当前位置: 仪器信息网 > 行业主题 > >

蛋白多聚体

仪器信息网蛋白多聚体专题为您整合蛋白多聚体相关的最新文章,在蛋白多聚体专题,您不仅可以免费浏览蛋白多聚体的资讯, 同时您还可以浏览蛋白多聚体的相关资料、解决方案,参与社区蛋白多聚体话题讨论。

蛋白多聚体相关的论坛

  • 人血白蛋白多聚体测定为何除以2

    人血白蛋白多聚体测定法本法系用分子排阻色谱法测定人血白蛋白多聚体含量。照分子排阻色谱法(附录Ⅲ D)测定。色谱条件与系统适用性试验 用亲水硅胶高效体积排阻色谱柱(SEC,排阻极限300kD,粒度10μm),柱直径7.5mm,长60cm;以含1%异丙醇的pH7.0 0.2mol/L磷酸盐缓冲液为流动相;检测波长为280nm ;流速为每分钟0.6ml。取每1ml含蛋白质为12mg 的人血白蛋白溶液20μl,注入色谱柱,记录色谱图,人血白蛋白单体峰与二聚体峰间的分离度应大于1.5,拖尾因子按人血白蛋白单体峰计算应为0.95~1.40。测定法 取供试品适量,用流动相稀释成每1ml约含蛋白质12mg的溶液,取20μl,注入色谱柱,记录色谱图60分钟(色谱柱长60cm)。按面积归一法计算,色谱图中未保留(全排阻)峰的含量(%)除以2,即为人血白蛋白多聚体含量请教:为何除以2呢?很奇怪呀

  • 【求助】人血白蛋白多聚体分析方法求助

    [align=center][b][font=宋体]附录Ⅵ[/font][font=Times New Roman] Q[/font][font=宋体]人血白蛋白多聚体测定法[/font][/b][/align][font=宋体][size=3]本法系用分子排阻色谱法测定人血白蛋白多聚体含量。[/size][/font][size=3][font=宋体]照分子排阻色谱法(附录Ⅲ[/font][font=Times New Roman] D[/font][font=宋体])测定。[/font][/size][size=3][b][font=宋体]色谱条件与系统适用性试验[/font][/b][font=Times New Roman] [/font][font=宋体]用亲水硅胶高效体积排阻色谱柱([/font][font=Times New Roman]SEC[/font][font=宋体],排阻极限[/font][font=Times New Roman]300kD[/font][font=宋体],粒度[/font][font=Times New Roman]10[/font][font=宋体]μ[/font][font=Times New Roman]m[/font][font=宋体]),柱直径[/font][font=Times New Roman]7[/font][font=宋体].[/font][font=Times New Roman]5mm[/font][font=Times New Roman],[/font][font=宋体]长[/font][font=Times New Roman]60cm[/font][font=宋体];以含[/font][font=Times New Roman]1[/font][font=宋体]%异丙醇的[/font][font=Times New Roman]pH7[/font][font=宋体].[/font][font=Times New Roman]0 0[/font][font=宋体].[/font][font=Times New Roman]2mol/L[/font][font=宋体]磷酸盐缓冲液[取[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]5mol/L[/font][font=宋体]磷酸二氢钠[/font][font=Times New Roman]200ml[/font][font=宋体]、[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]5mol/L[/font][font=宋体]磷酸氢二钠[/font][font=Times New Roman]420ml[/font][font=宋体]、异丙醇[/font][font=Times New Roman]15[/font][font=宋体].[/font][font=Times New Roman]5ml[/font][font=宋体]及水[/font][font=Times New Roman]914.5ml[/font][font=宋体],混匀]为流动相;检测波长为[/font][font=Times New Roman]280nm [/font][font=宋体];流速为每分钟[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]6ml[/font][font=宋体]。取每[/font][font=Times New Roman]1ml[/font][font=宋体]含蛋白质为[/font][font=Times New Roman]12mg [/font][font=宋体]的人血白蛋白溶液[/font][font=Times New Roman]20[/font][font=宋体]μ[/font][font=Times New Roman]l[/font][font=宋体],注入色谱柱,记录色谱图[/font][font=Times New Roman],[/font][font=宋体]人血白蛋白单体峰与二聚体峰间的分离度应大于[/font][font=Times New Roman]1[/font][font=宋体].[/font][font=Times New Roman]5[/font][font=宋体],拖尾因子按人血白蛋白单体峰计算应为[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]95[/font][font=宋体]~[/font][font=Times New Roman]1[/font][font=宋体].[/font][font=Times New Roman]40[/font][font=宋体]。[/font][/size][size=3][b][font=宋体]测定法[/font][/b][font=Times New Roman] [/font][font=宋体]取供试品适量,用流动相稀释成每[/font][font=Times New Roman]1ml[/font][font=宋体]约含蛋白质[/font][font=Times New Roman]12mg[/font][font=宋体]的溶液[/font][font=Times New Roman],[/font][font=宋体]取[/font][font=Times New Roman]20[/font][font=宋体]μ[/font][font=Times New Roman]l[/font][font=宋体],注入色谱柱,记录色谱图[/font][font=Times New Roman]60[/font][font=宋体]分钟[/font][s][font=宋体](色谱柱长[/font][/s][s][font=Times New Roman]60cm[/font][/s][s][font=宋体])[/font][/s][font=宋体]。[/font][/size][size=3][color=#fe2419][font=宋体]按面积归一法计算,色谱图中未保留(全排阻)峰的含量[/font][font=Times New Roman](%)[/font][font=宋体]除以[/font][font=Times New Roman]2[/font][font=宋体],即为人血白蛋白多聚体含量。[/font][/color][/size][size=3][font=Times New Roman][b][color=#0021b0]计算方法不是很明白,为什么要除以2 ??? 全排阻的峰指的是哪一个??谢谢[/color][/b][/font][/size]

  • 加发现人体蛋白质新技术 为膜蛋白研究提供有力工具

    新技术可揭示蛋白间相互作用 为膜蛋白研究提供了有力工具 科技日报多伦多3月28日电 (记者冯卫东)据最新一期《自然·方法学》杂志网络版报道,加拿大多伦多大学研究人员开发出一种研究人体蛋白质的新技术。该技术可追踪膜蛋白与其他蛋白之间的相互作用。 膜蛋白占人体所有蛋白的约三分之一,有500多种疾病与其失能相关。膜蛋白的研究难点在于,要了解其作用,必须基于对其与其他蛋白相互作用的观察。 多伦多大学细胞与生物分子研究中心教授伊戈尔·斯坦戈利亚称,新技术为检视人体细胞自然环境中的膜蛋白提供了新工具。其灵敏度足以检测到引入药物的微量变化,因此对癌症及神经疾病治疗方法的研发具有重要意义。 研究人员采用了一种被称为MaMTH(哺乳动物膜双杂交法)的新技术,来确定CRKII蛋白在最常见肺癌——非小细胞肺癌中的作用。CRKII蛋白可与表皮生长因子受体蛋白相互作用,而表皮生长因子受体的基因突变可导致癌细胞的增殖。 研究报告的主要作者、多伦多大学博士后研究员茱莉亚·佩斯奇尼格称,CRKII最有可能调控突变表皮生长因子受体的稳定性,并通过促进癌细胞间的信令传递或通信来推动肿瘤生长。研究发现,可抑制这些突变受体和CRKII的一种组合化疗法或对肺癌治疗大有助益。 此项研究汇聚了多伦多和波士顿地区的5个实验室的研究人员及癌症临床医师、生物信息学家。佩斯奇尼格及其实验室历时4年对适用于酵母的蛋白—蛋白相互作用的类似技术进行了改进,从而开发出新的MaMTH技术。研究人员下一步将对其他人体疾病中的突变蛋白进行研究。来源:中国科技网-科技日报 2014年03月31日

  • 【转帖】“蛋白精”的骗局

    许多人喝牛奶是为了补钙,不过你如果留心一下国内鲜牛奶包装上的标注,一般没有列出钙的含量,标明的营养成分含量只有两种:脂肪和蛋白质。鲜牛奶有全脂、低脂、脱脂之分,其脂肪含量各不相同,而且在脂肪被视为健康杀手的今天,一般人不会在乎脂肪含量是否达标。蛋白质才是牛奶中的主要营养成分,鲜牛奶包装上都会注着蛋白质含量为100毫升≥2.9克,以表明符合鲜牛奶的国家标准(100毫升≥2.95克)。 生鲜牛奶的蛋白质含量一般在3%以上,所以一般都能达到国家标准,除非往原奶中兑水。要提防有人拿水卖出奶价钱,就有必要在收购生鲜牛奶时检测蛋白质的含量。根据蛋白质的化学性质,有几种检测方法,各有优缺点。食品工业上普遍采用的、被定为国家标准的是凯氏定氮法。这是19世纪后期丹麦人约翰凯达尔发明的方法,原理很简单:蛋白质含有氮元素,用强酸处理样品,让蛋白质中的氮元素释放出来,测定氮的含量,就可以算出蛋白质的含量。牛奶蛋白质的含氮率约16%,根据国家标准,把测出的氮含量乘以6.38,就是蛋白质含量。 所以凯氏定氮法实际上测的不是蛋白质含量,而是通过测氮含量来推算蛋白质含量,显然,如果样品中还有其他化合物含有氮,这个方法就不准确了。在通常情况下,这不是个问题,因为食物中的主要成分只有蛋白质含有氮,其他主要成分(碳水化合物、脂肪)都不含氮,因此凯氏定氮法是一种很准确的测定蛋白质含量的方法。但是如果有人往样品中偷加含氮的其他物质,就可以骗过凯氏定氮法获得虚假的蛋白质高含量,用兑水牛奶冒充原奶。 常用的一种冒充蛋白质的含氮物质是尿素。不过尿素的含氮量不是很高(46.6%),溶解在水中会发出刺鼻的氨味,容易被觉察,而且用一种简单的检测方法(格里斯试剂法)就可以查出牛奶中是否加了尿素。所以后来造假者就改用三聚氰胺了。三聚氰胺含氮量高达66.6%(含氮量越高意味着能冒充越多的蛋白质),白色无味,没有简单的检测方法(要采用“高效液相色谱”这种高科技去检测),是理想的蛋白质冒充物。三聚氰胺是一种重要的化工原料,广泛用于生产合成树脂、塑料、涂料等,目前的价格大约是1吨12000元。在生产三聚氰胺过程中,会出现废渣,废渣中还含有70%的三聚氰胺。造假者用来冒充蛋白质的就是三聚氰胺渣,国内有不少“生物技术公司”在网上推销“蛋白精”,其实就是三聚氰胺渣。在饲料、奶制品中添加“蛋白精”冒充蛋白质,已成了公开的秘密,它的流行让这种本来免费的化工废料的价格攀升到了1吨300~400元。 三聚氰胺是怎么加到牛奶中的呢?有两种可能途径。一种是奶站加到原奶中。这样做有一定的局限,因为三聚氰胺微溶于水,常温下溶解度为3.1克/升。也就是说,100毫升水可以溶解0.31克三聚氰胺,含氮0.2克,相当于1.27克蛋白质,由此可以算出,要达到100毫升≥2.95克蛋白质的要求,100毫升牛奶最多只能兑75毫升水(并加入0.54克三聚氰胺)。另一种途径是在奶粉制造过程中加入三聚氰胺,这就不受溶解度限制了,想加多少都可以。 三聚氰胺在国内之所以被当成了“蛋白精”来用,可能是因为觉得它毒性很低,吃不死人。大鼠口服三聚氰胺,半致死量(毒理学常用指标,指能导致一半的实验对象死亡)大约为每千克体重3克,和食盐相当。大剂量喂食大鼠、兔、狗也未观察到明显的中毒现象。三聚氰胺进入体内后似乎不能被代谢,而是从尿液中原样排出,但是,动物实验也表明,长期喂食三聚氰胺能出现以三聚氰胺为主要成分的肾结石、膀胱结石,并诱发膀胱癌。2007年,从中国出口到美国的宠物食品导致许多宠物肾衰竭死亡,调查表明可能是因为宠物食品中混入了三聚氰胺导致的。那么三聚氰胺是否也会对人有同样的毒性?我们无法拿人体做试验,而即使患肾结石的人曾经服用过偷加了三聚氰胺的食物,也很难确定三聚氰胺就是罪魁祸首,除非患者的食物来源很单一,例如只吃配方奶粉的婴儿——没想到还真有人敢拿婴儿来做试验证明了它能吃死人! 有人认为既然蛋白质检测法的缺陷导致了致命的造假,还不如干脆取消蛋白质检测,默许牛奶兑水得了。其实凯氏定氮法的缺陷并不难弥补,只要多一道步骤即可:先用三氯乙酸处理样品。三氯乙酸能让蛋白质形成沉淀,过滤后,分别测定沉淀和滤液中的氮含量,就可以知道蛋白质的真正含量和冒充蛋白质的氮含量。这是生物化学的常识,也早成为检测牛奶氮含量的国际标准(ISO 8968)。“蛋白精”骗局在国内出现已有一些年头,“三鹿奶粉”事件不过是把这一“行业秘密”摆在了公众面前。只有改进国家标准,堵住漏洞,才能挽回人们对国产乳业的信心。2008.9.14(《中国青年报》2008.9.17)转自方舟子博客

