当前位置: 仪器信息网 > 行业主题 > >

胆酸类似物

仪器信息网胆酸类似物专题为您整合胆酸类似物相关的最新文章,在胆酸类似物专题,您不仅可以免费浏览胆酸类似物的资讯, 同时您还可以浏览胆酸类似物的相关资料、解决方案,参与社区胆酸类似物话题讨论。

胆酸类似物相关的资讯

  • 华盛顿大学研究人员利用“Serine Ligation”产生有效且稳定的GLP-1类似物
    大家好,今天为大家介绍一篇ACS Chemical Biology的文章,标题为“Generation of Potent and Stable GLP-1 Analogues Via ‘Serine Ligation’ ”,文章的通讯作者是来自美国华盛顿大学的David Baker教授。在这项工作中,作者受“Serine Ligation”方法的启发,介绍了一种具有位点特异性的生物偶联策略。该策略依赖于带有 1-氨基-2-羟基官能团的非天然氨基酸的多肽和水杨醛酯之间的偶联,实现多肽上的化学修饰。具体来说,作者利用这个技术对类似于索马鲁肽 (Semaglutide) 的胰高血糖素样肽-1 (GLP-1) 26位的赖氨酸以及18位的丝氨酸分别修饰,得到了GLP-1类似物G1和G2。结果显示,修饰后的G1和G2在基于细胞的激活试验中比GLP-1更有效,同时能提高其在人血清中的稳定性以及体内葡萄糖处理效率。这种方法展示了“Serine Ligation”在化学生物学中各种应用的潜力,特别是发展稳定的多肽治疗剂(图 1)。图 1 基于“Serine Ligation”的GLP-1位点特异性修饰胰高血糖素样肽-1 (GLP-1) 是一类多肽激素,源自于胰高血糖素原肽的组织特异性翻译后加工,具有通过增强胰岛素分泌从而降低血糖水平的能力。二肽基肽酶 (DPP-4)可以切割GLP-1 N端8位的丙氨酸,因此内源GLP-1的半衰期只有2 min左右。虽然有许多旨在于解决稳定性问题的方法,例如在降解位点引入“不可切割”的氨基酸,但这些方法通常以牺牲稳定性为代价来换取多肽的功能和效力。因此人们对开发既能维持效力,又能稳定多肽治疗剂的新技术产生了很大兴趣。另一方面,多肽和蛋白质的偶联彻底改变了人们对于引入各种官能团来扩展新应用的认识。其中便包括蛋白质组学和高分辨率成像技术。由于多肽或蛋白质中存在多个可反应的活性位点,利用传统的共轭策略,例如N-羟基琥珀酰亚胺 (NHS) 酯,会导致产物的异质性,进而引起分离提纯困难以及生物学活性下降等诸多问题。因而具有位点特异性的新修饰方法亟待开发。作者从“Ser/Thr Ligation”(STL) 中获取灵感,发现该偶联主要发生在C 端的水杨醛酯和 N 端含有丝氨酸或苏氨酸的残基之间。因此,作者通过合成和引入带有1-氨基-2羟基的非天然氨基酸,并将其与水杨醛酯的衍生物偶联,实现了多肽位点特异性的化学修饰(图 2)。图 2 “Serine Ligation”与引入非天然氨基酸的位点特异性生物偶联作者首先评估了该方法的普适性,合成了生物素、花青-3、一种棕榈酸类似物,以及单分散PEG 水杨醛酯。然后将这些探针特定地偶联到带有 1-氨基-2-羟基的非天然氨基酸的模型肽 1 上,生成产物 2-5(图 3)。为了代表性地评估产物的转化率和纯度,作者监测了多肽反应物1和生物素水杨醛之间的反应,发现几乎在30 min后实现了定量转换。图 3 对未保护模型肽的位点特异性修饰之后作者探究如何利用该生物偶联技术增强多肽的稳定性。最常用的方法包括聚乙二醇化和脂化。事实上,两种 GLP-1药物,索马鲁肽和利拉鲁肽都是脂化的,目前用于治疗 2 型糖尿病。基于此,作者利用STL合成了两种GLP-1类似物G1和G2。二者都含有一个类似索马鲁肽的杂合 PEG 和脂肪酸侧链。不同之处在于,G1的修饰在26位的赖氨酸上,与索马鲁肽的修饰位置相同。同时,为了增强稳定性,对G1多肽8号位的丙氨酸也进行了修饰,引入了2-氨基异丁酸 (Aib)。G2的修饰则在18位的丝氨酸上。借助于冷冻电镜,发现18位的丝氨酸在GLP-1与GLP-1受体的结合模型中是溶剂暴露的,因此不会干扰多肽激素的天然功能。在这种条件下,我们可以不对G2的8号位丙氨酸引入修饰,因为18号位丝氨酸引入的脂肪链离N端的距离近,可以保护8号位的丙氨酸不被蛋白水解(图 4)。图 4 GLP-1多肽类似物G1, G2的设计许多生化和结构研究表明GLP-1 内的一个扩展的两亲性 α-螺旋是负责与GLP 受体 (GLP-1R) 的细胞外结构域高亲和力结合的。为了去评估这些外加修饰是否会破坏多肽二级结构,作者使用圆二色谱 (CD) 来表征。相对于显示出特征性螺旋折叠的GLP-1,G1 和 G2 也都显示出螺旋结构;然而,它是低于天然GLP-1的。G1与G2的数据与在索马鲁肽上的脂质修饰相一致,说明了二级结构的丢失是脂质修饰引起的。GLP-1 与 GLP-1R 的内源性结合会导致募集G蛋白的细胞内重排,随后刺激cAMP的产生。cAMP来源于ATP并会导致葡萄糖刺激的胰岛素分泌。为了去评估GLP-1 类似物 G1 和 G2 去激活人源GLP-1R的能力,在过表达人 GLP-1R 的 CHO-K1 细胞中去监测cAMP的积累。细胞最初用天然 的GLP-1 和索马鲁肽进行处理。相比之下,G1 和G2 比未加修饰的GLP-1表现更好,并且与 Semaglutide 大致等效,EC50值为 0.97 ± 0.2 和 0.73 ± 0.2 nM(图 5A)。这些数据表明26位的赖氨酸和18位的丝氨酸的脂质修饰不会对其内源功能造成影响。为了补充体外的药理学分析,作者接下来用反向高效液相色谱 (RP-HPLC) 比较GLP-1类似物G1,G2,天然 GLP-1以及索马鲁肽在人血清中的稳定性。在这个测定中,每种肽在人血清中孵育最多48 小时,取出等分试样并通过 RP-HPLC 分析(图 5B)。相对于天然 GLP-1,G1 显示出显著的稳定性曲线,t1/2 ≈ 40 小时。同时G2也非常稳定,相对于天然 GLP-1 稳定性增幅超过了14倍,几乎与索马鲁肽相似。在得到理想的激活和稳定性数据之后,作者接下来使用标准葡萄糖耐量实验 (GTT) 在动物体内进行测试。更具体地说,在禁食 16 小时后,用 10 nmol/kg 剂量向小鼠注射多肽,其次是 2 g/kg 葡萄糖。血糖水平用血糖仪测量,然后在不同的时间长度之后进行定量(图 5C)。在这种急性 GTT 实验中,G1 和 G2 相比于天然的GLP-1显示出具有统计学意义的血糖控制能力,这与他们的体外数据相一致。这些数据表明脂质化修饰能够在不损害效力的前提下显著增加稳定性,从而改善急性高血糖小鼠模型的体内活性。图 5 脂化对细胞活性,蛋白水解的稳定性以及控制血糖能力的影响为了深入了解 G1 和 G2 是如何与GLP-1R相互作用,作者对相应的配体-受体复合物进行了计算建模。GLP-1R 肽结合模型是基于最近发表的GLP-1R 与未修饰的 GLP-1 复合物的Cryo-EM 结构。索马鲁肽、G1 和 G2 模型与 GLP-1R 的复合物表明脂质化18位的丝氨酸或26位的赖氨酸是溶剂暴露的,可能不会干扰与激活有关的相互结合作用(图 6)。图 6 GLP-1R-Semaglutide、GLP-1R-G1 和 GLP-1R-G2 复合物模型总结来看,作者介绍了一种强大的,基于“Serine Ligation”的位点特异性生物偶联策略。作者应用该方法合成了有效且稳定的GLP-1类似物。该类似物具有一个混合聚乙二醇和脂肪酸侧链,类似于广泛使用的糖尿病药物索马鲁肽。这两种化合物在激活GLP-1R的能力上与索马鲁肽等效;相比于天然的GLP-1,G1,G2在人血清中显示出显著改善的稳定性,并且在小鼠体内的改善血糖能力优于天然的GLP-1。在未来,该方法也显示出构建其他GPCRs稳定且有效的类似物潜力。原文:https://pubs.acs.org/doi/10.1021/acschembio.2c00075
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 生物类似物分析相似性研究
    p   strong   span style=" color: rgb(0, 176, 240) " 一. 生物类似物获批情况 /span /strong /p p   从FDA数据库可以查到,截止2018.8.24美国共有12款生物类似物获批。其中部分小分子(如ELI LILLY的甘精胰岛素BASAGLAR)也已获批,但为NDA,因此不作为类似物统计。 /p p style=" text-align: center " img width=" 599" height=" 446" title=" q.jpg" style=" width: 488px height: 332px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/58c99f7e-92e6-4c9c-8b19-eeacaf8385c2.jpg" / /p p style=" text-align: center " img width=" 598" height=" 236" title=" w.jpg" style=" width: 490px height: 172px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/5391e126-7471-42dd-b508-c9f272d09b28.jpg" / /p p style=" text-align: center "   从EMA数据库可以查到,截止2018.8.24欧盟共有45款生物类似物获批: img width=" 599" height=" 388" title=" e.png" style=" width: 498px height: 298px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/d67d7398-bb31-486f-85c7-6056bafefaed.jpg" / /p p style=" text-align: center " & nbsp img width=" 601" height=" 421" title=" r.png" style=" width: 528px height: 358px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/e4f16b4f-f1ba-43ab-a6b2-17e0da5ef487.jpg" / /p p style=" text-align: center " img width=" 600" height=" 405" title=" t.png" style=" width: 515px height: 298px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/34f42b07-aa1c-4f54-a1bd-89c6c7022f91.jpg" / /p p   从获批情况分析,较早批准的产品都已经出现较多类似物,这一点在EMA中体现的尤为明显,如药王adalimumab、infliximab及filgrastim等均已有若干类似物获批。而从生产上来看,Sandoz毫无疑问是生物类似物的最大赢家,其在EMA有9款类似物获批。 /p p   对比美国以及欧盟生物类似物批准的情况,可以很明显的发现欧盟批准的生物类似物数量远多于美国,究其原因主要包括以下几点: /p p   EMA在2005年便建立生物类似物的申报途径,而FDA则是在2009年才在BPCI法案中提出生物类似物的申报途径,EMA比FDA更早建立生物类似物申报途径 /p p    EMA将甘精胰岛素这类小分子制品也归属为生物制品,EMA批准的生物类似物中多款均为小分子制品。但在FDA这类小分子与化学药一样采用NDA的申报途径,而不是生物制品的BLA申报途径。且在FDA甘精胰岛素审评由CDER负责,而生物制品的审评由CBER负责,这也导致FDA的生物类似物获批清单中未将甘精胰岛素这类小分子纳入 /p p    对于生物制品分析相似性研究,FDA的规定非常严格(如研究的批次数、相似性的标准等),这直接导致生物相似性研究周期很长,如Amgen申请的贝伐珠单抗MASVI分析相似性研究持续6了年,前后共使用20余批次原研Avastin。这也使得FDA的生物类似物获批更为滞后 /p p   从数据中可以看出FDA批准的生物类似物集中于近几年,2015年1款,2016年3款,2017年5款,2018截至目前为3款。有这些基础之后,相信未来FDA批准生物类似物的速度会越来越快。 /p p   span style=" color: rgb(0, 176, 240) " strong  二. 分析相似性研究 /strong /span /p p   分析相似性研究(analytical similarity)在欧盟被称为可比性研究(Comparability exercise)。其是指用于证明用于证明生物类似物与原研高度相似,但允许临床非活性组分存在微小差异的分析研究。一般应使用多批次自研产品与原研在包括结构、理化以及功能属性方面的对比,并使用数据统计方法对各质量属性对比结果进行统计及对比。分析相似性是生物类似物的基础,在生物类似物开发中很重要。 /p p   strong  相关指南 /strong /p p   针对生物类似物分析相似性研究,FDA以及欧盟均发布了不少指南。以CMC领域为例,部分重点指南如下: /p p   FDA发布的指南有: /p p   Quality Considerations in Demonstrating Biosimilarity to a Reference Protein Product /p p   Scientific Considerations in Demonstrating Biosimilarity to a Reference Product /p p   Reference Product Exclusivity for Biological Products Filed Under Section 351(a) of the PHS Act(Draft guidance) /p p   Biosimilars: Questions and Answers Regarding Implementation of the Biologics Price Competition and Innovation Act of 2009 Guidance for Industry(Draft guidance) /p p   Considerations in Demonstrating Interchangeability With a Reference Product Guidance for Industry(Draft guidance) /p p  & nbsp & nbsp Statistical Approaches to Evaluate Analytical Similarity Guidance for Industry(核心指南,目前已撤销) /p p   EMA发布的指南有: /p p   Similar biological medicinal products /p p   Similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues /p p   Similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues /p p  & nbsp & nbsp Guideline on the comparability of Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance: Quality Issues /p p   Biosimilar medicinal products containing recombinant granulocyte-colony stimulating factor (Annex to guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues) /p p   Non-clinical and clinical development of similar biological medicinal products containing low-molecular-weight heparins /p p   Non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogues /p p   Similar biological medicinal products containing interferon beta /p p   Similar biological medicinal products containing monoclonal antibodies: non-clinical and clinical issues /p p   Similar biological medicinal products containing recombinant erythropoietins /p p   Similar biological medicinal products containing recombinant follicle-stimulating hormone /p p   Similar medicinal products containing somatropin (Annex to guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues) /p p   FDA发布的指南都较为宽泛。而EMA针对生物类似物发布的指南既有较为宽泛的指导性文件,也有针对某款产品特异性的指南,同时EMA的部分指南同时适用于变更及类似物可比性研究,这一点也与FDA完全不同。 /p p   strong  分析相似性研究内容 /strong /p p   FDA于2017年发布的草案指南对分析相似性进行了详细的规定,虽然该指南目前已被撤销,但其部分思想仍可作为指导。结合目前FDA批准的类似物制品CMC审评报告,可以明显看出该指南的思想融合了已经批准的产品的开发思路,而目前在FDA获批的类似物也都是按照该指南的思路开展分析相似性研究。对该指南,并结合已经获批的类似物审评报告进行总结,分析相似性核心内容包括以下内容: /p p   对产品的质量属性进行分层(Tier),包括Tier 1,2,3。其中tier 3目测对比是风险较低或风险高但无法量化的质量属性 tier 2质量范围是风险程度中等的质量属性 tier 1等同检测则是风险高的质量属性 /p p   Tier 3一般为结构、工艺相关杂质(HCD、HCP等)、强降解趋势对比、理化属性、与机理无太大联系的活性项目 Tier 2质量属性一般包括产品相关杂质、糖型(与ADCC、PK等有关)、与机理有关的活性检测、蛋白浓度等 Tier 3则一般为临床机理对应的生物学活性 /p p   不同层级设立不同的相似性标准,tier 3主观对比相似即可 tier 2要求自研产品的范围应该在参比的mean± 3SD tier 1则要求更为严格,要求自研与参比的均值差的90%置信区间应在原研的[-1.5SD,1.5SD]范围内。值得注意的是于2017年获批的MASVI分析相似性研究中并按照上述要求对tier 2及3设立标准,而只是对实际的属性范围进行了对比 /p p    对多批次原研及自研进行分析研究,指南推荐至少10批次自研于10批次参比进行比较。2018年该指南撤销时特意提出批次数太多是该指南不合理的地方,但就目前批准的生物类似物来看,tier 1质量属性(与制品机理直接相关的生物学活性)基本都采用了20多批次参比进行对比,后续批次要求降低,有利于加快生物类似物获批上市 /p p   strong   在研究过程中应该考虑储存时间等对质量属性的影响 /strong /p p   从目前已经在FDA获批的类似物来看,没有类似物能在分析相似性方面做到于参比完全类似,而都是通过total of the evidence整体判断相似性。如糖型这一关键属性,几乎没有哪一款类似物做到与参比类似,因此出现不类似的质量属性很正常。由于生物制品本身较为复杂,而其生产工艺也同样复杂,生物类似物开发商对参比的了解难以深入,因此开发出的类似物质量属性难以做到完全与参比相似。即便知道某些质量属性不相似,也不一定能通过前期的工艺优化让该属性于参比相似。同时,这种优化也未必必要,指南中指出出现不相似的情况,给出合理的论述即可。 /p p   从已在FDA获批的类似物审评报告中可以知道,当出现不类似的情况时,可以用于论述的思路如: /p p   当杂质含量较低时,其风险相对较小,如依那西普类似物进行tier划分时,就规定当属性的量低于2%时,可以降低一个tier /p p   该属性虽然有差异,但临床数据显示自研于参比的pK等无明显差异 /p p   增加更多批次进行研究,参比批次变多时,其质量属性范围也更可能变宽 /p p   考虑储存时间对该属性的影响,加上时间因素重新计算数据 /p p   分离相应的组分,进行相应的活性等研究,证明与主成分无明显差异,等。 /p p   以下为部分已被FDA批准的类似物相关资料。 /p p    strong ABP501(biosimilar to Humira,Amgen)分析相似性层级制定及对比结果 /strong /p p style=" text-align: center " strong img width=" 600" height=" 392" title=" y.jpg" style=" width: 471px height: 269px " src=" https://img1.17img.cn/17img/images/201808/insimg/41be2c4e-9b64-40db-ae1d-a25fe9882a95.jpg" / /strong /p p style=" text-align: center " strong img width=" 599" height=" 395" title=" u.jpg" style=" width: 469px height: 298px " src=" https://img1.17img.cn/17img/images/201808/insimg/32fcdb2b-ab55-4c73-921b-74396608c771.jpg" / img width=" 600" height=" 395" title=" i.jpg" style=" width: 470px height: 306px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/4f464c07-86af-4545-8c7f-e7112d5a2b90.jpg" / /strong /p p style=" text-align: center " img width=" 600" height=" 396" title=" o.jpg" style=" width: 477px height: 285px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/cca82c99-86b6-4366-b832-6e3e99e27023.jpg" / /p p style=" text-align: center " img width=" 599" height=" 397" title=" p.jpg" style=" width: 481px height: 308px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/a64ec501-90ff-4e20-b06f-60c642d50a0e.jpg" / /p p style=" text-align: center " img width=" 599" height=" 238" title=" a.jpg" style=" width: 484px height: 205px " src=" https://img1.17img.cn/17img/images/201808/insimg/6bdffcaa-a01d-4be4-9f24-f88ca55ac83d.jpg" / /p p style=" text-align: center " strong br/ /strong /p p strong   GP2015(biosimilar to Enbrel,Sandoz)各层级相似性标准 /strong /p p style=" text-align: center " strong img width=" 599" height=" 403" title=" s.jpg" style=" width: 503px height: 332px " src=" https://img1.17img.cn/17img/images/201808/insimg/98dcf996-3539-46ef-a27e-255bf4ab3691.jpg" / /strong /p p br/ /p p strong   GP2015(biosimilar to Enbrel,Sandoz)分析相似性层级制定 /strong /p p style=" text-align: center " strong br/ /strong /p p style=" text-align: center " img width=" 600" height=" 315" title=" d.jpg" style=" width: 512px height: 267px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/86ee5d19-be4f-4d61-a45d-31ac4bcef104.jpg" / /p p style=" text-align: center " img width=" 600" height=" 333" title=" f.jpg" style=" width: 523px height: 305px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/1460d5df-eb35-4c4f-a59f-069b5e934158.jpg" / /p p style=" text-align: center " img width=" 601" height=" 202" title=" g.jpg" style=" width: 524px height: 180px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/2c7e5d6a-fa00-41bb-bf40-a0280e86ea4a.jpg" / /p p style=" text-align: center " strong br/ /strong /p p    span style=" color: rgb(0, 176, 240) " strong 三、已获批的类似物案例分析 /strong /span /p p   目前已经获FDA批准的类似物中,大部分可以获得FDA的审评报告,部分产品的审批报告在Drug@FDA数据库中未发布,但可在FDA网站搜索获得。下面将Amjevita(Adalimumab-atto)分析相似性研究为例,了解这些产品如何开展分析相似性研究,FDA提出了哪些关键缺陷,而申请人又是如何答复这些缺陷的,详细报告可见审评报告。 /p p    strong 1.Amjevita(Adalimumab-atto) /strong /p p   Amjevita是FDA药王Adalimumab在FDA获批的第一款类似物(目前已有两款,而EMA则有更多款已经获批),相信FDA在不久的将来也会批准更多Adalimumab类似物,谁让这款药这么火呢。该类似物生产商为Amgen,其分析相似性研究中研究的项目,质量属性分层级、各层级的标准、各研究项目的批次数以及研究结果(是否相似)均已在上一期已经给出,这里不再赘述,直接看看该类似物在分析相似性方面有哪些主要的缺陷吧。 /p p    strong a.糖基化不同(审评报告201-207页) /strong /p p   数据显示自研与参比的糖基化类型相同,但各糖型的比例稍有不同。其中非岩澡糖、高甘露糖、半乳糖、唾液酸均与参比不同。