当前位置: 仪器信息网 > 行业主题 > >

低加速电压成像

仪器信息网低加速电压成像专题为您整合低加速电压成像相关的最新文章,在低加速电压成像专题,您不仅可以免费浏览低加速电压成像的资讯, 同时您还可以浏览低加速电压成像的相关资料、解决方案,参与社区低加速电压成像话题讨论。

低加速电压成像相关的方案

  • 扫描电镜低加速电压成像
    通常来说,操作人员更愿意使用更高的加速电压去成像,当加速电压较大时,信噪比更好,分辨率更高,更容易得到“清晰”的图像。但低加速电压却是当今扫描电镜的发展趋势,这是什么原因呢?今天,这篇文章将围绕“低加速电压成像”展开讨论。电子束与样品相互作用将会激发出多种电子信号,包括背散射电子(BSE)、二次电子(SE)等。二次电子(SE)主要表征样品的表面形貌信息,激发深度一般低于 10nm,主要表征样品的表面形貌信息。
  • 日立新型台式电镜TM3030 在低加速电压成像中的优异表现
    低加速电压成像在扫描电镜成像中有着重要的作用。采用低加速电压成像,低能电子束受到散射的扩散区域小,相互作用区接近表面,有利于表面精细形貌成像。对于某些热敏或导电性能差的样品,如半导体和器件、合成纤维、溅射或氧化薄膜、纸张、动植物组织、高分子材料等,有时不允许进行导电处理,而要求直接观察,采用低加速电压成像可以减小或消除此类样品的荷电效应同时减小电子束辐照损伤。下图为氧化锌样品在5KV 和15KV 下的图像对比,由图像可知,在5KV 低加速电压下,样品表面细节特征清晰,有利于表面精细形貌的观察。
  • 加速电压效应对扫描电镜成像质量的影响
    扫描电镜激发样品的物理信号(二次电子、背散射电子、特征 X 射线等)主要取决于入射电子束的加速电压,当高能量的电子束入射到同一样品时,入射电子束与试样相互作用区范围的大小随加速电压的升高而增大。
  • 加速电压在扫描电镜中的作用
    在进行扫描电镜(SEM)分析时,为了获得感兴趣区域最佳的图像效果,必须考虑一些重要的参数。其中一个很重要的参数就是加速电压,它是加在电子枪的阴极和阳极之间,用来加速电子产生电子束的。加速电压的选择与样品的导电性、放大倍数及图片质量等因素有关。一般来说,加速电压越高,图像的分辨率越高。
  • 如何通过选择加速电压来提高扫描电镜的图像质量
    台式电镜在出场阶段已经优化了几组针对不同类型样品的加速电压,掌握微调节加速电压的技能绝对能给优质图像锦上添花。
  • 像散对扫描电镜成像质量的影响
    通过之前的文章,大家了解了 “加速电压” 与 “束流强度” 对图像的成像质量有非常大的影响。其实除了加速电压、样品的导电性、电镜的束流强度,像散、图像的亮度对比度等都会影响扫描电镜图像的成像质量。今天,这一篇文章将教大家了解消除像散的重要性,提高样品的成像质量。
  • 束流强度对扫描电镜成像质量的影响
    通过之前的 “如何通过选择加速电压来提高扫描电镜的图像质量” 与 “样品导电性对扫描电镜成像的影响” 这两篇文章,大家都了解了加速电压与样品导电性对图像的成像质量有非常大的影响。其实,除了加速电压与样品的导电性,电镜的束流强度、图像亮度对比度、图像像散等都会影响扫描电镜图像的成像质量。今天,这篇文章将围绕如何选择束流强度,提高样品的成像质量。
