用较多的微塑料表征方法,如光学显微镜、红外光谱、拉曼光谱等,对于小尺寸纳塑料的识别和定量存在一定挑战性。因此,场流分离技术在微/纳塑料污染调查、环境行为、生物效应、污染防治等研究具有非常大的应用潜力。再次,目前国内学者更多关注的是流场流分离技术,市场上的场流分离仪器大多为非对称流场流分离仪,而研究其他场流分离分支技术的团队极少。近三年来,我们也围绕电场流分离和磁场流分离也开展了一些工作,有效弥补了流场流分离技术在特定目标物分离分析中的应用短板。最后,我们对场流分离技术的科普宣传还有待加强。比如我们的很多仪器分析教科书上,很少会详细介绍场流分离技术。当然这需要我们每位从事场流分离技术研究的学者共同努力,积极为场流分离在国内的推广和普及做贡献。我们希望通过我们的共同努力,场流分离仪器能够像色谱一样进入常规分析实验室,为细颗粒相关研究领域提供研究“利器”!插图出处:[1] Zhiqiang Tan, Jingfu Liu, Xiaoru Guo, Yongguang Yin, Seul Kee Byeon, Myeong Hee Moon, Guibin Jiang. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors. Anal. Chem., 2015, 87, 8441-8447.[2] Zhiqiang Tan, Weichen Zhao, Yongguang Yin, Ming Xu, Yanwanjing Liu, Qinghua Zhang, Bruce K. Gale, Yukui Rui, Jingfu Liu. Insight into the formation and biological effects of natural organic matter corona on silver nanoparticles in water environment using biased cyclical electrical field-flow fractionation. Water Res., 2023, 228, 119355.附受访人简介:谭志强,男,理学博士,博士生导师,中国科学院生态环境研究中心研究员,国科大杭州高等研究院兼职教授,大理大学客座教授,中国仪器仪表学会分析仪器分会高级会员,主要研究方向为低浓度细颗粒物分析表征新仪器研制及其在环境化学、纳米农业、生物医学等领域应用。先后在韩国延世大学、美国犹他大学以及马萨诸塞大学从事访学合作研究,在Sci. Adv.、Environ. Sci. Technol.、Anal. Chem.、Water Res.、TrAC-Trend Anal. Chem.等国内外学术期刊发表论文60余篇,参与编写中文专著3部,授权国家发明专利7项;先后主持国家自然科学基金4项,国家“973”项目和国家重点研发计划子课题各1项;担任《Reviews of Environmental Contamination and Toxicology》、《Atomic Spectroscopy》、《分析试验室》等杂志编委。2017年入选中国科学院青年创新促进会,2018年获中国分析测试协会科学技术奖(CAIA奖)一等奖,2019年获中国仪器仪表学会“朱良漪分析仪器创新奖”之“青年创新奖”。
  • 东芝最新电化学DNA芯片可在低浓度下检测DNA
    日本东芝公司(Toshiba)日前宣布研制成功高灵敏度的电化学DNA芯片,这种芯片能够在非常低的浓度下检测DNA。 这款新型芯片集成了目前广泛使用的半导体电路技术之一的CMOS电路及传感器,是对东芝先进DNA芯片系列产品及相关技术的最新补,可迅速投入的应用包括抗癌药物的易感性分析及用于疾病起因的预防性诊断的健康监测。 东芝在2001年10月推出其第一款电化学DNA芯片,采用原始的电流检测方案,用于支持感染肝炎病人单个治疗方案的研制。该芯片能调查单个病人的治疗疗效和副作用。这项研究涵盖六个领域的疾病:肺结核、消化紊乱、抑郁症(ademonia)、高血脂症、心脏停搏(Cardiac Arrest)及癌症等。同年,东芝还针对风湿病患者推出了DNA芯片。根据基因数据,东芝此次推出的新的DNA芯片能测定药物疗效和副作用的可能性,以及与病人可能出现的并发症。
  • 涂料净味攻略-专业气味分析设备GC-O-MS找到气味关键组分
    随着人们对健康安全的诉求,消费者对车饰,家具,生活用品,玩具散发出来的气味越来越敏感。气味时刻影响着用户的生活体验感,成为影响产品销售的重要因素之一。通过气味解决方案来改善用户最终的体验是未来的趋势。找到涂料气味来源涂料通常是以树脂、或油、或乳液为主,添加颜料、相应助剂,用有机溶剂或水配制而成的粘稠液体。按涂料使用分散介质可以将涂料分为溶剂型涂料和水性涂料(乳液型涂料、水溶性涂料)。涂料中的气味来源主要来自树脂、乳液、助剂、有机溶剂中的游离单体,也即挥发性的有机物VOCs。 根据化合物的气味阈值,有些即使浓度非常低,也会产生令人不悦的气味。只有找到气味来源,才能的放矢的解决气味问题,从而有针对性的进行原材料和工艺的优化。GERSTEL提供全面的解决方案高效的采样技术,对涂料中的VOCs进行全面的捕集无歧视的进样技术,使分析物100%进入色谱分析设备灵敏的嗅闻嗅辨技术,准确找到气味所对应的化合物强大的气味物质数据库,锁定气味化合物的化学式案列介绍水溶性树脂(示意图)样品:水性树脂 采样技术:搅拌棒吸附萃取 SBSE采样过程:将是适量样品放入20ml的顶空瓶,加入适量水稀释,放入带PDMS吸附层的搅拌质子Twister(10mm长,层厚1mm),在室温下搅拌萃取1小时。 进样:萃取结束后,使用GERSTEL TDU2 热脱附单元进行热脱附进样嗅闻嗅辨:使用嗅觉检测口ODP4进行GC-O-MS分析数据处理: 使用GERSTEL嗅觉数据处理软件ODI对气味物质进行分析和锁定使用Twister搅拌吸附棒萃水性树脂样品流程(示意图)使用SBSE-TD-GC-O-MS技术得到的水溶性树脂色谱图和嗅觉图的重叠视图通过GC-O-MS技术检测到的气味化合物(列出部分)及对应的气味描述保留时间化合物风味描述8.53正丁基醚醚、化学味、果味11.22乙酸丁酯果香、苹果香、胶水、刺激12.75乙苯芳香、汽油、胶水13.14丙酸丁酯甜、果香、苹果香14.192-丙烯酸丁酯刺激气味、果香15.38丁酸丁酯
  • 我们为什么能闻到各种气味?
