当前位置: 仪器信息网 > 行业主题 > >

蛋白膜

仪器信息网蛋白膜专题为您整合蛋白膜相关的最新文章,在蛋白膜专题,您不仅可以免费浏览蛋白膜的资讯, 同时您还可以浏览蛋白膜的相关资料、解决方案,参与社区蛋白膜话题讨论。

蛋白膜相关的资讯

  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4,G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • 赛默飞与蛋白设施达成战略合作,助力蛋白质科学创新发展
    赛默飞与蛋白设施达成战略合作,助力蛋白质科学创新发展赛默飞色谱与质谱中国 // 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携手中国科学院上海高等研究院国家蛋白质科学研究(上海)设施(以下简称:蛋白设施)在上海举办蛋白质动态分析联合实验室签约仪式。双方在蛋白质动态分析研究领域,及通过蛋白设施联合上海临床研究中心开展的临床应用等领域,基于良好的合作意向,同意共建实验室及建立战略合作伙伴关系,并在2024年上海市产业技术创新大会得到会议举办方及与会代表众多领导、专家和学者的见证。本次战略合作基于赛默飞全球领先的高分辨质谱、电镜等平台及蛋白组学解决方案基础上,结合了蛋白设施在蛋白组学领域领先的科研能力、研发成果和强大的技术团队。双方围绕蛋白组学解决方案合作、技术培训交流、人才培养等方面达成了共识,旨在整合双方优势资源,共同提升蛋白组学研究、临床样本队列研究和生物医药领域产业的发展,共创技术新生态,为科研的新质生产力注入活力。高分辨质谱+冷冻电镜打造蛋白质科学创新平台赛默飞高级副总裁、亚太和拉美地区总裁Mark Smedley先生,赛默飞分析仪器事业部中国区商务副总裁周晓斌先生,蛋白设施主任吴家睿教授等出席了本次签约座谈仪式。双方领导共同讨论了高分辨质谱结合冷冻电镜技术,电镜技术结合AI,以及高分辨质谱、电镜技术与Olink方案的整合在蛋白组学领域的创新应用,并探讨了未来共同建立临床质谱标准数据库的落地化方案。滑动查看更多强强携手 加深合作全面推动蛋白质科学创新发展在报告环节,吴家睿主任介绍了蛋白设施成立的背景、技术系统、平台设备、重点方向以及近年来取得的成果。赛默飞材料与分析业务生命科学市场销售发展总监陈昉和色谱与质谱业务科学研究市场高级商务总监周昕分别对之前的技术及培训合作进行了回顾,并对未来计划进行了展望。蛋白组学领域自问世以来,取得了令人瞩目的进展。基于质谱和电镜平台,已经诞生了许多重要的发现。这些发现不仅深化了我们对蛋白质结构、功能和相互作用的理解,还为疾病诊断、药物研发和个体化治疗等提供了重要的指导。 此次合作,将共同推动Orbitrap质谱技术和Cryo-EM冷冻电镜在蛋白组学领域的应用,为蛋白质科学研究和生物医药相关领域产业的发展贡献更多华丽的成果。在未来的合作中,双方将共同努力,充分发挥赛默飞的全球领先技术和蛋白设施的科研实力,为蛋白质科学的创新突破和应用推广开辟更加辉煌的前景。关于中国科学院上海高等研究院国家蛋白质科学研究(上海)设施 蛋白质设施是国家“十一五”规划建设的国家重大科技基础设施项目,是全球生命科学领域首个综合性的大科学装置。蛋白质设施主体位于上海市张江科学城,于2008年经国家发改委批复,2014年建成并开放试运行,2015年通过国家验收正式开放运行。蛋白质设施的目标是建设国际一流的蛋白质科学研究体系和成为我国蛋白质科学及技术发展的重要创新基地。主要任务包括:开展蛋白质科学相关研究;研究蛋白质的多尺度时空结构;分析蛋白质修饰和相互作用;阐释蛋白质与化学小分子之间的相互作用;研究蛋白质相关的计算生物学与系统生物学;发展蛋白质研究的新方法和新技术学;结合创新药物的发展,研究蛋白质药物靶标的功能活动的结构特征等。蛋白质设施将聚焦世界科技前沿领域,在不断创新中实现跨越和发展,充分发挥大科学设施平台效能,全面支撑我国蛋白质科学研究和生物医药相关领域产业的发展。如需合作转载本文,请文末留言。
  • 上海生科院揭示组蛋白分子伴侣DAXX和染色质重塑蛋白ATRX相互作用模式
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所陈勇研究组的最新研究成果,以 em Structural basis for DAXX interaction with ATRX /em 为题,发表在 em Protein & amp Cell /em 上,该成果揭示了组蛋白分子伴侣DAXX蛋白与染色质重塑蛋白ATRX相互作用的结构基础。 /p p   ATRX蛋白是染色质重塑蛋白SNF2家族中的一员,与地中海贫血症、智力发育迟缓、癌症等疾病密切相关。DAXX蛋白(死亡结构域相关蛋白)作为组蛋白H3.3的分子伴侣,介导含H3.3组蛋白变体的核小体的组装,参与细胞核内基因转录、调控细胞周期等生理过程。此外,DAXX能与多种细胞因子、细胞蛋白和病毒蛋白相互作用,抑制病毒转录,具有内在的抗病毒防御作用。ATRX和DAXX蛋白对于H3.3组蛋白变体定位到异染色质位置均非常重要,但具体机制尚不清楚。 /p p   陈勇研究组找到ATRX与DAXX蛋白相互作用的最小作用单元和关键的作用位点,解析了DAXX sub DHB /sub -ATRX sub DBM /sub 蛋白复合物的结构,得到清晰全面的相互作用机制。进一步结构比较发现,DAXX sub DHB /sub 是一个普适性的蛋白质结合模块,能通过保守的作用模式和多种底物蛋白质结合。该项研究为后续研究ATRX-DAXX复合物如何介导H3.3组蛋白变体在异染色质的堆积和组装打下坚实的基础。 /p p   研究工作得到中科院战略性先导科技专项、国家科技部、国家自然科学基金委和上海科学技术委员会的资助。 /p p br/ /p
  • 冷冻电镜揭示了细菌和人类膜蛋白之间惊人的相似之处
    简单生物体的细胞,如细菌,以及人类细胞,都被一层膜包围着,它可以完成各种任务,包括保护细胞免受压力。在一个联合项目中,来自美因茨约翰内斯古腾堡大学 (JGU)、德国于利希研究中心(Forschungszentrum Jülich) 和海因里希海涅大学杜塞尔多夫 (HHU) 的研究人员在细菌中发现的一种膜蛋白与一组负责重塑和重建人体细胞膜。根据研究人员的说法,这两个蛋白质组之间没有联系之前是已知的。然而,此次研究过程中,通过冷冻电子显微镜,发现细菌和人类的膜蛋白惊人地相似。细菌应激反应大约 30 年前,噬菌体休克蛋白 (Psp) 系统在细菌中被发现。“今天,我们知道 Psp 系统会响应多种类型的膜应力而被激活。然而,一些分子细节仍然令人费解,” 美因茨约翰内斯古腾堡大学膜蛋白组负责人德克施耐德(Dirk Schneider) 教授解释说。 “这就是为什么我们决定仔细研究 Psp 系统的核心蛋白。”施耐德及其同事最近发现了 Psp 代表 IM30 如何在细胞膜上形成保护性地毯状结构以应对膜应力。在他们的最新工作中,他们仔细研究了噬菌体休克蛋白 A (PspA),它在 Psp 系统中起着关键作用。 人类 酵母 细菌不同膜蛋白之间的结构相似性 [Benedikt Junglas、Dirk Schneider、Carsten Sachse]冷冻电子显微镜显示 PspA 形成长的螺旋形管,可以将生物膜包裹在内腔中。高分辨率图像首次显示了 PspA 如何局部溶解单个膜,然后将它们重塑为更大的单元,甚至介导新膜结构的形成。PspA 的原子低温电子显微结构:细长的分子是螺旋纳米棒的基本构建块(左)。灰度低温电子显微照片和示意图模型显示了掺入脂质的 PspA 管。“数千个 PspA 构建块可以组装成大型螺旋结构。因此,它们是我们冷冻电子显微结构分析的理想研究对象,”来自 Forschungszentrum Jülich 和 HHU Düsseldorf 的 Carsten Sachse 教授说。“在显微镜下,我们意识到 PspA 具有类似于 ESCRT-III 蛋白质的结构,我们的实验室已经在研究它,”他补充道。“这完全出人意料,表明阐明蛋白质结构是多么重要细节......数十亿年后,这两组蛋白质在遗传上已经发生了分歧,以至于只能根据它们的结构来检测它们的相似性。”“基于 PspA 和真核 ESCRT-III 蛋白的相似结构和功能特性,我们已将 PspA 鉴定为进化上保守的 ESCRT-III 膜重塑蛋白超家族的细菌成员,”作者在 Cell 中写道。研究发表在Cell 《细胞》上。符斌 供稿
  • iCMR 2017特邀报告:固体核磁共振技术在膜蛋白研究中的应用
    p style=" TEXT-ALIGN: center" strong 第一届磁共振网络会议(iCMR 2017)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 固体核磁共振技术在膜蛋白研究中的应用 /strong /p p style=" TEXT-ALIGN: center" & nbsp img title=" 王申林.jpg" style=" HEIGHT: 299px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/insimg/2ad81df9-84b8-4bfe-a8bb-1ace21c12d35.jpg" width=" 400" height=" 299" / /p p style=" TEXT-ALIGN: center" strong 王申林 研究员 /strong /p p style=" TEXT-ALIGN: center" strong 北京大学化学与分子工程学院 /strong /p p strong   报告摘要: /strong /p p   生物固体核磁共振技术是膜蛋白研究的新兴技术手段,其优势是可以在模拟生物膜的环境中研究膜蛋白的结构和动态学性质。在本次报告中,我们将介绍生物固体核磁共振技术的基本研究方法和分析策略,包括稳定同位素标记、核磁信号指认相关实验、顺磁NMR、结构解析方法等。我将结合经典案例,介绍固体核磁共振在七次跨膜蛋白、离子通道蛋白、调控蛋白等大分子量膜蛋白上的应用。 /p p strong   报告人简介: /strong /p p   王申林,理学博士,北京大学化学与分子工程学院、北京核磁共振中心研究员,博士生导师。2002年南开大学化学学院学士,2008年意大利佛罗伦萨大学博士,2009-2012加拿大Guelph大学博士后研究,2013年开始在北京大学担任教职。2008年入选海外优秀留学生奖学金,2010年得到加拿大健康研究院(CIHR)博士后资助,2015年入选第十一批“青年千人”计划。王申林研究员主要从事生物固体核磁共振研究,针对大分子量膜蛋白和RNA发展相应的固体核磁方法,包括核磁脉冲序列的设计,生物大分子稳定同位素标记的发展,顺磁NMR的应用, 蛋白质结构的固体核磁共振解析等。首次实现了快速魔教旋转条件下,基于1H固体NMR技术的RNA内氢键分析;首次实现了酵母表达体系的选择性13C同位素标记技术;完成了固体核磁共振解析的七次跨膜蛋白结构。相关工作发表在Nat. Methods, Chem Comm, Sci Rep, JACS,JBNMR等学术期刊。 /p p   strong  报名链接: a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target=" _self" http://www.instrument.com.cn/webinar/meetings/iCMR2017/ /a /strong /p p & nbsp /p
  • Nanodisc配合冷冻电镜提升膜蛋白的分辨率
