当前位置: 仪器信息网 > 行业主题 > >

蛋白质提取

仪器信息网蛋白质提取专题为您整合蛋白质提取相关的最新文章,在蛋白质提取专题,您不仅可以免费浏览蛋白质提取的资讯, 同时您还可以浏览蛋白质提取的相关资料、解决方案,参与社区蛋白质提取话题讨论。

蛋白质提取相关的资讯

  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
  • 蛋白质测序技术发展漫谈(中)
    前文回顾(点击):蛋白质测序技术发展漫谈(上)前面提到,基于质谱的蛋白质测序主要流程为:首先对蛋白质酶解得到肽段,经过LC-MS/MS分析得到相应的质谱数据,再使用测序软件根据质谱数据对肽段测序,最后对测序得到的肽段序列进行拼接。其中根据肽段的二级质谱图进行从头测序是其核心内容。目前已发展的肽段从头测序算法有三十余种,主要可以分为三类:图方法、穷举法和动态规划法,包括PEAKS[ 1]、pNovo系列[2]、Pepnovo[3]、Novor[4]等。 Muth[5]评估了Novor、PEAKS和PepNovo三种测序软件在实验数据集上测序的准确度,这三款软件对肽段的测序准确度最高只有35%。这是由于质谱谱图中存在着噪声和干扰离子,无法有效的区分谱图中可用于肽段测序的碎片离子[6],使得精准解析谱图的难度增加且耗费大量的时间。基于碎片离子的蛋白质组稳定同位素标记定量方法通过在细胞培养或样品处理的过程中引入不同种类的同位素标记,混合后进行LC-MS分析。不同稳定同位素标记的相同序列肽段质量相同或相近,可在质谱中同时碎裂,形成成对的碎片离子[7]。借鉴该方法,可更好的区分并提取用于测序的碎片离子,用于肽段的序列测定。Nie[8]在细胞培养时加入同位素标记的精氨酸和赖氨酸,再利用Lys-N和Arg-C对提取的蛋白质酶解,形成N端为精氨酸、C端为赖氨酸的等重肽段,在二级谱中可形成成对的b离子和成对的y离子,但这种标记方法只能在细胞水平标记,且通过两种蛋白酶酶解后只有少部分肽段质量相等并被鉴定到。Zhang[9]发展了部分等重肽段末端标记方法,使用Lys-C酶解后,肽段的C端为含有氨基的赖氨酸,再通过对两末端使用不同同位素标记,使得相同序列的肽段质量差为2 Da,在二级谱中产生了质量差为4 Da的成对b离子和质量差为6 Da的成对y离子,为使肽段能够碎裂在同一张谱图中,质谱的分离窗口需要被放大到4 m/z甚至更多[10],但放大分离窗口会导致更多的质量相近的肽段发生共碎裂,谱图会变得更加复杂难以解析,增加了从头测序的难度。为此,我们开发了一种基于二甲基化标记和胰蛋白酶催化18O标记的肽段末端准等重标记(Pseudo Isobaric Peptide Termini Labelling,PIPTL)从头测序方法 [11](图1)。经该方法进行同位素标记后,序列相同的肽段质量仅相差0.0166 Da,这些准等重肽段无需扩大质谱分离窗口即可在质谱中同时碎裂,产生成对的b离子和成对的y离子;基于发展的PIPTL-Novo测序算法,根据不同系列碎片离子质量差可快速准确提取并区分b/y离子,再对b/y离子进行测序分析,从而实现对肽段的准确测序。以牛血清白蛋白为研究对象,对肽段从头测序的准确度进行评价,测序准确率为95.5%;最后将此从头测序方法应用于对单克隆抗体赫赛汀重链和轻链的序列测定,对赫赛汀的酶解肽段从头测序准确率为93.6%。图1 基于二甲基化和胰蛋白酶催化18O标记的PIPTL-Novo策略参考文献[1] Ma B, Zhang K, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 2003, 17(20): 2337-42.[2] Yang H, Chi H, Zhou W-J, et al. Open-pNovo: de novo peptide sequencing with thousands of protein modifications. J Proteome Res, 2017, 16(2): 645-54.[3] Frank A M, Savitski M M, Nielsen M L, et al. De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res, 2007, 6(1): 114-23.[4] Ma B. Novor: real-time peptide de novo sequencing software. J AmSoc Mass Spectrom, 2015, 26(11): 1885-94.[5] Muth T, Renard B Y. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification? . Brief Bioinform, 2018, 19(5): 954-70.[6] Lu B, Chen T. A suboptimal algorithm for de novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology, 2003, 10(1): 1-12.[7] Merrill A E, Coon J J. Quantifying proteomes and their post-translational modifications by stable isotope label-based mass spectrometry. Curr Opin Chem Biol, 2013, 17(5): 779-86.[8] Nie A-Y, Zhang L, Yan G-Q, et al. In vivo termini amino acid labeling for quantitative proteomics. Anal Chem, 2011, 83(15): 6026-33.[9] Zhang S, Shan Y, Zhang S, et al. NIPTL-Novo: Non-isobaric peptide termini labeling assisted peptide de novo sequencing. J Proteomics, 2017, 154(40-8.[10] Hennrich M L, Mohammed S, Altelaar A M, et al. Dimethyl isotope labeling assisted de novo peptide sequencing. J Am Soc Mass Spectrom, 2010, 21(12): 1957-65.[11] 杨超,刘健慧,张玮杰等,基于末端准等重同位素标记的肽段从头测序方法. 分析化学, 2021, 49 (03), 366-376.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。中国临床质谱产业化发展论坛(点击报名)仪器信息网联合浙江省先进质谱技术与分子检测重点实验室、宁波大学质谱技术与应用研究院,共同举办“第六届中国质谱产业化发展论坛——临床质谱产业化发展”,在2021年第十五届中国科学仪器发展年会(ACCSI 2021)召开同期,邀请临床质谱业内专家、国内质谱企业、第三方医学实验室、医院专家代表,共同就中国临床质谱技术与产业化发展等话题展开探讨、答疑解惑,为中国临床质谱产业链上中下游三方搭建互动交流平台,助力中国临床质谱产业发展,进一步优化和拓展临床质谱产业市场,共同促进中国质谱产业健康快速发展。
  • 科学家绘制世界最大蛋白质图谱
    科学家已经发现了上万种新的蛋白联结,约占蛋白联结总量的四分之一。  为了揭示蛋白质是如何构建细胞与机体,来自多个国家的科学家组成的研究团队筛选了不同生物的细胞,这些细胞从变形虫到蠕虫到老鼠到人类,来源十分广泛。  这项蛋白质科学的壮举,是来自七个国家的三个研究小组合作的结果,由多伦多大学唐纳利中心的Andrew Emili教授和德克萨斯大学奥斯汀分校的EdwardMarcotte教授领导,发现了成百上千种新的蛋白质相互作用,其中细胞内蛋白质的接触作用大约占四分之一。  一个蛋白联结的缺失都会致病。图谱已经帮助科学家锁定病变蛋白。这些数据将通过开放数据库的访问提供给世界各地的研究人员。  虽然十几年前的人类基因组测序无疑是生物学中最伟大的发现之一,然而这只是人们对细胞工作的深入了解的开始。基因只不过是一幅模板,而它的复制品——蛋白质,担任了细胞运转的主要工作。  蛋白间相互联系,共同协作。许多蛋白质结合形成所谓的分子机器并在细胞活动中扮演关键角色,例如合成新的蛋白质,或者是回收旧蛋白,再造新蛋白。但是人类细胞中有上万种蛋白质,其中的大部分我们仍旧不知道它们的作用。  于是有了Emili 和Marcotte的图谱,团队使用最先进的方法,可以提取细胞内数千个分子机器并分析其蛋白构成。然后他们建立了一个类似于社交网站的网络,通过探知未知蛋白与已知蛋白的联结,推知未知蛋白质的功能。例如,未知蛋白与“杂活儿工”蛋白有联结,那么这个未知蛋白极可能也具有细胞修复功能。  今天这项里程碑式的研究收集了九个物种分子机器的信息,分别包含了面包酵母、阿米巴虫、海葵、苍蝇、蠕虫、海胆、青蛙、老鼠和人类,并由此可以绘制出一个生命树图。这个新的图谱将蛋白质结合体数目扩大到已知的十倍有余,并可以让我们观察到它们如何随着时间进行进化的。  “对于我来单单是此项研究的规模就足以吸引人们的眼球,我们已知的每个物种的蛋白联结已达到到原先所知的三倍。我们现在通过蛋白质相互作用网络可以非常可靠的预测,所有动物具有超过一百万种蛋白质相互作用,这从根本上来讲是一个巨大的进步。”Emili说,他也是疾病管理生物标记方面的安大略研究会主席、分子遗传学教授。  研究发现,自从十亿年前原始细胞出现之后,动物生命出现在地球上以前,成千上万种蛋白质协作关系一直保持不变。  “就蛋白质分布而言,人类与其他物种通常是相同的,这不仅印证了我们拥有共同祖先,也对在基因组学的基础上研究多种疾病以及这些疾病如何存在于不同物种中有实际意义。”Marcotte说。  在确定人类疾病的可能原因方面,人们已经证明这个图谱是有用的,例如一种新发现的分子机器名为Commander,由十二个单一的蛋白质组成。人们曾发现一些智力障碍患者的机体里具有编码Commander某些组分的基因,但并不清楚这些蛋白质的机制。  由于Commander存在于所有动物的细胞里,研究生FanTu正在破坏蝌蚪中的蛋白质部件,揭示了胚胎发育阶段脑细胞位置异常,并为复杂的人类起源问题提供了一个可能。  “有了成千上万种蛋白质相互作用,我们的图谱会帮助人们研究蛋白质相互作用和人类疾病的多种联系,这是我们未来几年的研究方向。”Emili博士总结道。
  • 解析人类蛋白质组草图公布
    1 人类蛋白质组草图公布   之前,尽管不少大型的蛋白质组数据集,已经收集约上万个蛋白数据,然而覆盖80%的人类蛋白质组的草图却并未绘制。此次的研究,则突破了这一局限。   该图谱由德国慕尼黑工业大学、约翰霍普金斯大学/印度生物信息研究所等机构的两个团队独立完成。其中,在印度生物信息研究所和美国约翰霍普金斯大学等机构绘制了17 924个基因编码的蛋白质草图,其总数约占人类基因总数的84% 而慕尼黑理工大学领衔的团队,则对19 629个基因编码的蛋白质绘制草图,其总数约占人类基因总数的92%。不过,印度和美国团队,与德国团队所采用的实验数据来源略有不同,印度和美国的研究者从30个人体组织的许多不同的样品及细胞系(包括7种胎儿组织和6种血细胞类型)中提取、纯化所有蛋白质,并用质谱技术揭示组成各蛋白片段的氨基酸序列,因而两种数据的分析方法相对统一 德国的团队所采用的数据从公共数据库收集获得,而后与实验室生成的数据合并完成分析。在德国的研究中,慕尼黑工业大学的Bernhard Kü ster等人建立了搜索性公共数据库ProteomicsDB,而公共数据库收集获得的质谱分析数据约占ProteomicsDB数据的60%,其他的数据来自于60个人类组织体液,13个体液,147个癌细胞系。   这些蛋白大多为健康人群中组织和器官中表达的蛋白,对于理解疾病状态下发生的变化,具有现实的意义,如德国团队完成的数据能用于识别数百个翻译的基因间非编码RNAs(lincRNAs),比较分析通过蛋白质对癌症药物的敏感性,发现mRNA和组织中蛋白的定量关系等。同时,这两项研究也发现了许多新蛋白,而编码这些蛋白的基因之前被认为位于基因组的非编码区域,因而也丰富了对于遗传学研究的认识。   2 研究团队的基本背景   此次研究的美国和印度团队,由约翰霍普金斯大学的副教授Akhilesh Pandey领衔,而他也是印度生物信息学研究所首席科学顾问。此前,印度生物信息学研究所和约翰霍普金斯大学的生物信息学团队就有广泛的合作,例如两个机构的26名科学家经过18个月的努力,排列出了人类的X染色体顺序,并将其与黑猩猩、老鼠的基因组相比较,发现了新基因。   慕尼黑工业大学的化学和功能蛋白质组学分析者Bernhard Kü ster,其研究的主要领域是探索蛋白质的相互作用及其与活性药物成分的相互作用,分析癌症发生发展的分子机制,以及开发相应的临床治疗方法。作为研究者,Bernhard Kü ster也曾参与了蛋白质组技术平台上具有雄厚基础的Cellzome公司的发明(新的酶相互作用化合物的方法)。而Cellzome公司的药物研发平台,可对于特定蛋白相互作用的药物进行筛选,其具有高度的灵敏性,而葛兰素史克(GSK)公司也正在看中了这一点已将其并购。   3 中国人类蛋白质组计划(CNHPP)   在人类蛋白质组草图公布的同时,&ldquo 中国人类蛋白质组计划(CNHPP)&rdquo 已经由科技部正式批准启动实施。此前,中国科学家已倡导并领衔人类第一个器官(肝脏)国际蛋白质组计划(HLPP)。   在&ldquo 中国人类蛋白质组计划&rdquo 中,&ldquo 激光解析基体辅助离子源-蛋白测序仪器&rdquo 课题是重点研究方向之一,致力于蛋白质测序仪器和试剂国产化,从而加速蛋白质组学和生物质谱技术在临床领域的研究与应用。   4 蛋白质组测序技术的开发   蛋白质组是一个细胞、组织、有机体在一定时间内表达的所有蛋白质(总蛋白质)。对蛋白质组进行系统的、全面的研究,而快速、准确、低成本的蛋白质分离纯化技术(如双向电泳、计算机图像分析与大规模数据处理技术以及质谱技术等)的发展,则是系统、全面研究的基础。有了基因组计划和基因组测序技术的发展经验,人类在蛋白质组草图公布的前后,也就有了对低成本、高效率的蛋白质组测序技术的格外重视。例如,亚利桑纳州立大学的Stuart Lindsay团队正在致力于研究让单链肽段穿过纳米孔的技术,从而将纳米孔单分子DNA测序技术(第三代基因测序技术,采用纳米孔的单分子读取,与之前的测序技术测序时间长、价格比较昂贵、测序分子需要大量扩增、还需要进行荧光标记等相比,第三代测序技术读取数据更快,测序成本明显降低)的设计理念应用于蛋白质组的测序,开发蛋白质单分子测序技术。   5 蛋白质组学与个性化医疗   人类蛋白质组草图的成果表明,有数百种蛋白质是由此前认为不具备相关功能的DNA片段(脱氧核糖核酸)及&ldquo 假基因&rdquo 形成。这也说明了基因组和蛋白质组之间的巨大差别。例如,表观遗传研究的核心内容即是基因的拼接和翻译后修饰,而蛋白质随时间和空间的动态变化等,使得蛋白质组的研究远比基因组研究复杂。   尽管目前的个性化医疗以基因解析为特征,然而真正衔接基因型与疾病表型的还是蛋白质。随着蛋白质组测序技术的快速发展,也许蛋白质组学的研究会带动个性化医疗新的发展阶段。   本文作者:中国科学院上海生命科学信息中心 于建荣 江洪波。
  • 大会报告:蛋白质组学技术的最新研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   近年来蛋白质组学发展迅速,其相应的方法学研究也取得了巨大的进步,一系列新技术融入了的蛋白质组学技术当中,极大的促进了这门学科的发展。在本届大会上,中国科学院北京基因组研究所的刘斯奇研究员、复旦大学的张祥民教授、中国科学院大连化学物理研究所张丽华研究员等专家的报告介绍了许多应用到蛋白质组学之中的新技术、新方法,本文作简要概述:   报告题目:基于质谱的线粒体GST蛋白质组定性和定量分析   报告人:中国科学院北京基因组研究所的刘斯奇研究员 刘斯奇研究员   刘斯奇研究员在报告中首次提出了“线粒体GSTs蛋白质组”的概念,系统地研究了属肝线粒体中的GSTs。可采用亲和色谱法及SDS-PAGE富集GST蛋白,使用MALDI Tof/Tof MS 和LC tandem MS/MS鉴别蛋白。研究结果表明,属肝线粒体中存在5种GSTs,分别为GSTA3, GSTM1, GSTP1, GSTK1 以及GSTZ1。   为了对线粒体GSTs的相对丰度进行定量分析,其采用了质谱结合免疫印迹的综合分析方法:利用质谱对GSTs进行定性分析时,根据质谱谱图的多反应监测(MRM)推断GSTs结构 使用重组的GST蛋白作为标准物,建立了蛋白浓缩物的线性回归方程和胰蛋白酶GST多肽的MS/MS强度,同时,通过校准估算出了鼠肝线粒体中的GSTs含量。通过对特定GSTs抗体的强度识别,使用免疫印迹对GSTs进行了定量分析 获得了GST重组蛋白的5种单克隆抗体,将其用于GST浓度校准和免疫印迹强度分析 通过免疫印迹分析获得的定性分析结果基本与MRM数据获得的结果一致。   报告题目:蛋白质水平的色谱分离与生物质谱鉴定新方法研究   报告人:复旦大学张祥民教授 张祥民教授   张祥民教授在报告中表示,蛋白质的分离鉴定有更多困难。一方面,蛋白质分子量大,结构与构型上的变化导致分离效率下降,对色谱填料的孔径、分布与非特异性吸附等因素有更高要求 另一方面,蛋白质鉴定需要先进行酶解以得到质谱鉴定信息。   在报告中,他给出了较好的解决方法,通过对液相色谱分离系统的优化,在实际蛋白质样品考察优化了系统的分离性能,构建了液相色谱分离蛋白质鉴定方法与平台。研制了蛋白水平富集预柱,并将其应用于蛋白质捕集。在离子交换色谱柱和反向色谱优化选择上,实现了蛋白质分析所需的高分辨分离。色谱分离组分点样至靶板上,利用发展的快速酶解技术完成蛋白质酶解,再通过MALDI-TOFTOFMS或LC-LTQMS进行蛋白质鉴定。该方法使得蛋白质的理论分离能力达到5000个以上,蛋白质组分能够得到浓度信息,质谱鉴定可以同时利用肽指纹图谱PMFs信息和串级序列信息,使得蛋白质鉴定的可靠性大为提高。   报告题目:基于离子液体的新型膜蛋白质组预处理及分离鉴定技术   报告人:中国科学院大连化学物理研究所张丽华研究员 张丽华研究员   膜蛋白质存在于细胞内环境、细胞与细胞外环境的界面,对执行细胞内外物质交换、信息转换、细胞识别、代谢调节、免疫应答等功能起着重要作用。深入开展膜蛋白质组学研究对于揭示细胞功能、寻找药物靶点以及研制癌症治疗药物等具有重要意义。然而,由于膜蛋白质具有疏水性强、溶解性差、易沉淀、难酶解、含量低等特点,因此在采用通常用于可溶性蛋白质组分离鉴定的方法对膜蛋白质组进行研究时遇到了很大的挑战。   张丽华研究员在报告中指出,要提高膜蛋白质组的分析能力,必须发展可显著改善膜蛋白质组溶解性,又不影响后续分离鉴定的新方法。她在近期研究工作中,采用离子液体作为膜蛋白质组的增溶剂,并结合纳升二维液相色谱-质谱联用系统,对鼠脑和人肝内质网提取的膜蛋白质进行了分析。结果表明,离子液体不仅可以提高膜蛋白的溶解性,而且不用影响后续酶解过程中酶的活性。此外,在样品进入质谱鉴定前,易于在除盐步骤去除,不会影响质谱鉴定。与其他膜蛋白质组研究中常用的增溶剂相比,离子液体在膜蛋白质组样品预处理中表现出明显的优势。
  • 【热点应用】揭秘蛋白质的热稳定性!