    嗅觉是人体最早形成的感官之一,其重要性或许因为它在我们的生活中过于平常而被忽视。嗅觉不是仅仅在享用美食、感受环境危险时起作用,它与记忆、情感也有着密切关系。那么,我们为什么能闻到气味?这是一个很基础,但又极为复杂的问题。对嗅觉受体的探索,是寻找答案的关键。在多样化的物质世界中,有一种世界,我们看不见摸不着,却能真真切切地感受到。它或是来自雨后泥土和青草的芬芳,或是来自餐桌上美食飘香的诱惑,它甚至存在于记忆中,连起情感的细流,这便是“气味的世界”。气味有数以百万计的不同种类,每种气味都由数百个化学分子组成,其性质各不相同。我们为什么能感受并辨别如此复杂多样的气味?长期以来,这是生物学上较少探索但极为重要的科学问题之一。图1. 常见的蔬果(草莓、番茄和蓝莓)散发的气味中所包含的气味分子。每个圆圈和正方形均代表一种气味分子。| 图源:salk.edu事实上,“感受”和“辨别”是两个不同的生物学问题:一是我们的嗅觉系统如何感知复杂多样的气味分子;二是我们的神经系统如何解码气味信号以形成不同的嗅觉感知。本文主要关注于第一个问题,跟大家分享几十年来嗅觉受体结构研究的探索历程。探寻嗅觉受体嗅觉是人体最早形成的感官之一,这是一种非常复杂的感官反应。通过数以百万计的嗅觉神经,我们能够感知和区分各种具有不同结构特性的小分子化合物,即气味分子,即使浓度非常低(微摩尔甚至纳摩尔浓度范围)。 人体鼻腔黏膜中覆盖着被称为嗅觉上皮的组织,其中生长着大量嗅觉感觉神经元并相互连接。嗅觉感觉神经细胞通过纤毛延伸到鼻腔内的粘液层。我们闻到某种气味的过程如下(图1):气味分子进入鼻腔黏膜,被嗅觉感觉神经元的初级纤毛感知从而激活嗅觉神经细胞,并产生化学信号;这些化学信号触发神经细胞产生电信号,然后通过嗅觉神经传递至味嗅球,再传递至嗅皮层(大脑负责嗅觉处理的皮层区域)。在嗅皮层中,大脑对传入的嗅觉信息进行分析和识别。最终,嗅觉神经信号的处理形成了描述各种气味的语义表征,例如咖啡味、玫瑰味、芒果味,等等。图2. 人体嗅觉系统的示意图。从气味感受、信号传递到最终信息处理。| 图源:nobelprize.org长期以来,嗅觉研究领域的一个关键问题是,细胞如何感受复杂多样的气味分子。一种合理的假设是,嗅觉感觉神经细胞上存在一种特殊的蛋白质,被称为“嗅觉(气味)受体”(Ordorant Receptor,OR),用于探测气味分子。一直以来,科学家都在力求找到这些特殊的嗅觉受体蛋白。20世纪80年代中期,不同研究组进行的一系列生理生化实验表明,气味激活嗅觉感觉神经元是由G蛋白依赖性通路介导的。G蛋白是细胞内非常重要的一类信号传导分子,它通过与G蛋白耦联受体(GPCR)协同工作,将激素、神经递质等各种信号因子产生的信号传递至细胞内,并进一步调节酶、离子通道、转运蛋白以及其他各种蛋白的功能。在嗅觉神经元内,G蛋白介导腺苷酸环化酶的激活,细胞内环磷酸腺苷(cAMP)浓度的增加,cAMP门控离子通道的激活和神经元去极化。同一时期,一些嗅觉特异基因相继被克隆,其中就包括编码 G蛋白和 cAMP 门控离子通道的基因,进一步证实了 G蛋白信号通路在气味信号转导中的重要作用,这些研究强烈暗示嗅觉受体很可能是G 蛋白耦联受体(GPCR)。1991年,Linda Buck 和 Richard Axel 在Science杂志上发表了一项开创性的研究工作——首次从大鼠中克隆并鉴别了嗅觉受体GPCR基因家族。通过进一步的分析,他们还证明这些受体只在大鼠嗅觉上皮细胞中表达,而不在其他八个组织(包括大脑、视网膜和肝脏等)中表达。此外,为了估计嗅觉基因家族的大小,它们还进一步使用DNA的混合物作为探针,筛选大鼠基因组文库。当时的筛选结果显示,大鼠单倍体基因组包含至少 500-1000 个嗅觉受体基因。Buck 和Axel随后独立地展开工作,进一步在人类嗅觉组织中发现了嗅觉受体GPCR基因的存在,并确认它们在人类嗅觉系统中的重要作用。这些开拓性的工作,为我们理解和研究神秘的嗅觉感知奠定了重要基础,由此两人获得了2004年度诺贝尔生理学或医学奖。图3. 2004 年诺贝尔生理学或医学奖共同授予Richard Axel(左)和Linda B. Buck(右),以表彰他们“发现气味受体和嗅觉系统结构”。| 图源:nobelprize.org2004年以后,人类基因组计划的完成使得鉴定和分类人类嗅觉受体基因成为可能,进一步推动了嗅觉受体研究的发展。现在,我们知道嗅觉受体主要是具有七次跨膜结构的G蛋白耦联受体(GPCR)。GPCR在人体里面有超过800个家族成员,是真核生物中最大的细胞表面受体家族,它们参与了人体几乎所有生命活动的调控。正因如此,GPCR成为了科学研究的“明星分子”和药物研发的重要靶标。在美国食品药品监督管理局(FDA)批准的所有药物中,约三分之一通过靶向调控不同GPCR的活性来发挥作用。而在人体所有的GPCR中,约有400个成员被归类为嗅觉受体,占据了GPCR成员的一半,是其中最庞大的蛋白家族。嗅觉受体结构解析的困境自1991年首次发现嗅觉受体以来,结构生物学家一直致力于解析嗅觉受体的结构,以阐明其识别气味分子的机制。然而,近30年以来,嗅觉受体结构的解析工作进展并不顺利,面临诸多挑战。首先,大部分人类嗅觉受体主要在鼻腔神经细胞中表达,且表达水平较低。因此,直接在人源的组织样本中很难获得足够量的蛋白(通常是毫克量级)用于结构解析工作。而异源表达(在动物细胞或细菌中表达)的效果也不理想, 不仅表达水平非常低,还会由于错误折叠导致不具备生物活性。第二,为了解析GPCR的蛋白结构,我们需要结合一些特定的高亲和性的配体分子,也就是合适的气味分子。然而,由于气味分子巨大的化学多样性,以及嗅觉受体的成员众多,目前尚缺乏一种高效的方法来确定一个给定的嗅觉受体与哪些气味分子相互作用。现在学术界逐渐认识到,每个嗅觉受体可以与所有潜在气味分子的一个子集相互作用,一种气味分子可以激活多个嗅觉受体,不同受体对不同气味分子具有不同的亲和力。这种相互作用的复杂性导致大量的嗅觉受体并未找到合适的气味分子配体,这些受体被成为“孤儿受体”( orphan receptors )。