半乳糖及唾液酸如下图所示: /p p style=" text-align: center " br/ /p p style=" text-align: center " img width=" 598" height=" 283" title=" h.jpg" style=" width: 490px height: 230px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/3751fe61-6979-47f7-b717-e29c389a4de8.jpg" / /p p style=" text-align: center " img width=" 599" height=" 254" title=" j.jpg" style=" width: 497px height: 193px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/477ad59e-12af-4bb2-85ea-e999b17eb3f1.jpg" / /p p   而据报道非岩藻糖(afucosylated forms)可通过影响产品与FcγRIIIa的结合而最终影响ADCC活性,高甘露糖可影响PK及ADCC活性,唾液酸可影响PK,半乳糖可影响CDC活性。生产商将糖基化作为tier2属性,针对糖基化的差异,生产商进行了如下论述,并获得了FDA的认可: /p p   · 自研产品与参比相比,PK、FcγRIIIa的对比结果无明显差异,说明糖基化的不同不会产生显著影响 /p p   · 在中间产品/中控中控制岩藻糖基化,使得后续生产批次岩藻糖基化水平不超过分析相似性的水平 /p p   · 前期研发的批次糖基化相对较高,但后续工艺优化后,糖基化与参比更为接近了 /p p    strong b.FTIR鉴别(审评报告209-211页) /strong /p p   生产商Amgen对6批自研及参比进行了FTIR鉴别检测,并通过相应的计算按照tier 2层级对结果进行分析,结果显示两者类似。而FDA认为该质量属性只需要作为tier3属性,提供图谱对比即可。 /p p   同时对CD以及DSC检测,Amgen同样按照tier2标准进行分析,但FDA同样认为只需要按照tier3属性进行分析即可。 /p p style=" text-align: center " img width=" 598" height=" 405" title=" k.jpg" style=" width: 471px height: 310px " src=" https://img1.17img.cn/17img/images/201808/insimg/dfbdefae-c8e0-4f43-9f96-b48910fa5621.jpg" / /p p    strong c.SE-HPLC纯度不同(审评报告211-213页) /strong /p p   Amgen同时提供了自研放行结果与参比的对比(在IR回复中提供的)以及自研在24个月(与参比检测时具有相同的‘寿命’)与参比的SE-HPLC对比结果,结果显示虽然放行时自研的聚体比参比低,但在24个月时自研与参比的聚体类似,如下图: /p p style=" text-align: center " img width=" 598" height=" 340" title=" l.jpg" style=" width: 483px height: 272px " src=" https://img1.17img.cn/17img/images/201808/insimg/2dc93b5b-f59f-4edd-9d32-3cdbf2572c1c.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "   strong 自研24个月时的对比结果 /strong /span /p p style=" text-align: center " strong img width=" 599" height=" 336" title=" z.jpg" style=" width: 444px height: 271px " src=" https://img1.17img.cn/17img/images/201808/insimg/f245f195-dab3-4c6e-8d35-7b76527acd81.jpg" / /strong /p p style=" text-align: center " strong    span style=" font-size: 14px " 自研放行时的对比结果 /span /strong /p p   同时自研的SE-HPLC中低分子物质比参比更低(如下图),但考虑到低分子物质总量才0.2%,这个小峰预计低于0.1%,无法定量,因此其影响可忽略不计。 /p p style=" text-align: center " img width=" 600" height=" 371" title=" x.jpg" style=" width: 440px height: 276px " src=" https://img1.17img.cn/17img/images/201808/insimg/448f4126-6269-49d1-a738-4b93e4e43ee8.jpg" / /p p    strong d.nrCE-SDS纯度不同(审评报告217页) /strong /p p   80%的自研结果在参比的相似性范围内,但有两个数据不在范围内。给出的论述包括:1.不在范围内的批次是早期研发批次 2.nrCE-SDS纯度在98%-99%,已经很高了,检测到的不一致差距很小,可以忽略 3.结合生物学活性无明显差异,认为自研的nrCE-SDS与参比类似。 /p p style=" text-align: center " img width=" 599" height=" 252" title=" c.jpg" style=" width: 469px height: 198px " src=" https://img1.17img.cn/17img/images/201808/insimg/d804bc2b-dff6-42ac-9a86-ae5861013681.jpg" / /p p    strong e.CEX-HPLC不同(审评报告218-221页) /strong /p p   考虑储存时间影响时,检测数据显示自研与参比的主峰及碱性峰基本不在参比的相似性范围(如下图),FDA要求生产商提供合理解释。 /p p style=" text-align: center " img width=" 599" height=" 372" title=" v.jpg" style=" width: 470px height: 272px " src=" https://img1.17img.cn/17img/images/201808/insimg/8b9d2e4b-bb9d-411e-b512-8b574769b706.jpg" / /p p   Amgen回复包括: /p p   · 提供未调整储存时间的结果(如上图),显示酸性峰在范围内,但主峰与碱性峰不在范围内 /p p   · 收集各个峰进行活性检测,酸性、主峰及碱性峰均不改变活性 /p p   · 酸性峰的电荷改变位点不位于影像PK及活性的区域 /p p   · 自研与参比的PK及FcRn结合是一致的 /p p   · 自研与参比的结合能力、活性、功能检测结果无明显差异 /p p   · 使用羧肽酶处理可证明建兴区的不同是由于产品独特的C端赖氨酸引起,其不会对产品的性能产生影响 /p p   strong  f.高温及强降解(审评报告225-226页) /strong /p p   由于Amgen的产品与参比的处方不同(具体处方可见审评报告),因此与预期的一样两者在高温及强降解下降解率不同。而Amgen还将原液配置成与参比一致的处方体系中,与参比进行了对比,结果显示不一致是由于处方体系造成的,而非分子本身造成的。 /p p   strong  g.50° C高温强降解(审评报告226页) /strong /p p   降解后的SE-HPLC对比显示在分子大小纯度方面自研比参比更加稳定(如下图),而rCE-SDS则显示两者趋势相似 电荷异构体纯度自研与参比类似。 /p p style=" text-align: center " img width=" 599" height=" 181" title=" b.jpg" style=" width: 519px height: 139px " src=" https://img1.17img.cn/17img/images/201808/insimg/66117285-d8ef-4644-ba07-0aec7188510a.jpg" / /p p    strong h.生物学活性(审评报告239页起) /strong /p p   Amgen开展了大量活性方面的对比研究,如下图。检测结果基本都相似 /p p style=" text-align: center " img width=" 599" height=" 620" title=" n.jpg" style=" width: 538px height: 573px " src=" https://img1.17img.cn/17img/images/201808/insimg/2cd6da55-99b6-4cbf-bfa3-25217b4c451b.jpg" / /p p    strong 2.Zarxio(Filgrastim-Sndz) /strong /p p   其分析相似性研究按照3个tier对质量属性分层,各个tier相似性标准同上一期中列出的标准。研究的项目包括:结构、理化、杂质、活性。其杂质分析可以关注一下,包括如脱氨基、N端截短变体、乙酰化、琥珀酰亚胺等,具体如下图: /p p style=" text-align: center " img width=" 601" height=" 578" title=" m.jpg" style=" width: 546px height: 530px " src=" https://img1.17img.cn/17img/images/201808/insimg/13b4d351-4b70-49e8-a709-8b9ba0ead58c.jpg" / /p p style=" text-align: center " img width=" 599" height=" 356" title=" ,,,,.jpg" style=" width: 554px height: 329px " src=" https://img1.17img.cn/17img/images/201808/insimg/0c370ddb-4876-46b7-b3b5-22b788c3b876.jpg" / /p p   从审评报告中可以较为详细的了解铬各项目的结果以及批次数,如针对生物学活性项目,生产商采用了15批自研以及15批美国参比,蛋白质浓度采用了13批自研以及12批美国参比。 /p p   审评报告中需特意指出的包括: /p p   a.由于脱氨基为产品相关物质且关键性较低,因此被设置为tier3属性,只对比自研与参比的范围 /p p   b.正亮氨酸与参比稍有不同,但已有研究数据显示正亮氨酸变体与产品生物活性无差异,属于产品相关物质。且自研与参比的免疫原性无明显差异,以及毒理数据支持该水平的正亮氨酸变体,基于此FDA认为该差异无影响 /p p    strong 3.Inflectra(Infliximab) /strong /p p   在审评中主要的问题有: /p p   strong  a. 翻译后修饰 /strong /p p   发现有5个位点的脱氨基以及重链255号位点的氧化水平与参比不同,但给出论述其差异很小,翻译后不足以对产品的生物学活性产生影响。 /p p style=" text-align: center " img width=" 600" height=" 227" title=" ..............................jpg" style=" width: 561px height: 211px " src=" https://img1.17img.cn/17img/images/201808/insimg/2db2ebfe-6f44-4f39-913f-f2250640ee06.jpg" / /p p   氨基酸分析显示酪氨酸及甲硫氨酸处部分发生了一些变异,因此FDA发IR缺陷信,提出该问题,同时自研的变异性更大,要求生产商回复。 /p p   生产商回复总结: /p p   1、经调查为合同实验室的错误导致酪氨酸及甲硫氨酸数据变异,同时并不是所有样品都是在相同条件下处理。酪氨酸的变异可能源于检测时的水解操作。随后生产商优化方法,并进行更多批次的研究,数据未出现更多变异。 /p p   strong  b. 蛋白浓度不同 /strong /p p   数据显示自研蛋白浓度(9.6mg/ml)与参比(9.3mg/ml)相比,存在约3.2%的差距,而自研的蛋白浓度标准与参比不冲突,PK数据显示自研与参比无明显差异,因此生产上认为该差异无影响。FDA则认为4%的误差虽小,但可能并非由于巧合,而可能实际蛋白浓度确实存在差异,并要求生产商确认该差异,并且如果确实存在差异,生产上准备采取哪些措施来使得蛋白浓度一致。生产商检测多批次后发现,自研的蛋白浓度与参比确实存在4%的差异,因此生产商决定收窄蛋白浓度标准,且变更制剂工艺参数,重新生产3批次确认批,并通过增补递交数据。 /p p   strong   span style=" color: rgb(0, 176, 240) " 四、糖基化研究及计算方式 /span /strong /p p   糖基化包括N糖和O糖,而抗体中N糖普遍存在,抗体均具有一个固定的N糖基化位点,也可能存在额外的糖基化位点,目前对N糖基化的研究较为广泛。O糖则在部分产品中可能存在,研究的也相对少一些。对O糖的分析相似性研究可以研究自研与参比的主要糖基化类型(定性),而对N糖的研究则应更为详尽,除了糖型外,主要糖型的比例也应当进行研究(定量),这其中主要包括:高甘露糖、半乳糖、非岩藻糖、岩藻糖以及唾液酸。由于这些糖型可能影响ADCC、CDC、PK等关键质量,因此一般作为tier 2属性来研究。从目前批准的产品来看,糖基化与参比不同几乎是常态,此时提供合理的论述即可。 /p p   N糖中常见的包括甘露糖(M)、半乳糖(G)、岩藻糖(F)以及唾液酸(S)。在计算糖基化类型时,一般应将甘露糖(M)、半乳糖(G)、非岩藻糖(AF)岩藻糖(F)以及唾液酸(S)作为整体考虑。如: /p p   高甘露糖是指仅含甘露糖的糖型,包括M5、M6、M7等 /p p   半乳糖是指含半乳糖的糖型,如:G0、G1、G1F等,半乳糖为这些糖基化之和 /p p   非岩藻糖是指不含核心岩藻糖的糖型,包括高甘露糖、G0、G1等 /p p   span style=" color: rgb(0, 176, 240) " strong  五、相似性研究中应该注意的问题 /strong /span /p p   a.针对在储存期间会改变的质量属性,如:SEC-HPLC、活性等,应考虑自研及参比的‘年龄’,在相对年龄相同的时间对比,如果无法实现,则可以考虑使用稳定性数据外推其影响 /p p   b.当某质量属性较低时,其风险相对较小,可以考虑将其纳入更低的层级 /p p   c.同一质量属性有多个方法进行检测评估时,性能最好的方法应放在风险最高的层级,其他方法则放在风险较低的层级 /p p   d.某些属性或方法由于本身的特性被排除于数据统计,如定性检测及限度检测可能被层级1或2评估所排除,如氨基酸组成,该属性并非不重要,但其无法按照tier 1/2的标准进行数据统计,因此作为tier3属性 /p p   e.可以预见在研发中工艺会出现变更,只要证明其与最终工艺产品可比,则样品均可用于分析相似性研究 /p p   f.生物类似物研发时,参比购买是一个制约因素,参比在市场流通的批次相对较少,因此最好趁早多收集参比,为相似性研究积累更多批次样品。 /p p    span style=" color: rgb(0, 176, 240) " strong 六、FDA批准的类似物CMC审评报告 /strong /span /p p   下面为可以在FDA上查询到的类似物审评报告,供参考: /p p    strong a.Zarxio (Filgrastim-sndz) : /strong /p p strong   b.Inflectra(Infliximab-dyyb): /strong /p p strong   c.Erelzi(Etanercept-szzs): /strong /p p strong   d.Amjevita(Adalimumab -atto): /strong /p p   另外Retacrit(EPOETIN ALFA ) 以及Nivestym(Filgrastim-aafi)审评报告也可在FDA网站搜索到,有兴趣的可以关注一下。 /p p   从CMC审评报告中可以了解到产品主要信息、批准历程(首次递交、历次缺陷等)、分析相似性研究内容。如果你是生物类似物开发者,那建议你一定要学习一下这些报告,相信从中可以获取很多信息。 /p p   另外EMA也会针对各个产品发布审评报告,但其侧重点不同,EMA审评报告中会申报资料将各章节进行总结,但不会分析相似性研究。从EMA审评报告中可以获取的重要信息包括产品的详细信息、相似性研究总结、内外源因子控制等。而FDA审评报告中则重点突出分析相似性研究,其他内容大多被覆盖无法知晓确切信息,在审评报告突出分析相似性研究也是为了给后续的类似物开发商提供参考,有利于加快类似物的发展。 /p p   span style=" color: rgb(0, 176, 240) " strong  七、FDA撤销指南的背景及原因,以及后续指南的修订思路预测 /strong /span /p p   近几年美国虽然有一些生物类似物获批,但其获批远少于EMA。美国是医疗大国,每年用于医疗的费用高昂,生物类似物可以为政府及民众降低医疗费用。很显然,目前美国生物类似物获批的数量以及速度没有达到政府的预期,FDA局长Scott Gottlieb也是特意指出了该点。 /p p   行业对该指南也是有较大的担忧,指南要求至少十批参比及自研进行分析相似性研究。而事实上,参比的可获得性一直是困扰生物类似物开发商的一大难题,一段时间内在市场上流通的参比较少,要购买10批次参比进行研究将花费较长时间。 /p p   在此背景下,FDA于2018.6.21年撤消了该指南,撤销的通知中强调了该指南会提高生物类似物开发的效率及成本(通知原文如下),包括指南求所要求的参比批次数。 /p p   从通知中不难看出,FDA对于加快生物类似物开发及上市的殷切期望。后续分析相似性指南预计会考虑到下面几点: /p p   a.参比及自研的批次数要求。不再设立10批的要求 /p p   b.数据统计方法将重新确立,不再参考目前的标准 /p p   c.新的数据分析方法会考虑到参比的批间变异性 /p p   d.突出临床PK数据的对比,而稍微弱化分析相似性研究 /p p   通知原文: /p p   [6/21/2018] The Food and Drug Administration (FDA or Agency) is announcing the withdrawal of a draft guidance for industry entitled “Statistical Approaches to Evaluate Analytical Similarity,” issued in September 2017. The draft guidance, if finalized as written, was intended to provide advice for sponsors developing biosimilar products regarding the evaluation of analytical similarity between a proposed biosimilar product and the reference product. After considering public comments that the agency received about the draft guidance, the FDA determined it would withdraw the draft guidance as it gives further consideration to the scientific and regulatory issues involved. span style=" color: rgb(146, 208, 80) " Comments submitted to the docket addressed a range of issues that could impact the cost and efficiency of biosimilar development, including the number of reference product lots the draft guidance would recommend biosimilar developers sample in their evaluation of high similarity and the statistical methods for this evaluation. /span The FDA believes that in better addressing these issues in the future, the agency can advance principles that can promote a more efficient pathway for the development of biosimilar products. /p p   The agency intends to issue future draft guidance that will reflect state-of-the-art techniques in the evaluation of analytical data to support a demonstration that a proposed biosimilar product is highly similar to a reference product. The goal is for future draft guidance to address potential challenges faced by biosimilar sponsors in designing studies that are intended to demonstrate that a proposed biosimilar product is highly similar to a reference product, including consideration of appropriate methods to analyze analytical data to account for potential lot-to-lot variability of the reference product. Future draft guidance also will focus on providing appropriate flexibility for sponsors in order to help spur the efficient development of biosimilars without compromising the agency’s rigorous scientific standards for evaluating marketing applications for biosimilars. /p p   The FDA continues to encourage sponsors of proposed biosimilar products to discuss product development plans with the agency, including the evaluation of analytical data intended to support a demonstration that the proposed biosimilar product is highly similar to a reference product. The FDA will continue to provide development-stage advice to sponsors of proposed biosimilar products or proposed interchangeable products through several types of formal meetings, which are described in more detail in FDA’s guidance for industry,Formal Meetings Between the FDA and Sponsors or Applicants of BsUFA Products. More information about this and other FDA guidance documents related to biosimilar products and interchangeable products, as well as contact information for FDA, is available at /p p   The FDA will communicate publicly when new draft guidance is issued in relation to the evaluation of analytical data between a proposed biosimilar product and a reference product. /p p   span style=" color: rgb(0, 176, 240) " strong  八、FDA针对生物类似物实施的BAP(biosimilar action plan)计划 /strong /span /p p   为了平衡创新及市场竞争,FDA推出了生物类似物行动计划,以加快生物类似物上市,BAP主要关注4各方面,包括:加快生物类似物/可互换产品的开发及批准效率 最大消毒为生物类似物开发协会提供科学及法规澄清 为提供患者、临床医生等提高对生物类似物的理解建立有效沟通 通过减少不公平的竞争来支持市场竞争。该计划中包括的部分内容有: /p p   a.开发及实施新审评工具,如标准模板,以加快审评效率并给公众更多产品信息 /p p   b.为类似物开发商提供信息来源及开发工具,以加快类似物开发效率 /p p   c.加强橙皮书内容,在其中加入更多已批准产品的信息 /p p   d.探索与其他国家药政官方共享数据的可能,以促进在某些研究中使用非US参比 /p p   e.为生物类似物设立一个新的机构(OTBB),以协调及支持生物类似物使用者费用项目 /p p   f.发布生物类似物标签指南草案/终稿,以帮助生产上确定在标签上应提供哪些信息 /p p   g.就证明等效为生产商提供额外的澄清,如发布新的指南 /p p   h.为生物类似物分析相似性研究发布新的指南 /p p   i.为生物类似物开发过程中参比的可获得性提供保障 /p p & nbsp /p
  • 核苷类似物可降低HBV相关肝癌切除术后复发风险
    《美国医学会杂志》11月14日发表的一篇论文研究调查了核苷类似物的使用和乙肝病毒(HBV)相关肝细胞癌肝切除后复发风险。   对HBV相关肝癌肝脏切除后的病人来说,肿瘤复发是主要问题。   中国台湾的Chun-Ying Wu医生和同事研究了核苷类似物的使用和HBV相关肝细胞癌根治性手术后肿瘤复发风险。   研究者对2003年和2010年之间台湾省内(病例)进行队列/群组研究。资料来自于台湾全民健康保险研究资料库。   在近期被诊断为肝细胞癌的100938例患者中,研究小组选取了2003至2010年之间4569例进行了根治性肝切除的HBV相关肝细胞癌患者。   小组研究成果主要比较了未使用和使用核苷类似物的病人第一次肿瘤复发风险。   研究小组发现与非治疗组相比,治疗组有更高的肝硬化的发病率。但其肝细胞癌复发风险和整体死亡(率)较低。   研究小组总结道:&ldquo 在HBV相关肝细胞癌病人肝切除后,使用核苷类似物与更低的肝细胞癌复发风险相关。&rdquo
  • 新品速递| 酚汀(酚丁)、酚酞及其酯类衍生物或类似物上架