    Toxic, hot, and spicy: Nanodiscs improve membrane protein resolution in cryo-EM(作者:Cube Biotech)Nanodisc结合冷冻电镜应用时 ,Nanodisc提升了通过冷冻电镜对膜蛋白的解析率,同时揭示了功能性磷脂所扮演的重要角色。The last few years have seen a tremendous increase in high-resolution protein structures solved by cryo electron microscopy (cryo-EM). Novel electron detecting cameras and sophisticated analysis software have expanded the capacity of cryo-EM to smaller and asymmetric proteins (1). As a true competitor to X-ray crystallography, cryo-EM is particularly interesting for hard-to-crystallize targets such as membrane proteins.在过去的几年里,使用冷冻电子显微镜(冷冻电镜)对蛋白结构高分辨率结构解析的应用有着很大地增长。新型的电子探测相机和复杂的分析软件使冷冻电镜的应用延伸到更小和不对称的蛋白结构解析(1)。作为X射线晶体法的真正强势的替代方法,冷冻电镜能把如膜蛋白等难以结晶的蛋白作为应用目标,并引起了各界广泛的兴趣。The importance of sample preparation methods for high-resolution cryo-EM data cannot be underestimated. Two recent Nature publications have shown that nanodiscs are not only excellent tools for membrane protein stabilization, but that they can also improve resolution, in particular of the transmembrane region, and enable analysis of interacting phospholipids.在应用的过程中,样品制备方法对得到高分辨率冷冻电镜数据的重要性是不可低估的。从最近的两篇发表到Nature的文章来看,Nanodisc不仅是膜蛋白稳定的优良工具,而且它也可以提高在电镜解析的分辨率,特别是膜蛋白的跨膜部分,同时能实现磷脂相互作用的分析。Toxic: Near-atomic detail of a bacterial Tc toxin membrane insertion (2). Stefan Raunser' s team at the Max-Planck Institute in Dortmund, Germany unveiled the mechanism used by bacterial Tc toxin as it enters the cell. Besides the high medical relevance of this project - Tc toxins include anthrax, plague, and scarlet-like fever toxins - the conformational changes these toxins undergo are simply fascinating. Secreted by bacteria as soluble proteins, toxins fold into channels that perforate the host membrane by a putative entropic spring mechanism. In previous attempts with detergent-solubilized protein, it was not possible to resolve the transmembrane region of the toxin. Now, using nanodisc-stabilized TcdA1 protein, researchers were able to achieve an overall resolution of 3.5 Angstrom, allowing them to describe this mechanically enforced membrane insertion mechanism for the first time.Toxic: Near-atomic detail of a bacterial Tc toxin membrane insertion (2)。德国马克斯普朗克研究所的Stefan Raunser团队阐述了细菌Tc毒素进入细胞的机制。除了这个项目的高度医学相关性价值外( Tc毒素包括炭疽,鼠疫,猩红热样毒素)这些毒素所经历的构象变化是有极大吸引力的。由细菌分泌的可溶性蛋白,毒素折叠成通道穿过宿主细胞膜。以前尝试使用去污剂溶解带跨膜区域蛋白进行分析,并不能很好地解析带跨膜区域的毒素。而现在使用Nanodisc稳定TcdA1蛋白,研究人员能够获得到3.5埃的解析度,这让他们有机会首先发现并描述了这种机械的强制膜插入的机制。阅读更多Nature原文Hot & spicy: Functional lipids enable detection of heat and hot spices (3). Yifan Cheng' s team at UCSF analyzed the tetrameric transient receptor potential vanilloid 1 (TRPV1) ion channel at 2.9 Angstrom resolution. TRPV1 reacts to many physical and chemical stimuli, including heat and capsaicin, an ingredient of chilli peppers. Nanodiscs were crucial to obtain a high resolution structure, as previous attempts with amphipol-stabilized complexes had only yielded a 3.8 A resolution.But nanodiscs played another important role in this analysis: By providing a phospholipid bilayer,they enabled the discovery of lipids with a structural function in ligand binding. Similar to the results of the Dortmund group, the transmembrane regions were those with the highest resolution, stressing the value of nanodiscs for cryo-EM analysis.Hot & spicy: Functional lipids enable detection of heat and hot spices (3).加州大学旧金山分校的程亦凡团队分析了瞬态电压感受器阳离子通道1(TRPV1一种在疼痛和热知觉中起中心作用的蛋白质)在2.9埃分辨率离子通道结构。TRPV1对许多物理和化学刺激,包括热、辣椒素(一种辣椒的成分)都有反应。Nanodisc是此研究中获得高分辨率的结构十分重要的因素,而以前的尝试使用双极性稳定复合物只得到了3.8个埃的分辨率。在这一研究中,Nanodisc还扮演了另一个非常重要的角色:通过提供一个磷脂双分子层,研究人员得以发现磷脂具有配基结合的结构功能。类似于Stefan Raunser团队的结果,跨膜区具有最高的分辨率,大大提升了Nanodisc在结合冷冻电镜分析膜蛋白应用中的价值。阅读更多Nature原文参考文献:1.Kühlbrandt, W. Cryo-EM enters a new era. eLIFE (2014) doi:10.7554/eLife.036782. Gatsogiannis, C. et al. Membrane insertion of aTc toxin in near-atomic detail. Nature structural and molecular biology (2016),23,884-890. doi:10.1038/nsmb.32813.Gao, Y. et al. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature (2016) 534(7607):347-351. doi:10.1038/nature17964
  • 中国计量院研制出新冠病毒核衣壳蛋白和包膜蛋白亚基因组RNA(sgRNA)标准物质
    特异性检测新冠病毒复制过程中的亚基因组RNA(sgRNA),对于确定疫苗、单克隆抗体和抗病毒药物的保护和治疗效果至关重要。通过检测新冠病毒sgRNA,可有效区分具有感染性的活病毒和灭活病毒。sgRNA是在进入细胞后产生的,与成熟的病毒粒子结合较差,因此可作为活跃复制的病毒的标记。近日中国计量院研制了新冠病毒核衣壳蛋白和包膜蛋白亚基因组RNA标准物质,可以作为测量标准,用于新冠病毒核衣壳蛋白基因(N)和包膜蛋白基因(E)的亚基因组RNA的定性和定量测量,以及测量方法的确认和质量控制。标准物质定值方法为针对核衣壳蛋白和包膜蛋白亚基因组序列设计的特异性数字PCR方法,同时采用经过国际比对验证的另一独立的数字PCR方法对量值进行了核验。该标准物质包括了5个不同水平的新冠病毒核衣壳蛋白基因(N)和包膜蛋白基因(E)的亚基因组RNA。特性量值为每管溶液中含有的核衣壳蛋白和包膜蛋白亚基因组RNA的拷贝数浓度。具体量值见表1。表1.新型冠状病毒核衣壳蛋白和包膜蛋白亚基因组RNA标准物质特性量值NIM-RM5223 新型冠状病毒核壳蛋白和包膜蛋白亚基因组RNA标准物质截至目前,中国计量院共研制了核酸、抗原和抗体等24种新冠病毒标准物质。这些标准物质可应用于方法建立、方法验证、质量控制、试剂性能评估、验证与评价等多方面,截止11月,已经广泛应用于全国30个省市的近700家单位,为保障核酸检测结果准确、可比、可溯源,提供了重要支撑。
  • 科学家开发出应用荧光光谱技术研究膜蛋白运动的新方法
    加拿大和美国科学家联合研究小组开发出一种应用荧光光谱技术观察研究单个膜蛋白运动的新方法。膜蛋白的主要功能是控制细胞与其周边环境的离子交换。专家认为,该项研究成果有助于人们增强对离子通道的认识和了解。相关研究文章发表在最新出版的《美国国家科学院院报》上。   离子通道类似于一台小型纳米机器或纳米阀门,如果这些微小阀门运转失灵,将引发人体肌肉、中枢神经系统和心脏等发生各种遗传疾病。   与照相机的光圈原理相似,这些膜蛋白通过开启和关闭动作来控制细胞与其周边环境的离子交换运动,这种离子交换运动促成了沿着我们神经细胞的电信号的传输。这些细微阀门的尺寸大约是人眼瞳孔大小的百万分之一。加美科学家所采用的新技术可测量到单离子通道,并可研究离子通道内部不同部分之间如何进行信息沟通。   由加拿大蒙特利尔大学物理系教授里卡德.布朗克牵头的联合小组对基于4个同样的亚单元建立的钾离子通道进行了研究,这种钾离子通道形成了可以穿过膜的微细小孔,小孔能够打开和关闭以开通或阻断离子传导。   科学家使用新开发出的荧光光谱技术,区分出4个亚单元,首次实现了对4个亚单元的运动分别进行跟踪研究。他们发现,4个亚单元分子是协同发挥作用的,从而解释了为何在电生理学实验中没有在电流中发现中间级。该项研究成果解决了在该领域存在的长期争论:一个钾离子的4个亚单元究竟是各自独立发挥作用还是协同发挥作用。   布朗克博士表示,该项发现有助于增强人们对离子通道的认识和了解。其重要性在于,膜蛋白在人体中发挥着重要的作用,而且其基因突变会引发许多严重的遗传疾病,也因此它们是重要的药物标靶。
