当前位置: 仪器信息网 > 行业主题 > >

蛋白质与水分

仪器信息网蛋白质与水分专题为您整合蛋白质与水分相关的最新文章,在蛋白质与水分专题,您不仅可以免费浏览蛋白质与水分的资讯, 同时您还可以浏览蛋白质与水分的相关资料、解决方案,参与社区蛋白质与水分话题讨论。

蛋白质与水分相关的论坛

  • 鱼富含蛋白质,不同鱼有不同作用

    鱼富含优质蛋白质,其含量要比鸡蛋、猪肉中的高很多,因此生理价值较高,鱼类的蛋白质含量约15~24%,所以鱼肉是很好的蛋白质来源,而且这些蛋白质吸收率很高,约有87~98%都会被人体吸收。此外鱼肉的肌纤维比较纤细,组织蛋白质的结构松软,水分含量较多,肉质细嫩,很容易被人体消化。  此外,鱼油还含有丰富的维生素A及D,特别是鱼的肝脏含量最多。鱼类也含有水溶性的维生素B6、B12、烟碱酸及生物素。鱼类还含有矿物质,最值得一提的是丁香鱼或沙丁鱼等,若带骨一起吃,是很好的钙质来源;海水鱼则含有丰富的碘;其它如磷、铜、镁、钾、铁等,也都可以在吃鱼时摄取到。不同的鱼有不同的食疗作用。豆制品加盟nd.spzs.com  鲢鱼:有温中益气、暖胃、润肌肤等功能,是温中补气养生食品。 青鱼:有补气养胃、化湿利水、祛风除烦等功能。其所含锌硒等微量元素有助于抗癌。  黑鱼:有补脾利水、去瘀生新、清热祛风、补肝肾等功能。黑鱼与生姜红枣煮食对治疗肺结核有辅助作用。黑鱼与红糖炖服可治肾炎。产妇食清蒸黑鱼可催乳补血。有滋肝肾、补气血、清胃去热等功能。是妇女的保健食品,有养血、明目、通经、安胎、利产、止血、催乳等功能。  草鱼:有暖胃和中平肝祛风等功能,是温中补虚养生食品。 带鱼:有暖胃、补虚、泽肤、祛风、杀虫、补五脏等功能,可用作迁延性肝炎、慢性肝炎的辅助治疗。肝炎患者用鲜带鱼蒸熟后取上层油食之,久服可改善症状。 鳗鱼:有益气养血、柔筋利骨等功能。  鲫鱼:有益气健脾、利水消肿、清热解毒、通络下乳等功能。腹水患者用鲜鲫鱼与赤小豆共煮汤服食有疗效。用鲜活鲫鱼与猪蹄同煨,连汤食用,可治产妇少乳。鲫鱼油有利于心血管功能,还可降低血液粘度,促进血液循环。 鲢鱼,有温中益气、暖胃、润肌肤等功能,是温中补气养生食品。  青鱼,有补气养胃、化湿利水、祛风除烦等功能。其所含锌硒等微量元素有助于抗癌。 黑鱼,有补脾利水,去瘀生新、清热祛风、补肝肾等功能。黑鱼与生姜红枣煮食对治疗肺结核有辅助作用。黑鱼与红糖炖服可治肾炎。产妇食清蒸黑鱼可催乳补血。  墨鱼,有滋肝肾、补气血、清胃去热等功能。是妇女的保健食品,有养血、明目、通经、安胎、利产、止血、催乳等功能。  草鱼,有暖胃和中平肝祛风等功能,是温中补虚养生食品。 带鱼,有暖胃、补虚、泽肤、祛风、杀虫、补五脏等功能,可用作迁延性肝炎、慢性肝炎的辅助治疗。肝炎患者用鲜带鱼蒸熟后取上层油食之,久服可改善症状。 鳗鱼,有益气养血、柔筋利骨等功能。  黄鳝,入肝脾肾三经,有补虚损、祛风湿、强筋骨等功能,对血糖也有一定的调节作用。气血两虚者可用黄鳝肉丝、黄芪(纱布包)加水煮熟调味服食。小儿疳积、形瘦食少者可用黄鳝一条,切段加鸡内金少许煮熟食用。内痔出血、子宫脱垂可将黄鳝煮食,久服有效。  泥鳅,有补中益气、祛除湿邪、解渴醒酒、祛毒除痔、消肿护肝之功能。泥鳅与大蒜猛火煮熟可治营养不良之水肿。泥鳅用油煎至焦黄加水煮汤可治小儿盗汗。泥鳅炖豆腐可治湿热黄疸。泥鳅与虾黄同煮服,可治阳痿不举。

  • 蛋白质(干态)测试标准

    Hi,各位蛋白质(干态)含量的测试:网上的说法是先依GB/T 5009.5测试蛋白质的总量,然后蛋白质(干态)是以100减去水分然后除去蛋白质的实际检测结果。但是我想知道这种换算方式是依据什么标准,谢谢!

  • SKF-1 卡尔费休水分测定仪 冻干品 蛋白质

    公司有部分产品是冻干品,主要成分是蛋白质。想用库伦滴定法测冻干品的水分,用的仪器是卡尔费休水分测定仪。之前是用甲醇溶解的,发现有点溶解不完全,不知道哪位高手有没有类似经历,用的是什么试剂复溶冻干品比较好呢?尽可能不要破坏蛋白质

  • 蛋白质化学与蛋白质组学(推荐)

    蛋白质化学与蛋白质组学夏其昌 曾嵘 等编著2004年4月出版ISBN 7-03-012401-4/Q.133116开,平装,580页定价: 75.00元 本书系统论述了蛋白质化学基础理论和实验技巧,也反映了蛋白质组学研究的最新成果。内容包括:蛋白质的表征,蛋白质的组成分析和序列测定,与此相关的实验方法,包括各种色谱、电泳、质谱技术等,以及应用在蛋白质表征研究和基因工程产品的质检方面的实际范例。在蛋白质组学领域介绍了基本概念、样品制备、双向凝胶电泳的图像分析和定量分析、质谱等常规方法,并介绍了国际上最新的多维技术在研究中的应用;同时充分体现了生物信息学在蛋白质组研究中的重要性。 本书可作为生物学、医学、化学专业大学生,研究生和教学人员的参考书,也是从事生物化学、分子生物学、医学等领域中分离分析工作人员的参考书。