    国家市场监督管理总局发布关于打击食品中非法添加酚汀(酚丁)、酚酞及其脂类衍生物或类似物违法行为的通知,加强了对食品中非法添加的监管。由于酚汀(酚丁)、酚酞及其酯类衍生物或类似物与酚酞具有相同/相似的核心药效团和临床功效,具有类似属性和危害性,因此,添加有上述物质的食品有对人体产生毒副作用的风险,影响人体健康,甚至可危害生命。根据《食品安全法》,食品不得添加药物,而该类原料也从未获得批准作为食品添加剂或新食品原料,以及保健食品原料,因此,在食品中检出酚汀(酚丁)、酚酞及其酯类衍生物或类似物(如4-氯双醋酚丁),均属于非法添加。部分相关产品:了解更多产品或需要定制服务,请联系我们关于我们天津阿尔塔科技有限公司成立于2011年,是国内领先的具有专业研发及生产能力的国产标准品企业,公司坚守“精于科技创新,保障人民健康安全生活”的企业愿景,秉持”致力于成为标准品第一品牌”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,精于标准品科技创新,创造绿色健康品质生活,真正实现From Medicare to Healthcare。
  • 5种中国产品在美检出三聚氰胺或其类似物质
    3月17日,记者从美国FDA网站获悉,FDA发布了2011年2月拒绝进口食品情况,2月份共有56款来自中国的食品被拒绝进口,其中有4款食品、1款鱼饲料检出三聚氰胺。   根据通报信息,标称合肥“wor-biz trading co.,ltd”公司生产的一款糯玉米(GLUTINOUS CORN)、标称上海“Aipu Food Industry Co Ltd ”生产的水解植物蛋白(HYDROLYZED VEGETABLE PROTEIN)、标称福建“JINJIANG XIEXIANG”公司生产的马铃薯片(POTATO CHIPS),以及标称广东东莞“Sheng Fa Food Factory”生产的低筋粉蛋糕(SOFT FLOUR CAKE)查出三聚氰胺或其类似物质。   而标称来自福建“JINJIANG QIMEI GIFTS AND FAVOURITE”的一款鱼饲料也被检出三聚氰胺或其类似物质。
  • 肝素钠与其类似物杂质的高效分析
    由于肝素钠在分子量分布和电荷差异上的异质性,对其进行有效分析一直是一个挑战。而且,这些杂质通常具有与肝素钠相类似的特性,使得在使用分析方法时很难区分肝素钠与其杂质。为了有效将肝素钠从杂质中(包括生产过程产生的杂质如硫酸皮肤素和非法添加的杂质如多硫酸软骨素)分离出来,美国药典(USP)颁布了一种采用离子交换色谱鉴定肝素钠及其杂质的色谱方法(注:中国药典对肝素钠的检测方法和USP相同)。然而,目前市面上的离子交换色谱柱很少能够满足USP的分离度标准,因此,迫切需要有一种新型填料来对其进行改善。赛分科技近日开发了一种离子交换色谱柱&mdash &mdash Glycomix&trade SAX,可对如肝素钠这样的带多电荷聚糖样品实现高效分离。 图1肝素钠、硫酸皮肤素和多硫酸软骨素在Glycomix&trade SAX上的分离色谱图 色谱条件 Column: Glycomix&trade SAX, 4.6 x 250 mm Guard column: Glycomix, 4.6 x 50 mm Mobile phase: A: 0.04% NaH2PO4, pH 3.0 B: 0.04% NaH2PO4+14% NaClO4, pH 3.0 Flow rate: 0.22 mL/min Gradient: 20% - 90% B in 60 minutes Wavelength: 202 nm Column temp: 25 ℃Injection volume: 10 mL Pressures: 9.5 bar Sample: 20 mg/mL Heparin sodium 1 mg/mL Dermatan sulfate (DS) 1mg/mL Oversulfated chondroitin sulfate (OSCS) in H2O 在Glycomix&trade SAX柱上,肝素钠和硫酸皮肤素的分离度为3.8,肝素钠和多硫酸软骨素之间的分离度为5.8,远远超过USP所要求的1.0和1.5。 图2 肝素钠、硫酸皮肤素和多硫酸软骨素的标准曲线 图3 Glycomix&trade SAX的批次重现性 更多信息:http://www.sepax-tech.com.cn/products/tjpz1/lzjh/Glycomix/13.html 《Glycomix&trade SAX产品手册》 点击下载 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • 中国首个单分子测序仪样机发布
    在10月27日南方科技大学举行的“基因组测序技术进展国际研讨会”上,深圳市瀚海基因生物科技有限公司发布了其自主研发的单分子基因测序仪“GenoCare”原理样机。据瀚海基因创始人兼CEO、南方科技大学副教授贺建奎介绍,这是亚洲首个具有自主知识产权、中国第一台制成样机的第三代测序仪。  与已应用于临床的(第二代)基因测序设备相比,该测序仪能够直接读取患者最原始的DNA或RNA分子序列,可大大改善临床基因测序的成本、速度和质量。  早期参与到该项目的医院有深圳妇幼保健院、深圳人民医院以及南方医科大学南方医院,这些医院通过该仪器评估,在患者血液中发现了病毒DNA以及循环的肿瘤DNA分子,指导病人个性化选择乙肝抗病毒药物和癌症的治疗办法。  “对于中国数以百万计的乙肝患者来说,耐药性是个棘手问题,而一种经济实惠的方式是通过检测该病毒与耐药相关的基因序列,从而帮助医生指导病人选择正确核苷酸类似物治疗。”南方医科大学南方医院疾病感染中心教授王战会说,“第三代测序技术有潜力发展成为医院广泛使用的临床基因突变检测工具。”  “单分子测序方法提供了一个适合于临床的置信水平。同时也提供了技术优势,如降低样本处理错误的风险,并允许对许多疾病重要的基因表达或拷贝数变异绝对定量。”贺建奎说,他们预计在2016年下半年完成试用机的研制。
  • 奶制品中三聚氰胺、三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸的同时分析方法
    自奶粉污染事件发生以来,奶制品中三聚氰胺的分析方法已经公布了许多。但目前国内普遍采用的方法都专注于三聚氰胺单一化合物的分析。而根据2007年春季美国宠物食品检出三聚氰胺的研究结果,科学家们相信除了三聚氰胺,其类似物――三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸都有可能导致宠物生病。为完成对含蛋白质原材料的调查,需要测定包括三聚氰胺及其类似物的所有可以提高原料中含氮量的化合物。故此次对于奶粉的检测也应该注意不只分析三聚氰胺,同时对所有类似物进行同时分析。实验证明,在某些乳酸类样品中,没有检出三聚氰胺,但有可能检出其类似物。 珀金埃尔默公司的三聚氰胺分析仪做为目前市场上唯一的一台专门用于食品中三聚氰胺及其类似物的基于气质联用分析技术的分析仪,可以完全符合美国FDA有关快速消费品中筛查三聚氰胺及其类似物的方法要求。经过对样品前处理过程的优化,该分析仪适合于液体奶、奶粉、乳酪、雪糕及各种奶制品中三聚氰胺及其类似物的同时分析。该分析仪除了提供分析所要求的仪器、消耗品和标样、试剂,还包括标准的实验操作步骤,数据验证方法以及经过实验证明的数据。以下是奶粉实际样品加入四种标样后所得到的数据,以及实际样品中检测到的三聚氰酸一酰胺。该分析仪对奶制品类样品中三聚氰胺及其类似物有很好的检出能力。 奶粉实际样品加入四种标样的结果 实际酸性口味奶制品中测出三聚氰酸一酰胺 相关详细信息,请访问 http://www.perkinelmer.com/melamine
  • 不得不察的生物类似药相关概念
    p    strong 总前言 /strong /p p   笔者曾在三年前写了多篇有关 a href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" title=" " style=" text-decoration: underline " span style=" text-decoration: underline color: rgb(255, 0, 0) " strong 生物类似药 /strong /span /a 的系列文章,主要内容先后发表在《中国科学报》和《中国医药技术经济与管理》,在过去不到三年的时间里,生物类似药领域有了很大发展,尤其是中美两国在生物类似药的监管政策上都取得了很大的进展。笔者在这几年也一直关注生物类似药领域的发展,因此借美中药源和《医药经济报》联合推出“研发热点透视”专栏之际,笔者对此前的系列文章进行了全面更新和补充,以飭读者。 /p p    strong 何为生物类似药? /strong /p p   生物类似药近年来依然是国内外制药界的热点领域,尤其在中国更是炙手可热。面对专利保护已经或即将到期的许多生物药以及庞大的市场,中国许多制药公司(尤其是一些原来做化学仿制药的公司)也磨拳插掌,准备大举进军生物类似药市场。根据汤森路透的最新数据:全球在研生物类似药数量最多的国家不是美国,而是中国!另外国内外媒体也已经有过有关生物类似药的大量报道,一些国际大型生物公司和市场调研、咨询公司也发表了不少有关生物类似药的白皮书或者专业报告,比较著名的、在业内有广泛影响的有:全球最大的生物技术公司安进发表的“Biologics and biosimilars: an overview”(生物制品与生物类似药概述),汤森路透公司发表的An outlook on US biosimilar competition”(美国生物类似药竞争展望)等。 /p p   那么到底何为生物类似药? 在介绍什么是生物类似药之前,有必要先说说什么是生物药,什么是生物制药。尤其是生物制药(biopharm, biopharmaceutical),这是一个非常令人混淆、迷惑的概念。咋一看,或者狭义的说,生物制药是指采用生物技术生产的生物制品(生物药),它的对应词是小分子、通过化学合成的化学药(也包括采用化学合成方法得到的分子量相对较大的多肽等),所以两者的根本区别并非药品的分子量大小,比如现在的技术发展已经可以通过化学合成(自动化)的方式合成长达上百个氨基酸的多肽,分子量可达上万,但是这些药(无论是试验性还是临床用的)都算不上生物药,虽然多肽本身听起来是生物制品。所以,这个狭义的生物制药可以说大致等同于生物药。但是采用生物技术生产的药也并非一定是生物药,因为不少小分子化学药也可以采用现代生物工程技术在微生物体内合成出来。 /p p   但是,广义的生物制药的概念也包括化学药,这有多种原因导致生物制药概念的外延。一是由于有些药的特点决定的,比如基于ADC技术(Antibody-Drug Conjugates, 抗体药物偶联)的药,这类药尽管归类于抗体药,但是显然不是纯粹的抗体,而是抗体或者抗体片段与化学药通过特别的接头(linker)偶联而成,所以这类药更像生物药与化学药的结合体 (对ADC药感兴趣的读者,可以点击参阅美中药源的一篇力作:开发抗体药物偶联(ADC)药物的技术挑战(一):申报和监管的一些问题),因此,从这个意义上说,生物药与化学药并无严格的界限。另外,几乎没有大型国际药企(尤其是top20)只做化学药的,越来越多的原来只做化学药的传统制药公司开始进军生物药领域,其中百事美施贵宝(BMS)公司就是一个典型例子。另外,生物药的重要性和在药品市场中的份额也逐年增大,市场经济的特点也决定更多的制药公司开始研发生物药。 /p p   临床应用的生物药可谓是多种多样,至少包括:疫苗(包括预防性和治疗性)、血液及血液制品、基因治疗药(我国和欧洲均已有批准上市)、器官组织、细胞(如用于治疗的干细胞)以及重组治疗性蛋白。在生物药中,最为重要是治疗性蛋白。在欧盟和美国市场,已有上百种各种蛋白质类的生物药获准上市,每年有上千亿美元的市场销售额,其中包括全球第一个生物技术药、美国FDA在1982年批准的Humulin(即在大肠杆菌合成的人胰岛素,用于治疗糖尿病,转让自著名的基因泰克(Genentech)公司),更多的、至少数以百计的蛋白类药物正在进行临床实验,毫无疑问,以后会有更多的蛋白类药物获批上市。而对于蛋白药物而言,最重要的是抗体类药物,约占蛋白药一半的市场份额,所以,对于生物类似药企业而言,要仿制的首要目标就是抗体药,对于抗体类药物,在本系列文章以后还会专文详谈。 /p p   治疗性蛋白类药物又多种多样,根据其药理活性可分为5类:1)替换人体内缺失或者不正常的蛋白 2)增强人体内已经存在的信号通路 3)提供新的功能或者活性 4)干扰人体内的某种分子或者器官组织 5)输送其它化学药或者蛋白。而根据治疗性蛋白的分子类型又可分为:抗体药、Fc(抗体可结晶片段)融合蛋白(此类蛋白也常被归入广义的抗体药类别)、抗凝血因子、血液因子、骨增生蛋白、工程化骨架蛋白、酶、生长因子、激素(荷尔蒙)、干扰素、白细胞介素,溶栓剂等等。 /p p   而对于生物类似药(biosimilar)的定义,各国并无统一的、标准的定义和看法。在我国biosimilar至今仍有多种译法,除了生物类似药外,还有生物仿制药,生物类似物等。2015年3月,CFDA在其发布的《生物类似药研发与评价技术指导原则(试行)》文件中首次将biosimilar称为生物类似药,以后我国似乎有必要将biosimilar译名统一规范为生物类似药,笔者个人也认为生物类似药的译法最好。这是由于相比于化学仿制药(generics), 生物类似药和化学仿制药的核心区别是生物类似药只能和原研生物药类似,而不可能完全一样。另外,从国际上看,对生物类似药的定义主要来自如下三个最为重要和有影响力的机构组织。 /p p   第一:世卫组织(WHO): “A biotherapeutic product which is similar in terms of quality, safety and efficacy to an already licensed reference biotherapeutic product”。试译如下:和一种已经批准的参比生物治疗产品在质量、安全性和效力方面均相似的生物治疗产品。 /p p   第二:欧盟EMA: “A biological medicine that is developed to be similar to an existing biological medicine (the ‘reference medicine’). When approved, a biosimilar’s variability and any differences between it and its reference medicine will have been shown not to affect safety or effectiveness. ”。试译如下:与已经存在的生物药(即:参比药)类似的生物药。在批准时,该生物类似药自身的可变性以及与参考药的任何不同之处均应被证明不影响仿制药的安全性和有效性。 /p p   第三:美国FDA: “A biological product that is highly similar to a U.S. licensed reference biological product notwithstanding minor differences in clinically inactive components, and for which there are no clinically meaningful differences between the biological product and the reference product in terms of the safety, purity and potency of the product”. 试译如下:与一种美国批准的参考生物产品高度相似,尽管无活性组分有小的差异 在临床上和参考生物产品相比在安全性、纯度与效力方面没有显著差异。 /p p   尽管上述三种定义不尽相同,但是大同小异,并且都强调了生物类似药的安全性的重要性,而这个安全性主要是指病人或健康受试者身上的临床安全表现,这也决定了生物类似药必须要有临床实验来证明与参比原研生物药相比有相似的安全性(当然还必须包括有效性等)。这也是生物类似药和化学仿制药一大不同,对于两者的不同,以后笔者还会专文详谈。 /p p br/ /p
  • 细胞增殖检测新技术——EdU 取代BrdU
    直接测定DNA合成是细胞增殖检测的最准确方法之一,是测定物质毒性、评估药物安全评价、细胞健康的基本方法,其中以前常用的方式是利用胸腺嘧啶核苷酸类似物&mdash &mdash BrdU进行检测。因为在细胞周期的S期,和细胞一起孵育的BrdU能掺入DNA分子中,再结合BrdU抗体与渗入DNA的BrdU特异性结合,就能够检测到DNA复制活跃的细胞。 但BrdU有一大缺点,就是需要变性DNA后才能与抗体结合,但这就破坏了DNA双链结构,影响了其他染料的结合染色,导致染色弥散,准确性降低等问题。哈佛大学医学院细胞生物学家Adrian Salic就认为:&ldquo 为了能够暴露BrdU的抗原表位,必须用高浓度的盐酸,乙酸或酶解,但经历了如此严重的处理后,细胞原本精巧细致的结构在显微镜下就变得惨不忍睹了。&rdquo 事实上,现在有一种新的检测方法能避免这种情况的发生&mdash &mdash EdU检测。EdU (5-乙炔基-2&rsquo 脱氧尿嘧啶核苷)也是一种胸腺嘧啶核苷类似物,但其连有的炔羟基团在天然化合物中很少见,在细胞增殖时能够插入正在复制的DNA分子中,基于EdU与染料的共轭反应可以进行高效快速的细胞增殖检测分析,可以有效地检测处于S期的细胞百分数。与传统的免疫荧光染色(BrdU)检测方法相比,更简单,更快速,更准确。EdU只有BrdU抗体大小的1/500,在细胞内更容易扩散,不需要严格的样品变性(酸解、热解、酶解)处理,有效地避免了样品损伤,有助于在组织、器官的整体水平上观测细胞增殖的真实情况,具有更高的灵敏度和更快的检测速度。Adrian Salic特别强调:&ldquo 与传统的免疫荧光染色不同,EdU反应能在几分钟内完成,且不需要进行严格的样品变性处理,使得组织成像更简单易行。&rdquo 细胞增殖检测方法基于EdU与Apollo?荧光染料的完美结合准确检测新合成的DNA,简单,快速,准确。这种检测方法非常快速,且只需简单的几个步骤,因此也适用于高通量筛选试验,如在药物筛选中检测加药后细胞的活力。 图1 BrdU 与EdU 检测原理示意图 表1 BrdU 与EdU 检测优缺点比较 图2 BrdU 需要DNA 变性后才能与抗体结合,导致BrdU、Hoechst 染色弥散,边缘模糊不清; 而EdU 边缘清晰完整,检测更灵敏、更准确EdU可以检测新合成的DNA,而EU则可以检测新合成的RNA。EU是一种尿嘧啶核苷类似物,能够在RNA转录时期代替尿嘧啶( U )渗入正在合成的RNA分子,基于EU与Apollo?荧光染料的特异性反应进行RNA检测。EU能够在体内和体外水平检测时间和空间上RNA合成的变化,能够更方便地研究RNA转录位点,结合相关抗体标记能够检测与RNA有相互作用的蛋白。结合EdU和EU进行检测新合成的DNA和新合成的RNA,可以深入开展细胞增殖、细胞周期、细胞毒性、DNA复制及修复、信号通路等方面的研究。
  • 标准缺失下的牛黄"乱象":成分检测无依据
    长期困扰中药界的“一药两方”,甚至“一药多方”的含牛黄品种问题,将随着含牛黄中成药的质量标准的提高而得到改善。近日,国家食品药品监管局在《对政协十一届全国委员会第二次会议第2816号(医药卫体238号)提案的答复》中明确表示,正在编撰的2010版《中国药典》,对禁止使用人工牛黄的品种,将增加猪去氧胆酸和游离胆红素的检查。   加上之前国家食品药品监管局答复湖北省食品药品监管局《关于对含牛黄及其代用品使用品种剂型界定的复函》的意见,届时,含牛黄品种的中成药生产中“李代桃僵”的使用人工牛黄的行为将得到彻底杜绝。   标准缺失下的牛黄“乱象”:成分检测无依据   我国现有4500种中成药,其中约有650种含有牛黄,每年牛黄的需要量约500吨左右,但是,由于牛黄一直靠农户宰杀取得,我国每年自产的天然牛黄还不足1吨。牛黄的需求一直依赖进口,2002年,为防止疯牛病通过用药途径传入,国家决定禁止进口牛源性材料制备中成药,使得天然牛黄资源更为匮乏,导致天然牛黄价格不断攀升。   在市场竞争激烈和利益驱使的双重挤压下,部分药品生产企业在生产含牛黄品种的中成药时,铤而走险,将牛黄以人工牛黄进行代替。   企业之所以敢于这样胆大妄为,关键在于牛黄缺乏相应的检测标准。   据了解,2005年版《中国药典》(一部)收载含牛黄中成药品种共45个。在45个品种中:有1个品种对胆酸成分进行了含量测定 有29个品种对胆酸进行了薄层色谱鉴别(其中,有3个品种同时对去氧胆酸进行了薄层色谱鉴别,有1个品种同时对鹅去氧胆酸进行了薄层色谱鉴别,有4个品种同时对猪去氧胆酸进行了薄层色谱鉴别) 有1个品种采用糠醛法对牛黄进行检测 有14个品种无任何牛黄检测方法。《卫生部药品标准中药成方制剂》(1997年)收载的250个含牛黄(人工牛黄)品种,《新药转正标准》收载的22个含牛黄(人工牛黄)品种,《国家中成药标准汇编》(2002年)中成药地方标准上升国家标准收载的56个含牛黄(人工牛黄)品种,合计328个含牛黄(人工牛黄)品种。其中,有胆酸或胆红素含量测定的有11个(其中同时有薄层鉴别的品种有7个)品种 有胆酸类薄层鉴别的有94个品种 糠醛等理化鉴别反应的有35个品种 无任何牛黄鉴别检测项目的有188个品种。   2004年,为保证公众用药安全,国家食品药品监管局在《关于牛黄及其代用品使用问题的通知》(国食药监注[2004]21号)明确规定国家药品标准处方中42个含牛黄的临床急重病症用药品种和国家批准的含牛黄的新药,可以将处方中的牛黄以培植牛黄、体外培育牛黄替代牛黄等量使用,但不得以人工牛黄替代。2005年,根据实际情况,国家食品药品监管局对《国家药品标准处方中含牛黄的临床急重病用药品种名单》进行调整,将原名单中的42个品种调整为38个。   “但是,相关的标准却没有进行明确,《国家药品标准处方中含牛黄的临床急重病用药品种名单》所列品种的法定质量标准中,对牛黄功效性成分胆红素的含量测定却一个也没有 对天然牛黄及三个代用品中均有的胆酸成分要求含量测定的,只有一个品种(灵宝护心丹) 对胆酸(或去氧胆酸)要求进行薄层色谱鉴别的有16个品种。另外,有3个品种要求采用糠醛法等理化方法检测处方中的牛黄成分,有24个品种没有任何牛黄检测项目。”河北省某药品生产企业负责人这样解释道。   这无疑为不法企业的制假售劣提供了可乘之机。相关研究机构曾对7个厂家的安宫牛黄丸进行胆红素含量测定,结果发现这些产品中胆红素含量最高为37.9mg/丸,最低为0.72mg/丸,两者相差52倍。对3个厂家的牛黄清心丸进行胆红素含量测定,发现最高为0.1634mg/丸,最低为0.0273mg/丸,两者相差近6倍。   政策冲突中的市场尴尬:标准打架欠统一   业内人士反映,困扰含牛黄品种中成药质量的除标准欠缺外,相关政策配套不到位也是一个重要因素。   据了解,《国家药品标准处方中含牛黄的临床急重病用药品种名单》仅仅规定了品种名称,对剂型却没有明确界定,导致同一产品在剂型不一样的情况下使用不同牛黄的局面。例如:大活络丸、安宫牛黄丸、万氏牛黄清心丸、梅花点舌丸、回春丹等必须使用天然牛黄、培植牛黄或体外培育牛黄,但大活络胶囊(部颁新药转正52册)、安宫牛黄片(部颁中药14册)、安宫牛黄栓(部颁新药转正51册)、万氏牛黄清心片(地标升国标)、梅花点舌片(地标升国标)、梅花点舌胶囊(部颁新药转正41册)、回春散(地标升国标)等产品标准“处方”项下为“人工牛黄”,大大降低了含牛黄名方名药的治疗功效。   为规范药品生产,国家食品药品监管局2007年在《关于对牛黄及其代用品使用品种剂型界定的复函》中,明确指出,“对于依据国家药品标准处方中含牛黄的临床急重病症用药品种改剂型或改变用药途径的新药,可将处方中的牛黄以培植牛黄、体外培育牛黄替代牛黄等量投料使用,但不得以人工牛黄替代。”也就是说上述大活络胶囊、安宫牛黄片、安宫牛黄栓、万氏牛黄清心片等品种必须依规定使用牛黄、培植牛黄、体外培养牛黄。   但是,市场上含牛黄成分的中成药依然“鱼龙混杂”:不同厂家生产的安宫牛黄丸价格差别极大,有的2.5元/粒,有的8.8元/粒,高的甚至230元/粒。那些低价格的安宫牛黄丸绝对使用的是人工牛黄。湖北某企业的质量负责人说,自2002年我国禁止进口牛源性材料制备中成药以来,使用天然牛黄或者培植牛黄、体外培育牛黄投料,按目前生产企业的工厂成本、销售成本、销售利润等计算,安宫牛黄丸成本不低于60元。   “企业敢于造假主要在于中成药质量标准控制体系不完善。”这位业内人士介绍,近年来,为完善中成药尤其是含名贵中药材品种的中成药的质量标准,部分全国人大代表、政协委员多次在会议期间提出建议、提案,要求国家相关管理部门在完善中成药质量标准的同时,加强对含贵重药材的中成药品种的监管,以确保公众用药安全、有效。   政协十一届全国委员会第二次会议期间,肖红等六名全国政协委员对于完善含牛黄类中成药的质量标准提出建议。建议国家有关部门加强对含牛黄中成药中相关成分的测定,杜绝药品生产中的造假行为。   安全名义下的法律行动:剑锋犀利指向偷工减料   据了解,针对近年来出现的药害事件,国家食品药品监管局采取一系列加强药品生产监督管理的新措施、新方法。在全国范围内推广实施的派驻监督员制度和质量授权人制度,对规范药品生产行为,加强药品监管起到了积极作用。   同时,部分省级食品药品监管部门根据地区实际,在加强药品生产监督管理方面也进行了探索,如吉林、青海、湖北等省制定了对细贵中药材投料的有关规定,较好地遏制了药品生产中偷工减料的行为发生。   “但这些都是治标,杜绝中成药生产贵重中药材投料‘李代桃僵’的行为,关键还是完善贵重中药材的质量控制指标。”这位业内人士这样强调。   来自国家药典委的消息,随着药品标准提高行动的开展,国家将进一步完善对中成药质量标准控制体系,正在编撰中的2010版《中国药典》将对含名贵中药材的中成药作出针对性较强的含量控制和测定指标。在2010版《中国药典》编撰工作和国家标准提高行动中,国家药典委对含牛黄品种安排了标准提高任务,对禁止使用人工牛黄的品种,将增加猪去氧胆酸和游离胆红素的检查,同时进一步缩减使用人工牛黄的品种。   在进一步完善药品质量控制标准体系的基础上,相关的法律保障也加大了对制售假劣药品的严厉打击。2009年5月27日施行的《最高人民法院、最高人民检察院关于办理生产、销售假药、劣药刑事案件具体应用法律若干问题的解释》明文规定,生产、销售的假药“属于急救药品的”,应当认定为刑法第一百四十一条规定的“足以严重危害人体健康”。   “相对含牛黄类品种,‘两高解释’剑锋直指38个品种中以人工牛黄替代牛黄、体外培育牛黄、配置牛黄的违法行为。牛黄市场‘李代桃僵’现象匿迹将指日可待。”该业内人士强调。   8月18日,国家基本药物目录公布,为保证基本药物的质量,国家食品药品监管局将制定严格的监管办法,监督目录品种的生产。在含牛黄类的中成药,只有安宫牛黄丸位列《国家标准处方中含牛黄的临床急重病用药品种名单》。即安宫牛黄丸中必须使用牛黄或培植牛黄,体外培育牛黄。这意味着安宫牛黄丸的生产、流通将将接受全面的“体检”。完善质量控制体系,加快立法进程等这些措施,无疑为药品安全提供了有力的支撑。   相关链接:   牛黄具有清热、解毒、镇惊、止咳、平喘等作用,现代医学研究证明其能促进红细胞及血红蛋白生成,是治疗心脑血管系统疾病的特效药物,还具有抑制和拮抗抗癌药毒副作用等功效。目前市场上共有牛黄及其代用品四种,即天然牛黄、体内培植牛黄、体外培育牛黄、人工牛黄   1 天然牛黄   本品为牛科动物黄牛或水牛胆囊、胆管或肝管中的结石。天然牛黄可分蛋黄和管黄。天然牛黄的一般成分及含量为:胆红素72%~76.5%,胆汁酸4.3%~6.1%,胆酸0.8%~1.8%,去氧胆酸3.33%~4.3%,胆汁酸盐3.3%~3.96%,胆固醇2.5%~4.3%,脂肪酸1%~2.1%,卵磷脂0.17%~0.2%,钙2.3%~2.6%。此外尚含有3种类胡萝卜素物质及多种氨基酸、微量元素和类肽的平滑肌收缩成分。   2体内培植牛黄   本品是利用活牛体,以外科手术的方法在牛的胆囊内插入致黄因子,使之生成牛黄。由于人工培植牛黄是在与天然牛黄相同的特定生态因素条件下形成的,故经测定其理化特性、性味、色泽、药效成分含量等与天然牛黄无明显差异。   3体外培育牛黄   本品以牛科动物牛的新鲜胆汁作母液,加入去氧胆酸、胆酸、复合胆红素钙等制成。“体外培育牛黄”是运用现代生物工程技术,在牛体外模拟牛体内胆结石形成的原理和生物化学过程,经细菌培养,在多种酶作用下,从而培育出的一种生物优质牛黄。   检测结果表明:其技术参数、质量指标、功能及主治与天然牛黄一致。经对其进行药检及采用双盲法对其在7家医院进行的1850多例临床实验结果表明,体外培育牛黄其疗效和性能非常接近甚至超过天然牛黄,且主要药理成分比天然牛黄稳定,是天然牛黄的理想代用品。   4人工牛黄   本品是以牛胆汁酸、胆红素、胆固醇与无机盐(硫酸镁、硫酸亚铁和磷酸三钙)为原料,与淀粉混合而成,临床疗效与天然品大体相似。人工牛黄多数为土黄色疏松粉末,也有制成不规则球形或方形的产品。由于人工牛黄胆红素、去氧胆酸等含量较低,国家相关部门规定,其不得用于含牛黄类临床急重症中成药品种的生产。
  • 两片儿?!新冠口服药来了,能终止疫情吗?
