当前位置: 仪器信息网 > 行业主题 > >

低蛋白含量

仪器信息网低蛋白含量专题为您整合低蛋白含量相关的最新文章,在低蛋白含量专题,您不仅可以免费浏览低蛋白含量的资讯, 同时您还可以浏览低蛋白含量的相关资料、解决方案,参与社区低蛋白含量话题讨论。

低蛋白含量相关的资讯

  • 不同蛋白质含量的浓缩乳蛋白粉复水特性分析
    干乳粉的复水性是指干粉在加水后恢复成乳液的能力。‌复水性是衡量干制品品质的重要指标之一,特别是在衡量奶粉等干制品的质量时。复水性的好坏直接关系到奶粉在加水后能否恢复到接近原始牛奶的状态。奶粉的复水性对于保证其营养价值和口感至关重要,因为它直接影响到奶粉的实用性和消费者的接受度。‌ 蛋白质含量高且以酪蛋白为主的乳制品粉末例如浓缩乳蛋白(MPC)很难完全复水,即使经过长时间的复水。MPC包含广泛的产品类别,涵盖低、中、高蛋白粉末的复水特性尚未得到广泛研究。本研究采用综合实验方法,包括测量粒度分布随时间的变化,以及使用分析离心法测量沉降行为,以表征MPC粉末在一系列蛋白质浓度下(从成分接近脱脂奶粉的 MPC35到实际上为牛奶蛋白分离物的MPC90)的复水特性。 1. 材料和方法 1.1浓缩乳蛋白粉 1.2分散性:粒度分布 用粒度仪测量MPC悬浮液在复水化90分钟和24小时后的PSD。对于每个MPC样品,观察到一个小于1 um的峰,该峰被认为代表酪蛋白胶束,而第二个大于10 um的峰被认为代表初级粉末颗粒(喷雾干燥过程中由雾化液滴形成的非团聚颗粒)。 1.3 分散:沉降和沉降压缩 分析离心机(LUMiSizer ,L.U.M. GmbH)测量透射近红外光的强度,该强度是水平放置在光路上的细胞长度上时间和位置的函数,用于测量再水化90分钟和24小时的 MPC 悬浮液中的沉降行为。将悬浮液装入PA管(2 mm)。使用两个离心步骤进行测量,36g离心10分钟,然后168g离心10分钟。离心过程中温度保持在25℃。图中显示了离心10秒、5、10、15和20分钟后的谱线。首先绘制相边界(沉积物水相)随时间的运动,然后从池底位置(129 毫米,根据去离子水的沉降曲线确定)中减去稳态值,从而计算出沉降高度。 2. 结果与讨论——分散特性 在经过合理的复水时间后,高蛋白MPC中存在较大的不易分散的颗粒。复水90分钟后,MPC70、MPC80、MPC85 或 MPC90 中最多只有2%的颗粒由酪蛋白胶束组成(图1)。复水24小时后,酪蛋白胶束的比例增加,可能是因为它们从分散性较差的初级颗粒表面表层释放出来,而初级颗粒的比例同时下降(图1)。 图1. 在25℃的去离子水中复水90分钟(灰色条)或复水24小时(白色条)后,初级颗粒(上)和酪蛋白胶束(下)的体积(占总粒子总数的百分比)。 分析离心法用于获取有关MPC悬浮液的光学特性、初级粒子的沉降行为以及所得沉积物的可压缩性的信息。图2显示了低蛋白(MPC35)、中蛋白(MPC70)和高蛋白(MPC90) 粉末在复水90分钟后的三种代表性沉降曲线;这些蛋白质类别中的其他粉末表现出与所选 MPC 粉末非常相似的行为。根据粉末的不同,随着离心的进行,可以在样品池中识别出不同的区域:稳定分散体,即胶体悬浮液中的酪蛋白胶束;初级粒子,即最初向样品池底部集中的初级粉末颗粒,但随着时间的推移会沉淀;初始沉积物,即在低速离心过程中由初级粉末颗粒形成的沉积物;压缩沉积物,即由于离心速度增加而压缩而高度降低的沉积层。 图 2. 浓缩乳蛋白 MPC35(顶部)、MPC70(中间)和 MPC90(底部)在 25℃的去离子水中复水 90 分钟后的代表性沉降曲线,显示NIR光通过样品池的透射率随时间(1 = 10秒、2 = 5分钟、3 = 10分钟、4 = 20分钟)和样品池中的位置而变化。在样品以36g离心10分钟,然后以168g离心10分钟时捕获曲线。插图显示了一个示意图,解释了离心过程中样品池内形成的不同区域。虚线表示样品池底部的位置,从中可以计算出沉淀物的高度(如果存在)。 在MPC35中,样品以酪蛋白胶束为主,酪蛋白胶束在悬浮液中稳定且不会沉淀,因此透射率不会随时间发生变化。相反,MPC90,最初整个样品池中都存在初级粒子,这会导致10秒后透射率非常低;在离心过程中,这些粒子会形成沉淀物,导致样品池底部透射率低,而其他地方透射率高;然后,随着离心速度的提高,该沉淀物被压缩(产生更高的光密度和降低的沉淀物高度)。 复水90分钟后,MPC35没有发生任何沉淀,尽管其颗粒群中有45%以上由初级颗粒组成(图1)。相反,MPC70和MPC90中的初级颗粒在离心过程中形成了明显的沉淀层,其特征是在样品池底部形成一个光学致密区域(图2)。对于MPC70,在形成沉淀层之前,这种物质集中在靠近样品池底部的地方,而对于MPC90,它分散在样品池内的更大区域,导致透射读数远低于胶体稳定性区域。复水90分钟后,沉淀物高度随着蛋白质含量从MPC70到MPC90而增加(图3)。当施加更高的离心力时,这些样品形成的沉淀层会受到压缩,这种影响对于高蛋白粉末比的MPC70更明显(图3)。随着蛋白质含量的增加,观察到沉淀区域上方的透射值更低。 图 3. 浓缩乳蛋白(MPC)粉末经过90分钟的复水后在25 ℃下以36g离心10分钟(灰色条),然后再以168g离心10分钟(白色条)形成的沉淀物的高度。 值得注意的是所有样品在复水24小时后的沉降曲线均表明完全的悬浮稳定性,跟图2中的MPC35谱图类似,尽管悬浮液中仍残留有初级颗粒大小的物质。高蛋白 MPC 粉末的沉降行为强烈依赖于复水时间,初级颗粒在复水90分钟后沉降,但在复水24小时后不会沉降。 3. 结论 a、粉末的初始复水特性和悬浮稳定性随着蛋白含量的增加而降低。 b、经过长时间的复水后,所有的粉末都能完全悬浮。 c、LUMiSizer能区分不同粉末的复水特性和悬浮稳定性,也能做粒径检测。
  • 蛋白质含量测定新方案——排除假蛋白氮(NPN)的干扰
    不法商人添加非法添加物的根本原因是,本来劣质产品中蛋白质含量就很低,需要添加用凯氏定氮法查不出的含氮物质充数。因为现行的凯氏定氮蛋白质测定方法局限于:只能测试总有机氮含量,而非特定的蛋白质中氮含量,因此,方法缺陷被不法商人所投机利用,使伪劣产品蒙混达标。 传统上,蛋白质的测定一直采用凯氏定氮法。该法的误区是:通过氧化还原反应,把低价氮氧化并转为氨盐,再通过氨盐中氮元素的量换算成蛋白质的含量。凯氏定氮针对有机氮化合物,主要是指蛋白质,aa,核酸,尿素等N3-化合物。非蛋白质的含氮化合物,,如三聚氰胺等,在凯氏定氮过程中,被同样消化成(NH4)2SO4,造成蛋白值虚高,我们统称这些化合物为假蛋白氮(NPN)。 从食品安全控制可靠性上考虑,解决问题的根本方法,是直接测试食品中的真蛋白质含量。因为,如果能够一次直接测定食品中真蛋白质含量,那么就堵住了市场监管上的漏洞,使伪劣产品无所遁形。因此添加假蛋白质物质,如三聚氰胺等就毫无意义了。区别蛋白质与NPN的意义在于可以获得真实准确的蛋白质含量。从根本上解决了问题,厂商只能提供达标产品。这对需要进行蛋白质检测行业如食品、饲料及蛋白研究和管理领域具有重要的价值。呼吁中国国家有关部门将真蛋白质检测尽快纳入预防性安全监控标准。 1.食品行业的蛋白质问题 监控食品加工过程中的所有流程节点,包括原料采购、浓缩、勾兑、干燥、储存等。如假劣奶粉的危害就在于产品未达到国家蛋白标准限定,但在&ldquo 国标&rdquo 的凯氏定氮法检测后通过检测,其原因就在于搀加大量的NPN,造成蛋白质含量虚高。所添加的NPN大部分是化工产品,严重威胁食品安全。 2.饲料行业的蛋白质问题 饲料行业同样面临NPN造成的危害。例如最近引起社会关注的三聚氰胺。三聚氰胺含氮量达66%,白色无味,与蛋白粉外观相似,是被不法厂商大量使用的NPN。与&ldquo 瘦肉精&rdquo 、&ldquo 苏丹红&rdquo 等少数违禁添加剂一样,损害动物机体健康,并最终通过食物链转移到人体内。三聚氰胺高温下会形成氰化物,长期或反复接触对肾脏器官形成巨大损害。 3.其他研究领域的蛋白质问题 植物原料中NPN的含量随季节、地域及品种变化很大。精确检测蛋白质含量,排除NPN干扰对于保证科学研究的严谨性具有重要意义。 美国CEM 公司的真蛋白质SPRINT分析仪,是目前唯一的真蛋白质测试仪,其主要特点: 1.直接测量&ldquo 真蛋白质&rdquo ,而非总氮含量 2.所有类型样品检测(液体、固体、粉末状、奶油、肉类、坚果类、谷物、种子等); 3.测量时间只需两分钟;全自动操作,无需有经验的化学家; 4.对三聚氰胺等非法添加剂,不会产生错误的蛋白质测量结果,精确性和准确度等优于凯氏定氮法; 5.对非氮蛋白质的测定无需校准,直接测量; 6.无需化学试剂;相比目前的检测方法,具有更低的操作成本; screen.width-300)this.width=screen.width-300" border="0" alt="" src="https://img1.17img.cn/17img/old/NewsImags/2008328164614.jpg" / http://www.analyx.com.cn/products/list.asp?classid=122
  • 德国元素:成功助力科学攻坚,提升玉米蛋白含量