目前很多“脱孤”的研究工作正在进行,开发有效的筛选方法,为孤儿受体寻找合适的配体。此外,由于大多数挥发性气味分子是疏水性分子,溶解度很低,这大大增加了气味分子配体的制备难度。第三,作为细胞膜上进行信号感受和传导的重要分子,GPCR是高度动态的蛋白分子,它在非激活、半激活、激活以及和不同调控分子耦联等各种构象中不断变化。因此,和其他大多数GPCR类似,嗅觉受体纯化的一个难点在于稳定受体蛋白处于特定的构象,而这对于蛋白晶体的形成非常重要。近年来,多个研究组相继开发了很多的方法去稳定GPCR的不同构象,包括但不限于通过稳定性突变法获得稳定性高的受体突变体用于蛋白结晶;通过结合“迷你G蛋白(miniGs)”来稳定与G蛋白耦联的GPCR完全活性状态下的结构;结合高亲和性小分子配体(包括激动剂、拮抗剂、反向激动剂等);开发新型纳米抗体(Nanobody)来稳定GPCR不同复合物构象等。对于一个特定的GPCR而言,需要尝试很多不同的方法去稳定特定的构象,这是一个非常耗时费力的过程。曙光初现:从昆虫到人如今,结构生物学已经从晶体衍射跨入冷冻电镜的时代。在一个完整的单颗粒冷冻电镜技术中,纯化过的蛋白被瞬间冻结在一层薄薄的非结晶玻璃体冰中,再经由透射电镜成像,记录下几十万到几百万个蛋白颗粒数据——用于三维重构和精确建模(图4)。与传统的晶体学手段相比,单颗粒冷冻电镜技术(Cryo-EM)在解析生物大分子高分辨率结构方面具有明显优势,例如无须获得晶体、所需样品量小和样品制备方式多样等,且已被广泛应用于解析GPCR与下游蛋白的复合物结构,这为嗅觉受体结构的解析带来了曙光。图4. 单颗粒冷冻电镜(Single Particle Cryo-EM)基本工作流程:将纯化的蛋白样品置于网格,然后用液体乙烷玻璃化, 嵌入薄冰中的蛋白颗粒将具有各种随机方向,通过透射电子显微镜(TEM)成像,然后通过一系列图像处理进行三维重构,最终得到高分辨率的蛋白冷冻电镜结构。图源:pdf.medrang.co.kr2018年,美国洛克菲勒大学Ruta实验室的研究人员以近3.5Å的分辨率解析了一种寄生黄蜂的气味辅助受体Orco 的单颗粒冷冻电镜结构。与哺乳动物不同,昆虫气味受体不是GPCR,而是门控离子通道,是由气味受体OR和高度保守的辅助受体Orco组成的异多聚体离子通道。这个离子通道如同一个带电粒子流过的孔,只有当受体遇到它的目标气味分子时才会打开,从而激活嗅觉感觉细胞。长期以来,科学界对于Orco 是否可以作为独立的嗅觉受体发挥功能存在争议,并没有形成统一的昆虫气味感受和信号传导模型。这项工作首次展示了昆虫气味辅助受体Orco同源四聚体的精细结构,为确定 “昆虫嗅觉辅助受体Orco可以形成一类新型异聚配体门控离子通道”提供了结论性的证据,得到结构解析并确认了其功能,为理解昆虫周围嗅觉机制提供了重要的新见解。2021年,同样来自Ruta实验室的另一项研究工作解析了一种地栖昆虫跳鬃毛尾的嗅觉受体OR5的冷冻电镜结构(图5)。通过比较OR5结合三种不同气味分子的结构,研究者发现气味分子结合主要依赖于疏水相互作用,缺乏其他经常介导配体识别的分子间作用力(如氢键)所固有的严格的几何约束。疏水相互作用是一种稳定蛋白质三维结构的作用力,通常发生在两个或多个非极性氨基酸残基中。当它们处于极性环境(最常见的是水)中时,对水的“厌恶”导致它们以某种方式相互靠近,以便尽可能少地与极性环境相互作用。这种非特异的弱相互作用为解释“一种嗅觉受体为何可以识别不同的气味物质”提供了一种新的机制,有别于其他许多受体配体相互作用的经典“锁与钥匙”模型。但OR5受体的非特异性并不意味着它没有偏好性,尽管它可以结合许多不同的气味分子,但也对很多其他的气味分子并不敏感。此外,如果对一些结合口袋中的氨基酸进行简单突变,即重新改变受体,受体则可以结合原本不喜欢的分子。这个发现也有助于解释昆虫为何能够在进化过程中通过突变进化出数百万种气味受体,以适应它们遇到的各种生活环境,形成独有的生活方式。图5. 地栖昆虫跳鬃毛尾的嗅觉受体OR5的冷冻电镜结构。当气味分子与嗅觉受体结合时,嗅觉受体的通道孔(蓝色)会扩张(粉红色)。图源:rockefeller.edu以上这些关于昆虫嗅觉受体的结构生物学研究为我们理解气味识别机制带来了很多新的认识,但人和昆虫毕竟是不同的,我们迫切需要人源嗅觉受体的高分辨率结构以揭开人体嗅觉感受的“面纱”。直至2023年3月,Nature杂志发表的一篇文章首次为我们揭示人体嗅觉受体结构的奥秘。在这项工作中,研究者选择了被称为OR5E2的嗅觉受体。他们之所以选择这种受体,是因为它不仅在嗅觉神经细胞中表达,也在其他非嗅觉器官如前列腺中表达,这表明其更易于在异源系统中表达。也就是说,更易获得足够的蛋白。这种受体的匹配分子也很容易获得。前期研究已经表明这个受体可以结合并响应水溶性的短链脂肪酸(short chain fatty acids, SCFAs)气味分子——丙酸。短链脂肪酸是肠道菌群产生的一类信号分子,容易挥发,有特殊的刺激性气味,并在许多疾病的发生、发展中起重要作用。此外,OR5E2在进化过程中较为保守,可能是因为它们识别了对许多物种的动物生存至关重要的气味,研究者推断这种嗅觉受体可能在进化上更多地受到稳定性的约束。简而言之,通过这些策略,研究者巧妙地规避了大多数嗅觉受体低表达水平,大多数挥发性气味剂的低溶解度和纯化嗅觉受体高度不稳定性的挑战。通过融合表达迷你G蛋白,以及结合Gβ1γ2 蛋白和纳米抗体Nb35等策略,研究者稳定了OR5E2和丙酸结合的一种激活状态,并利用冷冻电镜解析了其三维高分辨率结构(图6)。图6. 人类气味受体 OR51E2(绿色)的 3D 结构。紫色、红色和蓝色螺旋和缠结是与受体耦联的 G 蛋白亚基,橙色是用来稳定结构的纳米抗体。图源:Kristina Armitage/Quanta Magazine Sources: NIH/NIDCD ArtBalitskiy/iStock Alhontess/iStock在这个结构中,OR51E2受体将气味分子丙酸锁在一个很小的闭合结合口袋中。