    有没有想过,如果有了新冠特效药,你会选择打针还是吃药?针对新冠病毒特效药的研发这两年来正如火如荼地进行。近期为疫情防控带来信心的是小分子口服药物——2021年11月以来,口服的新冠药物不时从幕后走向台前。先是美国默沙东的莫努匹韦(Molnupiravir)和辉瑞的帕昔洛韦(Paxlovid)相继获批上市或紧急使用;紧随其后,我国原创新冠口服药物VV116也凭借优秀的临床试验数据于近日在乌兹别克斯坦获批上市。相比于大分子药物(如注射用中和抗体药物等),小分子口服药具有抗病毒效果直接、生产成本和用药成本低、储运条件易满足、服用方便等优势,因此被寄予终结疫情的厚望。“目前感染新冠病毒的患者中,主要是轻中症患者,他们占到85%以上,这些人如果能居家就用上小分子口服药物进行治疗的话,不仅可以快速消灭病毒,还可以将传染给其他人的风险降到最低,同时可以缩短隔离的时间,对改变我国现有的疫情防控策略可能会发挥重要作用。”国家应急防控药物工程技术研究中心研究员钟武对科技日报记者说,这对于整个疫情的防控更加有利。“新冠药物,尤其是可以在病程早期、在家中服用的口服药物,将成为抗击大流行和挽救生命的有力工具。”美国白宫首席医疗顾问安东尼福奇如是说。“一种易于给药的口服抗病毒药物将是我们治疗武器库的重要组成部分。”美国政府新冠肺炎响应首席科学官大卫凯斯勒也反复强调口服药的重要性。1 “两片儿见效”有可能吗?20世纪80年代,“两片儿”的驱虫药广告家喻户晓。由于能让种类繁多的寄生虫“饿死”,小分子药物肠虫清(阿苯达唑)被列入世界卫生组织基本药物标准清单,从而成为最重要的基本健康药物之一,即俗称的“特效药”。对付寄生虫,“两片儿”清虫,对付新冠病毒,有没有可能“两片儿”消灭病毒呢?新冠病毒口服特效药也想达到类似的效果:吃药后再测体内的病毒载量,出现陡降或者压根检测不出来的情况。这可能吗?“一种药物,是不是能够口服,取决于它本身的化学性质和生物学性质。”钟武解释说,其中主要的衡量标准是生物利用度,如果口服方式影响药物有效成分的吸收、代谢生物利用度很低就没有办法做成口服用药。换句话说,口服药物到达体内和病毒“作战”,要经过的路程和环境比注射更波折、也更复杂,比如该药物需要“扛得过去”胃里的酸性环境、体内的蛋白酶等,如果该药物在与病毒“正面对战”前就被消耗掉了,或者代谢成为另一种无活性物质,它将无法成为口服用药。大名鼎鼎的瑞德西韦是难以成为口服药的典型代表。2020年10月22日,美国食品药品管理局(FDA)便批准了吉利德公司的瑞德西韦用于治疗新冠住院患者。与其他药物紧急使用许可不同,瑞德西韦成为美国首个正式获批的新冠治疗药物,也是迄今为止唯一在美国正式获批的小分子药物。但口服瑞德西韦的生物利用度很低,只有2%左右,做成口服用药很难发挥药效,因此,只能做成注射液,直接注射进入血液来发挥药效。注射使用对药物的使用便利性产生了一定的限制。吉利德公司也意识到了这一点,开始探索通过雾化器的方式给药,但仍没有弥补其在便利性上与口服药的巨大差距。可见,在寻找口服的新冠特效药时,医药领域不仅需要搞清作用机理,选择不同的“进攻点”阻遏病毒,还需要从最本质的化学属性上下功夫,研制出适应全球大流行、易于大规模生产、易于大规模使用的药物。在多款以注射形式出现的中和抗体药物获批紧急使用之后,小分子口服新冠药物姗姗来迟,也就不奇怪了。全球首个获批紧急使用的口服新冠药物为美国默沙东的莫努匹韦,2021年11月在英国获得上市批准,随后美国辉瑞公司生产的新冠病毒治疗药物帕昔洛韦于2021年12月22日在美国获批紧急使用。这两款药物随后也获得了以色列、加拿大等多个国家的使用许可。我国科研院所与企业联合研发的新冠口服药VV116于2021年12月30日在乌兹别克斯坦获批上市,在国内已经获批进入临床试验,预计年内通过临床试验后,有望下半年启动上市申请。2中国的“116”能否成黑马?相关研发单位披露,VV116在临床前药效学研究中有不错的表现。中国科学院上海药物研究所研究员沈敬山等团队在腺病毒小鼠模型上的试验中发现,口服VV116可使病毒滴度降低到检测限以下,并显著改善实验模型动物肺组织病理变化。在模型小鼠身上的试验证明,VV116有成为特效药黑马的潜质,服下后能大大降低体内病毒的载量。“上海药物所作为主要研发力量研制的VV116,目前看比较有希望成为新冠治疗的有效用药。”钟武表示了对这一国产小分子口服药的信心,他解释,VV116攻击新冠病毒的基本原理与瑞德西韦相似,都是攻击新冠病毒的核心酶,瑞德西韦在美国等地的临床治疗效果表明,这一药物作用原理对新冠病毒是有效的,而且VV116更大的优势是做到了口服。从原理而言,VV116靶向新冠病毒的聚合酶(RdRp,RNA依赖的RNA聚合酶),通过破坏新冠病毒自我复制的流水线,“围剿”病毒。具体是怎么做到呢?作为新冠病毒的核苷类似物,VV116可以伪装成一个病毒需要的核苷酸。病毒入侵后会在人体细胞内“招募”各种生产物资,VV116伪装“掺入”到关键的“零配件”核苷酸中,当RNA聚合酶作为大的生产机器循环装配新冠病毒时,VV116一进入就会导致大机器“卡壳”,使得病毒自我复制的流水线“罢工”,无法在人体内繁衍。对病毒蛋白大机器的运转机理研究得越透,零件、齿轮拆分得越精细,那么小分子药物“伪装—进入—卡壳”的效率越高。2020年3月之前,由于缺乏新型冠状病毒RNA聚合酶的三维结构信息,核苷酸类似物如何精确靶向病毒RNA聚合酶的机制并不明确。两年来,中国科学家对于RNA聚合酶的运转机理做了细致剖析,可以说是“了如指掌”。我国饶子和院士团队持续对新冠病毒的RNA聚合酶及其复合物的精密结构进行解析,并不断“拍下”其在“运转”过程中的高清“照片”,通过冷冻电镜技术找到核心靶点,并阐明了相关药物的作用机理以及副作用机理。例如,2021年刊《细胞》刊文称,研究团队发现了病毒竟可以通过“反式回溯”的方式对错配碱基和抗病毒药物进行“剔除”,这阐明了核苷酸类似物药物(瑞德西韦)效果不良的分子机制。基础研究中的发现,帮助针对聚合酶的抗病毒药物不断优化,将其“打磨”得越来越接近特效药。特效药的研发需要不断打磨、不断改进缺点。例如,此前由于瑞德西韦可能会产生严重副作用,世界卫生组织曾评估不建议使用该药物进行治疗。而VV116在保持了核苷酸类似物骨架的同时,在化学基团的修饰和优化中做了关键性的工作。一系列临床前安全性评价实验显示,VV116的安全性较好且无遗传毒性。“通过分子水平上的基团改进和优化,VV116还解决了无法口服的问题。”钟武解释,VV116作为全新的核苷类似物小分子,口服以后不会被分解,能够快速进入血液,发挥抗病毒作用,大大提高了生物利用度,这一点是其核心优势。3“老药新用”是另一条路?除了专门针对新冠病毒努力研制新药外,很多科学家也着力从老药中寻找对抗新冠病毒的“佼佼者”。在两年前的疫情初期,我国在重大新药创制国家科技重大专项支持的平台上迅速筛选了大量原本用于治疗其他疾病的“老药”:法匹拉韦、磷酸氯喹、可利霉素等能在体外有效抑制新冠病毒的药物脱颖而出。它们中有的在实践中没有展现出抗击新冠病毒的实力,有的仍活跃在疫情防控一线,有的正在开展新适应症的临床试验… … 时至今日,在俄罗斯、土耳其、沙特、印度、泰国、老挝、越南… … 法匹拉韦片已经获批用于新冠治疗,并在部分民众中免费发放。泰国网报道,泰国医疗厅厅长颂萨1月18日回应媒体时表示,若患者病情出现变化,需尽快为其分配法匹拉韦。“千金藤素是一种用于治疗白细胞减少症的老药,它在我们的筛选平台上表现出比瑞德西韦等其他药物更高的抗新冠病毒活性。”北京化工大学生命科学与技术学院院长、中国—世界卫生组织新冠病毒溯源联合研究专家团队动物与环境组中方组长童贻刚说。两年以来,日本国立传染病研究所、美国芝加哥大学研究团队等多个国际团队相继证明了千金藤素的抗新冠能力。相关论文发表在了《科学》杂志上。2021年最后一天,童贻刚实验室公号发布快报:加拿大药企的千金藤素
  • 北京协和医学院药物研究所靳洪涛、贺玖明团队成果:空间代谢组整合网络毒理学和质谱成像探究何首乌D组分肝毒性机制
    何首乌(PM)作为传统中药具有广泛的药理活性且临床应用广泛,其肝毒性一直备受关注,但由于其多成分、多靶点的特性,其毒性物质和机制尚未阐明。前期研究发现PM 70%乙醇提取物中,D组分(95%EtOH洗脱,PM-D的肝毒性最高,然而PM-D的肝毒性机制尚不清楚。  2022年8月,北京协和医学院药物研究所靳洪涛、贺玖明团队在Journal of Ethnopharmacology发表了题为“Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb”,提出系统整体的中药毒理研究策略,整合网络毒理学和空间质谱成像技术探究何首乌D组分肝毒性的潜在靶点及代谢机制,为何首乌肝毒性机制发现及中草药的相关组分药理毒理机制研究提供了新的方法和技术支持。  研究背景  前期基于斑马鱼胚胎模型对何首乌不同组分及单体成分进行肝毒性评估,发现何首乌D组分的急性毒性和肝毒性明显高于其他提取物,并分离鉴定了PM-D中27个化学成分,主要包含蒽醌类、多酚类、蒽酮类、二蒽酮类等,进一步以斑马鱼胚胎模型的表型终点(肝脏大小、肝脏灰度值和卵黄囊面积)评价何首乌D组分中主要化学成分的毒性,发现蒽醌和二蒽酮类与其他成分相比具有显著的肝毒性。前期的毒性筛选确定潜在毒性物质基础有助于进一步阐明其肝毒性分子机制。  本研究首次整合了网络毒理学和质谱成像技术应用于中药毒理机制研究,网络毒理学基于系统和整体的角度衡量复杂的“成分-靶点-疾病”网络关系为中药毒性机制探索提供了新的思路。基于质谱成像技术衍生的空间分辨代谢组学技术可在保留空间位置信息的基础上揭示生物组织中代谢物的时空分布特征,有助于理解代谢活动时空变化与组织病理和生理功能之间的关联和作用机制。以何首乌D组分的肝毒性机制研究为例,两种方法的整合应用为中药药理毒理机制研究提供新的研究策略。  技术流程    研究结果  1、病理及生化指标  急性毒性实验中,14 d内所有剂量均未观察到小鼠死亡或异常毒性症状且大体解剖未见明显病理改变。2g/kg剂量反复给药7天后,组织病理学检查发现给药组肝细胞肿胀,肝窦轻度扩张,少量微肉芽肿,肝细胞轻度变性/坏死等改变,血清生化分析显示,血清AST活性和TBIL含量显著升高,ALT和ALP活性水平呈上升趋势(图1)。  图1 | PM-D给药后小鼠病理及生化指标变化  2、毒性物质的定量检测  PM-D中蒽醌类化合物大黄素和大黄素-8-β-D-葡萄糖苷的含量分别为3,989.820 μg/g和12,677.423 μg/g (图2)。反式-大黄素-大黄素二蒽酮和顺式-大黄素-大黄素二蒽酮含量分别为1,847.708 μg/g和1,455.940 μg/g(图3)。    图2 | HPLC谱图  标准溶液(A)和样品溶液(B), 大黄素-8-β-D-葡萄糖苷(1)和大黄素(2)    图3 | MS谱图  标准溶液(A)和样品溶液(B), 反式-大黄素-大黄素二蒽酮(1)和顺式-大黄素-大黄素二蒽酮(2)。  3、网络毒理学分析  3.1PM-D肝毒性靶点和网络构建  经药物靶点预测和疾病靶点收集共获得了30个目标靶点网络构建结果显示mTOR、PIK3CA、AKT1、EGFR、ERBB2、ESR1、RPS6KB1、CTNNB1是核心的相关靶点(图4)。    图4 | 网络构建及靶点分析  (A)共同靶标集合  (B)药物-靶点-疾病网络  (C)PPI网络。  3.2 GO和KEGG富集结果分析  GO富集结果主要集中在生物过程中,涉及细胞内信号转导的正调控、TOR信号、对外来生物刺激的响应、细胞对内源性刺激的反应、激酶活性的正向调节、MAPK级联调控、凋亡过程的调控、活性氧代谢过程的调控等(图5A)。KEGG的富集信号通路主要包括PI3K-Akt信号通路、ERBB信号通路、AMPK信号通路、mTOR信号通路、肝细胞癌、HIF-1信号通路、Ras信号通路及MAPK信号通路等(图5B)。  图5 | GO富集分析(A)和KEGG富集分析(B)  3.3分子对接  分子对接结果显示大部分核心毒性成分都能与靶点紧密结合,二蒽酮类化合物顺式-大黄素-大黄素二蒽酮(Cis-emodin-emodin dianthrones),反式-大黄素-大黄素二蒽酮(Trans-emodin-emodin dianthrones),Polygonumnolide C4相较于其他成分结合能更低。 图6 | PM-D中成分与核心靶点的分子对接分析  (A)结合能热图分析 (B-D)结合构象可视化:  (B)反式-大黄素-大黄素二蒽酮- mTOR   (C)反式-大黄素-大黄素二蒽酮- EGFR   (D)Polygonumnolide C4- mTOR。  4.质谱成像分析  4.1高分辨、高覆盖、高灵敏的代谢物成像  质谱成像在单个像素点提取的代谢物峰可达数万种,覆盖了丰富的代谢物。作者发现两种含量较高的药物成分大黄素和大黄酸相关代谢产物仅在药物组的肝脏中高度富集。内源性代谢物精氨酸和牛磺胆酸等分布具有区域特异性(图7)。  图7 |AFADESI-MSI可视化PM-D给药后代谢物变化 (A)负离子模式下平均质谱  (B-E)内外源性化合物的空间可视化:大黄素(B), 大黄酚(C),精氨酸(D),牛磺胆酸及牛磺去氧胆酸(E)。  4.2代谢轮廓分析及差异代谢物鉴定  差异代谢物经过MS/MS鉴定,并采用MassImager软件可视化其空间分布特征,代表性差异代谢物的质谱图像如图8所示, 可观察到精氨酸、鸟氨酸、脯氨酸、牛磺酸类和肉碱类代谢物显著上调,部分脂质类代谢物显著下调。  图8 | 代表性差异代谢物质谱成像图  4.3通路富集分析  基于通路富集的结果,构建了包括已鉴定的关键生物标志物在内的代谢网络,揭示了胆汁酸合成、嘌呤代谢、脂肪酸氧化、三羧酸(TCA)循环和脂质代谢等参与了PM-D致肝毒性过程的代谢变化(图9)。图9 | 代谢网络分析  研究讨论  本研究首次应用质谱成像技术可视化PM-D中关键代谢物在肝脏中的分布并首次对PM中毒性成分二蒽酮类化合物进行定量检测及网络药理学分析预测潜在毒性靶标为何首乌毒性物质基础研究及潜在肝毒性靶点发现奠定了新的基础。  空间分辨代谢组学进一步挖掘出何首乌D组分的肝毒性生物标志物,包括氨基酸、酰基肉碱、胆汁酸、脂类等。基因富集和代谢网络综合分析表明,何首乌D组分的毒性机制可能涉及氧化应激、线粒体损伤和AMPK通路等导致的胆汁酸代谢、能量循环、嘌呤代谢和脂质代谢的紊乱相关,该研究有望为临床诊断和监测何首乌肝毒性的发生发展提供参考,并作为代谢适应和重编程的资源,以指导未来临床预后研究,为探索中药毒性机制提供新思路。
  • 分子细胞卓越中心等阐释细胞增殖示踪技术ProTracer的建立与应用
    6月2日,《自然-实验手册》(Nature Protocols)在线发表了中国科学院分子细胞科学卓越创新中心周斌研究组与西湖大学何灵娟研究组合作完成的研究成果(Genetic recording of in vivo cell proliferation by ProTracer)。该研究阐释了细胞增殖示踪技术——ProTracer的构建及应用,并以肝细胞增殖的示踪为例,论述了如何利用ProTracer技术示踪成体哺乳动物在器官稳态与修复再生过程中的细胞增殖。细胞增殖是多种组织器官发育、稳态维持及修复再生过程中细胞来源的基础。体内细胞增殖由于细胞类型以及所处的时期不同存在较大差异。此前,领域内较为常用的检测细胞增殖的方法主要分为细胞增殖标志物染色、核苷酸类似物掺入及同位素掺入。上述方法对于检测体内细胞增殖均有一定的局限性:细胞增殖标志物染色方法只能检测某个瞬间的细胞增殖状态,核苷酸类似物可以进行长时程的掺入却有一定的细胞毒性,同位素掺入的检测方法比较复杂且不便捷。此外,上述检测方法均无法做到细胞类型特异性的细胞增殖检测。当目的细胞的增殖速率较为缓慢时,利用上述检测方法易出现目的细胞的增殖信号被其他增殖速率较快的细胞增殖信号干扰或淹没的问题。为了解决上述问题,周斌研究组最近建立了能够示踪体内细胞增殖的遗传示踪技术——Proliferation Tracer(ProTracer)。该技术实现了在体内长时间不间断地示踪细胞增殖、细胞类型特异性的细胞增殖检测以及活体检测细胞增殖等多方面的突破。该工作剖析了使用ProTracer技术进行细胞增殖示踪的技术细节,包括小鼠品系的构建、鉴定、交配策略以及细胞增殖示踪的最终检测方法。为了实现体内无缝隙捕捉细胞增殖,研究构建了一个可被诱导变成Cre的CreER小鼠品系——Ki67-Cre-rox-ER-rox(Ki67-CrexER),其中rox是Dre同源重组酶的识别位点。当将Ki67-CrexER小鼠与特定的DreER小鼠结合后,DreER能够在Tamoxifen诱导后入核并识别Ki67-CrexER中的rox位点,同时发生Dre-rox同源重组反应将位于两个rox位点之间的ER序列切割掉,从而在DreER表达的细胞中将诱导性表达的Ki67-CrexER转变为持续性表达的Ki67-Cre,实现时空可控以及细胞特异性的细胞增殖的不间断捕捉。此外,结合荧光素酶报告基因,ProTracer技术也可以实现终身无创检测活体动物内特定细胞类型的增殖,无需处死动物。该工作以成体小鼠肝脏作为示例,探究了对成年小鼠组织中细胞增殖的示踪,包括小鼠交配策略、tamoxifen诱导策略、小鼠损伤模型与组织样本分析等。科研人员利用ProTracer技术探讨了肝脏在成体组织稳态及损伤再生中的肝细胞增殖,并量化了肝脏稳态以及损伤状态下的新生肝细胞数量,发现了肝细胞增殖的区域性富集现象,揭示了成体肝脏中新生肝细胞的主要来源。该工作的发表为领域内使用ProTracer技术研究特定细胞类型的体内增殖示踪提供了便利。研究工作得到中国科学院、国家自然科学基金、科学技术部、上海市科学技术委员会,以及分子细胞卓越中心动物平台和细胞平台等的支持。红色:GS+肝细胞;紫色:E-Cad+肝细胞;绿色:GFP+肝细胞
  • 盘点FDA批准上市的生物类似药
    p style=" text-align: justify "   生物药(Biological products)一般是指来源于有生命的生物体的产品,通常来源是疫苗、血液成分、基因治疗、组织和蛋白质。而生物类似药(Biosimilar)是指与已经批准的原研专利药具有生物类似性或者互相替代性的生物制品。 /p p style=" text-align: justify "   在过去十年左右,生物制药带来了一系列新疗法, 其中重磅药的每年销售额从十几到几十亿美金不等。随着时间推移许多生物药的专利将过期,根据Evaluate的统计,到2020年,已过专利保护期的生物药将拥有高达近874亿美金的市场规模。这极具吸引力的利润空间,引来各大制药公司的关注。 /p p style=" text-align: justify "   美国与生物类似药(Biosimilar)有关的里程碑法案是2010年3月开始实行的The Biologics PriceCompetition and Innovation Act of 2009 (BPCI Act)(生物制品价格竞争和创新法案2009),简称BPCI法案。这是奥马巴在任时推行的Affordable Care Act(ACA)平价医疗法案的一部分。其为生物类似药提供一个简化审批流程。2012年2月9日,美国FDA颁布了3项与生物类似药产品开发有关的指南草案,为生物类似药进入美国市场建立了一条快速审批通道。 /p p style=" text-align: center " img width=" 599" height=" 384" title=" timg.jpg" style=" width: 511px height: 321px " alt=" timg.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/1ffc9a54-6e65-491c-960b-731aa14755e0.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " strong 图片源于网络 /strong /span /p p style=" text-align: justify "   尽管如此,FDA对Biosimilar的审批相当慎重,直到2015年才批准首个生物类似药Zarxio上市。至近日Truxima获批,FDA批准的生物类似物共12个。下面我们将逐一盘点已经获批上市的药物。 /p p style=" text-align: justify "    strong 1、Zarxio /strong /p p style=" text-align: justify "   Zarxio(filgrastim -sndz),由诺华旗下山德士推出,于2015年3月6日获得FDA批准,这是FDA批准的首款生物类似药。 /p p style=" text-align: justify "   Zarxio的仿制对象(参考产品)是安进公司(Amgen Inc)的 Neupogen (filgrastim,非格司亭1991年获得批准) 。