    #本文由马尔文帕纳科医药业务发展经理 韩佩韦博士供稿# 蛋白质的热稳定性研究对于加深对蛋白质的结构和功能的了解有着非常重要的意义。差示扫描量热技术(DSC)是直接测量热转变过程焓变(ΔH)唯一的分析方法,例如蛋白质,核酸或其他生物多聚物的热变性过程,为表征蛋白质及其他生物分子的热稳定性建立“金标准”技术。 一、焓变对于蛋白质的稳定性意味着什么? 1,什么是焓(hán)变(ΔH)? ΔH(焓变)是在恒压状态下将系统升高至温度T过程中摄取的总能量。对于蛋白质而言,这意味着用于使蛋白质发生去折叠所花费的能量(热量),此过程中 ΔH 是为正值,代表这是一个吸热过程。这种能量与蛋白质中所有原子和分子运动相关,以及维系蛋白质保持折叠构象中的键能。 通过将吸热谱图下方的面积进行积分(见图 1)可以计算得到焓变(ΔH)。焓变用每摩尔蛋白质的吸收的卡路里(或焦耳)来表示。由于蛋白质在 DSC 实验中暴露于升高的温度,因此蛋白质开始发生热变性,并伴随着非共价键的断裂。焓变(ΔH)与维系蛋白质天然(折叠)构象中所需的价键数量有关。焓变(ΔH)也取决于我们测量总蛋白质浓度的准确程度。如果蛋白质浓度不是很准确, 则会影响到计算出的ΔH值。 2,焓变(ΔH)值可以在实践中告诉我们什么? 当您比较不同蛋白质的DSC结果时,具有较大ΔH值的蛋白质不一定比具有较小ΔH的蛋白质更稳定。由于ΔH值会对蛋白质摩尔浓度归一化,因此该值通常与蛋白质的尺寸成比例。大多数蛋白质具有相同的键密度(单位体积内的价键数量),因此,期待具有较大分子量的蛋白质也具有较大的焓变(ΔH)值也是合理的。 3,焓变(ΔH)的决定因素是什么? 焓变(ΔH)取决于溶液中天然蛋白质的百分比。 一个非常重要的考虑是DSC仅测量初始处于折叠(天然)构象中的蛋白质的ΔH值。ΔH值取决于具有折叠(活性)构象的浓度。如果初始折叠蛋白质组分小于总蛋白质浓度(即活性浓度小于100%),则计算出的ΔH值将相应地变小。 下图显示了在储存期间的不同时间测量的相同蛋白质的DSC图谱。蓝色曲线图谱表示新鲜制备的蛋白质,是100%天然(折叠)蛋白质。当蛋白质样品在储存期间发生部分变性时,溶液中的天然蛋白质的比例开始下降,导致DSC图谱的焓变降低。当我们拥有100%天然蛋白质的参考DSC图谱时,我们可以根据不同状态样品的相对ΔH值来估计每个样品中的折叠蛋白质比例。 4,如何判断蛋白质是否失活? 到目前为止,我们已提及的焓变是指通过DSC仪器直接测量到的“热”焓,也就是热力学焓变,通常表示为ΔHcal,这是其他任何非量热技术,例如圆二色谱(CD),表面等离子共振(SPR)等技术不能获取的焓变量。 还有另一种其他技术可以获取的焓变类型,即范霍夫焓变 - ΔHVH,我们同样可以通过DSC数据计算得出。范霍夫焓变(ΔHVH)可从通过DSC非两状态模型(non-2-state model)拟合得到。 两种不同的焓变对蛋白质热稳定性的测定又有什么实际意义呢? 在DSC技术中,ΔHcal仅由DSC热转变峰曲线积分的面积来确定,而ΔHVH仅通过热转变峰曲线的形状来确定。转变峰形越尖锐,ΔHVH越大,反之亦然。ΔHcal是具有浓度依赖性的,但ΔHVH不是。 若ΔHcal/ΔHVH比例为1,通常意味着所研究的热转变状态符合两状态去折叠(Two-state unfolding model)模型。如果ΔHcal/ΔHVH比例大于1,则意味着存在显著密集的中间体存在 而ΔHcal/ΔHVH比小于1,则意味着存在分子间相互作用。 使用ΔHcal/ΔHVH可以帮我们估测是否有很大部分蛋白质是失活的。如果我们有一个简单的单结构域蛋白质,并且假定没有中间体,则我们可以预测,其去折叠过程的ΔHcal/ΔHVH的比值不会远离1。因此,如果ΔHcal显著低于ΔHVH,可以表明很大部分蛋白质已经失活。 综上所述,对DSC中ΔH数据的分析可以让我们了解蛋白质的去折叠机制,以及多少蛋白质处于其活性的天然构象。 二、TM值如何与和蛋白质稳定性相关? 中点转变温度TM我们可以从DSC数据中提取多个热力学参数,例如ΔH,ΔHVH(范霍夫焓变),ΔCP和ΔG,但最广泛使用的参数是TM。顺便提一下,这也是最容易和最准确的值 - TM是最大峰值所对应的温度。 “蛋白质稳定性”有多种定义。最常见的是,对于工业上有重要意义的蛋白质,该术语是指在生理温度下的功能(或操作)稳定性 即,他们可以在37°C下发挥多长时间的生物功能?这可以通过需要花几天或数周时间的等温研究来评估,或者,如果使用差示扫描量热法(DSC),则可以在几分钟内变性蛋白质。 通过DSC获得的哪个热力学参数与功能稳定性相关度最佳?事实证明,是TM值。 热力学稳定性(ΔG)是功能稳定性的较差的预测因子 技术上,ΔG仅适用于可逆去折叠过程,此外,它由TM,ΔH和ΔCP计算得到,后者可能很难获取。 一个例子是TM和ΔG与人肉杆菌蛋白抗原血清型C的半数聚集时间(half time)(作为功能稳定性的量度)的相关性,用作模型蛋白。ΔG与T1 / 2 agg. 相关系数(R)仅为0.4,而TM 与 T1 / 2 agg.的相关系数是0.92。(来自J Pharm Sci的数据,2011 Mar 100(3):836-48) 思考TM的一种方式: 如下图所示,假设我们用 DSC 扫描两种不同配方中的蛋白质或两种不同的蛋白质构建体,则 TM 值向低温方向 5℃ 的负偏移(稳定性下降)实际上反映了在 37℃ 条件下的 Fu (蛋白去折叠比例)由2%增加到 3%。温度 T 下的 Fu 蛋白可以通过图像化的方式估算,即温度 T 以下的曲线下阴影区域面积和整个曲线下方面积的百分比。 由于聚集体的生成可能是浓度依赖的过程,因此较高浓度的去折叠蛋白质(红色扫描曲线)将导致较快的聚合(更大组分的去折叠状态(U)才能转换为不可逆变性状态(I)。参见下面的原理图。 这种解析的一个推论是,曲线的整体形状应该是相似的。我们假定这种情况是对于在不同配方中的相同蛋白质或由一个母分子衍生出来的具有相似构建体的蛋白质。但是,对于完全不同的蛋白质,使用TM值作为用于稳定性比较的预测指标则应该谨慎使用。 扩展阅读(www.malvernpanalytical.com)Differential Scanning Calorimetry (DSC): Theory andpracticeDifferential Scanning Calorimetry (DSC) forBiopharmaceutical Development: Versatility and PowerThe Power of Heat: Digging Deeper with DifferentialScanning Calorimetry to Study Key Protein Characteristics PEAQ-DSC 微量热差示扫描量热仪:DSC差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简介、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 大会报告:蛋白质组数据处理技术研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   蛋白质组数据库被认为是蛋白质组知识的储存库,包含所有鉴定的蛋白质信息。而基于质谱技术的蛋白质组学数据分析,是识别新型生物标记物模式的有效手段。质谱仪检测的数据含有大量潜在信息,因此,建立完善的蛋白质组学数据库,开发实用性强的数据处理软件工具,以及提供良好的蛋白质组数据分析、处理方对蛋白质组学的发展至关重要。在本次大会上,中国科学院计算技术研究所贺思敏研究员、浙江大学生物医学工程与仪器科学学院段会龙教授、国防科技大学机电工程与自动化学院谢红卫教授等专家学者作了关于此方面最新研究进展的报告,本文作简要报道:   报告题目: 蛋白质组数据分析软件pFind系统新进展   报告人:中国科学院计算技术研究所贺思敏研究员 贺思敏研究员   pFind系统是中国科学院计算技术研究所自2002年开始持续研发的蛋白质组数据分析软件,可以替代同类国际主流软件,已安装在国内多家蛋白质组学重点研究单位,并在ABRF组织的国际评测以及核心岩藻糖化修饰位点鉴定等科研实战中表现出色。   贺思敏研究员在报告中首先介绍pFind系统不同于国际同类软件的核心算法设计和系统实现,然后介绍pFind系统近期在开放式修饰类型发现、高精度一级质谱分析、新型碎裂方式串联质谱分析、肽序列从头测序、标记定量分析以及并行加速系统研制等方面的进展,最后介绍了pFind系统的下一步研究设想。   报告题目:构建心血管蛋白质组生物医学数据库及分析平台   报告人:浙江大学生物医学工程与仪器科学学院段会龙教授 段会龙教授   心血管疾病是威胁人类健康的主要疾病。以高分辨率质谱技术为基础的心脏蛋白质组研究是发展心血管研究的一个重要方向。段会龙课题组通过对心血管医学和生物学、蛋白质组学和生物医学信息学的多学科交叉研究,构建了心血管生物医学数据库,重点在心血管蛋白质组数据集成、处理和分析,生物医学数据库体系构建、数据共享和发布等诸多关键技术上进行突破。   该课题组目前已完成了如下工作:   (1)心血管蛋白质组数据体系结构:构建了以蛋白质组信息为主体的数据库体系结构,以心脏线粒体蛋白质组为基础建立了核心数据集,该核心数据集包含了1663种心脏线粒体蛋白质以及与之相对应的2万7千多个生物质谱谱图。   (2)心血管蛋白质组数据库搜索引擎:初步建立了数据搜索引擎,可通过蛋白、肽段序列等信息对相应的生物质谱谱图进行检索,实现了与欧洲生物信息学研究所 (EBI) 的IPI蛋白质数据库间的数据关联。   (3)心血管生物医学数据库平台:研究和开发了相应的数据库网络公共平台。该网络平台的首个版本将在2010年末面向全世界发布,通过对心血管生物医学数据信息和资源的实时共享,服务于全世界心血管研究群体。   报告题目:大规模蛋白质组研究中的质谱数据定量分析方法   报告人:国防科技大学机电工程与自动化学院谢红卫教授 谢红卫教授   谢红卫教授利用一系列大规模定量分析的数据集,包括稳定同位素标记和进行重复实验的无标记定量数据,进行了一系列分析和研究,目前取得了很大的结果:   (1)总结了无标记和稳定同位素标记定量数据分析的典型流程,并且结合实际的数据分析结果,初步研究了各种分析流程优势和问题。   (2)针对丁来那个信息提取问题,利用重复实验数据集,比较优化了其关键步骤。   (3)利用实际实验数据,初步研究了同位素分布实验误差和质荷比误差等对定量分析参数选择有重要影响的问题。   (4)针对定量计算速度慢的问题,提出了索引文件和基于hash表的信息检索方式,将定量计算的时间缩短为原来的1/10。   (5)设计了一种可逆的色谱保留时间对齐模型,大大缩短了无标记定量数据处理中色谱保留时间对齐的计算复杂度。   (6)提出了一种以信号强度为参量的差异分布模型,能够提高差异检验的灵敏度。   (7)开发了无标记定量软件LFQuant、标记定量软件SILVER,已经无鉴定定量分析工具XICFinder。其中SILVER能够支持自定义标记方法,提供了图形化界面。LFQuant速度和定量精度等性能经过了多次优化。   报告题目:多层次蛋白质磷酸化分析中的数据处理方法研究   报告人:中国科学院大连化学物理研究所叶明亮研究员 叶明亮研究员   叶明亮研究员在报告中提到,根据研究目的的不同,蛋白质磷酸化的分析可以划分为三个层次:信号转导通路中关键节点蛋白质的磷酸化、生物体内的所有蛋白质的磷酸化(即磷酸化蛋白质组)、生物体内的所有激酶与底物的相互作用(磷酸化调控网络)。不同层次的分析有不同的目的,样品的复杂度也不同,因此需要不同的数据处理方法。   在节点蛋白质的磷酸化分析方面,为实现对某一感兴趣蛋白质中磷酸化位点的全面分析鉴定,发展了一种基于改进的目标-伪数据库用于数据检索,来高覆盖率、高可靠鉴定简单蛋白样品中的磷酸化位点信息的方法。并且从搜库耗时上,允许用多种低特异性的酶来提高简单蛋白样品的序列鉴定的覆盖度,从而更加全面的鉴定样品的磷酸化位点信息。   在磷酸化蛋白质组层次上要实现在保持较高可信度和灵敏度的情况下对海量质谱数据以及检索数据进行自动化处理。针对磷酸化蛋白质组学中磷酸化肽段鉴定难,假阳性率高,主要依赖于人工验证的现状,发展了一种结合MS2和MS3图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的鉴定信息,提高了磷酸化肽段鉴定的灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。利用这种方法,结合磷酸肽的多维分析已经可以从人肝组织中鉴定超过8000个磷酸化位点。最近,其课题组还发展了一种基于分类筛选的磷酸化肽段鉴定方法,该方法结合了MS2/MS3方法的高可信度,并且考虑了部分不易发生中性丢失的磷酸化肽段的鉴定,进一步提高了磷酸化肽段鉴定的灵敏度。   在磷酸化调控网络层次主要是揭示激酶与底物蛋白质上磷酸化位点的对应关系,叶明亮研究员表示,这是该课题组今后研究的一个重要方向,目前已经在与合作者利用生物信息学的方法模拟构建磷酸化网络图。
  • Nature:人类首张蛋白质组草图绘制完成