  • 蛋白质降解指数

    请问肉制品在加工过程中蛋白质降解指数一定不断增大吗?比如腊肉和火腿。非蛋白氮含量先降后增,总氮含量持续增大,最终结果是蛋白质降解指数先降低后增大,这样可以吗?看文献里有解释是水分含量降低使得总氮在肉制品中的占比增大。

  • 蛋白质与多肽蛋白质粉

    蛋白质与多肽蛋白质粉 人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。 蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄蛋白质RNL(g/d) 初生—6个月 1.5-3 1岁 35 3岁 45 5岁 55 7岁 60 9岁 65 10-16岁 75-85 成年女性 65 成年男性 75 妊娠 +15 乳母 +20 根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。 上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状 单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。 现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。三、优质蛋白质和劣质蛋白质的区别。 要弄清楚何为优质蛋白质?何为劣质蛋白质?我们要引入什么是必需氨基酸的概念。营养生理学家、生化学家发现构成人体蛋白质的氨基酸共有21种,而这些氨基酸中其中有4种是可以由体内含碳和含氮底物自己合成的,被称为非必需氨基酸,还有10个必需的氨基酸,是人类机体无法制造需要从饮食中摄取的,另有7个是介于这两者之间的被称为条件必需氨基酸。表2. 必需、条件必需和非必需氨基酸 必需氨基酸条件必需氨基酸 非必需氨基酸 亮氨酸牛黄酸 丙氨酸 异亮氨酸酪氨酸 谷氨酸 缬氨酸甘氨酸 天冬氨酸 赖氨酸丝氨酸 天冬酰胺 苯丙氨酸(酪氨酸)脯氨酸 蛋氨酸(半胱氨酸)谷氨酰酸 苏氨酸 胱氨酸 色氨酸 组氨酸 精氨酸 虽然蛋白质广泛存在于许多动物性和植物性食物中,但是必需氨基酸的构成异差很大,WHO把“蛋白质其组成恰好符合人体需要”的蛋白质称为理想蛋白质,在自然界这种理想的蛋白质普遍认为是鸡蛋蛋白,因此就把鸡蛋蛋白作为衡量蛋白质优劣的参照蛋白,科学家把它作为一把尺子来衡量各种蛋白质,并制定出标准,以4种必需氨基酸为最低限来决定其优劣,即色氨酸、苏氨酸、赖氨酸或者蛋氨酸(半胱氨酸)。 通过比较科学发现,肉、鱼、蛋、牛奶、乳酪含有优质蛋白,大豆、花生、豌豆也含有较多的高质量蛋白。进一步研究发现它们都不够完美,因而要求大家对优质的动物性蛋白和植物性蛋白进行了科学搭配才是最完美的全价蛋白质(complete protein)。表3. 部分高质量蛋白

  • “鸡蛋的蛋白质”和“母乳”比谁更高

    吃鸡蛋,无外乎蛋清、蛋黄两个部分。有人认为蛋黄有营养,弃蛋清只吃蛋黄;有人却害怕长胖,只吃蛋清而扔掉蛋黄。蛋黄和蛋清,到底哪个更有营养?    蛋清和蛋黄各有优势,但营养成分大不同。蛋清中除了90%的水分之外,剩下10%主要是蛋白质。可别小看这10%的蛋白质,鸡蛋中的蛋白质主要都包含其中。鸡蛋的蛋白质仅次于母乳,在人体中利用率很高,是食物中最优质的蛋白质之一。免疫力低下的老人儿童以及刚做完手术的人,不妨多吃蛋清补充蛋白质。http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif

  • 蛋白质测量审核

    有参加今年检科院关于乳粉蛋白质、水分、灰分、菌落总数的测量审核么?qq76734472

  • 蛋白质组,蛋白质组学及研究技术路线

    基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类的蛋白质称为蛋白质组(proteome)。同理,不同细胞在不同生理或病理状态下所表达的蛋白质的种类也不尽相同。蛋白质是基因功能的实施者,因此对蛋白质结构,定位和蛋白质-蛋白质相互作用的研究将为阐明生命现象的本质提供直接的基础。生命科学是实验科学,因此生命科学的发展极大地依赖于实验技术的发展。以DNA序列分析技术为核心的基因组研究技术推动了基因组研究的日新月异,而以基因芯片技术为代表的基因表达研究技术为科学家了解基因表达规律立下汗马功劳。在蛋白质组研究中,二维电泳和质谱技术的黄金组合又为科学家掌握蛋白质表达规律再铸辉煌。蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。蛋白质组学的研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。蛋白质组学的研究内容包括:1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。LCM技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM技术实际上是一种原位技术。取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。LCM技术获得的细胞可以用于蛋白质样品的制备。可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。相关试剂盒均有厂商提供。蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。电泳后对胶进行高灵敏度的染色如银染和荧光染色。如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。胶染色后可以利用凝胶图象分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。实际上像人类的血浆,尿液,脑脊液,乳腺,心脏,膀胱癌和磷状细胞癌及多种病原微生物的蛋白质样品的二维电泳数据库已经建立起来,研究者可以登录www.expasy.ch/www/tools.html等网站进行查询,并和自己的同类研究进行对比分析。Genomic Solution可以为研究者提供除质谱外的所有蛋白质组学研究工具,包括二维电泳系统,成像系统及分析软件,胶切割系统,蛋白质消化浓缩工作站,点样工作站等;同时还可以提供相关试剂和消耗品。LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。Science,Vol.293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。最后有必要指出的是,传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。因此蛋白质组学的研究通常是高通量的。适应这个要求,蛋白质组学相关研究工具通常都是高度自动化的系统,通量高而速度快,配合相应分析软件和数据库,研究者可以在最短的时间内处理最多的数据。