Zarxio此次获得批准的适应症与Neupogen完全相同,主要包括正在接受骨髓抑制化疗的癌症患者、在接受诱导或巩固性化疗的急性骨髓性白血病患者、在接受骨髓移植的癌症患者、正在进行自体外周血造血干细胞集治疗的患者、严重慢性嗜中性白血球减少症患者。 /p p style=" text-align: justify "   FDA批准Zarxio作为Neupogen的生物类似性药物,但并非后者的“可互换药”(interchangeableproduct) 。根据美国法律,如果一种生物制品被批准为某种参考药品的“可互换药”,则意味着无需医生干预可以直接替代参考药品用于临床。 /p p style=" text-align: justify "    strong 2、Inflectra /strong /p p style=" text-align: justify "   Inflectra (infliximab-dyyb,英夫利昔单抗)由辉瑞研发,于2016年4月5日获FDA批准。该药是强生和默沙东的重磅品牌药Remicade (类克,通用名:infliximab,英夫利昔单抗)的生物类似药。Remicade曾是全球最畅销的抗炎药,2014年全球销售额高达92.4亿美元,位列《2014年全球销售最好的25个药物》榜单第3名。 /p p style=" text-align: justify "   该药是FDA批准的第二个生物类似药,也是FDA批准的首个单克隆抗体生物类似药。用于治疗如下疾病:(1)对常规药物治疗反应不足的成人克罗恩病和儿童克罗恩病(6岁及以上) (2)对常规药物治疗反应不足的中度至重度活动性溃疡性结肠炎 (3)联合甲氨蝶呤用于治疗中度至重度活动性成人类风湿性关节炎 (4)活动性强直性脊柱炎 (5)活动性银屑病关节炎 (6)慢性重度斑块型银屑病。 /p p style=" text-align: justify "   strong  3、Erelzi /strong /p p style=" text-align: justify "   2016年8月30日,FDA批准山德士开发的Enbrel (etanercept)生物类似药Erelzi (etanercept-szzs)上市,用于治疗多种炎症疾病,成为FDA批准的第三个生物类似药。 /p p style=" text-align: justify "   原研药Enbrel (恩利,通用名:Etanercept,依那西普)是安进的一款超级重磅产品,2014年全球销售额高达90亿美元。目前,Enbrel在美国已获批的适应症包括:中度至重度类风湿性关节炎,中度至重度多关节型幼年特发性关节炎,银屑病关节炎,强直性脊柱炎,中度至重度斑块型银屑病。 /p p style=" text-align: justify "   值得注意的是,2016年1月底,由韩国生物制药公司三星Bioepis (Samsung Bioepis)开发的一款依那西普(etanercept)生物类似药Benepali已经获欧盟批准,用于中度至重度类风湿性关节炎、银屑病关节炎、非放射性中轴性脊柱关节炎、银屑病成人患者的治疗。Benepali是欧盟批准的首个依那西普(etanercept)生物类似药,同时也是欧洲市场首个皮下注射剂型抗肿瘤坏死因子(anti-TNF)生物类似药。在欧洲生物制剂市场中,抗肿瘤坏死因子产品是最大的组成部分,年销售额高达100亿美元。 /p p style=" text-align: justify "    strong 4、Amjevita /strong /p p style=" text-align: justify "   2016年9月23日, FDA宣布批准安进公司的新药Amjevita (adalimumab-atto)上市。Amjevita是艾伯维拳头产品Humira (修美乐,通用名:adalimumab,阿达木单抗)的生物类似药。 /p p style=" text-align: justify "   Amgevita的活性成分是一种抗TNF-α单克隆抗体,与adalimumab具有相同的氨基酸序列,并且具有adalimumab相同的药物剂型和剂量,用于多种炎症性疾病包括:中重度活动性类风湿关节炎 活动性银屑病性关节炎 活动性强直性脊柱炎 中重度活动性克罗恩病 中重度严重性活动性溃疡性结肠炎 中重度斑块状银屑病。 /p p style=" text-align: justify "    strong 5、Renflexis /strong /p p style=" text-align: justify "   Renflexis (infliximab-abda,英夫利昔单抗)由默沙东与合作伙伴三星集团旗下生物制药公司三星Bioepis(SamsungBioepis)合作开发的一款生物类似药,于2017年4月21日获FDA批准。 /p p style=" text-align: justify "   Renflexis适用于Remicade的全部适应症,包括:成人及儿科克罗恩病,成人溃疡性结肠炎、类风湿性关节炎、强直性脊柱炎、银屑病关节炎以及成人斑块型银屑病的治疗。 /p p style=" text-align: justify " strong   6、Cyltezo /strong /p p style=" text-align: justify "   Cyltezo是由德国制药巨头勃林格殷格翰(Boehringer Ingelheim)开发的阿达木单抗生物类似药。Cyltezo首先于2017年11月13日获得欧盟委员会批准,获批用于艾伯维原研药Humira所有已获批的适应症,后于2017年8月25日FDA批准。 /p p style=" text-align: justify "   strong  7、Mvasi /strong /p p style=" text-align: justify "   安进公司的Mvasi (bevacizumab-awwb,贝伐珠单抗)是罗氏旗下基因泰克(Genentech)公司Avastin (bevacizumab)的生物类似药,于2017年9月14日获得FDA批准,被批准用于治疗患有某种结直肠癌、肺癌、脑癌、肾癌及宫颈癌的成人患者。它获批后仍作为批准生物类似药,而非一种可互换的产品。 /p p style=" text-align: justify "   strong  8、Ogivri /strong /p p style=" text-align: justify "   FDA于2017年12月1日批准Mylan和Biocon公司两家公司共同开发的Ogivri (trastuzumab-dkst)上市。Ogivri是一款Herceptin (商品名赫赛汀,药物名trastuzumab,曲妥单抗)的生物类似药,被批准用于治疗赫赛汀标签中的所有适应症,包括过度表达HER2的乳腺癌和转移性胃癌(胃或食管胃交界部腺癌)。 /p p style=" text-align: justify "    strong 9、Ixifi /strong /p p style=" text-align: justify "   Ixifi(英夫利昔单抗-qbtx)由辉瑞研发的Remicade的生物类似药,于2017年12月13日获批,Ixifi仍作为一种生物类似性药物,而不是一种可互换的产品。 /p p style=" text-align: justify "   strong  10、Retacrit /strong /p p style=" text-align: justify "   辉瑞旗下Hospira 公司的Retacrit (epoetin alfa-epbx)作为Epogen/Procrit(epoetin alfa)的生物类似药,于2018年5月15日获FDA批准上市,用于治疗慢性肾病,化疗或使用齐多夫定治疗HIV感染患者的贫血症。Retacrit也被批准在手术前后使用,以降低因手术过程中失血而必须输注红细胞的可能性。 /p p style=" text-align: justify "   strong  11、Fulphila /strong /p p style=" text-align: justify "   FDA已于2018年6月批准Fulphila(pegfilgrastim-jmdb)上市。该药是安进Neulasta (pegfilgrastim,培非格司亭)的生物类似药。 /p p style=" text-align: justify "   Neulasta是一种“升白”药物,用于提升患者体内的白细胞数量,其活性药物为pegfilgrastim,这是一种重组的人粒细胞巨噬细胞集落刺激因子(G-CSF)。G-CSF临床主要用于预防和治疗肿瘤放疗或化疗后引起的白细胞减少症、治疗骨髓造血机能障碍及骨髓增生异常综合征、预防白细胞减少可能导致的感染并发症、以及让感染引起的中性粒细胞减少的恢复加快。肿瘤患者在放疗或化疗后,常会出现白细胞减少、抗感染能力降低等症状。因此,临床上常使用“升白药”提升患者体内的白细胞数量。 /p p style=" text-align: justify "   strong  12、Truxima /strong /p p style=" text-align: justify "   Truxima的参考药为罗氏旗下的Rituxan(rituximab,利妥昔单抗),被批准用于治疗非霍奇金淋巴瘤的生物类似药,由韩国药企CelltrionHealthcare推出,主要用于大B细胞淋巴瘤、滤泡性淋巴瘤、慢性淋巴细胞白血病、非霍奇金淋巴瘤、多血管炎及微小多血管炎型肉芽肿病等癌症的治疗。 /p p style=" text-align: justify "   此次,于2018年11月28日获FDA批准用于治疗以下成人患者:1)单药治疗复发或难治性、低度恶性或滤泡型、CD20阳性B细胞滤泡淋巴瘤 2)与一线化疗联合用于以前未经治疗的CD20阳性B细胞滤泡淋巴瘤 3)单药维持治疗用于对利妥昔单抗联合化疗发生完全或部分起效的患者以及在一线环磷酰胺,长春新碱和泼尼松(CVP)化疗后的单药治疗,用于非进展性、低级别CD20阳性B细胞淋巴瘤。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 小结 /strong /span /p p style=" text-align: justify "   与常见的小分子不同,生物制剂通常具有高分子复杂性,且对生产过程的变化非常敏感,然而现有的技术尚不能充分表征生物药的结构和其他特性。同时药品生产过程中的细微差异可能对最终产品的质量、纯度、生物学特性及临床效果影响很大。这些因素决定生物类似药不可能与原研药完全一样。 /p p style=" text-align: justify "   在美国 ,对于小分子的化学仿制药,一般情况下药剂师可以在不经处方医生允许,直接将处方中的原研药品替换为仿制药。这种替换有利于降低药品费用。但生物类似药必须在FDA已经批准其具可互换性的前提下,药剂师才能在不经处方医生允许的情况进行替换(具体可以参见FDA紫皮书,各州法规还并不完全一致)。由此可见,FDA对生物类似药的获是非常谨慎的。 /p p style=" text-align: justify "   FDA对生物类似药提出两个层次的要求,首先是证明生物相似,这是基本要求,而可互换是更高要求。到目前为止,欧盟没有明确提出生物类似药的“可互换性”的概念,但多个国家如英国、法国、意大利,都有明令禁止药剂师对生物类似药直接进行互换。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(127, 127, 127) font-size: 14px " 参考与备注: /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   [1] https://en.wikipedia.org/wiki/Biosimilar /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   [2]2015年3月,CFDA在其发布的《生物类似药研发与评价技术指导原则(试行)》文件中首次将biosimilar称为“生物类似药” /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   [3] 胰岛素、生长激素、促卵泡激素、甲状旁腺素未列入其中。 /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   [4] 刘培英,黄文慧,田少雷.对美国食品和药物管理局生物类似药可互换性概念和要求的解读.中国新药与临床杂志,2018,37(2):95-98. /span /p
  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4,G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • 大批生物制剂专利即将到期——国内生物类似药研发现状与思考
    p   国家对医药行业发展大力扶持,国内生物类似药的发展也跟着呈上升趋势。然而,同欧美发达国家相比,中国生物类似药的研发实力仍存在巨大差距。为了改变这种状况,国家也从政策上大力扶持,以促进国内生物类似药研发。2015年2月,CFDA发布了“生物类似药研发和评估技术指南(试行)”,旨在促进生物制药行业的健康发展。该文件详细说明了生物类似药的申请程序,注册要求和类别。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/4a09859f-5ca1-4ba5-b4f6-b0bcc9be9e8c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   生物类似药具有一些独特的特点。首先是他们的技术要求高,由于它们在细胞中生产,生物类似药的有效性和安全性可能因批次而异。因此,在开发过程中质量控制的关键技术至关重要。许多工艺步骤,包括细胞培养、产品加工和纯化、储存等,都会影响最终产品质量。因此,毫无疑问,监管机构,尤其是欧美的监管机构,在批准之前需要进行大量关于生物类似药的临床数据分析。这最终转化为到相对较高的生产成本。 /p p   生产成本的增加又带来新的问题,那就是投资风险。生物类似药的研制周期越长,成本越高,会带来较高的投资风险。一般来说,成功开发生物类似药需要8到10年甚至更长时间,投资或可高达2.5亿美元。相比之下,化学仿制药可能只需要3 - 5年,其投资成本可能在200万至300万美元之间。 /p p   目前,一大批生物制剂专利已经或即将到期,包括阿达木单抗,英夫利昔单抗,依那西普,利妥昔单抗,贝伐单抗,曲妥珠单抗等。本文中重点介绍上述品种的国内生物类似药的研发情况。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 1 国内生物类似药研发现状 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong Rituximab /strong /span /p p    strong span style=" color: rgb(0, 112, 192) " 利妥昔单抗 /span , span style=" color: rgb(0, 112, 192) " 原研为Rituxan /span /strong ,最初由罗氏公司开发。1997年和1998年,它已获得FDA和EMA的批准。其主要适应症是非霍奇金淋巴瘤,慢性淋巴细胞白血病和类风湿性关节炎。目前,利妥昔单抗是非霍奇金淋巴瘤最有效的CD20靶向治疗方法之一。临床结果表明,联合利妥昔单抗和CHOP联合化疗可使侵袭性NHL患者的总体缓解率提高到83%,完全缓解率分别提高到76%。 /p p   到目前为止,欧盟已经批准了两种利妥昔单抗生物类似药,包括Celltrion Healthcare的Truxima和Sandoz的Rixathon和Riximyo。 /p p   2008年4月21日,罗氏的Rituxan正式进入中国市场。与此同时,一大批中国生物制药公司正在加大竞争力度。最值得注意的是复星医药旗下的复宏汉霖。复宏汉霖的重组人鼠嵌合抗CD20单克隆抗体注射液,主要适用于非霍奇金淋巴瘤、类风湿性关节炎的治疗。在2018年1月29日被CDE纳入优先审查,有望成为国内首个生物类似药。 /p p   此外,信达生物与美国制药巨头Eli Lily共同开发IBI301。其临床前数据表明,在所有的主要特征,包括初级和更高级结构、异质性、生物活性和与工艺相关的杂质都与Rixutan高度相似。在其临床前药理学研究中,其药代动力学和毒性特征也显示出与Rituxan的药代动力学和毒性特征非常相似。11月13日信达生物宣布IBI-301获得国家药品监督管理局(NMPA)受理的新药上市申请。 /p p   神州细胞工程有限公司,海正药业,他们的产品也都已进入三期临床试验阶段。 /p p    strong span style=" color: rgb(0, 112, 192) " Adalimumab /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   阿达木单抗,原研药为Humira /span /strong ,是Abbvie的明星产品。它连续几年成为畅销药品,于2002年12月31日获FDA批准,并于2003年9月8日获得EMA批准。目前,其主要适应症为类风湿性关节炎和强直性脊柱炎。 /p p   目前,美国FDA已经批准了两种阿达木单抗生物类似药,包括Amgen的Amjevita和Boehringer Ingelheim的Cyltezo。同时,有四个在欧盟获得批准,除了Amgevita和Cyltezo,Amgen的Solymbic和Samsung Bioepis的Imraldi也被接受。 /p p   2012年2月26日,Humira进入国内市场。目前,近20家中国制药公司在研发此品种。其中,信达生物、百奥泰和海正的已经进入上市申请阶段。 /p p   8月17日,百奥泰的阿达木单抗注射液(BAT1406)的上市申请获得CDE承办受理,海正药业于9月14日发出公告的阿达木单抗(HS016)上市申请以特殊审批程序获国家药品监督管理局受理。信达生物11月12日宣布,国家药品监督管理局(NMPA)已受理其在研药物IBI303的新药上市申请(NDA) /p p   复宏汉霖于2017年4月29日,它宣布其阿达木单抗生物类似药也被批准在国内进行临床试验。值得注意的是复宏汉霖并没有将目标定位在强直性脊柱炎的指征,相反,它适用于牛皮癣。君实生物的UBP1211、正大天晴的TQ-Z2301。通化东宝、百泰生物、康宁杰瑞、华海药业、齐鲁药业等20多家企业处于临床前到临床II期阶段 /p p   Humira在2017 年的全球销售额为 184.3 亿美元。但中国市场的总收入仅为3100万美元,不到全球市场的0.01%。这主要是因为其成本相对较高。然而,随着国内仿制者的出现,预计将会很快就会在看到阿达木单抗的使用量的激增。 /p p    strong span style=" color: rgb(0, 112, 192) " Infliximab /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   英夫利昔单抗,原研药品牌为Remicade /span /strong ,由Janssen开发是另一种流行的抗TNF-α单克隆抗体。它分别于1998年8月和1999年8月由FDA和EMA批准。目前,它主要用于治疗炎症相关疾病,包括克罗恩病,溃疡性结肠炎,类风湿性关节炎,强直性脊柱炎,银屑病性关节炎和斑块状银屑病。 /p p   到目前为止,美国仅批准了两款英夫利昔单抗生物类似,分别是Pfizer的Inflectra和Samsung Bioepis的Renflexis。EMA已批准三款,包括Pfizer的Inflectra,Celltrion的Remsima和Samsung的Flixabi。 /p p   2017年5月17日,Remicade被CFDA正式批准上市。从那时起,国内该品种生物类似药的研发一直在追赶。上海百迈博制药CMAB-008已申报生产并拿到批件。海正药业的HS626处于三期临床,在这场比赛相对另领先,其余在临床早期阶段 /p p    strong span style=" color: rgb(0, 112, 192) " Etanercept /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   依那西普,原研药是Enbrel /span /strong ,最初由Amgen开发,是重组人TNF-α受体和人IgG-Fc的融合蛋白,于1998年11月和2000年2月分别获FDA和EMA批准。