当前位置: 仪器信息网 > 行业主题 > >

弹性多孔聚合材料

仪器信息网弹性多孔聚合材料专题为您整合弹性多孔聚合材料相关的最新文章,在弹性多孔聚合材料专题,您不仅可以免费浏览弹性多孔聚合材料的资讯, 同时您还可以浏览弹性多孔聚合材料的相关资料、解决方案,参与社区弹性多孔聚合材料话题讨论。

弹性多孔聚合材料相关的资讯

  • 培安公司携ISCO柱塞泵应邀参加第二届聚合物发泡与多孔材料高峰论坛
    2021年11月20日,由SAMPE中国大陆总会聚合物发泡与多孔材料专业委员会主办的第二届聚合物发泡与多孔材料高峰论坛(PFPM)在江苏南京溧水新时代开元名都大酒店顺利举行,吸引了许多专家及各大公司的知名品牌仪器和新产品参展。聚合物发泡与多孔材料不仅广泛应用于包装建材、冷藏运输、电子电器、鞋服纺织、化学化工等传统行业,而且快速扩展应用于只能传感、生物医药、环境能源、航空航天等高端领域。聚合物发泡与多孔材料制备及成型加工新理论技术即将迎来高速高质的蓬勃发展之机。会议现场培安公司如期应邀参加了“第二届聚合物发泡与多孔材料高峰论坛(PFPM)”。培安公司作为ISCO柱塞泵独家代理,携带ISCO柱塞泵亮相参会,培安展台吸引了众多与会专家及客户驻足,并就仪器的原理和性能等与培安工作人员进行详谈。培安展位会议期间,与会代表参观了南京创博机械设备有限公司,在超临界二氧化碳发泡材料制备的生产现场,各位代表对ISCO柱塞泵都极为关注,纷纷上前咨询仪器的相关信息,培安公司销售人员对大家提出的问题均给予了详细解答。南京创博机械设备有限公司生产现场
  • 培安公司携ISCO柱塞泵应邀参加第二届聚合物发泡与多孔材料高峰论坛
    2021年11月20日,由SAMPE中国大陆总会聚合物发泡与多孔材料专业委员会主办的第二届聚合物发泡与多孔材料高峰论坛(PFPM)在江苏南京溧水新时代/开元名都大酒店顺利举行,吸引了许多专家及各大公司的知名品牌仪器和新产品参展。聚合物发泡与多孔材料不仅广泛应用于包装建材、冷藏运输、电子电器、鞋服纺织、化学化工等传统行业,而且快速扩展应用于只能传感、生物医药、环境能源、航空航天等高端领域。聚合物发泡与多孔材料制备及成型加工新理论技术即将迎来高速高质的蓬勃发展之机。会议现场 培安公司如期应邀参加了“第二届聚合物发泡与多孔材料高峰论坛(PFPM)”。培安公司作为ISCO柱塞泵独/家代理,携带ISCO柱塞泵亮相参会,培安展台吸引了众多与会专家及客户驻足,并就仪器的原理和性能等与培安工作人员进行详谈。培安展位 会议期间,与会代表参观了南京创博机械设备有限公司,在超临界二氧化碳发泡材料制备的生产现场,各位代表对ISCO柱塞泵都极为关注,纷纷上前咨询仪器的相关信息,培安公司销售人员对大家提出的问题均给予了详细解答。南京创博机械设备有限公司生产现场
  • 宁波材料所以“微交联法”创制高弹性铁电材料
    8月4日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在《科学》(Science)上,发表了题为Intrinsically elastic polymer ferroelectric by precise slight crosslinking的研究文章。该研究提出了铁电材料的本征弹性化方法,即采用微交联法使铁电聚合物从线性结构转变为网络状结构,通过精准调控交联密度在实现弹性化的同时,降低结构改变对材料结晶性能的影响,开创性地同时将弹性与铁电性赋予同一材料。基于此,该研究创制了一种兼具弹性与铁电性,且具有较好的耐机械疲劳和铁电疲劳性能的弹性铁电聚合物。铁电材料是功能材料,通常是指在一定温度范围内具有自发极化且极化方向可随外加电场改变进行翻转或重新定向的晶体材料,其核心为自发极化。极化是极性矢量,由于晶胞中原子构型使得正负电荷重心沿该方向发生相对位移,形成电偶极矩,使得整个晶体在该方向上呈现极性,这个方向称为特殊极性方向。这对晶体的点群对称性施加了限制,在32个晶体点群中只有10个具有特殊极性方向,即1(C1)、2(C2)、m(Cs)、mm2(C2v)、4(C4)、4mm(C4v)、3(C3)、3m(C3v)、6(C6)、6mm(C6v)。只有属于这些点群的晶体才具有自发极化,即铁电材料必为晶体材料。这种特殊的晶体点群赋予了铁电材料诸多性能,使其在数据存储和处理、传感和能量转换以及非线性光学和光电器件等方面有诸多应用。而晶体在受到应力时能够产生的弹性回复是极小的,通常小于2%,这是传统铁电材料多表现为脆性(无机)或塑性(有机)的原因。可穿戴设备、柔弹性电子和智能感知等领域的快速发展,对于使用的材料提出了越来越高的要求即需要在复杂形变下依旧保持稳定的性能。电子器件使用的材料根据导电性可分为导体、半导体和绝缘材料,而导体和半导体目前已实现弹性化。而铁电材料作为绝缘材料中性能最丰富的功能材料之一,目前尚未实现弹性化,这限制了铁电材料在柔弹性电子等领域的应用。铁电材料的铁电性主要来源于其结晶区,但晶体本身几乎不具备弹性,因而铁电性和弹性难以在同一种材料中兼顾。铁电材料的弹性化方法通常有三种——结构工程、共混和本征弹性化。通过结构工程制备的样品只能在预应变值范围内进行形变,需要复杂的制造技术且难以降低器件尺寸。在采用无机铁电材料与弹性体共混方式制备的复合材料中,无机铁电材料的铁电畴杂乱无章,需要经过有效极化后才能表现出铁电性。由于无机铁电与弹性体的电阻率相差较大,在极化过程中电场主要施加在电阻率更大的弹性体中,导致弹性体相的电击穿和电机械击穿。因此,本征弹性化可能是铁电材料弹性化的唯一途径。本征弹性化能够促进材料的发展,使其具备可大规模溶液制备的能力、提高设备密度和材料的耐疲劳性等。有机铁电材料包括有机小分子铁电材料和以PVDF(聚偏氟乙烯)为代表的聚合物铁电材料。铁电聚合物的铁电性主要来源于分子链两侧由极性相差较大的原子或基团形成由一侧指向另一侧的偶极子。铁电聚合物的特点是具有高柔韧性、易于制造成复杂形状、机械坚固性和极性活性。聚合物中的铁电性是20世纪70年代在聚偏氟乙烯中发现的,是电能、机械能和热能之间有效交叉耦合的平台。因此,兼具铁电性和柔韧性的铁电聚合物可能是铁电弹性化的最佳候选对象。在过去几年,化学交联法在导体和半导体的本征弹性化过程中取得了显著进展。由于强的铁电响应需要高的结晶度,而好的弹性回复需要低的结晶度,因此传统的化学交联方法很难同时兼顾铁电响应和弹性回复。为此,该团队提出了“弹性铁电材料”的概念,设计了精确的“微交联法”在铁电聚合物中建立网络结构。选择聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE),55/45mol%)作为反应基体材料,选择带有软而长链的聚氧化乙烯二胺(PEG-diamine)作为交联剂材料,使用低交联密度(1%~2%)赋予线性铁电聚合材料弹性的同时保持较高的结晶度。研究表明,交联后的铁电薄膜结晶相以β相为主,结晶均匀分散在聚合物交联网络中。在受力时,网络状结构能够均匀地将外力分散并且更多地承受应力,避免结晶区受到破坏。实验结果显示,交联后铁电薄膜在70%的应变下依旧具有较好的铁电响应,剩余极化约4.5μC/cm2并在拉伸过程中能够保持稳定,且具有较好的耐机械和铁电翻转疲劳性,提高了可靠性和使用寿命,拓展了使用范围。可见,“微交联法”是实现铁电弹性化行之有效的方法。该方法利用简单的化学反应实现了铁电性与弹性的良好匹配,为铁电材料弹性化提供了新思路。未来,研究团队将扩展此类方法,探索微交联法对于材料弹性化研究的普适性,并对制备的弹性铁电材料在可穿戴电子设备以及能量转换和存储、介电驱动等方面的应用进行探索。研究工作得到卢嘉锡国际合作团队项目、国家自然科学基金、浙江省钱江人才计划和浙江省尖兵领雁项目等的支持。铁电材料专家、东南大学教授熊仁根受邀在同期《科学》PERSPECTIVE专栏发表评论文章,认为这是突破性的工作,开辟了“弹性铁电”这一全新学科,并展望了弹性铁电材料可能的应用场景和未来的发展方向。图1. 弹性铁电的概念和合成策略示意图图2. 应变下弹性铁电的铁电响应。A为全弹性器件;B、C为全弹性器件在0%和70%的应变;D为在1kHz下0~70%应变下的P-E回滞曲线;E为不同应变下的名义Pmax、Pr和Ec和校正后的真实Pr。实验表明交联铁电薄膜在不同拉伸应变下均具有稳定的铁电响应。
  • TA仪器与陕西科技大学联合举办“材料热分析和粘弹性表征及其应用技术交流会”邀请函
    TA仪器与陕西科技大学联合举办&ldquo 材料热分析和粘弹性表征及其应用技术交流会&rdquo 近年来随着材料研究的不断发展,在化工、医药、食品、能源、新材料等工程技术领域对于材料的研究不断深入,作为材料研究的重要工具,流变仪,动态热机械分析仪、热重分析仪、差示扫描量热仪等仪器越来越广泛的应用其中,这些仪器对于材料的粘弹性能、热物性能的研究提供了的重要技术手段。此次会议主要是加强这些领域的技术交流,针对各领域研究人员及工程技术人员,达到深入的了解材料在热分析和粘弹性等方面的基础理论和表征方法的目的,包括这些测试的最新应用。提高技术人员在自己的研究领域内,确定材料在热物性和粘弹性方面的测试目的和评价手段,更好的针对自己的研究领域和实验所需参数选择和组织更好的研究工作。 会议主要内容: 一、材料热分析表征及其应用 1、材料热分析(热重、差热)的特性及其表征方法 2、材料热分析测试的结果分析及其实验方法改进 3、材料热分析测试的应用 二、材料粘弹性能表征及其应用 1、材料的粘弹特性及其物理指标 2、材料粘弹特性的仪器测试方法 3、材料粘弹特性的应用 -------------------------------------------------------------------------------------- 演讲嘉宾:(以下排名按照演讲顺序,不分先后) 刘保健副教授 陕西科技大学化学与化工学院 主要研究方向 高分子物理,聚合物结构与表征的实验研究,不同结晶度聚乳酸膜降解性的研究等 王宇副教授 西安交通大学理学院材料物理系 物质非平衡合成与调控教育部重点实验室,目前从事的研究领域主要包括: 智能材料、形状记忆与磁控形状记忆合金、固态相变与玻璃化转变、磁热与磁致伸缩效应。曾在日本国立物质材料研究机构、美国Los Alamos国家实验室进行研究工作。 杨胜鹰 先生 毕业于北京化工大学高分子材料系,国家高级工程师,在加入美国TA仪器之前,他在石化行业材料研发行业任职多年,拥有非丰富的研发和技术支持经验。 李润明 博士 TA仪器流变技术支持,上海交通大学材料学博士。主要研究方向是聚合物流变学,在材料表征分析和测试领域具有丰富的经验。 马倩 博士 TA仪器热分析技术支持,美国Tufts大学凝聚态物理博士,师从美国著名热分析科学家Peggy Cebe。有着多年高分子热分析表征以及X射线散射理论和实验研究经历。 会议时间 2013年4月18日 会议地点:陕西科技大学逸夫楼会议室 会议日程安排 08:50 - 09:00 会议嘉宾致辞 09:00 - 09:40 材料动态粘弹性理论及实验表征 李润明 博士 09:40 - 10:30 流变在材料粘弹性的表征方法及其应用 李润明 博士 10:30 - 10:40 茶歇 10:40 - 11:00 流变仪技术应用专题 刘保健 先生 11:00 - 11:40 DMA在材料粘弹性的表征方法及其应用 李润明 博士 11:40 - 12:00 DMA在记忆合金方面的测试和应用 王宇 先生 12:00 - 14:30 午餐 14:30 - 15:20 差热法对于材料的表征方法及其应用 杨胜鹰 先生 15:20 - 16:10 热重法对于材料的表征方法及其应用 马倩 博士 16:10 - 16:20 茶歇 16:20 - 16:50 TA热物性测试仪器及其应用 马倩 博士 16:50 - 17:30 参观陕西科技大学化学与化工学院重点实验室仪器展示现场问答 附件:材料热分析和粘弹性表征及其应用技术交流会 详情请垂询: TA仪器市场部王小姐 电话: 021-34182128 传真: 021-64951999 Email: vwang@tainstruments.com
  • 我国发现宏量合成多孔掺杂 碳纳米材料制备新途径
    p style=" text-indent: 2em " 记者从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。 /p p style=" text-indent: 2em " 碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,更受青睐。但开发简单、廉价、可控的方法宏量制备碳纳米材料依然面临巨大挑战。 /p p style=" text-indent: 2em " 有机小分子因其广泛存在、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下有机小分子的高挥发性使得其作为原料制备碳纳米材料必须使用复杂方法和设备,如化学气相沉积和高压密闭合成。 /p p style=" text-indent: 2em " 针对上述挑战,研究人员提出一种过渡金属辅助有机分子碳化的方法,通过使用过渡金属盐辅助热解有机小分子来制备碳纳米材料。在高温热解过程中,过渡金属盐不仅能提高小分子的热稳定,还能催化其聚合优先形成相应的聚合物中间体,避免有机小分子在高温热解中挥发,从而最终形成碳纳米材料。研究表明,运用这种方法制备的碳材料具有三种微观结构:竹节状的多壁纳米管、微米尺度的片和无规则的颗粒。该研究为高效制备碳纳米材料提供了一种普适的合成路线。 /p
  • 中科院开发痕量生物分子分离的纳米孔聚合物微球新技术
    p    近日,中科院理化技术研究所研究员王树涛团队与大连化学物理研究所研究员梁鑫淼团队合作,开发出一种具有亲水/疏水异质纳米孔的聚合物微球。该微球能在不同极性的溶剂中选择性吸附生物分子,进而从复杂样品中高效地分离出痕量的糖肽。相关研究成果发表于《先进材料》,研究工作得到了国家自然科学基金杰出青年基金、中组部国家“万人计划”领军人才项目和北京市科委计划项目等资金的大力支持。 /p p   目前高分子多孔材料已广泛地应用于分离领域,传统的高分子多孔材料具有均质的组成或孔隙,例如聚苯乙烯多孔微球,这些材料往往很难从复杂的样品中分离出痕量的目标分子。为了实现选择性分离,通常需要对这些材料表面进行功能基团的修饰。然而,这些修饰仅仅是在分子尺度,往往造成在材料表面的修饰密度低、不均匀等各种问题,难以消除含量较高的背景分子的非特异性吸附。在临床上,痕量疾病标志物分子的分离和检测意义重大,例如与阿尔茨海默氏症紧密相关的内源性糖肽的分离。 /p p   该工作是在乳液界面聚合的研究基础上取得的又一新进展。王树涛团队前期发展的乳液界面聚合策略,实现了拓扑结构和化学组成可调的两亲性Janus微球材料的可控制备,这些两亲性的Janus微球可用于油水乳液的高效分离。同时,这种界面聚合的方法还可以拓展到二维Janus膜材料的制备上。 /p p   王树涛表示,这种具有亲水/疏水异质纳米孔的微球为开发新型的生物分子分离材料提供了新的思路,有望应用于生物分子分离及后续的临床诊断等领域。该工作一经发表便得到了国内外同行及媒体的广泛关注。 /p p br/ /p
  • 仪器情报,科学家首次提出用于弹性导电体的互连技术!