在这个小口袋中,丙酸通过两种类型的相互作用与 OR51E2结合:极性相互作用(氢键和离子键),以及非特异性的疏水相互作用。因此,OR51E2 结合气味分子的方式不同于昆虫气味门控离子通道,似乎选择性更强。许多嗅觉受体能够对各种化学性质不同的气味剂做出反应,而OR51E2似乎只与短链的脂肪酸结合。那么是什么因素决定了这种选择性呢?对此结构的进一步分析表明, OR51E2对短链脂肪酸的选择性源于封闭结合口袋的体积(31Å ),它可以容纳短链脂肪酸,例如乙酸和丙酸,但是会阻止更长的脂肪酸链结合。因此,研究人员认为结合口袋的体积是气味分子的重要选择性因素。作为第一个发表的人源嗅觉受体和气味分子配体结合的激活态结构,这是一个令人欣喜的研究成果,它让我们第一次直观地看到气味分子是如何与嗅觉受体结合的,尽管它在诸多方面并不完美,比如受体和G蛋白的耦联。配体与GPCR的结合通常会引起构象变化,从而使G蛋白耦联,进一步将信号传递给G蛋白。在生理条件下,哺乳动物嗅觉受体可以与两个高度同源的G蛋白Gαolf和Gαs结合。而在这个结构中,研究者并没有耦联Gαolf或Gαs,而是采用融合表达miniGαs,以及结合Gβ1γ2 和纳米抗体Nb35稳定了受体和G蛋白异三聚体的结构。尽管发现了一些嗅觉受体和G蛋白的相互作用,但这并不足以解释和体内真正的G蛋白Gαolf和Gαs的相互作用机制。2023年5月24日,山东大学基础医学院孙金鹏实验室在Nature杂志在线发表了一项工作,系统解析了小鼠痕量胺嗅觉受体TAAR9(mTAAR9)识别4种内源性胺类配体(苯乙胺,二甲基环己胺,尸胺,亚精胺)并与下游Gαs及Gαolf蛋白耦联的结构。痕量胺相关受体(trace amine-associated receptor, TAAR)是脊椎动物中进化保守的一类G蛋白偶联受体,可以感受纳摩尔浓度的痕量胺(trace amine)。痕量胺是由氨基酸脱羧形成的,对于在动物来说,它可作为感受一系列刺激的气味分子,如判断捕食者或猎物的存在、交配伴侣的接近和食物的变质,并根据气味引起种内或种间吸引或厌恶的反应。近年来,越来越多的研究表明人体内痕量胺与多种精神紊乱相关,TAAR也因此成为精神分裂症、抑郁症和药物成瘾等精神疾病潜在的治疗新靶点。图7. 不同配体结合的小鼠嗅觉受体mTAAR9与Gas及Gaolf蛋白三聚体复合物的结构。| 图源:Nature在这项研究中,研究人员发现嗅觉受体TAAR在N端和第二个胞外段之间形成了一对二硫键,这在其他已知结构的GPCR受体中从未发现过,而且这对二硫键对于mTAAR9识别配体及稳定受体激活态的胞外构象至关重要。单个TAAR嗅觉受体可以识别多种胺类气味分子,而同一种胺类气味分子也可以被多个嗅觉受体识别,这种相互作用的复杂特性是嗅觉感受胺类分子的重要基础。这项研究发现了mTAAR9识别胺类气味分子的通用结构基序以及识别不同胺气味分子的组合结构基序,为胺类气味分子识别提供了新的见解。值得注意的是,研究者还解析了mTAAR9受体与两种下游G蛋白Gαs和Gαolf耦联的分子结构。作为第一个实验确定的嗅觉受体和Gαolf的复合物结构,这为下游G蛋白耦联后哺乳动物嗅觉受体完全激活提供了重要的认识。未来的挑战在冷冻电镜的加持下,嗅觉受体结构解析工作已经初见端倪,更大的挑战也随之而来。以上结构揭示的只是一种激活态构象,但在生理状态下,嗅觉受体是高度动态的。随着人工智能在蛋白结构预测领域的高度发展,研究者也试图通过计算机模拟展示受体的动态变化以完善理论模型,但这并不能完全等同于真实生理状态下的结构变化。我们需要解析更多嗅觉受体不同时间动态下的结构,以及开发高分辨率的受体蛋白动态监测方法,来帮助我们打开完整的嗅觉感受的生物“黑匣子”。近年来,随着测序技术的不断发展,在更多的非嗅觉组织中也发现了嗅觉受体的表达,包括心脏、呼吸道、肾脏、肝脏、肺、皮肤、大脑等部位。这些嗅觉受体在非嗅觉组织中的表达既有普遍性,又有特异性。有研究表明鼻腔外表达的嗅觉受体在特定的组织中具有特定的生物学功能。一些研究发现,嗅觉受体的功能异常与神经系统疾病和肿瘤等疾病的发生和发展有关。解析这些受体在非嗅觉组织中的生理结构,为嗅觉受体结构研究提供了新的方向和挑战,这些嗅觉受体将来也有望成为重要的药物靶标。回到本文最开始的那个问题:我们的嗅觉系统为什么能感受并辨别如此复杂多样的气味?在科学上,目前我们还是不能完整回答这个问题,并且当我们对嗅觉受体结构的研究更多、理解更深的时候,这个问题似乎变得更为复杂了。嗅觉受体如何选择性地对空气中的气味分子做出反应,只是更大的气味难题的一部分,研究人员仍然面临更为复杂的挑战:了解大脑如何将受体传导的电化学信号转化为气味的感知。理解嗅觉感知的奥秘,我们还有很长的路要走。
  • 我国科学家团队成功开发超低浓度ctDNA富集检测平台
    ctDNA全称为circulating-tumor DNA,是指人血液中肿瘤细胞体细胞DNA经脱落或者当细胞凋亡后释放进入循环系统,故被称为循环肿瘤DNA,包含着癌症早期诊断和预后监测等重要信息。然而,ctDNA的精准检测面临着三大问题:临床样本(如血液、尿液、粪便)等成分复杂;ctDNA的半衰期较短(传统ctDNA富集和纯化通常是基于磁珠和二氧化硅膜,然而,当处理大量样品时,这些技术难以实现快速、高效的富集,并且操作复杂,检测灵敏度有限。因此,迫切需要一种创新的ctDNA富集与分析技术,以提高临床诊断的灵敏度。近日,北京航空航天大学王杨、常凌乾、樊瑜波,上海感染与免疫科技创新中心徐高连等在 ACS Nano 期刊上发表了题为:An ion concentration polarization micro-platform for efficient enrichment and analysis of ctDNA 的研究论文。该研究开发了一种基于离子浓度极化的微平台,能够在30秒内从血清、尿液和粪便等各种临床样品中,快速、高效地富集和纯化ctDNA。并集成了等温扩增模块,将ctDNA的检测灵敏度提高了100倍,显著消除了因ctDNA丰度低而导致的样本假阴性结果。