    如今,玉米已成为世界上最高产的农作物之一,全球年产12亿吨,中国年产2.7亿吨。其中,70%的玉米都是用作饲料,玉米产量高,有效能量多,是最常用且用量最大的一种饲料,故有“饲料之王”的美称。随着人们生活质量的提高,对肉蛋奶的需求不断增加,玉米的消费量也日益增加,致使近年来玉米进口量也不断提升。由于普通玉米籽粒蛋白含量较低,大部分杂交种籽粒蛋白含量不到8%,因此饲料中需要补充大豆蛋白,然而大豆严重依赖进口,这些成为了我国畜禽养殖业的“卡脖子”问题。如果普通玉米蛋白含量每提高一个百分点,相当于中国可以少进口近800万吨大豆!因此,提高玉米蛋白含量不仅是保障国家粮食安全的重大战略需求,也是保障我国畜禽养殖业和饲料加工业健康发展的重要途径之一。中国科学院分子植物科学卓越创新中心研究团队于2012年开始进行玉米高蛋白供体材料的寻找、蛋白含量测定、遗传分析以及群体构建。此外,研究团队在三亚南繁基地进行了大规模田间试验,将野生玉米高蛋白基因Thp9-T杂交导入我国推广面积最大的玉米生产栽培品种郑单958中,可以显著提高杂交种籽粒蛋白含量,表明该基因在培育高蛋白玉米中具有重要的应用潜能。同时,在减少氮肥施用条件下,可以有效保持玉米的生物量以及植株和籽粒中氮含量水平,这对于在低氮条件下促进玉米高产、稳产具有重要意义。德国元素elementar rapid N exceed 杜马斯定氮仪为巫永睿研究组的玉米蛋白研究提供了精准的蛋白质含量测定。“德国元素elementar的杜马斯定氮仪准确的测定了我们研究材料的蛋白表型,对于我们克隆野生玉米高蛋白基因至关重要。”——中国科学院分子植物科学卓越创新中心巫永睿课题组德国元素elementar在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出世界第一台杜马斯定氮仪后,公司响应食品、农产品、饲料等样品的分析需要更大样品量的需求,于1989年,进一步推出了全球首款克级样品量的杜马斯定氮仪。逐步推动了杜马斯定氮法在法规中的应用。如今,国际上(如美国、加拿大、德国等)已经将杜马斯定氮法应用在食品、饮料、宠物食品、饲料和肥料等领域。1964年,德国元素elementar第一台杜马斯氮/蛋白质分析仪德国元素elementar杜马斯定氮仪rapid N exceed® 杜马斯定氮仪经济型氮/蛋白质测定解决方案rapid N exceed® 快速氮/蛋白质分析仪,对重量高达1克的样品,仍能准确测定氮或蛋白质的含量。新型EAS REGAINER催化剂可确保在不消耗还原金属的情况下结合燃烧后过量的氧气。EAS REDUCTOR管(还原管)的寿命可处理高达2000个样品。rapid MAX N exceed 杜马斯定氮仪高通量、高灵活性氮/蛋白质测定解决方案rapid MAX N exceed 利用不锈钢坩埚进样,可容纳高达重量为5g或体积为5ml的样品,同时具备自动除灰功能。且可以选择氦气或氩气作为载气。直立的坩埚设计可确保任何液体样品的最佳燃烧,如:牛奶、啤酒、软饮、果汁、酱油等,与独特的二级燃烧技术相结合,可为您提供可靠的、无基质效应的测试结果。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • 乳清蛋白含量新国标遭质疑:空有指标无检测标准
    乳清蛋白含量新国标有指标规定无检测标准 卫生部正研制新检验方法   雅培事件新闻追踪   南方日报讯 最近雅培奶粉身陷“质量门”事件,再度引发了人们对新国标的质疑。在新国标中明确规定乳清蛋白与酪蛋白比例指标,该指标被部分专家认为是判别奶粉是否易为幼儿消化。然而令人困惑的是,新国标里没有该项目的检测标准,在日常监管中,也非常规抽查项目。对此,国家食品安全风险评估中心也承认,由于采用现行乳清蛋白测定方法的测定结果与实际含量存在一定的误差。据悉,目前卫生部正在组织研制新的乳清蛋白的检验方法。   最近雅培与香港CER公司的“口水战”,引发人们对我国新国标乳清蛋白和酪蛋白比例指标的争议。根据我国国家标准规定,婴幼儿配方奶粉中这个比例应为6:4,而CER公司检测的结果是41:59,故CER检测报告得出雅培涉事奶粉“质量最差”。   记者昨天从国家食品安全评估中心获悉,我国《婴儿配方食品》国标中,确有要求以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。“该要求主要是参考母乳中乳清蛋白和酪蛋白的比例”,国家食品安全风险评估中心在一则《对婴儿配方食品中乳清蛋白比例的说明》中称,乳清蛋白是蛋白质的一种,为人体提供必需氨基酸等成分。   值得一提的是,虽然目前婴幼儿配方奶粉新国标中规定有乳清蛋白与酪蛋白的比例要求,在日常监管部门的抽查中,这并不是一个常规抽查项目。有乳品专家指出,目前国内缺少配方奶粉工艺标准,甚至连检测标准都没有。   国家食品安全风险评估中心也坦承,目前卫生部正在组织有关单位研制新的乳清蛋白的检验方法。
  • 免疫球蛋白含量测定——安东帕Abbemat系列全自动折光仪
    共同战疫 2020年 免疫球蛋白含量快速测定安东帕Abbemat系列全自动折光仪 随着新型冠状病毒感染的肺炎确诊越来越多,医疗物资需求也越来越大,其中,静注人免疫球蛋白是目前防控新冠状病毒感染肺炎的重要药品之一。人免疫球蛋白人免疫球蛋白是取健康献血员的新鲜血浆或保存期不超过2年的冰冻血浆,每批最少应由1000名以上健康献血员的血浆混合。用低温乙醇蛋白分离法分段沉淀提取免疫球蛋白组分,经超滤或冷冻干燥脱醇、浓缩和灭活病毒处理等工序制得,其免疫球蛋白纯度应不低于90%。然后配制成蛋白浓度为10%的溶液,加适量稳定剂,除菌滤过,无菌灌装制成。人免疫球蛋白作为重要的医疗用品,选择合适的含量检测方法具有重大意义。目前,中国药典明确规定人血浆中蛋白可采用折射仪法进行测定。折光率作为物质浓度和纯度的表征,可用于物质含量的测定。将折光仪用于免疫球蛋白含量的测定,不但操作简单,其快速、准确的优势,可帮助制药企业节约大量时间成本,这在需要大量生产与检测免疫球蛋白的特殊时期,尤为关键!
  • 七品牌被指夸大胶原蛋白含量 汤臣倍健拿检测报告反驳
    昨天有报道称,市场上七大品牌产品的胶原蛋白含量与标识不符,汤臣倍健等3品牌则未检出。对此,汤臣倍健昨天回应称产品各项指标都达标 而截至记者发稿,无添加、丸美、Lumi、颜如玉、无限极、安婕妤均未有明确回应。   媒体报道   7品牌被指虚假宣传   近日,有媒体报道称,记者以消费者身份在药店、超市和品牌专柜购买了Fancl(无添加)、Lumi、丸美、汤臣倍健、颜如玉、无限极、安婕妤7款口服胶原蛋白产品,送往第三方检测机构进行检测,检测项目包括雌激素、重金属汞和铅,以及羟脯氨酸。   检测结果显示,在汤臣倍健胶原蛋白粉、颜如玉胶原蛋白口服液、无限极美姿力胶原蛋白果味饮料3款产品中,并未检出胶原蛋白的特征氨基酸——羟脯氨酸。另外4款产品胶原蛋白含量则远低于宣称的含量。   不过,报道并未公布检测产品的批号以及第三方检测机构名称等信息。据悉,生产胶原蛋白产品的企业,无一不宣称其中的胶原蛋白能够起到淡斑、去除皱纹、皮肤细腻等效用,含量越多则效果越好。   企业说法   汤臣倍健拿检测报告自证   对于媒体的质疑,汤臣倍健昨天发布情况说明称:公司作为一家大型专业的膳食营养补充剂生产企业,一直严格按照国家的法律、法规以及食品安全标准组织生产经营。公司使用的胶原蛋白粉,采购自法国罗赛洛集团有限公司,经第三方权威检测机构检测显示:各项指标均符合标准,其中羟脯氨酸含量为9.33%。   汤臣倍健还公布了中国广州分析测试中心的一份检测报告证明清白。   值得注意的是,昨天,汤臣倍健股票收报70.21元,涨幅达到6.38%。   Lumi丸美等均未有回应   记者昨天联系被指虚假宣传的其他企业,但均未有明确回复。   无添加贸易(上海)有限公司一位工作人员接受记者采访时表示,公司在国内没有专门针对媒体的部门,无法回复。她还表示,公司产品都是经过海关检验检疫合格入境的。   颜如玉方面表示,正开会研究此事,到时会发声明回应。而截至记者发稿,Lumi、无限极、丸美和安婕妤均未对此做出回应。
  • 可溶性冻干丝素蛋白的应用领域及水分含量检测
    丝素是最早利用的动物蛋白质之一,它作为纤维材料在纺织领域中具有无可比拟的优越性。随着科学技术的进步和人们对蚕丝结构、性质研究的不断深入,丝素在生物材料及医药领域中的应用越来越引人注目。 丝素蛋白可用作手术缝线、隐形眼镜、人工皮肤等,还可以与其他材料混合制作人工肌肉。丝素具有独特的氨基酸组成和丝阮蛋白的二级结构,并且其中部分氨基酸对人体具有保健、医药功效,丝素蛋白作为生物医药材料的研究更加广阔而深入,特别在创面覆盖材料、药物释放材料、活性酶的载体及其生物传感器的应用、生物材料等方面的研究已取得了十分显著的成效。 丝素蛋白冻干粉是丝素蛋白再经技术处理后,通过冷冻干燥技术制备出来的丝素蛋白的冻干态,丝素蛋白冻干粉结构稳定,可溶于水,同时在室温下能长期保存和运输。丝素蛋白冻干粉经水调配后会再次形成丝素蛋白溶液,继而用于生物材料的制备和其他科学研发领域。广泛应用于组织工程、化妆品等领域,本文为您提供专业的应用方法来检测丝素蛋白冻干粉中的水分含量。使用仪器:禾工AKF-2010V智能卡尔费休水分测定仪配置:全封闭安全滴定池组件;铂针电极;滴定池搅拌台;10ul微量注样针;样品称量舟;电子天平(0.1mg)使用试剂:滴定剂:容量法单组份试剂,当量3mg/ml;溶剂:无水甲醇; 实验步骤:使用AKF-2010V水分仪的“吸溶剂”功能向滴定池内注入约40ml的无水甲醇溶剂,再通过”打空白“功能滴定至终点,以去除滴定池内的水分,仪器就绪并保持终点的状态,用经过干燥处理的微量进样针精确抽取5ul的纯水,拭干针头后放入天平称量选择仪器标定仪功能,将纯水注入到滴定池内液面以下,拭干针头后放入天平称量,将前后两次称量只差作为纯水的重量输入到仪器,开始标定。重复操作3-5次,仪器自动保存标定结果并计算出平均值作为试剂的滴定度。用称量舟称取一定量的样品加入滴定池,将进样前后称量舟的重量之差作为样品进样量输入仪器,并开始测量。 结果表明通过使用禾工AKF-2010V直接进样法测量,不但为分析测试人员省去了宝贵的时间,还同样有效的检测出了丝素蛋白冻干粉当中的含水量。
  • BLT小课堂|水母发光蛋白检测法在细胞钙离子含量测定中的应用
    Ca2+作为普遍的第二信使在细胞信号转导过程中起着非常重要的作用,是单个细胞生存和死亡的信号。它参与了神经传导、血液凝固、肌肉收缩、心脏收缩、大脑功能、酶功能以及内分泌腺的激素分泌等各种生理机能。而人们对Ca2+在信号转导中作用的认识,则很大程度上取决于Ca2+测定技术。目前常用的Ca2+检测方法主要有:Ca2+选择性微电极测定法、同位素示踪法、核磁共振法和水母发光蛋白检测法等。01Ca2+选择性微电极测定法:Ca2+选择性微电极一种电化学敏感器。利用内充液和组织或细胞之间产生电位差,理想情况下,该电位差是Ca2+对数的线性函数,遵循Nernst方程。优点:直接、敏感地测定组织或细胞内的Ca2+,不需使用指示剂,不影响结合钙和游离钙的平衡。缺点:反应速度慢而无法测定Ca2+的快速变化,而且穿刺损伤细胞可引起渗漏,且不适用于太小的细胞。02同位素示踪法:用放射性核素45Ca2+对Ca2+进行示踪,可测量出通过细胞膜转运到细胞内Ca2+增加的速度及浓度的大小,揭示Ca2+泵的作用,目前主要用于测定跨膜Ca2+的流动。优点:测量方法简单易行,比普通化学分析法的灵敏度高。确定放射性示踪剂在组织器官内的定量分布,可以达到细胞、亚细胞乃至分子水平。缺点:静态效果差,需要特定的同位素测定仪,并且要注意示踪剂的同位素效应和放射效应问题。03核磁共振法:是一种新的、非光学技术的Ca2+检测方法。由于正常生物体内氟含量很少,为了得到足够的响应,在检测时需要使用含氟指示剂。该指示剂经过化学修饰后进入细胞,进而被水解成游离状态,然后与Ca2+结合,根据获得的波谱图计算出Ca2+的浓度。优点:具有非破坏性和无损伤性,能够在接近生物样本生理状态下连续动态地进行检测,准确反应Ca2+浓度。缺点:需要核磁共振仪,成本较高。04荧光探针法:目前常用的Ca2+荧光探针有Fluo-3、Fluo-4、Fluo-8等。