    日前,两个国际小组均在《自然》杂志上公布了人类蛋白质组第一张草图,这些在大部分非患病人体组织和器官中表达的精选蛋白,为更好的理解疾病状态下发生的机体变化,奠定了坚实的基础。   英国新一期《自然》杂志公布两组科研人员分别绘制的人类蛋白质组草图。这一成果有助于了解各个组织中存在何种蛋白质,这些蛋白质与哪些基因表达有关等,从而进一步揭开人体的奥秘。   上世纪90年代,人类基因组计划开始成形时,有科学家提出了破译人类蛋白质组的想法。其目标是将人体所有蛋白质归类并描绘出它们的特性、在细胞中所处的位置以及蛋白质之间的相互作用。但人类蛋白质组的规模和复杂性使此类研究困难重重。   德国慕尼黑工业大学等机构研究人员报告说,尽管人类已对基因组有所了解,但大约2万个编码基因中,哪些会指导合成蛋白质、合成哪些蛋白质都是未知数。为探明这一问题,他们从人体多个组织样本和细胞系中提取蛋白质并将它们&ldquo 切&rdquo 成小块,然后用质谱分析法分析出形成每个蛋白质片段所需的氨基酸序列。   研究人员借助计算机对这些蛋白质片段与基因组进行了大量比对工作,并据此列出一个&ldquo 清单&rdquo ,描绘出哪些组织中的哪些基因表达与蛋白质的形成有关。在另一项研究中,美国约翰斯· 霍普金斯大学研究人员与印度等国同行也采用质谱分析法绘制出一张蛋白质组草图。   这两个团队均发现,有数百种蛋白质是由此前认为不具备相关功能的DNA片段(脱氧核糖核酸)及&ldquo 假基因&rdquo 形成,&ldquo 假基因&rdquo 是指由于发生突变,丧失原有功能的基因。此外他们还发现了一些与蛋白质产生无关的&ldquo 多余&rdquo 基因。   研究人员表示,绘制人类蛋白质组图谱有助于了解人体内蛋白质的出处、功能和特性,这对于生命科学、医学等领域都有重要意义。
  • 干血斑分析技术进展与应用——基于干血斑的蛋白质分析技术
    干血斑(Dried Blood Spot, DBS)是一种微量血液采集、干燥和储存的生物采样技术。该技术由Robert Guthrie于1963年首次应用于新生儿苯丙酮尿症(PKU)筛查[1]。相比于临床检验中常用的液态血液基质,干血斑技术具有采血量少、操作简便、一般不需冷冻或冷藏、储存和运输成本低等优点,已应用于新生儿疾病筛查、流行病学样本分析、药物研发等领域。将干血斑应用于蛋白质研究,拓宽了蛋白质分析研究的生物样本采集形式,具有很好的临床研究和实际应用价值。本文重点讨论两种常见干血斑蛋白质分析技术及应用。1. 基于干血斑的蛋白分析技术1.1 酶联免疫吸附分析法原理:酶联免疫吸附分析法(ELISA)是指将可溶性的抗原或抗体结合到聚苯乙烯等固相载体上,利用抗原抗体特异性结合,进行免疫反应的定性和定量分析,具有灵敏、特异、及易于自动化操作等特点。根据免疫识别和信号输出方式的不同,ELISA可以分为双抗体夹心法、直接免疫竞争法和非直接免疫竞争法等。实验材料及分析仪器:研究人员可通过购买固相载体、抗体或抗原进行包被制备ELISA试剂盒或购买市售试剂盒。酶联免疫吸附测定试剂盒已成为实验中不可缺少的工具,目前国内外Elisa试剂盒生产厂家很多,如上海酶联生物、Abcam、BioVision等,科研人员可根据研究需求选择高质量的试剂盒品牌,以提升分析效率及结果有效性。干血斑处理:以干血斑HIV分析为例:用HIV阴性混合血液样本对阳性混合血液样本进行梯度稀释后,以固定体积点样至干血斑收集卡,室温下干燥。采用干血斑打孔设备获得一定直径的干血斑样片,用300 μL PBST(0.05% Tween20)室温静置洗脱,洗脱液经酶标仪测定样本吸光度值(OD值)。分析和结果处理:以标准曲线样品的浓度为横坐标,以测得的OD值为纵坐标,根据不同类型ELISA本身的特点拟合标准曲线(如竞争法和夹心法可以采用四参数拟合回归方程),选择R值大于0.99的拟合方式,并根据标准曲线计算样品浓度。分析仪器:酶标仪(MicroplateReader)即酶联免疫检测仪,是对酶联免疫检测(EIA)实验结果进行读取和分析的专业仪器。酶标仪可分为普通酶标仪和多功能酶标仪,普通酶标仪的主要功能一是充当分光光度计的角色,二是基于免疫反应的ELISA分析,价格相对较低;多功能酶标仪可实现吸光度、荧光强度、时间分辨荧光、荧光偏振和化学发光等多种检测模式拓展,满足生化分析、免疫检测、细胞研究、药物筛选和机制探索等众多领域检测需要。目前酶标仪市场常用的仪器品牌进口的有:伯腾、帝肯、美谷分子、珀金埃尔默和赛默飞等;国产的有:安图生物、奥盛和闪谱等。1.2 基于质谱技术的蛋白质分析技术基于质谱(Mass Spectrometry, MS)技术的蛋白质分析方法具有高通量、自动化程度高、分离能力强等特点,已逐渐成为蛋白质分析和鉴定的重要技术。原理:蛋白酶将样本中的蛋白质消化成肽段混合物,可采用鸟枪法(Shotgun)对蛋白组进行全谱分析,在最小限度分离蛋白质的同时实现复杂混合物中成千上万种蛋白质的鉴定和定量;或用液相色谱法(Liquid Chromatography, LC)对酶解肽段进行分离,经基质辅助激光电离(MALDI)或电喷雾电离(ESI)等软电离技术将其离子化,带电蛋白质离子通过质量分析器将具有特定质荷比的肽段离子分离,然后经检测器分析。质谱技术与干血斑技术的结合为蛋白质组学研究和蛋白生物标志物筛选提供了强有力手段。图1 基于质谱技术的蛋白质组学分析流程[2]样本处理:采用干血斑打孔设备获得一定直径的干血斑样片,转移至EP管中,加入少量水后用组织研磨器或匀浆机快速、彻底破碎干血斑样片,剧烈摇晃试管。后续处理与常规样本的蛋白提取相似:加入蛋白裂解液(如SDS、SDC、RIPA等),冰上裂解约半小时(辅以震荡),低温、高转速离心后取上清,得干血斑蛋白提取物。分析和结果处理:蛋白质组学数据分析和结果处理包括:①应用数据库搜库对蛋白进行鉴定并相对定量分析,借助如主成分分析、相关性分析、聚类分析等方法掌握数据的整体情况;②对蛋白的生物学功能进行注释,例如GO功能注释、KEGG注释等;③通过蛋白的生物学功能或参与的信号通路可以进一步筛选与研究目标相关的蛋白进行后续的分析。分析仪器:蛋白质组学分析主要使用高分辨液质联用系统进行。可进行蛋白质组学分析的液质联用系统目前以进口为主,常见仪器主要有布鲁克、赛默飞、沃特世和SCIEX的Q-TOF、Q-Orbitrap、Q-Trap质谱仪等。2. 干血斑蛋白分析应用实例分享2.1 采用ELISA法分析干血斑中HIV抗体1996年美国食品药品监督管理局(FDA)批准了以干血斑为载体的样本邮寄传递检测模式,并证明其可作为传统检测模式的良好补充,极大地推动了干血斑技术在传染性疾病分析中的应用。在我国,全国艾滋病检测技术规范(2020年修订版)第二章第4部分“常规HIV抗体或HIV抗体抗原联合检测方法”中指出:ELISA试验可使用血液(包含血清、血浆和干血斑)或尿液样本检测HIV抗体,也可联合检测HIV抗体抗原,说明干血斑在基于ELISA技术的HIV抗体检测中是可代替血浆、血清的生物样本基质,具有广阔的应用前景。近年来,相关专家多推荐受检者使用HIV自主采样包,根据说明采集干血斑样本,匿名寄至专业实验室,通过电话等方式获取结果。图2 RDA Spot公司的干血斑自主采样包(包含一次性采血针,消毒湿巾,样本采集卡,使用说明书及用于运输的特殊包装)图片来源:https://www.rdaspot.com/2.2 基于质谱技术的干血斑蛋白质组学分析研究人员建立了应用Thermo UltiMate 3000 RSLCnano纳升液相色谱联合Q Exactive HF-X质谱技术的干血斑蛋白质组学分析方法,并于2020年在Journal of Proteome Research中报道了该项工作[3]。由于全血中含有较多可溶性蛋白(如血红蛋白、白蛋白、纤维蛋白原等),研究人员为克服干扰、提高分析灵敏度,采用碳酸钠沉淀法(SCP)成功去除干血斑中可溶性蛋白并富集目标分析物疏水性蛋白。采用基于数据非依赖采集模式(DIA)的蛋白质组学分析方法,进行EMBL-EBI(针对人类蛋白GO功能分析的综合注释数据库)蛋白组学搜库分析,通过限定质谱扫描范围和延长离子累积时间等提高了分析方法的检测灵敏度。该研究最终在健康受试者干血斑样本中鉴定到1977种蛋白质,其中包含585种疾病相关蛋白。3. 小结与展望干血斑是一种先进的血液采集及保存技术,具有操作简单、对人体损伤小、便于运输和储存等优势,在临床快检中受到关注。干血斑技术与蛋白质研究的结合将有效推动蛋白质研究成果临床转化。随着分析技术的发展和相关研究的不断深入,前处理自动化仪器、高通量分析仪器和成熟的蛋白分析流程将成为干血斑蛋白质分析的有力工具,干血斑蛋白质分析定将在蛋白质分析中发挥重要作用,为高通量诊断、差异蛋白分析和疾病生物标志物挖掘等拓展新的技术平台。参考文献:[1] R. Guthrie, & Susi, A., A Simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants., Pediatrics, 32 (1963) 338–343.[2] B. Kuster, M. Schirle, P. Mallick, R. Aebersold, Scoring proteomes with proteotypic peptide probes, Nature Reviews Molecular Cell Biology, 6 (2005) 577-583.[3] D. Nakajima, Y. Kawashima, H. Shibata, T. Yasumi, M. Isa, K. Izawa, R. Nishikomori, T. Heike, O. Ohara, Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics, Journal of proteome research, 19 (2020) 2821-2827.
  • 【研究应用分享】蛋白质分离纯化技术及具体步骤
    蛋白质的分离纯化在生物化学研究应用中使用广泛,是一项重要的操作技术。一个典型的真核细胞可以包含数以千计的不同蛋白质,一些含量十分丰富,一些仅含有几个拷贝。为了研究某一个蛋白质,必须首先将该蛋白质从其他蛋白质和非蛋白质分子中纯化出来。 蛋白质分离纯化的一般程序可分为以下几个步骤——01 材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。5. 酶法如用溶菌酶破坏微生物细胞等。02 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。03 蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。04 样品的进一步分离纯化用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析、亲和层析等等。有时还需要这几种方法联合使用才能得到较高纯度的蛋白质样品。05 蛋白质的分析测定通过物理或化学方法对蛋白质含量进行测定。蛋白质的分析纯化,不仅仅是选择合适的方法,必备的工具,例如微量均质器、干燥器、抗体保存盘等,也很重要。Bel-Art蛋白质分析纯化工具推荐本篇我们根据不同耗材在蛋白质分析纯化过程中的不同作用,分类为大家推荐几款合适的耗材。细胞裂解 热门优选 微量均质器-手持式货号:F65000-0000研磨组织和破碎细胞层析 热门优选 磁珠分离架货号:F19900-000分离结合在磁珠上的蛋白质以快速纯化透析热门优选 透析袋夹持器货号:F18237-0000测定热门优选贝塔盾货号:F24976-0001在进行C14分析时减少接触电泳热门优选 Spindrive&trade 轨道摇床平台货号:F37041-0001提供彻底、温和的凝胶混合,同时*限度地扩大实验室空间
  • 大数据时代——宝特科技精彩亮相第九届中国蛋白质组学大会
    ???????2016年5月21日-23日第九届中国蛋白质组学大会在厦门会展中心圆满召开,大会由中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)主办,军事医学科学院放射与辐射医学研究所、厦门大学、国家蛋白质科学中心北京、蛋白质组学国家重点实验室、北京蛋白质组研究中心和分子疫苗学和分子诊断学国家重点实验室共同承办,本届会议设有一个大会报告厅及八大分会(专题)报告厅,蛋白质组学及相关领域的国际著名专家、教授、研究学者等近1000人参加了本次大会。?????????????????????大数据时代的蛋白质组学大会为促进蛋白质组学的研究与发展,增进国际间合作交流提供了绝佳的平台,会议同时举办与生物化学与分子生物学、蛋白质组学等研究领域相关的仪器、设备、试剂和新技术的展览、展示会,为“大数据时代的蛋白质组学”搭建了多方沟通的桥梁。宝特科技作为专业的分析测试设备和服务一站式供应商参加此次盛会,为大家带来了蛋白质组学相关的各系列产品:压力循环技术样品制备系统、生物分子相互作用仪、冷冻电镜、振荡器、培养箱等,现场参观与咨询的研究学者络绎不绝,宝特科技提供的不仅仅是产品,更重要的是完整解决方案,以高效、全面、一站式的产品解决研究学者工作中遇到的问题。??????????????????????????????????????????欢迎来到样品制备的新时代借此大会契机,宝特科技携手美国PBI公司隆重引进了一款样品制备新技术——PCT(pressure cycling technology)压力循环技术,使用以PCT压力循环技术为核心的样品制备系统,让您从繁琐冗长的样品制备过程解放出来。不论您的样品是来自动物、植物还是微生物,不论它是细胞还是组织,不论它是溶液还是固体,短至几分钟就可以拿到你所需要的蛋白质,DNA,RNA及小分子等。无需担心样品制备过程因为人为操作误差而导致分析结果的不一致、重复性差;无需担心样品制备过程因为时间过长而导致样品的分解与丢失;无需担心样品裂解的不充分而导致目标分析物研究无果,也无需再把80%的时间耗在样品制备的过程中了,是时候把更多的精力投入到真正的研究中了!PCT-HD高效地实现蛋白质组学微量组织研磨、提取和酶解的一站式工作平台PBI 压力循环技术样品制备系统主要特点:一站式:一台仪器、一个tube即可实现样本中蛋白质的提取,又可进行高效酶解(如Lys-c,trypsin,Chymotrypsin,PNGase F等),既减少了样本转移过程中的丢失与交叉污染的风险,又大大提高了样本制备的效率高效:样本适用面广(动植物、固液态皆可),需求量少(最少可至0.2mg), 从原始样本到获得肽段,4小时左右即可以完成样品制备全面:与常规提取方法相比,提取得到的蛋白质更充分,更彻底,得率高、种类全,提取质量优。除此之外,还可用于核酸,脂类等生物大分子的提取通量高:一次最多可同时操作48个样本重复性好:程序控制,人为干预少,结果重复性好相关产品:PBI 压力循环技术样品制备系统????