  • 蛋白等电聚焦凝胶电泳技术

    1.原理等电聚焦凝胶电泳是依据蛋白质分子的静电荷或等电点进行分离的技术,等电聚焦中,蛋白质分子在含有载体两性电解质形成的一个连续而稳定的线性pH梯度中电泳。载体两性电解质是脂肪族多氨基多羧酸,在电场中形成正极为酸性,负极为碱性的连续的pH梯度。蛋白质分子在偏离其等电点的pH条件下带有电荷,因此可以在电场中移动;当蛋白质迁移至其等电点位置时,其静电荷数为零,在电场中不再移动,据此将蛋白质分离。 等电聚焦中,只有在凝胶两端给以高电压时,才能获得较好的蛋白质条带分辨率,这就需要非常有效的凝胶冷却系统(否则会导致烧胶),即凝胶同期周围液体之间的热传递效率要高。由于平板胶热传递能力高,并可方便的同时比较多种蛋白质样品,所以平板胶用在等电聚焦上的居多。由于等电聚焦对蛋白质的电荷差异非常敏感,若要好的重复性,制备蛋白样品时一定要小心,要避免任何对蛋白质化学组成和结构的修饰。另外,蛋白质-脂类、蛋白质-蛋白质相互作用可引起电荷改变,进而导致等电点迁移或纹理现象。除非特殊需要研究蛋白质-蛋白质相互作用或者必须保持蛋白质的生物学功能,等电聚焦通常在含有尿素的变性凝胶系统中进行。使用非离子去垢剂也可以提高分辨率。 2.主要仪器、试剂仪器:微型电泳系统、电源、注射器、固定和染色用容器 试剂:丙稀酰胺、双-丙稀酰胺、载体两性电解质、尿素、过硫酸胺、TEMED、TritonX-100、2-巯基乙醇、溴酚蓝、磷酸、氢氧化钠、氯化钾、三氯乙酸、考马斯亮蓝、甲醇、乙酸。 储存液:1)30%(w/v)丙稀酰胺,1%(w/v)双-丙稀酰胺;2)20%Triton X100;3)10%三氯乙酸;4)1%三氯乙酸;5)1%溴酚蓝;6)考马斯亮蓝染色液;7)考马斯亮蓝脱色液;

  • 【转帖】“蛋白精”三聚氰胺工厂的秘密

    为何添加三聚氰胺  三聚氰胺分子式为C3N3(NH2)3,又名氰尿酰胺,俗称蜜胺,是一种有机化工中间体,日常主要用途是与醛缩合,生成三聚氰胺-甲醛树脂,用于涂料、层压板、模塑料、粘合剂、纺织和造纸等,此外还可用于皮革鞣制、阻燃化学品以及脱漆剂等。不法厂商在植物蛋白粉中添加三聚氰胺的前提之一是,三聚氰胺物理性状为“白色单斜晶体、无味”,这与蛋白粉相仿。前提之二,此物质易于购买,也易于生产,成本很低。符合这两个前提的化学物质较多,而三聚氰胺含氮量高才是最根本原因。据业内专业人员介绍,目前,国际上使用最多的饲料蛋白质含量检测办法为“凯氏定氮法”,即测定受检饲料中氮所占的比例,再乘以一定系数得到蛋白质含量。南京大学高分子化学教授谌东中解释说,蛋白质主要由氨基酸组成,其含氮量一般不超过30%,而三聚氰胺的分子式显示,其含氮量为66%左右。由于“凯氏定氮法”只能测出含氮量,并不能区别饲料中有无合规添加剂或违规化学物质,所以,加了三聚氰胺的饲料理论上可以测出较高的“蛋白质含量”。但是,三聚氢胺本身无法替代蛋白质,几乎没有任何营养价值。加了这种物质,造成的只是蛋白质含量提高的假象。三聚氰胺并非惟一的替代添加物,很多厂商用三聚氢胺拉高饲料蛋白质含量后,再加入低价的淀粉等,作低蛋白质含量。以上两种操作,从经济上讲都有较大套利空间。出于相同的原理,只要含氮量大于普通植物蛋白质的化学物质,且性状和价格具备条件,在理论上都存在被不法厂商利用的可能性。《精细有机化工原料及中间体手册》显示,三聚氰胺“本品低毒,无刺激性……高温下可能分解产生氰化物(有较大毒性),故应避免高温”。由国际化学品安全规划署和欧洲联盟委员会合编的《国际化学品安全手册》(第三卷),对三聚氰胺则有如下描述:“长期或反复接触作用:该物质可能对肾发生作用”。三聚氰胺分子式为C3N3(NH2)3,又名氰尿酰胺,俗称蜜胺,是一种有机化工中间体,日常主要用途是与醛缩合,生成三聚氰胺-甲醛树脂,用于涂料、层压板、模塑料、粘合剂、纺织和造纸等,此外还可用于皮革鞣制、阻燃化学品以及脱漆剂等。不法厂商在植物蛋白粉中添加三聚氰胺的前提之一是,三聚氰胺物理性状为“白色单斜晶体、无味”,这与蛋白粉相仿。前提之二,此物质易于购买,也易于生产,成本很低。符合这两个前提的化学物质较多,而三聚氰胺含氮量高才是最根本原因。据业内专业人员介绍,目前,国际上使用最多的饲料蛋白质含量检测办法为“凯氏定氮法”,即测定受检饲料中氮所占的比例,再乘以一定系数得到蛋白质含量。南京大学高分子化学教授谌东中解释说,蛋白质主要由氨基酸组成,其含氮量一般不超过30%,而三聚氰胺的分子式显示,其含氮量为66%左右。由于“凯氏定氮法”只能测出含氮量,并不能区别饲料中有无合规添加剂或违规化学物质,所以,加了三聚氰胺的饲料理论上可以测出较高的“蛋白质含量”。但是,三聚氢胺本身无法替代蛋白质,几乎没有任何营养价值。加了这种物质,造成的只是蛋白质含量提高的假象。三聚氰胺并非惟一的替代添加物,很多厂商用三聚氢胺拉高饲料蛋白质含量后,再加入低价的淀粉等,作低蛋白质含量。以上两种操作,从经济上讲都有较大套利空间。出于相同的原理,只要含氮量大于普通植物蛋白质的化学物质,且性状和价格具备条件,在理论上都存在被不法厂商利用的可能性。《精细有机化工原料及中间体手册》显示,三聚氰胺“本品低毒,无刺激性……高温下可能分解产生氰化物(有较大毒性),故应避免高温”。由国际化学品安全规划署和欧洲联盟委员会合编的《国际化学品安全手册》(第三卷),对三聚氰胺则有如下描述:“长期或反复接触作用:该物质可能对肾发生作用”。(来源:《财经》)以上文章来源联众论坛:http://bbs.ourgame.com/bbs_look.asp?Subject_ID=34&BBS_ID=20080912619011&bPage=1 相关联接: 蛋白精(粗蛋白200%)本产品是全国著名生物技术专家王厚德教授的发明专利产品。专利号:cn1119071a。可等蛋白替代鱼粉、豆粕等高蛋白原料,也可以单独添加,使每吨全价饲料降低成本15~80元,且安全无毒,经济效益显著。 沧州市厚德生物新技术研究所 王厚德:全国著名微生物学专家、中国农业大学客座教授、华中师范大学兼职教授、武警医学院高级顾问、天津医科大学教授、中国保健科技学会微生态学会理事长。近20年来在微生物发酵领域获得国家星火二等奖1项,省级科技进步奖8项,并获数枚国际国内金奖,主持过省和国家级科研计划项目26项,并通过了相关级别技术鉴定,拥有32项发明专利

  • 蛋白固体饮料

    最近公司送检了一款蛋白固体饮料,现在另一款新的产品是在原有的基础上多添加了一亿cfu乳酸菌,请问还要再次送检吗。还是说要自己厂里做活菌数检测呢?