  • 周斌组合作建立基于膜透过荧光蛋白的邻近细胞标记技术
    1月3日,国际学术期刊PNAS发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)周斌组和复旦大学附属中山医院王立新教授合作的研究成果“Genetic dissection of intercellular interactions in vivo by membrane-permeable protein”。该研究利用表达膜透过性荧光蛋白的遗传工具小鼠,建立了体内邻近细胞标记技术,并利用该技术揭示了肝脏不同区域中内皮细胞的异质性。细胞之间的相互作用对于多细胞生物体生长发育、稳态维持以及损伤修复等过程至关重要,但是监测体内细胞互作的遗传学技术鲜有报道。当前的遗传学手段基本上是针对特定细胞自身进行操作,无法深入研究细胞之间的互作。因此,建立新型邻近细胞标记技术对了解生物体内细胞间互作及其功能具有重要意义。sLP-mCh是脂溶性标签连接mCherry的融合荧光蛋白(Ombrato et al., Nature 2019)。sLP-mCh在供体细胞中表达后,会从供体细胞中释放出去,并进入邻近细胞,将邻近细胞标记为mCherry+。基于sLP-mCh蛋白的特性,为了实现体内邻近细胞标记,研究人员构建了基因敲入小鼠:R26-sLP-mCh-GFP和R26-sLP-mCh。首先以小鼠肝细胞作为供体细胞,表达sLP-mCh和GFP,检测肝细胞周围的其他类型细胞标记情况。研究人员在R26-sLP-mCh-GFP小鼠体内注射特异靶向肝细胞的病毒AAV2/8-TBG-Cre,当病毒进入肝细胞后,Cre重组酶表达并发生Cre-LoxP重组,移除R26-sLP-mCh-GFP位点中间的终止序列,肝细胞启动表达sLP-mCh和GFP荧光蛋白,成为sLP-mCh的供体细胞。研究人员发现肝细胞为GFP+mCherry+,同时也能检测到GFP–mCherry+的非实质细胞,其中肝脏中80%内皮细胞、76%免疫细胞以及54%成纤维细胞被标记。研究人员将这种由Cre诱导的细胞间蛋白标记技术称作CILP。肝脏的基本单位是肝小叶,肝小叶可以分为三个区域(zone),各区域的肝细胞具有不同特性以及分子标记。一区的肝细胞围绕着肝脏门静脉,高表达钙粘蛋白E(E-Cad);三区的肝细胞围绕着肝脏中央静脉,高表达谷氨酰氨合成酶(GS);肝小叶二区位于一区和三区之间,由E-Cad–GS–的肝细胞构成。肝脏中的毛细血管是一类特化的血管网络,称作肝血窦内皮细胞,肝血窦内皮细胞和肝细胞发生着紧密的相互作用,肝脏不同区域的肝细胞可能会受到内皮细胞不同程度的影响。研究人员然后以Mfsd2a+肝细胞为例阐明肝细胞及其邻近内皮细胞之间的互作。当用他莫昔芬诱导双基因型成体小鼠Mfsd2a-CreER R26-sLP-mCh后,Mfsd2a+肝细胞启动sLP-mCh的表达,成为供体细胞。研究人员发现在门静脉周围出现聚集的mCherry信号,且存在mCherry+CDH5+细胞,表明Mfsd2a+肝细胞作为供体细胞表达sLP-mCh后,周围的内皮细胞也被标记为mCherry+。研究人员发现这部分内皮细胞主要分布在门静脉周围,在肝小叶一区中超过90%的内皮细胞为mCherry+,在二区中大约30%的内皮细胞为mCherry+,在三区中几乎检测不到mCherry+的内皮细胞。从以上可知,研究人员通过CILP技术,并结合Mfsd2a-CreER小鼠,实现了肝小叶内皮细胞的区域性标记,高效地标记了肝门静脉周围内皮细胞。为了进一步分析肝脏中不同区域内皮细胞的差异,研究人员利用FACS将mCherry阳性和阴性内皮细胞分选并进行转录组测序。通过主成分分析显示,这两群内皮细胞分别成群,互相具有较大差异。门静脉周内皮细胞的特征基因Dll4、Lama4、Msr1和Ltbp47在mCherry+内皮细胞中显著上调,中央静脉周内皮细胞特征基因Rspo3、Wnt9b、Cdh13和Thbd7在mCherry–内皮细胞中显著上调。对差异基因进行热图分析显示,与血管新生、调节细胞黏附和生长因子应激相关基因的表达在mCherry+内皮细胞中显著上调,而与胞外基质组成、化学趋化和组织形态发生相关基因的表达在mCherry+内皮细胞中显著下调。综上,研究人员开发了一种体内邻近细胞标记新技术CILP。CILP利用了一种细胞膜透过性的荧光蛋白,当这种荧光蛋白在供体细胞中表达后,可以释放到细胞外,并进入邻近细胞,从而实现对邻近细胞的标记。研究人员利用CILP技术成功标记了小鼠肝脏中肝细胞的邻近细胞,并利用Mfsd2a+肝细胞作为供体细胞,标记并分析了肝脏门静脉周内皮细胞的特征。分子细胞卓越中心博士后张少华为该论文的第一作者,分子细胞卓越中心周斌研究员和复旦大学附属中山医院王立新教授为该论文共同通讯作者。该工作得到了香港中文大学吕爱兰教授和西湖大学何灵娟研究员的大力支持。感谢分子细胞卓越中心动物平台和细胞分析技术平台对本研究的大力支持,感谢中科院、基金委、科技部以及上海市科委等部门的经费支持。图:(A)sLP-mCh荧光蛋白从供体细胞进入受体细胞。(B和C)遗传工具小鼠构建以及实验策略。(D–F)以肝细胞作为供体细胞表达sLP-mCh,肝脏中非实质细胞被标记为mCherry+。(G和H)sLP-mCh被用于在胰腺和心脏中标记邻近细胞。
  • 2018国内首秀—Quanterix 单分子蛋白检测技术-simoa
    2018国内首秀—Quanterix 单分子蛋白检测技术-simoa 2018年3月9—10日,由生物谷举办的以“创新变革与机遇”为主题的2018年先进体外诊断高峰论坛暨三大平行会议“第三方检验实验室(LDTs),液体活检论坛、Biomarker研讨会”在上海盛大召开。其中“Biomarker—新型生物标志物发现与应用研讨会”平行会聚焦了体外诊断领域的新技术产业:微流控芯片,高通量技术,单细胞测序,CTC循环肿瘤细胞,纳米医学,ddPCR技术,单分子免疫阵列技术(Simoa),ctDNA,质谱检测,大数据,人工智能等等最新技术成果与应用案例纷纷亮相。 大会现场 美国Quanterix公司携手杭州纽蓝科技有限公司做为金牌赞助商参加本次会议,并于“Biomarker——新型生物标志物发现与应用研讨会”上做了“Monitoring health and disease progression with ultrasensitive biomarker analysis on the Simoa Platform”的主题演讲。分享了目前最灵敏的蛋白分子检测技术-simoa,可以检测到单个蛋白分子,达到飞克级别。同时赵明炜博士也介绍了simoa技术在肿瘤、神经、感染、心血管、免疫炎症等领域的应用。各科研、医疗、生物参会代表对此产生了浓厚的兴趣,纷纷前来展台咨询。Quanterix与杭州纽蓝尽心解答,得到了大家的广泛认可与支持。 展台现场 随着各类新型生物标志物相继被发现和利用,使得很多疾病有了更快速、更准确的诊断,因此生物标志物成了当下研究的热点。Quanterix核心技术是 SIMOA (SIngle MOlecular Array),单分子蛋白阵列检测技术。通过此次会议,Quanterix希望从应用、从实际出发,真正意义上地让标志物助力精准诊断,推动精准医疗发展。Quanterix首席科学家 赵明炜博士精彩演讲 Quanterix致力于数字化的蛋白标志物研究,携手纽蓝科技把世界最新的数字化单分子免疫技术带给中国的客户。 左三:纽蓝CEO / 右三:Quanterix Vice President
  • 蛋白测序技术革新崭露头角!未来可期实现大规模、高通量
    p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/aab48e25-87ad-48f7-bf9a-b2ebac0fa992.jpg" title=" 蛋白.jpg" alt=" 蛋白.jpg" style=" text-align: center width: 522px height: 348px " width=" 522" height=" 348" / /p p style=" text-indent: 2em " 蛋白质是生物功能的主要载体。许多无法从基因层面解释的疾病,蛋白质可以给出我们想要的答案,为此,蛋白质组学应运而生。科学家们预测,随着人类基因组测序工作的完成,21世纪生命科学的研究重心或将从基因组学转移到蛋白质组学。蛋白质组学是后基因组时代生命科学研究的核心内容,想要深入了解蛋白质,进一步认识生命活动和疾病发生的分子机制,首先要有合适的蛋白质测序技术做支撑。为完善蛋白质测序技术科学家做出了许多尝试,如Edman降解,荧光染色、质谱测序等。然而已有的测序方法都存在各种技术不足与应用局限性,不利于蛋白质组学在整个生命科学和生物医学研究中的应用推广。 br/ /p p   近日, strong 瑞士苏黎世联邦理工学院分子生物学研究所的Ben C Collins博士和Ruedi Aebersold博士在Nature Biotechnology发表了蛋白组学平行测序的评论文章“Proteomics goes parallel” /strong ,小编将文章进行了翻译整理分享给大家。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/29198ff0-12dc-4a8b-9f43-a535e065d874.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em " 目前,蛋白质组测序技术尚不如基因组学和转录组学那么强大。核酸测序技术的表现之所以令人印象深刻,是因为它能利用荧光作为读数进行短寡核苷酸的大规模平行测序。在这个问题上, strong Swaminathan等证明了肽类也可以进行平行荧光测序 /strong 。他们的创新方法将经典的蛋白质测序技术与核酸光学测序系统进行了整合。虽然该方法仍需进一步优化,但这让我们看到了一种普遍可行、可靠和真正通用的蛋白组学测序技术的发展前景。 /p p   蛋白质对于生命系统来说是必不可少的,它们可以作为化学催化剂、结构成分以及生理过程的媒介,能够准确识别和量化蛋白质的研究技术可极大地促进人们对生物学的理解。如今,蛋白质组已经可以由转录组被预测或推断出来。有充分的研究证据表明,蛋白质与mRNA水平之间的联系是复杂的,通过一种组学来预测另一种是不精确、不可靠的。那么, strong 为什么在许多情况下,人们会优先选择通过mRNA预测蛋白,而不是直接进行蛋白质测序呢 /strong ?答案在于两种组学测序技术的发展和物质本身的可检测性。目前,生物学家可以通过已有的核心技术和商业公司获得基本完整的转录组信息及分析结果,而蛋白组分析仍只限于专业实验室研究使用,在通量、稳定性和重现性方面还不能达到转录组分析水平。 /p p   第一代DNA测序仪绘制了具有突破性意义的基因组图谱,其原理是对分离DNA片段进行连续测序。尽管该仪器采用了自动化技术,但整个测序过程也是缓慢而昂贵的。只有开发可平行测序数百万个核酸片段,能够高通量、高覆盖率、低成本生成完整基因组图谱的方法,才能进行广泛的基因组分析。这些具有商业价值的测序技术已经改变了生物医学研究,并成为实验生物学研究的中流砥柱。 /p p   虽然“自上而下”的蛋白质组学研究方法正在逐步发展,但传统的蛋白质定量和测序仍是采用“自下而上”的方法进行。正如基因测序原理一样,这些方法是通过检测酶促反应切割蛋白质产生的肽链,以分析蛋白组成。在20世纪50年代,Pehr Edman发明了一种通过循环化学反应测定肽链氨基酸序列的方法,被称为Edman降解。该方法通过异硫氰酸苯酯与可接近的氨基偶联,然后从肽链的N-末端释放氨基酸并生成新N端,不断重复这一过程,对释放的氨基酸进行鉴定就可以得到肽链的氨基酸序列。 strong Edman降解过程缓慢,需要大量的高纯度肽 /strong ,尽管如此,直到20世纪90年代早期,所有已知的蛋白质序列都是使用该方法确定的。 /p p   20世纪90年代,随着质谱(MS)技术逐渐成为蛋白质测序的首选方法,Edman降解在该领域退居二线。质谱是通过检测质荷比和肽段的断裂模式来推断蛋白质组成和定量。因具有先进、强大和多样化特点,MS已经被广泛应用。仿效基因组学技术的发展路径,MS已经从特定寡聚体的人工测序发展到高通量的肽链自动测序,并发展到通过独立数据分析进行多肽的平行测序,如SWATH-MS。虽然这些方法的通量、准确性和重现性都很出色,但想要与基因组分析一样,实现相似的大样本队列常规、完整的蛋白质组量化目标仍难以实现。 /p p   随着当前数据独立采集MS检测系统的不断发展,最终取得与基因组学研究技术相似性能的蛋白测序技术也有可能实现。此外,要深入了解蛋白质组的复杂性,也需要颠覆性的新技术。虽然蛋白质的纳米孔测序技术显示了很好的发展前景,但StimaaNet等研发的肽荧光测序方法有着明确的常规应用途径,可以看作是这类颠覆性技术最先进的一个例子。 strong 肽荧光测序方法堪称跨越时代的结合,它将几乎被遗忘的Edman降解,与为下一代DNA测序开发的大规模平行荧光成像技术进行了整合 /strong (图1)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/462c7540-6c36-4ddd-8cd7-7b62240980c2.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 图1. Swaminathan等人所描述的肽荧光测序 /span /p p style=" text-indent: 2em " 复合肽混合物,最有可能来源于酶或化学切割的蛋白质提取物,每种氨基酸残基都有不同的荧光标记(左)。在这种情况下,我们描述了一种双色方案,其中赖氨酸和半胱氨酸残基用不同的荧光标记。利用氨基硅烷的的酰胺键将标记肽的C末端固定在玻璃板。然后通过Edman降解和荧光成像(中)对肽进行N-末端氨基酸残基切割的迭代循环。在每个位置(即肽)的荧光强度被跟踪为Edman循环的函数。荧光强度下降模式为肽的部分序列提供了注释,得到的荧光信号可以与蛋白质序列数据库进行匹配和评分,推断样本中最有可能存在的一组蛋白质(右)。 /p p   肽荧光测序的第一步是在特定的氨基酸侧链上进行荧光标记,并将其C端固定在测序系统的流通槽中,以生成测序底物阵列。然后将固定化肽平行地进行Edman降解,在每一步降解后对固定化底物的集合进行成像。与经典的Edman降解不同,该方法在每个步骤对消除的苯硫代内酰脲-氨基酸结合物进行了鉴定,降解步骤仅用于测定由消除标记氨基酸引起的荧光强度下降。基于该原理开发的软件工具,可以将观察到的荧光信号与蛋白序列数据库结合起来,进而推导出每种固定化底物的序列,也就是肽链的序列。 /p p    strong 该研究已经证明肽荧光测序的可行性 /strong 。具体而言,作者(i)描述了在严格条件下,与Edman降解兼容的成像系统 (ii)测定了模型肽中荧光标记的赖氨酸或半胱氨酸残基的精确位置 (iii)描述了该系统中误差和低效的来源 (iv)研究了从更复杂蛋白质组鉴别蛋白质的潜力,并提供了一种从观察到的荧光信号推断肽序列的计算框架 (v)从含有多个丝氨酸残基的肽中定位特定的磷酸化丝氨酸残基。 /p p   Swaminathan等人开发的肽荧光测序方法是令人兴奋的,因为它开辟了一条通向肽的新研究路径, strong 并使高通量、高重现性和潜在低成本的蛋白质组测序成为可能 /strong 。 strong 该方法的一个显著优点是,它整合了其他研究方法的优势,如Edman降解、大规模DNA平行测序和基于MS的蛋白序列数据库检索计算框架 /strong 。这种策略或有助于加快相关研究方法从证明概念到常规适用的转化速度。此外,该方法产生的数据与基因组学和转录组学的大规模平行先导数据有相似之处。MS蛋白组学技术在技术和计算方面仍存在较大的门槛,应用较为缓慢,与基于MS的蛋白组学技术相比,该方法有助于加速更多的生物体使用肽荧光测序技术。 /p p   正如Swaminathan等人所指出的, strong 在新方法发挥其全部潜力之前,还必须克服一些技术和概念上的挑战 /strong 。这些问题主要源于Edman降解的性质和人类蛋白质组的复杂性,包括以下内容:(i)尽管在研究中每个降解步骤的产率为91-97%,但可检测的肽链长度也是有限的 (ii)由于测序产率与蛋白序列本身有关,具有挑战性的序列,如富含脯氨酸的蛋白序列,可能会影响荧光信号的清晰度 (iii)可被荧光标记的功能基团仅限于肽链中可产生化学反应的基团,主要是氨基、羧基和巯基,因此荧光信号代表的信息量也会受限制 (iv)经修饰的残基通常不能被识别,除非经过特异荧光标记,这种特殊标记仅对氨基酸进行小部分修饰 (v)人类细胞蛋白质组的动态范围较大(~107),每种蛋白质也会通过酶消化产生大量的肽(~102),每个细胞会表达大量的开放阅读框(~104),在不考虑蛋白质多样性的前提下,这已经构成了巨大的分析挑战。对于肽荧光测序来说,满足这些挑战需要提高底物复用(substrate multiplexing)的水平,但目前尚未实现。 /p p   虽然作者开发的系统目前仅限于分析相对简单的混合物样本,但发展前景很好,是一种值得尝试的蛋白质测序方法。 /p
  • 赛默飞与西湖欧米携手推进临床蛋白组学快速发展
    近日,赛默飞与西湖欧米(杭州)生物科技有限公司(以下简称:西湖欧米)深化合作签约仪式在赛默飞客户体验中心举办。西湖欧米(杭州)生物科技有限公司于2020年7月创立,是一家专注于 AI 赋能的微观世界数据公司。西湖欧米致力于将蛋白质组大数据与人工智能相结合,基于生物质谱数字化技术,开发其他组学和蛋白质组学辅助临床诊断的新方法,助力精准医学和药物研发。 近年,随着蛋白组学的研究不断深入,越来越多的潜力标志物被不断发现,但是将潜在的标志物向临床转化时会碰到各种问题,比如稳定性,敏感度、特异性等,还需要通过大量的临床验证,建立合适的模型,临床案例积累,临床教育等工作,并且需要在严格的医学检测体系管理下的临床检测实验室进行高通量可靠的分析,从而真正给临床提供价值。此次合作,基于2021年西湖欧米和赛默飞“临床蛋白质组在转化医学中的应用领域”设立联合实验室并开展系列合作后,获得了一系列进展。此次合作将着重于合作转化,共同将临床真正受益的方案和产品推广到常规医学检测和治疗中。郭天南西湖欧米创始人“AI赋能的蛋白质组学可助力精准医学,为生命健康带来新的曙光。“工欲善其事,必先利其器”,在临床蛋白组学的发展道路上,精密的仪器设备、优秀的合作伙伴,以及创新、科学的思想,都是至关重要的。欧米和赛默飞的深入合作是强强联手,未来可期。”沈 严赛默飞色谱和质谱业务中国区商务副总裁“很高兴能和西湖欧米进一步深入合作,基于之前非常振奋人心的合作成果,此次合作将着眼于将成果进行转化,将科研,AI大数据与临床衔接,希望通过双方多个维度的合作能真正推出符合市场符合临床的产品,并给当代医疗提供实际的助力。”赛默飞代表在现场还表示,在国际上,我们已经看到不少研究机构和企业在临床蛋白组学转化的路上做出了一些创新和成绩,因此非常高兴能和国内的行业领导者西湖欧米进行深入合作,相信在不久的将来,通过合作能看到更多的蛋白组学应用于临床的成功案例,这将开启临床蛋白组学的一个新的篇章。 深化合作签约仪式后,双方进行了深度的讨论和交流。
  • 预测:2022年蛋白纯化及分离市场规模将达到735亿美元
    p   近日,外媒发布研究报告显示,预计到2022年,全球蛋白纯化与分离市场将超过735亿美元,并且,报告期内,年复合增长率为8.3%。 br/ /p p   报告分析了全球蛋白纯化与分离市场的主要驱动因素,包括越来越多需要识别的新配体以及快速试剂盒的使用推动了蛋白纯化市场的研究和发展、自动化蛋白纯化仪器的使用、政府对相关研究机构给予经费支持以及后基因时代促进新型蛋白质组学技术市场的发展。 /p p   与此同时,报告分析了制约该市场发展的可能因素,包括仪器价格高昂且利用率低、“一刀切”纯化试剂盒开发难度大以及阻碍创新和产品改进的不断提高的研发成本。 /p p   此外,报告分析了全球蛋白纯化与分离市场的主流供应商的财务、业务策略以及发展计划等,其中包括赛默飞、默克密理博、荷兰QIAGEN NV公司、美国伯乐、安捷伦、GE医疗、罗氏等。 /p p br/ /p
  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 赛默飞世尔科技和Matrix Science联手推出蛋白鉴定解决方案
    赛默飞世尔科技,世界领先的服务商,于2008年1月29日宣布将在其BioWorks™ 软件中整合入Matrix Science’s Mascot™ 蛋白鉴定搜索技术。源于华盛顿大学的SEQUEST® 搜索算法(BioWorks软件成分之一)和Mascot技术是蛋白质鉴定和转译修饰(PTM)领域两种最为广泛接受的搜索引擎技术。此次两种搜索技术的整合将为用户提供更可靠的鉴定结果,两种技术的搜索信息互为补充、交叉验证。研究表明,不同的搜索引擎技术匹配于不同的质谱,使得了出现大量重复的分析结果,而不同的搜索技术也能特有地鉴定表征某些蛋白质。在一个软件平台中整合入两种搜索技术,将为蛋白质的鉴定提供更高的可靠性。此次Thermo Scientific Bioworks平台中整合入SEQUEST和Mascot技术,大大增强了质谱数据查询平台的灵活度,切合用户的需求。 Matrix Science总裁John Cottrell先生表示:“我们很高兴赛默飞世尔科技为他们的用户提供了购买Mascot以完善仪器和软件平台的机会。”Thermo Fisher Scientific蛋白质组学市场总监Andreas Hühmer先生表示, “我们致力于为已经选择我们优质仪器平台的用户提供最大的分析灵活度,使用户可以使用他们喜欢的某种技术,也可以结合两种技术的分析结果扩大他们的蛋白鉴定覆盖范围。 欲了解Mascot, 请登陆www.matrixscience.com. 欲了解BioWorks软件更多信息,请登陆: www.thermo.com/bioworks. 关于ThermoFisherScientific(赛默飞世尔科技,原热电公司)   Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过90亿美元,拥有员工约30000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于ThermoScientific和FisherScientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。ThermoScientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。FisherScientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲了解更多信息,请登陆:www.thermofisher.com .