  • 见微知著|睿科液体处理工作站助力蛋白质组学前处理自动化
    随着高通量、高灵敏度、高分辨率生物质谱技术的出现,蛋白质组学技术取得飞速发展,蛋白质组学(Proteomics)是蛋白质(protein)与 基因组学(genomics)两个词的组合体,表示“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。蛋白质组学研究,就是要把一个基因组表达的绝大多数蛋白质或一个复杂的混合体系中绝大多数蛋白质进行精确的定量和鉴定。蛋白质组本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。蛋白质组学研究主要包括蛋白质分离、鉴定与生物信息学分析,其中样品中蛋白质的分离至关重要,会直接影响后续的分析结果。对比传统的柱层析分离方式,磁珠法提取蛋白质能轻松实现高通量和多样品平行处理。磁珠法提取蛋白质与提取核酸原理类似,都需经过“结合-洗涤-洗脱”等过程,蛋白纯化后,还需经过裂解、二硫键还原、酶解等多步预处理才能将蛋白样品裂解为可检测的肽段,这些过程同样涉及多次移液、加热、震荡等步骤。Vitae 100全自动液体处理工作站● 睿科Vitae 100全自动液体处理工作站整合移液、磁吸、震荡、加热功能于一体,可全自动完成磁珠法蛋白纯化,可替代蛋白酶解实验过程中大部分手工操作,实现高通量、高效率、高一致性的蛋白纯化。Vitae 100配置了可选4或8通道的空气注射泵移液器,机械定位准确至0.05mm,高通量提取时准确性、均一性均优于手工操作。另外Vitae 100创新性的整合了“磁吸-加热-震荡”三合一模块,节省盘面空间,减少移液步骤,利用自动化操作来减少人为实验操作带来的误差,提升实验结果的稳定性,减少污染的可能性,同时利用自动化精准的时间控制和操作,来优化实验流程,提高实验室运行效率。▲蛋白质组学自动化前处理解决方案睿科生化科技公司睿科生化科技公司是睿科集团旗下专注研发生产生命科学领域样品前处理设备的高科技企业。公司提供自动化的生物样品前处理设备,服务于生物/药物分析、分子诊断、临床检测、蛋白组学、代谢组学等领域。公司核心团队拥有10多年丰富的行业经验,掌握自主核心技术,系统化架构和集成式开发,可提供灵活的定制化服务,为客户提供个性化的产品和服务。
  • 基于离子淌度质谱对完整蛋白质形态进行非标记定量
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry [1],文章的通讯作者是美国俄克拉荷马大学的Luca Fornelli教授。完整proteoforms的非标记高通量定量方法的应用对象通常为从整个细胞或组织裂解物中提取的0 - 30 kDa质量范围内蛋白质。然而当前,即使通过高效液相色谱或毛细管电泳实现了proteoforms的高分辨率分离,可鉴定和定量的proteoforms的数量也不可避免地受到固有的样品复杂性的限制。近年来,随着质谱技术的发展,自上而下蛋白质组学质谱(top-down proteomics)研究中蛋白质的鉴定数量大大提升,生成了包含数万种proteoforms的数据集,但在proteoforms的量化能力方面并没有得到相应的性能提升。为克服这一问题,本文中作者通过应用场不对称离子迁移谱法(Field asymmetric ion mobility spectrometry, FAIMS)对大肠杆菌中的proteoforms进行了非标记定量。由此产生的改进允许在单次LC-MS实验中采用多个FAIMS补偿电压(Compensation voltages, C.V.),而不会增加整个数据采集周期。与传统的非标记定量实验相比,FAIMS的应用在不影响定量准确性的情况下,大大增加了鉴定和定量的proteoforms数量。首先,作者优化了质谱stepped-C.V.数据采集方法对Orbitrap Eclipse性能的影响,并从中筛选出了最优条件(−40、−20、0 V组合)。所有最新的基于Orbitrap的质谱仪(包括Exploris platform和Orbitrap Ascend)都可以采用single time-domain transients(即单次微扫描)在top down FTMS实验中生成高质量的质谱图。作者认为这对于在单次LC - MS2运行期间应用多个C.V.值的采集策略特别有益。接下来,作者应用该方法对大肠杆菌中的蛋白质进行了检测,并与传统的LC - MS2 DDA采集方法进行了比较(图1)。如图所示,每个C.V.值下的总离子流图都不同,且这一额外的分离导致在LB(Luria broth)和M9(醋酸钠处理)样品中鉴定到的proteoforms的数量显著提升。  图1. 样本制备方法和proteoforms鉴定结果总结虽然在LC-FAIMS和LC-only数据集中,大多数鉴定到的proteoforms质量都小于15 kDa,但其中约20%的质量大于18 kDa甚至高达33.3 kDa(图2)。对已鉴定的proteoforms列表的深入分析表明,达到鉴定低丰度proteoforms的关键参数之一是在串联质谱(MS2)中有足够的时间注入离子。  图2. A. FAIMS和非FAIMS鉴定到的proteoforms的质量分布。B. 鉴定到的proteoforms与注射时间之间的关系。最后,作者采用ProSight PD v 4.2 (Proteineous, Inc)进行了基于MS1的非标定量,结果显示基于FAIMS的数据集在LB样品(蓝色)和M9样品中检测到的差异表达的proteoforms均有所增加(图3)。作者评估了两个数据集之间的差异(使用和不使用FAIMS采集数据),以验证FAIMS的应用是否会对量化准确性产生不利影响,结果只有1个proteoform显示相互矛盾的丰度趋势。这种差异是由于该蛋白和一个共流出蛋白之间质谱峰几乎完全重叠造成的。它们具有非常接近的单同位素质量,这样高水平的信号干扰可以很容易地干扰基于MS1的量化。启用FAIMS可以使MS1谱图简化,因为两种proteoforms可以富集在两种不同的C.V. 值下。  图3. 大肠杆菌proteoforms无标记定量结果分析。作者将LC - FAIMS - MS2数据集与通过BUP在类似样品上获得的非标定量结果进行比较,得出两个主要的结论:1. BUP仍然对蛋白质组提供了更深层次的定量表征 2. BUP提供了与单个基因相关的所有产物的整体丰度水平信息 而TDP方法表明,给定的UniProt accession可以由多个差异表达的proteoforms组成,可能具有不同的行为(即在给定条件下,一些被上调,另一些被下调)。这一额外的信息可能具有潜在的生物学意义,但在基于BUP的定量分析中可能会被遗漏。本文描述的基于FAIMS的定量数据采集方法与PEPPI(Passively eluting proteins from polyacrylamide gels as intact species)蛋白分离技术完全兼容,产生0 - 30 kDa的组分,并且可以方便地根据待分析蛋白的平均质量调整质谱参数(C.V.值),未来在更大的蛋白质定量方面具有广阔的应用前景。  撰稿:张颖  编辑:李惠琳  原文:Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1.Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T.,Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 新型非离子表面活性剂在自上而下蛋白质组学中的应用
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的Letter,Nonionic, Cleavable Surfactant for Top-Down Proteomics [1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授和Kyle A. Brown博士。非离子表面活性剂是从细胞中溶解和纯化蛋白质的通用工具,是结构生物学中使用的关键试剂。N-dodecyl-β-D-maltoside(DDM)是最受欢迎的非离子表面活性剂之一,用于从非变性环境中提取蛋白质进行下游生物学实验。然而,表面活性剂的存在,即使是像DDM这样温和的表面活性剂,依然会对自上而下蛋白质组学分析产生不利影响。与表面活性剂相关的信号抑制一般是由低分子量物质较高的电离效率和信噪比引起的。此外,表面活性剂的存在会对常见的前端蛋白质分离技术产生负面影响,例如对于反相液相色谱(RPLC)而言,可能会导致再现性和稳健性方面的潜在问题。克服表面活性剂在下游蛋白质组学分析中的不兼容性问题的一种方法是插入一个可裂解键(例如酸或光不稳定键),能够在质谱分析之前降解为无害的副产物。然而通常用于蛋白质组学的可裂解表面活性剂含有变性阴离子基团,如硫酸盐,不能用于需要非变性条件的应用。因此,急需开发一种可以在非变性条件下辅助传统的蛋白质制备方法的可裂解表面活性剂,并能适用于下游蛋白质组学分析。本文中,作者首次使用了一种非离子型可裂解的表面活性剂N-decyl-disulfide-β-D-maltoside(DSSM),用于自上而下的蛋白质组学。(图1)  图1. DSSM在蛋白质组学中的应用  首先,作者在变性条件下,用碳酸酐酶(29.1 kDa)评价了DSSM与ESI-MS分析的相容性。表面活性剂通过TCEP在4℃条件下降解2 h,在DSSM降解和离心后,没有观察到不溶性降解产物。    图2. DSSM与完整蛋白ESI-MS分析的相容性。  作者进一步评估了DSSM与RPLC-MS的兼容性,以研究膜蛋白。膜蛋白是一类重要的药物靶点,由于其固有的低溶解性和低丰度,通常难以使用自上而下蛋白质组学进行研究。作者对一种模型离子通道蛋白KcsA进行了DSSM辅助膜蛋白组学分析。使用氯仿:甲醇:水沉淀法去除不相容的缓冲组分(盐、洗涤剂等)后,在DSSM (2× CMC)中溶解KcsA。表面活性剂用TCEP(在水中或50%异丙醇中)降解,用CID进行RPLC-MS/MS破碎。结果显示,作者成功地表征了防止通道失活的突变(E71A)。(图3)    图3.DSSM溶解膜蛋白的自上而下蛋白质组学  最后,作者利用DSSM提取哺乳动物细胞内源性蛋白,表面活性剂降解后直接用RPLC MS/MS进行分析。在采用TopPIC对数据进行分析之后,作者通过四次LC-MS/MS实验从206个蛋白质组中鉴定出276种proteoform。作者证明了DSSM是一种有价值的用于细胞裂解的表面活性剂,并可以用于RPLC-MS/MS分析进行proteoform鉴定。  图4. 使用DSSM从细胞裂解液中提取的内源性蛋白质的自上而下蛋白质组学总的来说,作者证明DSSM可以促进膜蛋白的自上而下蛋白质组学表征,以确定序列变异和翻译后修饰(PTMs)。未来在蛋白质组学实验和结构生物学研究中,DSSM可以作为DDM的一般替代品。  撰稿:张颖编辑:李惠琳文章引用:Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.  李惠琳课题组网址 www.x-mol.com/groups/li_huilin  参考文献  Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.
  • 青年才俊上演计算蛋白质组学头脑风暴——记CNCP 2016新技术
    记第四届中国计算蛋白质组学研讨会(CNCP-2016)新技术  仪器信息网讯 2016年8月10日-11日,第四届中国计算蛋白质组学研讨会(CNCP-2016)在中国科学院大连化学物理研究所盛大召开。(相关新闻:第四届中国计算蛋白质组学研讨会(CNCP-2016)在大连开幕)。本届研讨会邀请了26个大会报告,报告嘉宾是来自国内外的计算蛋白组学领域专家和奋战在第一线的青年科研工作者,嘉宾中的绝大多数是首次登上CNCP讲坛。报名参加本届会议的人员首次超过了200人。CNCP2016C参会代表合影张丽华研究员为研讨会致开幕辞  本届会议的开幕式只有简短的5分钟,没有领导讲话,没有任何仪式,充分体现了会议的简洁办会特色。开幕式由中国科学院大连化学物理研究所的张丽华研究员致欢迎词,她提到:“中国计算蛋白质组学研讨会在业界享有很高盛誉。每次会议的演讲嘉宾都是由会议发起者和主办方——中国科学院计算技术研究所贺思敏研究员、北京蛋白质组研究中心徐平研究员、北京生命科学研究所董梦秋研究员等资深学者以及往届会议报告人鼎力推荐的。本次研讨会的26个报告将由来自国内外相关领域的顶级专家和奋战在科研第一线的青年才俊精彩呈现。相信在这两天的会议中,大家不仅能够收获知识,也能收获友谊。”研讨现场  CNCP-2016会议邀请的26个报告多数都是最近一两年的研究成果,部分还没有发表,新技术频繁现身,特别是在交联质谱技术与蛋白质复合体,蛋白质相互作用、翻译后修饰技术、蛋白质鉴定数据处理、定量蛋白质组技术等领域报告较多,下面对这26个报告的内容逐一进行简介总结。  UCI(美国加利福尼亚大学尔湾分校)黄岚博士 报告题目《Developing Cross-Linking Mass Spectrometry (XL-MS) Strategies to Define Interaction and Structural Dynamics of Protein Complexes》  了解蛋白质复合物的相互作用和结构动力学对于揭示病理的分子学细节非常有帮助。交联质谱(XL-MS) 是目前研究大量多亚基蛋白复合物PPIs的重要技术,而精确的肽段鉴别是XL-MS分析一直以来面临的挑战。为了促进这方面的研究,黄岚博士研究组研发了DSSO 及一系列含亚砜(sulfoxide-containing)可分裂质谱交联剂以揭示蛋白质复合物表面相互作用机理。研究者通过这些(MS-cleavable reagents)质谱可分裂试剂在多级串联质谱上建立了实用的XL-MS工作流,快速、准确的鉴别交联肽段去研究体内和体外的PPIs。同时,研究者也研发了新的定量XL-MS途径,用以分析多种生理条件下蛋白质间的相互作用和蛋白质复合体的结构动态变化。据介绍,该课题组最近研发了新的羧基交联剂DHSO主要用来与酸性氨基酸反应,反应中需要DMTMM共同作用。 这样可以得到更广的蛋白相互作用信息。北京生命科学研究所 谭丹博士 报告题目《Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States》  该研究组最近有一项研究工作围绕一种含生物素标签的赖氨酸富集交剂Leiker,谭丹博士在报告中详细展示了课题组的相关研究,研究表明Leiker能够有效改进蛋白质化学交联质谱技术(CXMS)。研究组将以Leiker为交联剂的CXMS用于E.coli全细胞裂解液的分析,发现了3656种相互作用,是之前已有研究方法的10倍。Leiker CXMS比BS3得到的信息要立体很多,能得到更全面的蛋白质相互作用网络。研究者还将Leiker为基础的CXMS用于RNA结合位点鉴定与定量,该方法能够深入揭示蛋白质构象变化。在将Leiker CXMS用于大肠杆菌和秀丽线虫裂解液中的研究中,分别鉴定出3130和893个互补赖氨酸对,并各自发现了677和121种PPIs。Utrecht University (荷兰乌德勒支大学) 刘凡博士 报告题目《Charting the Cellular Interactome by Proteome-Wide Cross-Linking Mass Spectrometry》  据刘凡博士介绍,针对交联数据分析的n-square和交联肽段低效裂解这两大难题,该研究组建立了一种新XL-MS工作流-质谱可分裂交联剂法。该法是一种混合MS2-MS3裂解途径与专用的交联搜索数据库结合的方法。研究者将质谱裂解交联剂DSSO应用于测定每个交联肽段的前体质量,解决了n-square问题。交联裂解前体离子可通过质量差异确定数据的MS3采集方向,这些工作都可以在Oribitrap Fusion 和 Lumos Tribrid质谱上完成。这种采集途径提高了MS3实验的成功率,能够解决低效裂解问题和显著改善数据质量。与先前方法相比,报告中介绍的新方法包含以下三个优势。1)能够完成整体蛋白组数据库的交联鉴别 2)包括多种翻译后修饰的交联鉴别 3)在MS2和 MS3水平都有高质量范围。该研究组将此新XL-MS方法用于多种复杂样本,包括大肠杆菌裂解物、HeLa裂解物、排阻色谱分馏的HeLa细胞核提取物与细胞器。采用这种方法能够从每种样本得到成千上万个交联点。中国科学院计算技术研究所 刘超博士 报告题目《Development of the Cross-Linked Peptides Identificationin Large Scales》  由于检索空间过于庞大,蛋白组范围内交联肽段(双肽)的鉴定一直都是一项挑战。刘超博士和其团队考察了用于大范围交联肽段鉴定的普通搜索工具的应用效果,并开发了一种新的计算软件技术pLink 2.0。此技术比先前技术有三方面的改进:1)提高了双肽中单同位素鉴定的精度 2)由肽段索引升级为离子索引 3)引入机器学习(SVM在线训练)。该团队研究表明,通过使用离子索引pLink2.0检索人类数据库,在一小时以内可以完成5000张谱图的检索。干湿结合方法在人库检索1万张二级谱图仅用时不到2分钟。将pLink 2.0与美国西雅图研究人员研发的Kojak相比较,pLink2.0的分析速度约为Kojak的6倍,在精度方面也有一定优势。pLink2.0支持可碎裂交联,可减少可搜索空间和减少谱图数目。华中师范大学 万翠红博士 报告题目《Mapping Conserved Metazoan Protein Complexes with Biochemical Fractionationand LC/MS/MS》  对多蛋白复合物的了解对于生理进程探索非常重要。然而,对多蛋白复合物种类的分布特别是大规模网状图的发现比较困难。万翠红博士研究组通过高分辨生化分离与定量质谱直接分析了可溶性多蛋白复合物的组成,分析C.elegans、D.melanogaster、M.musculus、S.purpuratus和人类的可溶性细胞提取物。研究组采用以人类为中心的综合计算分析,鉴别出2153种蛋白,并新鉴定出7699种成对相互作用和981种共复合作用。这些相互作用能够反映后生动物生理过程相关的核心生理基础。重建的生理作用网有助于深入了解特殊的分子生物机理以及动物细胞的进化。国家蛋白质科学中心 郑勇博士 报告题目《Scaffold Protein-Mediated Dynamic Assembly of Protein Complexes in Normal and Cancer Cells》  很多细胞表面受体通过催化多组分蛋白复合物的形成开始信号传导过程。这个过程通过与受体结合的scaffold蛋白来传导。然而,目前这种scaffold的生物学基本原理仍不明晰。