  • 抗体与蛋白的区别?抗体蛋白结构解析

    [font=宋体]抗体,作为一类特殊的蛋白质,在免疫系统中发挥着至关重要的作用,它们能够特异性地识别并中和外来病原体,如细菌和病毒。而蛋白质,作为生命活动的基础分子,具有多种多样的功能,从酶催化到结构支撑,无所不包。抗体与蛋白的区别在于,抗体是一类具有特定功能的蛋白质,而蛋白质则是更广泛的一类生物分子。本文将深入探讨抗体与蛋白的具体区别,并详细解析抗体蛋白的结构与功能,为读者提供一个全面而深入的理解。[/font][font=宋体] [/font][b][font=宋体]抗体与蛋白的区别?[/font][/b][font=宋体] [/font][font=宋体]定义:[/font][font=宋体][font=宋体]抗体([/font][font=Calibri]antibody[/font][font=宋体])是指机体由于抗原的刺激而产生的具有保护作用的蛋白质。它(免疫球蛋白不仅仅只是抗体)是一种由浆细胞(效应[/font][font=Calibri]B[/font][font=宋体]细胞)分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等的大型[/font][font=Calibri]Y[/font][font=宋体]形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其[/font][font=Calibri]B[/font][font=宋体]细胞的细胞膜表面。抗体能识别特定外来物的一个独特特征,该外来目标被称为抗原。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]抗体是一类能与抗原特异性结合的免疫球蛋白。抗体按其反应形式分为凝集素、沉降素、抗毒素、溶解素、调理素、中和抗体、补体结合抗体等。按抗体产生的来源分为正常抗体(天然抗体),如血型[/font][font=Calibri]ABO[/font][font=宋体]型中的抗[/font][font=Calibri]A[/font][font=宋体]和抗[/font][font=Calibri]B[/font][font=宋体]的抗体,和免疫抗体如抗微生物的抗体。按反应抗原的来源分为异种抗体,异嗜性抗体,同种抗体和自身抗体。按抗原反应的凝集状态分为完全抗体[/font][font=Calibri]IgM[/font][font=宋体]和不完全抗体[/font][font=Calibri]IgG[/font][font=宋体]等。抗体在医疗实践中应用甚为广泛。如用于疾病的预防、诊断和治疗方面都有一定的作用。临床上用丙种球蛋白预防病毒性肝炎、麻疹、风疹等,国际上用抗[/font][font=Calibri]Rh[/font][font=宋体]免疫球蛋白预防因[/font][font=Calibri]Rh[/font][font=宋体]血型不合引起的溶血症。诊断上如类风湿因子用于类风湿性关节炎,抗核抗体([/font][font=Calibri]ANA[/font][font=宋体])、抗[/font][font=Calibri]DNA[/font][font=宋体]抗体用于系统性红斑狼疮,抗精子抗体用于原发性不孕症的诊断等;治疗上如毒素中毒用抗毒治疗以及免疫缺陷性疾病的治疗等。[url=https://cn.sinobiological.com/resource/antibody-technical][b]抗体相关资源[/b][/url][/font][/font][font=宋体] [/font][font=宋体]蛋白:[/font][font=宋体][font=宋体]蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的[/font][font=Calibri]16%~20%[/font][font=宋体],即一个[/font][font=Calibri]60kg[/font][font=宋体]重的成年人其体内约有蛋白质[/font][font=Calibri]9.6~12kg[/font][font=宋体]。人体内蛋白质的种类很多,性质、功能各异,但都是由[/font][font=Calibri]20[/font][font=宋体]多种氨基酸([/font][font=Calibri]Amino acid[/font][font=宋体])按不同比例组合而成的,并在体内不断进行代谢与更新。点击查看:[url=https://cn.sinobiological.com/resource/protein-review][b]蛋白相关资源[/b][/url][/font][/font][font=宋体] [/font][b][font=宋体]区别与联系:[/font][/b][font=宋体][font=宋体]蛋白质还是有一定的区别以及关联性的,虽然说抗体是蛋白质,但是蛋白质不一定是抗体。[/font] [font=宋体]主要是因为抗体是通过人体内的浆细胞所产生的,而且还可以喝相应的抗原特异性相互结合,这样在一定程度上就能发挥出蛋白质。[/font][/font][font=宋体] [/font][b][font=宋体]抗体[/font][font=宋体]蛋白[/font][font=宋体]结构[/font][font=宋体]解析[/font][font=宋体]:[/font][/b][font=宋体][font=宋体]抗体是一种免疫球蛋白,由[/font][font=Calibri]B[/font][font=宋体]淋巴细胞产生。抗体的单体是一个[/font][font=Calibri]Y[/font][font=宋体]形的分子,有[/font][font=Calibri]4[/font][font=宋体]条多肽链组成。其中包括两条相同的重链,以及两条相同的轻链,之间由双硫键连接在一起。每条重链[/font][font=Calibri]50kDa[/font][font=宋体],每条轻链[/font][font=Calibri]25kDa[/font][font=宋体],轻重链间存在二硫键链接。[/font][/font][font=宋体] [/font][font=宋体]轻链[/font][font=宋体][font=宋体]轻链包括可变区和恒定区,可变区约占轻链的[/font][font=Calibri]1/2[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]重链[/font][font=宋体][font=宋体]重链包括可变区和恒定区。根据重链的不同,可以将抗体分为不同的种类,例如哺乳动物[/font] [font=Calibri]Ig [/font][font=宋体]的重链有α、δ、ε、γ和 μ 五种[/font][font=Calibri],[/font][font=宋体]相对应可以将哺乳动物[/font][font=Calibri]Ig[/font][font=宋体]分为 [/font][font=Calibri]IgA[/font][font=宋体]、[/font][font=Calibri]IgD[/font][font=宋体]、[/font][font=Calibri]IgE[/font][font=宋体]、[/font][font=Calibri]IgG [/font][font=宋体]和 [/font][font=Calibri]IgM [/font][font=宋体]五类。[/font][/font][font=宋体] [/font][font=宋体]可变区[/font][font=宋体][font=宋体]抗体分子的[/font][font=Calibri]N[/font][font=宋体]端存在一段氨基酸序列变化较大的区域,该区域称为可变区。可变区中存在可以与抗原特结合的部位,即抗原结合位点。一个抗体有两个抗原结合位点,可以同时结合两个抗原分子。在可变区中有三个区域的序列高度变化,成为高变区([/font][font=Calibri]hypervariable region[/font][font=宋体],[/font][font=Calibri]HVR[/font][font=宋体])又称为抗原互补决定区([/font][font=Calibri]complementarity determining region[/font][font=宋体],[/font][font=Calibri]CDR[/font][font=宋体])。可变区主要通过其[/font][font=Calibri]3[/font][font=宋体]个[/font][font=Calibri]CHR[/font][font=宋体]区形成[/font][font=Calibri]3[/font][font=宋体]个环状结构与抗原特异性结合。可变区中非[/font][font=Calibri]CDR[/font][font=宋体]部分成为骨架区([/font][font=Calibri]framework region[/font][font=宋体],[/font][font=Calibri]FR[/font][font=宋体]),其氨基酸组成和排列变化相对[/font][font=Calibri]CDR[/font][font=宋体]较少。[/font][/font][font=宋体] [/font][font=宋体]恒定区[/font][font=宋体][font=宋体]抗体分子[/font][font=Calibri]C[/font][font=宋体]端氨基酸序列相对稳定,该区域称为恒定区。同一种抗体的恒定区是相同的。抗体轻链的恒定区由一个[/font][font=Calibri]Ig[/font][font=宋体]结构域构成;重链的恒定区由[/font][font=Calibri]3-4[/font][font=宋体]个串联的[/font][font=Calibri]Ig[/font][font=宋体]结构域及一个用于增加灵活性的铰链区构成。[/font][font=Calibri]IgA[/font][font=宋体]、[/font][font=Calibri]IgE[/font][font=宋体]、[/font][font=Calibri]IgG[/font][font=宋体]有三个结构域([/font][font=Calibri]CH1[/font][font=宋体]、[/font][font=Calibri]CH2[/font][font=宋体]、[/font][font=Calibri]CH3[/font][font=宋体]),[/font][font=Calibri]IgD[/font][font=宋体]、[/font][font=Calibri]IgM[/font][font=宋体]有四个结构域([/font][font=Calibri]CH1[/font][font=宋体]、[/font][font=Calibri]CH2[/font][font=宋体]、[/font][font=Calibri]CH3[/font][font=宋体]、[/font][font=Calibri]CH4[/font][font=宋体])。不同种类抗体的铰链区存在一定的差异,[/font][font=Calibri]IgA[/font][font=宋体]的铰链区较短,[/font][font=Calibri]IgD [/font][font=宋体]的铰链区较长,[/font][font=Calibri]IgM [/font][font=宋体]和[/font][font=Calibri]IgE [/font][font=宋体]无铰链区。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Fab[/font][font=宋体]片段[/font][/font][font=宋体][font=Calibri]IgG[/font][font=宋体]分子在木瓜蛋白酶的作用下可以被降解为两个[/font][font=Calibri]Fab[/font][font=宋体]段及一个[/font][font=Calibri]Fc[/font][font=宋体]段。[/font][font=Calibri]Fab[/font][font=宋体]段由抗体轻链的可变区、轻链的恒定区、重链的可变区及重链恒定区构成。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Fc[/font][font=宋体]段[/font][/font][font=宋体][font=Calibri]Fc[/font][font=宋体]段包含了所有抗体分子共有的蛋白质序列以及各个类别独有的决定簇。[/font][font=Calibri]Fc[/font][font=宋体]段有多种生物学活性,具有结合补体、结合[/font][font=Calibri]Fc[/font][font=宋体]受体、通过胎盘等作用。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/antibody-technical/antibody-structure-function][b]抗体的结构和功能[/b][/url]详情:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/antibody-structure-function[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【转帖】三聚氰胺蛋白精,中科院教授科研成果?

    【转帖】三聚氰胺蛋白精,中科院教授科研成果?

    [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811031423_116006_1628184_3.jpg[/img]三聚氰胺鸡蛋门再次引起了人们对三聚氰胺添加到饲料中问题的关注。近日,网上爆出“猛帖”———《三聚氰胺冒充蛋白质是中科院发明并推广的》、《添加三聚氰胺是中科院的科研成果?》,怀疑中科院研究生院一位教授研制的“DH蛋白精饲料添加剂”就是三聚氰胺。另一位知名的生物技术专家也因曾研制蛋白精而受到网友的质疑。网友人肉搜索蛋白精  据香港媒体报道,香港中文大学生化系副教授陈竟明说,鸡只不断进食含三聚氰胺的饲料,体内会有残留,甚至聚积在鸡蛋中,估计饲料中的三聚氰胺含量“绝不会低”。  饲料中的三聚氰胺是怎么来的?2007年,出口美国的宠物食品三个月内数十只宠物猫狗死亡。美国食品药品管理局(FDA)的调查已最终确证,位于沛县的江苏徐州安营生物技术开发公司出口到美国的小麦蛋白粉中所含的三聚氰胺是导致宠物死亡的罪魁祸首。  在此次三鹿奶粉事件中,蛋白精一再被认为是三聚氰胺的别名而广为人知。于是,网友们搜索重点便是“蛋白精”三字。他们惊奇地发现,中科院跟这个事儿扯上了关系。  1999年就研制蛋白精?  今年9月12日,网友“敖卖糕”即在“E舟宁波团购网”发了一个帖子:《这位可是三聚氰胺蛋白精的发明人?》。  最近这个帖子被改成了类似《三聚氰胺冒充蛋白质是中科院发明的?》这样的题目广为流传。  帖子只列出了一个名为“DH合成高蛋白饲料添加剂”的介绍。其中提到:“利用有机氮及催化剂合成的高蛋白精料,作为畜禽高蛋白饲料添加剂补充料,具有含氮量高(36%以上,非蛋白250%以上),成本低,来源广等优点。本技术项目的原料为有机化工原料及农用化肥原料;主要生产设备为开口式反应釜或大蒸锅、混合机、精料粉碎机、烘干机。”  “技术转让方”还详细地介绍了这个技术的成本。“厂房面积按日产1吨计算为80平方米;设备投资10万元,流动资金10万元。本项目具有投资小、见效快,土法也可上马(产品当地可销售),工艺简单等优点。技术合作转让费1万元,函授费5000元。负责培训1-2名技术人员,长期咨询服务。”  联系单位竟然是“中科院研究生院应用技术研究所”,而联系人叫高银相。发布时间为1999年7月30日。  此外,记者在网上查到,中国科学院老专家技术中心山西工作站于2007年10月发布的首批40项成果转化项目名单中,有一项名为、“DH蛋白精 ”饲料添加剂。简介称:“粗蛋白含量在160%-200%,开创解决了蛋白质资源紧缺的途径,显著降低了饲料厂的生产成本,是目前饲料行业粗蛋白质不足的良好补足剂。”■五问三聚氰胺饲料  问:三聚氰胺是谁发明的?  答:没人发明。三聚氰胺是一种三嗪类含氮杂环有机化合物,被用作化工原料,不存在被发明的问题,德国化学家李比希在1834年最早合成了三聚氰胺。  问:那谁“发明”把三聚氰胺添加到饲料里的?  答:还没有一个权威的说法,公开信息显示,三聚氰胺和饲料联系起来就是去年的美国猫狗死亡案,当时两家中国企业被起诉。其中,徐州安营生物技术开发有限公司2007年初就在网上公开求购“三聚氰胺下脚料”。在采购单说明中,该公司写道:“我们求三聚氰胺下脚料。徐州安营生物技术开发有限公司成立于一九九五年,地处江苏省徐州沛县,交通便利。公司技术实力雄厚,现经营生物饲料、畜禽添加剂、谷朊粉(小麦蛋白)、保鲜蔬菜等多项产品。”———当时没人知道为什么一家经营“生物饲料、畜禽添加剂”的企业会求购化工原料三聚氰胺。  问:我还听说饲料里加尿素,这也可以吗?  答:尿素含氮量为42%~46%,1kg尿素经转化后,可提供相当于约4.5kg豆饼的蛋白质。尿素由于成本低,效果好,当前,普遍采用尿素作为NPN添加在反刍动物饲料中。牛羊胃中微生物分泌的尿素酶活性很强,尿素进入瘤胃后很快会分解完,如不合理使用,可引起反刍畜尿素中毒。  问:如果饲料产品中含有三聚氰胺,其可能来源是什么?  答:存在三种可能性:  一是以“蛋白精”的形式直接在饲料产品中添加;  二是由蛋白原料中加入,即三聚氰胺加入蛋白原料如豆粕、棉粕、酵母或酵母饲料、玉米蛋白饲料和DDGS等,以提高这些蛋白原料的蛋白含量;  三是在饲料种植过程中可能的农药污染、加工环节中自然形成或意外污染。  问:其它国家对饲料中三聚氰胺残留有规定吗?  答:中国农业大学教授李胜利介绍,由于三聚氰胺不是饲料添加剂,不能在饲料中添加,所以目前世界上还没有国家对饲料中的三聚氰胺有残留的限量标准。

  • 整合蛋白和跨膜蛋白区别?跨膜蛋白制备详解

    [b][font=宋体]整合蛋白和跨膜蛋白定义:[/font][/b][font=宋体] [/font][font=宋体]整合蛋白和跨膜蛋白是两类重要的蛋白质,它们在细胞分子水平上起着重要的作用。[/font][font=宋体] [/font][font=宋体]整合蛋白,也称为内在蛋白或跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。它们是生物膜的基本结构成分,许多具重要生理功能的膜蛋白均属整合蛋白,如膜结合的酶类、载体蛋白、通道蛋白、膜受体等。[/font][font=宋体] [/font][font=宋体]跨膜蛋白,是可以跨越细胞膜的蛋白,它在细胞的信号传递系统中担当着重要的角色。跨膜蛋白在结构上可以分为单次跨膜、多次跨膜、多亚基跨膜等,它们具有能够跨越细胞膜的能力。[/font][font=宋体] [/font][b][font=宋体]整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异[/font][/b][font=宋体] [/font][font=宋体]①位置:整合蛋白主要存在于细胞质内,细胞核或其他非细胞膜结构中,它们容易在细胞中自由移动。而跨膜蛋白则嵌入细胞膜中,一部分位于细胞膜的胞外侧,另一部分位于细胞膜的胞内侧,形成了一个穿过细胞膜的通道。[/font][font=宋体][font=宋体]②结构:整合蛋白的结构通常由两个独立的部分组成,一个是靠近细胞膜的膜结合区域([/font][font=Calibri]TM[/font][font=宋体]),另一个是靠近细胞骨架的非膜结合区域([/font][font=Calibri]N-TM[/font][font=宋体])。当接受到外界的信号时,整合蛋白的[/font][font=Calibri]TM[/font][font=宋体]区域会被激活,把来自外界的信号转化为细胞内可以识别的信号,直接参与细胞信号传导系统中。[/font][/font][font=宋体]③功能:整合蛋白主要是用来从外界传达信号到细胞内,充当细胞与外界信号的桥梁。而跨膜蛋白则在细胞的信号传递系统中担当着重要的角色。[/font][font=宋体]总的来说,整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异,这些差异使得它们在生物体中扮演着不同的角色。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达与制备服务[/b][/url],制备流程图:基因合成[/font][font=宋体]→载体构建→细胞转化[/font][font=Calibri]/[/font][font=宋体]转染→蛋白表达→细胞收集→细胞破碎→膜脂提取→膜脂增溶→蛋白纯化→质量检测,同时义翘拥有[/font][/font][b][font=宋体]三大跨膜蛋白制备平台[/font][/b][font=宋体],可以为客户提供全面的多次跨膜蛋白产品和服务。同时,为基础研究和药物研发提供更加优质的原材料。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 大豆蛋白纤维和牛奶蛋白聚乙烯醇纤维怎么定性定量?