这类探针本身无法进入细胞,但它的亲脂性衍生物却可以透过细胞膜进入细胞。一旦进入细胞,这类亲脂性衍生物的亲脂性封闭基团在细胞非特异性酯酶的作用下被分裂除去,在细胞内便会形成一种带负电荷的荧光染料。与胞内Ca2+结合时,其荧光强度显著增加。优点:指示剂易导入细胞,空间分辨率高,反应速度快,而且可同时检测多重离子。缺点:需要有荧光显微镜或激光共聚焦显微镜,成本较高。05水母发光蛋白检测法:最近十几年来,水母发光蛋白(Aequorin)很受人们的关注。水母发光蛋白由189个氨基酸组成,具有3个Ca2+结合的EFhand结构,所以水母发光蛋白可作为检测Ca2+的新型探针。优点:Ca2+/水母蛋白复合物能检测~0.1μm到>100μm范围内的钙离子浓度,且复合物不会从细胞内泄露出来,可检测几小时至数十天内Ca2+浓度的变化。比荧光探针法的背景低,样本本身不会发生自荧光。腔肠素的性质腔肠素(Coelenterazine)作为海洋动物体内贮存光能的分子,它广泛存在于海洋生物体内,比如海肾、海蜇、水螅等。腔肠素是天然荧光素中最普遍的,它可作为很多荧光素酶的底物。目前研究得最透彻的以腔肠素为底物的荧光素酶来源于海肾(Renilla),即海肾荧光素酶(Renilla reniformis,简称Rluc)。腔肠素的工作原理腔肠荧光素是一个分子量约400 Da 的疏水基团,它可以自由穿越细胞膜。在一个以荧光素/荧光素酶为基础的系统中,腔肠素作为以水母发光蛋白为代表的海洋发光蛋白的辅助因子,与水母发光蛋白进行稳定的结合,引起脱辅基水母发光蛋白和腔肠荧光素之间的共价键破裂,腔肠荧光素(Coelenterazine)被氧化脱羧,形成腔肠酰胺(Coelenteramide),释放出CO2,同时发出波长为469nm的蓝色生物荧光,该荧光可用博鹭腾高灵敏度管式/板式发光检测仪进行测定。图1.腔肠素/水母发光蛋白检测Ca2+机制水母发光蛋白一旦和Ca2+反应即丧失发光功能,因此当一部分水母发光蛋白与Ca2+反应时,被消耗水母发光蛋白的发光强度能反映出Ca2+浓度变化,而且被消耗的水母发光蛋白的发光强度与Ca2+浓度之间存在线形关系。如同萤火虫荧光素酶,海肾荧光素酶的活性也不需要翻译后修饰,一旦翻译完成即可行使遗传报告基因的功能。但是与萤火虫荧光素酶又有差异,即腔肠素/荧光素酶系统不需要三磷酸腺苷(ATP),因此更利于生物荧光的研究。技术小结由于Ca2+在生命活动的各种生理生化反应、疾病的发生和发展中都扮演着极其重要的角色,而游离的Ca2+浓度变化又与细胞的功能、信号转导乃至细胞的凋亡有密不可分的联系,因此,研究如何检测细胞内游离Ca2+浓度显得尤为重要。Ca2+选择性微电极测定法不需要使用指示剂,但是穿刺过程会损伤细胞,进而引起渗漏。同位素示踪法简单,但是静态效果差,还需要注意同位素效应和放射效应问题。核磁共振法和荧光探针法都需要特定的仪器,成本较高。水母发光蛋白检测法不需要激发光源,因而消除了细胞自发荧光的干扰,背景荧光远低于使用钙离子指示剂的荧光。另外腔肠素具有疏水性,易于通过细胞膜,适于全细胞的研究。 腔肠素/水母发光蛋白的生物荧光反应对Ca2+浓度的变化非常敏感,但是这种发光相对较弱,因此需要使用高灵敏度的发光检测仪进行检测。
  • 岛津参与医药标准制定 | LC-MS/MS法定量检测胶原蛋白含量
    背景介绍2022年8月1日,由国家药品监督管理局发布YY/T 1805.3-2022《组织工程医疗器械产品 胶原蛋白 第3部分:基于特征多肽测定的胶原蛋白含量检测 液相色谱-质谱法》医疗器械行业标准正式实施。该标准适用于组织提取纯化的胶原蛋白及其胶原类产品中不同类型胶原蛋白特征多肽含量的测定,并规定了液相色谱-质谱法测定不同类型胶原蛋白特征多肽含量的方法。该标准由全国外科植入物和矫形器械标准化技术委员会组织工程医疗器械产品分技术委员会(SAC/TC110/SC3)归口,岛津中国创新中心使用LCMS-8050参与了新标准的研制和验证工作,助您一起轻松应对新标准的应用。胶原蛋白检测新标准来袭,您准备好了么?标准解读胶原蛋白具有良好的生物降解性、生物相容性和弱抗原性,成为应用最为广泛的生物材料之一。胶原蛋白产品属于大分子,可用液相色谱法、MALDI质谱法,凝胶电泳法对其整体性能进行表征。但不同动物来源及不同类型的胶原蛋白的结构、分子量、等电点等理化性质较为相似,上述传统方法对胶原内部精细结构的变化识别能力有限,无法实现胶原类别的精准鉴别。本标准基于液相色谱质谱特征多肽法可实现不同动物来源不同类型的胶原蛋白的定性和定量检测,为胶原蛋白产品的定性及纯度判别提供了依据。胶原蛋白是大分子纤维状蛋白,具有三螺旋结构,本标准采用热变性处理使其三螺旋结构解旋并溶解,胰蛋白酶酶解后对不同类型胶原的特征肽进行检测。为了减少质谱分析时基质的干扰并提高方法的准确性,本标准采用内标法进行定量。本标准的颁布对不同类型胶原产品进行精准鉴别、规范动物源胶原的监管、提高胶原产品的理化表征能力和生物安全性等方面具有深远的意义。图1.《组织工程医疗器械产品 胶原蛋白第3部分:基于特征多肽测定的胶原蛋白含量检测 液相色谱-质谱法》医药行业标准发布稿特征多肽法的原理:筛选已知序列目标蛋白中特有且稳定存在的肽段,利用液质联用技术检测该肽段含量从而推算目标蛋白的含量。该方法通常使用胰蛋白酶特异性地酶解精氨酸和赖氨酸的C末端,生成具有碱性氨基酸末端的多肽,因此具有较强的方法专属性和检测灵敏度。目前特征多肽法已成功应用于胶类中药的真伪鉴别,食品中过敏原的检测以及乳品中A2 β-酪蛋白的含量测定等工作中。岛津解决方案岛津三重四极杆液相色谱质谱联用仪LCMS-8050采用全新设计的加热ESI源和新型碰撞池UFsweeperⅢ,大幅提高了灵敏度。在确保数据准确度和精度的同时,LCMS-8050可实现555 ch/sec的高速MRM采集和5 msec的正负极性切换。即便对于未完全分离的色谱峰,LCMS-8050也可实现定量离子、参比离子和内标离子充分的采集。Skyline软件是由西雅图华盛顿大学的MacCoss团队开发的一款蛋白质靶向分析的专业软件,实现了从蛋白质到多肽再到MRM离子对检测列表的转化。其独特的保留时间预测功能以及碰撞能量预测功能使得多肽分析方法的开发变得更加便捷。岛津LabSolutions工作站与Skyline软件无缝衔接,是靶向蛋白质定量方法开发的得力工具。分析仪器表1. 猪I型胶原蛋白特征多肽MRM检测参数*定量离子对猪I型胶原蛋白特征多肽对照品的典型色谱图见图2,二级质谱图见图3。图2. 猪I型胶原蛋白特征多肽对照品典型色谱图图3. 猪I型胶原蛋白特征多肽对照品典型二级质谱图结 论胶原基生物材料中胶原蛋白的含量检测是胶原蛋白制品品质评价,工艺稳定性评价的重要要素。猪I型胶原海绵是一种重要的医用胶原制品,其主要成分猪I型胶原蛋白分子量逾40万,液质联用仪无法直接检测。本方法采用碳酸氢铵水溶液稀释并使用胰蛋白酶酶解。通过检测猪I型胶原特征肽的含量,折算出胶原海绵中猪I型胶原蛋白的含量。本法具有前处理操作简便,方法特异性好,精密度高等优点,方法稳定可靠,可在胶原医疗器械产品检测领域推广。-参考文献 -《YYT 1805.3-2022 组织工程医疗器械产品胶原蛋白第3部分:基于特征多肽测定的胶原蛋白含量检测——液相色谱-质谱法》
  • 生物质燃烧影响城市PM10蛋白质含量
    日前,中国科大极地环境研究室教授谢周清课题组发现,生物质燃烧影响城市PM10的蛋白质含量,研究成果近日在线发表在英国《大气环境》杂志上。   空气中存在许多液态或固态微粒悬浮物,被称为气溶胶,直径在10微米以下的可吸入颗粒物叫PM10。其中,生物气溶胶是当前全球变化和公共健康关注的研究热点之一,其浓度一般用大气中总蛋白质含量来表示。由于汽车尾气能改变一些生物气溶胶的化学结构,使其成为能导致严重过敏反应的过敏原,这被认为是近年来城市中哮喘等过敏性疾病发病率升高的一种可能原因。   谢周清课题组对2008年6月至2009年2月在合肥市采集的PM10进行了总蛋白质以及微量元素和水溶性离子成分的分析研究,发现城区PM10中总蛋白质的含量范围在每立方米2.08~36.71微克,平均值为每立方米11.42微克,明显高于目前世界上3个地区公布的数据——美国北卡罗莱纳州、洛杉矶和人口密度较大的墨西哥城的含量分别为每立方米0~0.2微克、1.0~5.8微克、0~2.54微克。   论文第一作者康辉博士介绍,合肥城区大气中蛋白质含量呈明显的季节变化:夏季最低,每立方米2.08微克 从夏季到秋季含量逐渐增加,11月达到峰值,每立方米36.71微克。PM10中蛋白质的浓度与采样期间的降雨量呈相反的变化趋势,且秋冬季多雾天蛋白质的浓度和大气污染指数都呈现高值。   除气象因素外,PM10中蛋白质浓度的变化与空气污染指数和平均可见度分别呈显著的正相关和反相关关系。通过进一步对2008年9月到2009年1月期间出现高含量蛋白质的原因进行探讨,研究人员发现,PM10总蛋白含量与代表生物质燃烧影响的水溶性钾离子以及代表人为污染影响的硝酸根显著相关。9~11月是合肥地区的农作物收获季节,除动植物和人为排放影响外,生物质燃烧可能是PM10蛋白质含量增大的重要原因。   审稿人认为“这是一项迫切需要的研究工作”,并指出“这份数据独一无二,对评估城市大气污染有重要价值,特别是为理解人体健康的风险评估作出了贡献”。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(二)