针对这个问题,郑勇博士研究组通过以IP-MRM为基础的方法,根据Shc1复合信号跟踪其空间和实时变化。研究人员进一步将这种方法与生化和基因技术结合,研究组发现Shc1以特殊的方式对EGF有即时的反应,包括明显的磷酸化和蛋白质相互作用。研究人员成功发现Shc1与一种抑制蛋白产生相互作用,是一种快速绑定蛋白基团能够激活促有丝分裂/存活通路,蛋白复合物围绕Shc1的装配变化在细胞间非常显著。对EGFR/Shc1复合物蛋白组分析能为以pTyr为基础的致肿瘤信号导致的乳腺癌提供诊断依据。暨南大学 张弓博士 报告题目《High-Throughput De Novo Proteome Identification Aided by Translatome Sequencing》  De novo肽段序列鉴定能够避免依赖数据库的检索法的缺点,但由于由于没有背景库,无法评估FDR,且极易受到干扰信号误导,因此长期以来无法应用于复杂样品的大规模鉴定。张弓教授介绍了研究团队研发的利用翻译组测序数据作为蛋白质de novo鉴定质量控制新方法,使肽段de novo鉴定能首次应用在蛋白质组复杂样品的实用化鉴定。研究人员在HCD质谱上应用此方法检测三种肝癌细胞(Hep3B, MHCC97H, MHCCLM3),单次实验鉴定出12000-13000种蛋白质,其灵敏度几乎达到了翻译组测序的水平 而用6种搜库软件鉴定到的真阳性蛋白并集也才7000-8000种。只能用新策略鉴定的4000余蛋白中随机挑选几十个进行MRM验证,几乎都能验证成功。这证明翻译组指导的de novo鉴定效能很高,能鉴定到大量搜索库法无法鉴定到的肽段和蛋白。De novo鉴定的大规模化可引致一系列新的蛋白质组应用。上海生命科学院 李辰博士 报告题目《De Novo Identification and Quantification of Single Amino-Acid Variants in Human Hepatocellular Carcinoma Tissues》  肿瘤蛋白质组-基因组学研究非常关注变异的发现。单核苷酸的多变性(SNPs) 数据库能够给单个氨基酸变体(SAVs)的检测提供依据。李辰博士在报告中介绍了一种在蛋白组水平发现SAVs的新方法。该法基于de novo算法,肽段的可能候选者可被鉴别并与理论蛋白数据库比较。在人类肝癌(HCC)组织中,研究者成功的应用此方法鉴别和定量已知和新的突变蛋白。在肝组织当中,在细胞核内的突变比较低,突变在内质网和线粒体的富集比例较高。这种新方法为病人提供了高通量的定制检测途径,可能为潜在临床生物标志物发现和机理研究提供帮助。中山大学 肖传乐博士 报告题目《Improving Peptide Identification for Tandem Mass Spectrometry by Incorporating Translatomics Informatio》  目前很多数据库检索方法是利用谱学数据而忽略能用于肽段鉴定的生物系统的其他信息。最近,转录物组RNA-seq的界面信息能提高肽段鉴别的灵敏度已经证实。与转录物组信息相比,翻译物组体现出与蛋白质的关系更为紧密,所以其可能对肽段鉴别更有效。在此报告中,肖传乐博士介绍了该研究组设计的高灵敏度肽段鉴定手段IPomics,其以翻译组学信息为主要蛋白鉴定参考。方法得到的推荐蛋白质优先性整合进了新的评分功能。与Mascot和pFind相比,IPomics方法蛋白质鉴定准确度更高,并能够增加整体肽段的鉴定率、谱学信息利用率,并已经利用LC-MS/MS数据集在人类和小鼠蛋白鉴定取得了显著效果。华大基因(BGI-Shenzhen) 闻博 报告题目《Protein Identification and Quantification based on Multiple Search Engines》  闻博在报告中介绍了团队有关以多搜索引擎为基础的蛋白鉴定和定量软件的研究进展。目前,串联质谱技术产生的质谱数据解析率往往不高,不同蛋白质鉴定软件由于谱图预处理、打分算法不同等原因导致对同一个数据的解析结果往往存在一定的互补性。虽然有一些开源的软件可以通过精巧的运算将多个鉴定引擎的鉴定结果整合起来取得与单引擎相比更好的鉴定效果,但由于操作往往较为复杂、下游软件比较缺乏等原因,故没有在蛋白鉴定与定量中推广开来。为了促进多引擎整合方法在蛋白鉴定和定量中的应用,该研究组研发了一种多引擎综合鉴定的开源软件IPeak和同重同位素(如iTRAQ、TMT)标记定量软件IQuant,并将IQuant升级到IQuant2。IQuant2采用精妙的算法和mzIdentML标准,整合多引擎搜索结果进行蛋白质定量。在分析水稻蛋白样品(用Q-Exactive分析)和人细胞系蛋白(用TripleTOF 5600分析)样本时,与单个引擎定量结果相比,IQuant2定量的蛋白能提高28.8%,检测的差异蛋白数量能提高多大40%。多引擎搜索不但能够提高蛋白鉴定效果,也能提高蛋白定量效果。中国科学院水生生物研究所 葛峰博士 报告题目《GAPP: a Proteogenomic Software for Genome Annotation and Global Profiling of Posttranslational Modifications in Prokaryotes》  葛峰博士在前期蓝细菌的蛋白基因组学研究工作的基础上,开发了一种用于原核生物的基因组注释和翻译后修饰全局发现的蛋白基因组分析软件GAPP。该软件最大的特点就是简单高效,具备初步生物信息学知识的研究者就能应用该软件进行原核生物的蛋白基因组数据的深度分析,利用该软件可以高效完成原核生物的全蛋白质组解析和翻译后修饰的全局发现的工作,该软件的开发和应用将有助于原核生物的基因组的精准鉴定,并有望成为原核生物基因组注释的一项标准流程。今后研究组还将根据用户的要求和体验继续对该软件进一步升级。复旦大学 周峰博士 报告题目《Genome-Wide Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis in Human Hematopoiesis》  蛋白质组学样品分析需要高分辨分离平台,周峰博士研究组搭建了一种长色谱柱三维蛋白组学定量分析平台(GWPQ), 整套系统完全在线和实现操作自动化。研究者将在此平台建立的蛋白质组学方法与Ribosome profiling相比较,水平相当,在分析模型样品时有80%的重叠。研究者还用此方法开展了人体造血相关细胞的研究,二代测序与应用该平台的蛋白质组方法重叠率达到92%。研究团队利用此方法比较了人体最重要的造血干细胞和红细胞发育中14502个基因蛋白表达变化和17127个基因mRNA表达变化。mTORC1信号极大的促进了红细胞进化中线粒体蛋白的翻译,线粒体和mTORC1的遗传和药理学干扰削弱了体内和体外的红细胞生成。该研究支持了线粒体理论机理,可能与线粒体疾病和老化相关的血液缺陷有关。研究者用模式生物小鼠实验验证了线粒体在血红细胞发育中起到关键作用,找到了全新控制血红细胞发育的通路。Johns Hopkins University(美国约翰霍普金斯大学) 张会博士 报告题目《Comprehensive Analyses of Glycoproteins》  已有不少实验证明,糖蛋白的变化与很多疾病相关。张会博士介绍了糖蛋白的生物合成、结构和功能以及分析糖蛋白的最新方法。糖蛋白的分析是蛋白质分析中最复杂的一种。研究者常把糖和蛋白分开分析,如已有的SPEG(固相提取糖基位点肽)法。该研究组建立了N-糖蛋白数据库,该库可用于检索已鉴定蛋白、通过精确质量数检索候选肽段、鉴定糖蛋白源等。该研究组最近还建立了分析N-linked糖链,糖基化位点,糖基化位点特异糖链,及O-linked糖链分析方法和软件,并探索了用糖基化酶推测多糖的方法。中国科学院大连化学物理研究所 于龙博士 报告题目《Isolation and Structural Analysisof N-Linked Glycansby Using Two-dimensional Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy》  糖蛋白糖链的纯化合物对糖链的结构分析、精准检测以及功能研究都具有十分重要的意义。然而,目前糖链纯化合物仍处于严重匮乏的状态。来自大连化物所的于龙博士介绍了该团队根据自身优势,采用纯化制备方法来获取N-糖链纯化合物并对其结构进行解析的相关研究进展。研究者首先介绍了糖链的结构特点并对其分离分析中存在的难点问题进行了阐述。针对这些难点问题,研究者结合课题组的材料优势,构建了以二维亲水作用色谱分离体系为核心的糖链纯化制备流程,该流程包括糖蛋白糖链的释放、富集、二维分离、质谱表征以及核磁结构分析等技术单元。在二维色谱分离体系中,第一维度主要根据糖链的羟基数量而实现不同聚合度糖链的分离,第二维度主要用于同分异构体的分离。由于串联质谱技术并不能得到糖链准确的结构信息,因此,研究者目前正在探索核磁共振技术进行准确结构的分析。以现有的糖链纯化合物为基础,研究者接下来将分别在功能、结构和定量三方面开展相关研究以拓展糖链样品库的应用。青岛大学 李磊博士 报告题目《Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder》  酪氨酸磷酸化网络应用在蛋白组学中不容忽视,如何找到pY尤为重要,但之前方法需要大量抗体才能富集pY。为解决业内这一问题,李磊博士研究组做了不少相关研究,团队研发的Superbinder(超亲体)易于制备,能够有效减轻实验室经济负担。研究者合成了pTyr1和pTyr2两个肽段,比较了SH2 superbinder法与其他几种方法的效果,又增加了Ti4+IMAX的去噪功能,证明其能有效富集pY。与抗体相比,src和grb2超亲体都能有效发现更多pTyr位点。研究者还应用superbinder富集方法进行了Tyr 磷酸化蛋白组学研究。如探索人细胞磷酸化蛋白不同功能分类和Tyrosine kinase (TK)的生物活性等。该项研究是与中科院大连化学物理研究所邹汉法团队、加拿大西安大略大学李顺成团队多方合作完成的。University of Minnesota (美国明尼苏达大学) 陈悦博士 报告题目《Discovery and Characterization of Short-chain Lysine Acylations with Mass Spectrometry and Quantitative Proteomics》  赖氨酸是细胞内蛋白质翻译后修饰的重要靶点。最近,除了赖氨酸乙酰化以外还有一些短链酰基化修饰逐渐被发现。在陈悦博士的早期研究工作中,他从细致的质谱分析中发现了组蛋白赖氨酸丙酰化和丁酰化,两种新的短链酰基化修饰。进一步的研究表明,这两类短链酰基化修饰都是广泛存在的,并可以被特定的酶所调控。最近最新的研究表明赖氨酸丁酰化在Bromo domain识别和精子发育过程中起到重要的调控作用。为了进一步探索质谱信息中隐藏的其他新的修饰,研究者设计了PTMap软件,用来分析非限定性搜索,得到了一些可靠的新蛋白质修饰鉴定,包括琥珀酰化,巴豆酰化,羟基丁酰化等。在定量研究方面,该团队比较关心蛋白质修饰丰度,因为普遍使用的相对定量的分析方法对解释蛋白质修饰的生物学意义有一定的局限性,但是质谱分析得到的离子峰强度并不能直接比较来计算蛋白质修饰的丰度。研究者针对此问题开发了稳定同位素标记为主的新的蛋白质修饰丰度定量方法,可以直接比较离子峰强度,通缩计算得到每个位点上赖氨酸位点丰度,准确性和重现性都很好。中国科学院昆明动物研究所 赖仞博士 报告题目《Mite Allergen Diversity Identification by Proteomics Coupling with Pharmacological Testing》  螨虫、马蜂、牛虻和蟑螂等带有很多种过敏原,一些过敏甚至会导致死亡。过敏的标准治疗方式就是利用过敏原进行脱敏治疗,现在很多机构希望把过敏原纯化出来进行过敏治疗,因此对过敏原发现和提取纯化都有更多要求。屋尘螨(HDM) 是最常见的室内过敏原。赖仞博士希望结合蛋白质组学、药理和病理学手段来进行过敏原的多样性研究。过敏原蛋白组学研究一般是将分离提取出的过敏原与病人血清进行IgE反应。赖仞研究组将蛋白组学技术和二维免疫印迹法结合,从粉尘螨提取物中鉴定出分属于12个组群的17种过敏原,由Edman降解、质谱分析和cDNA克隆等技术鉴定出其一级结构。通过酶联免疫吸附试验抑制测试、免疫印迹、粒细胞活化试验、皮肤点刺试验测定,该研究组发现了8种新的尘螨过敏原。中国医学科学院基础医学研究所 邵晨博士 报告题目《Opportunities and Challenges for Urinary Biomarker Discovery Using Proteomic Approaches》  邵晨博士对业内目前围绕尿蛋白质组生物标志物的发现研究进展进行了综述。据介绍,现在很多科研和医疗开始倾向于做尿液,因其具有易得性和稳定性,且含有丰富蛋白信息。邵晨博士研究组曾通过二维液相与串联质谱鉴定做了一些尿中蛋白质组的研究,尿液蛋白质组可以包括其他体液70%的蛋白质。研究组也通过3DLC-MS/MS鉴定出尿液中的6400多种蛋白,并发现与尿蛋白重合率最高的是脑组织中的高表达蛋白。尿蛋白能够反映很多远端的变化,如帕金森症和脑肿瘤等脑部疾病。在肾脏病中,肾小球损伤病人的肾小球会失去过滤功能而造成尿蛋白显著上升。目前很多研究发现尿蛋白中的生物标记物与一些疾病相关,主要集中在泌尿系统疾病的发现,如膀胱癌和急性肾损伤的标志物已获FDA批准,也有在消化系统疾病、肿瘤等疾病中的相关发现。其中,肺癌的研究比较成熟且已进入临床阶段。
  • 谁是蛋白质质谱与蛋白质组学领域世界第一牛人?
    俗话说:文无第一,如果非要整出个蛋白质质谱与蛋白质组学领域世界第一牛人,显然并不是一件容易的事,也注定是一件有争议的事。作为一个半路出家的准业内人,我就本着无知者无畏的革命精神,说一下我自己心目中的第一牛人:Ruedi Aebersold。   考虑到科学网的大多数网友对蛋白质组学并不了解,先简单科普一下,根据百度百科的定义:“蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。” 1995年(也有1994,1996年之说)Marc Wikins首次提出蛋白质组(Proteome)的概念1,1997年, Peter James(就职于有欧洲MIT之称的瑞士联邦工学院(ETH))又在此基础上率先提出蛋白质组学的概念2。基因组学和蛋白质组学的概念又进一步催生了N多的各种各样的组学(omics),两者的诞生的发展,也使系统生物学成为可能,本文的主人公Ruedi Aebersold与Leroy Hood一起于2000年在美国西雅图创办了系统生物学研究所(ISB),该所的建立不但标志着系统生物学作为一门独立的学科的诞生(此句话貌似不靠谱,参见文后14楼的评论),也带动了包括蛋白质组学在内的多种组学的发展,当然各种组学的发展也同时促进了系统生物学的发展。尽管日本也于2000年在东京建立了系统生物学研究所,但是同为第一个吃螃蟹的,东京的这个所,无论是学术水平还是世界影响都无法和西雅图的那个系统生物学领域的麦加相提并论。闲话少叙,我之所以认为Ruedi Aebersold是蛋白质质谱与蛋白质组学领域世界第一牛人,是基于如下原因:   Ruedi Aebersold对蛋白质组学的最大贡献可谓是同位素代码标记技术(ICAT),现在这一蛋白组定量技术自从1999年在Nature上发表以来,该技术已世界广泛应用,该论文迄今(截至2013年1月11日)已被引用了近3000次。Web of Science的检索结果显示,蛋白组学领域迄今已经至少有超过10万篇论文发表,按照被引用次数排名,该论文位居第三位。有意思的是,被引用次数排第四位的是Ruedi Aebersold和另外一位牛人Mathias Mann(下面会介绍)于2003年发表在Nature上的有关蛋白质质谱与蛋白质组学的综述论文,迄今也已被引用近2800次。而引用次数排第一和第二的两篇论文的通讯作者并算不上是蛋白质质谱与蛋白质组学领域的,蛋白质组学仅仅是他们使用的工具,他们的影响也在这个领域之外。蛋白质组学领域,最重要的专业协会应该算是HUPO (国际人类蛋白质组组织), 最重要的专业会议也当属HUPO世界大会,Ruedi Aebersold曾获HUPO含金量最高的成就奖,他本人也经常是HUPO世界大会的分会主席或大会特邀报告人。当然Aebersold还获得了包括美国质谱协会(ASMS)大奖在内的许多专业大奖。可能有人会列出另外的自己心中的第一牛人(如上述的Mathias Mann),但Ruedi Aebersold无疑至少是领域内公认的前几位的世界级牛人。另外,顺便说一下德国马普所的Mathias Mann(其在丹麦首都也有实验室),Mann和Aebersold可谓是蛋白质组学领域的双子星座,都是该领域的顶级牛人,Mann发表的论文有多篇都在蛋白质组学领域被引用次数前10位,不少被引用次数都上千次。上述的Mann和Aebersold两人能在Nature发表综述论文也说明了他们的江湖地位。Aebersold和Mann所发表的论文总被引次数分别超过了5万和3万次,这个数字在世界所有领域都是惊人的。另外,Mathias Mann在蛋白质组学最大的贡献可以说是发明了蛋白质组体内标记技术SILAC3,这种技术与Ruedi Aebersold发明的ICAT已及另外一种标记iTRAQ是公认的应用最为广泛的蛋白质组学定量标记技术。   今年年近花甲的Ruedi Aebersold是世界蛋白质组学的开拓者之一,现在在上述的ETH的工作,和最早提出蛋白质组学Peter James在同一个大学。作为土生土长的瑞士人,Ruedi Aebersold是在2004年底、2005年初才开始在ETH全职工作的,可谓是瑞士的大海龟。Ruedi Aebersold此前在西雅图的ISB和华盛顿大学工作,作为ISB的元老和共同创办人,Ruedi Aebersold现在还是ISB的兼职教授,发表论文时也还署ISB地址。Mann和Aebersold都是欧洲人,现在又都致力于将蛋白质质谱与蛋白质组学应用到临床,尽管蛋白质组学已有十多年发展历史,现在最大的一个瓶颈可以说在基本无法应用到临床,现有的技术,对于临床应用而言,时间和经济成本都太高(无法高通量、检测成本太贵)。这一块硬骨头显然不是一般人能够啃得动的,需要从临床样品制备、质谱技术到数据分析都要有突破甚至革命性的创新,我很期待,也相信Mann和Aebersold有能力最终使蛋白质组学(尤其是基于此的生物标志物鉴定技术)应用到临床。   我国在蛋白质质谱与蛋白质组学领域在世界上最出名的无疑非贺福初莫属,贺福初的名字在国内搞蛋白质组学应该都知道他的名字,他的头衔很多(如将军、院士),我就不一一列举了,新年伊始他又多了一个牛头衔:万人计划中的科技领军人才。贺的工作和学术水平,我不熟悉,不敢评头论足。他的文章被引用次数最高的是发表在Cancer Research一篇论文,迄今已有126次,但并非是蛋白质组学领域。在蛋白质组学领域,他的被引次数(含自引)最高的论文是2007年发表在蛋白质组学顶级期刊MCP的文章4,迄今已有105次引用。蛋白质质谱领域,我国在世界上最出名的学者估计要数复旦大学的杨芃原了,他的被引用次数最高的一篇论文,是2005年发表在化学顶级期刊德国应用化学的文章5,迄今已被引用70次,杨芃原为该论文的共同通讯作者。我国在蛋白质组学目前被引用次数最高的是南开大学王磊(澳大利亚海归、长江学者)2007年发表在美国科学院院刊(PNAS)的论文6,迄今被引次数已经超过500次。   蛋白质质谱仪主要生产商Thermo Fisher(即原来的Finnegan), 最近新出了本挂历,这本特别的挂历上列了13位在蛋白质质谱与蛋白质组学领域的牛人,上述的Ruedi Aebersold和Mathias Mann都在之列,其余11位简单介绍、列表如下。 姓 名 工作单位 主要贡献 Richard D. Smith 美国太平洋西北国家实验室 1990年首次用三重四级杆质谱Top-down(自上而下)分析完整蛋白 John Yates III 美国Scripps研究所 SEQUEST MS/MS数据库搜索程序 Joshua Coon 美国威斯康星大学麦迪逊分校 发明了电子转移解离技术(ETD) Neil Kelleher 美国西北大学 Top-down蛋白质组学 Kathryn Lilley 英国剑桥大学 蛋白质组学定量技术 Pierre Thibault 加拿大蒙特利尔大学 应用生物质谱和蛋白质组学到细胞生物学 Michael MacCoss 美国华盛顿大学(西雅图) 稳定同位素标记技术 Albert Heck 荷兰Utrecht大学 基于质谱的结构生物学 Catherine Costello 美国波士顿大学 HUPO前任主席,质谱技术发展及应用 Alexander Makarov 德国Thermo Fisher Scientific 生物质谱全球研发总监 领导研发Orbitrap质谱仪 Donald Hunt 美国弗吉尼亚大学 FT-MS and ETD   简单的说,上述13位世界级牛人都来自欧美,没有一位来自亚洲,也没有一位华人。我不知道以Ruedi Aebersold代表的上述牛人是如何炼成的,但可以肯定的是:他们不是欧美版的“百人”计划,也不是“千人”计划,更不是“万人”计划而“计划”出来的。网上的公开信息表明:Ruedi Aebersold除了在国际专业协会和期刊有学术兼职外,没有任何行政职务,就是一普通教授,但是这不妨碍他成为蛋白质质谱与蛋白质组学领域世界第一牛人。