    大豆蛋白纤维也是一种复合纤维,是大豆蛋白和聚乙烯醇复合纤维,牛奶蛋白也有一种牛奶蛋白和聚乙烯醇复合的纤维,其中大豆蛋白纤维在市场上比较普遍,但最近两年牛奶蛋白聚乙烯醇纤维在市场上也比较多见,其中显微镜和燃烧法,大豆蛋白纤维和牛奶蛋白聚乙烯醇纤维都比较相似,化学性质也相似,不知大家有没有遇到这两种纤维,怎么来定性,定量?

  • 包涵体蛋白复体常见十大问题解析

    [font=宋体]在生命科学领域中,包涵体复体的研究占据了重要的地位。但随着研究的深入,一些问题逐渐浮现。本文将对包涵体复体研究中常见的挑战进行解析,以及为研究者提供一些解决思路。[/font][font=宋体] [/font][font=宋体][b]①包涵体复性原则[/b]:[/font][font=宋体]低浓度,平缓梯度,低温。[/font][font=宋体] [/font][font=宋体][b]②怎样洗涤包涵体?[/b][/font][font=宋体][font=宋体]通常的洗涤方法一般是洗不干净的,可以先把包涵体用[/font][font=Calibri]6M[/font][font=宋体]盐酸胍溶解充分,过滤除去未溶解的物质,注意留样跑电泳,然后用水稀释到[/font][font=Calibri]4M,[/font][font=宋体]离心把沉淀和上清分别跑电泳,如此类推可以一直稀释到合适的浓度,可以找到一个合适去除杂质的办法,其实这就是梯度沉淀的方法,比通常的直接洗脱效果好。[/font][/font][font=宋体] [/font][font=宋体][b]③对于尿素和盐酸胍该怎么选择[/b][/font][font=宋体][font=宋体]尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素[/font][font=Calibri]8-10M[/font][font=宋体],盐酸胍[/font][font=Calibri]6-8M[/font][font=宋体]。尿素溶解包涵体较盐酸胍慢而弱,溶解度为[/font][font=Calibri]70-90%[/font][font=宋体],尿素在作用时间较长或温度较高时会裂解形成氰酸盐,对重组蛋白质的氨基进行共价修饰,但用尿素溶解具有不电离,呈中性,成本低,蛋白质复性后除去不会造成大量蛋白质沉淀以及溶解的包涵体可选用多种色谱法纯化等优点,故目前已被广泛采用。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]盐酸胍溶解能力达[/font][font=Calibri]95%[/font][font=宋体]以上,且溶解作用快而不造成重组蛋白质的共价修饰。但它也有成本高、在酸性条件下易产生沉淀、复性后除去可能造成大量蛋白质沉淀和对蛋白质离子交换色谱有干扰等缺点。[/font][/font][font=宋体] [/font][font=宋体][b][font=宋体]④[/font][font=Calibri]8M[/font][font=宋体]尿素溶解的包涵体溶液应如何保存[/font][font=Calibri]?[/font][/b][/font][font=宋体][font=宋体]在[/font][font=Calibri]4[/font][font=宋体]度放置半个月,都没什么问题 。在室温放置超过[/font][font=Calibri]48[/font][font=宋体]小时,可能会对目的蛋白有影响,因为尿素在碱性条件下可使一些氨基酸酰基化,所以早些处理[/font][font=Calibri]BI[/font][font=宋体]溶液比较好。[/font][/font][font=宋体] [/font][font=宋体][b]⑤复性时的蛋白浓度[/b][/font][font=宋体][font=宋体]一般使用浓度为[/font][font=Calibri]0.1-1.0mg/ml[/font][font=宋体],太高的浓度容易形成聚体沉淀,太低的浓度不经济,而且很多蛋白在低浓度时不稳定,很容易变性。[/font][/font][font=宋体] [/font][font=宋体][b]⑥蛋白复性后浓度低[/b][/font][font=宋体]蛋白可能是在复性的过程中发生降解了。[/font][font=宋体] [/font][font=宋体]可以将复性好的蛋白浓缩一下跑胶看看。复性过程一般都是低浓度蛋白,需要保证分子间有足够的折叠空间。一些未正确折叠的蛋白就存在于沉淀中,可能沉淀看不出来,复性后的蛋白高速离心看看。[/font][font=宋体] [/font][font=宋体][b]⑦复性中蛋白析出是怎么回事?该怎么处理?[/b][/font][font=宋体]出现蛋白析出,肯定是条件变化太剧烈了。[/font][font=宋体] [/font][font=宋体][font=宋体]复性应该采取复性液浓度和[/font][font=Calibri]PH[/font][font=宋体]值逐渐变化的方法,例如根据包涵体的溶液成分,每隔[/font][font=Calibri]1[/font][font=宋体]个[/font][font=Calibri]PH[/font][font=宋体]或浓度值配置一种溶液,逐步透析到正常。此外透析时必须浓度极低,条件温和,使蛋白质能够正确折叠。但是复性的比率应该很低。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]若加变性剂尿素可加到[/font][font=Calibri]2M[/font][font=宋体],盐酸胍可加到[/font][font=Calibri]1-1.5M[/font][font=宋体];[/font][/font][font=宋体] [/font][font=宋体][font=宋体]另外可将甘油浓度增加,范围可在[/font][font=宋体]≤[/font][font=Calibri]30%[/font][font=宋体],且在复性样品中也可加适量甘油。[/font][/font][font=宋体] [/font][font=宋体][b]⑧复性效果的检测[/b][/font][font=宋体]根据具体的蛋白性质和需要,可以从生化、免疫、物理性质等方面对蛋白质的复性效率进行检测。[/font][font=宋体] [/font][font=宋体]凝胶电泳:一般可以用非变性的聚丙烯酰胺凝胶电泳可以检测变性和天然状态的蛋白质,或用非还原的聚丙烯酰胺电泳检测有二硫键的蛋白复性后二硫键的配对情况。[/font][font=宋体][font=宋体]光谱学方法:可以用紫外差光谱、荧光光谱、圆二色性光谱([/font][font=Calibri]CD[/font][font=宋体])等,利用两种状态下的光谱学特征进行复性情况的检测,但一般只用于复性研究中的过程检测。[/font][/font][font=宋体][font=宋体]色谱方法:如[/font][font=Calibri]IEX[/font][font=宋体]、[/font][font=Calibri]RP-HPLC[/font][font=宋体]、[/font][font=Calibri]CE[/font][font=宋体]等,由于两种状态的蛋白色谱行为不同。[/font][/font][font=宋体]生物学活性及比活测定:一般用细胞方法或生化方法进行测定,较好的反映了复性蛋白的活性,值得注意的是,不同的测活方法测得的结果不同,而且常常不能完全反映体内活性。[/font][font=宋体]黏度和浊度测定:复性后的蛋白溶解度增加,变性状态时由于疏水残基暴露,一般水溶性很差,大多形成可见的沉淀析出。[/font][font=宋体][font=宋体]免疫学方法:如[/font][font=Calibri]ELISA[/font][font=宋体]、[/font][font=Calibri]WESTERN[/font][font=宋体]等,特别是对结构决定簇的抗体检验,比较真实的反映了蛋白质的折叠状态。[/font][/font][font=宋体] [/font][font=宋体][b]⑨变性的[url=https://cn.sinobiological.com/resource/protein-review/fusion-protein]融合蛋白[/url]可以制备多抗或者单抗吗?[/b][/font][font=宋体]变性蛋白只是天然蛋白伸直的了产物,用来免疫动物具有更强的抗原性。只是天然蛋白中被包在内部的抗原决定簇也会暴露出来,如果用该变性抗原制备的抗体来检测变性抗原是可以的,如果用来检测天然蛋白,可能会有假阳性。做单抗也可以,同样道理,筛选出的单抗可能对抗的抗原决定簇处于天然抗原的内部,是否能用还要看将来该单抗用来干什么。[/font][font=宋体] [/font][font=宋体][b]⑩纯化后的可溶性融合蛋白可以直接用于制备多抗吗?[/b][/font][font=宋体]免疫动物要求抗原体种尽量小。在这种小体积的情况下,缓冲液里的小分子成分只要没毒影响就不大,可以不用考虑。[/font][font=宋体] [/font][font=宋体]更多蛋白复体详情可以关注义翘神州网![/font]

  • 抗体融合蛋白:双特异性抗体与蛋白融合的原理与应用

    [font=宋体][font=宋体]抗体融合蛋白是一种将抗体片段与功能蛋白融合表达的重组蛋白,具有抗体的特性和功能蛋白的活性。它可广泛应用于免疫诊断、免疫治疗、抗体纯化、抗体和抗原的定量分析以及免疫导向药物的制备等领域。根据结合的[/font][font=Calibri]Ig[/font][font=宋体]片段的不同,可以将抗体融合蛋白分为[/font][font=Calibri]Fab[/font][font=宋体]融合蛋白、[/font][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/fc-fusion-proteins][b]Fc[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/fc-fusion-proteins][b]融合蛋白[/b][/url]与[url=https://cn.sinobiological.com/resource/antibody-technical/scfv-antibody-production][b]单链抗体([/b][/url][/font][font=Calibri][url=https://cn.sinobiological.com/resource/antibody-technical/scfv-antibody-production][b]scFv[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/scfv-antibody-production][b])[/b][/url]融合蛋白。制备抗体融合蛋白的方法主要有化学交联法和基因工程技术,其中基因工程技术是目前主要的方法。在制备过程中,需要注意两蛋白间的接头序列的长度,以确保蛋白质的折叠和稳定性。抗体融合蛋白在免疫学、生物制药和医学等领域具有广泛的应用前景,为疾病的诊断、治疗和药物研发提供了新的工具和方法。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]双特异性抗体如何与蛋白融合[/font][font=Calibri]?[/font][/font][/b][font=宋体] [/font][font=宋体]双特异性抗体是一种特殊的抗体,具有两个不同的抗原结合位点。通过技术手段,可以将双特异性抗体与另一种蛋白质融合。[/font][font=宋体] [/font][font=宋体]①使用基因工程技术,将双特异性抗体的基因与目标蛋白质的基因进行融合,然后通过表达载体在细胞内表达融合蛋白质。[/font][font=宋体] [/font][font=宋体]②使用化学手段,将双特异性抗体与目标蛋白质进行化学偶联。这需要使用特定的化学偶联剂,将双特异性抗体的特定基团与目标蛋白质的特定基团连接起来。[/font][font=宋体] [/font][font=宋体]需要注意的是,融合蛋白质的功能和性质取决于其组成成分的特性和比例,因此在融合过程中需要谨慎选择和设计组成成分,以确保融合蛋白质具有所需的功能和性质。[/font][font=宋体] [/font][b][font=宋体]抗体融合蛋白具有广泛的应用,包括但不限于以下方面:[/font][/b][font=宋体] [/font][font=宋体]①免疫诊断:抗体融合蛋白可以用于检测抗原,如病毒、细菌、肿瘤标志物等。通过将抗体片段与荧光蛋白、酶等标记物结合,可以实现对抗原的高灵敏度检测。[/font][font=宋体]②免疫治疗:抗体融合蛋白可以用于治疗肿瘤、感染性疾病等。通过将抗体片段与细胞毒素、免疫调节因子等效应分子结合,可以实现对肿瘤细胞的靶向杀伤或调节免疫反应。[/font][font=宋体]③抗体纯化:抗体融合蛋白可以用于分离和纯化抗体。通过将抗体片段与亲和标签结合,可以利用亲和层析等技术实现对抗体的纯化和富集。[/font][font=宋体]抗体和抗原的定量分析:抗体融合蛋白可以用于定量分析抗体和抗原的浓度。通过将抗体片段与荧光染料等标记物结合,可以利用流式细胞术等技术实现对抗体和抗原的定量分析。[/font][font=宋体]④免疫导向药物的制备:抗体融合蛋白可以用于制备免疫导向药物,即将药物与抗体片段结合,利用抗体的特异性结合能力,将药物定向引导至病变部位,提高药物的疗效并降低副作用。[/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][b]双特异性抗体[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【讨论】该到停止测定三聚氰胺而改做非蛋白氮的时候了