它主要用于类风湿性关节炎,幼年型类风湿性关节炎,银屑病性关节炎,斑块状银屑病和强迫性脊椎炎。 /p p   目前,FDA已批准Sandoz的仿制药Erelzi,EMA已批准SamsungBioepis的Erelzi和Benepali。 /p p   Etanercept于2010年2月26日进入中国市场,与本文中的其他生物制剂相比,相对较晚。然而,它的中国模仿实际上很早就出现了。中信国健的益赛普在2005年上市,另外是上海赛金的强克和海正药业的安佰诺也先后获得批准。从这个角度来看,这些模仿者并不是真正意义上的生物类似药。 /p p    strong span style=" color: rgb(0, 112, 192) " Trastuzumab /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   曲妥珠单抗,商品名赫赛汀 /span /strong ,最初由罗氏公司的Genentech开发。它分别于1998年9月和2000年8月首次获得FDA和EMA的批准。 /p p   它是抗HER2单克隆抗体,通过与HER2连接,可以阻断人表皮生长因子与HER2的结合,从而减少癌细胞的生长。目前,其主要适应症包括乳腺癌,转移性胃癌和过度表达HER2的转移性食管癌和胃癌。 /p p   到目前为止,只有两种曲妥珠单抗生物类似药已进入市场。Mylan和Biocon公司两家公司共同开发的Ogivri Samsung Bioepis的Ontruzant由EMA批准。 /p p   曲妥珠单抗于2002年9月5日获得CFDA批准。目前,一大批中国制药公司正争相成为第一个将国内版本推向市场的公司,9月份,国家食药监局受理了三生国健药业递交的注射用重组抗HER2人源化单克隆抗体(赛普汀)的上市申请。复星医药旗下复宏汉霖的HLX02处于国内三期领先地位,并且大举进军海外市场开展海外临床试验,嘉和生物药业有限公司和安科生物也都进入了三期临床研究。 /p p   赫赛汀在2017年的总销售额为74.41亿美元,去年在全球15大最畅销药品中排名第五。与此同时,它是中国最畅销的抗肿瘤药物,2016年收入为1.59亿美元,约占其全球市场的2.8%。 /p p    strong span style=" color: rgb(0, 112, 192) " Bevacizumab /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   贝伐珠单抗,原研药品牌为Avastin /span /strong ,是由罗氏公司开发的抗人血管内皮生长因子(VEGF)的人源化单克隆抗体。它分别于2004年2月26日和2005年1月12日获得FDA和EMA的批准。通过抑制肿瘤血管生成,它干预肿瘤的营养供应,从而使肿瘤生长受到抑制。目前,该药主要用于治疗转移性结肠直肠癌、非小细胞肺癌以及其他转移性癌症。 /p p   到目前为止,该品种市场上只有一种生物类似药Mvasi(bevacizumab-awwb),由Amgen和Allergan共同开发,在美国和欧盟上市。 /p p   Avastin于2010年2月26日进入中国市场。目前,国内贝伐珠单抗生物类似药的研发,齐鲁制药和信达发展最快。齐鲁制药QL1101的上市申请已经获得受理,信达的IBI305在进行三期临床试验。复星医药、恒瑞、北京天实都有产品进入三期临床试验。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2 中国生物类似药发展中的思考 /span /strong /p p   越来越多的海外留学人才归国,促使国内生物制剂的研发迅速成熟。与此同时国家一系列的支持性政策进一步推动了国内生物类似药的发展。 /p p   道阻且长,行则将至。生物类似药的发展,国内药企必须解决一系列新的挑战才能有所突破。 /p p   第一个亟待讨论的问题,就是定价和销售策略。生物类似物与化学药仿制药不同,其降价幅度一般不会很大。因此,如何提高销量,定价就成为生物制药市场的一个关键问题 /p p   另一个重要的问题是如何与原研药竞争。因为生物类似药不同于化学药,可以进行一般的可互换。如何才能被纳入国家医保,将成为影响生物类似药发展的重要问题。 /p p   最后2018年4月12日,中国对进口抗癌药物实行零关税,可以预见的是,国外原研药在国内的价格将进一步下降。在这样情况下,国内药企对于生物类似药的投入热情能否延续,这点是值得观察的。 /p
  • 药典新标准公示|复方氨基酸类注射液中铝元素杂质测定指导原则
    铝元素如果通过注射液进入静脉,会不经过胃肠道消化吸收过程直接进入血液,对人体有一定的毒性。美国药典和日本药方局均对肠外营养制剂中的铝含量进行限度控制。目前,《中国药典》还未收载与氨基酸类注射液中铝元素杂质测定方法相关的通用技术要求。2023年11月14日,国家药典委将拟制定的复方氨基酸类注射液中铝元素杂质测定指导原则公示征求社会各界意见(详见附件),原文链接点击:原文链接。公示稿中,辽宁省药品检验检测院分别采用电感耦合等离子体质谱法、电感耦合等离子体原子发射光谱法、高效液相色谱法、原子吸收分光光度法等方法对复方氨基酸类注射液中杂质铝元素的含量进行测定对比,最终形成3个通用方法,即ICP-MS法、ICP-OES法、HPLC法。指导原则对三个方法进行详细描述,每个方法均包含标准曲线法和限度检查法。ICP-MS法、ICP-OES法均为常见的金属元素测定方法,本文详细介绍HPLC法测定复方氨基酸类注射液中铝元素杂质含量。色谱条件:根据复方氨基酸类注射液处方组成选择适宜的固定相和流动相。固定相推荐使用苯乙基键合硅胶为填充剂。流动相推荐使用8-羟基喹啉乙腈溶液-醋酸铵溶液,柱温30℃;流速0.1mL/min;进样体积100µL;以荧光检测器(激发波长为380nm,发射波长为520nm)进行测定。分析方法:本法系依据复方氨基酸类注射液中游离态铝和 8-羟基喹啉形成铝离子荧光络合物,采用配有荧光检测器的高效液相色谱仪测定该荧光络合物的含量,一般可采用标准曲线法或限度检查法。衍生化方法:取空白溶液、标准品溶液、供试品溶液各 4.5mL,分别加入盐酸 0.5mL,并在 50℃水浴中水解30min 后,精密量取水解液 0.1mL,精密加入衍生试剂 0.9mL,混匀。衍生试剂:取流动相 30mL,加入 50% 氢氧化钠溶液 180μL,混匀即得,该试剂需临用前新制。本标准的制定将更好地保障我国人民群众用药安全,并使《中国药典》通用技术要求与国际标准接轨。更多药典相关新闻可点击下方专栏关注。附件:复方氨基酸类注射液中铝元素杂质测定指导原则起草说明公示稿.pdf复方氨基酸类注射液中铝元素杂质测定指导原则公示稿.pdf
  • 浅谈广谱抗病毒药物研发的普适性策略(二)
    上一期,主要介绍了抗病毒药物研究的共同靶标相关内容,本文将继续从抗病毒药物研究的共性环节、 抗病毒药物研究的通用策略方面进行阐述与探讨。2 抗病毒药物研究的共性环节2.1 靶向病毒膜融合过程 在包膜病毒的复制周期中,需要病毒和细胞膜融合才能进入细胞。病毒通过受体识别以及膜融合或内吞等步骤进入靶细胞是首要环节。 在该过程中, 介导病毒与细胞受体识别的病毒表面蛋白(surface protein,SP)的 受体结合亚基、介导膜融合的病毒 SP 跨膜亚基、细胞上的受体、切割 SP 所需 的宿主细胞蛋白酶等均是常见的抗病毒靶点[30]。CoV 是 I 型包膜病毒,位于包膜表面的 S 蛋白介导病毒入侵宿主细胞过程,包括受体结合及膜融合等步骤。在膜融合的过程中,形成六螺旋束(six-helix bundle,6-HB)是一个非常保守且关键的机制。目前发现感染人的冠状病毒(HCoV) 中,其 HR1 (heptad repeat- 1)三聚体与 HR2 (heptad repeat-2)作用的表面氨基 酸大都为保守的疏水性氨基酸,因此 HR1 是 CoV S 蛋白上非常保守的药物靶点[30]。2018 年,姜世勃与刘克良团队发现靶向病毒融合蛋白的α-螺旋脂肽具有广 谱抗 MERS-CoV(EC50 = 0.11 μmol L-1 ,CC50 100 μmol L- 1 )及甲型流感病 毒(influenza A virus,IAV)活性(H1N1 EC50 = 1.73 μmol L- 1,CC50 100 μmol L-1)[31] 。近日,复旦大学姜世勃/陆路团队与上海科技大学杨贝/Wilson 团队合作, 通过系统地筛选与结构修饰,发现了能够广谱抑制多种 HCoV 感染的多肽类融 合抑制剂 EK1 及脂肽 EK1C4,并揭示了其作用靶点与分子机制[32,33] 。该研究同时证明了 CoV 刺突蛋白的 HR1 区域是一个重要且保守的药物靶点, 为后续广谱抗 HCoVs 药物研发提供了思路。2.2 核酸复制 病毒进入靶细胞后, 病毒基因组 DNA/RNA 被释放到细胞中, 作 为模板指导病毒蛋白的合成。 RNA 病毒的基因组复制需要 RNA 依赖的 RNA 或 DNA 聚合酶(RNA-dependent RNA polymerase ,RdRp ;RNA-dependent DNA polymerase,RdDp),这类酶在人体中不存在且相对保守,成为抗病毒药物研发 的重要靶点。不同病毒聚合酶的结构和功能有许多相似之处,因此针对某一种病 毒聚合酶设计的抑制剂往往对其他病毒也有较好的抑制作用[34,35]。自从 1962 年世界第一个抗病毒药物碘苷被批准上市以来,全球已有众多抗病毒核苷类似物药物获批上市。 在病毒疫情暴发时, 核苷类药物往往成为人们的首选。 早在 2014 年西非暴发的大规模 EBOV 疫情中,部分核苷类似物药物在临床阶段均表现出一定的抗病毒活性——例如日本富山化学的新型抗流感药物法匹拉韦(favipiravir)以及瑞德西韦(remdesivir,图 3),特别是瑞德西韦目前已经完成 EBOV 的试验药物 III 期临床试验。随着研究的深入, 瑞德西韦被发现具有广谱抗病毒活性, 涵盖丝状病毒科病毒(EBOV 和马尔堡病毒等) 、沙粒病毒科病毒(拉沙病毒和胡宁病毒等)、 CoV 科病毒(SARS 、MERS 和猫科冠状病 毒等)和黄病毒科病毒(ZIKV 等) 等,因此也成为了治疗 SARS-CoV-2 的首个 小分子药物[36]。阿兹夫定(azvudine ,FNC,图 3)具有抑制 HIV 、丙型肝炎病毒(hepatitis C virus ,HCV)、肠道病毒 71 型等 RNA 病毒复制的功能,2021 年 7 月, 已在 中国上市用于治疗高病毒载量的成年 HIV- 1 感染者。此外, 阿兹夫定在新冠肺炎 临床研究中也取得显著效果[37]。瑞德西韦进入临床研究后,其抗病毒效果与预期有一定差距,原因可能是: 疾病的病程及动物模型与人体药动学差异、药物之间的相互作用和个体差异。 此 外, CoV 特有的“复制矫正”(proofreading)机制,即将掺入 RNA 产物链的核 苷药物“剔除”,进而逃逸核苷类抗病毒药物的抑制, 可能是此类抗病毒药物效 果不佳的一个重要原因[38]。近日,美国乔治亚州立大学的研究人员报道了一种抑制呼吸道合胞病毒 (respiratory syncytial virus,RSV)、相关 RNA 病毒和 SARS-CoV-2 的广谱抗病 毒核苷分子——4' -氟尿啶(4' -FlU,EIDD-2749,图3),它在细胞和分化良好的 人气道上皮中具有高选择性指数。RSV 和 SARS-CoV-2 体外 RdRp 聚合酶抑制显 示掺入后 i 或 i+3/4 位出现转录暂停。每日一次的口服治疗对 RSV 感染的小鼠或SARS-CoV-2 感染的雪貂非常有效[39]。EIDD- 1931(即NHC,图3),是一种核苷酸类似物。 NHC 上的肟形式模仿 尿苷, 与腺苷匹配, 而另一个互变异构体模仿胞苷, 与鸟苷匹配。它的原理是通 过给病毒 RNA 引入大量的突变,“瘫痪”病毒的基因组,进而导致遗传信 息大量错误使病毒无法存活[40-45]。目前仅有 NHC 及其衍生物能够躲避病毒复制 矫正机制的干扰。 在体外模型中,NHC 对 RSV、流感病毒、CHIKF、EBOV、委内瑞拉马脑炎病毒、东部马脑炎病毒、MERS-CoV、SARS-CoV 以及 SARS-CoV- 2(多数变异毒株)等具有广谱抗病毒活性,无明显细胞毒性[46-48];但在食蟹猕 猴中口服生物利用度较差。 EIDD-2801(molnupiravir,图 3)是 NHC 的异丙 酯前体药物,旨在改善 NHC 体内药代动力学以及在人类和非人类灵长类动物的 口服生物利用度。Molnupiravir 在雪貂和非人类灵长类动物中具有较好的口服 生物利用度。对感染流感病毒的雪貂进行 molnupiravir 口服治疗,可将大流行 流感和季节性甲型流感的病毒载量降低数个数量级, 并可减轻发热、呼吸道上皮 组织病变和炎症[39,49] 。Molnupiravir 使轻 中度新冠肺炎患者的住院率或死亡风险降低了约 50% 。2021 年 11 月 4 日, 英国药品和保健产品监管局(MHRA)已在英国批准 molnupiravir 上市,用于治疗重症和住院风险较高的轻至中度新冠肺炎成人患者( http:// www.21jingji.com/article/20211104/herald/f0b15254b2fcc17b70b26b839e32b1c6.html)。除了 molnupiravir 之外,法匹拉韦也可以掺入到病毒 RNA 链,诱发病毒的基因组突变, 并通过累积这种突变,导致病毒失活或失去感染能力[50]。总之, 靶向病毒最为保守的 RdRp 是一种开发广谱抗病毒药物非常有前景的策略。 目前处于临床研究阶段的多个新冠病毒 RdRp 抑制剂类药物结构差异较大,靶向 RdRp 影响病毒复制的机制也不尽相同,特别需要从结构生物学角度解析抑制剂与 RdRp 复合物结构,明确作用机制,为精准开发高效特异的、以 RdRp 为靶标的广谱抗病毒药物提供理论基础。2.3 核糖体移码 (ribosomal frameshifting) 在正常细胞内,核糖体(ribosome) 以 3 个碱基为单位(即密码子codon)由 5 到 3 端单向、连续地读取 mRNA 中的 遗传信息, 合成蛋白质[51]。由于体积的限制, 病毒的基因组通常较小, 所携带的 遗传信息较少。 包括 SARS-CoV-2 在内的各种 RNA 病毒在复制过程中会利用一 些特殊的机制调控病毒基因表达,扩展其所携带遗传信息的利用率, 其中一种常 用的机制是称为程序性“移码”的蛋白质合成重编码机制(programmed ribosomal frameshifting,PRF)[52-54]。即核糖体不遵循常规读取 3 个字母的步骤, 而是会漏 掉一两个 RNA 字母。核糖体发生的这种错位被称为“移码”,会导致核糖体错误读取遗传密码。例如, SARS-CoV-2 严重依赖其 RNA 折叠引起的“移码”来 合成蛋白[52-54]。理论上, 任何通过靶向 RNA 折叠来抑制“移码”的化合物都可能作为一种 治疗感染的药物。 “移码”现象在人类自身基因的表达中极为罕见, 因此靶向读 码框“移码”是一个可行的抗病毒策略。研究者通过运用荧光蛋白报告基因系统联合高通量筛选技术, 鉴定出了一个可以高效抑制读码框“移码”的小分子化合物美拉沙星(merafloxacin,图 4),它能在细胞水平(Vero E6 细胞)显著抑制 SARS-CoV-2 复制[55] 。美拉沙星抑制读码框“移码”的机制尚不清楚,可能直接作用于核糖体与病毒 RNA 的结合,或者抑制内源性调控蛋白。近期, Ahn 等[56]从9689 个小分子中发现了一种新型的呋喃[2,3-b]喹啉类化合物 KCB261770(图 4),它能够抑制 MERS-CoV 的“移码”和细胞水平 MERS-CoV 的复制。此外,该化合物还能抑制 SARS-CoV 和 SARS-CoV-2 的“移码”,具有广谱抗病毒活性。3 抗病毒药物研究的通用策略3.1 细胞纳米“海绵” SARS-CoV-2 的细胞结合和进入是由其刺突糖蛋白(S 蛋 白)介导的, S 蛋白不仅与人类血管紧张素转换酶 2(angiotensin convertingenzyme II,ACE2)受体结合, 还与肝素等糖胺聚糖结合。 近期研究发现细胞膜包被的纳 米颗粒(细胞纳米“海绵”)模拟宿主细胞,通过自然的细胞受体吸引和中和 SARS-CoV-2 ,可作为一种广谱抗病毒策略,还发现增加细胞纳米海绵表面肝素密度可以提高抗 SARS-CoV-2 作用[57]。3.2 抗体募集/杀死细胞 2009 年, 研究者设计了一种新的小分子 ARM-H,有可 能通过两种机制抑制 HIV:①通过招募抗体到 gp120 表达病毒颗粒和受感染的人 类细胞, 从而增强其吸收和人类免疫系统的破坏; ②通过结合病毒糖蛋白 gp120, 抑制其与人 CD4 结合和防止病毒进入。研究人员通过实验证明了 ARM-H 能够 同时结合 gp120 和抗 2,4-二硝基苯抗体(DNP ,存在于人血液中) [58]。抗体、 ARM-H 和 gp120 之间形成的三元复合物具有免疫活性,导致补体介导的表达 env 细胞的破坏。此外, ARM-H 可以阻止病毒进入人类 T 细胞, 因此应该能够通过两种相互强化的机制(抑制病毒进入和抗体介导的杀伤) 来抑制病毒复制。这些研究表明, 通过抗体招募的小分子具有可行的抗艾滋病毒活性, 并有可能启动 HIV 治疗的新范式。2020 年,Low 团队通过将神经氨酸酶抑制剂扎那米韦与高免疫原性半抗原2,4-二硝基苯(DNP)结合, 设计并合成了一种双功能小分子, DNP 专门针对游离病毒和病毒感染细胞的表面。该类分子抑制病毒释放的同时, 通过免疫介导清除游离病毒和病毒感染的细胞,对感染 100 倍 MLD50 病毒的小鼠进行鼻内或腹腔注射单剂量药物,可以根除 A 型和 B 型流感毒株的晚期感染[59]。近期研究发现, 抗生素分子 concanamycin A 可让免疫系统杀死被 HIV 感染的人体细胞[60]。DDX3 抑制剂可以让 HIV- 1 感染的细胞选择性死亡,进而耗竭病毒潜伏库[61] ,为根治艾滋病提供了新思路。3.3 多价结合——靶向病毒表面的非特异作用 细胞表面的糖链是细菌、病毒、 免疫细胞的接触点。病毒进入宿主细胞的过程涉及与不同细胞表面受体稳定但短 暂的多价相互作用。几种病毒的最初接触始于在细胞表面附着硫酸肝素蛋白聚糖, 最终导致病毒进入。已经开发出的广谱抗病毒药物如肝素或类肝素材料模拟细胞 表面糖负责最初的病毒附着, 如硫酸乙酰肝素(heparan sulfate)。高磺化金纳米 粒子具有广谱杀病毒性能。然而, 由于未知的清除机制和潜在的长期毒性是金纳 米颗粒成药性的不利因素。环糊精(cyclodextrins,CDs)是天然的葡萄糖衍生物, 具有一种刚性的环状结构,由α(1-4)连接的吡喃葡萄糖组成。磺化环糊精对HIV 具有可逆及特异的抑制活性。最近,英国曼彻斯特大学研究小组对天然葡萄糖衍生物环糊精进行磺化修饰 开发出了一种能够破坏病毒的外壳且对耐药性病毒也有效的新的广谱抗病毒分 子,其有望治疗 HSV 、RSV 、HCV 、HIV 和 ZIKV 等多种病毒感染[62]。基于多价相互作用的抗病毒药物,如柔性纳米凝胶,通过干扰病毒颗粒和阻 断与细胞受体的初始相互作用已经成为广谱抗病毒药物研究的有效策略。负电荷多硫酸盐可以结合 SARS-CoV-2 受体结合区域( receptor binding domain,RBD)上的正电荷斑块(patches),阻止病毒与宿主细胞相互作用进而 抑制感染。 与肝素相比, 合成的线型聚甘油硫酸酯(linear polyglycerol sulfate , 图 5)的抗病毒活性更高,且抗凝血活性较低[63]。巨大球状多价糖富勒烯、糖基化碳纳米管能抑制 EBOV、ZIKV 和 DENV 的 感染, 活性可达皮摩尔水平[64-66]。多价唾液化(sialylated)聚甘油对甲型流感毒 株(含耐药株)具有广谱抑制活性[67]。3.4 基于拓扑匹配的药物设计 IAV 颗粒表面均匀分布血凝素和神经氨酸酶。近 期,Nie 等[68]运用拓扑匹配(topology-matching design)的药物设计理念, 设计了 一种纳米颗粒抑制剂(纳米抑制剂, 图 6A), 它与 IAV 病毒粒子的纳米拓扑结 构匹配,对血凝素和神经氨酸酶具有多价抑制作用, 可以在细胞外中和病毒颗粒, 阻断其附着和进入宿主细胞。病毒复制显著减少了 6 个数量级, 即使在感染24 h 后使用, 仍能达到 99.999%以上的抑制作用。 2020 年, 该团队用类似的思路, 发现了与 IAV 表面空间匹配的尖峰纳米抑制剂(spiky nanoinhibitor,图 6B),峰 值在 5~10 nm 之间的纳米结构与病毒粒子的结合明显优于平滑的纳米粒子,获 得的红细胞膜(erythrocytemembrane,EM)包覆的纳米结构可以有效地阻止 IAV 病毒粒子与细胞的结合, 并抑制随后的感染。 EM 包覆的纳米结构在细胞无毒剂 量下降低了99.9%的病毒复制[69]。