    本篇继上一篇“实用建议:“如何合理设计稳定的冻干蛋白配方(一)”继续为大家分享蛋白样品冻干的理想赋形剂有哪些、基于成功蛋白冻干配方会导致Final失败的一些细节问题等。 》》》对于蛋白样品,理想的赋形剂有哪些?从冻干对蛋白的所有危险以及我们需要在各个环节考虑的所有因素来看,快速开发一个稳定的蛋白配方看起来似乎是不可能的。幸运的是,如果我们能够采用合理的方法对配方进行很好的设计,大多数的配方问题是可以得到快速解决。这里,我们主要是对初始配方成分的选择提供基础。在一些情况下,初始的配方很有可能就是走向市场的Final产品。给定的组分,进行不同微小的修改,已经被成功地用于蛋白药物。需要强调的是对于冻干配方,在能够提供良好稳定性和结构的情况下,成分越简单越好。所加入的赋形剂都须要有数据证明对配方起有益的作用。01给定蛋白质维持稳定性的具体条件对于一些通用型的稳定剂,可以有效地保护绝大多数的蛋白质,在选择这些稳定剂之前,我们有必要通过优化影响蛋白物理和化学稳定性的具体因素来选择合适的稳定剂。影响蛋白物理和化学稳定性的具体因素:1. 避免极端的pH值可以显著降低蛋白脱氨基的几率。而且,通过优化溶液的pH值,可以显著提高蛋白在冻干过程中抵抗去折叠的能力。2. 还应该研究其他能提高蛋白质稳定性的特异性配体(通过增加去折叠的自由能)。肝素和其他聚阴离子对生长因子的稳定性影响就是一个很好的例子。3. 其它需要考虑的重要因素是离子强度对蛋白的去折叠和聚合的影响。须意识到,在预冻过程中,由于冰的形成将溶液浓缩,离子强度可增加50倍。因此负责原料药纯化和做药物配方前研究的人员已经对这些问题有了深刻的认识,配方科学家应该在着手设计冻干配方之前与他们进行沟通。即使在针对蛋白质稳定性优化的特定的溶液条件下,但是如果样品需要幸免于冻干的损害并长期保存,有必要加入一些其它的保护剂。首先,我们考虑一些已经用在冻干蛋白配方中的成分,但它们不能提供蛋白的稳定性,而且可能会促进蛋白在储存期间的破坏。我们将提供一个简单、有效的思路,并且讨论选择这些成分的原理。02不能提供蛋白稳定性的赋形剂部分多聚物作为赋形剂的优缺点在冻干工艺的快速开发过程中,为了获得一个强壮的蛋糕结构,一些多聚物,如葡聚糖,羟乙基淀粉,因具有较高的塌陷温度,导致Final产品的Tg也会比较高,常常是受欢迎的赋形剂。不好的是,这些多聚物在冻干过程中不能抑制蛋白结构的去折叠,因此在后续的储存中不能提供稳定性。无法抑制冻干诱导变性的原因大概是聚合物过大而无法与蛋白质氢键合,无法代替脱水过程中损失的水,或者是因为聚合物与蛋白质形成了分离的无定形相。尽管当这些多聚物单独使用时不是一种很好的稳定剂,但是经证实,如果其结合双糖稳定剂可以具有较好好的作用。冻干过程中的有效稳定剂对大量的化合物进行测定,显示在冻干过程在较有效的稳定剂是双糖,但是避免使用还原性糖。还原性糖在冻干过程中可以有效抑制蛋白结构的去折叠,但是在干燥样品的储存过程中,可以通过美拉德反应(糖的羰基和蛋白质上的游离氨基)降解蛋白,结果形成含有降解蛋白的棕色糖浆,而不是含活性蛋白的白色蛋糕状结构。通常,我们减缓这个过程的方法是将样品储存在零度以下,这就失去了产品冻干的意义,这些还原性的糖包括:葡萄糖,乳糖,麦芽糖,麦芽糊精等。在早期的研究中,晶体类的填充剂如甘露醇,甘氨酸在冻干过程中不能提供蛋白很好的稳定性,但是,一些配方使用了这两种物质的混合物,并且成功地推向了市场。在这些案例中,甘露醇和甘氨酸适当的比例可以导致一大部分的化合物保持无定形状态。这部分无定形状态的化合物足以抑制冻干过程中蛋白的去折叠并且提供长期储存的稳定性。但是建议谨慎选择这种方法,因为达到合适的工艺条件再加上合适的赋形剂比例,既耗时又很难办到的。03赋形剂的合理选择如何合理的选择赋形剂?案例分享举个具体的案例说明,假设:1. 蛋白药物的浓度定在2mg/ml;2. 主要的降解途径是冻干后或复水后蛋白的聚合以及储存期间蛋白的脱氨基;3. 优化具体的条件(如用柠檬酸盐缓冲液控制pH为6)只能将冻干和复水后聚合程度降到10%,尽管样品在低于Tg温度的20℃下进行储存脱氨基速度仍然不能接受。加入晶体类的膨胀剂,如甘露醇,保持样品强壮的结构及良好的外观。在这种情况下,主要缺少的成分是非还原性双糖,其在干燥样品中会与蛋白形成无定形的结构,作为主要的稳定剂,主要选择蔗糖或海藻糖。它们在预冻阶段能够很有效地保护蛋白并且能够很好的抑制复水过程中蛋白结构的去折叠。预冻阶段的保护取决于初始糖的总浓度,有时,超过5%(w/t)的浓度可以尽可能大程度地保持蛋白的稳定性。相反,在干燥阶段,蛋白的保护取决于Final糖和蛋白的质量比。一般来说,糖和蛋白的重量比至少为1:1时,可以提供较好的稳定性,当达到5:1时,可以达到很佳的稳定性。保持蛋白的浓度不变,选取一定范围的糖浓度进行筛选和检测,通过干燥样品中天然结构保留率以及复水后蛋白聚合降低的程度来确定最合适的浓度。一般来说,合适的糖浓度,可以在冻干过程中提供蛋白很好的稳定性,并且如果Final样品的Tg高于储存温度,在后期的储存期间也可以提供蛋白较好的稳定性。例如,假定最高的储存温度为30℃,那么Final产品的Tg >50℃应该是稳定的,但前提是Final样品的含水量需要达到允许的水平,因为水分的存在会降低样品的Tg。可以使用DSC检测每种样品的Tg值。蔗糖/海藻糖如何选择?蔗糖和海藻糖,作为两种常用的稳定剂,均有其优势和劣势,可根据不同的情况进行选择:● 在任何水分含量的样品中,海藻糖均会有较高的Tg,因此较为容易冻干。另外Tg >50℃的条件可以允许样品有较高的残留水分。然而,技术工程师应该能够针对这两种双糖设计经济有效的工艺。如果样品中蛋白浓度较高,可以提高Tg,这样就会弱化海藻糖的作用;● 与蔗糖相比,海藻糖更能抵抗酸解,双糖水解后会产生还原性的单糖,这是需要避免的。通常情况下,如果pH不是很低,如pH4左右或更低,这个应该不是很大的问题;● 蔗糖在冻干过程中抑制蛋白去折叠方面看似比海藻糖更有优势,当蛋白在预冻阶段非常不稳定(需要较高的糖浓度)和/或蛋白浓度较高时,这种优势更明显。海藻糖的相对不稳定性是由于在预冻和干燥过程中其更易于与蛋白之间产生相分离。对于给定的配方,这是否会有问题不能被预测,因此,每种制剂配方都需要检查其保护蛋白的能力。表面活性剂的作用在这里,我们案例中的配方可能就比较完整了,就像许多蛋白质的情况一样。然而,我们假设,即使蔗糖完全抑制可检测的蛋白质去折叠,正如用红外光谱对干燥固体的结构分析所评估那样,在复水后,仍然有1%的聚合蛋白。因为在原始的样品中是没有任何聚合的,假设在冻干过程中,一小部分蛋白发生了去折叠,在复水后,部分这些分子又重新折叠,但是部分聚合在一起。这个实际上看起来是个很普遍的问题,就像在冻干之前一些处理造成的聚合。幸运的是,通过在配方中加入一些非离子型表面活性剂,如聚山梨醇酯(吐温)通常可以抑制蛋白的聚合。要求的浓度通常比较低(<0.5% w/v),通过将表面活性剂滴定到包含所有其它组分的冻干制剂中,可以识别出理想浓度。应避免加入过量,因为表面活性剂在室温下是液体的状态,如果浓度较高,会降低配方的玻璃态转变温度。然而,通常在优化蛋白质稳定性所需的非常低的浓度下,不会有问题。表面活性剂看作是画龙点睛,通常在冻干产品配方中加入表面活性剂是有利的,可以抑制处理过程中界面引起的去折叠和聚集(如起泡夹带或瓶-液界面引起的)。最重要的是表面活性剂在冻干/复水过程中抑制聚合的能力,目前还不太清楚表面活性剂的保护在哪一步起作用的。有资料证明,表面活性剂在冻融及复水过程中可减少蛋白聚合并且在预冻阶段有助于抑制蛋白的去折叠,对干燥固体中聚集物特定红外波段的检查表明,表面活性剂可以抑制冻干过程中产生的聚集。在复水过程中,曲折叠分子的聚合能通过表面活性剂得到抑制,猜测是通过分子之间的相互作用和/或作为一种润湿剂,加速冻干产品的溶解。如果显示表面活性剂在复水过程中是有益的,则可以通过在稀释剂中加入表面活性剂来达到这种效果。 》》》还有哪些意想不到的危险可能会导致失败?尽管根据上述给出的建议,对于给定蛋白,我们可以设计出成功的配方,但是,还有其他一些问题可能会导致Final失败,特别是在长期储存期间。● 赋形剂中经常会有一些污染物,这些会导致蛋白快速的化学降解,糖类和甘露醇中会含有过渡金属元素,表面活性剂可能被过氧化物污染,所有的这些可以促进蛋白的氧化;● 在储存过程中,水分从胶塞转移到产品,引起水分参与的降解,直接损坏蛋白,并且降低蛋白的Tg,加速蛋白的降解,特别是当储存温度高于Tg 时;● 即使在高温(如40℃)下的储存稳定性研究中,一切都表现出理想的状态,但有一个常见的,但很少报道的事件可能是灾难性的,这个问题可以用下面的故事来说明。产品在实验室中在40℃下储存可以保持几个月的稳定性,在冬季,产品在运输过程中也保持良好的稳定性,没有来自消费者的问题报告,然而,有时在夏季,运输后,在室温下储存仅2周后发现产品过度降解,用差示扫描量热仪DSC对一开始的干燥粉末进行了检查,给出了合理的解释,结果发现,制剂中的甘露醇没有全部结晶,而是形成了Tg约为45℃的亚稳玻璃态,当在夏季运输过程中,超过了这个温度时,甘露醇变发生结晶,最先与甘露醇结合的水被转移到了剩余的无定形相中,蛋白相的水含量增加,降低了它的玻璃化转变温度,因此,加速了蛋白质的降解。这个问题可以使用DSC设计合理的退火方案使甘露醇再预冻阶段全部结晶来避免,另外也可以通过调整甘露醇的浓度,降低残留水分含量,使甘露醇即使在45℃的条件下也不会结晶。 》》》对于给定的蛋白药物,这些信息足够吗?对于大多数的蛋白,上面给出的建议一般会设计出成功的配方,但是,每种蛋白都有其独特的物理化学特性和稳定性要求。因此,针对每种不同的蛋白,配方也需要自定义设计。结合蛋白本身的特性知识以及选择合理的赋形剂可以快速设计出稳定的冻干蛋白配方。最后,在快速冻干工艺中保持干物质的物理性质和在干燥后获得天然的蛋白质之间需要折衷,研究表明:当蔗糖结合葡聚糖一起使用时,由于蔗糖的作用,蛋白质的天然结构可以保留在干燥的固体中;葡聚糖的存在提高了制剂的Tg,并提供了一种无定形的填充剂,快速干燥的同时保留了所需的蛋糕性质;其他的一些聚合物有可能提供与葡聚糖相同的优势,如羟乙基淀粉也具有较高的Tg,通常比葡聚糖更容易接受用于肠胃外给药。期望可以合理地利用这些多聚物作为Tg的调节剂,使得制剂更稳定,更容易快速冻干。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。德祥始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 牛奶里的蛋白质含量,你了解吗?
    牛奶里的蛋白质含量,你了解吗?近日,我们中国家喻户晓的品牌蒙牛伊利出大事了。一篇名为《深扒蒙牛伊利6大罪状,媒体不敢说,那就我来说》的文章刷屏全网。国产的牛奶的品质越来越受到大家的质疑,不仅质疑其参数的真伪,更质疑其国内与出口欧美的牛奶质量标准的不一致性。同时也造就了越来越多的人追求进口品牌的牛奶,特别是产地为欧洲的奶制品。此举为何人之过?牛奶中的蛋白质是供给机体的重要营养成分,其含量的准确测定非常重要。目前大部分客户主要采用传统的凯氏定氮法,投资成本低,但是操作流程冗长且繁琐、需要使用大量化学试剂等。杜马斯燃烧法测是近来一直备受广大用户所青睐的全自动、简单快速、绿色环保的氮/蛋白质含量测定方法。德国元素Elementar作为世界上第一台杜马斯测氮/蛋白质分析仪的发明者,具有非常丰富的经验。德国元素最新款的rapid N exceed与rapid MAX N exceed 氮/蛋白质分析仪,具有操作简单、测量快速、结果准确、维护简便等多重优势。 rapid N exceed rapid MAX N exceed 专为精确测定氮/蛋白质含量而设计-- 60、80或120位自动进样转盘或90位机械臂坩埚进样-- 专利EAS REGAINER® 和 REDUCTOR® 还原技术,确保使用寿命更长-- 可采用CO2 作为载气,使用成本更低-- 燃烧炉与热导检测池10年质
  • 奶粉里的蛋白质含量,你了解吗?