    最近一直在考虑这个问题:该到停止测定三聚氰胺而改做非蛋白氮的时候了原因有以下几点:1 掺假的不法分子已经在三聚氰胺出事以后停止掺假了,当然也有很少的一部分在顶风作案2 不掺入三聚氰胺,并不代表不掺假了,可以掺入别的非蛋白氮,一样很难检测出来3 大规模的检测浪费国家资源,浪费大量人力物力财力,还造成环境等的污染、4 这部分检测成本最终转嫁到消费者身上还有别的不检测的原因,希望大家讨论下,当然也有支持检测的,一起来哦

  • 方便面里应该含多少蛋白

    主管部门说:我们要保证食品的营养,所以要规定方便面里的蛋白质含量;生产厂家说:我们的“高端”方便面用的是低蛋白的面粉,蛋白含量的规定阻碍了“高端”产品的发展;消费者说:方便面里的蛋白含量比牛奶还高?黑心厂家会不会往里加三聚氰胺?那么,方便面里到底应该含有多少蛋白质呢?一、面粉中的蛋白质营养价值很低不管是牛肉面、鲜虾面还是排骨面、鸡汤面,方便面里蛋白质主要还是来源于面粉。虽然面粉都来自于小麦,但是不同的加工工艺获得的面粉其蛋白质含量略有差异。全粉(或叫“头粉”)是所有能够从小麦中取出的面粉,蛋白含量在13~15%左右。从其中分离出来的高档面粉“粉心粉”,蛋白含量大概11~13%,而剩下的“清粉”则可能高到17%。根据蛋白含量的不同,面粉通常被分为“高筋”“中筋”和“低筋”,其中高筋面粉的蛋白含量可达14%,而用来烤蛋糕的低筋面粉可能只有8%。面粉中的蛋白主要是通常说的“面筋蛋白”。它的氨基酸组成跟人体需求相差很大。比如说,人体需要的赖氨酸,它含得很少;而它富含的那些,人体却又要不了那么多。在食品科学上,人们用一个“蛋白质消化校正计分”来表示一种蛋白质满足人体需求的效率。鸡蛋蛋白、牛奶蛋白、纯化的大豆蛋白最好,得分为1,而面筋蛋白只有0.25。也就是说,如果只吃一种蛋白质的话,为了满足人体的氨基酸需求而吃的的面筋蛋白将会是上诉几种“优质蛋白”的4倍。另一方面,面筋蛋白是一种过敏源,大约有1%的人对它过敏,所以有一些食品甚至以“不含面筋蛋白”为卖点。面筋蛋白因此被当作“劣质蛋白”,在配方食品中几乎不被当作蛋白质的来源。面筋蛋白在食品中的作用只要是功能性的而不是营养性的。不含面筋蛋白的面粉主要就是淀粉,无法产生“韧性”——也就是我们通常所说的“筋道”。蛋糕远不如面包“筋道”,就是因为蛋糕粉中的面筋蛋白远远低于面包粉。二、方便面的成本与蛋白含量与没有必然联系方便面除了油炸干燥的那种类型含有很多油之外,其营养成分与传统的面条并没有本质差异。传统面条可以用各种面粉来作,方便面也可以。一方面,这些不同的面粉中的蛋白含量可能不同;另一方面,面粉之外的成分(主要是油)含量也不同,这样成品方便面的蛋白含量就有了比较大的差异。既然面粉的蛋白含量并不是衡量面粉品质的标准(“粉心粉”是最好最贵的面粉,其蛋白含量甚至要低一些),方便面的成本也就跟蛋白含量基本上没有什么关系。对于厂家所宣称的“高端”方便面,如果为了加工性能或者口感色泽的考虑加入淀粉的话,蛋白含量下降了,成本却要增加。三、方便面中应该含有多少蛋白无论是方便面、馒头、面包,还是传统的面条、烧饼,其中的蛋白都不是人体蛋白质的主要来源。它们主要都只是提供碳水化合物。无论规定其中的蛋白含量是多少都没有太大的意义——如果长期单一地依靠这些食物,即使是高筋面粉,也同样造成蛋白不足的“营养不良”;如果考虑食谱的全面均衡,不含蛋白的淀粉同样作出足够的贡献。四、国家标准与三聚氰胺疑虑热议中的方便面国家标准中要求蛋白含量不低于8%。应该说这个含量并不难实现。有的消费者担心这个含量差不多是牛奶中蛋白含量的三倍,会不会导致黑心厂家加入三聚氰胺之类的东西来牟利。这个疑虑基本上没有必要。牛奶中的固体含量只有百分之十几,其它的都是水。三聚氰胺加到牛奶里,可以把不要钱的水变成牛奶的价格。而方便面中,面粉是最便宜的原料,甚至价格便宜的面粉中蛋白含量还要高一些。所以,一般的方便面中加入三聚氰胺无助于厂家“牟利”。如果那些所谓的“高端”方便面加入了淀粉而导致蛋白含量下降,又非要显示“高”蛋白含量的话,倒是有理论上的可能。不过,既然是“高端”产品,自然也就是高价。通过合理配方,比如加入外来蛋白;或者改进工艺,比如减少油的吸收吸附,也并不难满足“国家标准”的要求。基于面食中蛋白的营养价值和含量,强制性的规定蛋白含量并没有太大的必要,反倒容易误导消费者以为方便面“富含”蛋白质,不如强制性要求标明蛋白质、油、碳水化合物以及盐等主要添加剂的含量,而不是简单地给一个“合格”还是“不合格”的标签。就促进行业健康发展而言,保证产品的内容与厂家的宣称相一致,是更难但是更有意义的事情。

  • 牛奶蛋白和其他纤维聚合怎么确定成分 ?

    大家好,不知道大家做牛奶蛋白纤维聚合物的多不多,行业标准制订了牛奶蛋白改性聚丙烯晴聚合物的检测方法,可是最近牛奶蛋白聚乙烯醇聚合物在市场上出现较多,大家对这样的产品有没有好的定性定量方法?

  • 硫磺素T测淀粉样蛋白聚集的问题

    [font=Tahoma, Helvetica, SimSun, sans-serif, Hei]请问大家一个关于硫磺素T测淀粉样蛋白聚集的问题。是这样的,自由的硫磺素T的激发波长及发射波长分别为350及440;当其与淀粉样纤维结合时,其激发波长以及发射波长一定会红移至440(ex)以及482(em)吗?[/font]

  • 抗体融合蛋白结构:融合蛋白与单抗区别有哪些?

    [font=宋体][font=宋体]抗体融合蛋白([/font][font=Calibri]Ig[/font][font=宋体]融合蛋白)是指在基因水平上将目的基因同免疫球蛋白部分片段基因相连,并在真核或原核表达系统中表达的重组蛋白。抗体融合蛋白具有抗体的特性及融合功能蛋白的活性,可广泛应用于免疫诊断、免疫治疗、抗体纯化及抗体和抗原的定量分析等,特别可用于免疫导向药物的制备。根据结合的[/font][font=Calibri]Ig[/font][font=宋体]片段的不同,可以将抗体融合蛋白分为[/font][font=Calibri]Fab[/font][font=宋体]融合蛋白、[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白与单链抗体([/font][font=Calibri]scFv[/font][font=宋体])融合蛋白。[/font][/font][font=宋体] [/font][font=宋体][b]抗体融合蛋白结构:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]Fab[/font][font=宋体]融合蛋白、单链抗体融合蛋白研究表明,抗体可变区的[/font][font=Calibri]N[/font][font=宋体]端空间结构上与互补决定区([/font][font=Calibri]CDR[/font][font=宋体])形成的抗原结合部位十分接近,有的抗体可变区[/font][font=Calibri]N[/font][font=宋体]端残基甚至直接参与抗原结合部位的形成,如果将效应蛋白与抗体片段的[/font][font=Calibri]N[/font][font=宋体]端结合,可能对抗体可变区的空间构型造成较大影响,从而降低抗体与抗原的结合能力。因此,通常将蛋白与抗体片段的[/font][font=Calibri]C[/font][font=宋体]端进行结合,形成抗体融合蛋白。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]Fc[/font][font=宋体]融合蛋白[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]Fc[/font][font=宋体]融合蛋白在结构上是将抗体的[/font][font=Calibri]Fc[/font][font=宋体]区与功能蛋白进行融合,可将[/font][font=Calibri]Fc[/font][font=宋体]的[/font][font=Calibri]N[/font][font=宋体]端或[/font][font=Calibri]C[/font][font=宋体]端与目的基因进行融合。根据结合蛋白的不同,可以有多种构型。[/font][/font][font=宋体] [/font][font=宋体][b]抗体融合蛋白作用原理:[/b][/font][font=宋体] [/font][font=宋体]含有抗体可变区的抗体融合蛋白[/font][font=宋体] [/font][font=宋体][font=Calibri]Fab[/font][font=宋体]融合蛋白与[/font][font=Calibri]scFv[/font][font=宋体]融合蛋白含有抗体的可变区,可以进行抗原[/font][font=Calibri]-[/font][font=宋体]抗体反应,其作用原理为利用抗体[/font][font=Calibri]-[/font][font=宋体]抗原特异性结合的特性,通过这种特性的引导,将具有生物活性的蛋白靶向引导至细胞的特定部位,进而发挥一定的生物效应。[/font][/font][font=宋体] [/font][font=宋体]不含抗体可变区的抗体融合蛋白[/font][font=宋体] [/font][font=宋体][font=宋体]该类融合蛋白含有的抗体功能区为[/font][font=Calibri]Fc[/font][font=宋体]区,不能进行抗原[/font][font=Calibri]-[/font][font=宋体]抗体反应,[/font][font=Calibri]Fc[/font][font=宋体]段的作用为延长药物在血浆内的半衰期、增加融合蛋白的稳定性等。[/font][font=Calibri]Fc[/font][font=宋体]融合蛋白药理作用的发挥依赖于功能蛋白部分,利用受体[/font][font=Calibri]-[/font][font=宋体]配体之间的相互作用产生一系列的生物学效应。[/font][/font][font=宋体] [/font][font=宋体][b]抗体融合蛋白制备:[/b][/font][font=宋体] [/font][font=宋体]最初抗体融合蛋白制备的方法为化学交联法,但这种方法制备的抗体融合蛋白组成不均一、性能不稳定、免疫源性大,随着基因工程技术的发展,该技术已被淘汰。目前主要利用基因工程技术来进行抗体融合蛋白的制备。[/font][font=宋体] [/font][font=宋体][font=宋体]其制备原理为:将抗体基因与目的蛋白基因通过一段接头序列([/font][font=Calibri]linker[/font][font=宋体])进行链接,然后将链接产物亚克隆至载体中,并用原核或者真核表达系统进行表达。制备抗体融合蛋白过程中,一个关键的问题是两蛋白间的接头序列[/font][font=Calibri](Linker)[/font][font=宋体]的长度,[/font][font=Calibri]linker[/font][font=宋体]的长短对蛋白质的折叠和稳定性非常重要。如果接头序列太短,可能影响两蛋白高级[/font][font=Calibri]-[/font][font=宋体]结构的折叠,从而相互干扰;如果接头序列太长,又涉及免疫原性的问题。抗体融合蛋白与双特异性抗体抗体融合蛋白是将抗体的部分片段与目的蛋白进行融合表达得到的重组蛋白,若将两个具有不同抗原特异性的抗体片段连接至同一蛋白,即可得到双特异性抗体。[/font][/font][font=宋体] [/font][font=宋体][b]单克隆抗体与抗体融合蛋白区别:[/b][/font][font=宋体] [/font][font=宋体]单克隆抗体抗体[/font][font=宋体] [/font][font=宋体][font=宋体]结构:[/font][font=Calibri]Y[/font][font=宋体]型[/font][/font][font=宋体][font=宋体]制备方法:杂交瘤技术[/font][font=Calibri]/[/font][font=宋体]基因重组[/font][/font][font=宋体][font=宋体]表达系统:真核系统[/font][font=Calibri]/[/font][font=宋体]原核系统[/font][/font][font=宋体][font=宋体]真核系统[/font][font=Calibri]/[/font][font=宋体]原核系统[/font][/font][font=宋体][font=宋体]作用原理:特异性识别抗原,[/font][font=Calibri]Fc[/font][font=宋体]段引起[/font][font=Calibri]ADCC[/font][font=宋体]、[/font][font=Calibri]ADCP[/font][font=宋体]、[/font][font=Calibri]CDC[/font][font=宋体]等作用。[/font][/font][font=宋体] [/font][font=宋体]抗体融合蛋白[/font][font=宋体] [/font][font=宋体]结构:具有多种结构[/font][font=宋体]制备方法:基因重组[/font][font=宋体][font=宋体]表达系统:真核系统[/font][font=Calibri]/[/font][font=宋体]原核系统[/font][/font][font=宋体][font=宋体]作用原理:功能蛋白与靶分子间的受体[/font][font=Calibri]-[/font][font=宋体]配体的相互作用[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以参考:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/fusion-protein[/font][/font][font=Calibri] [/font]