  • 赛默飞携手西湖欧米助力AI赋能蛋白组学临床发展
    4月13日,赛默飞世尔科技(中国)有限公司(简称:赛默飞)与西湖欧米深化合作签约仪式在赛默飞客户体验中心举行,双方正式进入携手助力AI赋能蛋白组学临床发展的新篇章。赛默飞色谱和质谱业务中国区商务运营副总裁沈严和西湖欧米创始人郭天南博士分别代表双方签约,双方团队共同参与了此次签约仪式。此次合作深化着重于临床质谱检测方法的开发、应用软件开发等,未来合作方向包括但不限于检测用试剂耗材研发生产,以及相关领域的教育培训和技术推广等,以期共同将临床真正受益的方案和产品推广到常规医学检测和治疗中。随后,双方就未来的研究合作展开了深入讨论。未来,西湖欧米与赛默飞将从多维度合作开展基于IA+蛋白质组学研究,助力蛋白组学技术的临床应用和精准医学的高质量发展。
  • 文献解读 | NanoTemper助力结核分枝杆菌细胞壁通路靶标膜蛋白研究
    01研究背景膜蛋白生命活动中具有重要作用,也是重要的药物靶点,而膜蛋白在进行互作研究过程中会有许多难点:1. 膜蛋白一般需要去垢剂来模拟脂质生物环境。对于基于固定的互作技术,去垢剂会增加背景信号,或者存在参比通道和样品通道背景不同的可能。2. 膜蛋白结构复杂,且与配体结合后可能发生变构。因此研究互作时,膜蛋白的正确构象至关重要。基于固定的技术可能阻碍变构过程,或者在固定和再生过程中破坏膜蛋白的构象。3. 膜蛋白的表达量低、纯化难,因此需要消耗量少的方法进行检测。本期文献解读,讲述如何利用MST及nanoDSF的手段来进行膜蛋白互作研究的故事。02研究内容2024年3月15日,上海科技大学张璐研究员/饶子和院士团队在Nature Microbiology发表题为“Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis”的研究,解析结核分枝杆菌全新药物靶标——膜蛋白磷酸核糖转移酶Rv3806c与其受体底物DP和供体底物PRPP结合复合物的精细三维结构,为研究Rv3806c作为新靶点的靶向性药物研发提供了重要的理论基础。https://doi.org/10.1038/s41564-024-01643-8IF: 28.3 Q1通过对Rv3806c与供体底物PRPP复合物结构分析,推测可能影响Rv3806c结合和酶活的位点,并通过MST进行大量突变Rv3806c亲和力检测进行验证。Rv3806c为膜蛋白,并且在脂质环境中以三聚体形式组装。实验种共有10种突变体需进行Kd检测,每次实验均进行了5次重复。MST进行一次亲和力检测时,仅需32pmol、1μg的膜蛋白Rv3806c,大大节约蛋白消耗量。此外,MST技术是在溶液条件下进行,无需固定,且兼容去垢剂,使膜蛋白能保持正确的构象,甚至可以完成nanodisc或者膜提取物形式的膜蛋白亲和力检测,从而可以轻松表征膜蛋白Rv3806c多种突变体与底物PRPP的亲和力。图示:MST测定PRPP与WT-Rv3806c及突变体的结合亲和力此外,研究发现,供体底物PRPP通过一个Mg2+结合在TM螺旋束-1的空腔。为了研究Mg2+对Rv3806c结合供体底物PRPP的作用,作者使用MST和nanoDSF技术检测存在或不存在Mg2+时,Rv3806c与底物PRPP的结合。NanoDSF技术通过监测蛋白内源荧光的变化来表征蛋白结构,无需加入外源荧光染料,兼容去垢剂。使用GDN纯化的Rv3806c完成MST亲和力实验和nanoDSF的热迁移实验,结果显示Mg2+对于PRPP的结合至关重要。图示:MST分析在Mg2+存在或不存在的情况下,PRPP与Rv3806c的结合亲和力。在没有Mg2+的情况下,结合亲和力急剧下降,而在金属螯合剂EDTA的存在下,没有检测到结合。图示:在Mg2+、PRPP和EDTA存在或不存在的情况下,纯化后的Rv3806c的nanoDSF热稳定性分析。PRPP-Mg2+存在时Rv3806c表现出最高的热稳定性。03技术优势在这篇工作中,通过MST技术及nanoDSF技术,确定了膜蛋白Rv3806c与PRPP结合的关键残基,以及Mg2+在互作过程中的关键作用。对于分子互作亲和力的检测,Monolith系列仪器无需固定样品,且不限制缓冲条件,蛋白用量少,可以在溶液中表征膜蛋白与小分子的亲和力。Promethus系列仪器,以nanoDSF技术为核心,通过检测蛋白内源荧光监测蛋白的稳定性,无需外源荧光染料,兼容去垢剂,低浓度也可轻松表征,在膜蛋白稳定性分析和TSA互作定性研究上具有显著优势。-Monolith分子互作检测仪--PR Panta蛋白稳定性分析仪-
  • 大连化物所基于纳米离子通道器件开发出检测SUMO1蛋白的新方法
    近日,大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队和生物分子高效分离与表征研究组(1810组)张丽华研究员团队合作,在蛋白质SUMO化研究方面取得新进展,开发了一种基于噬菌体表面展示技术筛选出的环肽修饰的金属纳米离子通道器件,实现了SUMO1蛋白的实时感知与测量,并在监测去SUMO化反应和细胞成像中展现出很好的应用潜力。蛋白质SUMO化是一种重要的细胞活动调节机制,异常的SUMO化与多种癌症和神经退行性疾病密切相关,其中去SUMO化作为整个SUMO化循环过程的一部分,也发挥着非常重要的作用。目前,针对去SUMO化的药物“TAK-981”已进入临床试验阶段。为了理解SUMO化在疾病进展中的作用,首先需要对SUMO化蛋白进行精准测量。   SUMO蛋白主要分为3种类型,分别为SUMO1/2/3,SUMO2/3具有97%的同源性,而与SUMO1的同源性仅为47%。商业化的SUMO2/3抗体具有很高的识别精度,而SUMO1由于缺乏识别的抗体,目前不能被有效地检测。因此,开发一种精确、高效、低成本、无标记检测SUMO化蛋白,以及能用于监测去SUMO化反应的方法十分重要。   本工作中,合作团队通过噬菌体展示筛选技术得到SUMO1蛋白的亲和环肽,并将其修饰到镀金的锥形纳米孔道中,制备出一种功能离子通道器件,通过法拉第电流和跨膜离子电流,将环肽和SUMO1蛋白的结合通过电信号可视化呈现。   借助于对SUMO1蛋白的识别,该离子通道器件能够监测SENP1酶催化的蛋白去SUMO化反应,并且在细胞成像中进一步证实了环肽优于商业化SUMO1抗体。未来,环肽有望用于开发SUMO1探针、SUMO1靶向药物释放系统和药物设计,以及有助于开发富集材料,推进SUMO1蛋白质组学发展,从而提高对SUMO蛋白,特别是SUMO1在疾病和生理作用中的认识。   相关成果以“A highly sensitive nanochannel device for the detection of SUMO1 peptides”为题,发表在《化学科学》(Chemical Science)上。该工作的第一作者是我所1824组联合培养硕士研究生秦玥和博士后张晓雨。上述工作得到国家自然科学基金、辽宁省兴辽英才计划、大连化学物理研究所创新特区组启动基金等项目的支持。
  • 将质谱用于膜蛋白分析 英皇家学会院士Carol Robinson做客上海交大
    p   近日,英国皇家学会院士、美国科学院外籍院士、英国皇家化学会候任主席、牛津大学Doctor Lee冠名教授Carol Robinson教授在上海交通大学做客第95期大师讲坛,为交大师生带来题为“Mass spectrometry-from folding proteins to rotating motors”的精彩报告。 /p p style=" text-align: center " img width=" 350" height=" 473" title=" 001.jpg" style=" width: 350px height: 473px " src=" http://img1.17img.cn/17img/images/201711/insimg/9c5b334e-bdec-4b44-ae4d-2e6ca2dbdf7e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   质谱分析是目前蛋白质研究的最重要工具之一。Carol Robinson教授介绍了质谱的原理和自己探寻质谱研究的历程,阐述了她领导的团队在 strong 质谱技术优化和应用质谱分析百万道尔顿级膜蛋白研究方面的进展 /strong 。关于质谱在生物领域的应用,她介绍了2002年诺贝尔化学奖获得者J. B. Fenn和K. Tanaka做出的贡献。在蛋白质的结构研究方面,她强调了对受体膜蛋白性质的研究在药物设计和研发领域的重要地位。 /p p    strong Carol Robinson教授介绍,她的研究团队将膜蛋白溶入洗涤剂溶液,并通过毫微电喷雾电离汽化质谱技术对膜蛋白与脂类小分子之间的相互作用及计量性质和其自身在小分子稳定作用下的折叠过程进行了探索和研究。 /strong 在结合诸如离子淌度法、核磁共振法等其它技术后,进一步提取出更多关于折叠膜蛋白的拓扑结构信息和性质。Carol Robinson教授团队从1993年开始应用质谱分析证实了蛋白质折叠与伴侣分子稳定效果的关系,并于2008年使用质谱分析研究疏水膜蛋白并取得突破。最近,她的团队对螺旋低聚膜蛋白在界面脂分子作用下的稳定效果进行量化,取得的成果发表在Nature及Science系列期刊上。她展示了原始的质谱分析例图,讲解了如何使用图谱判断样品蛋白是否折叠,并讲解了在旋转马达ATP合成膜蛋白内部的亚单位相互作用及折叠机制。 /p p   Carol Robinson教授总结,质谱分析对膜蛋白方面的研究意义重大,具有独特性和创新性。她指出,自己在最初决定进行这方面研究时遇到了很大困难和阻力,并因此鼓励年轻人不必拘泥形式,要敢于设计实验。 /p p   在提问环节中,Carol Robinson教授回答了研究中遇到的困难、质谱与冷冻电镜等分析方法在生物结构研究方面的应用和蛋白质在真空中折叠的机理与现实环境中的区别等问题。Carol Robinson教授还和同学们探讨了如何平衡家庭和学术事业等话题。 /p p   大师讲坛学生组委会向 Carol Robinson教授赠送了精心制作的泥塑人像作为纪念品,以表达交大学子对她到访由的衷感谢和诚挚祝福。 /p p   【嘉宾介绍】 /p p   Carol Robinson,英国皇家学会院士、美国科学院外籍院士、英国皇家化学会候任主席。现担任牛津大学化学系Doctor Lee冠名教授,牛津大学埃克塞特学院教授会员。她1982于剑桥大学获得博士学位,先后在基尔大学、牛津大学、剑桥大学工作。她2001年晋升为剑桥大学历史上第一位女教授,2011年被英国皇家学会授予跨领域奖,2013年在新年授勋中被授予大英帝国爵级司令勋章,2015年获得世界杰出女科学家成就奖。 /p p   【背景介绍】 /p p   质谱是一种通过ESI和MALDI等方法电离分子并根据其质荷比进行记录的分析方法,在化学及结构生物领域有着广泛的应用。使用质谱法分析膜蛋白质要求电离蛋白质分子,同时不破坏其分子结构。 /p p   Carol Robinson教授长期从事质谱相关领域的研究。她在对生物高分子配合物进行汽化以用于质谱法分析领域进行了大量突破性研究,并在使用质谱研究例如膜蛋白等大配合物结构方面做出了杰出贡献。Carol Robinson教授以第一作者或通讯作者在Nature和Science等杂志上发表了一系列文章,是质谱在化学、生物等领域研究方面的权威学者。 /p p & nbsp /p