    近日湖南郴州永兴县“大头娃娃”事件一经爆出引起了社会的广泛关注,问题奶粉再次被推向了风头浪尖。孩子是祖国的未来,孩子的健康成长关乎国家的命运,所以严控奶粉质量事关重大。奶粉中的蛋白质是供给机体的重要营养成分,同时根据标签法,在奶粉的包装中,蛋白质含量也是其中一项重要指标。目前大部分客户主要采用传统的凯氏定氮法,投资成本低,但是操作流程冗长且繁琐、需要使用大量化学试剂等。杜马斯燃烧法测是近来一直备受广大用户所青睐的全自动、简单快速、绿色环保的氮/蛋白质含量测定方法。德国元素Elementar作为世界上第一台杜马斯测氮/蛋白质分析仪的发明者,具有非常丰富的经验。德国元素最新款的rapid N exceed与rapid MAX N exceed 氮/蛋白质分析仪,具有操作简单、测量快速、结果准确、维护简便等多重优势。 rapid N exceed rapid MAX N exceed专为精确测定氮/蛋白质含量而设计60、80或120位自动进样转盘或90位机械臂坩埚进样专利EAS REGAINER® 和 REDUCTOR® 还原技术,确保使用寿命更长可采用CO2 作为载气,使用成本更低燃烧炉与热导检测池10年质保
  • 默克全新专利技术平台-高浓度蛋白粘度降低平台(VRP),助力皮下注射制剂开发
    目前大多数治疗性抗体都是以静脉注射的方式进行给药,由于其伴随着病人顺应性差以及高昂的医疗成本等现实问题,使得皮下注射制剂逐渐成为行业关注的热点。相比于静脉注射,皮下注射具有提高病人的依从性,降低医疗成本等优点,而典型的皮下注射需要控制注射体积(一般为1-2ml),从而需要提高蛋白浓度,而高浓度蛋白伴随着蛋白粘度的急剧增加,是限制皮下注射制剂的重要原因。在现实工艺开发过程中往往面临着各种难点:高粘度蛋白溶液超过粘度注射限,带来可注射性挑战高浓度高粘度蛋白更容易发生聚集,引起蛋白稳定性挑战高粘度蛋白溶液引起TFF过滤步骤的通量、工艺效率、回收率降低等挑战默克高浓度蛋白粘度降低平台 通过发挥辅料组合协同效应,有效降低蛋白粘度,提高蛋白稳定性,实现高浓度制剂皮下注射。市售制剂配方粘度对蛋白浓度的依赖性图1. 市售制剂中抗体浓度与粘度的关系从图1可以看出,随着蛋白浓度的增加,蛋白可能发生分子间相互作用或者分子拥挤,从而引起蛋白粘度的急剧升高,一些蛋白产品在浓度刚刚达到100 mg/mL时,粘度已经很高,甚至超过了粘度注射限(一般皮下注射药液粘度不超过25mPas), 此时通过注射器给药变得十分困难。为了解决这一问题,我们研究了不同的辅料组合,通过加入这些辅料组合来有效降低蛋白粘度,以满足皮下注射的要求。材料与方法选择已经在FDA或EMA注册的单克隆抗体产品进行研究。在本研究中,我们选择pH7.2的抗TNF-α嵌合单克隆抗体(mAbC) 作为模型药物,考察不同的辅料及组合对其粘度的降低效果。其中所有辅料和缓冲试剂产品均购自德国默克公司。采用装有Ultracell-30k超滤膜的Amicon® Ultra-4超滤管进行缓冲液置换和蛋白浓缩。对于辅料研究,以2000 x g的离心力进行离心并置换了5个透析体积,同时用2000 x g离心力进行浓缩。根据Lambert-Beer定律并使用BioSpectrometer® Kinetic (Eppendorf, Hamburg, Germany) 在280 nm处测量来确定蛋白浓度。用相应的缓冲液配制稀释液,使用同样的方法再次验证上述测得结果。粘度测试:将蛋白样品在20°C平衡后,用m-VROC™ 粘度计在1000 - 3000s-1的剪切速率下测量蛋白粘度。将200 μL的蛋白样品装入500 μL气密注射器中(Hamilton, Reno, USA),重复测量3次。通过Dynapro PRIII (Wyatt Technology, Santa Barbara, USA)的动态光散射(DLS)测量粒子的扩散系数Dt,样品在25°C下采集10次,每次采集5秒。通过对mAb C在3 ~ 14 mg/mL的浓度范围内的扩散进行线性拟合,得到扩散方程Dt = D0 (1+ kD*C),并外推得到了无限稀释下的蛋白扩散系数D0。通过绘制Dt/D0的归一化图谱从而确定扩散相互作用指数kD。通过以下公式计算注射器的推注力:结果图2. 单一辅料与辅料组合对mAbC粘度的影响图2A(单一辅料): 加入75 mM的辅料后,可以观察到蛋白粘度有轻微的降低,但降粘效果不够明显,依然不能满足皮下给药的要求(25 mPas)。即使提高辅料浓度至原来的两倍,其粘度仍然过高。结果表明,单一辅料无法有效降低mAbC蛋白粘度。图2B(辅料组合):粉红柱和黄柱分别代表将阳离子辅料和阴离子辅料分别单独添加至蛋白制剂后测定的粘度。蓝柱代表加入辅料组合的理论粘度值。紫柱代表加入辅料组合后实际测试的粘度值。结果表明,通过辅料组合的协同效应能够有效降低mAbC蛋白粘度。调整辅料组合配比,提高降粘效果图3为mAbC归一化的扩散系数Dt/D0与蛋白浓度之间的关系图。斜率为0时表示蛋白没有相互作用,斜率的负值越小表明蛋白相互作用越弱。加入不同比例的E1和E5辅料组合后,斜率的负值明显减小,提示蛋白粘度降低。当两种辅料的比例为2:1时,降粘效果最为显著。图3. Dt/D0与蛋白浓度的关系辅料组合发挥降粘协同效应图4结果显示,将几种不同的辅料及其组合分别加入mAbD制剂中,可以观察到几种特定的辅料组合实际粘度值明显低于其理论累加值,说明辅料组合具有协同降粘作用。图4. 辅料组合对mAbD溶液粘度的影响粘度降低可显著提高注射性能图5. 粘度降低对注射力的影响mAbC:当使用27G针注射原始配方的150mg/mL mAbC制剂时,所需注射力为90N,约9公斤——即一个一岁小女孩的重量;添加行标BM和E3的辅料组合后,所需注射力降为35N,约3-4公斤——一只家猫的重量mAbD:当使用27G针注射原始配方的150mg/mL mAbD制剂时,所需注射力为140N,约14公斤——一只小袋鼠的重量。添加E1和E4的辅料组合后,所需注射力降为18N,约2公斤——一个蛋糕的重量辅料组合提高蛋白稳定性I: 强降解实验设计采用自身稳定性差的mAb C作为模型药物,进行强降解实验。将150 mM的单一辅料与包含75mM阳离子和75mM阴离子的辅料组合分别添加至80 mg/mL的mAbC制剂溶液中,置于40 °C,75%相对湿度的环境下,在第0天,第14天,第28天分别取样,通过SEC-HPLC测定单体含量。II: 强降解实验结果图6. 强降解实验后蛋白溶液外观(左图为添加单一辅料,右图为添加辅料组合)图6结果显示,在强降解条件下,使用辅料组合的蛋白溶液澄清度明显优于单一辅料,表明辅料组合应用能够有效提高蛋白稳定性。图7.SEC-HPLC检测强降解实验后的单体比例(左图为添加辅料组合,右图为添加单一辅料)图7左结果表明,经过28天的强降解实验后,使用了辅料组合的制剂与原始制剂配方有相似的单体含量,即降粘辅料组合对制剂的稳定性无负面影响。图7右结果表明,使用单一辅料E1对单抗mAb C的稳定性没有负面影响,但辅料E4和E5单独使用时,会降低抗体的稳定性,从而降低单体含量。默克高浓度蛋白粘度降低平台优势(VRP)助力皮下注射制剂开发,提高可注射性,病人顺应性IP专利保护技术平台Emprove® Expert 辅料支持高风险应用,Emprove® dossiers文档支持,快速响应法规要求强化下游工艺,提高过滤通量,过滤效率,回收率,从而提高整个过滤工艺经济性辅料组合发挥协同效应,显著提高粘度下降水平并且保持蛋白粘度与稳定性之间的平衡市面上实现高剂量皮下注射的不同策略综合对比1.默克VRP平台展现出制剂开发更简单,成本更低,上市速度更快等优势。2.默克VRP平台对比酶,辅助设备,可缩短1-3年开发时间,节省30-50%开发成本,加快药物商业化上市步伐。
  • 定量蛋白组方案升级——全新Velocity LFQ DIA 工作流程正式发布
    今天的蛋白组学研究中,研究人员们在转化研究,生物标志物发现,甚至单细胞分析等过程中,不止是追求简单的鉴定,更多的需要获取准确可靠的定量信息,用以理解生物学问题。 他们需要使用精确的定量检测方法来表征生物系统之间的差异,对大量样本进行高置信度、高通量的表征,验证生物学假说。在刚结束的USHUPO中,赛默飞正式推出了全新的Velocity LFQ DIA 工作流程。 该平台基于Thermo Scientific Orbitrap 超高分辨质谱仪、Thermo Scientific Vanquish NEO UHPLC 系统以及高效的 Thermo Scientific µ PAC UHPLC 色谱柱技术,具有优异的定量性能,蛋白组深度覆盖,并可轻松实现高通量分析,匹配今天研究人员们对定量蛋白组学研究的需求。 下面就由小编给大家介绍该平台的工作流程,并展示其在定量表征、蛋白组覆盖度和方法通量中的性能。WorkflowVelocity LFQ DIA 工作流程Velocity LFQ DIA 工作流程组成如图1 所示,包括Vanquish Neo UHPLC 系统和µ PAC Neo UHPLC 色谱柱用于色谱分离,Easy-Spray 纳升离子源和 Orbitrap Exploris 240/480 用于质谱数据采集,Spectronaut软件用于数据分析。图1. Velocity LFQ DIA 工作流程示意图(点击查看大图)色谱分离:大队列研究中需要有稳健的色谱设置(分离技术、色谱柱等),确保系统长期稳定运行。 Vanquish Neo UHPLC 系统可实现高重现性,并可进行多种类型的 LC-MS 实验。 新的色谱分离技术同样也可提高系统稳健性,例如基于微阵列的 µ PAC Neo 色谱柱,可提高分析灵敏度和保留时间稳定性 [1] 。质谱分析:除了稳健性和重复性之外,可靠的鉴定和定量在蛋白组学研究中十分重要。 Orbitrap 技术可提供高质量精度以及高分辨率,是复杂 DIA 扫描中可靠鉴定,以及准确、精确检测并分辨离子类型的关键因素。数据分析:DIA谱图中为混合母离子碎裂后所得的混合子离子谱图,通常需要使用谱图库方法进行解析。 但是,随着数据分析软件(例如,使用机器学习方法模拟预测获得高质量的谱图库)的发展,无需谱图库的方法成为了节约时间和成本的一种选择。Key WordsVelocity LFQ DIA 工作流程三个关键词:定量、覆盖度、通量为了深入展示 Velocity LFQ DIA的性能,我们建立一个稳健、高重现性的工作流程,可实现复杂样品中蛋白的准确鉴定和定量。 其中使用了两个不同的混合样品,包括两种蛋白组和三种蛋白组混合样品(图2),质谱数据采集使用OE240质谱仪。图2. Velocity LFQ DIA 工作流程性能展示所使用的的实验设计。 A,两种蛋白组混合样本,包括高含量的人类肽段背景(800 ng Hela 酶解肽段),低到中含量的 Ecoli肽段,比值为1:2:4:8; B,三种蛋白组混合样本,中等含量的人类肽段背景(325 ng Hela 酶解肽段),以及酵母和Ecoli肽段,比值分别为1:0.5和1:4。 这些混合样本分别模拟生物样本中的上调和下调蛋白表达情况。 (点击查看大图)01出色的定量性能分别对上述两种样本进行30min的LC-MS采样,数据采用Spectronaut16,directDIA的方式进行数据分析,肽段和蛋白的FDR均小于1%。Ecoli和hela的混合样本中,ecoli蛋白在4个样本中的3个不同比值均十分接近理论比值,且所有数据点在中位数附近分布很窄,展示了Velocity LFQ DIA工作流程的高定量准确性和精密度(图3A)。 此外,技术重复间肽段的 CV 值均小于 7%(图3B),说明该工作流程具有高定量精密度。图3. 工作流程的定量准确性和精密度展示,使用两个蛋白组混合样本。 A,Ecoli蛋白三个不同比值下的实际比值,以箱型图展示,橙色虚线为理论比值; B,4个不同比例下肽段丰度CV的小提琴图。 (点击查看大图)同时,使用Velocity LFQ DIA工作流程可获得约5个数量级的人类蛋白动态范围(图4A),有助于低丰度蛋白的发现。 在高含量的hela肽段背景下,使用该工作流程可发现很多细菌体内的重要蛋白,包括与转录翻译相关,以及人类干扰素诱导相关的ecoli蛋白。 另外,选取了Ecoli中十个丰度最低的蛋白,发现它们在不同样品间的实际比值依然十分接近理论比值(图4B),说明该工作流程即使在低丰度蛋白情况下仍可获得高定量准确性。图4. A,两个蛋白组混合样本的蛋白丰度分布; B,Ecoli中十个丰度最低蛋白的实际比值与理论比值偏差 (点击查看大图)在三个蛋白组混合样本中,Velocity LFQ DIA工作流程同样展示了出色的定量性能。 实际比值与理论比值之前偏差02深度蛋白组覆盖使用Spectronaut16的directDIA方法分析两个蛋白组样品,在不损失定量性能的同时,可获得深度蛋白组覆盖。 然后使用第三方软件DIA-NN [2] 分析相同的数据集,可获得与sp16类似的结果。 当使用Spectronaut17软件时,改善的directDIA+方法可提高30%的母离子鉴定,及10%的蛋白鉴定(图6),30min梯度内,不使用谱图库可获得接近7000个蛋白鉴定。 这表明Velocity LFQ DIA工作流程不仅可获得出色的定量性能,也可实现深度蛋白组覆盖,此外也说明了不使用谱图库可作为一种有效的DIA数据分析方法。 如果想进一步提高蛋白组覆盖深度,也可通过建立合适谱图库的方法实现。