  • 【“仪”起享奥运】来源不同的蛋白质---植物蛋白,动物蛋白

    [font=宋体, SimSun][size=15px]蛋白质按来源可以分为动物蛋白和植物蛋白,两者所含的氨基酸是不同的。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]一般说,植物蛋白和动物蛋白从本质上没有太大的区别,但是在氨基酸组成和数量上有一定的不同。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]尽管植物蛋白取材来源广泛,但其蛋白的种类和相对数量与人体的要求有一定差距。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]例如,植物蛋白中缺乏免疫球蛋白[i][/i],谷类中则相对缺乏赖氨酸等。植物蛋白的消化、吸收要比动物蛋白差,但是植物蛋白的优势是不含有胆固醇。动物蛋白相对与人类的营养结构比较吻合,其蛋白质的种类和结构更加接近人体的蛋白结构和数量,而且一般都含有人体必需的8种氨基酸(特别是蛋制品和奶制品),所以动物蛋白质比植物蛋白质营养价值高。[/size][/font]

  • 如何明辨重组蛋白、融合蛋白与天然蛋白:重组蛋白常见问题详解

    [font=宋体][b]重组蛋白、融合蛋白与天然蛋白的区别:[/b][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白是利用基因工程技术产生的,通常是由转基因动物的乳腺产生,其作为生物制药在医学领域中作用显著。利用基因工程技术,可以使哺乳动物本身变成[/font][font=宋体]“批量生产药物的工厂”。方法:是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]融合蛋白又称为[/font][font=宋体]“标签蛋白”,常用的标签有[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]、[/font][font=Calibri]Strep[/font][font=宋体]标签。融合蛋白是通过[/font][font=Calibri]DNA[/font][font=宋体]重组技术将要表达的目的蛋白基因和表达载体上融合蛋白基因相连,通过这种方式表达出来的蛋白质,就是既含有目的基因蛋白又含有融合基因蛋白的重组蛋白。融合蛋白表达是重组蛋白表达的一种策略,融合表达是一种方法。[/font][/font][font=宋体] [/font][font=宋体]天然蛋白质是在自然界中存在的,不经过人工的任何修饰或加工,比如大豆中的蛋白质和病毒表面的蛋白质。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]重组蛋白常见问题解析:[/b][/font][font=宋体][font=Calibri]1.[/font][font=宋体]蛋白为什么要冻干?冻干对蛋白的影响有哪些?[/font][/font][font=宋体] [/font][font=宋体]蛋白质对热敏感,冻干能使绝大部分蛋白质的活性保留下来,提高蛋白的稳定性并延长保存时间,同时降低运费。[/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]冻干前为什么向蛋白溶液中加保护剂?一般冻干保护剂有哪几种?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]保护剂是用来在冻干和储存过程中保护蛋白的。常用的保护剂或稳定剂有糖类,多元醇,聚合物,表面活性剂,某些蛋白和氨基酸等。我们通常加[/font][font=Calibri]8%[/font][font=宋体](质量比体积)的海藻糖和甘露醇作为冻干保护剂。海藻糖可明显阻止蛋白质二级结构改变以及冻干过程中蛋白质的伸展和聚集;甘露醇也是一种普遍应用的冻干保护剂和填充剂,可以降低某些蛋白的冻干后聚集情况。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]温馨提示:对于大多数蛋白,重悬后在[/font][font=Calibri]4[/font][font=宋体]℃仅能短期保存[/font][font=Calibri]([/font][font=宋体]约[/font][font=Calibri]1[/font][font=宋体]周[/font][font=Calibri])[/font][font=宋体]。如想长期保存,请先配制成稀释液[/font][font=Calibri]([/font][font=宋体]其中必须含有载体蛋白,如[/font][font=Calibri]0.1% BSA[/font][font=宋体],[/font][font=Calibri]5%HSA[/font][font=宋体],或[/font][font=Calibri]10% FBS)[/font][font=宋体],然后分装冻存于[/font][font=Calibri]-20[/font][font=宋体]℃或[/font][font=Calibri]-80[/font][font=宋体]℃。一定要避免反复冻融,因每次冻融均会引起蛋白的部分失活。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]如何重构冻干粉?[/font][/font][font=宋体] [/font][font=宋体]请查看您的货物随附的分析证书以获取有关重构的确切说明,因为并非所有产品都在相同条件下重构。一般来说,我们建议使用无菌水进行复溶。将推荐体积的无菌水加入小瓶中,轻轻摇晃以完全溶解蛋白质。不要涡旋。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]为什么我的管内几乎看不见蛋白产品?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白产品中不含载体蛋白或其它添加物[/font][font=Calibri]([/font][font=宋体]如牛血清白蛋白[/font][font=Calibri](BSA)[/font][font=宋体],人血清白蛋白[/font][font=Calibri](HSA)[/font][font=宋体]和蔗糖等,并以最低含盐量的溶液进行冻干时,常常不能形成白色网架结构,而是微量的蛋白在冻干过程中沉积在管内,形成很薄或肉眼不可见的透明蛋白层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5.[/font][font=宋体]应如何确定细胞因子的种属交叉活性?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1) [/font][font=宋体]除少数例外,大多数人类细胞因子对小鼠细胞均有活性。[/font][font=Calibri]2) [/font][font=宋体]许多小鼠细胞因子也可作用于人类细胞,但比活性可能低于对应的人类细胞因子。 [/font][font=Calibri]3) IL-7[/font][font=宋体]等为数不多的人类细胞因子作用于小鼠细胞时比对应的小鼠细胞因子活性更强。[/font][font=Calibri]4) [/font][font=宋体]干扰素,[/font][font=Calibri]GM-CSF, IL-3[/font][font=宋体]和[/font][font=Calibri]IL-4[/font][font=宋体]等细胞因子种属特异,对非同源细胞几乎没有活性。[/font][font=Calibri]5) [/font][font=宋体]相反,成纤维细胞生长因子[/font][font=Calibri](FGFs)[/font][font=宋体]和神经营养素[/font][font=Calibri](neurotrophins)[/font][font=宋体]高度保守,在不同动物种属细胞上均具有很好的活性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6.[/font][font=宋体]什么是载体蛋白?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]载体蛋白如[/font] [font=Calibri]HSA [/font][font=宋体]或 [/font][font=Calibri]BSA [/font][font=宋体]用于提高重组蛋白的稳定性,并有助于避免产品粘在小瓶壁上。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7.[/font][font=宋体]我应该如何储存重组蛋白?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]对于长期储存,蛋白质溶液应与载体蛋白(例如[/font] [font=Calibri]0.1% BSA [/font][font=宋体]或 [/font][font=Calibri]0.1% HSA[/font][font=宋体])分装保存,并在 [/font][font=Calibri]-20[/font][font=宋体]°[/font][font=Calibri]C [/font][font=宋体]下冷冻保存。请记住,每个冷冻[/font][font=Calibri]/[/font][font=宋体]解冻循环都可能导致蛋白质变性。除非分析证书上另有说明,否则大多数重组蛋白的保质期为一年。如果将它们保存在分析证书上所述的最佳存储条件下,则提供此保证。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]8.[/font][font=宋体]如何确定重组蛋白的数量?为什么我的检测产生的蛋白质数量与您的结果不同?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]我们通过[/font][font=Calibri]BCA[/font][font=宋体]、[/font][font=Calibri]SDS-PAGE[/font][font=宋体]、[/font][font=Calibri]HPLC[/font][font=宋体]等方法确定重组蛋白的数量。不同的测定产生不同的量化结果。有时,如果您进行不同的检测,差异可能会很大。蛋白质也有可能在储存过程中形成聚集体,在重组和离心后导致损失。我们对每批产品进行质量控制测试,但是,同一批次中的一些小瓶可能与其他小瓶不同(这种情况很少发生)。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/protein-review][b]重组蛋白资源[/b][/url]详情可以查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font]

  • 玉米醇溶蛋白在醇水中的凝聚行为和性质研究

    【序号】:1【作者】:刘君 【题名】:玉米醇溶蛋白在醇水中的凝聚行为和性质研究【书名】:天津科技大学 【年、卷、期、起止页码】: 2013年【全文链接】:http://d.wanfangdata.com.cn/Thesis/Y2517798【序号】:2【作者】:李崇达 【题名】:小麦醇溶蛋白的提取及其磁性微球的制备与性能研究【书名】:《河南工业大学》 【年、卷、期、起止页码】: 2011年【全文链接】:http://cdmd.cnki.com.cn/Article/CDMD-10463-1012461756.htm【序号】:3【作者】:王昶光 【题名】:小麦醇溶蛋白载体材料及其肝靶向给药系统的研究【书名】:《四川大学》 【年、卷、期、起止页码】: 2007年【全文链接】:http://cdmd.cnki.com.cn/Article/CDMD-10610-2007219987.htm

  • 植物蛋白中是否会天然合成(掺杂)三聚氰胺(或者混淆粗蛋白含量的其他同类有害物质)?