  • 5SU9000超低电压下高分辨在多孔材料中的应用
    对于多孔材料结构的表征SU9000带来完美的解决方案,由于介孔硅材料不导电,对加速电压很敏感,容易受到电子束的损伤,通常考虑降低加速电压进行显微观察,如上图利用减速模式下0.5kV的着陆电压可以清晰的看到介孔硅的孔径、孔壁及形态结构,并且达到最高800k的超高放大倍数,从而得到材料的真实形貌与理论相匹配。
  • 2SU9000在低电压高分辨晶格像观察中的应用
    SU9000作为冷场发射扫描电镜,其本身具有很高的分辨率,同时采用内透镜的物镜设计使其具有与透射电镜相同的功能。由于SU9000的最高加速电压只有30kV,因此它可以实现低电压下高分辨晶格像的观察。
  • SU5000最新应用:锂电池材料极低电压条件下的BSE观察
    背散射电子(BSE)是SEM中重要成像信号,可以直接观察到样品的成分差异。日立最新场发射扫描电镜SU5000可以在极低电压条件下进行BSE观察,与此同时,使用TOP探头的二次电子(SE)在极低电压条件下观察样品的形貌衬度也会更加突出,二者可以相互配合使用,使得在极低电压条件下使用BSE观察较难样品非常有效,这将极大拓展背散射电子信号的应用领域。
  • 飞纳 Pharos-STEM 在细胞生物学和病理学的应用
    飞纳台式场发射扫描电镜,体积小巧,具有低电压成像的优势,配备了新型的扫描透射(STEM)探测器后,可以结合扫描电镜和透射电镜的功能特点,在 15kV 的低加速电压下,就可以获得高分辨率的扫描透射成像。在观测电子束敏感的生物样品时,可以获得高成像质量图片。
  • 扫描电子显微镜表面细节分辨能力的根本原因
    扫描电子显微镜成像的基本原理是通过灯丝枪产生一定量的游离电子,经高压加速获取更大的动能,与样品表面碰撞,产生二次电子和背散射电子信号,经由相关探测器接收,转化成我们直观看到的图像。那么一个样品最终的成像效果好或者不好的判断依据有哪些呢?直观的感觉是这张照片好不好看,清不清晰。归根结底就两个特点来决定:1、照片清晰程度,这一点由分辨率决定;2、照片的细节呈现,这一点由加速电压和电子束质量决定。在一定程度上,提高加速电压,是有助于分辨率提升的,但带来的明显副作用就是电子穿透效应,使得样品形貌变得透明化,表面细节虚化,无法判断,这便成了一个矛盾的选择。所以,只考虑提升加速电压来提高照片清晰度,并不是上上策。
  • 飞纳 Pharos-STEM 在细胞生物学和病理学的应用
    扫描透射(STEM)模式作为 TEM 的附加配件,可以显著提高生物样品的衬度,特别是未染色的组织切片。应对此类生物样品,TEM 操作人员通常也会选择相对较低的加速电压(80kV)来增加图像的衬度,并提高清晰度。飞纳台式场发射扫描电镜,体积小巧,具有低电压成像的优势,配备了新型的扫描透射(STEM)探测器后,可以结合扫描电镜和透射电镜的功能特点,在 15kV 的低加速电压下,就可以获得高分辨率的扫描透射成像。在观测电子束敏感的生物样品时,可以获得高成像质量图片。
  • 同等电压量程不同功率的电压击穿试验仪的区别