离子浓度极化(ICP)是一种新兴的原位分子富集和纯化方法,在阳离子选择性的Nafion膜上施加垂直电场,根据带电分子的电渗透力和电泳力进行分离和纯化。同时结合“自由流动”的概念,形成基于“自由流动ICP(FF-ICP)”的连续分离方法。对于带有负电荷的核酸分子,受到向下的电渗透力(EO)和不断增加的向上的电泳力(EP)的共同作用,被电动力学捕获,形成离子富集区。同时,施加连续的水平驱动力,使被富集到的核酸或蛋白分子水平推进并收集,从而进行后续的扩增分析(图1)。图1. “自由流动ICP”的原理图基于FF-ICP的DNA富集策略,研究团队设计了一种自供电、集成的微流控芯片,用于高灵敏度的核酸检测。微平台有两个功能区:核酸富集区、核酸等温扩增检测区(图2a)。两个区域由一个“y形”提取通道连接。富集区内固定了阳离子选择性的Nafion膜。在垂直电场和水平驱动力作用下,液体样品中的核酸被富集,形成“阴离子流”,然后在“y”形提取通道处收集(图2b)。随后,“阴离子流”进入检测区,经等温扩增后进行定量分析(图2c)。剩余的溶液收集在废液池中(图2d)。富集后的核酸进入到核酸扩增区之后,在含有100个微孔的检测区,用LAMP法进行等温扩增(65℃)。采用阳性微孔总数和每个微孔的荧光强度作为双参数指示,使分析更加准确和稳定。为了给FF-ICP提供稳定的水平驱动力,团队在生物芯片中集成了一个自供电真空电池系统,电池使用预脱气的PDMS,通过液体通道和真空通道之间的气体交换提供“电力”,从而推动液体样品流动(图2e)。使得整个平台能够在不需要外部泵的情况下,连续地向下游输送和富集核酸分子,并进行核酸扩增,具有用户友好的性能。图2. 基于FF-ICP的集成微平台用于连续的核酸富集和扩增利用微平台检测临床患者血清中的ctDNA。与未处理样品相比,该装置的富集效果和纯化能力明显高于试剂盒(图3a-3c)。同时,最终的扩增结果也显示,该微平台能够达到100拷贝/mL的灵敏度,比传统方法(基于二氧化硅/磁珠的DNA提取与PCR扩增)提高了100倍(图3d)。在临床应用中,对北京大学肿瘤医院提供的38例非小细胞肺癌患者的血清样本进行EGFR外显子19缺失突变的检测。结果表明,微平台的灵敏度显著高于传统PCR技术,达到了100%,能够大大避免了因ctDNA浓度不足而造成误诊的风险(图3e和3f)。此外,该装置检测到的早期患者血清中ctDNA的含量明显低于中晚期患者,证明该平台的定量判断能力可以预测患者的肿瘤发展(图3g和3h)。通过将分析物的提取和富集(FF-ICP)与进一步的生物分析技术进行无缝集成,为超低丰度生物标志物的检测带来巨大的好处。与传统检测技术相比,该平台的灵敏度显著提高了两个数量级,能够避免因浓度不足导致的误诊风险,尤其有利于临床感染筛查或者早期肿瘤诊断。图3. 用FF-ICP装置检测血清中ctDNA该研究第一单位为北航生物与医学工程学院和生物医学工程高精尖创新中心。通讯作者包括北航生物与医学工程学院常凌乾教授、樊瑜波教授、王杨副教授、上海感染与免疫科技创新中心徐高连研究员。核心作者包括北航博士生王之莹(第一作者)、硕士生刘明(共一)、北京大学肿瘤医院吴楠教授、北京大学第三医院林成浩主任(共一)等。
  • 烟熏液样品气味特征分析方法
    德国AIRSENSE公司的PEN3电子鼻可以对烟熏液样品具有明显的应答,不仅可通过气味对烟熏液进行区分,还可以分析几个样品之间气味差异主要体现在哪些组分上。测试过程非常简单,也很容易操作,每个样品的测试周期大约3-5分钟样品信号采集稳定,结果明显。烟熏液样品的电子鼻主要响应的传感器一致,但各样品在的传感器响应强弱上存在一定的差异,故可将其完全区分开来。此次试验数据清晰直观,具有很强的可靠性、稳定性和重复性。 通过电子鼻采集样品的气味信息,经过电子鼻自带的分析软件进行分析,本次实验主要做的是样品之间的聚类分析,通过PCA、LDA和Loading来分析样品之间的气味是否存在差异,且判定气味的差异主要来源于哪类气味成分。德国 AIRSENSE PEN3 型电子鼻数据处理方法1、传感器响应值本实验在对每个样品的数据采集过程中,通过查看每个传感器响应信号的变化曲线、 每个时间点的信号值及星型雷达图或柱状指纹图,可以清晰考察各个传感器在实验分析过程中的响应情况。并通过传感器选择设置可以查看在不同数量的传感器情况下的响应情况。2、聚类分析由于每个传感器对某一类特征气体响应剧烈,可以确定样品分析过程中样品主要挥发出了哪一类特征气体。对于样品区分分析,本实验提取10个传感器的特征值,然后采用主成分分析法(PCA),线性判别法(LDA)和传感器区别贡献率分析法(Loadings)作为主要区别分析方法。3、未知样的判定通过区别判定DFA、欧氏距离 EUCLID、马氏距离MAHALANOBIS和相关性分析CORRELATION等方法,有效判定未知样归属于哪一类,达到一个用电子鼻验证未知样的实验结果。4、PLS 定量预测PLS运算用来通过传感器信号来计算量化表达式,依据PLS偏最小二乘法建立的气味浓度综合值分析模型。应用一个先前训练的模型和一个量化值可以对一个给定的变量计算测量值(向量)。根据使用的需要,可以定义不同的量化变量。例如,在食品分析中定义香气浓郁度、根据气味判定食品的货架期或在环境监管中定义恶臭强度时均十分有用。
  • 极端条件下的流动化学:合成具有麝香气味的大环化合物 个