  • GE给您完全的蛋白印迹方案
    GEWestern Blot实验相关产品秋季开学特惠 活动日期: 2012年即日起至10月31日 GE从蛋白制备、电泳、转印及杂交到显色、成像,为您带来完全的蛋白印迹方案。 详情请见www.reagent.com.cn 细胞组织裂解 -- 样本研磨试剂盒 蛋白抽提 -- 蛋白抽提缓冲液试剂 蛋白稳定化 -- 混合蛋白酶抑制剂及核酶 混合物 蛋白分级化 -- 蛋白分级试剂盒 蛋白定量 -- 蛋白定量试剂盒 垂直电泳 -- SE250/SE260 电泳试剂 蛋白Marker -- 彩虹分子量标准 蛋白Marker -- Amersham ECL DualVue 免疫 印迹标准
  • 亲和层析之蛋白A
    球菌的细胞壁,与IgG的Fc片段具有非常强的特异性,分子量约为42×103,如图所示。一般在蛋白 A亲和层析中,配基在中性pH条件下结合抗体,在酸性pH条件下与蛋白解离。‍蛋白A与抗体IgG的Fc片段结合模式基于蛋白 A 亲和层析的抗体捕获工艺较为稳定,但也存在一些不足,主要包括:(1)介质成本高。(2)配基易脱落。(3)洗脱条件苛刻。(4)Protein A介质的再生比较困难。针对以上问题,部分商业化蛋白A亲和层析介质中使用的基本为改造的蛋白A配基,改善了天然蛋白A的缺点,提高了耐碱能力和洗脱 pH。月旭科技推出的耐碱抗体亲和介质-耐碱Protein A Solid/耐碱Protein A 4FF, 由大肠杆菌表达,经层析纯化获得,纯化过程不适用抗体柱亲和层析,避免了产品中掺入无关IgG的可能,改配基pH耐受0.5M NaOH和0.5M HCl处理,不降解,抗体结合能力不变。该介质适合从大批培养液捕获单克隆抗体或Fc融合蛋白,也适合与从腹水或者血浆中捕获多克隆抗体。技术参数‍应用实例订货信息
  • “蛋白质动态学新技术”成功解析蛋白复合体结构
    近日,中国科学院武汉物理与数学研究所研究员唐淳课题组利用基于973重大科学研究计划“蛋白质动态学研究的新技术新方法”建立的研究技术,协助华中农业大学教授殷平课题组首次解析了N6腺嘌呤甲基转移酶METTL3-METTL14蛋白复合体结构,该研究成果发表于《自然》杂志。  该工作揭示了RNA N6腺嘌呤甲基化修饰过程中的结构基础,是表观遗传学领域的一项重大突破。唐淳、武汉物数所副研究员龚洲和博士后刘主参与该项目,利用课题组发展的新技术新方法,通过结合小角X光散射与计算机模拟的手段,为该蛋白复合体的结构解析提供了研究方法上的帮助。  经过近3年的努力,唐淳课题组发展、建立了包括核磁共振波谱、小角X光散射、化学交联质谱分析、单分子荧光检测和成像等技术在内的多种生物物理化学手段,并开发相应的整合计算方法,用于蛋白质动态结构及其转换过程的研究。课题组除了完成自身的科研项目外,积极开展广泛的合作与交流,与国内外同行共享研究技术和方法。目前,得益于“蛋白质动态学研究的新技术新方法”项目的实施,课题组已助力多个重要蛋白质结构的解析,取得了一系列的研究成果,研究成果发表于《自然—化学生物学》、eLife 等国际一流杂志。
  • 新品首发|大豆蛋白仪自带自检测模块【恒美科技】
    大豆蛋白仪是一种用于快速测定大豆中蛋白质含量的设备,对于大豆种植、加工和饲料行业等方面具有重要意义。下面将详细介绍大豆蛋白仪检测大豆蛋白含量的作用。 一、提高生产效率 大豆蛋白仪能够快速准确地测定大豆中的蛋白质含量,避免了传统化学分析方法的繁琐操作和长时间等待结果,大大节省了生产时间。在大豆加工和饲料生产中,快速得知蛋白质含量对于生产计划的安排和工艺流程的优化具有重要作用,提高生产效率。 产品链接https://www.instrument.com.cn/netshow/SH104275/C308477.htm二、优化产品品质 大豆蛋白仪的测定结果可以为大豆种植和加工企业提供关于产品品质的重要信息。通过实时监测蛋白质含量,可以更好地控制生产过程,调整工艺参数,确保产品品质的稳定和提升。同时,对于饲料企业而言,准确的蛋白质含量数据可以帮助他们更好地配比饲料,满足不同养殖需求。 三、降低生产成本 大豆蛋白仪的使用可以减少样品运输和检测费用。传统化学分析方法需要将样品送至专业实验室进行检测,而大豆蛋白仪可以在现场进行测定,大大减少了运输成本和时间。此外,快速得到数据也可以帮助企业及时调整生产计划,减少库存积压和浪费,从而降低生产成本。 四、加强质量控制 大豆蛋白仪可以提供实时、准确的蛋白质含量数据,为大豆种植和加工企业建立完善的质量控制体系提供支持。通过定期检测和记录蛋白质含量,可以更好地追踪产品质量问题,及时采取措施予以解决,确保产品质量符合要求。 总之,大豆蛋白仪作为一种快速、准确的蛋白质含量测定设备,在提高生产效率、优化产品品质、降低生产成本、加强质量控制及保障食品安全等方面具有重要作用。
  • 恒美-近红外大豆蛋白分析仪一键式工作模式-新品
    点击进入优惠通道→近红外大豆蛋白分析仪 在食品加工、农业生产和食品安全监测等领域,大豆中蛋白质含量的检测非常重要。近红外大豆蛋白分析仪的出现,大大提高了大豆检测的效率和可靠性。传统的蛋白质分析方法需要复杂的样品制备和分析过程,耗时且繁琐。近红外大豆蛋白分析仪采用近红外光谱技术,可在几秒钟内完成蛋白质含量的测定,大大提高了分析速度。 近红外光谱是一种无损分析方法,不需要对样品进行任何处理,避免了传统方法中可能引入的误差。近红外大豆蛋白分析仪通过测量样品在近红外光波段的吸收特性来获得样品中的蛋白质含量。 近红外大豆蛋白分析仪还具有操作方便、应用范围广等优点。仪器操作简便,只需将样品放入仪器中,按相应按钮即可开始分析。近红外大豆蛋白分析仪在大豆检测中发挥着重要作用。可快速、准确地分析大豆中的蛋白质含量,提高检测效率和可靠性。 无损分析方法还可以减少人为误差的影响,提高分析结果的准确性。随着科学技术的不断发展,近红外大豆蛋白分析仪将变得更加智能化、多功能,为大豆检测提供更多的便利和效益。
  • Olink新品发布|Explore HT 蛋白标志物平台开启蛋白组学新时代
    Olink 于 2023 年 7 月 12 日 宣布发布 Olink Explore HT 新产品,该变革型高通量蛋白组学解决方案以全方位的已验证特异性、可扩展性和简化流程。Olink Explore HT 代表了新一代蛋白组学的重大进步,科学家们仅需 2 μl 样品即可准确检测超过 5,300 种蛋白标志物,且重新设计后的整个流程更简化。与上一代 Explore 产品相比,新品不仅将特异蛋白标志物检测数量提高了 80%,同时将样品检测通量提高 4 倍,数据输出能力提高 8 倍,并以更简化的操作流程进一步提高了从样品到数据产出效率。更重要的是,这些创新也缩减了环境空间,所有组件降低了 6 倍,外部包装降低了 10 倍。  Olink CEO Jon Heimer说到:“Olink Explore HT 展示了我们秉承持续创新的承诺,为科学研究提供强有力的解决方案。在几年前,Olink Explore HT 的强大功能几乎是难以想象的。而现在,这是 Olink 迄今为止提供的最先进的高通量蛋白组学产品,其卓越性能将赋能 21 世纪医疗健康提供重要新发现。”  Olink Explore HT 旨在全方位解锁所有规模蛋白质组学的巨大价值,以推进多组学研究。并可广泛应用于疾病治疗领域,加深疾病发生、进展及结果进程中,在分子信号通路水平的全面理解。Olink Explore HT 还将推动药物研发新发现,从基于疾病致病蛋白鉴定的靶点发现,到对作用机制研究的实操见解,以及通过对临床试验中现有样品的重新审查来重新利用扩展治疗方法。  瑞典乌普萨拉大学的Ulf Gyllensten教授说到:“我们对 Olink Explore HT 新平台感到非常兴奋。凭借 Olink 变革型 PEA 多重标记检测技术,Olink Explore HT 使得我们能从微量临床样品中进行高通量、超多重和极其精准的蛋白分析。将 PEA 技术与 NGS 读数结合后,Olink Explore HT 将以其前所未有的能力,进一步揭示全人类蛋白组。作为早期用户,我们已经成功地使用该平台发现识别妇科癌症的诊断和预后蛋白生物标志物。使用 Olink Explore HT 具有的更大规模的蛋白标志物库进行蛋白组学分析,定会加速新型生物标志物的发现,并揭示重要的生物学新见解。更广泛地说,从基础科研到转化研究的整个药物开发过程中,该平台将开启一种强大的基于多组学的新方法。”  Olink Explore HT 代表了 Olink PEA 技术与 NGS 读数相结合的前沿创新。每一个经过充分验证的分析实验,都再次验证 Olink 用户所信任的特异性和灵敏度的卓越标准。
  • 化学蛋白质组学揭示高铁血红素-蛋白互作谱