图6. 使用library free方法分析两个蛋白组样品可实现深度蛋白组覆盖。 柱状图比较了三个不同的软件(或版本)所得的蛋白和母离子数目,FDR03高通量流程在上述所展示的Velocity LFQ DIA工作流程中,有效梯度为30min,实际时长为每针39min,可提供每天分析 36个样品的通量。 另外,在一些大队列研究中,研究人员需要更高的分析通量。 在Velocity LFQ DIA工作流程中使用了Vanquish Neo液相,其使用灵活,且经过优化样品吸取、上样、色谱柱清洗和平衡等流程,可有效提高质谱利用率 [3] ,可方便研究人员根据项目需求,进一步提高样品通量。04工作流程稳健性为了验证Velocity LFQ DIA工作流程的稳健性,从一个持续两个月时间(使用同一根色谱柱)的项目中选取其中的一部分数据作为展示。 采用 200 ng Hela肽段,DDA实验作为系统性能的 QC,在两个月内间歇运行,梯度为67min,结果如图7所示。 由结果可知,肽段和蛋白的鉴定数字在整个500小时的项目中(总上样量约为130 µ g)保持一致(鉴定数字变化在5%以内)。 这说明了色谱柱,色谱分离以及质谱的稳健性,这对大队列研究十分重要,是获得良好数据的基础。图7. 两个月的使用时间内,肽段和蛋白鉴定的重现性。 在整个实验周期中,间歇运行DDA QC实验,数据分析使用CHIMERYS算法。 (点击查看大图)小结Velocity LFQ DIA工作流程结合了 Vanquish Neo 系统,µ PAC Neo色谱柱以及 Orbitrap 超高分辨质谱仪,是高通量非标蛋白组DIA鉴定和定量的一种理想工作流程。采用30min梯度的OE240方法展示了该工作流程的主要性能特点: 出色的定量深性能、蛋白组深度覆盖和分析高通量。Velocity LFQ DIA工作流程适用于需要高通量、稳健性、高准确性精密度定量性能和深度蛋白组覆盖的定量蛋白组学研究。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 《牛乳基婴幼儿配方乳粉中乳铁蛋白含量的测定液相色谱-质谱/质谱法》(征求意见稿)
    各有关单位:根据《中国认证认可协会团体标准管理办法》规定,经中国认证认可协会批准立项,青岛海关技术中心等单位已完成《牛乳基婴幼儿配方乳粉中乳铁蛋白含量的测定液相色谱-质谱/质谱法》团体标准的起草工作,形成征求意见稿,现公开征求意见。有关事项通知如下:一、《牛乳基婴幼儿配方乳粉中乳铁蛋白含量的测定液相色谱-质谱/质谱法》团体标准征求意见稿及编制说明等有关材料可从中国认证认可协会网站下载,网址信息如下:http://www.ccaa.org.cn/images/jsbz/stbzgl/2023/03/24/1679628059381007576.rar二、请填写《意见反馈表》(见附件),并于2023年4月25日前通过电子邮件反馈至标准起草组。联系人:张鸿伟联系电话:18562789917 电子邮箱:light04@126.com附件:意见反馈表中国认证认可协会2023年3月24日
  • 腐竹蛋白质含量不达标?这款快速检测仪可帮大忙,但是很多企业不知道!
    在腐竹相关的新闻中,常常可以看到某“腐竹蛋白质含量不达标”。原来,腐竹等豆制品中的蛋白质来源于豆制品中含大豆蛋白质的原料,蛋白质属于质量指标。《非发酵豆制品》(GB/T 22106-2008)中规定,腐竹中蛋白质最低限量为45.0 g/100g;其他豆制品中蛋白质最低限量为43.0 g/100g。造成蛋白质含量不达标的原因,一方面可能是企业为节约成本没有严格按照配方投料,降低了含蛋白质原料的比例(这个原因往往会让企业得不偿失);另外,很有可能是因为大豆原料蛋白质含量不确定,不均匀,而企业把关不严(或者说缺乏有效工具),使用了蛋白质含量未达标的原料造成。然而,很多豆制品生产企业并不知道有一款仪器可以帮忙,它是一款便携式无损检测仪器,坚固、手提即可,只需要一分钟就能检测出大豆蛋白质含量,满足大豆采购商的要求。有了对原料蛋白质含量的控制,控制腐竹的蛋白质含量超过国标最低限就不是靠经验了,而是靠数据监控。另外,收购商也可以很好地根据检测结果给原料大豆定价,令原料供应者心服口服。而大豆供应商也可以根据这款仪器测定自家产品的品质,从容应对想压低收购价的收购商。一分钟可显示检测结果(水分含量,含油量,蛋白质和水溶蛋白含量)仪器已经有了众多用户(包括海外用户)这款仪器不仅仅可以用于豆制品企业采购大豆,也可用于大豆质量分级。大豆 GB 1352-2023中规定,大豆质量指标应符合表1规定,对其水分含量有要求,高油大豆质量指标应符合表2规定,对脂肪含量有要求,高蛋白大豆质量指标应符合表3规定,不同等级的蛋白质含量要求不同。延伸阅读:九旬院士的近红外创业路——访陈星旦院士初衷不改 实现近红外技术产业化——“创新100”走访广东星创众谱仪器有限公司
  • 云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量
    【山东云唐*新品推荐YT-Z12T】云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量→点击此处进入客服在线咨询优惠专区。山东云唐专业厂家自主研发生产农药残留检测、食品安全检测、植物生理等仪器仪表,品质保障,价格实惠,售后无忧,欢迎新老客户来电咨询!山东云唐智能让诚信为高质量发展护航,我们将努力提供更卓越的产品质量和更人性化的售后服务给广大客户,为社会创造更大的价值。云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量  随着科技的不断发展,食品蛋白质检测仪在食品安全检测领域发挥着越来越重要的作用。其中,对于奶粉中蛋白质含量的快速准确检测,食品蛋白质检测仪更是扮演着至关重要的角色。本文将详细介绍食品蛋白质检测仪的工作原理、优势及其在奶粉蛋白质含量检测中的应用。  食品蛋白质检测仪在奶粉蛋白质含量检测中具有显著的优势。首先,它大大提高了检测效率。相较于传统的检测方法,如Kjeldahl法、Lowry法等,食品蛋白质检测仪能够在短时间内完成大量样品的检测,从而满足现代化生产线上对奶粉质量监控的需求。其次,仪器具有高度的准确性。通过精确的光电测量和荧光检测技术,食品蛋白质检测仪能够确保测量结果的准确性,避免因人为因素或操作不当导致的误差。此外,食品蛋白质检测仪还具有操作简便、自动化程度高等特点,使得检测过程更加便捷高效。  在奶粉蛋白质含量检测中,食品蛋白质检测仪的应用具有重要意义。奶粉作为婴儿成长发育的重要营养来源,其蛋白质含量直接影响到婴儿的健康状况。因此,对奶粉中蛋白质含量的准确检测显得尤为重要。食品蛋白质检测仪能够快速、准确地检测出奶粉中的蛋白质含量,为奶粉生产厂家提供及时、可靠的质量监控手段。同时,对于消费者而言,了解奶粉中蛋白质的含量有助于他们选择合适的奶粉产品,为婴儿的健康成长提供保障。  此外,食品蛋白质检测仪还可以用于奶粉生产过程中的质量控制。在奶粉生产过程中,通过定期对原料、半成品和成品的蛋白质含量进行检测,可以及时发现生产过程中的问题,采取有效措施进行调整和改进,确保奶粉产品质量的稳定性和可靠性。同时,食品蛋白质检测仪还可以用于奶粉产品的批次管理和追溯,确保产品的质量和安全可追溯。  总之,食品蛋白质检测仪在奶粉蛋白质含量检测中发挥着重要作用。它不仅能够提高检测效率和准确性,为奶粉生产厂家提供及时、可靠的质量监控手段,还能为消费者选择合适的奶粉产品提供有力支持。随着科技的不断进步和食品安全意识的提高,食品蛋白质检测仪将在食品安全检测领域发挥更加重要的作用,为保障人们的饮食安全贡献力量。
  • 凯氏定氮法检测脱脂奶粉中蛋白质的含量
    蛋白质是复杂的含氮有机化合物,分子量很大,大部分高达数万至数百万,分子的长链从数纳米至100nm,它们由20种氨基酸通过酰胺键以一定的方式结合,并具有一定的空间结构,所含的主要化学元素为C、H、O、N,在某些蛋白质中还含有P、Cu、Fe、I等元素,但氮的相对丰度基本稳定,是区别于其它有机化合物的主要标志。不同蛋白质的氨基酸构成比例及方式不同,所以各种蛋白质其含氮量也不同。一般蛋白质含氮量平均为16%,即1份氮素相当于6.25份蛋白质,此即蛋白质系数。 意大利VELP凯氏定氮仪在环保节能方面具有性能, 的蒸汽发生器和钛冷凝器,蒸馏滴定同步进行,分析速度快,冷却水用量仅0.5升/分钟,降低能耗从而节约了成本。因此该仪器被广泛应用于各类蛋白质检测的实验研究。 测定脱脂奶粉中蛋白质的含量,对掌握其营养价值和品质的变化,保障人体健康,合理配料,为乳制品深加工提供数据十分重要,此外,蛋白质分解产物对乳制品的色、香、味都有一定作用,所以测定具有深远意义。
  • 杜马斯法测定食品中氮/蛋白质含量的解决方案 | 德国元素Elementar
    在我们的日常包装食品中,都会看到这样的营养标识,可以有助于我们更清晰的营养摄入,更健康的生活。其中蛋白质是构成人体细胞和组织的重要成分,人体正常值一般是60~80 g/L。蛋白质含量的测定对于食品质量的掌握具有十分重要的现实意义,因为蛋白质不仅是食品中重要的营养物质,同时也是组成人体一切细胞和组织的重要成分,其含量的多少直接决定着食物的营养价值。特别对奶制品来说,蛋白质含量的高低对定价有直接影响。目前测定蛋白质的方法主要有凯式定氮法、杜马斯法。随着社会的发展,人类对环保、高效意识的增强,越来越多的企业对杜马斯法测定蛋白质含量越来越关注。德国元素Elementar在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出世界第一台杜马斯定氮仪后,公司响应食品、农产品、肥料等样品的分析需要更大样品量的需求,于1989年,进一步推出了全球首款克级样品量的杜马斯定氮仪,逐步推动了杜马斯定氮法在法规中的应用。
  • 用ETD线性离子阱质谱成功鉴定蛋白和翻译后修饰
    在翻译后修饰和/或极碱肽的序列分析方面,电子转移裂解( ETD )线性离子阱质谱是很有优势的工具。传统的诱导活化裂解(CAD)常用来鉴定蛋白,并试图确定和找到他们修饰的位点,但这种技术有其本身固有的缺点,下面将详细叙述。与线性离子阱的结合使用的ETD是蛋白质组学研究的一个可靠的技术,可以很容易鉴定用CAD不能鉴定的多肽。ETD 是一个相对较新的肽/蛋白质碎裂的技术,能够大大推进质谱鉴定蛋白质这个领域的进步。 翻译后修饰 翻译后修饰(PTM)是翻译后的蛋白质进行的一种化学修饰,是蛋白质生物合成的后续步骤之一。蛋白的分析及其翻译后修饰的分析对于研究许多疾病是非常重要的,如癌症、糖尿病、心血管疾病和神经退行性疾病---阿尔茨海默病。这是因为在蛋白质的合成的过程中以及合成之后,可能发生各种蛋白修饰。对于正常细胞的功能,这些修饰是必须的,但调节这些修饰的变化可能会导致疾病的发生,如阿尔茨海默病,癌症和勃起功能障碍。蛋白质修饰可提高/降低蛋白质的活性,可以与其他蛋白质发生相互作用和将某一蛋白质定位到细胞的特定地方。 翻译后修饰,如磷酸化,乙酰化和甲基化被用作化学开关,激活/灭活组蛋白基因转录调控, DNA复制和DNA损伤修复。组蛋白是染色质的主要蛋白,DNA盘绕时,它们起到线轴的作用,而且在基因调控中发挥重要作用。因此,鉴定这种翻译后修饰是必需的,因为它在生物系统中对于某些蛋白的功能和作用至关重要。 用CAD鉴定蛋白 质谱在确定蛋白及其翻译后修饰上发挥了不可或缺的作用。CAD是一种常见的分析鉴定蛋白质的技术。一般用胰蛋白酶将蛋白质消化成较小的多肽,然后用反相色谱将其分离,并直接注入电喷雾质谱仪检测,通过串联质谱( MS / MS法)获得序列信息。通过电喷雾电离这些多肽形成几种带电状态的肽离子,而较低带电状态的最适合CAD分析。低能量的CAD串联质谱一直是最常用的分析方法,通过裂解肽离子进行后续的序列分析。 翻译后修饰分析,如磷酸化,磺酸化和糖基化很难用CAD进行分析,因为这些修饰通常是不稳定且容易丢失肽骨架的碎裂信息,从而导致很少或几乎不能得到肽序列和磷酸化位点。利用常规的CAD质谱对于含多个碱性残基多肽测序也是极为困难。 根据不同的蛋白质序列,有时胰蛋白酶会产生过小或过大的肽段。在这种情况下,缺乏可信的序列分析手段。因此CAD对短的,低带电的多肽是最有效的。对于鉴定蛋白和了解蛋白的生物学功能,这是一种广泛使用的方法,然而,限制了研究者分析了所有的肽段,这也阻止多个翻译后修饰位点的检测和了解这些蛋白的生物学功能。 先进的碎裂方式:ETD ETD是基于离子/离子气相化学一种碎裂多肽的新方法。ETD通过从阴离子自由基到质子肽转移电子的化学能量将肽碎裂,这引起多肽骨干的分裂。 ETD产生的骨干肽序列和肽侧链的信息往往与CAD互补。 ETD已成功应用与线性离子阱以及其前身三维离子阱。虽然ETD在三维阱的执行价格具有竞争力且和CAD自身相比提供了独特好处 ,这样的组合并没有提供蛋白质组学分析所需的技术能力。非线性离子阱的ETD,它一直未能很好控制裂解过程,而且由于三维阱离子存储能力的有限不能处理大量的多肽。基于此,研究人员已经提出ETD功能应用于线性离子阱(Thermo Scientific LTQ XL mass spectrometer质谱仪) 。 相对于传统的CAD技术, ETD提供了更稳定的方法来定性PTMs,鉴定大型多肽或甚至整个蛋白质。 