    【科学背景】柔性和可拉伸电子技术,因其在可穿戴、皮肤贴合、机器人、生物医学和生物电子学等领域的前沿应用,已成为当前研究的热点。然而,这些技术在材料和结构布局方面的持续发展也带来了一系列挑战,其中主要问题在于缺乏简便、适应性强且可靠的电路互连技术,长期以来困扰着柔性和可拉伸电子设备的发展。目前的研究表明,传统的金属焊接和导电粘贴策略在柔性基板和电路易受损的问题上存在局限性,而自修复材料和液态金属等技术虽能实现CE电路的自连接,但在与独立制造的电子组件的粘附性和机械适应性方面仍有待进一步提升。针对这一挑战,厦门大学材料科学与工程系袁丛辉副教授张铁锐教授和戴李宗教授合作提出了一种低电压、快速的电焊接策略,通过设计由硼酸酯聚合物和导电填料组成的导电弹性体(CEs)。这种策略不仅能在环境条件下实现CEs的自焊接,并能有效地将CEs与金属、水凝胶及其他导电弹性体等材料实现焊接,还通过电化学反应触发界面粘接剂的暴露或动态键的断裂/重组来产生焊接效果。结果显示,这种电焊接技术能够确保电路接口的机械适应性和导电性,并能轻松地在千帕至兆帕范围内产生高强度的焊接连接。这一创新不仅为构建独立的柔性和可拉伸电子设备提供了坚固的平台,还为设备的灵活拆卸和按需组装提供了新的可能性,推动了柔性电子技术向更加成熟和应用广泛的方向发展。【科学亮点】(1)实验首次提出了一种低电压(1.5至4.5V)和快速(5秒)的电焊接策略,用于在柔性和可拉伸电子设备中集成刚性电子组件和软传感器。这一策略基于设计的导电弹性体,包括硼酸酯聚合物和导电填料,能够自身焊接并实现对金属、水凝胶和其他导电弹性体的焊接效果。(2)实验结果表明,通过电化学反应触发界面粘接促进剂的暴露或动态键的断裂/重组,该电焊接技术能够确保电路接口处的机械适应性和导电性。在不同电子组件(如软传感器、可变形电子元件和市售刚性电子元件)之间实现稳定的互连成为可能,同时在千帕至兆帕范围内产生可靠的焊接强度。(3)尽管金属焊接技术(如锡焊接和激光焊接)存在的高温损伤问题,以及传统导电粘贴策略的低粘接强度和复杂后处理,本文提出的电焊接技术克服了这些限制。它不仅能够在柔性基板和电路中实现可靠的互连,还为构建独立、可拆卸的柔性和可拉伸电子设备提供了坚固的平台。【科学图文】图1. C-BPE的设计和电焊接概念;Ag-BPE的导电和机械性能。图2. Ag-BPE的自焊接和Ag-BPE/金属焊接。图3. Ag-BPE/水凝胶焊接和Ag-BPE/CE焊接。图4.通过电焊接技术构建柔性和可拉伸电子设备。【科学启迪】本文创新性地将电焊接技术从传统的物理熔化过程转变为化学过程,结合了电化学反应和动态键反应。通过这种方法,能够在低电压和快速的条件下,实现导电弹性体(CEs)与不同的导电材料和电子组件的可靠焊接,包括具有刚性和软性特性的元件。这一理念不仅解决了柔性和可拉伸电子设备中常见的接口粘附、机械匹配和界面结合稳定性等问题,还显著简化了操作流程,并提高了材料的适应性。通过电化学策略精确控制动态键的可逆反应,为材料内部的新功能提供了开发空间,例如在生物电子学、能量存储和机器人技术领域的潜在应用。这种创新不仅促进了柔性电子设备的进一步发展和商业应用,还为多领域的工程应用提供了一种全新的材料连接和功能设计策略。参考文献,Haimen Lin et al. ,Electrically weldable conductive elastomers.Sci. Adv.10,eadp0730(2024).DOI:10.1126/sciadv.adp0730
  • 仿生疏水/多孔/亲水PVDF毡基摩擦材料的制备方法
    研究背景电性能、输出稳定性和使用舒适性是可穿戴发电机快速发展的三个重要指标。然而,能够同时简单改善上述三个指标的研究却很少。鉴于此,通过简单的自组装多孔结构的创建,设计了一种仿生Trimurti聚偏二氟乙烯(PVDF)摩擦材料,具有卓越的电气性能,在高环境湿度下的优异输出稳定性,以及在出汗条件下增加使用舒适性。 实验步骤1、将PVDF (Alfa Aesar)溶于DMSO和丙酮(DMSO体积分数为20%、40%、60%、80%和100%)的混合物中,在50℃下制备14 wt%聚合物溶液。2、针接15kv正电压直流电源。将转速为20rpm、覆有铝箔的鼓式收集器与2.5 kV负压直流电源连接,放置于离针尖8cm处,收集带电射流,即潮湿的前驱体。3、潮湿的前驱体在室温下干燥,形成干燥的PVDF垫(图1c)。将厚度约为12 μm的PVDF干燥垫从铝箔上剥离,切成方形垫(图1d)。4、在室温下,在超声下将碾磨过的用作牺牲模板的Na2CO3微粒掺入14 wt%PVDF / DMF溶液中2 h,掺杂的重量百分比为33%。将获得的前体混合物以600 rpm的转速旋涂在晶圆上10秒钟。5、在室温下干燥5分钟后,通过超声清洗并使用去离子水去除复合膜中的牺牲模板,然后将膜在80℃下干燥3小时。 PVDF垫上下表面的SEM图像和水接触角示意图。
  • 新材料情报,科学家发明新型环保型聚合物粘合剂!