  • 两篇Nature公布里程碑成果:人类蛋白质组草图
    英国新一期《自然》杂志公布两组科研人员分别绘制的人类蛋白质组草图。这一成果有助于了解各个组织中存在何种蛋白质,这些蛋白质与哪些基因表达有关等,从而进一步揭开人体的奥秘。 上世纪90年代,人类基因组计划开始成形时,有科学家提出了破译人类蛋白质组的想法。其目标是将人体所有蛋白质归类并描绘出它们的特性、在细胞中所处的位置以及蛋白质之间的相互作用。但人类蛋白质组的规模和复杂性使此类研究困难重重。 德国慕尼黑工业大学等机构研究人员报告说,尽管人类已对基因组有所了解,但大约2万个编码基因中,哪些会指导合成蛋白质、合成哪些蛋白质都是未知数。为探明这一问题,他们从人体多个组织样本和细胞系中提取蛋白质并将它们&ldquo 切&rdquo 成小块,然后用质谱分析法分析出形成每个蛋白质片段所需的氨基酸序列。 研究人员借助计算机对这些蛋白质片段与基因组进行了大量比对工作,并据此列出一个&ldquo 清单&rdquo ,描绘出哪些组织中的哪些基因表达与蛋白质的形成有关。在另一项研究中,美国约翰斯· 霍普金斯大学研究人员与印度等国同行也采用质谱分析法绘制出一张蛋白质组草图。 这两个团队均发现,有数百种蛋白质是由此前认为不具备相关功能的DNA片段(脱氧核糖核酸)及&ldquo 假基因&rdquo 形成,&ldquo 假基因&rdquo 是指由于发生突变,丧失原有功能的基因。此外他们还发现了一些与蛋白质产生无关的&ldquo 多余&rdquo 基因。 研究人员表示,绘制人类蛋白质组图谱有助于了解人体内蛋白质的出处、功能和特性,这对于生命科学、医学等领域都有重要意义。
  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
  • 人工智能成功预测蛋白质相互作用 确定100多个新蛋白质复合物
    美国科学家主导的国际科研团队在最新一期《科学》杂志撰文指出,他们利用人工智能和进化分析,绘制出了真核生物的蛋白质之间相互作用的3D模型,首次确定了100多个可能的蛋白质复合物,并为700多个蛋白质复合物提供了结构模型,深入研究蛋白质相互作用有望催生新的药物。  研究负责人之一、美国西南大学人类发育与发展中心助理教授丛前(音译)称,研究结果代表了结构生物学新时代的重大进步。  丛前解释说,蛋白质通常成对或成组工作,形成复合物,以完成生物体存活所需的任务。虽然科学家已经对其中一些相互作用开展了深入研究,但许多仍是未解之谜。了解蛋白质之间所有的相互作用将揭示生物学的许多基本方面,并为新药研发提供参考。  但半个世纪以来,鉴于许多蛋白质结构的不确定性,科学家们很难了解这些相互作用。2020年和2021年,深度思维公司和华盛顿大学戴维贝克实验室独立发布了两种人工智能技术“阿尔法折叠”和RoseTTAFold,它们使用不同的策略预测蛋白质结构。  在最新研究中,丛前等人通过对许多酵母蛋白复合物建模,扩展了人工智能结构预测工具箱。为了找到可能相互作用的蛋白质,科学家们首先搜索相关真菌的基因组,寻找发生突变的基因,然后使用上述两种人工智能技术来确定这些蛋白质是否可以3D结构结合在一起。  他们确定了1505种可能的蛋白质复合物,其中699个结构已被表征,验证了其方法的实用性;另外700个复合物目前获得的数据有限,剩下106个从未被研究过。为更好地理解这些很少被描述或未知的复合物,团队研究了类似的蛋白质,并根据新发现的蛋白质与此前已知蛋白质的相互作用,确定了新发现蛋白质的作用。
  • 蛋白质组学的前世今生与未来: 蛋白质存在形式 -- 记中南大学湘雅医院詹显全教授
    p style=" text-align: justify line-height: 1.75em "   詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会(EPMA)的会士和国家代表、美国肿瘤学会(ASCO会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文130 余篇,主编国际学术专著3 本,参编国际学术专著16 本,获得美国发明专利2 个。受邀在中科院1 区影响因子9.068 MassSpectrometry Reviews 和中科院2 区影响因子3.65 Frontiers in Endocrinology 的国际期刊上客座主编了3 个专刊。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 本篇文章仪器信息网获得授权转载,来源中国科技成果杂志。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 深入剖析蛋白质组学技术最新进展与应用 /strong /span /p p style=" text-align: justify line-height: 1.75em "   詹显全:人类结构基因组测序接近尾声,人们就从结构基因组学研究转向功能基因组学研究,即对转录组和蛋白质组进行研究。1995 年正式提出了”蛋白质组”和”蛋白质组学”的概念,距今已有25 年历史了。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 蛋白质组学的主要技术包括蛋白质组的分离技术、鉴定技术和蛋白质组信息学技术。 span style=" text-indent: 2em " 蛋白质组的分离技术主要有双向凝胶电泳(2DE)和多维液相色谱(2DLC)。蛋白质组的鉴定技术主要是基于质谱(MS)的技术,主要分为肽质指纹(PMF)和串联质谱(MS/MS)分析技术,其用于蛋白质大分子分析的两大离子源主要有MALDI 和ESI。质谱技术发展很快,主要朝向高灵敏度、高通量和高精度方向发展。 /span /p p style=" text-align: justify line-height: 1.75em "   蛋白质组信息学技术主要是用来构建蛋白质相互用网络的相关技术。蛋白质组的分离技术和质谱技术的不同联合就形成了各种类型的蛋白质组学分析技术:如2DE-MS和2DLC-MS。2DE-MS 又有2DE-MALDI-PMF 和2DE-ESI-LC-MS/MS, 该技术在蛋白质组学研究的头10-15 年是其主要技术,然而常规概念认为2DE 的通量不高,即一个2D 胶点中一般仅含有1 ~ 2 个蛋白质,通常一次实验其通量仅能鉴定几十到一千个蛋白质,这样其在蛋白质组学中的地位逐渐被淡化。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 2DLC-MS 主要有iTRAQ or TMT-based SCX-LC-MS/MS and labelfree LC-LC-MS/MS, 这就是人们通常说的“Bottomup”蛋白质组学,该技术在最近10 ~ 15 年在蛋白质组学中起着核心技术的作用,因为其通量明显增加,一次实验其通量可达到几千到一万的蛋白质能被鉴定,但该法鉴定的结果是一个protein group, 实质上鉴定的是编码蛋白质的基因, 而并没有鉴定到真正意义上的蛋白质,即蛋白质存在形式(Proteoforms 或Protein species)。蛋白质存在形式(Proteoforms)是蛋白质组的基本单元。人类基因大约2 万个,人类转录本至少10 万个,每个转录本指导核糖体按三联密码子决定一个氨基酸残基来合成氨基酸序列,刚合成出来的蛋白质氨基酸序列是没有功能的,它必须到达其指定的位置如胞内、胞外,和不同的亚细胞器等,形成特定的三位空间结构,并与其周围的相关分子相互作用,形成一个复合物(complex)才能发挥其功能作用。从核糖体刚合成出来到其指定的位置过程中有很多的蛋白质翻译后修饰(PTMs 据估计人体有400 ~ 600 种PTMs)。我们最近对蛋白质存在形式的概念给出了最新最完整的定义:蛋白质的氨基酸序列+ 翻译后修饰+ 空间构型+ 辅助因子+ 结合伴侣分子+ 空间位置+ 特定的功能。而蛋白质的概念被定义为:由同一个基因编码的所有蛋白质存在形式的集合体。这样,人类蛋白质组中的蛋白质存在形式(Proteoforms)至少有100 万或甚至达10 亿 (图1)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 427px " src=" https://img1.17img.cn/17img/images/202008/uepic/1d18fad3-b010-4ea5-a812-432853ad4ec6.jpg" title=" 1111111.png" alt=" 1111111.png" width=" 600" height=" 427" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图1 :Proteoforms 的概念及形成模式 (Zhan et al,Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   如此庞大数量的Proteoforms/Protein species, 如何对其进行大规模的探测、鉴定和定量,是一个至关重要的事情。目前关于Proteoforms 的研究有两套策略一是“Top-down”MS 技术, 二是“Top-down” 和“Bottom-up”相结合的技术即2DE-LC/MS 技术(图2)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 415px " src=" https://img1.17img.cn/17img/images/202008/uepic/94f48c94-fd0b-4959-90fb-dd399cebf074.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 415" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图2 :Proteoforms 研究技术比较(Zhan et al., Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   “Top-down”MS 技术能探测、鉴定和定量Proteoforms,获得蛋白质的氨基酸序列和PTMs 信息,然而该技术的通量较低,目前最大通量鉴定到5700 个Proteoforms, 对应到860 蛋白质。 /p p style=" text-align: justify line-height: 1.75em "   最近,詹显全教授团队发现2DE-LC/MS 技术是一超高通量的技术平台,在探测、鉴定和定量Proteoforms方面, 可以鉴定达几十万至上100 万的Proteoforms。随着质谱灵敏度的显著提高,自2015 年以来,詹显全教授团队就发现每个2D 胶点包含了平均至少50 个甚至达几百个Proteoforms,并且大多数是低丰度的 并在近1 ~ 2 年来发表了相关论文来全面阐述2DE-LC/MS 的新理念和实践,完全打破了40 多年来人们对双向电泳的传统认识 (即一个2D 胶点中一般仅含有1 ~ 2 蛋白质),为大规模的Proteoforms 研究提供了技术基础。Proteoforms/Protein species 概念的发展极大的丰富了蛋白质组的内涵,是蛋白质组学研究的更高层次,是国际科学发展的前沿,必将影响着整个生命科学和医学科学的研究和实践,有助于发现可靠而有效的疾病标志物,用于深度理解疾病分子机制和决定药物靶点,或者用于有效的预测、诊断、预后评估。另外,蛋白质组是表型组的重要成分,是基因组功能的最终执行者,是基因组和转录组研究所不能替代的,要实现真正的个性化医学和精准医学,蛋白质组学研究是不能绕过去的。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 基于整合组学发现疾病标志物才是精准发展之重 /strong /span /p p style=" text-align: justify line-height: 1.75em "   1. 您一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,请谈谈在这方面的最新的研究成果,以及过程中的主要挑战和解决方案 /p p style=" text-align: justify line-height: 1.75em "   詹显全: 垂体瘤是颅内常见肿瘤,绝大多数是良性的,只有少数具有侵袭性和恶性,并能引起激素分泌紊乱和颅内压迫症状,出现严重的临床症状,危害人体健康。临床上分为功能性垂体瘤和非功能性垂体瘤,并且非功能性垂体瘤不表现血中激素水平增加,不易早期诊断,经常是当肿瘤体积增加到压迫周围组织器官产生压迫综合征时才被诊断,这时已经是中晚期了,且其分子 /p p style=" text-align: justify line-height: 1.75em "   机制并不清楚,缺乏早期诊断标志物和药物治疗靶标。因此,非功能性垂体瘤被选为主要研究对象。虽然垂体瘤是在颅内,但我们认为垂体瘤是一种多病因、多过程、多结果的全身性的慢性疾病,并且还具有肿瘤的异质性 它涉及到一系列的分子改变,包括发生在基因组、转录组、蛋白质组、代谢组和相互作用组水平上的改变,而这些不同水平改变的分子和信号通路又不是孤零零的起作用,而是相互间具有千丝万缕的联系。因此,我们很难用一种单一因素来解决其预测、预防、诊断、治疗和预后评估 而必须从单因素模式转向多参数系统思维模式。垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统性给其“同病同治”提出了严峻挑战,同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件。多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。因此,我们认为多参数系统策略观和多组学是进行垂体瘤个性化医学和精准医学的研究和实践的重要理念和技术方案。 /p p style=" text-align: justify line-height: 1.75em "   我们从2001 开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008 年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。经过过去近20 年未间断的研究,我们在垂体瘤的蛋白质组学、翻译后修饰组学、多组学、分子网络和系统生物学研究方面在国际上处于了主导地位。 /p p style=" text-align: justify line-height: 1.75em "   在我们研究过程中,我深深体会到一个重大思转变就是从以前的单参数模式转向了多参数系统思维模式,这符合肿瘤的真实情况。另外,就是多组学技术促进了这一模式的转变,并是其主要的解决方案。 /p p style=" text-align: justify line-height: 1.75em "   2. 从您的研究方向及重点出发,您认为多组学研究在精准医学中接下来的研究应当侧重于哪些方面,以及如何才能比较好的实现从研究到临床的转化落地? /p p style=" text-align: justify line-height: 1.75em "   詹显全:我的研究对象是肿瘤(垂体瘤、卵巢癌、肺癌、胶质瘤),研究理念是肿瘤的多参数系统策略观,技术手段是多组学和系统生物学,研究的目标是要解决肿瘤的预测预防个体化医学(PPPM)和精准医学(PM)。 /p p style=" text-align: justify line-height: 1.75em "   我们认为多组学中的不同组学对PPPM/PM 的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM 应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、与周围分子相互作用、及信号通路网络问题。代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。