ETD能够将普通翻译后修饰的多肽,或者多个碱性残基的多肽甚至整个蛋白质生成离子。 ETD也可以轻易碎裂含有二硫键的的多肽。 ETD是为更复杂的FT-ICR仪器开发相似的裂解技术。使用电子转移试剂,而不是影响肽碎裂的自由电子使ETD在广泛使用的射频四极离子阱中得到应用。射频离子阱质谱仪具有低成本,低维护费用以及更易接受优点,相对于CAD碎裂方法,ETD碎裂技术能够产生更多的产物离子,利于肽段的解读。 ETD的线性离子阱提供了强有力的工具鉴定蛋白及其翻译后修饰 。LTQ XL线性离子阱质谱仪比其他任何离子阱提供更多的结构信息,ETD能够得到常规方法无法得到的序列信息。相比非线性离子阱,ETD的线性离子阱的显著特征在于离子和离子发生反应。虽然ETD功能是完全自动的且通常无需用户干预,但是当需要对离子数进行累积的时候,用户可通过软件完全控制线性离子阱的离子。线性离子阱质谱仪有能力处理大量的样品,并分析低浓度的大分子和小分子。与非线性离子阱的相比,该过程更为复杂和费时 应用实例 在最近的应用中,极碱的多肽和大量重要的翻译后修饰已经用含CAD和ETD线性离子阱质谱分析了。通常CAD碎裂方式产生的普通只显示有限的肽碎裂信息。然而,用ETD碎裂这些多肽的时候, 肽骨架碎裂信息能完全或几乎完全产生,因此得到更广泛的多肽序列的信息。 ETD的灵敏度和稳定性对于蛋白质组学分析是必不可少的。 ETD提供了高度可靠的解决方案,此方案具有用户友好性,几乎不需要日常维护,并提供高度准确的数据,而且ETD的数据分析有相应的软件支持,非常方便简单。 结论: 在蛋白质组学研究领域,ETD的应用对于研究疾病的机理,如癌症,药物开发研究以及细胞功能和信号转导有重大意义,ETD将扩大目前的分析,包括更多的碱性、非胰酶切肽段和蛋白质。它们能确定各种翻译后修饰以及鉴定新的蛋白亚型。 配备ETD的线性离子阱质谱可应用于蛋白质组学各个领域内。ETD的线性离子阱将继续推动蛋白质组学的发展,而且已被证明是替代CAD一种有效技术,而且ETD同样可以应用于非线性离子阱进行肽序列分析。在不久的将来,配备ETD的线性离子阱预计将成为碎裂技术的一种新选择。 参考文献 Leann M. Mikesh et al, The utility of ETD mass spectrometry in proteomic analysis, Biochemica et Biophysica Acta (2006), doi:10.1016/j.bbapap.2006.10.003 关于 Thermo Fisher Scientific (赛默飞世尔科技,原热电公司) Thermo Fisher Scientific纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约30000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于ThermoScientific和FisherScientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。ThermoScientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。FisherScientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced ProteinAggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • 汤臣倍健被指不含胶原蛋白 回应称将再次送检
    此前汤臣倍健称其胶原蛋白含量达标   日前汤臣倍健等被曝胶原蛋白产品未能检出胶原蛋白。昨日,汤臣倍健方面称已将其胶原蛋白产品再次送检,相关结果会在近期公布。   汤臣倍健称业绩未受影响   10月8日,包括汤臣倍健在内的几家保健品公司所生产的胶原蛋白产品被曝“不含胶原蛋白”。媒体报道称,经第三方检测机构检验,汤臣倍健、颜如玉、无限极等三款胶原蛋白产品未能检出胶原蛋白的特征物“羟脯氨酸”,而Lumi等其他几家企业生产的胶原蛋白产品则存在含量不足的问题。   当日,汤臣倍健发布声明称,公司使用的胶原蛋白粉经第三方权威检测机构检测显示,各项指标均符合标准,其中羟脯氨酸含量为9.33%。   汤臣倍健公共事务总监陈特军告诉新京报记者,针对媒体此次的质疑,公司已经再次将部分胶原蛋白产品送检,相关结果会在近期公布。   陈特军还向新京报记者表示,由于胶原蛋白类产品在公司整体业务比重中占比非常小,此前舆论针对胶原蛋白产品功效的质疑并没有对汤臣倍健整体的业绩造成影响。   含量不达标是“蒙骗消费者”   据报道,涉事的Lumi牌胶原蛋白产品在官网上写明羟脯氨酸含量大于5%,并宣称含有每瓶5000mg胶原蛋白,但据媒体送检结果显示,其实际含量只有宣称数值的0.038%。   原国家药监局药品评价中心专家孙忠实告诉新京报记者,“声称达到这一标准实际并未达到,是一种蒙骗消费者的行为,严格追究的话,应认定为虚假宣传。”   10月9日下午,记者致电养美生物技术有限公司,工作人员告诉记者,公司领导目前正在对该事件进行商议,“等商议出一个结论,再统一做出回复。”截至记者发稿,未收到公司的回应。
  • 高表达抗体蛋白下游工艺技术进展
    p   摘 要:随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 /p p   关键词:抗体 下游工艺 纯化 技术进展 /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center " span style=" font-size: 14px "   表1 单抗特性及纯化策略 /span /p p style=" text-align: center " img title=" 11111.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e2693d21-e711-4b42-bb9c-53b5b7848f82.jpg" / /p p style=" text-align: center " img title=" 2222.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/5035b8d3-81f1-4e6b-96d7-3e12b347a344.jpg" / /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0 病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "   img width=" 450" height=" 374" title=" 1.jpg" style=" width: 435px height: 258px " src=" http://img1.17img.cn/17img/images/201808/insimg/401b7d6a-ad5b-4c9a-9eee-2376ebef51fa.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px " 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /span /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center " img width=" 599" height=" 164" title=" 2.jpg" style=" width: 580px height: 159px " src=" http://img1.17img.cn/17img/images/201808/insimg/ce7191a4-3940-4315-8122-856bbbadbc24.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /span /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center "    img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/4aa1c980-c9be-44e9-82b5-899ba9f7eec9.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " 表3 两步层析纯化工艺对污染物的去除效果[15] /span /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/07a79270-4b7d-4fe5-bc9a-125837562297.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  图2 传统纯化工艺与STREAMLINE [17] /span /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/333de887-f92b-405d-9094-9ec89635f74d.jpg" / /p p style=" text-align: center " span style=" font-size: 14px "   图3 STREAMLINE的基本工作原理和操作过程[18] /span /p p style=" text-align: center "   span style=" font-size: 14px "  (箭头示液体过柱时的流向) /span /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE 技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p p /p
  • 高表达抗体蛋白下游工艺技术进展
    p   随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 br/ /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 br/ /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1eb75a7d-0f0f-4f60-8224-a3984ccff0e3.jpg" title=" 表1.png" alt=" 表1.png" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/f8ff0f67-6f0b-4295-ab81-05543e5efbd8.jpg" title=" 表2.png" alt=" 表2.png" / br/ strong 表1 单抗特性及纯化策略 /strong /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/a804fe1c-9660-4ab2-8cc4-177870630ce5.jpg" title=" 图1.png" alt=" 图1.png" style=" text-align: center " / /p p style=" text-align: center " strong 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /strong /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/3ef7b3a2-9f79-4e74-8a71-6a6cbcbea5ec.jpg" title=" 图2.png" alt=" 图2.png" / /p p style=" text-align: center " strong 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /strong /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/282961ea-e704-47d1-aabd-f044e108f59c.jpg" title=" 图3.png" alt=" 图3.png" / /p p style=" text-align: center " strong 表3 两步层析纯化工艺对污染物的去除效果[15] /strong /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/dba748ae-d64e-479c-8fb1-ea738ef437da.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center " strong 图2 传统纯化工艺与STREAMLINE [17] /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/0f71d1a8-a218-43f5-8c1f-917bd4f432a5.jpg" title=" 图5.png" alt=" 图5.png" / /p p style=" text-align: center " strong 图3 STREAMLINE的基本工作原理和操作过程[18](箭头示液体过柱时的流向) /strong /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p