2021 年,该课题组运用拓扑匹配设计理念,基于宿主红细胞膜设计了与病 毒状球面相匹配的碗状纳米结构(“纳米碗”,heteromultivalent nanobowl,Hetero- MNB,图 6C),可作为广谱病毒进入抑制剂。与传统的同多价抑制剂不同, 该 类异多价抑制剂由于协同多价效应和拓扑匹配的形状,其半最大抑制浓度为 32.4 ± 13.7 μg mL- 1 。在不引起细胞毒性的剂量下,可减少99.99%的病毒传播。由 于在 SARS-CoV-2 的 S 蛋白上也发现了多个结合位点, 因此, 异多价纳米结构有 望为开发一种有效的预防 CoV 感染提供新思路[70]。3.5 靶向病毒核酸 病毒 RNA 会折叠成复杂的 RNA 结构,在病毒的生命过程调 控中起重要作用,为开发抗病毒疗法的靶标提供了新的机会。很多研究已经发现 多种病毒的非编码区 RNA 结构可以调控病毒的翻译、复制以及稳定性,它们通常在相关病毒中高度保守[71-73] 。例如,黄病毒中 5' UTR 和 3' UTR 之间的分子内 RNA-RNA 相互作用促进基因组环化并帮助协调复制;HCV 5' UTR 内部核糖体 进入位点的结构对于翻译至关重要;并且 ZIKV 和其他黄病毒的 3' UTR 中的多 假性结构已显示出使 RNA 外切核酸酶 Xrn1 失速,从而产生了亚基因组黄病毒 RNA,有助于病毒逃避细胞抗病毒过程[74,75]。需要指出的是,与蛋白质类药物靶标相比, RNA 结构的动态性与复杂性为药物筛选增加了困难, 往往需要借助于高通量筛选。例如, SARS-CoV-2 的 RNA基因组含有 15 个独立的 RNA 调节元件。 研究者通过基于 NMR 的片段筛选, 从含有 768 个小分子的片段库中发现了 SARS-CoV-2 的 RNA 配体[76]。近日,新加坡科学家使用多种 RNA 分子结构探测方法以及 RNA-RNA 相互作用分析技术, 解析了 SARS-CoV-2 基因组 RNA 的二级结构信息和病毒-宿主之间的 RNA 相互作用;同时发现在 SARS-CoV-2 基因组 RNA 上广泛存在 2' -O- 甲基化修饰, 推测可能有助于新冠病毒逃避宿主免疫攻击,揭示病毒逃避宿主免疫的潜在机制[77]。G- 四链体是由 G-quartet 层叠而形成的 DNA 或 RNA 四链构象, 是最重要的非典型核酸二级结构之一, 因其独特的构象、重要的基因功能和生物学意义而备受关注,是很有前途的药物靶点[78]。中国科学院长春应用化学研究所曲晓刚团队使用多种生物物理技术和分子生物学技术,发现 SARS-CoV-2 基因组中存在 G-四链体结构 RNA ,证实 SARS-CoV-2 中的富 G 序列(位于 SARS-CoV-2 核衣壳 磷酸化蛋白 N 编码序列区域)可以在活细胞中折叠成稳定的单分子 RNA G- 四 链体结构。该 G- 四链体 RNA 可以被 G- 四链体特异结合配体 PDP(图 7)等识别 并稳定,进而影响 G- 四链体 RNA 的生物功能。因此,该 G- 四链体可能是抗 SARS- CoV-2 药物新靶点[79]3.6 超分子配位化学 病毒基因组的未翻译区域(the untranslatedregions,UTR) 包含多种保守和动态结构,这些功能性的 RNA 结构对病毒复制至关重要,为广 谱抗病毒研发提供了药物靶点。 然而, 计算机对接筛选对于具有内在柔性特征的 RNA 结构仍存在较大挑战。 研究者将体外 RNA 分析与分子动力学模拟相结合, 构建 SARS-CoV-2 基因组 5' UTR 关键区域结构和动力学的3D 模型,进而确定了 圆柱形金属超分子螺旋([Ni2L3]4+ 、[Fe2L3]4+)对这种 RNA 结构的约束。这些纳 米尺寸的金属超分子螺旋分子可以与核酸结合,并且在细胞水平具有抗 SARS- CoV-2 等病毒复制作用[80,81]。3.7 核糖核酸酶靶向嵌合体 核糖核酸酶靶向嵌合体( ribonuclease targeting chimeras,RIBOTACs)是降解 RNA 的新策略, RIBOTACs 基于小分子选择性结 合 RNA(特别是形成复杂的二级和三级结构的RNA), 进而激活核糖核酸酶 L(ribonuclease L,RNase L)。RNase L 是一种在脊椎动物细胞中广泛表达、具有单链 RNA 内切活性的蛋白质。该技术已被用于靶向 SARS-CoV-2 的 RNA 基因组,抑制 RNA 的移码,并且募集细胞核糖核酸酶彻底杀死 SARS-CoV-2。该策略有望用于抗其他病毒药物研发[82]。3.8 反义核酸技术 反义核酸(antisense oligonucleotides)可以序列特异性地与靶 标 RNA 结合,实现高效的寻靶和抑制活性。近期,北京大学的研究人员构建了 一类靶向 SARS-CoV-2 包膜蛋白 RNA(E-RNA)和刺突蛋白 RNA(S-RNA)的 单链嵌合反义寡聚核苷酸, 通过在 2' 甲氧基修饰的反义核酸序列 5' 端缀合 RNase L 招募基团 2-5A,可实现有效的病毒 RNA 降解并抑制病毒增殖[83]3.9 核酸适配体技术 核酸适配体(nucleic acid aptamers)是一小段经体外筛选 得到的寡核苷酸序列(单链 DNA 或 RNA 分子),能与相应的配体进行高亲和 力和强特异性的结合[84] 。适配体已经在抗病毒药物开发方面 (含 SARS-CoV-2) 展现出巨大的潜力[85-87]。3.10 基于蛋白自组装的配体发现 动态组合化学( dynamic combinatorial chemistry,DCC)融合了组合化学和分子自组装过程两个领域的特点, 开辟了使 用相对较小的库组装很多的物质的途径, 而不必单独合成每一个物质。早在 2003 年,研究者通过基于点击化学的蛋白模板诱导片段组装, 发现了高活性的 HIV 蛋 白酶抑制剂[88]。2008 年,研究者通过动态连接筛选(dynamic link screening,DLS) 开发了一种潜在的抗 SARS 药物,其亲核片段通过与醛抑制剂的可逆反应将亲核 片段指向蛋白质的活性位点。它们的抑制作用可以通过与荧光酶底物的竞争检测 到。有了这一概念, 与活性位点特异性结合的低亲和力片段在功能酶分析中迅速 被识别出来[89]。2021 年,基于 Knoevenagel 反应的蛋白模板诱导片段组装策略用 于 Enterovirus D68 蛋白酶抑制剂的发现[90]。总之,动态组合化学在抗病毒药物 发现领域仍具有广阔的前景。参考文献,点击查看《浅谈广谱抗病毒药物研发的普适性策略(一)》文末。
  • 大连化物所利用飞秒瞬态吸收光谱发现天然防晒霜防晒机理
    近日,中国科学院大连化学物理研究所复杂分子体系反应动力学研究组研究员韩克利团队发现了植物体叶表面防晒分子的超快反式-顺式光异构化机理及一种新的防晒霜分子,相关研究成果发表在《物理化学快报》(JPC Letters,DOI: 10.1021/acs.jpclett.7b00083)上。  紫外线照射到生物体上会引起DNA损伤,相对于动物,植物所受的光照时间更长。为防止紫外线造成不良影响,十字花科植物表面均匀分布了一层苹果酸类似物(Sinapoyl Malate,SM),其为一种芥子酸(Sinapic Acid,SA)的脂衍生物,可有效将紫外线的能量耗散到环境中,从而防止紫外线的破坏作用。但是,在溶液环境中,SM抵抗紫外线损伤的机理尚不清楚。  该研究团队利用飞秒瞬态吸收光谱技术和时间相关的密度泛函理论计算,发现在中性水溶液中,SM和SA都是去质子化的,它们吸收紫外线到达电子激发态后,会通过超快的光异构化方式内转换回到基态,有效地将紫外线的能量传递到环境中,避免了对遗传物质的伤害。但是,去质子化的SA发生光异构化后吸收紫外线的能力大大降低,而SM几乎没有变化,从而解释了自然选择SM作为防晒霜的原因。此外,该团队还发现处于质子化状态的SA能够在6个皮秒内通过反式-顺式光异构化的方式回到基态,生成的顺式产物也具有良好的吸收紫外线能力,为开发新型防晒霜指明了方向。  上述工作得到科技部“973”计划和国家自然科学基金的支持。
  • 鏖战美国法庭,Illumina、凯杰和哥伦比亚大学三国争霸基因测序
    p strong 仪器信息网讯 /strong 2017年7月25日,Illumina刚刚就下一代基因测序技术的一件专利侵权案与凯杰达成和解,但是面临着哥伦比亚大学的另一项诉讼,哥伦比亚大学认为Illumina侵犯了他们最近独家授权给凯杰的专利。 /p p   类似的专利诉讼案件在美国各地的法庭不断打响,在上个周美国加利福尼亚北区的地方法院判决中,凯杰被迫承诺未来不在美国销售GeneReader基因测序仪和试剂。然而,正如凯杰宣布去年它已经开发出了基于不同技术的化学方法,新方法不包括在被诉讼的方法中。目前给美国GeneReader基因测序仪客户提供升级的化学方法。 /p p   John Gilardi是凯杰副总裁兼企业通信及投资者关系主管,他认为对于凯杰来说这是满意的解决方案。但是,鉴于凯杰已经升级了化学方法,“这个判决并不会改变我们为客户提供新的化学解决方案和GeneReader 下一代基因测序系统带来的益处,我们继续相信我们有操控的自由。” /p p   他补充说,凯杰计划今年建立五个新的乳腺癌、卵巢癌和肺癌的专家小组,并将为其他国家的客户提供化学方法升级服务。 /p p   Gilardi拒绝评论哥伦比亚大学和凯杰对Illumina公司的新的专利侵权诉讼。这一诉讼在美国特拉华区地方法院提出,原告声称,Illumina的下一代基因测序系统和试剂侵犯美国9708358号专利“解码DNA和RNA的大规模并行的方法,”该专利是本月早些时候哥伦比亚获得的,并且凯杰公司有独家许可证。 /p p   具体而言,该专利涵盖核苷酸类似物,可用于合成反应的测序,包括使用可移动的盖和可检测标签的修饰核苷酸。 /p p   在诉讼中,对于侵权指控原告请求损害赔偿,包括特许权使用费以及禁制令,禁止Illumina仪器和试剂销售的侵权行为,并支付律师费。 /p p   Illumina公司,哥伦比亚大学,双方陷入了专利侵权诉讼。在过去的五年中,哥伦比亚2012年首先起诉Illumina,控诉Illumina侵犯了他们的五项专利,而这五项专利已授权给智能生物系统公司,凯杰公司随后也购买了。Illumina公司反诉称,2012年以后,哥伦比亚大学,智能生物系统公司和凯杰公司侵犯其三项专利。 /p p   2014,美国专利商标局和专利审判上诉委员会认为,任何一方的专利都是无效的。而且,凯杰在商业化推出了GeneReader基因测序仪,Illumina公司再次起诉。 /p p   然后,去年,联邦法院发布初步禁令,禁止凯杰公司在美国销售GeneReader基因测序仪。几个月后,凯杰公司说这是开发新的化学方法GeneReader基因测序仪,它于今年初已经在美国销售。 /p
  • 液相色谱法/液相色谱质谱联用法测定苯氧羧酸类除草剂中游离酚
    引言酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物可经皮肤、粘膜的接触,呼吸道吸入和经口进入消化道等多种途径进入体内。 FAO与WHO 早已对2,4-滴、2,4-滴酯类、2,4-滴钠盐、二甲铵盐、2甲4氯、2甲4氯钠、2甲4氯丁酸、2甲4氯丙酸等农药中的游离酚进行了限定,对苯氧羧酸类除草剂中的游离酚进行限量有利于减少有害杂质对农产品安全的影响,也有利于各级质量管理部门对农药产品质量实施监督。进而保证农药产品的安全性、保障人身健康和环境安全。 《GB/T 41225-2021苯氧羧酸类除草剂中游离酚限量及检测方法》新标准已于2022年7月1日正式实施,新标准共给出3种试验方法:化学显色法,高效液相色谱法,液质联用法。 岛津解决方案一、 UV-3600i Plus紫外可见近红外分光光度计高灵敏度—标配三检测器配置了三个检测器,一个检测紫外及可见区域的PMT检测器,检测近红外区域的InGaAs 和 PbS检测器。InGaAs检测器弥补了PMT和 PbS转换波长灵敏度低的特点,从而保证了在整个检测波长范围内高灵敏度测定。在1500 nm波长检测时噪声小于0.00003 Abs,达到超低的噪声水平。 高分辨率—宽测量范围及超低的杂散光采用高性能双光栅单色器,实现高分辨率(分辨率高达0.1nm)和超低杂散光(340nm处杂散光0.00005%以下)。测定波长范围为185nm-3300nm,可在紫外、可见及近红外的宽波段范围进行测定,应对不同领域的测定要求。 丰富可选的附件使用多功能大样品室和积分球附件可测定固体样品,使用保证测定精度的绝对反射测定装置ASR系列也可进行高精度的绝对反射测定。此外,可安装电子冷热式恒温池架和超微量池架等,适应广泛的应用测定。 智能化软件全新升级的LabSolutions UV-Vis软件包括光谱模块,光度模块,动力学及报告编辑模块等功能。软件具有自动光谱评价、自动Excel数据传输、自动样品测试等功能,可升级为DB或者CS版实现更强大的数据管理,确保数据完整性和可信度。 二、Prominence Plus 系列液相色谱仪深根本土,经典焕新。由精心挑选和优化的模块组成稳健的液相色谱系统,Prominence Plus 系列液相色谱仪具有优异的可扩展性和兼容性。无论是常规分析还是高效的快速分析,可让更多的用户得到一如既往的高准确性高可靠性的分析结果,成为各个领域实验室的有力工具,包括制药、生物制药、化学、环境和食品等。 灵动 Prominence Plus系列包含高效/超高效液相色谱系统,灵活兼容常规LC及快速LC分析需求; 经典的积木式设计,基于强大的系统管理器,提供优异的模块扩展性,灵活应对您多样的用需求。 高效 最高支持66Mpa高压输液; 支持2μm-3μm小粒径色谱柱,实现高分离度高灵敏度的快速分析; 可靠 延续Prominence系列一贯的高稳定性、高耐用性、低维护性的特点,助您轻松开展分析工作; 快速液相模式可实现高效而精确的梯度分析,获得理想的保留时间重复性; 专业 60年液相色谱技术沉淀之作,力求优异性能与轻松操作间的平衡; 使用功能强大的LabSolutions工作站,符合GMP法规数据完整性技术要求,匹配实验LIMS系统。 三、超快速液相色谱质谱联用仪岛津LCMS-8045三重四极杆液质联用仪 迅捷的速度,敏捷的灵敏度得益于岛津深厚的质谱研发积淀,在诺贝尔获奖者的指导下实现关键技术的突破。作为行业范围内将三重四极杆高灵敏度和高速度相结合的公司,为质谱领域带来真 正意义上的创新。为用户着想,秉承超快速分析的理念,显著提升分析通量,打 造实验室的效率之星。 优异的稳定性,值得信赖的准确性LCMS-8045重视仪器抗污染能力和整体耐用性,即使在严苛的连续分析中也可保 持出色的稳定性,提供准确可靠的分析结果。无论是食品安全还是药物分析,环 境监测还是临床研究,在面对复杂基质样品时都可以轻松应对。 功能丰富的软件,强大的MRM方法包Labsolutions LCMS集合型工作站软件,具备丰富的支持多组分定 量方法制作的便利功能,以直观的界面帮助用户迅速上手。从方 法建立、实时分析到报告编辑,化繁为简,大幅提升分析工作的 效率。更提供多领域分析方法包,无需方法摸索,即刻开展工作。 本文内容非商业广告,仅供专业人士参考。
  • 美国"新冠"新药驰援中国 中日友好医院也许将见证历史
    p & nbsp & nbsp 2009年,美国FDA出台了一种叫做“同情用药”(又叫扩展性用药)的机制,允许临床研究之外的身患绝症或无药可救的某一患者使用在研药物(换句话说就是还没得到批准上市的药物)。这有点像中国的一句老话所表达的,死马且当活马医。 /p p & nbsp & nbsp 不过,根据美国FDA官网公布的数据计算,美国药品审评研究中心在2009-2015年间共收到了7292份的药物同情使用申请,其中7253个申请获批,批准率约为99.5%。 br/ /p p & nbsp & nbsp 据悉,目前,全世界已有美国、欧盟、日本等国家和地区建立了同情用药制度。中国版的“同情用药”制度也在酝酿之中。 br/ /p p & nbsp & nbsp 而当下新型冠状病毒正在向全球蔓延,针对这一新型病毒的特效药的出现却似乎遥遥无期(现阶段的治疗主要是对症治疗,治愈还是要靠患者自身的免疫系统能力)。以至于任何关于这方面的风吹草动,都会引来普通百姓的极大关注,乃至迅速行动。譬如,刚刚发生的“市民排队抢购双黄连”的乌龙事件。据传,连双黄莲蓉月饼都被抢光了。 br/ /p p & nbsp & nbsp 就在2月1日凌晨,从大洋彼岸倒是传来了一则听起来靠谱的“惊爆”好消息。刚刚发表在顶级医学期刊《新英格兰医学杂志》的一篇简报显示,美国确诊的第一例新型冠状病毒感染患者,在接受了一种尚处于临床研究阶段的核苷酸类似物前药(Remdesivir)治疗之后,发烧等症状消失,咳嗽减轻,病情出现好转。不过研究人员认为,该药仍需要随机临床试验,以确定它的安全性和疗效。Remdesivir由美国吉利德(Gilead)公司研发,可抑制病毒RNA依赖的RNA聚合酶(RdRp)。 br/ /p p & nbsp & nbsp 最新消息显示,中国卫健委专家组已联系美国吉利德公司,吉利德在研新药Remdesivir(瑞德西韦)治疗新冠病毒的临床试验(270个轻度/中度新型冠状病毒感染肺炎患者的随机、双盲、安慰剂对照三期研究)将于2月3日在中日友好医院启动。 br/ /p
  • 色谱检测新标准来啦——HJ 1267-2022水质 6种苯氧羧酸类除草剂和麦草畏的测定
    苯氧羧酸类除草剂和麦草畏是一种广泛应用于农业生产的选择性除草剂,具有价格低廉、除草速度快、除草谱广等优点。然而,它们的使用会导致水质污染,残留于土壤中,并通过雨水和地下水流入河流和湖泊,对水质造成影响。随着环保要求的提高,水质监测变得越来越重要,对环境保护至关重要。因此,对苯氧羧酸类除草剂和麦草畏进行检测对于保障水质安全具有重要意义。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法。※本标准中结果的定性分析是根据样品中目标化合物与标准系列中目标化合物的保留时间定性,标准还提到:“必要时,可采用液相色谱-质谱法确认目标化合物”并在附录中提供了液相色谱-三重四极杆质谱法仪器条件。岛津提供LCMS-8045、LCMS-8050、LCMS-8060等多款液相色谱-三重四极杆质谱可选,满足标准要求。如需进一步了解,您可前往https://www.shimadzu.com.cn/an/lcms/index.html本文内容非商业广告,仅供专业人士参考。
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • “生物类似药物研发及评价技术”网络主题研讨会 成功召开
    生物类似药是指在质量、安全性和有效性方面与已获准注册的参照药具有相似性的治疗用生物制品。由于生物类似药可以更好地满足公众对生物治疗产品的需求,有助于提高生物药的可及性和降低价格,许多国家都十分重视生物类似药的研发和管理工作,全球已有20余个国家或组织制定了生物类似药相关指南。 仪器信息网网络讲堂于11月16日举办“生物类似药物研发及评价技术”网络主题研讨会,诚邀董立厚(军科正源(北京)药物研究有限责任公司)、刘冲(新疆维吾尔自治区药物研究所)、史俊霞 液相色谱应用开发工程师(东曹)、孙佳楠(赛默飞)、张歆媛(岛津)等5名老师从多方面普及生物类似药物研发等阶段的知识及技术。本期会议视频已上线,具体报告日程如下:视频地址:http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2189近期会议推荐:“化妆品质量安全评价及检测技术”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2191“RoHS相关政策及检测进展”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2233“精准医疗与即时检验POCT技术的临床应用与发展”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2241“大气/烟气挥发性有机物技术”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2251“润滑油检测技术”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2256
  • 2276万!中国食品药品检定研究院2024年专项设备购置项目第一批