    大家好,本周为大家分享一篇最近发表在Journal of The American Chemical Society上的文章,A Chemical Proteomic Map of Heme−Protein Interactions1。该文章的通讯作者是美国斯克利普斯研究所的Christopher G. Parker研究员。高铁血红素(heme)是人体中许多蛋白质的辅助因子,也是血液中氧气的主要转运体。最近的研究也证实了高铁血红素可以作为一种信号分子,通过与伴侣蛋白质结合而不是通过其金属中心反应来发挥其作用。然而,目前关于血红素结合蛋白的注释还不够完整。因此,本文采用化学蛋白质组学的方法去揭示人体中与高铁血红素发生互作的蛋白质谱。化学蛋白质组学是揭示蛋白质功能和发现药物靶标的重要工具。其中,最常用的是基于活性的蛋白质分析(Activity-based protein profiling,ABPP),通过结合活性分子探针标记及串联质谱分析,实现对靶标蛋白的鉴定。如图1b,本文设计了一个“全功能”活性分子探针(HPAP),共包含3个部分:1. Hemin母核,用于与靶蛋白非共价结合;2.光活化基团-双吖丙啶,可在UV光照下生成卡宾,促使分子探针与蛋白发生共价交联;3. 炔基,可在铜催化下与含有叠氮的试剂(荧光标签,生物素)发生点击化学反应,后两者组成FF-control。具体实验流程如下图1a所示,用HPAP处理不同细胞(In Situ)或不同细胞来源的蛋白质组(In vitro),HPAP中的hemin母核可与靶蛋白发生非共价结合,经UV光照,HPAP-蛋白间形成共价交联,再利用点击化学可将HPAP-蛋白与荧光素(TAMRA)或者生物素标签相连,用于后续的荧光成像(In-gel fluorescence)或者链霉亲和素纯化、LC-MS鉴别定量(MS-based I.D. and quantitation)。 图1. (a)使用基于高铁血红素的光亲和探针(HPAP)识别血红素结合蛋白的流程示意图。(b) HPAP、hemin和FF-control的结构;(c) HEK293T裂解物中与HPAP结合的蛋白的荧光成像;(d) hemin加入对HPAP与蛋白结合的影响。作者首先使用了SDS-PAGE去评估了HPAP标记蛋白的能力。如图1c所示,随着HPAP浓度的提高,胶图上条带颜色也逐渐加深,说明HEK293T细胞裂解液中与HPAP结合的蛋白在逐渐增加。如图1d所示,在10 μM HPAP的条件下,逐渐加入hemin,可以看到胶图上条带颜色逐渐变浅,说明hemin与HPAP之间发生了竞争,HPAP模拟了hemin与蛋白的结合过程。随后,作者又使用已知的hemin结合蛋白来确认HPAP捕获目标蛋白的能力。如图2所示,这些已知蛋白被HPAP成功的标记上,但由于hemin的加入,条带的颜色在逐渐变浅(TAMRA)。Western blot的结果显示,蛋白的总量并无太大变化,但hemin的竞争结合,导致与HPAP结合的蛋白量在下降。以上实验均说明,HPAP具有较好的选择性标记能力,能够模拟hemin与靶蛋白的结合,并以共价交联的方式标记在蛋白上。 图2. 用已知的高铁血红素结合蛋白确认HPAP捕获目标蛋白的能力。验证了方法的可行性后,作者将HPAP与定量蛋白质组学结合用于绘制高铁血红素-蛋白质互作谱。考察了多种细胞系,包括:人胚胎肾细胞(HEK293T)、人慢性髓系白血病细胞(K562)以及人原代外周血单个核细胞(PBMCs)。每种细胞系设置了两种实验形式:1)特异性结合实验(Enrichment):通过将HPAP识别出蛋白与FF-Control识别出的蛋白进行对比,排除非特异结合的干扰(图1b),如果同一蛋白通过HPAP富集到的量是FF-control富集到的量4倍以上,则认为该蛋白是HPAP特异性结合蛋白。2)竞争性结合实验(Competition):观察HPAP富集的蛋白在hemin和HPAP同时存在时富集到的量的变化,变化大于3倍且具有显著性差异(p<0.05)的蛋白被认为是HPAP与hemin竞争性结合的蛋白。最终确定的高铁血红素结合蛋白应满足以上两种实验的筛选标准(图3a)。如图3b-d所示,总共鉴定出378个的高铁血红素结合蛋白,其中214个来自HEK293T, 182个来自K562, 107个来自PBMC。尽管三种细胞类型之间的结合蛋白有一些重叠,但大多数靶点蛋白只存在于一种或两种细胞类型中(图3b),这暗示血红素在不同细胞中可能发挥不同的功能。其中,19个靶点蛋白是在UniProt上已经注释为高铁血红素的结合蛋白,剩余都是未揭示的结合蛋白。这些结合蛋白按照功能可划分为:转运蛋白,转录因子,支架蛋白和酶(图3c),根据代谢通路又可进一步划分(图3d)。作者最后对几个新发现的结合蛋白进行了验证,并选择IRKA1进行进一步的作用机制研究。IRKA1在调节炎症信号通路中起着关键作用,IRAK1被IRAK4磷酸化,然后自磷酸化,产生NFkB介导的炎症反应。经实验确认(图4),hemin是IRKA1的一种变构活化配体,可增强其酶活性,促进IRAK1的自磷酸化。 图3. 基于蛋白质组学的HPAP-蛋白互作分析。 图4. Hemin对IRKA1的调节作用。总之,本文设计开发了一种基于高铁血红素的光亲和探针,它可以与化学蛋白质组工作流程结合,以识别不同蛋白质组中的高铁血红素结合蛋白。利用该方法也可拓展至其他分子配体靶标蛋白的识别。 撰稿:刘蕊洁编辑:李惠琳原文:A Chemical Proteomic Map of Heme-Protein Interactions参考文献1. Homan, R. A., Jadhav, A. M., Conway, L. P., & Parker, C. G. (2022). A Chemical Proteomic Map of Heme-Protein Interactions. Journal of the American Chemical Society, 144(33), 15013–15019.
  • 蛋白质含量测定新方案——排除假蛋白氮(NPN)的干扰
    不法商人添加非法添加物的根本原因是,本来劣质产品中蛋白质含量就很低,需要添加用凯氏定氮法查不出的含氮物质充数。因为现行的凯氏定氮蛋白质测定方法局限于:只能测试总有机氮含量,而非特定的蛋白质中氮含量,因此,方法缺陷被不法商人所投机利用,使伪劣产品蒙混达标。 传统上,蛋白质的测定一直采用凯氏定氮法。该法的误区是:通过氧化还原反应,把低价氮氧化并转为氨盐,再通过氨盐中氮元素的量换算成蛋白质的含量。凯氏定氮针对有机氮化合物,主要是指蛋白质,aa,核酸,尿素等N3-化合物。非蛋白质的含氮化合物,,如三聚氰胺等,在凯氏定氮过程中,被同样消化成(NH4)2SO4,造成蛋白值虚高,我们统称这些化合物为假蛋白氮(NPN)。 从食品安全控制可靠性上考虑,解决问题的根本方法,是直接测试食品中的真蛋白质含量。因为,如果能够一次直接测定食品中真蛋白质含量,那么就堵住了市场监管上的漏洞,使伪劣产品无所遁形。因此添加假蛋白质物质,如三聚氰胺等就毫无意义了。区别蛋白质与NPN的意义在于可以获得真实准确的蛋白质含量。从根本上解决了问题,厂商只能提供达标产品。这对需要进行蛋白质检测行业如食品、饲料及蛋白研究和管理领域具有重要的价值。呼吁中国国家有关部门将真蛋白质检测尽快纳入预防性安全监控标准。 1.食品行业的蛋白质问题 监控食品加工过程中的所有流程节点,包括原料采购、浓缩、勾兑、干燥、储存等。如假劣奶粉的危害就在于产品未达到国家蛋白标准限定,但在&ldquo 国标&rdquo 的凯氏定氮法检测后通过检测,其原因就在于搀加大量的NPN,造成蛋白质含量虚高。所添加的NPN大部分是化工产品,严重威胁食品安全。 2.饲料行业的蛋白质问题 饲料行业同样面临NPN造成的危害。例如最近引起社会关注的三聚氰胺。三聚氰胺含氮量达66%,白色无味,与蛋白粉外观相似,是被不法厂商大量使用的NPN。与&ldquo 瘦肉精&rdquo 、&ldquo 苏丹红&rdquo 等少数违禁添加剂一样,损害动物机体健康,并最终通过食物链转移到人体内。三聚氰胺高温下会形成氰化物,长期或反复接触对肾脏器官形成巨大损害。 3.其他研究领域的蛋白质问题 植物原料中NPN的含量随季节、地域及品种变化很大。精确检测蛋白质含量,排除NPN干扰对于保证科学研究的严谨性具有重要意义。 美国CEM 公司的真蛋白质SPRINT分析仪,是目前唯一的真蛋白质测试仪,其主要特点: 1.直接测量&ldquo 真蛋白质&rdquo ,而非总氮含量 2.所有类型样品检测(液体、固体、粉末状、奶油、肉类、坚果类、谷物、种子等); 3.测量时间只需两分钟;全自动操作,无需有经验的化学家; 4.对三聚氰胺等非法添加剂,不会产生错误的蛋白质测量结果,精确性和准确度等优于凯氏定氮法; 5.对非氮蛋白质的测定无需校准,直接测量; 6.无需化学试剂;相比目前的检测方法,具有更低的操作成本; screen.width-300)this.width=screen.width-300" border="0" alt="" src="https://img1.17img.cn/17img/old/NewsImags/2008328164614.jpg" / http://www.analyx.com.cn/products/list.asp?classid=122
  • nanoDSF技术助力蛋白结晶的研究