  • 【资料】什么是蛋白质

    蛋白质的英文名词来源于希腊文,其含义是“第一”和“基本的”。反映了蛋白质是生命活动中最基本的和最重要的物质。蛋白质由碳、氢、氧、氮4种主要元素组成,有的蛋白质还含有硫、磷等其他元素。如血红蛋白含有铁、甲状腺球蛋白含有碘等。蛋白质的基本结构单位是氨基酸。氨基酸的特点是在分子一端含有氮和氢元素组成的化学基团——氨基。动物不能合成氨基,只有植物有利用硝酸盐合成氨基的能力。所以在动物饲养中,要依靠含有氨基酸、蛋白质的饲料,使家畜、家畜等生产蛋白质(净肉)。 蛋白质由一长串氨基酸链组成。一般都很长,如血红蛋白是由580个氨基酸组成。但氨基酸种类只有20种,在蛋白质中按严格的顺序排列,构成多种多样的生物专一性的蛋白质。由于人体不能合成氨基酸,只能从食物中获得蛋白质,并在肠内将蛋白质分解成各种氨基酸,这些氨基酸被吸收后,重新合成人体的特殊蛋白质。合成蛋白质的主要器官是肝脏。 从蛋白质这个名字看,好像蛋白质来源离不开蛋。其实动物、植物以及其他生物体都含有蛋白质。虽然最常党见的蛋白质——蛋清是白色的。但并非所有蛋白质都是白色的。血液上的血红蛋白是红色的,绿色植物的叶绿蛋白是绿色的。 同碳水化物和脂肪相比,蛋白质的两个代谢特点,一是它主要在代谢中发挥作用,而不是分解后为人体提供能量;二是蛋白质代谢的起点和终点都是蛋白质,即起点是人体的异蛋白质(如鱼的蛋白质,鸡肉蛋白质等),而终点则成了人体特有的蛋白质。蛋白质由氨基酸组成,是另一种重要的供能物质,每克蛋白质提供4卡路里的热量。但蛋白质的更主要的作用是生长发育和新陈代谢。过量的摄入蛋白质会增加肾脏的负担。因此蛋白的摄入要根据营养状况、生长发育要求达到供求平衡。通常蛋白摄入所产生的热量约占总热量的20%左右为宜。

  • 有关蛋白质与蛋白质水解物理化指标的理解

    [color=#444444]检测单上有两个指标的意思不是很理解,“相对分子质量小于1000的蛋白质水解物”所占比例为80%,而“蛋白质(以干基计),%”为70%。为什么蛋白质(以干基计)的数值还要更低呢。[/color]

  • LC-ESI-MS研究蛋白质复合物

    LC-ESI-MS研究蛋白质复合物

    LC-ESI-MS研究蛋白质(多聚体)复合物的实验中,LC用水作流动相,蛋白质及复合物带太多水分子而使质谱图复杂,而不易看到蛋白质和小分子配体的结合,而用酸水作流动相,又常遇到蛋白复合物被破坏的问题,请问有没有好的分析策略?向各位请教啦,谢谢!从图上可以看出右方四聚体部分的多电荷质谱图复杂,带有较多水分子。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_648498_1634433_3.png

  • 【转帖】生命所需——蛋白质和多肽蛋白质粉!

    人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄 蛋白质RNL(g/d)初生—6个月 1.5-31岁 353岁 455岁 557岁 609岁 6510-16岁 75-85成年女性 65成年男性 75妊娠 +15乳母 +20根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。

  • 什么是大豆蛋白质?

    [size=10.5pt][color=#0000ff][font=微软雅黑]什么是大豆蛋白质?[/font][/color][/size][size=10.5pt][font=微软雅黑]大豆蛋白质是一种植物性蛋白质。大豆蛋白质的氨基酸组成与牛奶蛋白质相近,除蛋氨酸略低外,其余必需氨基酸含量均较丰富,是植物性的完全蛋白质,在营养价值上,可与动物蛋白等同,在基因结构上也是最接近人体氨基酸,所以是最具营养的植物蛋白质。[/font][/size][size=10.5pt][font=微软雅黑]大豆蛋白质是由一系列氨基酸通过肽键结合而成的高分子有机聚合物,它主要由清蛋白和球蛋白组成,其中清蛋白约占5%,球蛋白约占90%。[/font][/size][size=10.5pt][font=微软雅黑]大豆蛋白也有缺点,怕高温,气味怪。大豆蛋白的食用温度最好不要用鲜开始,100℃的开水会破坏大豆蛋白质结构,会降低其营养价值。同时,大豆蛋白含有的大豆异黄酮等等物质让大豆蛋白质的冲食具有一定的腥味。[/font][/size]