    植物蛋白中是否会天然合成(掺杂)三聚氰胺(或者混淆粗蛋白含量的其他同类有害物质)主要是想了解一下,已知的,天然植物中,是否会天然合成类似三聚氰胺这类,明显影响总氮含量的其他的非蛋白含氮化合物(除游离氨基酸、嘌呤、吡啶、尿素、硝酸盐、氨等)?也就是说,植物中粗蛋白含量高的植物类,中是否有已知的,类似三聚氰胺这类,含一点儿,就能严重影响总氮量的物质?如果有,你知道的都是哪些?问题可能实在是非专业了点,敬请各位指点迷津。谢谢。

  • 多焦点扫描与光激活蛋白应用

    [align=center][b][/b][/align][align=center][b]Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for [i]in vivo [/i]monitoring of intracellular protein dynamics in real time[/b][/align][b]摘要[/b]使用[color=#ff0000]Lavision Biotec[/color]公司[b]多焦点双光子激光扫描显微镜[color=#ff0000]Trim Scope[/color][/b]来进行局部和选择性的蛋白激活以及细胞内蛋白动态的的量化调查。局部激活使用光激活绿色荧光蛋白(pa-GFP)和光学双光子激发来实现,以调查实时原位的细胞内动态。这个过程对于深入理解和建模活细胞内的调控和代谢过程极其重要。作为范例,既包含了一个核输入信号又包含了一个核输出信号的拟南芥MYB转录因子LHY/CCA1-like 1 (LCL1)被定量化调查。我们使用了由质粒编码的光激活绿色荧光蛋白(pa-GFP)融合蛋白和一个红色荧光转染标记联合转染的烟草BY-2原生质体,并pa-GFPLCL1在核内光激活后的快速向核外输出。作为对照,一个LCL1核输出阴性突变体仍然被束缚在核内。我们确定了由激活pa-GFP-LCL1的双向核运输和pa-GFP的扩散分别导致的核内荧光下降的51s和125s的平均时间常数。[b]材料与方法[/b][i]并行的64焦点双光子激光扫描显微镜[/i]Pa-GFP的激活和荧光的原位检测,通过基于根据蛋白动态监测需求改进的商业化系统([color=#ff0000]TriM Scope, LaVision Biotec[/color] Martini et al., 2005 Nielsen et al., 2001)多焦点2光子LSM检测(Fig. 1). 64焦点2光子LSM (Martini et al., 2006)包括一个倒置光学显微镜和一个可以产生从760nm到960nm的100fs激光脉冲的由固态激光器泵浦的锁模飞秒Ti:Sa激光器。用于激活和成像循环的波长选则通过一个允许5s内转换波长的ahome-built screw motorization来实现。激光扫描单元([color=#ff0000]TriM Scope, LaVision BioTec[/color]) 包括一个内置的预啁啾部分以补偿激光脉冲的色散,一个光束分光器部分和振镜扫描器。通过选择一组10个100%反光镜和50%分光镜,激发的NIR激光束在样品中被分为1, 2, 4,……, 64个激发焦点。这些数目可调的焦点在显微镜物镜(UPLAO60XW3/IR, NAD1.2 Olympus)的焦平面上被激光扫描单元中的2个扫描镜扫描。整个激活和测量过程在一个温度可控环境中在293±1K下进行。因为在保持每个焦点的能量沉积低于样品的退化极限的同时,多个焦点产生了相对高的双光子诱导荧光产额,成像可以30ms的时间分辨率进行。图像用一个背照明的EMCCD相机(IXON DV887ECS-UVB, Andor Technology)以non-descanned方式获取。激发的NIR激光束被引导通过一个分光镜 (2光子-Beamsplitter, Chroma)到物镜的后光圈上。为了成像深度和光谱荧光切片,倒置显微镜采用了机械聚焦驱动(MFD, Marzhauser)和一个程序控制滤波轮([color=#ff0000]LaVision-BioTec)[/color]。数据获取和实验控制由 TriM Scope的软件包Imspector(LaVision-BioTec)执行。操作和处理5维的数据列,包括光谱和时间数据轴,使用软件包Imspector ([color=#ff0000]LaVision-BioTec)[/color],ImageJ (Rasband, 1997) 或 Imaris (Bitplane)。[img=,657,421]http://qd-china.com/uploads/bio-product/81.jpg[/img]Fig. 1.多焦点双光子激光扫描显微镜的原理图(1) Tsunami Ti:Sa 激光器(波长可调)由固态Millenia X 激光器泵浦 (均来自 Spectra Physics), (2) 多焦点激光扫描单元 (TriM-scope, LaVision BioTec), (3) 分光镜 (2光子-Beamsplitter, Chroma), (4) 短波通过滤波轮 (2光子-Emitter, Chroma), (5) 物镜 (UPLAO60XW3/IR, NA D 1.2 Olympus), (6) 样品中可选择数目的荧光焦点, (7) 倒置光学显微镜(IX 71, Olympus), (8) 滤波轮 (滤波轮, LaVision BioTec)装备带通滤波片 D 605/55 (Chroma)用于检测 Ds-Red 和 HQ525/50 结合 HQ510/20 (均来自 Chroma)以检测 pa-GFP, (9) 背照式 EMCCD-camera (IXON DV887ECS-UVB, Andor Technology) 在NDD光路中, (10) 荧光灯 (HBO 50, Zeiss), (11) 带通激发滤波轮 D 540/25 (Chroma) 用于 Ds-Red 或带通激发滤波轮HQ 480/20 (Chroma) 用于 pa-GFP.[b]结果[img=,380,768]http://qd-china.com/uploads/bio-product/82.jpg[/img][/b]Fig. 2.含有核输入输出信号的拟南芥转录因子LCL1 (分别为NLS, NES). 由质粒编码GFP融合蛋白转染的烟草BY-2原生质体。通过单光子共聚焦激光扫描显微镜分析的GFP融合蛋白稳定态定位。(a) GFP-LCL1 揭示的核与细胞质间的分区。(b) 使用核输出抑制剂leptomycin B (LMB)孵育后,由于功能性NLS的存在,GFP-LCL1的稳定态分区剧烈转化为几乎完全分布于核中。 (c,d) 对照,LMB对单独的GFP没有影响。 (e) GFPLCL1(NESm)中,它的NES的点突变造成的LCL1的核输出活性削弱同样导致了GFP融合蛋白在核内的聚集。(f) 与(e)中同一个原生质体的透射光与GFP荧光成像的叠加标尺为10um (g) 作为对照的 GFP-NLS 在核内的增加。 (h) 同一原生质体的GFP-NLS绿色荧光蛋白和作为转染标记的Pra1-DsRed (At2g38360)红色荧光蛋白的叠加。[img=,700,109]http://qd-china.com/uploads/bio-product/83.jpg[/img]Fig. 3. pa-GFP 在一个活原生质体内的自由动态扩散。选出的5幅表达pa-GFP的烟草BY-2原生质体的单光子透射荧光图像。(a)实验开始,未激活 (b) pa-GFP的双光子激活期间 (c-e) 双光子激活后,所示时间点。(a)核内(红虚线)的pa-GFP在双光子激发前平均荧光很难被检测到。使用4个平行焦点(10mW at 800 nm 每焦点)的持续3s的飞秒激光对一个7X8um的区域进行pa-GFP 2光子激发开始 (b) 激发后很短时间内检测到一个强的荧光信号(c-e) pa-GFP从核内向细胞质的扩散被监测,直到两组分间达到平衡。荧光强度标尺显示在每幅图的左边。[img=,707,514]http://qd-china.com/uploads/bio-product/84.jpg[/img]Fig. 4.在核内被光激活后,pa-GFP从核内向细胞质扩散的量化分析。在激活前,核内(ROI)平均的1光子荧光强度非常低(平均强度~300).在26s和29s间的时间点,由飞秒激光激活诱导的荧光增强在图上进行了监测。 与光激活前相比,平均荧光强度是之前的大约5倍,伴随着ROI内的荧光降低。在第一个地方,监测到的细胞核内荧光下降是由于激活的pa-GFP向细胞质内的扩散。后来,光漂白变得显著。双指数拟合非常近似地拟合了整个荧光下降过程(红线)。以此方式计算出这个实验中175s的扩算时间常数。[img=,705,375]http://qd-china.com/uploads/bio-product/85.jpg[/img]Fig. 5. 烟草BY-2原生质体中At2g38360-DsRed的定位和平行双光子荧光显微镜对pa-GFP的3D监测(64 foci, 920 nm, 240 mW)。 (a) 双光子荧光下降的量化分析,给出了一个123s的扩散时间常数。Figs. 3 and 4中的数据源于两个不同的实验,解释了荧光值的绝对差异(不同的表达水平)和统计分析。 (b) At2g38360-DsRed作为转染标记在核中pa-GFP激活前的荧光 (c) At2g38360-DsRed和pa-GFP数据采集后400 s的3D荧光图像,清楚显示了荧光团从细胞核向细胞质的扩散。[img=,697,603]http://qd-china.com/uploads/bio-product/86.jpg[/img]Fig. 6.在核内光激活前后,烟草BY-2原生质体内活跃转运的pa-GFP-LCL1的3D动态监测和量化分析。(a) 在pa-GFP-LCL1双光子激发后核内的单光子荧光表明双光子激活荧光增强 (b) pa-GFP被双光子激活后双指数曲线拟合(红线)的荧光下降量化分析。计算得出的由于主动运输导致的核内pa-GFP-LCL1荧光下降的一个20s的时间常数(c,d) At2g38360-DsRed(转染标记)和pa-GFP-LCL1的双色双光子荧光3D成像 (c)核内光激活前 (d)数据获取后。[img=,691,345]http://qd-china.com/uploads/bio-product/87.jpg[/img]Fig. 7. 烟草BY-2原生质体的核输出阴性突变pa-GFP-LCL1(NESm)光激活前后的3D动态监测和量化分析。(a) pa-GFP-LCL1(NESm)被双光子激活后的单光子荧光显示了双光子激活荧光增强和激活后核内荧光极其缓慢的下降,反映了pa-GFPLCL1(NESm)的核限制 (b,c) At2g38360-DsRed (转染标记) 和 pa-GFP-LCL1(NESm) 的双光子荧光3D图像 (b) 光激活前的核内 pa-GFP (c) 数据获取后300s的时间点。

  • 跨膜蛋白与通道蛋白的区别:跨膜蛋白制备平台详解

    [font=宋体]跨膜蛋白是生物体内广泛存在的一类蛋白质,它们在细胞膜上以不同的方式与其相互作用,从而发挥各种生物学功能。根据不同的结构和功能,[/font][b][font=宋体]跨膜蛋白可以分为三种类型:通道型跨膜蛋白、受体型跨膜蛋白和泵型跨膜蛋白。[/font][/b][font=宋体] [/font][font=宋体][font=宋体]通道型跨膜蛋白是跨膜蛋白中最为简单的类型,它们主要的功能是在细胞膜上形成一些具有选择性通透性的孔道,使得离子和小分子物质能够通过。通道型跨膜蛋白具有多个跨膜域,通常由[/font] [font=宋体]α 螺旋和 β 折叠两种二级结构组成。α 螺旋通道如 [/font][font=Calibri]K+ [/font][font=宋体]通道能够容纳阳离子,β 折叠如离子泵[/font][font=Calibri]Na+/K+-ATPase [/font][font=宋体]能够承载各种离子。[/font][/font][font=宋体] [/font][font=宋体]受体型跨膜蛋白是一类比较复杂的蛋白质,它们能够接受信号分子的结合,从而调节细胞内的生物学路径。受体型跨膜蛋白通常由单个跨膜域和两个不同构的端基组成,其中一个端基是细胞外的受体结构域,能够特异性地与信号分子结合;另外一个端基是细胞内的调节结构域,能够将受体活性传递到细胞内部。受体型跨膜蛋白具有多种作用方式,如酪氨酸激酶受体,转录因子受体等。[/font][font=宋体] [/font][font=宋体][font=宋体]泵型跨膜蛋白是一类能够通过能量输入来驱动物质运输的蛋白质。它们能够将离子或者小分子物质从低浓度区域转运到高浓度区域,从而维持细胞内的化学平衡和稳态。泵型跨膜蛋白一般由多个跨膜域组成,并能借助外源性能量如[/font][font=Calibri]ATP[/font][font=宋体]进行运输。常见的泵型跨膜蛋白有[/font][font=Calibri]Na+/K+-ATPase, H+/K+-ATPase[/font][font=宋体]等。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州提供跨膜蛋白制备平台,包括:[/font][font=Calibri]VLP[/font][font=宋体]技术平台[/font][font=Calibri]/[/font][font=宋体]去垢剂技术平台[/font][font=Calibri]/Nanodisc[/font][font=宋体]技术平台。[/font][/font][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体][font=宋体]利用[/font][font=Calibri]VLP[/font][font=宋体]平台制备跨膜蛋白具有以下优势:[/font][/font][font=宋体]? 全长跨膜蛋白,保持完整的天然构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测、抗体筛选等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州搭建了基于[/font][font=Calibri]HEK293[/font][font=宋体]表达系统的[/font][font=Calibri]VLP[/font][font=宋体]([/font][font=Calibri]virus-like particle[/font][font=宋体])技术平台,能够将目的膜蛋白完整展示在[/font][font=Calibri]VLP[/font][font=宋体]表面,使其能够像普通蛋白一样进行检测,义翘神州目前可以为客户提供膜蛋白定制服务,助力药物研发进程。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体]去垢剂技术平台的优势:[/font][font=宋体]? 可精确定量[/font][font=宋体]? 胶束为膜蛋白疏水基团提供保护并稳定构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测等[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体][font=Calibri]SMA-Nanodisc[/font][font=宋体]技术平台的优势:[/font][/font][font=宋体]? 可精确定量[/font][font=宋体][font=宋体]? [/font][font=Calibri]SMA[/font][font=宋体]共聚物包裹的膜蛋白稳定性更好,有助于更好地研究膜蛋白的结构和功能[/font][/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测及细胞实验等[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 揭秘抗组蛋白抗体:健康守护者还是疾病信号?