    3、同等电压量程不同功率的电压击穿试验仪的区别:A:在测试规程和测试标准中,最常用的测试数据是击穿电压值,而对仪器的输出电流没有要求时,可以不用考虑设备的容量值,只关注设备的量程即可,对测试数据没有影响B:在有些测试标准或测试要求中,必须要求仪器满足最大输出电流是多少,对此在选择仪器量程的同时,需要关注变压器的容量值(即功率KVA)C:输出电流、电压值及功率之间的关系用如下公式表示: 变压器容量(KVA) 输出电流(MA)=---------------------------------------------- 电压量程(KV)
  • XPS表征锂电池负极表面元素分布
    岛津公司Minibeam VI型团簇离子枪可产出团簇大小为3000的原子团簇,加速电压可达20keV,可以在不改变材料化学态的同时较快速的刻蚀分析。同时可拼接的XPS成像可以高分辨地呈现出元素图像,配合选区采谱可以得到不同区域的化学态精细谱。
  • 电压击穿试验仪选型常识
    2、如何选择合适量程的电压击穿试验仪:在材料的标准要求里或者测试报告中,对材料的耐压等级通常用介电强度来表示,即KV/mm,击穿电压和介电强度的关系可以用如下公式表示: 击穿电压值(KV) 介电强度(KV/mm)=------------------------------------------ 试样厚度(mm)由如上公式可以得出结论,选择多大量程的测试仪器,取决于试样的厚度,即: 击穿电压值(KV)=介电强度(KV/mm)* 试样厚度(mm) 由此公式所得出的击穿电压值是按照试样厚度测试时的有效电压值,所以得出击穿电压值后,在此电压值得基础上适当加宽些量程范围比较合理,建议计算出击穿电压值后增加10KV—20KV
  • 介电强度和击穿电压的区别
    1、介电强度和击穿电压的区别:介电强度:是一种材料作为绝缘体时的电强度的量度. 它定义为试样被击穿时, 单位厚度承受的最大电压,单位是:KV/mm或MV/m,. 介电强度越大, 它作为绝缘体的质量越好.介电强度也可称为电气强度。击穿电压是一种材料作为绝缘体时所能承受的最大电压值,也就是击穿破坏时的最大电压值,单位是:KV
  • 如何选择合适量程的电压击穿试验仪
    2、如何选择合适量程的电压击穿试验仪:在材料的标准要求里或者测试报告中,对材料的耐压等级通常用介电强度来表示,即KV/mm,击穿电压和介电强度的关系可以用如下公式表示: 击穿电压值(KV) 介电强度(KV/mm)=------------------------------------------ 试样厚度(mm)由如上公式可以得出结论,选择多大量程的测试仪器,取决于试样的厚度,即: 击穿电压值(KV)=介电强度(KV/mm)* 试样厚度(mm) 由此公式所得出的击穿电压值是按照试样厚度测试时的有效电压值,所以得出击穿电压值后,在此电压值得基础上适当加宽些量程范围比较合理,建议计算出击穿电压值后增加10KV—20KV
  • 氦质谱检漏系统-电压开关装置检漏
    上海伯东提供客制化各类适用于电力行业的检漏系统, 例如电压开关装置检漏, 变压器检漏等. 实现快速, 完全自动化的泄漏测试. 减少检漏时间, 提高产出, 有效降低运行成本, 同时可以选配氦气回收装置.