    康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度背景介绍目前,连续流技术已经成为药物研发和连续化生产的热门技术之一,香水行业的发展也可以受益于该技术。具有麝香气味的(R)-麝香酮( 化合物1,见图1)在香水中占据特殊地位,这类化合物是从麝的腺体分泌出来的,经常被用作香水基调。图 1. 具有麝香气味的大环分子 1-5 示例(带圆圈的数字是指环的大小)麝香香氛还包括图1中来自麝香籽油的植物性麝香香料(化合物3)、兰花香味中花香的成分大环内酯(化合物4 )和来自当归根油的大环内酯(化合物5)。传统釜式工艺合成香料工业相关的中型环和大环,使用高浓度的过氧化氢,并且中间体三过氧化物(化合物7)需要高温热裂解(方案1)。反应风险等级高,工业化生产存在较高风险。图2. 方案 1 Story法:釜式条件下从环己酮(化合物6)两步合成 1,16-十六烷内酯(化合物4)和环十五烷(化合物8)本文是Leibniz University Hannover(汉诺威莱布尼茨大学)有机化学研究所Alexandra Seemann等人的研究工作,该研究成果2021年5月发表在了JOC上。。我们来看看作者如何在极端条件下,用连续流的方法来合成具有麝香气味的大环化合物。同时,如何通过分离来解决多步反应和操作的连续化。图3.连续流工艺合成中环和大环化合物研究过程:一、改变溶剂,打通连续流工艺研究者优化了连续流条件下环己酮三过氧化物(化合物7)的氧化过程。将三种反应组分(环己酮、98%甲酸,以及30%过氧化氢与65%硝酸混合液)单独储存并使用三台进料泵分别输送。出于生产安全和成本考虑,溶剂使用甲酸代替釜式工艺用的较危险的高氯酸。图4.环己酮(6)氧化成环己酮三过氧化物(7)的连续流工艺流程图三台泵在室温下将反应物送至PTFE材质的反应器中反应。当使用小内径管道反应器或使用有静态混合器的反应器时,两相系统的均匀性达到最佳。环己酮三过氧化物(7)的产率为48%。二、巧妙使用膜分离器连接热解反应为了实现多步连续生产具有商业价值的化合物4和8,需要增加单独的分离步骤,用以分离过量的H2O2,以避免过量的H2O2高温分解引发危险。作者采用了由两块不锈钢板和分离膜组成的膜分离器,研究了配备不同孔径的疏水PTFE膜的分离效果,使用1.2μm的分离膜,效果最好。将分离器出口流出的有机相收集在烧瓶中,并通过一台HPLC泵直接泵送至不锈钢环形反应器,高频电磁感应加热至270℃进行热裂解反应。三、氧化-分离-热解连续合成作者通过使用感应加热技术对三过氧化物7进行热解,从而形成具有重要生产意义的大环产物。图5.多步(氧化-分离-热解)连续合成工艺流程(泵流量设置及反应参数)综上多步连续合成工艺中,第一步的初始氧化在PTFE反应器中进行(V=113 mL,⌀ = 2.4mm),温度为室温,停留时间为93分钟;第二步反应停在不锈钢环流反应器中,反应温度270℃,停留时间为12分钟。通过GC分析,两步的总收率:化合物4为10%,化合物8为25%,与釜式条件下获得的收率相似(化合物 4为14%,化合物8为23%)。最后,作者对脂肪族和乳糖大环进行GC-O(gas chromatography-olfactometry,气相色谱嗅觉测定法)气味分析。结果表明,以下3种大环内酯显示出强烈的麝香酮气味。研究结果:作者提出了一个多步连续合成工艺(氧化、分离和热解),从环酮开始生产大环十六烷内酯和环十五烷等化合物,且该方法具有一定的普适性;连续合成所得的部分化合物有经过气相色谱嗅觉测定法表征,具有麝香酮气味;连续流工艺成功地进行了危险化学品如65%浓度的硝酸,30%浓度的双氧水,以及不稳定的过氧化物中间体等的处理,可以大大提升生产的安全性;香水行业可以从先进的连续流技术中受益。参考文献:DOI 10.1021/acs.joc.1c00663编后语康宁微通道反应器可用于中间体不稳定、强放热等危化反应。康宁反应器可以与Zaiput液液分离器、在线核磁等PAT技术联用,实现目标产物的连续合成、分离或提纯。康宁微通道反应器在香精香料行业也有很多成功的应用案例,在解决安全问题的同时,反应效率和收率都得到了提高。欢迎您拨打400-812-1766 联系康宁反应器技术了解详情。
  • 文献解读丨低浓度脑暴露不会阻碍三七总皂苷的神经保护作用
    本文由中国药科大学药物代谢与药代动力学重点实验室天然药物国家重点实验室所作,发表于DRUG METABOLISM AND DISPOSITION (2018)46:53–65。 胃肠道和中枢神经系统之间的双向沟通途径,称为“肠-脑轴”,其与脑损伤的治疗越来越相关。尽管血浆和大脑暴露浓度水平极低,三七总皂苷提取物(PNE)仍是预防和治疗心脑血管缺血性疾病的常用药物。迄今为止,PNE神经保护作用的潜在机制在很大程度上仍然未知。本文通过研究PNE对胃肠微生物群落和γ-氨基丁酸(GABA)受体的调节,系统地探明了PNE的神经保护作用。 结果表明,PNE预处理对大鼠局灶性脑缺血/再灌注(I/R)损伤有显著的神经保护作用,但对无菌大鼠的保护作用减弱。PNE预处理可显著防止I/R手术引起的长双歧杆菌(Bifidobacterium longum, B.L.)下调,B.L.定植也可发挥神经保护作用。更重要的是,PNE和B.L.均可上调I/R大鼠海马GABA受体的表达,同时给予GABA-B受体拮抗剂可显著减弱PNE和B.L.的神经保护作用。上述研究表明,PNE的神经保护作用可能主要归因于其对肠道菌群的调节,口服PNE也可通过上调GABA-B受体用于I/R损伤的治疗。使用仪器:岛津LCMS-8050 图1 正常、I/R模型和I/R + PNE大鼠(n = 6/组)的TTC染色脑冠状切片(A)、梗死体积(B)和神经功能缺损评分(C)。PGF、PGF + I/R模型和PGF + I/R + PNE大鼠(n = 6/组)的TTC染色脑冠状切片(D)、梗死体积(E)和神经功能缺损评分(F)。大鼠海马中IL-1b水平(*P,0.05,**P,0.01 vs对照组,#P,0.05 vs I/R组,# P,0.01 vs I/R组) (G),大鼠海马中IL-6水平(**P,0.01 vs对照组,#P,0.05 vs PGF+I/R组,# P,0.01 vs I/R组) (H)和大鼠海马中BDNF水平(*P,0.05 vs对照组,# P,0.05 vs I/R组) (I) (n = 6/组) 图2 B.L.的神经保护作用(n = 6/组)。(A) TTC染色的脑冠状切片、(B)梗死体积、(C) 神经功能缺损评分、(D) IL-1b、(E) IL-6、 (F) TNF-a、 (G) BDNF (*P,与对照组比较0.05,# P,与I/R组比较0.05) 图3 Western blotting检测PNE和B.L对GABA-B受体(R1、R2)表达的影响(n = 6/组)。