要真正实现PPPM 和PM,蛋白质组和代谢组的贡献是基因组所不能替代的是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms 的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系 一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。 /p p style=" text-align: justify line-height: 1.75em "   3. 作为EPMA(欧洲预测预防个体化医学协会)的中国代表,想请您分享下国际上对于组学研究在精准医疗中的应用现状、趋势以及发展规划 /p p style=" text-align: justify line-height: 1.75em "   詹显全:欧洲预测预防个体化医学协会(EPMA)是国际个体化医学领域领头的学术协会,由来自全球55 个国家和地区的专家学者组成,其创办的官方杂志EPMA Journal( 中科院2 区,ESI IF5.661) 涵盖了24 个专题内容,较全面地反映了预测预防个体化医学(PPPM)和精准医学(PM)的研究、实践与最新动态,还涉及到PPPM 和PM 的政策、伦理、卫生经济和社会保障等许多方面,为PPPM 和PM 的科研、实践提供了一个很好的交流平台。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 我本人作为EPMA 的中方代表(National Representative of EPMA in China) 和其官方杂志EPMA Journal 的副主编,参与了其经历的重要活动。我从2008 开始起在EPMA 中主要负责多组学和创新技术方面,在EPMA 白皮书中的“肿瘤预测预防个体化医学的多参数系统策略观”这部分最早就是我写的,之后我们写了一系列文章来论述基于多组学的多参数系统策略的研究和实践。因此,在EPMA,我们的基于多组学的多参数系统策略观还是比较早的,近五六年来多组学研究在EPMA 圈内(55 个国家和地区)发展得很快,已经深入到PPPM 的各个领域。 /p p style=" text-align: justify line-height: 1.75em "   另外,我认为,精准医学在理念上没错,严格意义上的精准医学是个理想化的概念,人们只能无限去逐步接近它。现阶段搞精准医学还是要回归到人类健康的保护过程,即预测、预防、诊断、治疗和预后评估,这里应该是针对个人来说而不是针对群体,严格说来应该是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。对于人类健康保护过程来说,预测、预防还是上策,其次就是早诊断、早治疗。多组学研究已渗入到人类健康保护过程的每个环节,主要用来寻找基于多组学的生物标志物,当然这里的生物标志物应泛指前面说的两类:一类是解决疾病机制和治疗靶点的标志物,一类是解决预测、诊断、预后评估的标志物。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 因此,基于多组学的PPPM/PM 的研究和实践一定是今后发展的一个长远趋势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 802px " src=" https://img1.17img.cn/17img/images/202008/uepic/581ff7cf-5c3e-4fd6-8f5f-805989791ee5.jpg" title=" 詹.jpg" alt=" 詹.jpg" width=" 600" height=" 802" border=" 0" vspace=" 0" / /p p br/ /p
  • 神八实验揭秘:线虫受辐射 太空中长蛋白质
    11月18日凌晨,神舟八号飞船搭载的生物培养箱在神八落地后几乎是刻不容缓地被送回北京。据介绍,培养箱中装载样品33种,开展了17项空间生命科学实验。如今实验有了什么进展?我们就从中选取几项实验,介绍给您——   神八实验揭秘   线虫的太空之旅   我是一条线虫,但不是你想象中的寄生虫,你可以叫我的英文名字:C.elegans。我坐着神八飞船,在太空进行了长达十六天半的旅行。   自然状态下,我生活在泥土中,以细菌为食。成年后身长约1毫米,人类在显微镜下才能看清。我通体透明,长得不好看。可大连海事大学环境系统生物学研究所孙野青教授和同事们,却常夸我是“可爱美丽的小天使”,还给我起了个好听的名字:秀丽隐杆线虫。   不是吹牛,我是天生的“航天员”。在空间生命科学领域,我的家族可谓声名远播。从1975年开始,我的同类就先后搭载美国国家航空航天局的航天飞机邀游太空。   为什么选择我们呢?一是因为我们在-80℃长期冻存后仍能恢复活力,是目前已知的唯一能低温冻存的多细胞真核动物。我在逆境时进入休眠期,像熊冬眠一样,不发育、不吃东西,时间可以长达2个月左右。二是我们基因组很小,仅为人类基因组的3%,但有约40%的基因与人类同源。据科学家们说,我们身上很多调控发育的基因和人类很相似,一旦研究清楚在空间辐射环境或空间辐射和微重力同时存在的环境下,我们的这些基因是如何变化的,将给航天医学及空间辐射损伤预警做出巨大贡献。   因此,我们在太空中要接受辐射,再把这些辐射损伤的印记带回来。所以我们在地面不能有任何损伤,坐飞机时都不能过安检,临上太空前还要在航天城“集训”两周,看我们能否顺利登舱。   这次上太空,我的“房子”是德国航空航天中心DLR研制的SIMBOX(生物支持系统实验盒)内的38个小盒子之一,大约18ml。这么小的空间,却住了十万伙伴。SIMBOX可不简单,它的里面安装了1g的离心装置,模拟地球的引力。我们分成两组,分别被装入在1g的离心机上和附近固定的房子里,有些伙伴只接受空间辐射,有的既接受空间辐射又感受微重力的。当返回地球后,我们就可以被比较分析变化的差别。我们屏住呼吸,停止发育,把空间环境影响的印记尽量留在身上。   接下来我们将继续配合孙教授课题组,给人类带来更多惊喜,大家拭目以待吧!   放线菌勇闯无重力空间   放线菌是“神八”的另一位旅客,它们比缝衣针尖还要小100倍,却是中科院微生物所黄英教授的心肝宝贝们。   别小瞧了放线菌!知道抗生素吧?70%是放线菌产生的。它们还是环境保卫者——难降解的塑料、化学除草剂、杀虫剂,可能都是放线菌的“美餐”,只要很短的时间,它们就能消灭这些顽固有机物。   黄英说,这次送上太空的有三种微生物,第一种是放线菌里的经典“美人”,它产生的色素像天空般蔚蓝,因此叫天蓝色链霉菌,正是出于颜色易于观察的原因,它是这次上太空的首选“模特” 第二种是放线菌里的“新人类”,它生命力旺盛,产生抗生素的能力又强又稳定,它有个暂定的名字叫卷须链霉菌C 第三种不是放线菌,叫枯草芽孢杆菌,有些洗衣粉里的酶,就是从它的分泌物中提取的。这次,它的命运是被两个同伴杀死,从而测试它们在太空环境下的抑菌能力。   放线菌被小心翼翼地放进通用生物培养箱,箱子保持23℃恒温和恒定的湿度,连空气成分都是照搬地球的,并且准备了充分的营养物。   送上太空,为什么又模拟地球环境呢?这叫微重力效应实验。地球引力对生物的影响,经常被人们忽视,但确实存在。比如,树木之所以能将根深深扎进土地里,就是因为地球引力的影响。对于放线菌而言,没有了地球引力,又会发生什么样的变化?这就是送放线菌上太空的原因所在。   此前科研人员曾在地面模拟微重力效应实验,结果发现它们产生抗生素的周期从1周缩短到4—5天,抗生素的产量也有所增加。   将它们送入太空,就是要看看在真实的微重力环境中,它们会发生什么变化。事实证明,在太空的微重力环境下,放线菌的生长和模拟微重力效应环境下相似,甚至效果更好一些。天蓝色链霉菌和卷须链霉菌C在太空中肆无忌惮的生长,杀死了更多的枯草芽孢杆菌,这说明它们释放出的抗生素浓度高于地球上的同类。   中科院微生物所接下来的工作,是进一步比对这些从太空中回来的“贵客”们的细微模样和抑菌能力,分析它们的基因性状,抓紧让它们“传宗接代”,看看下一代中会不会出现更美更壮的“佼佼者”。   太空中长出蛋白质   大约10厘米长、4厘米宽、5厘米厚——这个小黑盒就是由神八携带的、用于蛋白质晶体生长研究的“秘密武器”。打开这个“秘密武器”,可以看到120个排列整齐、大小一致的“小抽屉”,中科院生物物理所研究员仓怀兴解释说,每个“小抽屉”都装满了实验溶液,实验溶液中“漂浮”着一根内径1毫米、长12毫米的玻璃毛细管,毛细管里装着蛋白质溶液。“我们这个实验的主要目的,就是要在太空环境中让蛋白质溶液与实验溶液发生反应,看看能不能生长出质量更好的蛋白质晶体。”   蛋白质是生命的物质基础,没有蛋白质就没有生命。蛋白质分子是由氨基酸构成的,氨基酸的不同排列方式、也就是蛋白质分子的不同结构导致其产生不同的功能。   “要想知道哪种蛋白质有何功能,必须先了解它的结构。”仓怀兴说:“研究蛋白质分子的结构有两种方法,一是让其长出晶体,再用X射线照射 二是用核磁共振。”但当蛋白质分子比较大时,“比如一些病毒的蛋白质结构,核磁共振就看不到了。”   研究蛋白质分子结构是国际学界的热点。“近些年比较热门的应用是生物制药领域,因为很多病毒的外壳都是蛋白质。”仓怀兴介绍说,美、日、欧盟等发达国家早就将蛋白质分子送入太空,以便获得质量更好的蛋白质晶体,从而更加精细地了解蛋白质的结构。“据我了解,到目前为止,大概有25种蛋白质分子的高分辨率结构,是利用在空间实验中获得的蛋白质晶体取得的。我相信还有更多,不过很多制药公司都将其视为机密,在新药研制成功之前不会对外宣布。”   虽然有120个“小抽屉”,但此次实验只携带了14种蛋白质溶液。仓怀兴解释说:“蛋白质是种很奇怪的物质,不是说两种溶液相反应就必然能得到晶体,因此我们都做了充分的‘后备’。”仓怀兴说,得到的晶体已经被研究人员带到上海同步辐射光源进一步研究,“很快就会有结果了!” 空间微重力样品   神八里的绿色植物   “我们利用神八搭载水稻种子,进行高等植物在空间的代谢生物学研究。”中科院植物所的温晓刚说。水稻是空间生命支持系统中重要的食物来源,也是高等植物研究的模式植物,这是“神八”选择水稻种子的原因。   这些水稻种子被放置在植物生长容器中,以透光、透气、不透水的生物膜覆盖。“这些水稻种子在太空中萌发,生长成水稻幼苗。”温晓刚说,这些情况与地面上同一温度、湿度情况下生长的水稻种子进行对比,中科院植物所的研究人员就能够分析水稻幼苗在空间环境下的生长发育情况,考察空间飞行对植物代谢过程的影响。   温晓刚说:“经过空间飞行,水稻幼苗生长状态良好,发芽率达到91%以上,与地面实验一致。初步的光合生理实验结果显示,水稻幼苗在微重力等空间环境下,其光合系统的活性受到一定程度的影响,其中对光系统Ⅰ的影响大于对光系统Ⅱ的影响。”温晓刚解释,空间微重力会造成高等植物光合机构叶绿体中的类囊体膜结构发生改变,比如类囊体膜垛叠的基粒组分减少等,这种变化可能对植物光合系统的功能造成一定的影响。“实验结果正在进行进一步研究分析中。”接下来科学家们将深入分析得到的光合生理数据,并进行水稻幼苗叶片和根尖的亚显微结构分析,以及水稻叶片的蛋白质组学研究,同时研究空间飞行对水稻幼苗蛋白质组学的影响,特别是与光合作用相关的代谢过程以及与光合能量传递相关的蛋白的影响,分析空间环境下植物光合系统的变化规律。   神八中的“生物圈”   如果能在飞船密闭的空间里,建立这样一个“生物圈”:让食物产生、氧气供给、二氧化碳去除和废物再循环都变成现实,那宇航员们长期居住太空将不再是梦想。神八里就有一项空间简单密闭生态系统探索研究,我国科学家迈出了在太空自主建立受控生态生命保障系统(简称CELSS)的重要一步。   CELSS是生命科学、空间科学、环境科学、自动化和遥感科学诸多高新技术的集成。首先要在空间飞行器上进行模型实验,积累基本数据。神八飞船上,中科院水生生物研究所的科学家们构建了一个简单水生态系统,以纤细裸藻和小球藻作为主要生产者,澳洲水泡螺作为主要消费者,同时以自组织形式共培养细菌作为分解者。在硬件设计上,除了提供藻类生长与产氧所需的光源外,还增加了藻类生长密度检测装置,即时传送生长状态数据进行监控 并以特定的技术进行系统内的气体传质分布,增进气体在不同腔室的传递,以期在系统中实现气体、食物与废物处理的良性循环。中科院水生生物研究所的李小燕介绍,从目前得到的数据来看,藻与螺的生长都符合预期目标和已知规律,系统中的各要素基本实现自循环、自组织的功能。同时从神舟八号返回的样品中,可以在生物的空间飞行效应、空间共培养系统的物种相互关系,空间封闭生态系统的结构与功能三个方面剖析出重要的科学信息。
  • 北大研究者发布探索蛋白质相互作用特征的新技术
    北京大学的研究人员报告称,他们开发出了一种遗传编码蛋白质光交联剂,其带有可转移的、质谱可识别的标签。这一研究成果发布在7月27日的《自然通讯》(Nature Communications)杂志上。  北京大学化学与分子工程学院的陈鹏(Peng R. Chen)研究员与王初(Chu Wang)研究员是这篇论文的共同通讯作者。  蛋白质以其自身结构和与其他蛋白质之间的相互作用为基础发挥功能,因此,研究蛋白质的结构和相互作用抑制是生命科学的重要方向。  检测蛋白质相互作用的传统方法,如酵母双杂交、亲和色谱和免疫共沉淀等有着各自的局限性。酵母双杂交可以揭示蛋白质间的直接相互作用,甚至通过大规模筛查发现未知的相互作用,但酵母细胞未必能为异源表达的其他物种蛋白提供合适的相互作用条件。亲和色谱技术和免疫共沉淀技术其通量比较低,背景结合蛋白质与特异性结合蛋白质有时难以区分,直接与间接相互作用也通常难以区分。另外,这三种方法对于瞬间、微弱的相互作用,比如信号转导过程中松散变化的蛋白质复合物,都很难获得有效信息。  近年来,科学家们一直在不断地发展发现及描绘生理条件下蛋白质相互作用特征的技术,其中化学与光亲和交联策略获得越来越多的关注。将生物分子间的非共价相互作用转变为共价交联,使得能够捕获到时常出现在自然界中微弱且短暂的蛋白质相互作用。光交联剂结合质谱技术是近年发展起来在活体系统中研究蛋白质相互作用的一种有力的工具,但它仍然存在着高假阳性鉴别率及无法提供相互作用界面信息等缺点。  在这篇文章中研究人员报告称,他们开发出了一种遗传编码光亲和非自然氨基酸,可在光交联及猎物蛋白-诱饵蛋白分离后将一个质谱可识别的标签(MS-label)导入到捕获的猎物蛋白中。这一叫做IMAPP的策略使得能够直接鉴别出采用传统的遗传编码光交联剂难以揭示的光捕获底物肽。利用这一MS-label,IMAPP策略显著提高了鉴别蛋白质相互作用的可信度,使得能够同时鉴别捕获的肽和确切的交联位点,对于揭示靶蛋白及绘制活体系统中蛋白质相互作用界面具有极高的价值。  来自多伦多大学Lunenfeld-Tanenbaum Research Institute (LTRI)和Donnelly中心的一组研究人员,开发出一种新技术,可以将细胞内的DNA条形码拼接在一起,以同时搜寻数百万个蛋白质配对,用以分析蛋白质相互作用。相关研究结果发表在2016年4月22日的《Molecular Systems Biology》杂志上(研究蛋白质相互作用的新技术)。  斯克里普斯研究所(TSRI)的科学家们开发出了一种强大的新方法来寻找结合特定蛋白质的候选药物。发表在2016年6月Nature杂志上的这种新方法是一个重大的进展,它可以同时应用于大量的蛋白质,甚至直接应用于自然细胞环境中成千上万不同的蛋白质。一些小分子可以用来确定它们靶蛋白的功能,并可充当药物开发的起始复合物。TSRI的研究人员证实这一技术为许多过去认为无法很好结合这些小分子的蛋白质找到了“配体”(结合伴侣蛋白)(Nature发布突破性蛋白质新技术)。  蛋白质是自然界的机器。它们供给氧气为我们的肌肉提供动力,催化一些帮助我们从食物中提取能量的反应,抵御细菌和病毒的感染。数十年来,科学家们一直在寻找方法设计可以满足某些医学、研究和工业特定用途的新蛋白质。现在,北卡罗来纳大学医学院的研究人员开发出了一种方法,通过将已存在蛋白质的片段拼接在一起来生成新蛋白质。这一叫做SEWING的技术发表在2016年5月的Science杂志上(Science发布突破性蛋白质技术)。
  • 药典蛋白质组学分析标准二次公示!增加QC评价标准
    随着质谱技术以及色谱与质谱联用技术的快速发展,蛋白质组学分析技术在未知蛋白质的鉴定、蛋白质结构的解析、靶向蛋白质定量、以及生物技术药物研发、质量控制和体内药代动力学研究方面应用越来越广泛。药典委拟制定《中国药典》蛋白质组学分析方法及应用指导原则,并于2024年2月20日发布第一版公示稿并征求意见。为确保标准的科学性、合理性和适用性,现将拟增订的蛋白质组学分析方法及应用指导原则(第二次)公示征求社会各界意见(详见附件)。公示期自发布之日起一个月。蛋白质组学分析方法及应用指导原则公示稿(第二次).pdf蛋白质组学分析基本流程主要包括:1. 蛋白样品的提取,变性还原,酶解与多肽分离富集;2. 多肽的分析与鉴定;3. 数据分析。在分离和富集中采用凝胶电泳和色谱技术,分析与鉴定中采用质谱、二维凝胶电泳、X射线分析、核磁共振波谱和透射电子显微镜技术。蛋白质组学分析方法及应用指导原则第二次公示稿修改说明 根据 2024 年 2 月蛋白质组学分析方法及应用指导原则第一次公示稿的反馈 意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基 础上修订了部分内容,主要为:一、适用范围1. 将文中“蛋白”修改为“蛋白质”。二、蛋白质组学的分析策略 1. 将“通过质谱分析技术检测到肽指纹图谱进行多肽的鉴定和定量分析” 修改为“通过质谱分析技术检测肽段一级与二级谱图进行多肽的鉴定和定量分 析”。2. 将文中“图谱”修改为“谱图”。三、蛋白质组学分析方法 1.“2.1 质谱技术”增加其他质谱碎裂技术,修订为:“蛋白质组样品经过提 取、分离富集或者进一步变性还原、酶切、多肽分离富集处理后,选择适宜的分 离系统导入离子源离子化,电离生成带电荷离子,离子通过碰撞诱导解离 (Collision induced dissociation, CID)、高能碰撞诱导解离 High energy collision dissociation, HCD)、电子活化解离(Electron activated dissociation,EAD)或其 它适宜的解离技术进行碎片化,后在加速电场的作用下形成离子束进入质量分析 器,通过质量分析器分离和过滤不同质核比的离子,过滤后的离子最终经检测系 统转换为可测量的信号,从而得到质谱图,以获得蛋白质的相关信息”。 2. 将文中“质核比”修改为“质荷比”。 3. 将“数据库检索对肽段碎裂质谱谱图和数据库中的理论序列谱图进行匹 配,实现肽段鉴定”修改为“质谱数据文件的数据库检索对肽段碎裂质谱谱图和 数据库中的蛋白质计算机模拟消化肽段碎裂模式进行匹配,以进行肽段鉴定”。4. 将“肽谱图匹配(peptide spectrum matching,PSM)”,“肽谱图匹配 (peptide-spectrum matches,PSM)”,统一为“肽段谱图匹配 (peptide-spectrum matches, PSMs)”。 5. 将“统计学分析(如 p 值)”修改为“统计学指标(如 p 值)”。 2024 年 6 月 与第一次公示稿比较,修改处加橙色标记 四、蛋白质组学分析的质量控制 1. 在表 1 中增加样品处理中酶解漏切率、酶解位点特异性等 QC 评价指标 及描述;增加色谱分析中峰宽和半峰宽等 QC 评价指标及描述;增加质谱分析中TIC 图等 QC 指标及描述。2. 调整仪器性能参数的描述顺序。将“建议结合仪器的性能进行设置,例 如可将两个参数均设置为 20ppm,也可以将母离子质量误差设置为 10ppm,子离 子质量误差设置为 0.02Da”修改为“建议结合仪器的性能设置质量误差,如将母 离子质量误差设置为 10 ppm,子离子质量误差设置为 0.02 Da,也可将两个参数 均设置为 20 ppm”。3. 将“鉴定的蛋白质应具有至少 70%的覆盖率,即被鉴定的多肽的氨基酸 序列覆盖蛋白质氨基酸序列的百分比,70%的蛋白覆盖率可提高鉴定结果的可信 度和全面性”修改为“蛋白质覆盖率是指被鉴定的多肽的氨基酸序列覆盖蛋白质 氨基酸序列的百分比,70%及以上的蛋白质覆盖率可提高鉴定结果的可信度和全 面性”。