  • 蛋白质数据库介绍

    蛋白质数据库1.PIR和PSDPIR国际蛋白质序列数据库(PSD)是由蛋白质信息资源(PIR)、慕尼黑蛋白质序列信息中心(MIPS)和日本国际蛋白质序列数据库(JIPID)共同维护的国际上最大的公共蛋白质序列数据库。这是一个全面的、经过注释的、非冗余的蛋白质序列数据库,包含超过142,000条蛋白质序列(至99年9月),其中包括来自几十个完整基因组的蛋白质序列。所有序列数据都经过整理,超过99%的序列已按蛋白质家族分类,一半以上还按蛋白质超家族进行了分类。PSD的注释中还包括对许多序列、结构、基因组和文献数据库的交叉索引,以及数据库内部条目之间的索引,这些内部索引帮助用户在包括复合物、酶-底物相互作用、活化和调控级联和具有共同特征的条目之间方便的检索。每季度都发行一次完整的数据库,每周可以得到更新部分。PSD数据库有几个辅助数据库,如基于超家族的非冗余库等。PIR提供三类序列搜索服务:基于文本的交互式检索;标准的序列相似性搜索,包括BLAST、FASTA等;结合序列相似性、注释信息和蛋白质家族信息的高级搜索,包括按注释分类的相似性搜索、结构域搜索GeneFIND等。PIR和PSD的网址是:http://pir.georgetown.edu/。数据库下载地址是:ftp://nbrfa.georgetown.edu/pir/。2. SWISS-PROT SWISS-PROT是经过注释的蛋白质序列数据库,由欧洲生物信息学研究所(EBI)维护。数据库由蛋白质序列条目构成,每个条目包含蛋白质序列、引用文献信息、分类学信息、注释等,注释中包括蛋白质的功能、转录后修饰、特殊位点和区域、二级结构、四级结构、与其它序列的相似性、序列残缺与疾病的关系、序列变异体和冲突等信息。SWISS-PROT中尽可能减少了冗余序列,并与其它30多个数据建立了交叉引用,其中包括核酸序列库、蛋白质序列库和蛋白质结构库等。利用序列提取系统(SRS)可以方便地检索SWISS-PROT和其它EBI的数据库。SWISS-PROT只接受直接测序获得的蛋白质序列,序列提交可以在其Web页面上完成。SWISS-PROT的网址是:http://www.ebi.ac.uk/swissprot/。3. PROSITEPROSITE数据库收集了生物学有显著意义的蛋白质位点和序列模式,并能根据这些位点和模式快速和可靠地鉴别一个未知功能的蛋白质序列应该属于哪一个蛋白质家族。有的情况下,某个蛋白质与已知功能蛋白质的整体序列相似性很低,但由于功能的需要保留了与功能密切相关的序列模式,这样就可能通过PROSITE的搜索找到隐含的功能motif,因此是序列分析的有效工具。PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;除了序列模式之外,PROSITE还包括由多序列比对构建的profile,能更敏感地发现序列与profile的相似性。PROSITE的主页上提供各种相关检索服务。PROSITE的网址是:http://www.expasy.ch/prosite/。4. PDB蛋白质数据仓库(PDB)是国际上唯一的生物大分子结构数据档案库,由美国Brookhaven国家实验室建立。PDB收集的数据来源于X光晶体衍射和核磁共振(NMR)的数据,经过整理和确认后存档而成。目前PDB数据库的维护由结构生物信息学研究合作组织(RCSB)负责。RCSB的主服务器和世界各地的镜像服务器提供数据库的检索和下载服务,以及关于PDB数据文件格式和其它文档的说明,PDB数据还可以从发行的光盘获得。使用Rasmol等软件可以在计算机上按PDB文件显示生物大分子的三维结构。RCSB的PDB数据库网址是:http://www.rcsb.org/pdb/。5. SCOP蛋白质结构分类(SCOP)数据库详细描述了已知的蛋白质结构之间的关系。分类基于若干层次:家族,描述相近的进化关系;超家族,描述远源的进化关系;折叠子(fold),描述空间几何结构的关系;折叠类,所有折叠子被归于全α、全β、α/β、α+β和多结构域等几个大类。SCOP还提供一个非冗余的ASTRAIL序列库,这个库通常被用来评估各种序列比对算法。此外,SCOP还提供一个PDB-ISL中介序列库,通过与这个库中序列的两两比对,可以找到与未知结构序列远缘的已知结构序列。SCOP的网址是:http://scop.mrc-lmb.cam.ac.uk/scop/。6. COG蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。COG库的网址是:http://www.ncbi.nlm.nih.gov/COG。下载COG库和COGNITOR程序在:ftp://ncbi.nlm.nih.gov/pub/COG

  • 【求助】蛋白质沉淀和水解蛋白质结合物的应用规则

    在前处理中,内脏组织大多杂质很多,需要沉淀蛋白质,沉淀后离心,提上清夜再萃取,但内源性物质中的待检物同时也会和蛋白质成结合状态,需要水解,再萃取。所以请问如果我先沉淀了蛋白,那么会不会把成结合状态的待检物一同沉淀,损失待检物。在运用中如何处理蛋白质杂质和蛋白质结合物的前处理问题?

  • 【转帖】磷酸化蛋白质及多肽相关研究的技术进展

    磷酸化蛋白质及多肽相关研究的技术进展 摘要磷酸化修饰是一种重要的蛋白质化学修饰,对蛋白质功能的完成或改变起到重要作用。该领域的研究存在很多技术难点,对该领域研究形成了挑战。近年来相关技术有了很多突破,磷酸化研究也取得了很多新的成就。文章将从磷酸化蛋白的检出、磷酸化蛋白质和肽段的富集、生物质谱技术的改进以及磷酸化蛋白和多肽的定量与比较几个方面介绍该研究领域的技术进展。关键词磷酸化蛋白磷酸化肽生物质谱定量分析生命活动与蛋白质的动态变化密切 摘要 磷酸化修饰是一种重要的蛋白质化学修饰, 对蛋白质功能的完成或改变起到重要作用。该领域的研究存在很多技术难点, 对该领域研究形成了挑战。近年来相关技术有了很多突破, 磷酸化研究也取得了很多新的成就。文章将从磷酸化蛋白的检出、磷酸化蛋白质和肽段的富集、生物质谱技术的改进以及磷酸化蛋白和多肽的定量与比较几个方面介绍该研究领域的技术进展。 关键词 磷酸化蛋白 磷酸化肽 生物质谱 定量分析

  • 关于测食品中蛋白质、脂肪、膳食纤维、灰分、水分的回收率的问题

    现在我们实验室在测食物中的营养成分,为了保证结果的精密度,我们做了三个及三个以上的平行样。但是在准确度方面产生了疑惑,杨月欣老师的《实用食物营养成分分析手册》中说准确度就是指的加标回收率,那么我们的蛋白质、脂肪、膳食纤维、灰分、水分有“标准品”,如果没有标准品,大家是怎么做的准确度检测呢?