(A) GABA-B R1、GABA-B R2、GAPDH对应的蛋白带 (B) GABA-B R1蛋白表达的灰度分析 (C) GABA-B R2蛋白表达的灰度分析。(*P, 0.05 vs对照组,#P, 0.05 vs I/R组,##P, 0.01 vs I/R组) 图4 GABA-B受体拮抗剂对PNE疗效的影响(n = 6/组)。(A) TTC染色的大脑冠状面、(B)大鼠大脑梗死体积、(C)大鼠神经功能缺损评分、(D) IL-1b水平、(E) IL-6水平、(F) TNF-α水平(* P, 0.05) 因此,本研究结果表明,I/R手术改变了肠道菌群,下调了B.L的数量,B.L水平的下降导致GABA受体表达的下调。PNE预处理后可在一定程度上预防肠道菌群I/R相关的变化,显著提高B.L的相对丰度。B.L水平的升高可上调大鼠海马GABA-A和GABA-B受体的表达,而GABA-B受体的上调在缺血性脑损伤中起保护作用。据我们所知,这是首篇阐明PNE涉及肠道微生物群的大脑保护作用的报告。值得注意的是,B.L在PNE通过上调GABA-B受体治疗脑I/R中起着关键作用。 文献题目《Low Cerebral Exposure Cannot Hinder the Neuroprotective Effects of Panax Notoginsenosides》 使用仪器岛津LCMS-8050 作者Haofeng Li, Jingcheng Xiao, Xinuo Li, Huimin Chen, Dian Kang, Yuhao Shao, Boyu Shen,Zhangpei Zhu, Xiaoxi Yin, Lin Xie, Guangji Wang, and Yan Liang Key Laboratory of Drug Metabolism and Pharmacokinetics, tate Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
  • Scientific, reports: ,哇!尿液气味改变可,预测老年痴呆?!
    阿尔茨海默病是最常见的一种痴呆病症,在美国,65岁以上的患者大约有五百一十万。目前,在患者生前,并没有任何一种诊断方式可以确诊阿尔茨海默病。尽管现在我们并不能阻止或是逆转这种疾病的进程,然而,一种准确的诊断,可以让患者及他们的家庭为将来做好打算,并寻求减轻症状的治疗。 近日,来自于美国农业部,Monell中心的一项最新研究发现,在小鼠的阿尔茨海默疾病模型上,有一种特异的可识别的气味的特征。这种特异的尿液气味的出现,早于显著性的阿尔茨海默病大脑病理学的发展,这个发现提示,也许我们可以开发出一种非侵入性的工具,来早期诊断阿尔茨海默病。 这项研究结果最近在线发表在Scientific Reports杂志上,研究人员们利用APP小鼠模型,即模拟阿尔茨海默大脑病理特征的小鼠模型,开展了这项研究工作。利用行为学和化学分析,研究人员们发现,每一批APP小鼠所产生的尿液气味谱,都可以与对照组区别开。而且,这种气味的改变,并不是因为新化合物的产生,而是尿液中现有化合物浓度的相对变化。另外,这种气味的改变与年龄无关, 且出现在大脑病理变化改变之前。这些发现表明,尿液的气味特征可能与某种潜在基因的表达有关,而不是由大脑的病理改变发展引起的。这种特征性气味的改变可以来预测阿尔茨海默病。 值得注意的是,目前这项研究是在小鼠模型上开展的,研究人员仍需进行大量的,对人类阿尔茨海默病患者尿液气味改变的研究。希望在不远的将来,这种非侵入性的监测方法可以作为一种气味标识,用来预测阿尔茨海默病。
  • ATAGO(爱拓)麦芽汁浓度计-原麦芽汁浓度检测在啤酒行业的应用
    一般饮料酒的度数表示酒精的含量,所以简称为"酒度",而啤酒的"度"却指的是麦芽汁的浓度。制造啤酒的大麦芽和辅助原料大米等,经过麦芽淀粉酶和蛋白酶的作用,转化为麦芽糖类,以糖的含量来测定,如每公升麦芽汁含有120克糖类,就是12° 。当麦芽汁浓度为7° ~9° 时,称低浓度啤酒。麦芽汁浓度在18° ~20° 的称黑啤酒。麦芽汁浓度越高,营养价值就越好,同时泡沫细腻持久,酒味醇厚柔和,保管期也长。因此,&ldquo 原麦芽汁浓度&rdquo 是鉴定啤酒的一个硬性参考指标,根据它的浓度来鉴定啤酒可储存期。 概述 原麦芽汁浓度用来计量发酵前可发酵糖分的含量,是指开始发酵时原料中麦芽汁的糖度。原麦芽汁浓度是啤酒潜在烈性的代表性标志。1.040原麦芽汁浓度相当于10度的麦芽汁能产生出大约百分之四体积酒精度的啤酒。 麦芽汁浓度在18° ~20° 的称黑啤酒。 据测定,黑啤酒的酒精含量在4.8° ~5.6° 之间。 &ldquo 原麦芽汁浓度&rdquo 是鉴定啤酒的一个硬性参考指标,另外,鉴定啤酒有很多的硬性指标,这些指标就是鉴定啤酒的硬性依据。 根据麦芽汁浓度分类 低浓度型:麦芽汁浓度在6° ~8° (巴林糖度计),酒精度为2%左右,夏季可做清凉饮料,缺点是稳定性差,保存时间较短。 中浓度型:麦芽汁浓度在10° ~12° ,以12度为普遍,酒精含量在3.5%左右,是我国啤酒生产的主要品种。 高浓度型:麦芽汁浓度在14° ~20 ° ,酒精含量为4%~5%。这种啤酒生产周期长,含固形物较多,稳定性好,适于贮存和远途运输。 麦芽汁浓度测量 ATAGO(爱拓)PAL-Plato麦芽汁浓度计 这款是测量发酵前麦芽汁的产品。它以Plato作为其标度。操作简便,LCD显示很清晰,自动温度补偿范围到75度。与比重计比起来, 其需要的样品量只有0.3毫升。测量速度只需3秒钟。 型号 PAL-Plato 货号 4590 测量范围 Plato 0.0 至 30.0° P 溶解值 Plato 0.1° P测量准确度 Plato ± 0.2° P 环境温度 10 至 40° C 测量温度 10 至 75° C ( 自动温度补偿 ) 样本量 0.3 毫升 测量时间 3 秒 电源 2 × AAA 电池 如欲了解新产品测量方案,我们将热情提供完整、快速的现场分析试用,请点击这里。 要了解ATAGO(爱拓)仪器的信息,请访问:http://www.atago-china.com