  • GE医疗与国家蛋白质科学中心-上海携手共建生命科学实验室
    2014年3月12日,上海——今天,GE医疗生命科学与国家蛋白质科学中心上海(简称“中心”)的共建生命科学实验室在张江正式启用。这是GE公司在中国继成都卓越客户中心后又一个专注于科研与应用市场的研究平台。GE医疗生命科学部大中华区总经理牟一萍女士和国家蛋白质科学中心主任雷鸣教授共同出席了启用仪式并为实验室揭幕。 GE医疗作为世界知名的生命科学设备供应商,此次携手具有一流人才与科研水平的国家蛋白质科学中心,整合双方强大的生命科学设备与技术资源,将藉由该共建实验室的成立,创建国内首个合作型蛋白和细胞技术平台,通过方法开发,应用合作和专业人才培养,助力在结构生物学,生物医药、以及转化医学等领域的研究和应用转化,切实推动中国生命科学领域的研究和发展。 牟一萍总经理在致辞时表示,生命科学作为GE医疗集团的核心业务之一,坚持通过不断创新与技术合作来与全世界科学家共同探索生命科学的奥秘。此次与国家蛋白质科学中心合作共建生命科学实验室,是继2012年生命科学研发培训中心Fast Trak在上海落成,2013年生命科学卓越客户中心CoE在成都落成后,GE医疗致力于“立足中国,服务中国”在生命科学领域的又一重大举措。 合作共建生命科学实验室将借助国家蛋白质科学中心强大的蛋白质科学研究平台,引进GE医疗国际领先的技术和设备,实现强强联合,优势互补,携手共赢,共同推进中国生命科学的发展。 雷鸣教授在致词时也表示,中心的成立属于国家“十一五”战略规划之列,旨在结合国家蛋白质科学设施运维、研究及服务外部用户等定位,凝聚人才致力于蛋白质科学的研究。由于中心作为国家的大科学装置,将基于蛋白质设施独一无二的综合性、交叉性的科研仪器设备,重点投入力量推进新技术、新方法的研究与发展。此次中心携手GE医疗集团,将共同推进这一目标的达成。 目前,共建实验室针对蛋白质研究配备了AKTA purifier,AKTA pure,AKTA start系列蛋白纯化系统,Biacore T200生物分子相互作用系统,ITC200等温滴定量热仪,Cytell细胞图像分析仪,NanoVue Plus超微量分光光度计以及双向电泳仪等。未来,双方还将根据研究需要不断完善实验室的硬件设备。 据悉,GE医疗生命科学卓越客户中心未来将根据中国市场,尤其是科研及应用领域用户的需求,开发应用技术和方法,其范围涵盖细胞培养、基因重组、细胞收获、目标分离、目标纯化、目标活性等研究,并开发中药提取、有效成分鉴定、有效成分毒理与药理分析等。 人才培训将是该共建实验室的另一项重要职能。未来,这里作为GE医疗生命科学部在东部地区的主要培训基地,将为广大用户提供更加完善而系统化的产品及应用培训课程,更好满足华东地区客户的需要。 值此共建实验室启用之机,GE医疗生命科学部还举办了GE纯化系统和细胞图像分析仪新品见面会,详细介绍并演示了GE医疗蛋白纯化家族新成员--AKTA start入门级实验室制备色谱系统,以及最新发布的Cytell细胞图像分析仪。两款产品都非常适合蛋白质研究实验室,既操作简便满足常规实验室分析,又具备强大完善的功能为研究人员提供可靠的数据。会后,与会者又参观了位于张江华佗路的GE中国科技园区和生命科学FastTrak实验室。
  • 遗传发育所在植物磷酸化蛋白质组学技术研发方面获进展
    蛋白质磷酸化是在激酶催化下将磷酸基团转移到底物蛋白质上的可逆过程,是能够调控蛋白质结构与功能且参与细胞内信号转导的重要翻译后修饰,在植物的生长、发育、环境适应以及作物的产量和品质调控中发挥着重要作用。深度解析磷酸化蛋白质组,是探讨磷酸化如何参与这些生物学过程以及筛选与作物重要农艺性状相关的关键磷酸化靶点的有效手段。然而,与动物相比,植物磷酸化蛋白质组的深度解析在技术上更具挑战性。这是由于植物细胞具有致密的细胞壁和大量的色素以及其他次生代谢物。前者增加了蛋白质提取的难度,而后者干扰了磷酸肽富集的效率和特异性。 中国科学院遗传与发育生物学研究所汪迎春研究组通过探索一系列的实验条件,研发出高效的植物磷酸化蛋白质组学新技术。该技术的主要特点是利用脱氧胆酸钠高效抽提植物蛋白,同时消除常规方法中导致样品损失和灵敏度降低的两个步骤,即在蛋白酶消化前的样品净化和在磷酸肽富集前的脱盐处理,在色素与其他干扰分子共存的情况下进行高特异性、高灵敏度地磷酸肽富集。 科研人员应用这一方法,在拟南芥、水稻、番茄和衣藻等绿色生物的组织中高效纯化磷酸化蛋白质组(单针质谱可鉴定约11,000个磷酸位点)。由于该技术主要面向高等植物及其他绿色生物(如衣藻),且操作简便,降低了实验所需的人力和试剂费用,因此命名为GreenPhos。GreenPhos可定量分析不同植物的磷酸化蛋白组,分析深度深、定量重复性高,有望成为植物磷酸化蛋白组学的通用技术。研究人员应用该技术,深度解析了拟南芥响应不同时长盐胁迫的差异磷酸化蛋白质组,发现了包括剪接体蛋白和一些激酶响应盐胁迫的磷酸化事件。 11月27日,相关研究成果在线发表在《分子植物》(Molecular Plant,DOI:10.1016/j.molp.2023.11.010)上。研究工作得到国家重点研发计划与中国科学院战略性先导科技专项的支持。中国科学院植物研究所的科研人员参与研究。GreenPhos工作流程及多种绿色生物磷酸化蛋白质组鉴定结果
  • 赛默飞为蛋白质组学用户量身打造的全新一站式工作流
    作为后基因组时代的重要组成部分,蛋白质组学经过二十几年的发展,已经逐渐走向成熟。蛋白质组学流程复杂,有较高的操作和实验技能的要求。其完整的实验步骤一般包括实验设计、样品前处理(蛋白提取、定量、酶解、脱盐等)、LC-MS/MS分析、数据库检索、生物信息学分析等多重步骤,而针对蛋白质组学步骤中繁琐耗时或者实验的稳定性、通量等用户的关注热点,赛默飞推出全新的为所有的蛋白质组学用户量身打造的一站式工作流,以满足用户对高通量定性定量蛋白质组学的全部需求。△图1:满足高通量定性定量蛋白质组学需求的一站式工作流(点击查看大图)赛默飞AccelerOme自动化样品前处理平台在蛋白质组学中,最为困扰大家的当属样品样品的前处理制备过程,样品制备过程繁琐、耗时,欠缺标准化的处理步骤使得蛋白质组学在不同的操作人员、不同的实验室之间重复性较差。针对这个痛点,赛默飞推出了全新的全自动的蛋白质组学样品制备平台AccelerOme(如图2)。△图2:全自动的蛋白质组学样品制备平台(点击查看大图)AccelerOme可完成蛋白样品的还原烷基化、酶解、TMT标记、脱盐、多肽定量等多步操作(如图3),其具有强大的鲁棒性的硬件,搭配现成的预配置的试剂以及直观的端到端软件,使标准化的蛋白质组学制备流程走进万千实验室,解放双手。 △图3:AccelerOme自动化样品前处理平台在蛋白质组学全流程中的作用(点击查看大图)△点击视频了解AccelerOme操作全流程其中,AccelerOme的强大的适配软件,支持使用者们从实验设计到数据分析的全流程。在蛋白质组学以及生物制药的HCP、药代动力学实验中,可帮助实验人员更加简便快速的获得高质量的、可重复的样品。全新的&mu PAC&trade Neo HPLC色谱柱在LC-MS/MS检测中,我们希望低流速的纳升液相能够提供更加稳健的表现和更高的日均检测通量。为此,赛默飞于去年发布了全新的低流速液相Vanquish Neo,与之相匹配的,这次我们推出了全新的50 cm &mu PAC&trade Neo HPLC色谱柱。全新色谱柱优势★与普通的填充柱不同,全新的50 cm &mu PAC&trade Neo HPLC色谱柱为微柱蚀刻技术,不同的色谱柱一致性强 ★同时低背压设计,50cm色谱柱,300nl/min流速下,背压仅110-150 bar;★还可灵活适配于不同的工作流程,其可适配15-120min色谱梯度及5-500ng大范围的上样量。全新的50 cm &mu PAC&trade Neo HPLC色谱柱,在具有极其出色的性能的同时,兼具高度的鲁棒性及更长的使用寿命(如图4)。 △图4:全新的50 cm &mu PAC&trade Neo HPLC色谱柱多针上样结果(从2月开始使用,间隔进行QC测试,共进行近500针QC测试)(点击查看大图)Proteome Discoverer&trade 3.0软件搭配CHIMERYS&trade 搜索引擎好马配好鞍,除了前述的全新的自动化样品前处理平台、全新的色谱柱以及性能及其出色的Vanquish Neo低流速色谱仪和Orbitrap系列质谱仪器,本次全新一站式蛋白质组学工作流,还将推出升级版软件Proteome Discoverer&trade 3.0以及全新的智能搜索引擎CHIMERYS&trade 。全新的CHIMERYS搜索算法是赛默飞与蛋白质组学人工智能领域的领导者MSAID&trade 合作的全新一代为解析混合谱而设计的人工智能算法,这种ge命性的算法可以大大提升DDA数据中被识别的PSMs数,从而实现在鉴定数目上的性能断层的巨大飞跃。 △图5:CHIMERYS搜索引擎可以在复杂的混合谱中识别出更多的PSMs(点击查看大图) △图6:与前代软件相比,CHIMERYS搜索引擎在鉴定量上带来性能断层的飞跃(点击查看大图)CHIMERYS搜索引擎目前可支持的工作流程包括肽段与蛋白的鉴定、非标记定量(LFQ)、TMT(包括TMT Pro)标记的定性与定量需求,未来也将支持翻译后修饰等需求。赛默飞全新一站式工作流,为蛋白质组学用户量身打造,可满足用户对高通量定性定量蛋白质组学的全部需求。赛默飞与各位科学工作者们一起,在蛋白质组学的领域里,扬帆起航,乘风破浪!结语✦如需合作转载本文,请文末留言。
  • 中山大学李惠琳:非变性质谱技术推动蛋白质结构研究,助力新药研发
    蛋白质是生命的物质基础,通过与不同生物分子间的相互作用在生物体内执行着各项重要工作,其功能与结构直接相关。因此,解析蛋白质及其复合物高阶结构对于深入理解蛋白质功能、生理现象及药物研发具有重要意义。过去的60余年,随着X-射线晶体衍射(X-ray)、核磁共振(NMR)以及冷冻电镜(cryoEM)等技术的出现和不断发展,蛋白质结构解析取得了长足发展。然而,如何在分析蛋白质时使其保持近似自然生理环境的非变性状态,对其动态、异质性、相互作用等属性的研究是结构生物学领域的热点和难点。  质谱技术的不断发展使其在蛋白质结构表征领域发挥了越来越重要的作用。非变性质谱(native MS)兴起于20世纪90年代,是一种可以分析蛋白高阶结构的生物质谱方法。与传统的破坏蛋白质立体结构和弱相互作用力的方法不同,非变性质谱采用质谱兼容的近生理pH值的溶液体系(主要为醋酸铵)和更温和的电离方式,使生物大分子在气相中能够最大程度地保持自然折叠状态、非共价相互作用和相关的生物学功能。因此,非变性质谱可以提供分子质量、寡聚态、构象(折叠vs 去折叠)、异质性、配体结合、靶蛋白-小分子亲和力以及复合物中蛋白亚基的相互作用网络关系等更具生物学意义的重要信息,为蛋白质“序列-结构-功能”关系提供分子基础,已成为结构生物学不可或缺的互补工具,在生物制药、蛋白一配体、蛋白一蛋白复合物结构分析等诸多领域具有广泛应用。  近年来,蛋白质结构研究领域经历着剧烈的技术迭代。2021年人工智能(AI) AlphaFol2横空出世,将蛋白质3D结构预测的精度从60%提升到90%以上,在给传统结构解析技术带来冲击的同时,也为结构质谱的发展提供了契机。  未来,非变性质谱技术的发展需要简化样品处理,提升仪器的灵敏度、分析通量和鲁棒性,实现内源性蛋白复合物样本的直接或原位分析,推动其在生物医药表征、蛋白多聚态等领域的更广泛应用。非变性质谱技术与离子消度(MS)、自上而下串联解离(top-down)、电荷检测质谱(CDMsS)等创新联用技术和方法的不断开发及完善,将极大地提升结构信息的广度、丰富度及精确度,补充生物物理学方法缺失的结构信息。同时,非变性质谱与cryoEM1、氢完交换质谱(HDX-MS)、交联质谱等技术联用将更加常态化,这些实验数据与AI结构预测算法的进一步整合将有效解决蛋白及蛋白复合物结构预测存在的精度问题,推动结构生物学发展,助力新药研发。  此外,非变性质谱技术的应用发展将更加关注:1)蛋白复合物结构一功能关系的研究,通过与计算机模拟(MD)、HDX-Ms、cryoEM等技术联用,揭示标志物蛋白在人类疾病发展过程中的作用,推动靶向药物设计和精淮医疗 2)通过研究小分子与靶蛋白的相互作用获取二者结合的亲和力信息,加速靶向药物筛选 3)翻译后修饰(PTMS)、突变等因素导致的蛋白高度异质性及其对蛋白或亚基折叠动力学、构象及构象变化、结合计量比等造成的结构和功能影响 4)蛋白与其他生物分子(配体、DNAA/RNA、金属离子等)之间的相互作用。  李惠琳,中山大学药学院教授,博士生导师。主要从事生物大分子质谱新技术的开发及应用,其研究主要侧重于1)开发整合结构质谱技术,并对蛋白质机器结构、功能和动态变化及靶向药物作用分子机制进行深入研究2)开发middle-down/top-down蛋白质组学技术,探索蛋白翻译后修饰在生命过程中的调控机制。承担国家自然科学基金项目3项,荣获美国质谱学会颁发的Postdoctoral Career Development Award (2014) ,入选珠江人才计划(青年拔尖人才,2019),其研究成果发表在Nature Chemistry, Analytical Chemistry, J. Am.Soc.Mass Spectrom.等杂志。  "非变性质谱技术研究与应用"专栏共收录7篇论文,既介绍了非变性质谱技术的样品制备、离子源、质量分析器、联用技术等基础内容,也涵括了样品提取、样品引入、离子化及电荷操控等方式,以及在蛋白结构及构象解析、蛋白・蛋白相互作用等领域的应用,代表了国内非变性质谱技术的发展现状。希望本专栏能成为《质谱学报》广大读者颇有价值的科技文献,同时也希望更多的学者加入到非变性质谱研究领域,推动我国结构质谱技术的创新发展。
  • BiopharmaLynx软件在蛋白质肽图分析中的应用
    BiopharmaLynx软件在蛋白质肽图分析中的应用 周春喜 沃特世科技(上海)有限公司实验中心 在新药研发中,蛋白质药物正在占据越来越大的比重,而蛋白质分子结构的复杂性又要求对蛋白质药物必须进行全面的表征,以满足新药报批、工艺改进和专利保护的要求。目前蛋白质药物的研发和表征还面临很多挑战,尤其是在重组蛋白的序列确证、微量杂质蛋白的检测和定量、不同批次间产品的比较和质量控制等方面。质谱在蛋白质的表征方面发挥着至关重要的作用,它不仅可以测定蛋白质药物的分子量和产品的异质性,还可以通过肽图分析确证蛋白质分子的一级结构,包括氨基酸序列、突变和修饰、二硫键定位等信息。 但如果没有功能强大的软件帮助,质谱数据的分析、比较、注释、有效信息的提取和分析报告的产生将是一个十分费时耗力的复杂过程。如果进行人工分析,即使是经验丰富的分析人员也会感到很头疼,而且在如此复杂的分析过程中很难保证不出差错,而一旦出现差错,不仅会严重影响研发的进程,有些错误的判断还有可能导致整个项目的失败。因此,分析软件是必不可少的。理想的软件不仅可以按照标准的流程,自动地完成分析过程,还可以允许分析人员根据经验和知识对分析结果进行检查并修正错误的结果。沃特世公司的BiopharmaLynxTM软件就是这样的理想工具,它不仅可以自动地完成蛋白质分子量和肽图的分析,比较不同批次间的样品并确认有无差异,还具有以下特点: 肽图分析覆盖率高 肽图分析可以确证蛋白质分子的一级结构,包括氨基酸序列、突变和修饰、二硫键定位等。由于酶解后的样品中同时存在着蛋白质的完全酶切肽段、不完全酶切肽段、非特异酶切肽段、修饰肽段和杂蛋白肽段,因此肽图是非常复杂的。通过全信息串联质谱技术(MSE),可以同时记录样品中所有的母离子及其碎片离子信息。在全面信息的基础上,BiopharmaLynx软件将可以自动进行保留时间的对齐、强度归一化、痕量杂质分析、序列确证等工作。图1为BiopharmaLynx软件对两种干扰素产品肽图分析的鉴定覆盖率分析结果,及其序列对比界面。 二、BiopharmaLynx具有多种酶切功能 在计算理论肽图时,BiopharmaLynx可以进行多种方式的理论酶切,包括半酶切、多酶联合酶切、非特异性酶切,以及自编辑酶切等。全面满足实验中的各种酶切分析需求。 三、BiopharmaLynx具有多种翻译后修饰可选 在计算理论肽图时,BiopharmaLynx还可以考虑各种翻译后修饰。在内置90种常见修饰可供选择外,分析人员还可自行编辑其需要的特殊修饰方式用于分析。 四、修饰的肽段在不同样品间含量对比 BiopharmaLynx软件可以比较不同样品间某种肽段(包括突变肽段和特定修饰肽段)的含量差异,发现样品间的细微差别,并用直观的方式显示出来。 五、BiopharmaLynx的样品间肽图对比 BiopharmaLynx软件这可以自动地将各个批次样品的肽图与参照样品的肽图进行对比,帮助我们快速而敏锐地发现不同批次的样品间有无细微差别。 六、二硫键的定位 二硫键对于蛋白质高级结构的形成和功能的维持具有重要的作用,二硫键的定位也是蛋白质结构分析的重要方面。但是二硫键的定位一直很耗时且非常具有挑战性的事情,尤其是对于含有多对二硫键的蛋白质,如免疫球蛋白等。沃特世公司的肽图分析完整解决方案通过独特的UPLC/MSE数据采集方式和功能强大的BiopharmaLynx软件,可以快速地自动完成二硫键的定位分析(见图6)。 在生物药领域,BiopharmaLynx软件作为液质数据分析最为专业的软件已经被广泛使用。目前,全球前十大生物药企业都已成为沃特世生物制药解决方案的使用者。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制