  • 【讨论】蛋白质折叠病

    蛋白质折叠病 ▲许多疾病,如阿兹海默症(Alzheimer's),疯牛病(Mad Cow, BSE),可传播性海绵状脑病(CJD),肌萎缩性脊髓侧索硬化症(ALS),还有帕金森氏症(Parkinson's)等正是由于一些细胞内的重要蛋白发生突变,导致蛋白质聚沉或错误折叠而造成的。因此,深入了解蛋白质折叠与错误折叠的关系对于这些疾病的致病机制的阐明以及治疗方法的寻找将大有帮助。 ▲基因组序列的发展使我们得到了大量的蛋白质序列,结构信息的获得对于揭示它们的生物学功能是十分重要的。依靠现有手段(X-ray晶体衍射、NMR及电镜)测定蛋白质的结构需要较长的时间,因此结构解析的步伐已落后于发现新蛋白的步伐。而结构预测的方法虽然速度较快,但可靠性并不高,只有当我们对于维持蛋白质结构,驱动蛋白质折叠的理化因素更为了解,这一方法才可能有根本的改进。另外,我们对于蛋白质相互作用、配体与蛋白质的作用等结构与功能关系的研究也有赖于蛋白质折叠机制的阐明。【蛋白质折叠与“折叠病” 】 人们对由于基因突变造成蛋白质分子中仅仅一个氨基酸残基的变化就引起疾病的情况已有所了解,即所谓“分子病”,如地中海镰刀状红血球贫血症就是因为血红蛋白分子中第六位的谷氨酸突变成了颉氨酸。现在则发现蛋白质分子的氨基酸序列没有改变,只是其结构或者说构象有所改变也能引起疾病,那就是所谓“构象病”,或称“折叠病”。 大家都知道的疯牛病,它是由一种称为Prion的蛋白质的感染引起的,这种蛋白质也可以感染人而引起神经系统疾病。在正常机体中,Prion是正常神经活动所需要的蛋白质,而致病Prion与正常Prion的一级结构完全相同,只是空间结构不同。这一疾病的研究涉及到许多生物学的基本问题。一级结构完全相同的蛋白质为什么会有不同的空间结构,这与Anfinsen原理是否矛盾?显然这里有蛋白质的能量和稳定性问题。 从来认为蛋白结构的变化来自于序列的变化,而序列的变化来自于基因的变化,生命信息从核酸传递到蛋白。而致病Prion的信息已被诺贝尔奖获得者普鲁辛纳证明不是来自基因的变化,致病蛋白Prion导致正常蛋白Prion转变为致病的折叠状态是通过蛋白分子间的作用而感染!这种相互作用的本质和机制是什么?仅仅改变了折叠状态的分子又如何导致严重的疾病?这些问题都不能用传统的概念给予满意的解释,因此在科学界引起激烈的争论,有关研究的强度和竞争性也随之大大增强。 由于蛋白质折叠异常而造成分子聚集甚至沉淀或不能正常转运到位所引起的疾病还有老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤等等。由于分子伴侣在蛋白质折叠中至关重要的作用,分子伴侣本身的突变显然会引起蛋白质折叠异常而引起折叠病。随着蛋白质折叠研究的深入,人们会发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。现在发现有些小分子可以穿越细胞作为配体与突变蛋白结合,从而使原已失去作战能力的突变蛋白逃逸“蛋白质质量控制系统”而“带伤作战”。这种小分子被称为“药物分子伴侣”,有希望成为治疗“折叠病”的新药。 新生肽的折叠问题或蛋白质折叠问题不仅具有重大的科学意义,除了上面提到的在医学上的应用价值外,在生物工程上具有极大的应用价值。基因工程和蛋白工程已经逐渐发展成为产值以数十亿美元计的大产业,进入21世纪后,还将会有更大的发展。但是当前经常遇到的困难,是在简单的微生物细胞内引入异体DNA后所合成的多肽链往往不能正确折叠成为有生物活性的蛋白质而形成不溶解的包含体或被降解。这一“瓶颈”问题的彻底解决有待于对新生肽链折叠更多的认识。

  • 生命的物资基础蛋白质

    http://simg.instrument.com.cn/bbs/images/default/em09503.gif蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。 因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质是由长条的氨基酸所构成。人体本身可以产生的氨基酸叫做非必需氨基酸。有八种氨基酸,叫做必需氨基酸,是人体所不能产生的,必须由饮食所提供。  很多高蛋白的食物都来源于动物,像猪肉、鸡肉、鱼、牛奶、干酪、酸奶和鸡蛋,这些可以提供人体必须的全部氨基酸。当然,这并不是给其他来自植物的蛋白质食品打折扣,我们所获取的蛋白质大概有三分之一来自谷类、豆类、水果和蔬菜。 有些植物可能某些必须氨基酸的含量比较低。多种植物食品的结合才能提供每餐所必须的营养,谷物类所含的必须的氨基赖氨酸很低,而豆类所含的氨基蛋氨酸则很低。  通过结合豆类食品和谷物食品(例如面包片上放豆子,小扁豆和米饭一起吃),或者种子坚果和谷物(例如豌豆、黄油、三明治),身体便在一餐饭中获得了足够数量的多种氨基酸。 很多人都以为每顿饭都要包含所有的必须氨基酸,但这样其实是不必要的。如果一个人每天吃了一些含蛋白质的食物,那么这些充足的氨基酸便会在体内循环,已选择出那些身体所必须的氨基酸。只要饮食能够提供超过24小时必须氨基酸的最少量,就没有蛋白质缺乏的危险。这对乳蛋素食者来说是非常简单的,因为他们吃鸡蛋、牛奶、干酪和酸奶,都含有丰富数量的必须氨基酸。只有不吃任何动物食品的严格的素食主义者,才会有体内蛋白质过低的危险。  豆奶、坚果、豆荚和谷物都可以为严格的素食主义者提供足够的蛋白质,但我还是建议素食运动员要请教运动营养专家来确保自己活得充足的营养。 每天摄入充足的蛋白质并不困难,事实上运动员和经常锻炼的人通过规律的饮食和甜点可以获得他们所需要的营养。  富含蛋白质食物包括:牲畜的奶,牛奶、羊奶、马奶等;畜肉,牛、羊、猪、狗肉等;禽肉,鸡、鸭、鹅、鹌鹑、驼鸟等;蛋类,鸡蛋、鸭蛋、鹌鹑蛋等及鱼、虾、蟹等;还有大豆类,黄豆、大青豆和黑豆等,其中黄豆的营养价值最高,它是婴幼儿食品中优质的蛋白质来源;此外芝麻、瓜子、核桃、杏仁、松子等干果类蛋白质的含量均较高。  食物中以豆类、花生、肉类、乳类、蛋类、鱼虾类含蛋白质较高,而谷类含量较少,蔬菜水果中更少。人体对蛋白质的需要不仅取决于蛋白质的含量,而且还取决于蛋白质中所含必需氨基酸的种类及比例。由于动物蛋白质所含氨基酸的种类和比例较符合人体需要,所以动物性蛋白质比植物性蛋白质营养价值高。  在植物性食物中,米、面粉所含蛋白质缺少赖氨酸,豆类蛋白质则缺少蛋氨酸和胱氨酸,  故食混合性食物可互相取长补短,大大提高混合蛋白质的利用率,若再适量补充动物性蛋白质,可大大提高膳食中蛋白质的营养价值。虽然人乳、牛乳、鸡蛋中的蛋白质含量较低,但它们所含的必需氨基酸量基本上与人体相符,所以营养价值较高,是膳食中最好的食品。