    【科学背景】聚合物粘合剂在消费品、工业和医疗产品中扮演着至关重要的角色。随着人们对多功能性和环保要求的不断提高,聚合物粘合剂的研究逐渐成为热点。然而,现有的大多数粘合剂性能通常针对特定用途,难以适应多样化的需求,且大多源于不可再生资源,对环境造成负担。特别是α-硫辛酸(αLA)聚合物作为一种潜在的环保粘合剂,虽然在各种应用中表现出色,并具备闭环回收的能力,但在某些条件下容易发生自发解聚,这一挑战限制了其广泛应用。为解决这一问题,加州大学伯克利分校的Phillip B. Messersmith教授课题组开发了一种新型的无催化剂αLA聚合方法,显著提高了聚合物的稳定性,并拓展了其应用范围。研究团队通过对单体成分的微调,成功制备出一种在干燥和潮湿条件下均能良好发挥作用的压敏粘合剂,以及强度相当于传统环氧树脂的结构粘合剂。特别是,αLA手术强力胶在封住小鼠羊膜囊破裂的实验中,成功将胎儿存活率从0%提高到100%。这些成果表明,αLA聚合物不仅能满足多种应用需求,还支持闭环回收,具有显著的环境和应用价值。相关研究成果已在《Science》上发表。【科学亮点】1. 实验首次开发了稳定的α-硫辛酸(αLA)聚合物粘合剂,并成功避免了在存储和使用过程中自发解聚的问题。这一成果通过在聚合物中添加电亲核试剂来实现,使粘合剂在闭环回收系统中表现稳定。2. 实验通过调整单体成分,制得了适应不同环境条件的粘合剂。其中,压敏粘合剂在干燥和潮湿条件下均能良好工作,而结构粘合剂的强度与传统环氧树脂相当。这种多功能性使得粘合剂可广泛应用于各种场合。3. 实验展示了αLA手术强力胶的医疗应用。该胶成功密封了小鼠羊膜囊的破裂,显著提高了胎儿的存活率,从0%提升至100%。这一成果表明,αLA聚合物在医疗领域具有重要的应用潜力。【科学图文】图 1. 单体结构和前体溶液聚合的一般方案。图 2. S1 稳定的 αLA 聚合物的整体机械性能。图 3. αLA 强力胶的离体和体外表征。图 4. αLA 强力胶作为胎膜密封剂的体内生物学性能。图 5. 稳定αLA粘合剂的压敏和结构粘合剂性能以及生命周期图。【科学结论】本文开发了一种新型的环保型聚合物粘合剂,这些粘合剂不仅具有广泛的应用潜力,还能在多种环境条件下稳定发挥作用。通过在α-硫辛酸(αLA)聚合物中引入电亲核试剂,研究人员成功防止了闭环解聚现象,从而显著提高了粘合剂的稳定性和使用寿命。这一突破为粘合剂的设计提供了新的思路,即通过调整单体成分来优化粘合剂在干湿条件下的表现。这种粘合剂在医疗领域的应用尤为突出,如在小鼠羊膜囊修复中的成功案例,展示了其在提高胎儿存活率方面的巨大潜力。最重要的是,该研究强调了材料的可持续性和闭环回收的重要性,提出了可持续发展的解决方案,以应对传统粘合剂带来的环境挑战。总体而言,这项研究不仅推动了粘合剂领域的技术进步,也为其他材料的绿色设计提供了宝贵的参考。参考文献:Subhajit Palet al. ,Recyclable surgical, consumer, and industrial adhesives of poly(α-lipoic acid).Science385,877-883(2024).DOI:10.1126/science.ado6292
  • 拉伸性高达1300%!兼容3D打印的新材料问世
    p style=" text-indent: 2em " 目前,新加坡科技与设计大学(SUTD)数字化制造与设计(DMAND)中心和耶路撒冷希伯来大学(HUJI)的科学家们合作开发出了一组极具弹性的UV固化水凝胶,其拉伸性可高达1300 %,是UV固化3D打印方法的理想选择。目前这些水凝胶已被用来制造具有高几何复杂性和高打印分辨率的水凝胶结构。这项研究的具体内容刊登了在2018年4月刊的材料化学杂志B版中,同时它也在封面上作了介绍。 & nbsp /p p style=" text-indent: 2em " 水凝胶因具有亲水的聚合链网络,可保留大量的水分,因此在各个领域得到了广泛的应用。而最新报道显示极具弹性的水凝胶已经将其应用扩展到透明触摸板、软机器人技术和其他需要大变形的领域。 & nbsp & nbsp /p p style=" text-indent: 2em " 对于高弹性的UV固化3D打印水凝胶来说,其可拉伸强度达1300%并且与基于高分辨率数字光处理的3D打印技术相兼容,从而能够制造具有复杂几何形状的水凝胶结构,并广泛应用于生物医学和柔性电子产品等领域。 & nbsp & nbsp & nbsp & nbsp /p p style=" text-indent: 2em " 然而,传统的制造技术主要依赖于模具成型和铸造成型,然而其有限的几何复杂性和相对较低的制造分辨率极大地限制了该应用的发展潜力。结合最新的3D打印技术,人们还尝试使用3D打印技术构建几何形状更为复杂的水凝胶结构,包括多孔支架,血管网络,半月板替代物等。尽管如此,目前这种3D打印水凝胶的几何复杂性,打印分辨率以及弹性均有所不足,这些不足极大地限制了这种技术在许多领域中的应用。 & nbsp & nbsp & nbsp & nbsp span style=" text-indent: 2em " & nbsp /span /p p style=" text-indent: 2em " “我们已经开发出世界上最具拉伸性能的3D打印水凝胶样品。”来自SUTD科学与数学集团的助理教授Qi(Kevin)Ge说,他是该项目的共同领导人之一。 & nbsp & nbsp & nbsp & nbsp /p p style=" text-indent: 2em " 印刷的水凝胶样品可以拉伸高达1300%。同时,这些水凝胶与基于数字光处理的3D打印技术的相容性使我们能够制造分辨率高达7μm和复杂几何形状的水凝胶3D结构。 & nbsp & nbsp & nbsp & nbsp /p p style=" text-indent: 2em " “这些可印刷的可拉伸水凝胶显示出优异的生物相容性,这使我们能够直接3D打印出生物结构和组织,这些水凝胶具有良好的光学清晰度,使3D打印隐形眼镜成为可能。更重要的是,这些可打印的水凝胶可以形成强大的界面结合商业3D打印弹性体,这使我们能够直接3D打印水凝胶-弹性体混合结构,如弹性印刷在弹性体基质上的柔性电子板和导电水凝胶电路。”Ge教授说。& nbsp /p p style=" text-indent: 2em " 总的来说,我们相信高可拉伸性能和可UV固化的水凝胶以及基于UV固化的3D打印技术将显著增强制造生物结构和组织,隐形眼镜,柔性电子设备和许多其他应用的能力。 /p
  • 美国康塔最新培训--多孔材料的孔分析技术
    报告名称:多孔材料的孔分析技术 时间:2008年10月31日 下午2:00 地点:北京科技大学机电楼912 报告人简介: 杨正红,研究员,硕士,曾担任天然药物及仿生药物国家重点实验室仪器组组长。主要从事自由基生命科学研究,涉及粒度测定、纳米技术与纳米科学、吸附理论及氢吸附等研究领域,先后发表论文60余篇,获得国家教委科技进步二等奖一项、北京市卫生局科技进步二等奖一项。 2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。现任美国康塔仪器公司 中国大区首席代表。 报告内容简介: 报告对多孔材料,如催化剂、吸氢材料、分子筛等的孔分析技术进行详细介绍,并探讨其在各个领域的应用
  • 多孔材料表征分析技术研讨会
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2011 年9 月15 日在哈尔滨市黑龙江大学举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。  日 期:2011 年9 月15 日(星期四)  时 间:9:30 ~ 16:00  地 点:黑龙江省哈尔滨市黑龙江大学化工学院2楼报告厅  内 容: 你的孔径分析结果准确吗? --多孔材料的孔分析技术进展  背景知识  吸附理论  气体吸附法测量比表面和孔径大小  如何正确应用BET 理论计算微孔样品比表面  孔分析模型及非定域密度函数理论在孔径分析中的应用  化学吸附的应用以及对仪器的要求  新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统 比表面和孔径分析操作中应特别注意的问题及曲线分析(NOVAe 系列测试技术培训) 主讲人:杨正红(美国康塔仪器公司 中国区首席代表) 诚邀相关领域的专家、同行莅临交流! 联系报名方式: 黑龙江大学化工学院 吴伟教授 13936133828 美国康塔仪器公司北京代表处 宋绪东先生 18611382329 邮箱: songxudong@quantachrome-china.com 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理 毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。 1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。 2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。 虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。
  • 聚合物基复合材料力学测试研究进展
    为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网将于2024年8月13日举办第三届试验机与试验技术网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机产业发展、试验技术研究与应用、行业标准等分享报告。期间,上海材料研究所潘星博士分享报告《聚合物基复合材料力学测试研究进展》,讲述聚合物基复合材料重要的力学测试及其测试标准,介绍聚合物基复合材料的界面力学性能表征方法及其研究进展。本会议将于线上同步直播,欢迎试验领域科研工作者、工程技术人员等报名参会!附:第三届试验机与试验技术网络研讨会详情链接https://www.instrument.com.cn/webinar/meetings/testingmachine2024/
  • 多孔材料的孔分析技术讲座
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb-1-C系列。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司与华东理工大学化工学院将于2010年12月16日在华东理工大学举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。 日 期:2010年12月16日(星期四) 时 间:下午1: 30 ~ 下午5: 00 地 点:华东理工大学联反所报告厅 内 容:多孔材料的孔分析技术进展 Ÿ 背景知识 Ÿ 吸附理论 Ÿ 气体吸附法测量比表面和孔径大小 Ÿ 如何正确应用BET理论计算比表面 Ÿ 非定域密度函数理论在孔径分析中的应用 Ÿ 压汞法测孔技术 Ÿ NOVA系列全自动比表面和孔径分析仪测试技术培训 主讲人:杨正红 (美国康塔仪器公司 首席代表、中国区经理) 联系方式:华东理工大学联反所 陈庆军 博士 电 话:13636454811 E-mail: chenqingjunsh@163.com
  • 钱义祥——高分子物理与聚合物热分析
    p style=" text-align: center " strong span style=" font-size: 24px " 高分子物理与聚合物热分析 /span /strong /p p style=" text-align: right " 热分析老人 钱义祥 /p p style=" text-align: right " 2018-05-10 /p p   « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。 /p p   一、高分子物理与聚合物热分析 /p p   1.聚合物热分析 /p p   热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有: /p p   研究结构及动态变化 /p p   表征玻璃化转变和熔融行为 /p p   分析多组分高聚物体系的组成 /p p   研究高聚物链缠结及化学交联 /p p   研究高聚物的结晶行为 /p p   表征高聚物的微相结构 /p p   研究高聚物共混相溶性 /p p   反映共混高聚物中组分间的相互作用 /p p   研究聚合物的热历史和处理条件对高聚物结构的影响。 /p p   动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。 /p p   聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。 /p p   热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。 /p p   热分析方法是在不断发展的。如示差扫描量热仪DSC 技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC 的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。 /p p   其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC 所能提供的降温速率,因此很难利用常规DSC 模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC 的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。 /p p   近年来,出现了商业化的闪速示差扫描量热仪Flash DSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪Flash DSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。 /p p   Flash DSC在高分子的结晶方面的应用有:Flash DSC 可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,Flash DSC 所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。 /p p   Flash DSC 研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。 /p p   Flash DSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。 /p p   Flash DSC 研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。 /p p   总之,Flash DSC 在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1] /p p   2.高分子物理 /p p   高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。 /p p   高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。 /p p   高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2] /p p   高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐 僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3] /p p   3. 高分子物理与聚合物热分析 /p p   高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。 /p p   1)« 高分子物理» 关于高分子物理的研究方法的论述 /p p   何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。 /p p   « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。 /p p   2)高分子物理是一门理论和实验结合的精确科学 /p p   高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。 /p p   3)高分子物理理论解析热分析曲线 /p p   热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。 /p p   用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。 /p p   4)运用高分子物理和近代研究方法研发新材料 /p p   新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。 /p p   由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴, 在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。 /p p   在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。 /p p   南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的Flash DSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了Flash DSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。 /p p   4.用高分子物理解析高聚物热分析曲线 /p p   论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。 /p p   下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。 /p p   用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。 /p p   为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。 /p p   下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/949131bc-639b-4526-bf50-e274436c8e6b.jpg" title=" 典型非晶态聚合物的DMA曲线(温度谱).jpg" / /p p style=" text-align: center " 典型非晶态聚合物的DMA曲线(温度谱) /p p   由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。 /p p   玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。 /p p   当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4] /p p   以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。 /p p   二. 高分子物理著作 /p p   五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。 /p p   1. 胡文兵 « 高分子物理» 英文版 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1aa4cea4-6b0f-494d-a8a3-5ee692a50104.jpg" title=" Polymer Physics.jpg" width=" 400" height=" 597" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 597px " / /p p style=" text-indent: 2em " A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands. /p p   该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是: /p p   StroblG. 1997. ThePhysics of Polymers. 2nd Ed. Berlin:Springer /p p   这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金 译《高分子物理学》,北京:科学出版社,2009。 /p p   胡文兵教授最新研究:高分子结晶和熔融行为的Flash DSC研究。 /p p   2. 何平笙编著 « 新编高聚物的结构与性能» 科学出版社2009 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/88e02164-b40b-4d8a-855b-151089d39859.jpg" title=" 新编高聚物的机构与性能.jpg" width=" 400" height=" 506" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 506px " / /p p 前言 /p p   自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的& quot 高聚物结构与性能& quot 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。 /p p   高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。 /p p   作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。 /p p   本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。 /p p   值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。 /p p   如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。 /p p style=" text-align: right "   何平笙 2009年4月 /p p 内容简介 /p p   本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。 /p p   本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。 /p p   3. 何曼君 张红东 陈维孝等. « 高分子物理» 第三版 复旦大学出版社2007 /p p   是国内有代表性的高分子物理教材,为多所高校所选用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8d4bba6b-93c0-4f52-be05-deb5b6a543d9.jpg" title=" 高分子物理.jpg" width=" 400" height=" 519" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 519px " / /p p 序 /p p   本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。 /p p style=" text-align: right "   于同隐 /p p style=" text-align: right "   2006年10月 /p p style=" text-align: left " 1990年修订版序 /p p   高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。 /p p   60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger ,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。 /p p   本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。 /p p   本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。 /p p   由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。 /p p style=" text-align: right "   于同隐 /p p 第三版前言 /p p   本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。 /p p   建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。 /p p   随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。 /p p   首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了de Gennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。 /p p   本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。 /p p   在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。 /p p style=" text-align: right "   何曼君 /p p style=" text-align: right "   2006平10月1日 /p p 内容提要 /p p   本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。 /p p   全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。 /p p   本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。 /p p   4. 过梅丽 赵得禄 主编 « 高分子物理» 北京航空航天大学 2005 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/2ff9663c-26c9-48de-97e6-13af091fd610.jpg" title=" 高分子物理2.jpg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /p p 序 /p p   处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。 /p p   与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。 /p p   自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。 /p p   本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下: /p p   普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。 /p p   紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。 /p p   本书所涉及量的名称和单位符合国标规定,但有下列例外: /p p   聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。 /p p   高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。 /p p   温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。 /p p   本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。 /p p   在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。 /p p   编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。 /p p style=" text-align: right "   编者 /p p style=" text-align: right "   2005年3月14日 /p p 内容简介 /p p   本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。 /p p   本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。 /p p   5.过梅丽 « 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4208e7e3-d019-4baa-ac7f-eeab1bb30bb7.jpg" title=" 高聚物与复合材料的动态力学热分析.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p 前言 /p p   著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(If you are allowed to run onlyone test on a polymer sample, the choice should be a dynamic mechanical test of a solid sample over a wide temperature range)”。 /p p   材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。 /p p   测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanical thermal analysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。 /p p   推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。 /p p   ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。 /p p   ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。 /p p   ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。 /p p   ④ 态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析 技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。 /p p   目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。 /p p   但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。 /p p   笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPont DMA 982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了Rheometric Scientific DMTA Ⅳ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB 7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。 /p p   动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。 /p p   动态力学热分析能提供哪些信息? /p p   这些信息的物理意义是什么? /p p   如何处理与应用这些信息了? /p p   为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。 /p p   在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。 /p p   但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。 /p p   在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。 /p p   在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。 /p p   在本书撰写过程中,美国Rheometric Scientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。 /p p   在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。 /p p   内容提要 /p p   本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。 /p p   6. 朱诚身 « 聚合物结构分析» 科学出版社2010 /p p style=" text-align: left text-indent: 2em " 该书用101页的篇幅介绍了热分析方法。 /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201807/insimg/84c55c0a-7579-43f9-b5fe-e1dd74957aef.jpg" title=" 聚合物结构分析.jpg" width=" 400" height=" 506" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 506px " / /p p 第一版序 /p p   聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。 /p p   由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。 /p p   与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。 /p p   相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。 /p p style=" text-align: right "   程镕时 /p p style=" text-align: right "   中国科学院 院士 /p p 第一版前言 /p p   随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。 /p p   本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。 /p p   本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。 /p p   特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。 /p p   由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。 /p p style=" text-align: right "   朱诚身 /p p 第二版前言 /p p   本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。 /p p   参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。 /p p   与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。 /p p   修订较大的章节有: /p p   第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。 /p p   第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。 /p p   第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。 /p p   全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章 小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。 /p p   本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。 /p p   鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。 /p p style=" text-align: right "   朱诚身 /p p style=" text-align: right "   2009年7月16日 /p p 内容简介 /p p   本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。 /p p   本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。 /p p   7.现代高分子物理学(上、下册) 殷敬华 莫志深主编 科学出版社 2001 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/f9697a33-0ebd-4e17-9955-760bc0976eeb.jpg" title=" 现代高分子物理学上.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/220cdbe7-135f-46c5-b68e-0ccd89169b70.jpg" title=" 现代高分子物理学下.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p 内容简介: /p p   本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。 /p p   8. 张俐娜 薛奇 莫志深 金熹高编著 « 高分子物理的近代研究方法» 武汉大学出版社2003 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4e055736-d49c-48ed-a4cc-f7992a9da969.jpg" title=" 高分子物理近代研究方法.jpg" width=" 400" height=" 541" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 541px " / /p p style=" text-indent: 2em " 该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。 /p p   序言 /p p   高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。 /p p   同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。 /p p style=" text-align: right "   中国科学院院士 /p p style=" text-align: right "   南京大学教授 /p p style=" text-align: right "   2002年5月 /p p 内容简介 /p p   本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。 /p p   9. 刘振海 « 聚合物量热测定» 化工出版社2002 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/84786940-732a-4fb5-999e-aa7cb65e5742.jpg" title=" 聚合物量热测定.jpg" width=" 400" height=" 548" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 548px " / /p p 前言 /p p   自1963年差示扫描最热法(differential scanning calorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A. Turi ed. Thermal Characterization of Polymeric Materials. NewYork:Academic Press, 1981 2nd Edition, 1997), 该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T. Hatakeyama, F. X. Quin, Thermal AnalysisFundamentals and Applications to Polymer Science, Chichester:JohnWiley & amp Sons,1994 2ndEdition, 1999) 《高分子DSC》(V. A.Bershtein, V. M. Egorov. Differential Scanning Calorimetry ofPolymers. New York:Ellis Horwood, 1994) 国际刊物Journal ofThermal Analysis and Calorimetry于2000年第1期出版专辑Advances in Thermal Characterization of polymeric Materials。 /p p   尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulated differential scanning calorimetry, TMDSC ), 这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JTherm Anal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。 /p p   作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社, 1999 英文版, Chichester: John Wiley & amp Sons, 1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与& quot Thermal Analysis Fundamentals and Applications to PolymerScience& quot (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。 /p p   这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由Academic Press(New York)出版的学术专著: Macromolecular Physics Vol 3 Crystal Melting (1980),ThermalAnalysis (1990)和 Thermal Characterization of Polymeric Materials(2nd Edn,Turi E D ed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger, H. J. Flammersheim所著Differential ScanningCalorimetry An Introduction for Practitioners ( Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。 /p p   本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。 /p p   借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。 /p p   受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。 /p p style=" text-align: right "   刘振海(长春)畠山立子(东京)2001年9月 /p p 内容提要 /p p   本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。 /p p   本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。 /p p   近年来,国内又出版了几本新的高分子物理著作,如马德柱主编 « 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b8d46319-7149-4855-9981-f1bc2f4732d9.jpg" title=" 聚合物结构与性能结构篇.png" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8ab8609d-34fd-45b9-b521-9b7c8af3bcd2.jpg" title=" 聚合物结构与性能性能篇.png" width=" 400" height=" 519" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 519px " / /p p style=" text-indent: 2em " 华幼卿 金日光 2013,« 高分子物理» ,第四版,北京:化学工业出版社 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/01683dd6-bae7-4b66-8ee0-953320ede7f3.jpg" title=" 高分子物理3.png" width=" 400" height=" 556" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 556px " / /p p   焦 剑主编 2015 高分子物理 西北工业大学出版社 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/61354d67-bc56-4530-8714-c418d24e384f.jpg" title=" 高分子物理4.png" width=" 400" height=" 606" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 606px " / /p p   本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢! /p p style=" text-indent: 0em "   参考文献 /p p style=" text-indent: 0em "   [1] « 高分子结晶和熔融行为的Flash DSC 研究进展» 李照磊1,2周东山1胡文兵1 /p p style=" text-indent: 0em "   [2] 何曼君 张红东 陈维孝. « 高分子物理» 第三版 复旦大学出版社2007 /p p style=" text-indent: 0em "   [3] 张俐娜 薛奇 莫志深 金熹高编著 « 高分子物理的近代研究方法» 武汉大学出版社2003 /p p style=" text-indent: 0em "   [4] 朱诚身 « 聚合物结构分析» 科学出版社2010 /p p style=" text-indent: 0em "   [5] 何平笙编著 « 新编高聚物的结构与性能» 科学出版社2009 /p p style=" text-indent: 0em "   附录 /p p style=" text-indent: 0em "   有关高分子物理的教学参考书 (按出版时代排列) /p p style=" text-indent: 0em "   Alfrey. 1948.Mechanical Properties of High Polymers. New York:Interscience Publishers /p p style=" text-indent: 0em "   是早期有关高聚物力学性能的专著、至今仍有参考价值。 /p p style=" text-indent: 0em "   Flory P J. 1953. Principle of Polymer Chemistry. Ithaca: Cornell University Press /p p style=" text-indent: 0em "   是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。 /p p style=" text-indent: 0em "   钱人元,1958,高聚物的分子量测定,北京:科学出版社 /p p style=" text-indent: 0em "   是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。 /p p style=" text-indent: 0em "   柯培可Ⅱ Ⅱ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社 /p p style=" text-indent: 0em "   介绍原苏联学者的研究成果和观点,对我国有相当影响。 /p p style=" text-indent: 0em "   Mason P. Wookey N. 1958. The Rheology of Elastomers. Paris:Pergamon Press /p p style=" text-indent: 0em "   是为数不多专门讲授弹性体力学性能的著作。 /p p style=" text-indent: 0em "   徐僖,1960,高分子物化学原理。北京:化学工业出版社 /p p style=" text-indent: 0em "   为国内高校工科院校早期的高分子专业教科书,有一定影响。 /p p style=" text-indent: 0em "   Tobolsky A V. 1960. Properties and Structure of Polymers. New York: John Wiley & amp Sons lnc /p p style=" text-indent: 0em "   是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。 /p p style=" text-indent: 0em "   Tanford C. 1961. Physical Chemistry of Macromolecules. New York: John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本在高分子溶液方面写得较好的教材。 /p p style=" text-indent: 0em "   卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡 /p p style=" text-indent: 0em "   是前苏联学者的一本著作,对我国高分子物理起步有较大影响。 /p p style=" text-indent: 0em "   Bueche F. 1962. Physical Properties of Polymers. New York: Interscience Publishers /p p style=" text-indent: 0em "   是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。 /p p style=" text-indent: 0em "   Nielsen L.E. 1962. Mechanical Properties of Polymers. New York: Reinhold Publishing Corporation /p p style=" text-indent: 0em "   也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。 /p p style=" text-indent: 0em "   Volkenstein M V. 1963. Configutational Statistics of Polymeric Chains. New York :Interscience /p p style=" text-indent: 0em "   是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值, /p p style=" text-indent: 0em "   卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社 /p p style=" text-indent: 0em "   是一本较全面介绍原苏联学者成果的书。 /p p style=" text-indent: 0em "   高分子学会,1965,レオロジーハンドブック (流变学手册),东京:丸善株式会社 /p p style=" text-indent: 0em "   有很多早期的实验教据图。 /p p style=" text-indent: 0em "   MandelkernL. 1965. Crystallization of Polymers. New York:McGraw-Hill Book Company /p p style=" text-indent: 0em "   Andrews E. H. 1968. Fracture in Polymers. Edinburgh: Oliver & amp Boyd /p p style=" text-indent: 0em "   是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。 /p p style=" text-indent: 0em "   Alexander L E.1970. X-ray Diffraction Methods in Polymer Science. New York: John Wiley & amp .Sons Inc /p p style=" text-indent: 0em "   和田八三久.1971.高分子的固体物性,东京:培风馆 /p p style=" text-indent: 0em "   日本学者撰写的内容比较深的高分子物理著作。国内没有流行。 /p p style=" text-indent: 0em "   Billmeyer F W. 1971. Textbook of Polymer Science. New York,:Wiley Inierscience Inc /p p style=" text-indent: 0em "   这是一本在西方影响很大的教材,但一直没有再版, /p p style=" text-indent: 0em "   Peebols J J H. 1971. Molecular Weight Distributions in Polymers. New York,:John Wiley & amp SonsInc /p p style=" text-indent: 0em "   有不少关于聚合反应动力学统计理论的内容, /p p style=" text-indent: 0em "   Tobolsky A V, Mark H F. 1971. Polymer Science and Materials. New York,:Wiley Interscience /p p style=" text-indent: 0em "   有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。 /p p style=" text-indent: 0em "   Kakudo M. Kasai N. 1972. X-ray Diffraction Methods in Polymer Science. New York: Wiley Interscience /p p style=" text-indent: 0em "   Jenkins A D. 1972. Polymer Science,A materials science handbook, 1 and 2. Amsterdam: North-Holland Publishing Company /p p style=" text-indent: 0em "   这是一本上下两册大部头著作,内容极为丰富。 /p p style=" text-indent: 0em "   TreloarL R G. 1958. The Physics of Rubber Elasticity. 3rd Ed. Oxford: University Press /p p style=" text-indent: 0em "   一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。 /p p style=" text-indent: 0em "   高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆 /p p style=" text-indent: 0em "   论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。 /p p style=" text-indent: 0em "   小野木重治,1973,高分子材料科学,东京:诚文堂新光社 /p p style=" text-indent: 0em "   是来自日本的一本教材,也有一定影响, /p p style=" text-indent: 0em "   Kausch H H, Hassell J A, Jaffee R I. 1973. Deformation and Fracture of High Polymers,NewYork: Plenum Press /p p style=" text-indent: 0em "   内容较专一。 /p p style=" text-indent: 0em "   Haward R N. 1973. The Physics of Glassy Polymers.London: Applied Science Publishers Ltd /p p style=" text-indent: 0em "   对玻璃态高聚物的力学性能有详细介绍, /p p style=" text-indent: 0em "   晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社 /p p style=" text-indent: 0em "   这是一本有管高聚物性能测试早期的著作,当时有相当的影响。 /p p style=" text-indent: 0em "   Wunderlich B. 1973. Macromolecular Physics. Vol. Ⅰ, Ⅱ,Ⅲ. New York:Academic Press /p p style=" text-indent: 0em "   三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。 /p p style=" text-indent: 0em "   Samuels R J. 1974. Structured Polymer Properties. New York: Wiley Interscience /p p style=" text-indent: 0em "   莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译, /p p style=" text-indent: 0em "   北京:科学出版社 /p p style=" text-indent: 0em "   该书有关“高聚物材料的本质& quot 和& #39 & #39 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。 /p p style=" text-indent: 0em "   Arridge R G C. 1975. Mechanics of Polymers. Oxford:Clarendon Press /p p style=" text-indent: 0em "   是一本从力学观点讲述的高聚物力学性能的专著。 /p p style=" text-indent: 0em "   Tager A. 1978. Physical Chemistry of Polymers. Moscow: MIP Publisher /p p style=" text-indent: 0em "   是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。 /p p style=" text-indent: 0em "   Andrews E H. 1979. Developments in polymer Fracture-1. London: Applied Science Publishers /p p style=" text-indent: 0em "   是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。 /p p style=" text-indent: 0em "   Tadokoro H. 1979. Structure of Crystlline Polymers. New York:John Wiley & amp . Sons Inc /p p style=" text-indent: 0em "   Blythe A R 1979. Electrical Properties of Polymers. Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   是剑桥大学& quot Cambridge Solid State Science Series& quot 系列中的一本书。 /p p style=" text-indent: 0em "   中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社 /p p style=" text-indent: 0em "   Cherry B W. 1980. Polymer Surface Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   是剑桥大学”Cambridge Solid State Science Series”系列中的一本书。 /p p style=" text-indent: 0em "   Williams J G. 1980. Stress Analysis of Polymers. 2nd Ed. New York: John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本从力学观点讲述的专著,书中数学内容较深。 /p p style=" text-indent: 0em "   Ferry J D. 1980. Viscoelastic Properties of Polymers. New York:John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本高聚物黏弹性的专著,有很好的参考价值。 /p p style=" text-indent: 0em "   林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社 /p p style=" text-indent: 0em "   由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。 /p p style=" text-indent: 0em "   施良和,1980,凝胶色谱法,北京:科学出版社 /p p style=" text-indent: 0em "   对普及凝胶色谱法有很好作用。 /p p style=" text-indent: 0em "   Bailey R T, North A M, Pethrick R A. 1981. Molecular Motion in High polymers. Oxford: Clar- /p p style=" text-indent: 0em "   endon Press /p p style=" text-indent: 0em "   Young R J. 1981. Introduction to Polymers. London: Chapman and Hall /p p style=" text-indent: 0em "   这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。 /p p style=" text-indent: 0em "   Bassett D C. ] 981. Principles of Polymer Morphology, Cambridge: Cambridge University press /p p style=" text-indent: 0em "   是剑桥大学”Cambridge Solid State Science Series”系列中的一本书。有中文译本,即1987 /p p style=" text-indent: 0em "   年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。 /p p style=" text-indent: 0em "   潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社 /p p style=" text-indent: 0em "   该书介绍的有关形变-温度曲线的论述仍有参考价值。 /p p style=" text-indent: 0em "   彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社 /p p style=" text-indent: 0em "   范克雷维伦D W.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社 /p p style=" text-indent: 0em "   至今仍有参考价值。 /p p style=" text-indent: 0em "   尼尔生L E.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜 /p p style=" text-indent: 0em "   赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社 /p p style=" text-indent: 0em "   是为化学纤维专业写的教材。 /p p style=" text-indent: 0em "   沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社 /p p style=" text-indent: 0em "   是我国学者写的较早的有关高分子物理的专著。 /p p style=" text-indent: 0em "   Seanor D A. 1982. Electrical Properties of Polymers. New York: Academic Press /p p style=" text-indent: 0em "   Ward I M. 1982. Developments in Oriented Polymers. London: Applied Science Publishers /p p style=" text-indent: 0em "   Bohdanecky M, Ková rJ. 1982. Viscosity of Polymer Solutions. New York: Elsevier Scientific /p p style=" text-indent: 0em "   Burchard W, Patterson G D. 1983. Light cattering from Polymers. New York: Springer-Verlag /p p style=" text-indent: 0em "   尼尔生L E.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。 /p p style=" text-indent: 0em "   WilliamsDJ.1983.Nonlinear Optical Properties of Organic and Polymeric Materials.WashingtonD. C. :American Chemical Society /p p style=" text-indent: 0em "   是一本以编著形式撰写的书。 /p p style=" text-indent: 0em "   Ward IM 1983. Mechanical Properties of Solid Polymers. 2nd Ed. New York: Wiley-Interscience /p p style=" text-indent: 0em "   这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。 /p p style=" text-indent: 0em "   斯坦R S.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社 /p p style=" text-indent: 0em "   Kinloch A J, Young R J. 1983. Fracture Behavior of Polymers. London:Applied Science Publishers /p p style=" text-indent: 0em "   内容比较全面的有关高聚物断裂的专著。 /p p style=" text-indent: 0em "   北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社 /p p style=" text-indent: 0em "   Williams J G. 1984. Fracture Mechanics of Polymers. New York:John Wiley & amp Sons lnc /p p style=" text-indent: 0em "   塞缪尔斯R J.1984.结晶高聚物的性质,徐振森译。北京:科学出版社 /p p style=" text-indent: 0em "   Elias H G. 1984. Macromolecules I, structure and Properties. 2nd Ed. New York: Plenum Press /p p style=" text-indent: 0em "   韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社 /p p style=" text-indent: 0em "   Aklonis J. MacKnight W J. 1972. Minchel Shen, Introduction to Polymer Viscoelasticity. NewYork:Wiley-Interscience /p p style=" text-indent: 0em "   这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。 /p p style=" text-indent: 0em "   冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社 /p p style=" text-indent: 0em "   其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯R M.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社 /p p style=" text-indent: 0em "   是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。 /p p style=" text-indent: 0em "   吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社 /p p style=" text-indent: 0em "   可供有关专业研究生阅读。 /p p style=" text-indent: 0em "   唐敖庆等,1985,高分子反应统计理论,北京:科学出版社 /p p style=" text-indent: 0em "   卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社 /p p style=" text-indent: 0em "   是一本专门讲述高聚物中自由体积的小册子。 /p p style=" text-indent: 0em "   钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社 /p p style=" text-indent: 0em "   是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。 /p p style=" text-indent: 0em "   考夫曼H S,法尔西塔J J.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社 /p p style=" text-indent: 0em "   郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社 /p p style=" text-indent: 0em "   Doi M, Edwards S F. 1986. The Theory of Polymer Dynamics. Clarendon: Oxford University /p p style=" text-indent: 0em "   Press /p p style=" text-indent: 0em "   有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社 /p p style=" text-indent: 0em "   夏炎.1987.高分子科学简明教程,北京:科学出版社 /p p style=" text-indent: 0em "   是为师范生写的教材。 /p p style=" text-indent: 0em "   拉贝克JF. 1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社 /p p style=" text-indent: 0em "   提供大量的高分子实验,是一本高分子实验方面的权威性著作。 /p p style=" text-indent: 0em "   何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社 /p p style=" text-indent: 0em "   斯珀林L H.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社 /p p style=" text-indent: 0em "   吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社 /p p style=" text-indent: 0em "   共十本书,其中与高分子物理有关的是: /p p style=" text-indent: 0em "   (1)孙鑫,《高聚物中的孤子和极化子》,1987。 /p p style=" text-indent: 0em "   (2)吕锡慈,《高分子材料的强度与破坏》,1988。 /p p style=" text-indent: 0em "   (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。 /p p style=" text-indent: 0em "   (4)许元泽,(高分子结构流变学》,1988。 /p p style=" text-indent: 0em "   (5)古大治。《高分子流体动力学》,1988。 /p p style=" text-indent: 0em "   (6)江明,《高分子合金的物理化学》,1988。 /p p style=" text-indent: 0em "   (7)赵得禄,吴大诚,《高分子科学中的Monte Carlo方法》,1988。 /p p style=" text-indent: 0em "   (8)吴大诚,Hsu S L,《高分子的标度和蛇行理论》,1989。 /p p style=" text-indent: 0em "   日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社 /p p style=" text-indent: 0em "   朱永群,1988,高分子物理基本概念与问题,北京:科学出版社 /p p style=" text-indent: 0em "   是第一本有关高分子物理习题的书。 /p p style=" text-indent: 0em "   鲁丁J A.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社 /p p style=" text-indent: 0em "   潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社 /p p style=" text-indent: 0em "   朱善农等,1988,高分子材料的剖析,北京:科学出版社 /p p style=" text-indent: 0em "   穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社 /p p style=" text-indent: 0em "   李斌才,1989,高聚物的结构与物理性质,北京:科学出版社 /p p style=" text-indent: 0em "   周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   Campbell D, WhiteJ R 1989. Polymer Characterization: Physical Techniques. London: Chapman& amp Hall /p p style=" text-indent: 0em "   国内少有人拥有此书。 /p p style=" text-indent: 0em "   王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社 /p p style=" text-indent: 0em "   林师沛,1989,塑料加工流变学,成都:成都科技大学出版社 /p p style=" text-indent: 0em "   雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社 /p p style=" text-indent: 0em "   克里斯坦森R M.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社 /p p style=" text-indent: 0em "   杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社 /p p style=" text-indent: 0em "   胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司 /p p style=" text-indent: 0em "   是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。 /p p style=" text-indent: 0em "   Fujita H. 1990. Polymer Solutions. Amsterdam:Elsevier /p p style=" text-indent: 0em "   Schmitz K S.1990. An Introduction to Dynamic Light Scattering by Macromolecules. San Diego,Academic Press /p p style=" text-indent: 0em "   弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社 /p p style=" text-indent: 0em "   是弗洛里又一本大著,是高分予理论最重要的经典著作之一。 /p p style=" text-indent: 0em "   朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社 /p p style=" text-indent: 0em "   JoachimD E.1992,Relaxation and Thermodynamics in Polymers Glass Transition. Berlin: Akademie Verlag /p p style=" text-indent: 0em "   郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社 /p p style=" text-indent: 0em "   周其凤,王新久,1994,液晶高分子,北京:科学出版社 /p p style=" text-indent: 0em "   有不少作者自己的研究成果。 /p p style=" text-indent: 0em "   Grosberg A Y, Khokhlov A R. 1994. Statistical Physics of Macromolecules. Woodbury: AIP Press /p p style=" text-indent: 0em "   黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社 /p p style=" text-indent: 0em "   是当年的一本进展性质的汇编。 /p p style=" text-indent: 0em "   左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社 /p p style=" text-indent: 0em "   谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社 /p p style=" text-indent: 0em "   薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社 /p p style=" text-indent: 0em "   Gedde U W. 1995. Polymer Physics. London: Chapman & amp Hall /p p style=" text-indent: 0em "   叶成,习斯 J.1996,分子非线性光学的理论与实践,北京:化学工业出版社 /p p style=" text-indent: 0em "   大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社 /p p style=" text-indent: 0em "   周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   这是一本由力学专家写的书,对数学的推导有独特之处。 /p p style=" text-indent: 0em "   吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   朱善农等,1996,高分子链结构,北京:科学出版社 /p p style=" text-indent: 0em "   Doi M. 1996.Introduction to Polymer Physics. Clarendon: Oxford University Press /p p style=" text-indent: 0em "   复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社 /p p style=" text-indent: 0em "   已出第二版。 /p p style=" text-indent: 0em "   Hans-Georg E. 1997, An Introduction toPolymer Science. New York: VCH Press /p p style=" text-indent: 0em "   刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社 /p p style=" text-indent: 0em "   2004年出了第二版。 /p p style=" text-indent: 0em "   何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社 /p p style=" text-indent: 0em "   StroblG. 1997. ThePhysics of Polymers. 2nd Ed. Berlin:Springer /p p style=" text-indent: 0em "   这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。 /p p style=" text-indent: 0em "   Shi L H, Zhu D B. 1997. Polymers and Organic Solids, Beijing: Science Press /p p style=" text-indent: 0em "   这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社 /p p style=" text-indent: 0em "   是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。 /p p style=" text-indent: 0em "   蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社 /p p style=" text-indent: 0em "   该书中有关聚乙烯热学性能的介绍很有参考价值。 /p p style=" text-indent: 0em "   邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社 /p p style=" text-indent: 0em "   江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社 /p p style=" text-indent: 0em "   是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。 /p p style=" text-indent: 0em "   吴人洁等,1998,高聚物的表面与界面,北京:科学出版社 /p p style=" text-indent: 0em "   吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社 /p p style=" text-indent: 0em "   托马斯EL. 1999,聚合物的结构与性能,北京:科学出版社 /p p style=" text-indent: 0em "   是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。 /p p style=" text-indent: 0em "   朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社 /p p style=" text-indent: 0em "   介绍导电高聚物的专著,有许多我国科学家的研究成果。 /p p style=" text-indent: 0em "   王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社 /p p style=" text-indent: 0em "   是为合成纤维专门化的学生写的教材。 /p p style=" text-indent: 0em "   顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社 /p p style=" text-indent: 0em "   金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社 /p p style=" text-indent: 0em "   工科院校所用教材,2007年已出第三版。 /p p style=" text-indent: 0em "   闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社 /p p style=" text-indent: 0em "   是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。 /p p style=" text-indent: 0em "   杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社 /p p style=" text-indent: 0em "   何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社 /p p style=" text-indent: 0em "   平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社 /p p style=" text-indent: 0em "   是一本有关高分子科学的高级通俗读本。 /p p style=" text-indent: 0em "   Sperling L H. 2001. Introduction of Physical Polymer Science. 3rd Ed. New York: Wiley /p p style=" text-indent: 0em "   布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社 /p p style=" text-indent: 0em "   殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社 /p p style=" text-indent: 0em "   名为研究生教材,实际上是一本很好的进展性专著。 /p p style=" text-indent: 0em "   韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社 /p p style=" text-indent: 0em "   既有高分子化学内容也有高分子物理内容。 /p p style=" text-indent: 0em "   Bower D I. 2002. An Introduction to Polymer Physics. Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   化学工业出版社2004年以”国外名校名著”系列影印出版了该书。 /p p style=" text-indent: 0em "   刘振海,2002,聚合物量热测定,北京:化学工业出版社 /p p style=" text-indent: 0em "   杨小震,2002,分子模拟与高分子材料,北京:科学出版社 /p p style=" text-indent: 0em "   附有软件光盘,很实用,其软件可利用来开设高分子物理实验。 /p p style=" text-indent: 0em "   过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社 /p p style=" text-indent: 0em "   是一本很好的有关高聚物动态力学测试的著作。 /p p style=" text-indent: 0em "   吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社 /p p style=" text-indent: 0em "   是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。 /p p style=" text-indent: 0em "   Qian R Y (钱人元),2002. Perspectives on the Macromolecular Condensed State. Singapore: World Scientific /p p style=" text-indent: 0em "   这是钱人元院士把自己在& #39 & #39 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。 /p p style=" text-indent: 0em "   Colby R B. 2002. Polymer Physics. Oxford: Oxford University Press /p p style=" text-indent: 0em "   TeraokaI. 2002. Polymer Solutions: An Introduction to Physical Properties. New York: John /p p style=" text-indent: 0em "   Wiley & amp Sons Inc /p p style=" text-indent: 0em "   非常好的有关高分子溶液的专著,内容较深。 /p p style=" text-indent: 0em "   张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。 /p p style=" text-indent: 0em "   de Gennes. 1979. Scaling Concepts in Polymer Physics. Ithaca:Cornell University PressGennes /p p style=" text-indent: 0em "   Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让 /p p style=" text-indent: 0em "   摘自« 新编高聚物的结构与性能» 何平笙编著 科学出版社 /p
  • 多孔材料表征分析技术研讨会将在广州举办
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附   比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪 1978年首次将连续扫描注汞技术应用到压汞仪中 1982年发明世界第一台多站自动比表面和孔隙度分析仪...... 至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪—Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪——Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。   为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2011 年5 月25日在广州市华南理工大学举办“粉体和多孔材料表征分析技术研讨会”,欢迎光临指导。    日 期:2011 年5 月25 日(星期三)    时 间:9:30 ~ 16:00    地 点:广东省广州市华五山路南理工大学五山校区材料学院(25号楼3楼会议室)    内 容: 你的孔径分析结果准确吗?   --多孔材料的孔分析技术进展   l 背景知识   l 吸附理论   l 气体吸附法测量比表面和孔径大小   l 如何正确应用BET 理论计算微孔样品比表面   l 孔分析模型及非定域密度函数理论在孔径分析中的应用   l 化学吸附的应用以及对仪器的要求   l 2010 年新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统   l 比表面和孔径分析操作中应特别注意的问题及曲线分析 (NOVAe 系列测试技术培训)   主讲人:杨正红(美国康塔仪器公司 中国区首席代表)   诚邀相关领域的专家、同行莅临交流!   联系报名方式:   美国康塔仪器公司北京代表处 陈小姐 010-64401522 800-810-0515 E-mail: chenliwen@quantachrome-china.com   美国康塔仪器公司上海办事处 朱小姐 021- 021-5282 8278 E-mail: zhuleina@quantachrome-china.com   美国康塔仪器公司广州办事处 蔡先生 18602045808 E-mail: caidabin@quantachrome-china.com   u 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理   毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。   1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。   2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。   虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。   乘车路线:公交20,41短,78,197,218,405,B10华工站下车(华工正门), 地铁3号线五山地铁站下车。
  • 多孔材料表征分析技术研讨会将在青岛举行
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2012 年06 月08日在青岛山孚大酒店举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。  日 期:2012 年06 月08日(星期五) 举行技术研讨会  时 间:9:00 ~ 16:00  地 点:青岛山孚大酒店第三、四会议室 青岛市南区香港中路96号 内 容: 你的孔径分析结果准确吗? --多孔材料的孔分析技术进展  背景知识  吸附理论  气体吸附法测量比表面和孔径大小  如何正确应用BET 理论计算微孔样品比表面  孔分析模型及非定域密度函数理论在孔径分析中的应用  化学吸附的应用以及对仪器的要求  2010 年新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统 比表面和孔径分析操作中应特别注意的问题及曲线分析 (NOVAe 系列测试技术培训) 主讲人:杨正红(美国康塔仪器公司 中国区首席代表) 诚邀相关领域的专家、同行莅临交流! 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理 毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。 1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。 2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。 虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。
  • 城市环境所在废弃生物质多孔碳电容脱盐电极材料研究中取得进展
    近日,中国科学院城市环境研究所郑煜铭团队(污染防治材料与技术研究组)在废弃生物质多孔碳应用于电容脱盐方面取得新进展。该研究揭示了提高碳电极材料石墨氮含量对增强电容脱盐性能的内在机制。 碳材料因储量丰富、环境相容性高,成为电容去离子(Capacitive deionization,CDI)电极材料研究的热点。然而,制备良好亲水性、高比表面积、适合孔径分布、高导电性、稳定电化学性能的碳电极材料颇具挑战性。因此,亟需发展一种绿色、低成本的方法来制备具有特定形态或孔隙结构的杂原子掺杂碳电极材料。近年来,杂原子掺杂工程为制备高性能CDI电极材料提供了新思路。基于此,中国科学院城市环境研究所郑煜铭团队以溶解有废弃蚕茧的汰头废水为氮和碳源,运用ZnCl2活化-碳化工艺制备了氮掺杂分级多孔碳(NPC),并将其作为电极材料用于CDI脱盐,实现废弃物资源化(如图)。研究发现:提高石墨氮含量可有效降低电极材料本征电阻,减小脱盐能耗;同时可增加电极材料内部缺陷形成赝电容吸附位点,进一步增大脱盐容量。优化后的NPC-1.5电极材料的电吸附容量可达22.19 mg g-1,平均脱盐速率为1.1 mg g-1 min-1,优于已报道的活性炭和其他多孔碳电极材料;经过50次循环利用后,NPC-1.5仍能保持初始电吸附容量的97%,表明该材料在海水淡化方面具有应用潜力。 相关研究成果以Silkworm cocoon waste-derived nitrogen-doped hierarchical porous carbon as robust electrode materials for efficient capacitive desalination为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到国家自然科学基金面上项目和中国科学院青年创新促进会等的支持。  NPC的制备及其CDI脱盐示意图
  • 美国康塔举办多孔材料孔分析技术讲座
    美国康塔仪器公司在2008年第四季度分别在北京,浙江和上海举行了"多孔材料的孔分析技术"的系列巡回培训讲座,超过260个用户,学者和研究生出席并得到热烈反响.   主讲人杨正红首席代表在大学从教十年,有着丰富的教学经验.他把非常枯燥的理论问题深入浅出地讲解出来,并结合实践中经常遇到的问题,使多年困惑与会者的问题找到了答案. 一些实验和分析中经常被忽视的问题引起了大家的重视.   上海的一个用户说: "我多次听过杨老师的讲座,但每次听都有新意.希望能得到杨老师或其它专家的多次指导,以发挥出康塔仪器的潜在功能."   康塔公司将采纳用户意见,近期将开通网上论坛,以便在线交流,得到最快捷的信息支持.   下图为在上海复旦大学举办的讲座会场:
  • 赛默飞世尔将在Chinaplas上展出多功能聚合物用系列产品