  • 上头电子烟就是毒品,SERS增强手持拉曼实现烟油中低浓度新精活物质快检
    14日,中新网记者从青海省烟草专卖局(公司)获悉,近日,西宁市烟草专卖局联合大通县公安局成功破获一起“上头电子烟”案件,抓获犯罪嫌疑人3名。该案是青海省首例“上头电子烟”案件,是烟草、公安紧密协作的一起典型案例。  电子烟的液体盒可更换,含有与丙二醇相混合的尼古丁,以及各种香料和调味剂。电子烟可以做成各种口味,吸引青少年等人群吸食。相较于二代传统毒品,三代毒品具有少剂量强效果特性,不法商贩为增加回头客,在烟油中添加了大麻等违禁成分的电子烟,“上头电子烟“外观虽与普通电子烟相似。但吸食后会在不知不觉中染上毒瘾,过量吸食则会出现昏迷、休克、窒息、猝死等情况,危害性极大,已被国家禁毒委员会办公室列为毒品施行管制。  拉曼光谱是分子结构研究的一种分析方法,每一种分子都有其特有的光谱,其光谱就称为“分子指纹光谱”,照此原理运用拉曼光谱技术进行电子烟油合成大麻素快速检测具有天然优势。  但拉曼光谱是是一种散射光谱,在混合物基质下,所有基质会生成同一条光谱,浓度高或者信号强的物质容易凸显,烟油主要基质以丙二醇为主,所以即使添加了合成大麻素,常规拉曼检测结果不显示。图1-常见烟油检测结果(丙二醇)那么厦门大学拉曼研究团队技术如何通过拉曼技术进行烟油中合成大麻素的检测?  普识纳米基于拉曼光谱技术研发了手持式拉曼光谱仪非接触式新型毒品检测仪器,配合源自厦门大学拉曼研究团队技术的增强拉曼方案,轻松检测烟油中毒品,特别适合现场快速安全鉴别。操作简单、检测快速,检出限可达到ng级(浓度图2-助力公安局准确检测三代毒品-新精活物质-合成大麻素  不仅能够检测合成大麻素,针对其他伪装毒品、掺杂毒品、强荧光干扰等毒品检测难题,普识纳米的技术也发挥同样优质检测能力。检测方法适用于固体、液体、黏稠胶状等各种检材,已实现300多种毒品(含三代毒品芬太尼类、合成大麻素)的高灵敏特异定性鉴别,检出限低至pg~ng级别。  该方法的强适用性在面对于层出不穷的新型毒品发挥了很好的拓展性,利用仪器自建库功能,可快速建立新型毒品项目数据库,迅速开展禁毒工作。  普识纳米也提醒大家,提高警惕,远离毒品,坚定意志力,不被各种伪装毒品诱惑。如有发现售卖、吸食“上头电子烟”行为,也请及时向当地公安机关等部门举报,为禁毒工作助一份力。
  • 爱拓发布PRM-2000a 高精度在线浓度计新品
    【产品介绍】ATAGO(爱拓)低浓度高精度在线折光仪PRM-2000α ,又称在线浓度计,由检测部件(传感器)与显示部件(显示器)构成,专为低浓度样品而设计,可同时测量折射率(nD)和Brix值(蔗糖/高果糖玉米糖浆/无(低)糖饮料),低浓度(Brix 0.000-20.000% 折射率1.32069-1.36500),高精度( 折射率±0.00001, Brix ±0.007 ),非常适合检测各种低浓度液体。ATAGO(爱拓)低浓度高精度在线折光仪PRM-2000α ,七段LED彩色显示屏,远距离也能读数清晰,广泛应用在食品,饮料,制药以及化工行业,帮助在线管理稀释过程,混合过程以及最终产品的浓度/水分/混合比率的浓度监测,还可以用于在线清洗过程的效果监控。【应用范围】在线折光仪PRM-2000α用于生产线液体折射率、可溶性固含量(Brix)和浓度等连续检测。1、实时监测各类低糖饮料、功能性饮料、低浓度液体在生产线上的实时浓度 2、可溶性固含量和浓度的连续检测(蒸发,溶解,混合,稀释,提取等工艺) 3、切削油、润滑油浓度的检测 4、洗涤剂浓度的检测 5、工业清洗剂的检测6、低浓度样品(低糖茶,低糖饮料等)7、淀粉液、纯静水8、咖啡、果汁9、酒精饮料10、各种表面处理剂【技术参数】型号PRM-2000α货号3641测量项目折射率(nD),Brix(三类产品[ATC]:蔗糖,高果糖玉米糖浆和无糖饮料[≤2%]),浓度(%)(ATC),温度(℃)测量范围折射率(nD)1.32069 ~1.36500 Brix 0.000 ~ 20.000%分辨率折射率(nD)0.00001 Brix 0.001%(分辨率可切换:0.001% [默认],0.005% 或 0.01%)测量精度折射率(nD)±0.00001(1.32069 ~ 1.33681)折射率(nD)±0.00010(1.33682 ~ 1.36500)Brix ±0.007%(Brix 0.000 ~ 2.000%)Brix ±0.050%(Brix 2.001 ~ 20.000%)*通过自动温度补偿功能,测量低于 Brix 2% 的样品时可以获取最高精度。测量温度-35.0 ~ 165.0°C温度补偿范围5 ~ 90°C显示系统七段 LED 显示器输出方式RS-232C,DC 4 ~ 20mA测量时间约 1 秒电源AC 100 ~ 240V,50/60Hz电缆检测部件至显示部件之间的标准长度15m(最长可达 200m)材质棱镜:人工蓝宝石 样品槽:SUS316L耐压性0.98MPa环境温度5 ~ 40°C功率30VA国际防护等级检测部件:lP67显示部件:lP67尺寸和重量检测部件:10.8x33.57x10.8cm,4.1kg显示部件:19.2x10x24cm,3.3kg创新点:ATAGO(爱拓)第一台在线折光仪,又称为在线折射仪,诞生至今已有75年了,在这75年中,ATAGO(爱拓)的在线折射仪成员也不断壮大,先后诞生了在线浓度计型号为CM-780N、CM-800α ,PRM-100α 。2015年,ATAGO(爱拓)也再添新丁——PRM-2000α 高精度型在线折光仪 PRM-2000a 高精度在线浓度计
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制