  • [推荐]蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用zz

    褚福亮,王福生, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室 北京市 100039项目负责人 王福生, 100039 ,北京市丰台路26号, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室. fswang@public.bta.net.cn电话:010-66933332 传真:010-63831870收稿日期 2002-08-15 接受日期 2002-09-03摘要新近广泛应用蛋白质芯片(ProteinChipâ Array)系统成功鉴定出了一些重要疾病(如肿瘤和危害性较大的传染病)新的、特异性的生物标记(biomarkers),后者不仅在生物医学的基础方面具有重要的科学价值,而且在临床疾病的诊断、治疗和预防发挥重要的指导作用,显示了良好的发展前景.本文就表面增强的激光解析电离-飞行时间-质谱(SELDI-TOF-MS)相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.此外,我们就蛋白质谱分析技术在病毒性肝炎、肝硬化和肝癌等一系列肝病方面的应用策略和前景进行了分析.褚福亮,王福生. 蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用.世界华人消化杂志 2002 10(12):1431-14350 引言人类基因组计划已经进入后基因组时代-即功能基因组时代[1],作为基因功能的直接体现者-蛋白质,及其之间的相互作用越来越引起基础和临床科学家们的关注[2-6] .因为要彻底了解生命的本质,只把基因测出来还是不够的,还必须要了解其在生物生长、发育、衰老和整个生命过程中的功能、不同蛋白质之间的相互作用以及他们与疾病发生、发展和转化的规律[7-14] .正因为如此,有关上述问题的蛋白质组学研究成了今天生命科学最重要的焦点之一[15] .为了阐明蛋白质在上述生命现象中的作用和相关机制,人们设计了许多新的方法技术,如:二维电泳、质谱分析、微距阵列、酵母双杂交和噬菌体展示等,这些方法在一些特定的情况下,虽然显示出了他们各自不同的优点,但是同样也存在着较大的局限性,难以开展大规模、超微量、高通量、全自动筛选蛋白质等方面的分析,因而设计更全面、同时研究多种蛋白质相互作用的技术,在功能基因组和蛋白组学的研究中建立一个更有效的技术平台,成为本领域中优先关注的问题[16] .近来,美国Ciphergen(赛弗吉)公司研制的ProteinChipâ Array的仪器,并建立了一种新的蛋白质飞行质谱-表面增强的激光解析离子化-飞行时间-质谱(surface-enhanced laser desorption/inionation-time of flight-mass spectra, SELDI-TOF-MS),已取得可喜的进展,筛选出了许多与疾病相关的新型生物标志,不仅为临床疾病的诊断和治疗等提供了新的选择,而且在基础科学、新药研制和疾病预防等方面具有广泛的应用前景[16-18] .本文就SELDI-TOF-MS相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.1 ProteinChipâ Array系统和SELDI-TOF-MS的特点1.1 蛋白质芯片系统的组成和原理 蛋白质芯片系统由三部分组成:蛋白质芯片、芯片阅读器和芯片软件.供研究用芯片上有6-10芯池,不同的芯片表面上的化学物质不同,芯片表面分为两大类:一类为化学类表面,包括经典的色谱分析表面,如:结合普通蛋白质的正相表面,用于反相捕获的疏水表面,阴阳离子交换表面和捕获金属结合蛋白的静态金属亲合捕获表面;另一类称为生物类,特定的蛋白质共价结合于预先活化的表面阵列,可以用来研究传统的抗体一抗原反应,DNA和蛋白质作用,受体、配体作用和其他的一些分子之间的相互作用[19] . 根据检测目的不同,可以选用不同的芯片,或者自己设计芯片.将样本和对照点到芯池上以后,经过一段时间的结合反应,用缓冲液或水洗去一些不结合的非特异分子,再加上能量吸收分子(energy absorbing molelule,EAM)溶液,使样本固定在芯片表面.当溶液干燥后,一个含有分析物和大量能量吸收分子“晶体”就形成了.能量吸收分子对于电离来说非常重要.经过以上步骤,就可经把芯片放到芯片阅读器中进行质谱分析. 在阅读器的固定激光束下,芯片上、下移动,使样本上每一个特定点都被“读”到.激光束的每一次闪光释放的能量都聚集在该区一个非常小的点上(focused laser beam,聚焦激光束).这样,每个区都含有丰富的,可寻址(addressable)的位置.蛋白质芯片处理软件精确控制激光寻读过程.当样本受到激发,就开始电离和解除吸附.不同质量的带电离子在电场中飞行的时间长短不同,计算检测到的不同时间,就可以得出质量电荷比,把他输入电脑,形成图像[19].Ball et al [20]采用一种称为人工神经网络(artifical neural network,ANN)的算法处理出现的成千上万的峰,鉴定出三个分子量为13 454、13 457和14 278的生物标记分子,使疾病预测率达到97.1 %.1.2 ProteinChipâ Array芯片和SELDI-TOF-MS的特点 新型蛋白芯片与以往的蛋白芯片不同之处:SELDI-TOF-MS,他是在MALDI(matrix-assisted laser desorption/inionation)[21,22]基础上,改进后实行表面增强的飞行质谱.SELDI-TOF-MS优于MALDI-TOF表现为他不会破坏蛋白质,或使样本与可溶的基质共结晶来产生质谱信号.对SELDI-TOF来说,可以直接将血清、尿液、组织抽取物等不需处理直接点样检测[40] 由于一部分非特异结合的分析物被洗去,因而出现的质峰非常一致,有利于后期分析[23,24] . 与二维电泳相比:二维电泳分析蛋白质的分子量在30 KDa以上时电泳图谱较清楚,对在组织抽提物中占很大比例的低丰度的蛋白质不能被检出;其次,二维电泳胶上的蛋白质斑点很大一部分包含一种以上的蛋白质;而且,二维电泳耗时长,工作量大,对象染色转移等技术要求高,不能完全实现自动化.而SELDI-TOF在200 Da-500 KDa区间都可以给出很好的质谱,对一个样本的分析在几十分钟内就可以完成[19],处理的信息量远远大于二维电泳;对于低丰度物质,即使浓度仅attomole(10-18)的分子,只要与表面探针结合,就可以检测到,这也是二维电泳所不具备的[24,25] . 对于微距阵蛋白芯片来说,需要一种不破坏折叠的蛋白质构象的固定技术,再与另外的蛋白质反应,经检测莹光来观察蛋白质之间的作用[26] .而基于SELDI-TOF-MS的ProteinChip分析蛋白质不需溶解、不需染色、廉价、针对性强. 因而蛋白质芯片仪具有以下优势:(1)可直接使用粗样本,如:血清、尿液、细胞抽提物等[27] .(2)使大规模、超微量、高通量、全自动筛选蛋白质成为可能;(3)他不仅可发现一种蛋白质或生物标记分子,而且还可以发现不同的多种方式的组合蛋白质谱,可能与某种疾病有关[28] (4)推动基因组学发展,验证基因组学方面的变化,基于蛋白质特点发现新的基因.可以推测疾病状态下,基因启动何以与正常状态下不同,受到那些因素的影响,从而跟踪基因的变化[2,14,15] . 其存在的问题:对于不同的样本,根据检测的目标采取或者设计几种芯片,理论上可以把所有的相同性质蛋白质捕获,但是实际上仍有少量的分子没与表面探针结合.使用SELDI-TOF-MS,仅能给出蛋白质的分子量,不能给出C端、N端的序列,也没法知道蛋白质的构型,因此需要将蛋白质充分纯化后,用蛋白酶消化芯片上的蛋白质,分析肽段,再用生物信息学方法鉴定蛋白质序列[18,24] .另外,在国内,该芯片费用较高,分析质谱需要大量后续工作支持.