    解决方案全面涵盖研究、测试、监控与生产等各个环节 中国,广州(2011年5月9日) &ndash 全球服务科学领域领导者赛默飞世尔科技有限公司今天宣布,其将在Chinaplas 2011展会(5月17-20,中国广州)9.2展厅J51展位展出聚合物用系列产品。赛默飞世尔科技公司的产品组合适用于从研究、测试直至监控,小规模生产与质量控制等各个聚合物生产工艺环节。Chinaplas展会是向中国市场充分展示最先进、最具创新性的塑料与橡胶设备解决方案的一个绝佳平台。 赛默飞世尔科技有限公司材料物性表征业务部副总裁兼总经理Markus Schreyer介绍说,&ldquo 参观我公司展位的嘉宾将有机会详细了解我们系统化咨询与应用支持服务,并全方位考察我公司仪器、设备与软件产品线。同时可了解我们是如何帮助科学家与厂商提高产品质量与生产效率,减少原材料浪费,缩短工艺周期。&rdquo 赛默飞世尔的宣传语是&ldquo 聚合物与塑料优化工艺从这里开始&rdquo ,主要展出聚焦以下产品: · 微量混合与样品制备 · 模块化实验室挤出机与混合器 · 聚合物加工 · 流变仪 · 在线厚度测量与控制 · 便携式x射线荧光光谱(XRF)分析 公司将在本次展会中展出其在线厚度测量系列的最新产品Thermo Scientific IPlus!厚度测量和控制系统。IPlus!是一套坚固可靠的总基重或厚度测量与控制系统,能够提高产品一致性和产品质量,节约原材料耗用量,优化生产线使用效率。该系统操作便捷,适用于流延薄膜、挤出片材、PVC 压延以及挤出涂层等多种应用。此外,IPlus!系统还具有高附加值功能,可大幅提高生产质量,实现生产目标。 赛默飞世尔在展会上还将重点推介以下产品和解决方案: - Thermo Scientific Niton FXL(field x-ray lab) 与获奖产品Niton XL3t系列XRF分析仪。Niton FXL是Niton XRF便携式分析仪系列的最新产品,非常适用于消费品与电子产品检测,性能极佳,最大限度降低生产线检测需求,并提供精确度超高的加密式防篡改数据。它的XRF元素分析性能可达实验室级别,可检测多达40种关键元素,检出限低。Niton FXL元素分析仪采用小巧的便携式设计,可在几乎任何地方进行操作,性能极佳,功能丰富,机动性极强。 - Thermo Scientific哈克微量混合流变仪(HAAKE MiniLab)可与Thermo Scientific哈克微量注射成型仪(HAAKE MiniJet)连接使用。采用Thermo Scientific哈克微量混合流变仪(HAAKE MiniLab)可对5克或7立方厘米的小样品进行混合操作及粘度测试。该仪器采用了成熟的锥形双螺杆技术,配有同向或反向旋转螺杆,即可独立工作(带数据导出功能),也可完全由计算机控制。与Thermo Scientific哈克微量注射成型仪(HAAKE MiniJet)相连后,可将混合后的材料轻松制成各种测试样条,再采用Thermo Scientific 哈克旋转流变仪(HAAKE MARS)进行测量。 - 采用哈克旋转流变仪(HAAKE MARS)可对聚合物熔体和固体(采用扭转DMTA夹具)的粘弹性进行测试, 可实现应力、应变、拉伸、时间、频率与温度测量等多种功能。哈克旋转流变仪(HAAKE MARS)配备多种聚合物专用配件,如扩展温度单元、FT-IR红外光谱或光学显微镜接口、紫外光固化装置、拉伸测试平台(SER)以及DMTA 夹具等。 - Thermo Scientific 哈克转矩流变仪平台(HAAKE PolyLab QC)。该测量混合器与挤出系统完全符合当前与未来的质控要求,可在混合器、单螺杆挤出机或锥形双螺杆挤出机之间任意互换。 欲了解更多产品信息请访问我们的网站www.thermoscientific.com (英文),或www.thermo.com.cn (中文)。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。 欲了解更多信息,请浏览公司网站:www.thermofisher.com,或中文网站:www.thermofisher.cn。
  • 康塔将在广州举办多孔材料分析技术讲座
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......,至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪—Autosorb-1-C系列。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司与中山大学理工学院环境材料研究所将于2009年5月27日在中山大学举办“粉体和多孔材料表征分析技术研讨会”,欢迎光临指导。 日期:2009年5月27日(星期三) 时间:上午9:00 – 下午4:30 地点:中山大学理工学院讲学厅 广州市新港西路135号 内容:多孔材料的孔分析技术---- 大孔,介孔和微孔 • 背景知识 • 压汞法测孔技术 • 吸附理论 • 气体吸附法测量孔隙度 • 样品分析 • 数据处理 • 异常吸附等温线原因分析 • 案例分析:对BET结果的影响因素 为了便于会务安排,请将回执与5月25号前传真、邮寄或发电子邮件至美国康塔仪器公司广州办事处或中山大学环境材料研究所。 联系方式:美国康塔仪器公司广州办事处 广州市水荫路2号华信大厦东座1707室(510075) 梁小姐 TEL:020-37605538 FAX:020-37604183 Email: ksbchen@21cn.com 中山大学理工学院环境材料研究所 肖敏博士 电话/传真:020-84115506 Email:stsxm@mail.sysu.edu.cn
  • 哈克流变仪在聚合物改性、加工和表征方面应用研讨会(南京、北京)
    随着我国现代科技发展和专业技术人才队伍建设的需要,为了进一步提高相关人员的基础理论和技能水平,促进研究单位和企业技术创新和产品科技含量的提升,赛默飞世尔科技(中国)有限公司联合南京大学、清华大学举办&ldquo 流变在聚合物改性、加工和表征方面应用研讨会&rdquo 。 本次研讨会将由哈克流变仪资深技术人员为您讲解最新技术和应用,同时也邀请了南京大学、清华大学和中科院化学研究老师介绍最新的研究成果,并借此机会首次在国内发布最新的产品和技术。 我们诚挚地邀请您参加本次会议,共同讨论材料结构&mdash 流变性能&mdash 在聚合物加工成型工艺中的应用及其最新进展。 主题:从聚合物的流变性能摸索改性方法、工艺参数和结构表征 时间和地点: 第一场:南京,2012年4月24日上午9:00-16:00,南京大学化学楼图书馆(北京西路门进入) 第二场:北京,2012年4月26日上午9:00-16:00,清华大学英士楼二楼 内容: 1、技术报告: 1) 聚合物改性加工工艺设计方法,流变行为的特点; 2) 粘弹性相分离体系在剪切场下的相分离行为和机理; 3) 转矩流变仪在聚合物改性及加工中的应用; 4) 旋转流变仪在聚合物改性及加工中的应用; 2、哈克流变仪 2012新品发布:Process 11和红外流变联用新技术 注册表Registration Form Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone电话 Address 地址 The following Colleague will be attending as well: 下列同事将与我一起参加: Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone电话 Address 地址 请将报名表Email至:info.mc.china@thermo.com 或传真至:021-61002125 或电话咨询:021-68654588-2257 本次会议不收取会务费,并免费提供午餐和会议资料。 坐席有限,请尽快报名! 赛默飞世尔科技(中国)有限公司 2012年4月10日 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 和 www.thermofisher.cn (中文)。
  • 液相干货分享 | 如何正确测量聚合物的分子量
    当我们从上游厂家买回一批聚合物样品时,测得的分子量却与厂家提供的不同,那这是怎么回事呢?在弄清楚原因之前,不妨先来一起学习下凝胶渗透色谱/体积排阻色谱( GPC/SEC )的基本原理和应用。GPC 色谱柱为多孔填料,当样品与填料无吸附、排斥等相互作用时,分子体积越大的组分能够穿过的孔越少,行走的路程越短,也就越早从色谱柱中洗脱出来。图为 Agilent Infinity II 多检测器 GPC 系统图为 Agilent 高温 GPC系统 PL220根据 GPC 应用的方向,通常可以归纳为以下三种:样品前处理(去除大分子基质)组分分离定量聚合物分子量/结构检测表1. GPC 三种应用方向对比使用 GPC 来测量聚合物分子量和分子量分布,除了将不同聚合度的组分分离之外,我们还需要另外两点信息:不同保留时间流出组分的浓度和分子量。浓度的信息可以通过浓度型检测器得到,如示差折光检测器和紫外检测器。各保留时间流出组分的分子量信息的得到却不是特别容易,常规 GPC 是选用一组不同分子量的窄分子量分布标准品,来对色谱柱进行标注,得到保留时间 - 分子量的曲线,再由校正曲线来计算样品的分子量。常用的标准品种类很少,如果标准品和样品的化学结构、拓扑结构不同,得到的样品分子量就不是样品的绝对分子量,而是相对于标准品的相对分子量。图为常规 GPC 分子量计算原理示意图由此看来,标准品的选择是造成计算结果差异的可能原因之一。为了解决这部分带来的差异,确认与上游产家使用相同的标准品类型。当然如果上游厂家与我们都能得到样品的准确分子量,也可以减小数据的差异,普适校正是一种方式。普适校正就是通过 Mark-Houwink 方程和 Flory特性粘度理论,建立起分子量与分子体积的数学关系,从而建立保留时间 - 分子体积的曲线。说起来有些复杂,操作很简单,只需要在 GPC 软件输入样品和标样的两个参数 K,α 就可以了。但这种方法不适用于所有样品,比如不同支化程度的样品是无法查到其在不同溶剂/温度下的K,α。图为不同支化程度样品的合成(控制 AB2 单体加入量)还有一个更加直接得到绝对分子量的方式,就是使用静态激光光散射检测器,根据瑞利散射原理直接得到样品的绝对分子量;如果再搭配特性粘度检测器,可同时得到样品的特性粘度信息,建立 Mark-Houwink 曲线,用于判断样品的支化情况。图为不同支化程度样品通过 Agilent 激光光散射-示差-粘度三检测器联用 GPC 得到的 Mark-Houwink 曲线(蓝色、红色、绿色曲线对应样品的支化度依次增高) 除了标准品的选择以外,色谱柱的选择、校正曲线的拟合次数以及积分起终点的判断等都可能引起结果的差异。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 多孔材料表征分析技术研讨会将在上海嘉登道饭店举行
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪 1978年首次将连续扫描注汞技术应用到压汞仪中 1982年发明世界第一台多站自动比表面和孔隙度分析仪...... 至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪—Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪——Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。   为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2011 年6 月24   日在上海市嘉登道大饭店举办“粉体和多孔材料表征分析技术研讨会”,欢迎光临指导。    日 期:2011 年6 月23 日(星期四)    时 间:9:30 ~ 17:00    地 点:上海市徐汇区老沪闵路689号嘉登道大酒店嘉悦厅(1楼)    内 容: 你的孔径分析结果准确吗? --多孔材料的孔分析技术进展  背景知识  吸附理论  气体吸附法测量比表面和孔径大小  如何正确应用BET 理论计算微孔样品比表面  孔分析模型及非定域密度函数理论在孔径分析中的应用  化学吸附的应用以及对仪器的要求  2010 年新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统 比表面和孔径分析操作中应特别注意的问题及曲线分析(NOVAe 系列测试技术培训)   主讲人:杨正红(美国康塔仪器公司中国区首席代表)  诚邀相关领域的专家、同行莅临交流!   联系报名方式:  美国康塔仪器公司上海办事处 朱小姐 021-021-5282 8278  E-mail: zhuleina@quantachrome-china.com 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理   毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。   1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。   2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。   虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。   乘车路线:公交111 973 857 957 157 156 轨交1 3号线,731,720,
  • 农残检测新进展|新型多孔复合材料可有效提高有机磷农药残留分析的准确性
    有机磷农药,是指含磷元素的有机化合物农药。主要用于防治植物病、虫、草害,在农业生产中的广泛使用,导致农作物中发生不同程度的残留。有机磷农药对人体的危害以急性毒性为主,多发生于大剂量或反复接触之后,会出现一系列神经中毒症状,如出汗、震颤、精神错乱、语言失常,严重者会出现呼吸麻痹,甚至死亡。虽然在蔬菜上应用的剧毒、高毒有机磷农药大多已被列入禁限用范围,但实际生产中仍存在有机磷农药违法违规使用现象。因此,建立有机磷农药高效前处理和精准检测技术,严格控制其残留水平,对于保障蔬菜产品质量安全具有重要意义。近日,中国农业科学院蔬菜花卉研究所质量安全课题组探索出新型多孔复合材料(3DGA@COFs)的制备方法,并成功应用于蔬菜有机磷农药残留分析,为有效提高有机磷农药残留定量准确度和检测效率提供了新路径。相关研究成果发表在《食品化学(Food Chemistry)》上。据徐东辉研究员介绍,该团队创造性地通过三维石墨烯水凝胶(3DGA)的柔性表面引导COFs自组装生长,成功制备了3DGA@COFs复合材料,证实了该材料可有效吸附富集蔬菜中的马拉硫磷、喹硫磷和三唑磷等有机磷农药残留,并具有优异的再生性能。结合固相萃取技术,该研究成功地建立了一种灵敏度高、选择性强、重现性好的有机磷农药检测方法。在最优条件下,方法的最低检测限为0.01微克/升-0.14微克/升,线性范围检测覆盖了0.50微克/升-100微克/升,显著提高了有机磷农药残留前处理方法的准确性和稳定性。该研究得到国家自然科学基金、国家重点研发计划、国家大宗蔬菜产业技术体系及中国农科院科技创新工程等项目的资助和农业农村部蔬菜质量安全控制重点实验室的支持。
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科 作者机构:青岛科技大学 橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractThe performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality, the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example, the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride), special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the β and γ crystal modifications. Therefore, it is of great significance to disclose the structure formation mechanism of polymers at all levels, to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper, we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers, including a brief introduction of the working principle of transmission electron microscopy, special techniques used for sample preparation and for instrument operation to get high-quality experimental data, analysis of the results and correlation of them to different structures.关键词聚合物   透射电子显微镜   样品制备   仪器操作   结构解释 KeywordsPolymer   Transmission electron microscopy   Sample preparation   Instrument operation   Structure explanation  聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性. 首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能. 例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5]. 对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能. 以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90 MPa和10 MPa,分子链高度取向后,模量增加到90 GPa,增幅为3个数量级,强度(3 GPa)也增加了近300% [6]. 另外,有机光电材料的性能也与分子链排列方式密切相关[7~12]. 对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20]. 由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关. 因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据. 经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势. 如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等. 相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42]. 当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59]. 例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775 nm)和c-轴(0.777 nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54]. 透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60]. 例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献. 然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术. 实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察. 为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜. 如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积. 基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰. 另外,考虑到人眼的分辨本领大概为0.1 mm,而光学显微镜的极限分辨率为0.2 μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2 μm放大到人眼能分辨的 0.1 mm. 由此可见,要观察更细微结构需要提高显微镜的分辨率. 根据瑞利准则,光学显微镜的分辨本领可表示为:Fig. 1Sketch illustrating the working principle of optical microscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA = nsinα. 可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1 μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26 × V−−√式表示,根据该公式,100 kV和200 kV电压加速电子束的波长分别为0.00387 nm和0.00274 nm,经相对论修正后变为0.0037 nm和0.00251 nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发. 如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objective lens)以及投影镜(projection lens)均由磁透镜替代了光学显微镜的玻璃透镜. 另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜. 例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig. 2Sketch illustrating the working principle of electron microscope.Fig. 3Sketch shows different electrons generated after interaction of the incident electrons with the atoms in the sample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1 µm的水. 因此,要求电镜观察用样品非常薄,在200 nm以内,最好控制在30~50 nm. 用于高分辨成像的样品需更薄,最好为10 nm左右. 因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性. 一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构. 另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品. 基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法. 下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的. 支撑膜的厚度一般为10 nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现. 如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60 ℃干燥后便可投入使用. 根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5 wt%~1.5 wt%范围内. 对有经验的学者而言,滤纸捞膜法更简洁. 如图4(b)所示,用浓度为0.5 wt%~1.5 wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig. 4Sketch illustrating the ways for preparing nitro cellulose (NC) supporting membrane used in electron microscopy experiments. (a) Sedimentation of the NC membrane on copper grids. (b) Filter paper fishing of copper grids supported by the NC membrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得. 如图5(a)所示,将沉浸于0.1 wt%~0.2 wt% PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig. 5A diagram illustrating the preparation of PVF support film through dipping a clean glass slide into its chloroform solution (a) and then floating the thin PVF layer onto the surface of distilled water (b).2.1.3无定型碳支撑膜制备用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a) 悬浮法. 对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b) 微量喷雾法. 用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集. 为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上. 微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c) 干撒法. 对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.