  • 中山大学李惠琳团队成果:整合Top-down及Bottom-up蛋白质组学质谱表征核糖体蛋白异质性
    大家好,本周为大家分享一篇本课题组发表在Journal of Pharmaceutical Analysis上的文章,Integrated top-down and bottom-up proteomics mass spectrometry for the characterization of endogenous ribosomal protein heterogeneity [1],文章的通讯作者是中山大学药学院的李惠琳教授。  蛋白质的合成过程是生物体内最重要的生命活动之一。在细胞中,核糖体是信使RNA翻译合成蛋白质的细胞机器。核糖体高度复杂,它主要由特化的RNA和几十个蛋白组成。这些蛋白和RNA组装成两个不同大小的核糖体亚基即大亚基和小亚基。近年来,多项研究表明,核糖体与多种疾病的发生密切相关,包括恶性肿瘤、阿尔兹海默病和帕金森病等,这些过程中除发生rRNA合成异常和核糖体蛋白表达失调外,还伴有核糖体蛋白基因突变、RNA剪切、翻译后修饰(PTMs)变化所形成的核糖体蛋白异质体(proteoforms)的异常表达和调节。本文中,作者整合了Top-down及Bottom-up蛋白质组学质谱全面表征了核糖体蛋白异质性,为发现疾病特异型proteoform生物标志物或靶点提供了方法。  首先,作者采用E.coli 70S核糖体在Waters SYNAPT G2-Si MS仪器上建立了Top-down检测方法(图1)。50S核糖体大亚基蛋白质L7和L12具有相同序列,其差别在于L7在N-端含有乙酰化修饰而L12无N-端非乙酰化修饰。实验发现,L7和L12在Top-down分析中取得了良好的分离,并且L7和L12的峰放大图显示二者除含有其对应野生型外,它们都具有甲基化的proteoforms,而Bottom-up仅能检测到甲基化的肽段(图2)。L7/L12在蛋白质生物合成过程中参与和翻译因子的相互作用,是肽链终止所必需的。L7/L12发生异常会降低蛋白质的合成速度和准确性。本研究中,作者采用Top-down方法对L7/L12的PTMs和proteoforms进行了全面分析,并结合Bottom-up定位了甲基化位点。同时,该结果也反映出Bottom-up方法固有的缺陷,即从小肽推断出的有限的序列信息往往不足以鉴别proteoforms。  图1. Top-down和Bottom-up蛋白质组学表征E.coli 70S核糖体总览  图2. Top-down和Bottom-up蛋白质组学表征E.coli 50S核糖体亚基蛋白质L7/L12  随后,作者采用建立好的方法分析了HeLa 80S核糖体蛋白。如图3A所示,实验检测到大量Methionine剪切伴随的N-端乙酰化、40S RP S10和S25上的二甲基化、40S RP S23上的hydroxyproline、60S RP L8上的hydroxyhistidine、乙酰化和甲基化等多种修饰。值得关注的是,Top-down结果显示多种蛋白存在截短型的truncated proteoforms。分子完整性是保证蛋白质生物学功能的重要因素之一。分子完整性的缺失,特别是由于选择性剪接或蛋白质水解而导致的截短,已成为一个重要的问题。作者在排除蛋白质提取过程造成的影响、色谱柱上酶切和质谱源内裂解等因素后,认为截短型的proteoforms很大程度上与生物过程相关。RP L19是一个从60S亚基突出并跨越到40S亚基的长螺旋蛋白质,L19的C端螺旋在pre-translocation状态下扭结,在亚基旋转时动态地改变构象,在post-translocation状态下变为线性(图3B)。这种构象转变导致蛋白质L19带正电的Arg172和Arg176侧链与18S rRNA核苷酸G909和G910的磷酸根之间形成盐桥。本文中,作者观察到C端部分序列缺失的截断型L19。除此之外,其他截短型的蛋白质如图C所示。目前研究发现,核糖体蛋白质除了在细胞翻译和蛋白质合成中发挥核心作用外,还具有核糖体外功能,参与细胞增殖、分化、凋亡、DNA修复、调节细胞迁移和侵袭等细胞过程。以截短型形式观察到的许多核糖体蛋白,都与血液、代谢、心血管疾病和癌症的发展与进展有关,核糖体蛋白proteoforms的全面表征为发现潜在疾病生物标志物或靶点提供了前题条件。  图3. 利用Top-down蛋白质组学方法鉴定HeLa 80S核糖体蛋白质PTM及proteoforms  总的来说,本文整合了Top-down及Bottom-up蛋白质组学质谱方法,全面表征了E.coli 70S核糖体和HeLa 80S核糖体蛋白质。尽管这些proteoforms和疾病的相关性还需要深入挖掘,但实验提供了一种先进的方法来确定疾病特异性proteoforms或靶点。
  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 中科院陈雁团队发现间歇性蛋白限制能够干预糖尿病并保护胰岛β细胞
    糖尿病,尤其是2型糖尿病,已然成为21世纪人类面临的最大的健康挑战之一。2型糖尿病往往是由不健康的生活方式以及摄入大量高能量密度食物所导致,因此世界各国科学家提出了多种糖尿病干预策略,重点集中在改变生活方式和饮食结构。例如,强调植物性食物并减少动物性食物的地中海饮食已广泛用于2型糖尿病的管理。最近一项探索三种常量营养素比例(即蛋白质、脂肪和碳水化合物)对小鼠健康影响的研究发现,减少蛋白质摄入对于改善代谢健康和寿命至关重要。多个研究也发现减少蛋白质摄入是延长寿命和改善代谢健康的一个重要因素,另有一些研究也发现限制某些关键的氨基酸如蛋氨酸或亮氨酸也可以改善葡萄糖稳态。除了蛋白质或氨基酸限制的饮食策略,禁食或热量限制长期以来被认为是一种延长寿命和改善代谢健康的有效手段。近年来,许多热量限制的方式如间歇性节食和时间限制性饮食已被广泛用于改善包括糖尿病在内的代谢性疾病。有研究表明,间歇性节食可以有效控制1型和2型糖尿病小鼠的血糖稳态,也有研究揭示了间歇性节食控制血糖稳态是通过促进糖尿病小鼠胰岛β细胞的再生所介导。近日,中国科学院上海营养与健康研究所陈雁研究组在 Science Bulletin 期刊在线发表了标题为:Intermittent protein restriction protects islet beta cells and improves glucose homeostasis in diabetic mice 的研究论文。该研究发现,间歇性蛋白限制可以保护糖尿病小鼠的胰岛β细胞并改善血糖稳态。虽然持续的蛋白质或者氨基酸限制以及间歇性节食已被证明可以改善糖尿病,但目前还没有研究探讨间歇性的蛋白限制是否足以干预糖尿病。该项研究探讨了一种间歇性蛋白限制(IPR)的饮食方式,发现IPR可以迅速缓解STZ诱导的1型糖尿病小鼠以及瘦素受体缺陷导致的2型糖尿病小鼠的高血糖血症。针对小鼠胰岛的进一步研究发现IPR可以增加胰岛β细胞数量、促进β细胞增殖、并改善β细胞功能。在外周组织中,IPR可以减少肝脏的糖异生并提高骨骼肌的胰岛素敏感性。与持续性低蛋白饮食相比,IPR对于糖尿病小鼠的肝脏脂肪积累和损伤更轻。此外,通过小鼠胰岛单细胞测序分析发现了IPR可以逆转糖尿病导致的胰岛β细胞数量的减少以及胰岛免疫细胞的浸润。由于IPR这一饮食方式能够有效控制血糖并保护胰岛β细胞,比禁食或热量限制可能更容易被人接受,并避免了持续性蛋白限制的不良作用,故IPR在未来有较大的应用转化潜力。间歇性蛋白限制保护糖尿病小鼠胰岛β细胞并且改善糖稳态中国科学院上海营养与健康研究所陈雁研究员为该论文的通讯作者,博士研究生韦思颖、李晨晨为该论文共同第一作者。该项工作得到了科技部、国家自然科学基金委员会等经费的资助,同时也得到了中国科学院上海营养与健康研究所公共技术平台和动物平台的支持。论文链接:https://doi.org/10.1016/j.scib.2021.12.024
  • 胶原蛋白企业亮出检测报告自证清白 各自执行企业标准
    10月8日,有媒体声称其自行送检的7款口服胶原蛋白产品中3款并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。对于这一结果,相关企业均强烈否认并亮出检测报告自证清白。据了解行业内一直未形成对于胶原蛋白产品的统一标准,各大公司执行自己的企业标准。   胶原蛋白产品不含胶原蛋白? 涉事企业强烈否认   胶原蛋白可谓命运多舛,日前又被爆成分争议&ldquo 不含胶原蛋白&rdquo 。昨日,有媒体声称其自行送检的7款口服胶原蛋白产品中,汤臣倍健胶原蛋白粉、颜如玉胶原蛋白口服液、无限极美姿力胶原蛋白果味饮料等3款产品中,并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。另外Fancl、Lumi、丸美、安婕妤4款产品胶原蛋白含量则远低于宣称的含量。不过,报道未披露具体数据,也未交代其送检机构。对于这一结果,相关企业均强烈否认并亮出检测报告&ldquo 自证清白&rdquo 。   记者了解到,目前胶原蛋白产品始终未有统一标准,特异性指标也未能明确,造成行业频频陷入舆论危机。   从成本看似无造假必要   汤臣倍健昨日在给本报的声明说,其胶原蛋白采购自法国罗赛洛公司,检测显示羟脯氨酸含量为9.33%,并能提供检测报告。该公司指,一直严守法律法规以及食品安全标准。   无限极声明表示,报道提及的产品其生产标准在广东省卫生厅备案,原料经第三方权威机构检测完全符合国家相关法律法规和标准,昨日已再次送检,结果会及时公布。   而广州颜如玉医药科技有限公司的声明则称,上述口服液取得国家保健食品批准证书,标志性成分为低聚肽而非羟脯氨酸。此外,有关产品是海洋鱼皮胶原低聚肽口服液,而不是胶原蛋白口服液,用评价胶原蛋白的方法来评价低聚肽是不专业的,&ldquo 被检产品未经我们公司确认,是否属实,不得而知。&rdquo   羟脯氨酸是胶原蛋白18种氨基酸中的一种,为胶原蛋白特有,但从成本角度看,企业似乎并无造假必要。南海水产研究所一位研究员昨日对本报说,只要采用一般鱼类的&ldquo 边角料&rdquo 进行水解就能提取,&ldquo 甚至不法之徒用皮革的下脚料,也能得到羟脯氨酸。&rdquo   记者翻查资料发现,乳业之前曾热炒&ldquo 皮革奶&rdquo ,即添加皮革下脚料来&ldquo 增加&rdquo 蛋白质,科研人员就是通过检测奶中是否含有羟脯氨酸来辨别的。&ldquo 普通猪皮中就能弄出羟脯氨酸。&rdquo 上述研究员说。   各公司执行自己的标准   不过,胶原蛋白近期先后被质疑功效、涉嫌违法宣传,还是让这种在近年被不断应用于食品、保健品、化妆品中的成分受到了高度关注。记者了解到,事实上目前胶原蛋白仍未有国标,消费者对其作用也是&ldquo 蒙查查&rdquo 。   目前,我国已认可胶原蛋白、胶原肽的保健功效只有保护皮肤水分、增加骨密度、增强免疫力三项。但市民麦小姐说,她选购胶原蛋白的理由是冲着它&ldquo 可以修复肌肤、保持弹性,人变得更年轻。&rdquo   据记者昨日获得的一份由中国食品科学技术学会在2011年撰写的胶原蛋白标准研讨会摘要显示,在2010年国内胶原蛋白年产值保守估计已经达到100亿元,产能在600多吨或日本的十分之一。   该学会指出,在胶原蛋白生产过程中都存在水解或酶解过程,最终很多产品已经以多肽的形式存在,因此行业内一直未形成对于胶原蛋白产品的统一标准。此外,行业也需要明确胶原蛋白的特异性指标,例如羟脯氨酸的含量比例,或者是甘氨酸、脯氨酸和羟脯氨酸的总含量占到蛋白质的50%左右。   记者还了解到,《水解胶原蛋白》国标曾在2007年对外征求意见,但该稿一度被业内指出&ldquo 操作性不够好&rdquo ,而且最终版本始终未能落地。目前各大公司执行自己的企业标准。   胶原蛋白或将   禁止以口服液形式销售   国庆长假期间,国家食品药品监督管理总局在官方网站征求对保健食品监管新规的意见,提出拟于2014年1月1日起,禁止食品以片剂、胶囊、口服液、丸剂等形状生产销售,&ldquo 如仅取得食品生产许可(QS标志),国家食药总局拟于2014年1月1日起,禁止其以片剂、胶囊、口服液、丸剂等形状生产销售 禁止营养补充剂宣称有保健功能。&rdquo   而据记者走访药店、超市、便利店以及从业界了解得知,目前市面上充斥的大量胶原蛋白产品刚好就处于此政策&ldquo 打击&rdquo 范围内:基本上既属于普通食品,又主要以口服液形式存在。&ldquo 不少消费者将胶原蛋白口服液当美颜饮料喝,而且相信了其铺天盖地宣传的保健功效,但实际上它作为普通食品,功效推广属于违法,而且口服液形式也会暗示和催眠消费者,其具有不错的保健功效甚至药效。&rdquo 一位行业观察人士表示,胶囊和口服液暗示产品的药用性太强,的确应进行规范整顿。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制