  • 蛋白质检测仪应用范围

    蛋白质检测仪应用范围

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/12/202312070952447089_1992_5604214_3.png!w690x690.jpg[/img]  蛋白质检测仪是一种广泛应用于生物学、医学、农业、食品科学和环境科学领域的仪器。它能够检测样本中的蛋白质含量,提供有关样本中蛋白质类型和数量的信息。下面将介绍蛋白质检测仪的应用范围。  1. 生物学和医学研究  蛋白质检测仪在生物学和医学领域的应用非常广泛。它可以帮助研究人员检测生物样本中的蛋白质表达水平,了解不同生物样本之间的差异。这有助于研究疾病的发生机制、药物的作用机制以及治疗效果的评估。蛋白质检测仪还可以用于蛋白质组学的研究,帮助科学家们发现新的生物标志物和治疗靶点。  2. 农业和食品科学  在农业和食品科学领域,蛋白质检测仪可用于检测食品中的蛋白质含量,确保食品的质量和安全。它还可以用于研究植物蛋白质的表达和含量,了解植物的生长和发育过程。这有助于提高农作物的产量和品质,为农业生产提供科学依据。  3. 环境科学  蛋白质检测仪在环境科学领域也有广泛的应用。它可以用于检测水体、土壤和空气中的蛋白质含量,了解环境中的生物活动和污染情况。这有助于评估环境的健康状况,为环境保护提供科学依据。  总之,蛋白质检测仪的应用范围非常广泛,它可以帮助研究人员了解生物样本中的蛋白质表达水平,提高农作物的产量和品质,评估环境的健康状况。随着科学技术的发展,蛋白质检测仪的应用前景将更加广阔。

  • 蛋白质的测定

    [color=#444444]现在有两个方法:[/color][color=#444444]GB/T 5413.1-1997,[/color][color=#444444]主要用于婴儿配方食品和乳制品中蛋白质的测定;[/color][color=#444444] GB5009.5-2003,[/color][color=#444444]主要用于食品中蛋白质的测定。都用凯氏定氮法,但是最后计算公式有差异。[/color][color=#444444]5413:蛋白质含量=[u] (V-V0)* C(H+)*2* 0.014 *F [/u] * 100[/color][color=#444444] m* 25/1005009:蛋白质含量=[u] (V1-V2)* C* 0.014 *F [/u] * 100[/color][color=#444444] m* 10/100[/color][color=#444444]折算下来,5413 乘的系数是 8,而5009乘的系数为10。搞不懂了?为啥会这样?[/color][color=#444444][/color][color=#444444]究竟用两种方法测出的奶粉的蛋白质,会不会有很大差异呢?[/color]

  • 蛋白质纯化及复性

    蛋白质纯化及复性 重组蛋白在大肠杆菌(E. coli)高效表达时,往往以不溶的、无活性的蛋白聚集体,即包涵体(inclusion body)的形式存在于细胞内。必须从细胞内分离出包涵体,采用高浓度变性剂(如7.0mol/L盐酸胍、8.0mol/L脲)溶解包涵体,然后除去变性剂或降低变性剂的浓度,使包涵体蛋白得以复性,最后再用色谱法使目标蛋白质得到纯化。其中包涵体蛋白的复性和纯化是整个过程中的核心。 目前重组蛋白生产中普遍存在的问题是:(1)复性效率低。传统的复性方法稀释法和透析法。稀释复性法对样品几十倍,甚至上百倍的稀释会使样品的体积急剧增大,给后续的分离纯化带来很大的困难,而且复性过程中需要较大的复性容器。透析法耗时较长,而且要多次更换透析溶液。这两种方法的共同缺点是蛋白质在复性过程中会发生聚集而产生大量沉淀,复性效率低,通常蛋白质的活性回收率只有5~20%,而且复性后的蛋白质溶液中含有大量的杂蛋白,需要进行进一步的分离纯化。(2)工艺路线烦琐,生产周期长。在传统的重组蛋白质分离纯化工艺中,大多采用经典的软凝胶分离介质,由于这种介质的颗粒较大,分离效率较差,因此常常需要采用多种不同模式的色谱操作联用对目标蛋白质进行纯化,才能得到纯度符合一定标准的目标蛋白质。另外,这种色谱介质的耐压性很差,只能在流速较低的情况下进行操作,分离纯化时间较长。分离纯化步骤多和分离时间长使得蛋白质的质量回收率和活性回收率很低。而且在传统的重组蛋白质生产工艺中,蛋白质的复性和纯化是生产过程中两个独立的单元操作,也在很大程度上制约着生产效率。(3)生产成本高,设备投资大。由于复性和分离纯化分别单独进行,而且分离纯化步骤多,每一步都需要有与之配套的设备,致使设备投资大,生产成本高。随着生产规模的增加,这种弊端会愈来愈严重。 1991年耿信笃教授首先将高效疏水相互作用色谱(HPHIC)用于变性蛋白的复性,很好的解决了上述问题,现已成功用于重组人干扰素-g(rhIFN-g)、重组人干扰素-a(rhIFN-a)、人粒细胞集落刺激因子(rhG-CSF)、重组人胰岛素原(proinsulin)、重组牛朊病毒(prion)等重组蛋白以及溶菌酶和核搪核酸酶等标准模型蛋白的复性与同时纯化中。目前,排阻色谱法、离子交换色谱法和亲合色谱法也已用于蛋白质的复性和同时纯化中。与传统的稀释法及透析法比较,用色谱法进行蛋白复性的优点是:①在进样后可很快除去变性剂;②由于色谱固定相对变性蛋白质的吸附,可明显地减少、甚至完全消除复性过程中蛋白质聚集体和沉淀的产生,从而提高蛋白质复性的质量和活性回收率;③在蛋白质复性的同时可使目标蛋白质与杂蛋白分离以达到纯化的目的,使复性和纯化同时进行;④便于回收变性剂,以降低废水处理成本。简言之,色谱法复性可以提高蛋白质的活性和质量回收率,将蛋白复性和纯化集成在一步操作完成,缩短了操作步骤和生产时间,减少了设备投资,使生产成本大大降低,已经引起了全世界范围内许多生化研究者和重组蛋白药物生产厂家的关注。由于高效液相色谱(HPLC)分离效率高,往往在一步操作中便可得到纯度符合要求的蛋白质,而且分离速度快,在应用方面具有更大的优势。