    01研究背景稳定的、高纯度、单分散的生物样品显示出更高的结晶倾向[1]。早期阶段识别那些更有可能产生晶体的结构或变体能够节省大量的人力和时间成本。目前的很多方法,如凝胶过滤、DSF等技术可以帮助识别最优性质的样品,但是存在样品消耗量大或者外源染料与溶剂不兼容等问题。NanoTemper开发的nanoDSF差示扫描荧光技术,基于蛋白的内源荧光检测Tm值,通过Tm值的绝对数值和变化来确定优先结晶的缓冲条件或者蛋白变体等。接下来,我们通过两篇文献来了解nanoDSF如何助力结晶条件的筛选。02案例解读https://doi.org/10.1038/s41467-023-35915-4IF: 16.6 Q1非特异性磷脂酶C (NPC) 是植物特有的一类磷脂酶。尽管对NPCs的研究揭示了其在植物生长发育中的基本作用,但相比于其它磷脂酶(A1/A2/D/PI-PLC)水解底物的分子机制研究,NPCs是迄今为止唯一一类尚未被阐明的磷脂酶。湖北洪山实验室、作物遗传改良全国重点实验室蛋白质科学研究团队联合油菜团队的研究成果解析研究了NPC4的晶体结构和工作机制,为真核生物磷脂水解酶家族的分子机制提供了新见解。 研究中获得了NPC41-415和NPC41-496 两组结晶,对比结晶结果,发现NPC41-415没有磷酸化,且CTD结构域没有观察到电子密度。SDS-PAGE结果显示,蛋白在结晶过程中被部分降解,可能导致晶体中缺少CTD结构域。对比结晶条件发现NPC41-415的结晶中不存在KH2PO4,同时KH2PO4不影响NPC4活性。因此,作者推测KH2PO4可能会增强NPC4的稳定性。NPC4为膜蛋白,一般膜蛋白的表达和纯化得率均比较低,因此需要使用蛋白消耗量少的热稳定分析技术以最大程度的节约膜蛋白样品。nanoDSF技术样品检测浓度可低至5ug/ml,10μl,大大节约蛋白样品。研究人员利用nanoDSF技术检测了KH2PO4对NPC蛋白热稳定性的影响,每个条件仅需5.6ug NPC4蛋白样品。加入KH2PO4后,Tm值从51.1℃提高到55.3℃,表明NPC4在KH2PO4存在下更稳定,也解释了缺少KH2PO4时蛋白降解的原因。图示:KH2PO4提高NPC41-496 稳定性:nanoDSF结果显示,NPC41-496 Tm为51.1℃;在有50mM KH2PO4 存在下提高到55.3℃03案例解读https://doi.org/10.1038/s41598-023-41616-1IF: 4.6 Q2水通道蛋白2(APQ2)调控水的重吸收进而调控机体的水代谢平衡。AQP2基因的点突变可能导致肾性尿崩症(NDI)。为了进一步了解AQP2突变导致NDI的分子机制,作者通过对三种AQP2突变体(T125M、T126M和A147T)进行结晶,以了解突变AQP2的结构和功能关系,为NDI背后的机制提供了分子见解。为了提前了解突变对AQP2蛋白稳定性以及其对后续结晶的影响,研究人员使用nanoDSF技术比较了三种突变体的热稳定性差异。需要注意的是AQP2同样为膜蛋白,其储存溶液中含有去垢剂OGNG等成分,而nanoDSF技术是基于蛋白的内源荧光进行Tm检测,对去垢剂等兼容,无需优化检测条件,可快速获得重复性高的Tm结果。nanoDSF结果显示所有的热变性曲线显示出相似的形状。然而,Tm和Tonset在不同突变体之间存在差异。野生型AQP2的稳定性最高,其次为T126M和T125M, A147T的热稳定性最低。 图示:nanoDSF检测WT AQP2以及其突变体的热稳定性接下来,作者对AQP2以及其突变体进行结晶。在与野生型AQP2相同的条件下,只有T125M和T126M产生了足以用于结构测定质量的晶体,与野生型AQP2的结构高度相似。T126M晶体的衍射分辨率最高,为(~ 3-3.3 &angst ),其次是T125M (~ 3.7-4 &angst )。A147T晶体质量最低,衍射x射线约为5-7 &angst 。结晶结果与三种蛋白质结构的热稳定性非常一致,即蛋白质的热稳定性降低可能会降低其成功结晶的能力[2][3]。03案例小结&技术优势在上述两篇文献中,作者使用nanoDSF技术检测了膜蛋白在不同缓冲条件或者突变体的热稳定性,并且均可与后续的结晶结果对应。nanoDSF对缓冲溶液兼容,如去垢剂,无需额外优化条件,仅需非常少量的样品,即可快速完成Tm检测。明星产品PR Panta更是整合了4大检测模块(DLS、SLS、Backreflection和nanoDSF),仅需一份样品即可获得多种参数,更清楚了解结晶前样品情况,挑选最佳条件蛋白或条件进行结晶。PR Panta蛋白稳定性分析仪[1] Zulauf M, D'Arcy A (1992) J Cryst Growth 122:102–106[2] Dupeux, F (2011) Acta. Crystallogr. D Biol. Crystallogr. 67, 915–919.[3] Deller, M. C. (2016).Acta. Crystallogr. F Struct. Biol. Commun. 72, 72–95.
  • 纯化标签蛋白时填料的选择
    基因工程提供了人们改变蛋白质性质的机会,因而可以借此改善蛋白质的纯化特性。通过在目的DNA的3’端或5’端插入DNA序列,可以改变蛋白质两端的氨基酸序列,进而作为可纯化的融合蛋白。这些融合子可帮助蛋白质形成包含体,用于稳定蛋白质,免受蛋白酶的攻击,还可以赋予蛋白质特定的纯化性质,使其适用于免疫亲和、金属螯合、离子交换、疏水色谱以及其他分离操作。此外,对于已知特性的蛋白质,改变其中特氨基酸可引入具有特定基质吸附亲和力的片段。市面上有两种很常见的标签,分别为组氨酸标签和GST标签,这两种标签可插入蛋白形成重组蛋白,月旭科技现有针对这两种标签蛋白纯化的填料可供选择。His-Tag(组氨酸标签)是重组蛋白表达最常用的标签,无论表达的蛋白是可溶的或者包涵体都可以用固定金属离子亲和层析纯化。6×His-tag是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。纯化组氨酸标签蛋白最常用的配体是亚氨基二乙酸(IDA)和次氨基三乙酸(NTA),可使用月旭科技Ni Tanrose 6FF(NTA)或Ni Tanrose 6FF(IDA)来纯化。技术参数✦✦谷胱甘肽-S-转移酶(GST)是一种亲和标签,用GST标记真核蛋白可增强融合蛋白的溶解性。此外,带有 GST 标签的蛋白可以在细菌中高水平表达,但可能会由于蛋白聚集而形成包涵体。一般将GST标签添加到目标蛋白质的N或C末端。 GST对谷胱甘肽具有很相对强的亲和力,这意味着可以在固定的基质(如键合谷胱甘肽的填料)上捕获GST蛋白融合物。这种结合特性可用于蛋白质纯化以及通过蛋白质的结合,来捕获对应的蛋白质。因此可使用月旭科技GST Tanrose 4FF来纯化GST标签蛋白。
  • BLT小课堂 | 蛋白芯片技术原理及应用
    概念蛋白质芯片技术是在DNA芯片技术基础上发展的一项蛋白质组学技术。其原理是将大量不同的蛋白质分子(如酶、抗原、抗体、受体、配体、细胞因子等)通过微阵列的形式有序排列在固相载体表面,利用蛋白质与蛋白质或者蛋白质与其他分子之间的特异性结合,获得与之特异性结合的待测蛋白(如血清、血浆、淋巴、间质液、尿液、渗出液、细胞溶解液、分泌液等)的相关信息,便于我们分析未知蛋白的组分、序列,体内表达水平、生物学功能、与其他分子的相互调控关系、药物筛选、药物靶位的选择等。蛋白质芯片技术的出现,为我们提供了一种比传统的凝胶电泳、Western blot和Elisa更为方便和快速研究蛋白质的方法。该方法具有高通量,微型化和快速平行分析等优点,不仅对基础分子生物学的研究产生重要影响,也在临床诊断、疗效分析、药物筛选及新药研发等领域有着广泛应用。特点①蛋白芯片具有高特异性、重复性、准确性。这是由抗原抗体之间、蛋白与配体之间的特异性结合决定的。②蛋白芯片具有高通量和操作自动化的特点,在一次实验中可对上千种目标蛋白同时进行检测,效率极高。③可发现低丰度、小分子量蛋白质,并能测定疏水蛋白质,特别是膜蛋白质。④蛋白芯片具有高灵敏性,只需0.5-5μL样品,或2000个细胞即可检测。蛋白芯片技术在分子生物学及生物化学基础研究中的应用01 在蛋白质水平上检测基因的表达由于基因转录产物mRNA数量并不能准确反映基因的翻译产物蛋白质的质与量,因此在蛋白质水平上检测基因的表达对于了解基因的功能非常重要。蛋白质芯片技术产生前,蛋白质双向电泳技术是蛋白质组规模上进行蛋白质表达研究的唯一方法,但这种技术操作繁琐而且难以快速检测样品中成百上千种蛋白质的表达变化。蛋白质芯片的特异性、灵敏性和高通量等特点,在检测基因表达终产物蛋白质谱的构成及变化中发挥着不可替代的作用。02 高通量筛选抗原/抗体相互作用目前蛋白质芯片检测利用最广泛的生物分子相互作用是抗原抗体的特异性识别和结合,单克隆抗体是蛋白质芯片检测中使用最广泛的生物分子。运用蛋白质芯片可以研究不同抗原/抗体的特异性作用,而且对于检测样品中极微量的抗原/抗体分子作用非常有利。03 蛋白质/蛋白质相互作用分析酵母双杂交系统是近年来基因组规模上研究蛋白质相互作用的主要方法,但存在体内操作、假阳性、假阴性和外源蛋白质折叠、修饰等局限。蛋白质芯片技术不依靠任何生物有机体而在体外直接检测目标蛋白质,实验条件可随意控制,同时实验步骤自动化程度高,一次分析的蛋白质数量巨大,因而成为目前除酵母双杂交系统外进行大规模研究蛋白质相互作用的主要方法。04 酶/底物作用分析耶鲁大学的Snyder小组用蛋白芯片对酵母基因组编码的119种蛋白激酶的底物专一性进行了研究。实验中将蛋白激酶表达为谷胱甘肽转移酶(GST)融合蛋白,针对17种不同的底物,平行测定了119种GST2蛋白激酶融合蛋白的底物专一性,发现了许多新的酶活性,大量蛋白激酶可以对酪氨酸进行磷酸化,而这些激酶在催化区域附近有共同的氨基酸残基。也证明了蛋白质芯片可作为高通量筛选酶-底物作用的良好平台。蛋白芯片的检测目前蛋白芯片的检测主要有两种方式。一种是以质谱技术为基础的直接检测法,采用表面增强激光解析离子化-飞行时间质谱技术,用激光解析电离的方法将保留在芯片上的蛋白质解离出来。具体过程为:芯片经室温干燥后,加能量吸附因子如芥子酸,使其与蛋白质结合成混合晶体,以促进蛋白质在飞行时间质谱检测中的解析和离子化,利用激光脉冲辐射使芯池中的分析物解析成荷电粒子,根据不同质荷比离子在仪器场中的飞行时间长短不一,通过飞行时间质谱来精确地测定出蛋白质的质量,并由此绘制出一张质谱来,以分析蛋白质的分子量和相对含量。另一种为蛋白质标记法,样品中的蛋白质预先用荧光染料或同位素等标记,结合到芯片上的蛋白质就会发出特定的信号,用CCD照相技术及荧光扫描系统等对激发的荧光信号进行检测。与飞行时间质谱相比,该方法定量更加准确,操作也更加简便。与DNA芯片一样,蛋白质芯片同样蕴含着丰富的信息量,必须利用专门的计算机软件进行图像分析、结果定量和解释。其中应用最广的是荧光染料标记法,原理较为简单、使用安全、灵敏度高,且有很好的分辨率。可直接用广州博鹭腾 GelView 6000Plus进行拍摄。图1.GelView 6000Plus智能图像工作站GelView 6000Plus 配备600万像素科学级制冷CCD相机,制冷温度为环境温度下 55℃,极低的暗电流,很大程度降低背景干扰。而且独有的红外感应开关,自动控制样品台的开启与关闭,同时也减少了实验时对仪器的污染。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制