  • LJC-50KV电压击穿试验仪
    该仪器采用计算机控制,通过人机对话方式,完成对绝缘介质的工频电压击穿,工频耐压试验。主要适用于固体绝缘材料。如:绝缘漆、树脂和胶、浸渍纤维制品、层压制品、云母及其制品、塑料、薄膜复合制品、陶瓷和玻璃等在工频电压下击穿电压,击穿强度和耐电压的测试。并对实验过程中的各种数据快速、准确地进行采集、处理、存取、显示、打印。
  • 介电强度和耐电压击穿解决方案
    本方法是用连续均匀升压或者逐级升压的方法,对试样施加交流或直流电压,直至击穿,测出击穿电压值,自动计算试样的介电强度,用迅速升压的方法,将电压升到规定值,保持一定的时间试样不击穿,记录电压值和时间,即为此试样的耐电压值,以千伏和分表示。
  • 低压透射电子显微镜LVEM在病毒学研究中的应用
    病毒作为一种病原体一直受到学术界的广泛关注。然而由于病毒通常尺寸较小,传统的光学显微镜往往难以满足其形态观测的需求,这使得高分辨率的透射电子显微镜成为了当前病毒学研究的一个重要手段,可以用来研究病毒的结构和成分。目前使用的透射电子显微镜进行病毒颗粒的检测和识别仍面临着巨大的挑战。这是因为病毒的主要组成部分多为含碳的轻元素有机物,这类样品很容易被高能电子束穿过,造成其光学衬度较低,且由于共价键化合物的低稳定性使得其在传统电子显微镜的高加速电压 (一般为80-200 kV) 下非常不稳定,不适合直接进行观察。因此病毒的形态学观察一般采用负染色成像技术,需要在观测前对样品进行复杂的负染操作,占有大量的时间,且可能会掩盖掉一些病毒的形貌特征,造成使用透射电子显微镜观测病毒的门槛较高。为了解决这一难题,低压透射电子显微镜(Low Voltage Electron Microscope, LVEM)应运而生。LVEM突破了传统透射电子显微镜的80 kV加速电压的低限,研究人员可在低压下观察轻质生物样品,无需染色,简化了样品制备流程;同时该设备可在保证高图像对比度的前提下,使用温和的加速电压进行病毒形态学的检测和识别,能够识别以往可能被污渍和负染的瑕疵所掩盖的病毒特征。
  • 不同电压击昏对鸡肉食用品质的影响
    探讨了经不同电压击昏后,鸡肉食用品质的变化。肉鸡分别经电压60、80、90、100 和120 V 击昏后,取其胸肉,测定色泽、pH 值、保水性和嫩度。结果表明: 经120 V 击昏的胸肉的L* 显著低于其他处理组,但各处理组之间a* 、b* 值差异不显著 100 V 击昏处理组3 h pH 值显著高于其他组,而24 h pH 值在100 V 击昏后最低 经120 V 击昏后鸡胸肉的滴水损失显著高于其他处理组,保水性最差,100V 击昏处理组肉样的滴水损失最小,保水性最好,低场NMR 结果也显示120 V 击昏处理组T22峰面积最小,而100 V 击昏处理组T22峰面积最大 经100 V 击昏处理后的肉样的剪切力值显著高于其他4 个处理组肉样的剪切力值,嫩度最差,且总蛋白和肌原纤维蛋白溶解度最低
  • 钙钛矿开路电压推至理论极限的95%,25.11%的高转换效率
    华中科技大学王鸣魁团队于 Advanced Energy Materials 第30期发表了一项创新的方法,通过使用具有推拉电子结构配置的π共轭分子来调节埋藏界面,从而提高三阳离子钙钛矿太阳能电池的开路电压(Voc)。研究人员在钙钛矿太阳能电池中使用了氧化锡纳米晶作为电子传输层,并发现新型化学材料能够显著降低界面能障并钝化埋藏界面的缺陷。这种方法将Cs0.05(FA 0.85 MA0.15)0.95Pb(I 0.85 Br 0.15)3(带隙约为1.60 eV)钙钛矿太阳能电池的开路电压提高到1.241 V,并且在标准测试条件下的转换效率达到24.16%。当使用Cs 0.05 MA0.05 FA0.9 PbI 3(带隙约为1.54 eV)钙钛矿太阳能电池时,甚至可以达到更高的效率25.11%。这个开路电压是三阳离子钙钛矿太阳能电池中最高的,达到了肖克利-奎瑟极限的95%。此外,研究人员还制作了能量转换装置,通过将两个钙钛矿微模块串联起来驱动二氧化碳电解槽,实现了11.76%的太阳能到CO的转换效率,这在整合钙钛矿光伏进行太阳能驱动的CO2转换方面树立了一个新的基准。
  • 击穿电压测试仪安全保护功能全解
    适用于固体绝缘材料(如:塑料、橡胶、薄膜、树脂、云母、陶瓷、玻璃、绝缘漆等介质)在工频电压或直流电压下击穿强度和耐电压的测试.