  • 蛋白修饰与蛋白质鉴定

    现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和进行蛋白质鉴定蛋白翻译后修饰。分泌蛋白和膜相关蛋白附着于细胞膜上的或将被排泄出去的蛋白质是由细胞内质网膜上附着的核糖体合成。附着有核糖体的内质网被称为糙面型内质网。这类蛋白质都含有一个N-末端(或氨基端),我们称之为信号序列或信号肽。这个信号肽通常情况下含有13-36个主要疏水性残基,同时它含有多蛋白复合物,我们称之为信号识别粒子(SRP)。这种信号肽在通过内质网膜之后会被去除。信号肽的去除过程是在信号肽酶催化作用下完成的。含有一个信号肽的蛋白质被称为前蛋白,有别于原蛋白。然而,某些用于分泌的蛋白在分泌之后会进一步被蛋白水解,因此包含有原蛋白的序列。这类蛋白质被称为前原蛋白。蛋白水解性裂解许多蛋白质在翻译之后会经历水解性裂解过程。其中最为简单的形式是去除起始蛋氨酸。许多蛋白质合成了不活跃的前体细胞,这些细胞只能在合适的生理条件下通过限制性蛋白水解过程产生活性。在凝血过程中使用到的胰腺酶和酶类就是后者的例证。多肽去除时产生活性的不活跃的前体蛋白,我们称之为原蛋白。前原蛋白的翻译后加工过程的一个复杂的例子就是脑垂体分泌合成的前阿黑皮素原的裂解过程(有关前阿黑皮素原的讨论,见肽类激素页)。这类前原蛋白经过复杂的裂解,根据合成的前阿黑皮素原的细胞定位而不同,其路径也有所不同。另一个前原蛋白的例子就是胰岛素。由于胰岛素是由胰腺分泌的,因此它有一个前肽。随着含24个氨基酸的信号肽的裂解,这类蛋白也折叠成了胰岛素原。胰岛素原进一步分裂,产生活跃的胰岛素,它包含两个肽链,由二硫键进行连接。但仍有其他的蛋白(酶类)被合成为非活跃的前体细胞,被称为酶原。酶原在蛋白水解性裂解时会产生活性,在凝血串联蛋白质链的若干蛋白质中都会发生这种现象。甲基化作用蛋白翻译后的甲基化过程主要发生在氮原子和氧原子上。活性甲基供体是活性腺苷甲硫胺酸(SAM)。最常见的甲基化作用发生在赖氨酸残基的ε-amine上。脱氧核糖核酸组蛋白中赖氨酸残基的甲基化作用可调节核染色质结构,因此可调节其转录活性。赖氨酸原本被认为是一种常设共价标记,可提供长期信号,甚至包括转录记忆时的组蛋白依赖机制。然而,最近的临床研究表明赖氨酸甲基化作用与其他共价修饰体相似,作用时间短,并能通过反脱甲基化活动进行动态调节。最近的组学研究发现表明,赖氨酸残基的甲基化作用不仅发生在核染色质层面,而且还通过修订转录因子影响基因表达。组氨酸的咪唑环,精氨酸的胍基部分以及谷氨酸盐和天冬氨酸盐的R组酰胺(R-group amides )上,都发现了额外的氮甲基化作用。谷氨酸盐和天冬氨酸盐的R组羧化物也会发生氧甲基化作用并形成甲基酯。蛋白可能在半胱氨酸的R[

  • 【求助】蛋白质分析

    向大家请教几个问题1. 在使用MALDI-TOF的时候,为什么大分子量的蛋白质可以被有效分析,而大于80bp的DNA分析的效果不好?2. Electrospray-TOF和MALDI-TOF在分析蛋白质的时候有那些区别?3. 质谱用于蛋白质测序中的几种方法及原理?先道谢!本人对蛋白质分析实在是不熟悉。请解答的详细一些!再次致谢!

  • 蛋白质检测仪有什么作用

    云唐蛋白质检测仪是一种用于测定食品、生物样品等中蛋白质含量的仪器设备。它在食品科学、生物学、医学和生化等领域具有重要作用,以下是其主要作用:  食品质量控制: 在食品工业中,蛋白质是食品的主要组分之一,其含量影响着食品的口感、质地、营养价值等。蛋白质检测仪可以用于监测食品样品中的蛋白质含量,确保产品的质量稳定性和一致性。  生物学研究: 在生物学研究中,蛋白质是细胞功能和结构的重要组成部分。蛋白质检测仪可以帮助研究人员测定生物样品(如细胞提取物、血清等)中蛋白质含量,从而深入了解细胞的生物学特性和疾病机制。  医学诊断: 在临床医学中,某些疾病的发展可能会导致血清蛋白质含量的改变。蛋白质检测仪可以用于测定血液和尿液中的蛋白质含量,帮助医生进行疾病诊断和监测。  药物研发: 药物研发过程中,蛋白质的定量分析是评估药物效果的重要环节。蛋白质检测仪可以用于分析药物与蛋白质的相互作用,评估药物对蛋白质的影响。  生化实验: 在生化实验室中,蛋白质检测仪常用于定量测定蛋白质样品,用于分析实验数据和评估实验结果的可靠性。  环境监测: 在环境科学领域,蛋白质检测仪可以用于监测水体、土壤等环境中蛋白质的含量,从而评估环境质量。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制