    [font=宋体][font=宋体]抗组蛋白抗体是抗核抗体家族的一个亚基,专门针对组蛋白亚基或组蛋白复合物。[/font][font=Calibri]1959[/font][font=宋体]–[/font][font=Calibri]60[/font][font=宋体]年,[/font][font=Calibri]Henry Kunkel[/font][font=宋体]、[/font][font=Calibri]H.R.Holman[/font][font=宋体]和[/font][font=Calibri]H.R.G.Dreicher[/font][font=宋体]在对红斑狼疮细胞病因的研究中首次报道了这些抗体。如今,抗组蛋白抗体仍被用作系统性红斑狼疮的标志物,但也与其他自身免疫性疾病有关,如[/font][font=Calibri]Sj?gren[/font][font=宋体]综合征、皮肌炎或类风湿性关节炎。抗组蛋白抗体可作为药物诱导性狼疮的标志物。[/font][/font][font=宋体] [/font][b][font=宋体]特异性[/font][/b][font=宋体] [/font][font=宋体][font=宋体]组蛋白是蛋白质的复合体,[/font][font=Calibri]DNA[/font][font=宋体]储存在其周围。抗组蛋白抗体可以靶向组蛋白复合物或显示的任何蛋白质亚基。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]抗组蛋白抗体靶向五大类组蛋白亚基:[/font][font=Calibri]H1[/font][font=宋体]、[/font][font=Calibri]H2A[/font][font=宋体]、[/font][font=Calibri]H2B[/font][font=宋体]、[/font][font=Calibri]H3[/font][font=宋体]和[/font][font=Calibri]H4[/font][font=宋体]。抗组蛋白的抗体多种多样,因此除了靶向蛋白亚基外,不同的抗体也可能对不同的复合物,包括[/font][font=Calibri]H2A-H2B[/font][font=宋体]二聚体或[/font][font=Calibri]H3-H4[/font][font=宋体]四聚体。有证据表明,不同药物暴露产生的[/font][font=Calibri]IgG[/font][font=宋体]和[/font][font=Calibri]IgM[/font][font=宋体]抗组蛋白抗体对不同组蛋白复合物的表位具有特异性。高度修饰的组蛋白已被证明能促进更大的免疫反应。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]检测抗体[/font][/b][font=宋体] [/font][font=宋体][font=宋体]抗组蛋白抗体可以使用[/font][font=Calibri]ELISA[/font][font=宋体]测定法进行临床检测。测试需要血样。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]间接免疫荧光也可用于检测抗组蛋白抗体。均匀、扩散染色表明存在抗组蛋白抗体、染色质和一些双链[/font][font=Calibri]DNA[/font][font=宋体]。义翘神州提供[url=https://cn.sinobiological.com/services/immunofluorescence-servicehttp://][b]免疫荧光检测服务[/b][/url]![/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]抗组蛋白抗体阳性说明什么?[/font][/b][font=宋体] [/font][font=宋体]抗组蛋白是含有五个亚单位的碱性蛋白,抗组蛋白阳性说明可产生了组蛋白抗体,多存在系统性红斑狼疮、类风湿关节炎、风湿病等疾病中,建议患者对症治疗。[/font][font=宋体] [/font][b][font=宋体]正常值:[/font][/b][font=宋体]正常人抗组蛋白抗体为阴性。[/font][font=宋体] [/font][font=宋体]在探索抗组蛋白抗体的道路上,科学家们从未停止脚步。他们致力于解开这一生物标志物的所有谜团,以期为人类健康带来更多福祉。作为普通公众,我们也可以通过学习和了解抗组蛋白抗体的相关知识,为自己的健康保驾护航。让我们共同期待未来科学研究在抗组蛋白抗体领域取得的更多突破,为人类的健康事业贡献智慧和力量。[/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 单次与多次跨膜蛋白的特点和功能:多次跨膜蛋白的意义

    [font=宋体][font=宋体]跨膜蛋白([/font][font=Calibri]TMEM[/font][font=宋体])是一种跨越细胞质膜的蛋白家族,允许细胞[/font][font=Calibri]-[/font][font=宋体]细胞和细胞[/font][font=Calibri]-[/font][font=宋体]环境之间的联系。结构决定性质,性质决定功能,一般单次跨膜主要起锚定作用,多次跨膜能形成疏水孔道,发挥运输的功能。这里我们将讨论膜蛋白的结构,并说明它们与脂质双分子层的不同关联方式。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]对膜成分而言,脂质分子数多,但膜蛋白质量较大[/font][/font][font=宋体][font=宋体]我们知道,脂质双分子层提供了细胞膜的基本结构,并作为膜两侧分子的渗透屏障,但是大多数膜的功能其实是由膜蛋白完成的。在动物中,蛋白质约占大多数质膜质量的[/font][font=Calibri]50%[/font][font=宋体],其余是脂质加上糖脂和糖基化蛋白中相对较少的碳水化合物。然而,由于脂质分子比蛋白质小得多,细胞膜通常含有的脂质分子大约是蛋白质分子的[/font][font=Calibri]50[/font][font=宋体]倍。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]不同类型的膜蛋白发挥诸多功能[/font][/font][font=宋体]膜蛋白不仅通过脂质双分子层运输特定的营养物质、代谢产物和离子;它们还有许多其他功能:有些将膜固定在两侧的大分子上;有些能作为受体,检测细胞环境中的化学信号,并将其传递到细胞内部;还有一些作为酶发挥功能,催化特定反应。每种类型的细胞膜都含有不同的蛋白质,反映了特定细胞膜的特殊功能。[/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]蛋白质可以通过多种方式与膜的脂双层相关联[/font][/font][font=宋体][font=宋体]直接附着在脂质双分子层上的蛋白质(如图[/font][font=Calibri]3-A,B,C[/font][font=宋体])只有用洗涤剂破坏双分子层才能被去除,这种蛋白质被称为膜内在蛋白,其余的膜蛋白称为膜外周蛋白(如图[/font][font=Calibri]3-D[/font][font=宋体]),它们可以通过更温和的提取过程从膜中释放出来,这一过程会干扰蛋白质与蛋白质之间的相互作用,但会使脂质双层结构保持完整。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]许多膜蛋白穿过脂双层,部分区域位于双层膜的两侧[/font][font=Calibri](A)[/font][font=宋体]。这些跨膜蛋白具有疏水性和亲水性区域。它们的疏水区域位于双层膜的内部,紧靠着脂质分子的疏水尾部。它们的亲水性区域暴露在膜的两侧的水环境中。[/font][/font][font=宋体][font=宋体]有的膜蛋白几乎完全位于胞质,与脂质双分子层相互作用的是蛋白表面的[/font][font=宋体]α螺旋结构[/font][font=Calibri](B)[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]有些蛋白质完全位于双层膜外(内侧或外层),仅通过一个或多个共价附着的脂类基团与膜相关联[/font][font=Calibri](C)[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]还有些蛋白质通过与膜蛋白的相互作用,间接地与膜表面相结合[/font][font=Calibri](D)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4. [/font][font=宋体]多肽通常以α螺旋的形式穿过脂双层[/font][/font][font=宋体][font=宋体]对于许多跨膜蛋白,多肽链只穿过膜一次,这些蛋白质中有许多是细胞外信号的受体。形成[/font][font=Calibri]a[/font][font=宋体]螺旋的氨基酸的疏水侧链与磷脂分子的疏水烃尾相接触,多肽主链的亲水部分在螺旋内部相互形成氢键。一个完全穿过膜的α螺旋结构需要包含[/font][font=Calibri]20[/font][font=宋体]个氨基酸。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]膜蛋白[/font][font=Calibri]x[/font][font=宋体]射线结晶学的进展使许多膜蛋白的三维结构得以确定。根据这些主要特征构建模型(片段包含约[/font][font=Calibri]20-30[/font][font=宋体]个氨基酸、具有高度疏水性),通常可以从蛋白质的氨基酸序列预测多肽链的哪些部分延伸到脂双层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5. [/font][font=宋体]跨膜α螺旋常和其他α螺旋互作或组合形成孔道[/font][/font][font=宋体][font=宋体]有的跨膜蛋白形成水通道,允许水溶性分子穿过膜,这样的孔道不能由具有单一的、均匀疏水的、跨膜螺旋结构的蛋白质形成。形成孔隙的蛋白质更为复杂,通常具有一系列的[/font][font=宋体]α螺旋多次穿过双层膜。许多单通道膜蛋白形成同源或异源二聚体,这些二聚体由两个跨膜螺旋之间的非共价、但强而特异的相互作用结合在一起,这些螺旋的疏水氨基酸序列包含指导蛋白质[/font][font=Calibri]-[/font][font=宋体]蛋白质相互作用的信息。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]在有些包含多个跨膜结构的蛋白质中,跨膜区域是由包含疏水性和亲水性氨基酸侧链的螺旋形成的。这些氨基酸的排列使得疏水侧链落在螺旋的一侧,而亲水侧链则集中在螺旋的另一侧。在脂双层疏水环境中,这类[/font][font=宋体]α螺旋呈环状并排排列,疏水侧链暴露于膜的脂质上,亲水侧链通过脂质双层形成亲水孔的内衬。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6. [/font][font=宋体]一些β折叠片多次跨膜形成大的离子通道[/font][/font][font=宋体][font=宋体]虽然到目前为止,[/font][font=宋体]α螺旋是多肽链穿过脂双层的最常见的形式,某些多肽链却是以β折叠穿过脂双层。膜蛋白以β折叠片的形式穿过脂质双分子层,被弯曲成圆柱形,形成一个开放式的桶状结构,称为β折叠桶。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]β片层的数目变化较大,少的可以有[/font][font=Calibri]8[/font][font=宋体]个,多的可以多达[/font][font=Calibri]22[/font][font=宋体]个。面朝桶内的氨基酸侧链主要是亲水的,而桶外的那些接触脂双层疏水核心的侧链则完全是疏水的。与α螺旋不同,β折叠桶只能形成宽的通道,因为β折叠片弯曲成桶的紧密程度是有限制的,不如α螺旋灵活。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]综上,膜的功能主要体现在膜蛋白的多样性上,膜蛋白的结构决定其功能。不同功能的膜蛋白其结构基础存在差异,因此其与膜骨架的关联方式也有不同。像膜偶联受体、膜偶联酶这些膜蛋白可能通过单次跨膜或者共价修饰,就能锚定在膜上实现其功能。而作用于底物转运的膜蛋白必须提供一个较大的亲水孔道,才能使水溶性的带电离子等底物通过,因此不同的[/font][font=宋体]α螺旋之间倾向于互作,或者同一个蛋白具有多个互作的α螺旋,或者通过β折叠形成桶状孔隙发挥功能。根据跨膜蛋白的疏水特性及跨膜区域的结构特点,可以对跨膜蛋白及其跨膜区段进行预测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体][b]义翘神州提供三大[/b][url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url][b]制备平台,有[/b][/font][font=Calibri]VLP[/font][font=宋体]技术平台、去垢剂技术平台、[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 【转帖】专家称毒奶粉中“三聚氰胺”可提高“蛋白”检测值

    专家称毒奶粉中三聚氰胺可提高蛋白检测值[em0804]http://news.QQ.com  2008年09月12日02:42   新京报  徐春柳  本报讯 (记者 徐春柳)昨天,中国家具协会副秘书长朱长岭介绍,三聚氰胺一般来说是用来制造板材的化工原料,怎么会出现在奶粉当中,不好推断。“用于家装上并无毒性,但口服就不好说了。” 一名不愿具名的化工专家介绍,[color=#DC143C]三聚氰胺其分子中含有大量氮元素。用普通的全氮测定法测饲料和食品中的蛋白质数值时,根本不会区分这种伪蛋白氮。添加在食品中,可以提高检测时食品中蛋白质检测数值。 [/color]有媒体此前报道,某些饲料加工厂,会往饲料中添加三聚氰胺这种化工原料。这样可以冒充成高蛋白饲料,还能大幅度降低成本。去年,在美国发生了猫狗宠物非正常死亡事件,美国有关部门经过调查确认是宠物食品的原料受三聚氰胺污染。 去年5月9日,国家质检总局在通报两家企业因其部分出口的小麦蛋白粉和大米蛋白粉中,蛋白含量不能达到合同的要求,违规添加了三聚氰胺。 [em0804]

  • 左旋多巴 卡比多巴 沉淀蛋白

    小弟最近做血浆中左旋多巴和卡比多巴的定量,样品预处理时参考文献有用高氯酸沉淀蛋白的,有用高浓度甲酸乙腈沉淀的,我都试了试,但检测不到,感觉是没有沉淀出来,请问大家有没有做过的,有什么建议和窍门吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制