  • 卓祥科技参加“第十届先进纤维与聚合物材料国际会议”并做演讲
    10月17日,杭州卓祥科技有限公司赴上海富悦酒店参加第十届先进纤维与聚合物材料国际会议。会议现场先进纤维与聚合物材料国际会议(ICAFPM)由东华大学发起举办并主办,每两年举行一次,已成为世界上以“纤维”为主题的规模巨大的学术盛会之一。会议期间,来自海内外的800余名专家学者围绕“纤维让世界更美好”这一主题,聚焦先进纤维和聚合物材料相关领域的基础理论研究和进展,面向世界性共同重大需求,深度把握国际学术前沿,积极拓展纤维研究领域,开展深入而广泛的学术研讨交流。演讲现场解答疑问
  • 第六届“国际多孔材料表征:从埃到毫米”研讨会成功举行
    拥有超过15年历史、由著名的Rutgers University的 Alexander Neimark教授担任主席的 &ldquo 国际多孔材料表征:从埃到毫米&rdquo 研讨会(CPM)在新泽西成功举办5次之后,首次在南佛州美国康塔仪器公司总部所在地举办。 本次研讨会由美国康塔仪器公司承办,由著名的Rutgers University的 Alexander Neimark教授和美国康塔仪器公司应用总监Dr. Matthias Thommes担任主席,于4月30日至5月2日在著名的Delary Beach举办。研讨会共有8个大会邀请报告、37个口头报告和90余板报,一百多名来自世界各地的科学工作者齐聚一堂探讨多孔材料结构表征、流体传质、材料功能化中的理论、计算及实验问题。 该研讨会为业内科研工作者提供了专业高效的交流平台,详情请见 http://cpm6.rutgers.edu/forum.html. 会后,70余名资深专家应邀参观了位于Boynton Beach的美国康塔仪器公司总部。通过与公司研发、应用相关部门的交流增进了对仪器生产、研发的了解,Alexander Neimark教授等人盛赞美国康塔仪器公司在精确表征物理吸附、化学吸附方面做出的努力,为严谨的科学研究提供了有力保证。
  • 浙大攻克世界性难题:让石墨烯有弹性
    p   在80后90后的童年记忆中,有一个著名的历史故事,司马光砸缸。当陶土做的水缸被石块砸了一下,就破了一个洞,水流出来了,掉在缸里的孩子也得救了。 /p p   而对于女孩子来说,跳皮筋是洋溢着欢快笑声的集体游戏,在牛皮筋的一勾一拉中,旋转,跳跃,不停歇。 /p p   这两个童年记忆,其实包含着一个自然界的普遍规律,玻璃、陶瓷这样的无机材料通常都是又脆又硬的,没有什么弹性,而橡胶这类的有机材料韧性好,弹性足,可以反复拉伸。 /p p   如何让无机材料变得像有机材料那样可以回弹,是世界很多科学家的努力目标。 /p p   这其中就有浙江大学高分子科学与工程学系的高超教授团队。最近,他们的研究取得了突破性进展,设计制备出了高度可拉伸的全碳气凝胶弹性体,并且表现出优异的性能,今后有望应用在柔性器件、智能机器人及航空航天等多个领域。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/99d0c873-4a30-4542-90ee-86367a879173.jpg" title=" 3.jpg" / /p p   论文发表在国际著名期刊《自然通讯》,共同第一作者为博士生郭凡、姜炎秋,通讯作者为许震特聘研究员、高超教授。 br/ /p p    strong 打破物质的本性 /strong /p p   材料科学的发展一直与人类文明密切相关。现如今我们已经拥有了各种各样的材料。可是让科学家烦恼的是,无机材料耐高低温但没有弹性,有机材料有弹性却又不耐高低温。 /p p   如果能研究出一种无机材料,在保持耐高低温的同时具备一定的弹性,该多好啊。“这样就能扩大材料的使用范围。我们做科学研究就是要打破物质的本性,这样才能发现新性能,寻找新用途。” /p p   研究团队在研制这一新材料时,聚焦的无机物材料为碳。因为碳所特有的导电性能,为未来应用提供了更多可能性。他们发现,高分子弹性体,比如橡胶,分子是链状结构,就像柔软的棉线团,有很多缠结的地方可以被拉开,当外力去除,这些高分子的“棉线”又重新缠结变成线团。无机物之所以不能拉长再回弹,就是因为没有相似的结构。 /p p   这时候,高超团队搬出了他们的研究老伙伴,石墨烯。他们希望能在“一片片”的石墨烯中制造出一些褶皱,将高分子的可拉伸“线团结构”拓展成为石墨烯中可拉伸的“纸团结构”,来提高石墨烯的延展性。 /p p   团队借鉴生物学理念,从肌肉和关节的拉伸中寻找答案,设计出类似传统拉缩式灯笼的结构,并用3D技术打印出来,通过限位压缩定型,形成一些“褶皱”。这时候,石墨烯材料可以拉伸100%。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/96def27c-0e76-4da6-b6ea-cf62831f59ba.gif" title=" PT180405000012hNkQ.gif" / /p p   继续拉伸,石墨烯的“一片片”分子结构之间就会出现裂纹。怎么办?团队引入了另外一种纳米材料——碳纳米管,在石墨烯的片层之间打上“补丁”。这样一来,石墨烯就可以拉伸200%了。 br/ /p p   高超教授说,这种全碳气凝胶弹性体具有优异的抗疲劳性能,在拉伸200%的状态下,可稳定循环至少100圈 在100Hz、1%应变的状态下,可稳定循环至少百万次。“之前一些研究是在有机材料上涂一层无机材料,以此来实现可拉伸。我们这套方法是改变了材料的本身特性。” /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/eb23600f-2e7b-4eed-b973-5aac366964dd.jpg" title=" 4.jpg" / /p p   对于这一新型材料的未来发展前景,高超教授表示,可以应用到与仿真机器人相关的导电弹性体上,比如电子皮肤等等。“更大的意义,我们希望开拓一个新的研究领域。当大家都在研究气凝胶的压缩性能时,我们希望换一种思路,从拉伸这个方向开展研究。” br/ /p p    strong 从一只雁到一群雁 /strong /p p   高超团队与石墨烯的情缘已有十年之久。“石墨烯本身是一个‘很小’的材料。国际科研领域已经对它的纳米级结构分析得非常透彻了,我们想看看,把它组装起来变‘大’后会怎么样。”10年前的2008年,高超被引进加入浙大高分子系后,为自己定了一个清晰的全新研究方向——石墨烯宏观组装。 /p p   他用一首儿歌来解释这项研究。“秋天到了,一行大雁往南飞,一会排成一字形一会排成人字形。”当一群大雁在飞行时,我们一眼就能看出雁群的形状,反倒是一只大雁在空中飞的时候,我们很难看清楚它的结构。 /p p   通过群效应团队发现了氧化石墨烯的液晶现象。在一次实验中,团队成员把氧化石墨烯倒进一个杯子,偶然对着光一晃,发现杯中出现了彩色带。这是什么原因呢?团队顺藤摸瓜,发现氧化石墨烯在溶液中的浓度达到某个临界值时,会自发进行取向排列,不但可以流动还高度有序。 /p p   又有一次实验,成员把两条氧化石墨烯纤维放在一起,过了一会儿,这两条纤维居然“焊”在一起了。原来氧化石墨烯有一种“自融合”的本领。 /p p   从这两大发现出发,团队“倒腾”出了四大发明:石墨烯纤维、石墨烯组装膜、石墨烯泡沫、石墨烯无纺布,科研成果发表在《自然通讯》和《先进材料》等国际著名期刊上。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/4097cb8e-708a-4cfb-ae4d-85994a64a7d4.jpg" title=" 5.jpg" / /p p   高超说,一流是要不断奋斗出来的,“不是说做好一个工作就行,而是要不断推进”。在团队建设中,高超也非常强调“一流”,认为要有一流的文化、一流的平台、一流的待遇,最终产出一流的成果。他经常跟学生说:“科研首先要发奋,拼搏了才能有所发现,有所发明。还要努力让科研成果转化为对社会有用的产品,让科技发达起来,让国家发达起来。” br/ /p p   从最初的几个人,到现在的几十人,高超团队也从“一只大雁”发展到了“一群大雁”。对于过去没钱买研究设备的窘况记忆犹新,对于未来,高超说,他会坚持在首创、极致和影响力三个层面上继续努力。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/2ca1ddb9-ed63-40a0-8d43-cff98afbd069.jpg" title=" 6.jpg" / /p p   strong  科学也可以诗情画意 /strong br/ /p p   对于石墨烯宏观组装研究,高超今年1月还专门写了一首诗来解释其中的奥妙。 /p p   氧化石墨烯 /p p   插层氧化银成金, /p p   水洗超声片片新。 /p p   纵是千疮身百孔, /p p   组装修复变烯神。 /p p   高超说,这首诗的大意就是,氧化石墨烯通过插层、氧化、水洗、超声等过程制得,尽管缺陷很多,但可以通过组装及结构修复形成有重要应用价值的石墨烯宏观材料。在他心目中,氧化石墨烯的可塑性太强了,可以在很多领域派上用场。早些年,他还写过另外一首诗来赞美石墨烯。 /p p   烯望 /p p   石陶铜铁竞风流, /p p   信息时代硅独秀。 /p p   量子纪元孰占优, /p p   一片石墨立潮头。 /p p   科研工作很忙,这些作品都是高超利用坐火车乘飞机这样的琐碎时间完成的。写诗和骈文是高超业余的重要爱好。他认为科学家也可以写风花雪月的诗句,但如果用诗的语言表达科学,更有利于传播科学,也更能发挥科学家的特长。 /p p   “习总书记曾说,科技创新、科学普及是实现创新发展的两翼,要把科学普及放在与科技创新同等重要的位置。我觉得,研究不能只是成为枯燥的论文,还要让公众能够看懂。” /p p   他还认为,科学家要多交小朋友,从而提高科学的吸引力和公众的科学鉴赏能力。 /p
  • 中科院大连化物所基于聚合物光催化剂提升了光合成过氧化氢效率
    近日,中科院大连化学物理研究所微纳米反应器与反应工程学创新特区研究组(05T7组)刘健研究员团队在利用聚合物光催化剂生产H2O2研究方面取得新进展,基于对间苯二酚—甲醛(RF)树脂的电荷分离能力的提升,以及光催化反应路径的调控,提升了RF树脂的光催化产H2O2性能,使其太阳能到化学能(SCC)的转化率达到1.2%。利用聚合物光催化剂将氧气和水转化为H2O2的方法具有低能耗、环境友好等特点,是非常有潜力的生产H2O2的方法。然而,在分子水平上设计光催化剂,调节光生载流子行为仍具有挑战。本工作中,该团队提出从分子尺度设计调控RF树脂中电子供体(D)与电子受体(A)比例的策略,将缺电子的1,4-二羟基蒽醌(DHAQ)分子引入到RF的骨架中。研究发现,DHAQ作为电子受体可以有效调节RF中的D/A比例,增强其电荷分离能力,同时调整了反应路径,通过水氧化和氧还原的双路径共同生产H2O2,使得该材料展现优异的光催化生产H2O2的催化活性,SCC效率达到1.2%,是目前文献报道最高的SCC效率。此外,团队与中科院大连化学物理研究所超快时间分辨光谱与动力学研究组(1110组)合作,结合飞秒瞬态吸收光谱等技术、原位表征实验以及理论计算模拟,阐析了DHAQ掺杂的RF树脂的微观结构以及促进电荷分离和双路径生产H2O2的机制。上述研究成果为在分子水平上设计高效人工光合作用的聚合物光催化剂提供了新思路。RF树脂作为一种窄带隙半导体聚合物,近年来在光催化生产H2O2方面展现出潜力。刘健团队长期致力于酚醛树脂纳米材料的合成策略创新及功能化研究,取得了系列代表性成果:发展了扩展St?ber法合成单分散的酚醛树脂微球(Angew. Chem. Int. Ed.,2011),制备了一系列孔径及粒度可控的多孔微球,以及中空结构、蛋黄—蛋壳结构、碗形酚醛树脂聚合物微纳材料(Nat. Commun.,2013;Adv. Mater.,2019;no.1c09864"ACS Nano,2022),发展了化学剪裁策略有效调控酚醛树脂微球的内部结构及功能基团分布(Adv. Mater.,2022)等。相关研究以“Molecular Level Modulation of Anthraquinone-containing Resorcinol-formaldehyde Resin Photocatalysts for H2O2 Production with Exceeding 1.2% Efficiency”为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作的第一作者是中科院大连化学物理研究所05T7组博士研究生赵陈。以上工作得到了国家自然科学基金等项目的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制