  • 化合物半导体核壳结构纳米金属线的低加速电压SEM/STEM观察/EDX分析
    半导体纳米金属线,因其物理特性可控,所以未来有望应用于光学器件上。尤其是异相聚合机构或者核壳结构的材料,富有多重物理特性,应用范围也会变得更广泛。图1是化合物半导体核壳结构纳米金属线的SE/STEM观察结果。图1(a)是二次电子图像显示了纳米金属线的表面形貌。图1(b)(c)的BF-STEM/DF-STEM图像,可以清楚观察到纳米金属先端的内部构造,可以确认核,内壳层和外壳层的三层结构。图2是化合物半导体核壳结构纳米金属线的EDX面分布。核壳层和外壳层检测到Ga和As,内壳层检测到Al和As,能够清楚地分离出三层的结构的各种成分分布。SU9000与大立体检测角的X-MaxN 100TLE相结合,可实现超高空间分辨率的EDX面分布。
  • 快速检测100微米以下微塑料的高光谱成像系统的优化
    塑料污染已成为威胁水生和陆地生态系统的紧迫问题之一。然而,快速检测小型微塑料仍然具有挑战性。在此,我们提出了一种使用高光谱成像快速检测微塑料的方法,其中优化了商业上可用的高光谱成像系统(Pika IR+(Pika NIR-640))。优化包括:(1)将四个灯组件更改为一组对称的聚光近红外灯,这些灯放置在侧面,而不是样品上方工作台;(2) 采用微距摄影技术,在相机和镜头之间安装延长管,将高光谱相机的镜头移动到成像目标(工作距离约3cm);(3) 通过调整成像系统的帧速率和扫描速度来调整曝光和宽高比。优化后,每个像素的检测分辨率从250μm提高到14.8μm。通过优化的系统,可以快速检测到尺寸低至100μm的微塑料。这一结果有望将新方法应用于微塑料的加速检测,并有助于更好地了解微塑料污染状况。
  • 电压击穿试验仪选什么传感器精度最高
    电压击穿试验仪选什么传感器精度最高1、高压设备电压采集对采集系统的要求比较高,我公司电压击穿试验仪控制部分采用 德国西门子PLC控制,具有很强的抗干扰能力,采用光电隔离数据线和电脑通讯,使得在击穿的瞬间保证设备和电脑的安全运行2、德国西门子PLC采集速率为1MS,击穿响应判定时间为1MS,响应时间快。3、电压采集采用日本松野的电压传感器,数据准确,安全可靠4、电流采集采用日本松野的电流传感器,数据准确,安全可靠5、本设备的判停方式有两种:电压判停、电流判停6、升压速率不分档,可以由用户自由设定。
  • 绝缘油耐压测定仪在变压器油击穿电压试验中的应用
    击穿是指在电场作用下,绝缘材料形成贯穿性桥路,进而发生破坏性放电,在一定程度上使电极间的电压降至零或接近零的现象。通常情况下,击穿对固体介质来说是永远失去介电强度,对液体、气体来说,失去介电强度只是暂时性的。在规定的试验条件下绝缘体或试样发生击穿时的电压叫做击穿电压。通常情况下,绝缘性能的好坏直接反应了变压器油的击穿电压的强弱,并且变压器使用的安全性和周期受到直接的影响和制约。同时击穿电压也是客户验收油品的重要测试项目,试验结果受到试验方法、测试仪器,以及环境等因素的影响和制约。TP572型绝缘油耐压试验仪是装置球盖形电极的3油杯试验仪,通过其对变压器油击穿电压的测定试验,分析了测定过程中出现的异常现象及测定值产生误差的原因。
  • 降低粒子成像测速中的像素锁定偏差
    采用LaVision公司独特研发的抑制像素锁定偏差滤光片可以有效降低粒子成像测速实验中的本底偏差。同时还发展了一种降低像素锁定偏差的后处理滤波器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制