    一、项目基本情况项目编号:CFTC-BJ01-2405058项目名称:中国食品药品检定研究院2024年专项设备购置项目第一批预算金额:2276.000000 万元(人民币)最高限价(如有):2276.000000 万元(人民币)采购需求:包号品目采购标的名称用途数量是否允许进口01包1-1电子舌用于食品和药品滋味分析。对药材整体滋味比较分析,同时给出药材滋味的酸、甜、苦、味、咸和鲜味的味觉值。1套否01包1-2快速气相电子鼻用于食品、化妆品和中药样品的气味分析。对原料及产品的整体气味比较分析,同时给出引起产品气味异同的关键香气化合物。1套否 包号品目采购标的名称用途数量是否允许进口02包2-1离子色谱仪用于中药化学对照品和中成药中阴阳离子、有机酸和糖的分析。1套否02包2-2离子色谱仪用于注册检验、国家评价性抽检、对照品标定、科研工作中,样品中无机阴、阳离子和有机酸等物质的分析。1套否 包号品目采购标的名称用途数量是否允许进口03包3-1宽频成像测试系统利用宽频成像系统对中药材开展快速无损的数据采集和分析。1套否03包3-2原子吸收光谱仪药典中药中铅镉砷汞铜检测等 项目该法为法定方法。1套否 包号品目采购标的名称用途数量是否允许进口04包4-1基因测序分析仪对食品、化妆品相关微生物的基因组测序分析。1套否04包4-2光学相干断层成像系统用于化妆品及其原料安全和功能评价过程中人或动物试验中的皮肤活体成像。1套否04包4-3气溶胶激光计数液相色谱仪用于化妆品中糖类物质、氨基酸类物质、生物胺类物质以及小肽等无紫外、可见光吸收,不能在常规液相检测物质的定性、定量测定。1套否04包4-4高灵敏度蒸发光散射检测器用于化妆中非挥发性和半挥发性成份,如表面活性剂、防腐剂等物质的检测。1套否 包号品目采购标的名称用途数量是否允许进口05包5-1电感耦合等离子体发射光谱仪用于国产和进口放射性药品注册检验中金属杂质检查项目测定1套否05包5-2电感耦合等离子体发射光谱仪对样品中的各个元素进行准确定量以及定性分析1套否 包号品目货物名称用途数量是否允许进口06包6-1物化参数分析仪用于分析小分子化药的解离常数,油水分配系数和溶解度,有助于对化合物物理特性的探索研究。1套否06包6-2流通池法溶出仪用于外用半固体制剂、贴剂、微球及埋制剂等体外溶出及渗透性研究1套否06包6-3生化分析仪用于肝功能、肾功能、离子、心肌酶、血糖血脂等生命物质的检测1套否06包6-4全自动染色体滴片仪用于化妆品及其原料的安全性评价中染色体畸变试验的检验检测1套否 包号品目货物名称用途数量是否允许进口07包7-1超高效液相色谱仪用于依柯胰岛素等新型胰岛素类似物、重组人促卵激素等进口注册检验中高分子、蛋白含量测定等相关检测项目1套否07包7-2超高效液相色谱仪用于化学药品有关物质检查和含量测定1套否07包7-3液相色谱仪用于化学药品中目标化合物的定性定量分析1套否07包7-4液相色谱仪用于品种检验和研究1套否07包7-5液相色谱仪用于化药中目标化合物的定性定量分析2套否07包7-6液相色谱配件用于药品检验,对照品标定1套否07包7-7二极管阵列检测器为现有同位素高分辨质谱仪增加一个检测器,配套使用1套否07包7-8示差折光检测器用于可多糖类药品的定量定性分析及分子量大小及分布测定1套否07包7-9离子色谱仪用于药物的常规质量分析和成分鉴定1套否 包号品目货物名称用途数量是否允许进口08包8-1倒置荧光显微镜用于观察平皿或培养板中培养细胞的状态及相关生物标志物在细胞存活的状态下的定量和定性分析1套否08包8-2电动正倒置一体机荧光显微镜用于观察普通染色、相差,荧光标记的切片、涂片等1套否08包8-3显微计数法不溶性微粒分析仪显微计数法不仅可以看到颗粒的大小,还同时可以对不溶性微粒的形貌进行确认1套否08包8-4ZETA电位和纳米粒度分析系统进行高端制剂、脂质辅料及新型聚合物纳米辅料的功能性及稳定性研究1套否 包号品目货物名称用途数量是否允许进口09包9-1透皮扩散系统用于局部皮肤应用制剂(半固体制剂和贴剂)制剂变化的生物等效性研究1套否09包9-2智能化液体处理系统高灵敏度的QPCR方法检测生产用人源细胞的残余DNA1套否09包9-3多功能微孔板读板机用于根据实验中荧光强度自动调节信号放大倍数,能够实现在更宽的光强范围内检测1套否09包9-4冷冻切片机用于质谱成像的配套前处理,组织冷冻切片后进行质谱成像分析1套否
  • 人冠状病毒广谱抑制剂的研究进展(二)
    上期,展鹏教授团队分享并阐述了冠状病毒的基本结构、冠状病毒的生命周期、抗冠状病毒药物的主要靶点等内容,本期将分享靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,以及其对抗击新冠肺炎疫情、预防未来的冠状病毒传播具有的重要意义。本文讨论的冠状病毒广谱抑制剂是针对冠状 病毒与宿主的关键靶点开发的抗病毒化合物。现 阶段,根据这类化合物靶向的生理过程不同,分别靶向冠状病毒的侵入过程、RNA复制过程、多聚 蛋白裂解过程以及宿主靶标。4.1靶向冠状病毒侵入过程的抑制剂在抗病毒药物中,侵入抑制剂可以使病毒的生命周期停止在第一步,使其对宿主的危害最小化。SARS-CoV和SARS-CoV-2是通过刺突蛋白与人类呼吸道上皮细胞的ACE2结合而侵入[16], 而MERS侵入所利用的胞外受体是CD26,也称 作二肽基肽酶(DPP4)。刺突蛋白是一种I型跨膜蛋白(图3),分子 表面高度糖基化,它组装成三聚体后,分布在病毒颗粒的最外层,形成了冠状病毒独特的外观。所有冠状病毒刺突蛋白的胞外部分都是由两个相同的结构域结合而成:氨基端的S1亚单位与受体结 合相关,含有受体结合域(receptor binding domain,RBD);羧基端的S2亚单位含有融合肽 (fusion peptide),与病毒融合相关。在S1完成结合后,S2被细胞表面的TMPRSS2蛋白酶裂解,该过程是病毒与宿主细胞膜融合所必需的[17]。因此,靶向S蛋白或TMPRSS2的分子可成为有效的冠状病毒侵入抑制剂。Figure 3 (A-B ) Structure of S protein trimer, from different angles of view ( PDB code :6XM5) ; ( C) Structure of S protein monomer and location of NTD and RBD; (D) Binding mode of S protein with ACE2 ( PDB code: 7KNY)4.1.1 靶向S蛋白的侵入抑制剂在S蛋白抑制剂中,肽类具有高效、低毒的优势[18]。基于ACE2胞外序列设计的水溶性肽 作为潜在的侵入抑制剂曾受到重视,但其体内半衰期短,难以转运到肺泡[19]。为提高成药性, Lei[20]将ACE2片段与人免疫球蛋白IgGl的Fc结构域结合,提高了血浆中稳定性并增强了结合力。目前,已设计并合成了一系列模拟ACE2的N端螺旋结构域的肽类化合物,如Barh[21]通过扫 描现有的抗菌、抗病毒肽类数据库,得到了10个可能有效阻断S蛋白RBD区域与人ACE2作用 的肽类,但其体内外活性有待进一步研究。在此 基础上,Larue[22]设计了一系列针对刺突蛋白的 ACE2多肽类似物(SAP1 ~SAP6,表1),并在编码荧光素酶并负载SARS-CoV-2刺突蛋白的慢病毒侵染HEK293T-ACE2细胞体系中测定各个多 肽对病毒侵入的抑制作用,各物质活性以半数抑 制浓度(IC50)计量,活性最好为SAP6[(1.90 ± 0. 14) mmol • L-1 ]。同时,上述多肽对SARS- CoV-2刺突蛋白RBD区域的亲和力(Kd)最高为 (0.53 ±0.01) mmol-L-1(SAPl)。Table 1 Amino acid sequence of ACE2 derivatives targeting S proteinCompd.SequenceLocationSAP127-TFLDKFNHEAEDLFYQ42Helix-1SAP237-EDLFYQSSLS5Helix-1SAP379-LAQMYPL-85Helix-3SAP4352-GKGDFRYL-359Helix-11SAP524-QAKTFLDKFNHEA-36Helix-1SAP637-EDLFYQ42Helix-1Curreli等[23]基于ACE2蛋白结合区中30个 氨基酸残基长度的螺旋结构,以8 ~11碳的不饱 和炷链连接肽链上一定跨度的邻近氨基酸,设计了 4个高度螺旋化的装订肽(stapled peptide) NYBSP-1~NYBSP-4,并在 HT1080/ACE2 细胞 与人肺A549/ACE2细胞系中使用基于假病毒的 单循环方法测定了上述多肽分子的EC50值。其中3 个多肽分子显示出了潜在的抗病毒活性:HT1080/ ACE2 中的 EC50值为(1. 9 ~ 4. 1 )μmol• L-1 , A549/ACE2 中 EC50值为(2. 2 ~ 2. 8) μmol • L-1,且在最高测试剂量时,未显示出任何细胞毒性。使用SARS-CoV-2病毒侵染Vero E6细胞时, NYBSP-1显示出了最高的抑制活性,在 17.2 μmol• L-1的浓度完全阻止了细胞病理效应。NYBSP-2和NYBSP-4活性稍低,EC100值为 33 μmol • L-1,NYBSP-4在血浆中的半衰期为289 min,代谢稳定性好。Glasgow 采用“受体陷阱”,(receptor trap)策略,合成出高亲和性、高溶解性的ACE2胞外部分结构域,阻止病毒刺突蛋白与人体细胞表面的 ACE2的结合与入侵[24]。基于此策略设计的肽类分子使冠状病毒难以产生抗药性,并可以抑制几乎所有通过ACE2侵入细胞的冠状病毒[25]。在进一步研究中,Glasgow[24]利用计算机/实验组合的蛋白质工程方法,重新设计了能与SARS- CoV-2刺突蛋白结合的ACE2胞外可溶性区域 (氨基酸18-614) 。最终得到的ACE2变体对于单体刺突蛋白RBD区域的KD app ( apparent binding affinity)值已接近100 pmol• L-1。同时,最理想的 “受体陷阱”分子抑制SARS-CoV-2假病毒和真正 SARS-CoV-2 病毒的 IC50值已达到(10~100) ng-mL-1的范围。这类多肽分子有望真正实现针对利用ACE2入侵宿主细胞的冠状病毒的广谱抑制。由于S蛋白分子高度糖基化,可与多糖衍生物产生多种相互作用,引导人们去探索针对S蛋 白的多糖类抑制物。早在2013年,Milewska就证实了N-(2-羟丙基)-3-三甲氨基甲壳素氯化物 (HTCC,1,图4)及其疏水性修饰的同系物(HM- HTCC)是HCOV-NL63的潜在抑制剂[26],并制备 了不同比例的氨基被甲壳素取代的HTCC衍生物, 各自具有对不同种类人冠状病毒的抑制作用[27]。近期,文献报道了在人呼吸道上皮细胞中,HTCC 具有抑制 SARS-CoV-2 和 MERS-CoV 的 活性。尽管HTCC中单个正电基团对于靶标的作用较弱,但冠状病毒连环化的特性和多聚物分 子中的多个位点协同作用使得HTCC可以稳定 结合S蛋白。目前,虽然HTCC仍未被批准用于 临床,但实验已经证明其在肺部局部给药的可行 性,且毒副作用极低口旳。综合考虑,上述各种甲 壳素衍生物联合使用,有望成为广谱抗人冠状病 毒感染的防治药物。Griffithsin(2,图4)是由海藻中分离得到的天 然血凝素,可利用糖基结构域结合病毒包膜糖蛋白中特定的寡糖[29]。已有研究表明,griffithsin可以与多种病毒表面的糖蛋白相互作用,包括HIV gpl20 以及 SARS-CoV 的 S 蛋白[30-31]。2016 年,Millet 等[32]报道了 griffithsin 对于 MERS-CoV 的抑制作用。在2μg • mL-1 浓度下,griffithsin抑制了 MERS 病毒对 Huh-7、MRC-5 和 Vero-81 细 胞系90%以上的感染性。针对迅速爆发的新冠 肺炎疫情,一系列针对griffithsin抗新冠病毒活性 的研究正在展开。Xia等[33]首先发现griffithsin 对SARS-CoV-2假病毒侵染呈现剂量依赖性地抑 制作用,EC50值为293 nmol• L-1 Cai等[34]网进一 步在体外试验中测定了 griffithsin对SARS-CoV- 2的抑制活性,结果表明,griffithsin对SARS-CoV- 2活病毒的EC50值达63 nmol• L-1,同时对S蛋白 介导的细胞间融合的EC50 值为323 nmol-L-1值得注意的是,该研究团队还报道了 griffithsin与肽 类冠状病毒侵入抑制剂EK1的协同作用。未来, griffithsin可以单独或与EK1联合制成鼻喷剂、吸入剂或凝胶,以预防或治疗新冠肺炎。4. 1.2 TMPRSS2 抑制剂在SARS-CoV或 MERS-CoV的刺突S蛋白 发挥作用之前,要依赖宿主细胞的跨膜蛋白酶 TMPRSS2将其裂解为S1和S2亚单位[35]。针对 这类蛋白酶的抑制剂也可用于阻断各种冠状病毒 的入侵过程。蔡莫司他(nafamostat,3,图5 )最初用于治疗胰腺炎,后发现也是TMPRSS2抑制剂,对MERS- CoV具有拮抗活性[36]。进一步研究发现,蔡莫司 他甲磺酸盐对SARS-CoV-2的EC50值达到了纳摩尔级[37]。同时,在日本批准用于治疗胰腺炎的 药物甲磺酸卡莫司他(camostat mesilate,4,图5) 同样具有抑制TMPRSS2的活性[17],在微摩尔浓度即可有效抑制MERS-CoV感染中合胞体的形成[38],EC50值达到 0.11 μmol• L-1[39]:对 SARS- CoV-2的EC50值为87 nmol• L-1[37]o现阶段仍无 法确定该化合物能否在肺部达到抑制病毒的有效浓度[40],但已有临床研究正在评估其对新冠肺炎的治疗作用。4. 1. 3 宿主细胞激酶抑制剂病毒在生命周期中利用了宿主细胞的若干信 号通路。冠状病毒以内吞方式入侵宿主细胞的过 程中,除S蛋白与ACE2的作用外,还需要Abel- son激酶(Abl)的介导。Abl是细胞中重要的管 家蛋白,参与正常细胞的多个生理过程,同时也与 病毒的入侵与复制密切联系,是开发广谱冠状病 毒抑制剂的有效靶点[41]。伊马替尼(imatinib ,5, 图5)是Abl的抑制剂,已被批准用于治疗慢性粒 细胞白血病。已有研究证实,伊马替尼通过阻断病毒颗粒与胞内体膜融合,从而抑制病毒以内吞 路径入胞,并在感染早期抑制SARS-CoV和 MERS-CoV的增殖關。据报道,伊马替尼抑制 SARS-CoV-2 增殖的 EC50值达到130 nmol-L-1 , 同时对SARS-CoV-2 S蛋白的RBD区域结合活 性高达2. 32 pimol-L-1,可通过双靶点作用有效 抑制SARS-CoV-2的侵入關。但在细胞实验中, 其毒性较为明显,用于治疗新冠肺炎或其他冠状 病毒感染前还要经过充分评估。目前,世界范围 内已有多项伊马替尼针对新冠肺炎的临床试验正 在进行(NCT04394416、EudraCT2020-001236-10、 NCT04357613)。4. 1. 4 组织蛋白酶L与Furin蛋白酶抑制剂组织蛋白酶L位于宿主细胞的胞内体,在无 TMPRSS2表达的细胞中,组织蛋白酶L发挥裂 解活性,介导病毒粒子与胞内体膜融合,从而完成侵入过程[44]。2003年,SARS-CoV疫情引起了人 们对组织蛋白酶L抑制剂研发的重视。随后的十几年内,已发现数种具有抗冠状病毒活性的组 织蛋白酶L抑制剂。其中,K11777(6,图5)是通 过筛选2 000余个人组织蛋白酶抑制剂发现的[45],其对人体或某些寄生虫的半胱氨酸蛋白酶具 有显著抑制作用。K11777抑制SARS-CoV和 MERS-CoV感染的EC50值分别达到0.68 nmol• L-1与46 nmol• L-1,但其不可逆的共价结合机制可能导致较强的毒副作用。目前,K11777仅作为锥虫 病治疗药物进行临床试验M ,其针对SARS- CoV-2的抑制作用有待于进一步确证。SARS-CoV-2 S蛋白的裂解过程也可依赖 Furin蛋白酶进行。Cheng[47]研究了以蔡基荧光 素(naphthofluorescein, 7,图5 )为代表 的数个 Furin蛋白酶抑制剂,证实了此类分子可抑制SARS-CoV-2的感染进程及细胞病理效应。但冠状病毒侵入细胞的不同路径中的关键酶具有互补作用,因此单一种类的蛋白酶抑制剂难以起效[48],而多种抑制剂联用的毒性可能大幅度增加。针对冠状病毒生命周期中宿主蛋白酶的药物应用尚存在一定的风险与挑战。4.2靶向冠状病毒RNA复制过程的抑制剂针对冠状病毒另一类极为重要的治疗靶标是 RNA依赖的RNA聚合酶(RdRp),由非结构蛋白 nspl2、nsp7与nsp8结合构成。其活性位点高度保守,包括在一个β转角中突出的两个连续的天 冬氨酸残基样[49],在不同的正链RNA病毒如冠状病毒和HCV中结构相似[50]。RdRp作为RNA复 制的工具,在病毒的复制中具有重要作用[51]。同 时该酶结构高度特异化,人体无同源酶,是药物开 发的优良靶点。4. 2. 1 RNA依赖的RNA聚合酶抑制剂瑞德西韦(remdesivir ,8,图6-A)是一种腺昔 酸类似物,作为RNA聚合酶的广谱抑制剂,能够抑制人与鼠冠状病毒[52]。更为重要的是,研究证明瑞德西韦在体外针对SARS-CoV-2具有抑制活性, 其抑制 SARS-CoV-2 的 EC50值为 0.77μmol• L-1, 且CC50值大于100 μmol• L-1[53]。基于“老药新用”的原则,2020年10月23日,瑞德西韦获得美 国FDA的正式使用批准,用于治疗12岁以上的新冠肺炎患者[54]。作为一种核昔类似物,瑞德西韦可以与 SARS-CoV、MERS-CoV 和 SARS-CoV-2 RdRp 的 NTP结合位点相互作用。其代谢后以核昔母体9 (GS-441524,图6-A)的形式掺入新生的子代 RNA链中,但允许子链RNA的进一步延长。瑞 德西韦在新生链中移动到-4位时,分子中1,-氰基 与RdRp侧链的Ser861残基发生空间上的碰撞,阻碍了 RdRp在RNA链上的进一步移动,进而导致RNA复制终止(图6-B)。由于终止作用是在瑞德西韦结合RdRp后发生的,该过程称为延迟链终止[54]。延迟链终止机制的RdRp抑制剂针对冠状病 毒具有一定的抗耐药性。包括SARS-CoV-2在内 的冠状病毒会编码具有核酸外切酶活性的nspl4,该酶可以在3,端切除掺入RNA链的异常 碱基,并重启正确的RNA合成[56]。在此机制下, 导致RNA合成即时终止的分子,如去除3,羟基 的核甘类似物,在插入后会被nspl4切除。相对地,在一定延迟后使RNA链合成终止的RdRp抑制剂可有效逃脱nspl4的校对。但研究证实,核酸外切酶仍会识别并切除部分含有瑞德西韦的子 链RNA,并重启RNA复制[57]。同时,病毒体外 传代实验中发现了针对瑞德西韦的耐药现象。与 SARS-CoV-2相似的鼠肝炎病毒(MHV)传代培 养至23代后,其RdRp中出现了不利于瑞德西韦 结合的氨基酸突变[58]。一系列瑞德西韦的临床试验也引起了研究人 员对其临床疗效的争议。2020年5月,原研公司 吉利德发布了适应性试验的“最终报告” (NCT04280705)[59],称瑞德西韦在临床中可缩短住院时间,改善呼吸系统症状。但WHO在2020 年12月2日发表的“团结实验” (NCT04315948) 结果显示,瑞德西韦无法显著改善总体死亡率、通气时间与住院时间,疗效仍待改进[60]。Spin-ner[61]在为期11天的周期内研究了瑞德西韦针 对新冠肺炎轻中症患者的疗效(NCT04292730), 结果表明,在治疗期间,虽然患者的某些临床数 据出现显著改变,但并不表示任何程度的病情改善。近H,Li[62]在一系列细胞实验中比较了瑞德 西韦与核昔母体GS-441524在体外细胞中的抗病毒能力。结果显示,GS-441524在Vero E6细胞 系中对SARS-CoV-2的抑制能力略强于瑞德西韦,但在Calu-3和Caco-2细胞系中活性稍弱。GS-441524亦可显著提高感染鼠肝炎病毒 (MHV)小鼠的生存率,初步展示出广谱抗病毒作用。由于GS-441524合成方便、成本低、可口服, 同样有望成为治疗SARS-CoV-2的候选药物。法匹拉韦(favipiravir, 10,图7)最早在日本上 市,用于治疗流感,其通过与RdRp活性位点结合 发挥抑制活性[63],对所有种类及亚型的流感病毒均有拮抗作用,具有治疗多种RNA病毒感染的 潜力。此外,法匹拉韦在抑制病毒RdRp的同时, 不对哺乳动物机体的RNA及DNA合成路径产生影响[64-65]。虽然法匹拉韦在体外试验中对 SARS-CoV-2的抗病毒活性较低(EC50 = 62μmol• L-1),但在两次临床试验中均显示出良 好的效果3项7]。利巴韦林(ribavirin, 11,图7)是已上市的广谱抗病毒药物,已被批准用于治疗丙型肝炎与呼吸道合胞病毒感染。其作用机制是通过靶向病毒 RdRp而使病毒基因组RNA中出现多位点突变, 最终导致病毒mRNA加帽终止,进而抑制病毒 RNA合成[68]。利巴韦林的疗效已经在SARS- CoV和MERS感染者中得到了证实,但严重的不 良反应限制了其临床应用[69]。且在体内外实验中,利巴韦林对SARS-CoV-2感染的疗效约为瑞德西韦的1 /100[53]。综合考虑,利巴韦林治疗 SARS-CoV-2感染的药效、安全性及潜在的毒性 作用有待在临床试验中进一步研究。Galidesivir( BCX4430,12,图 7 )也是腺昔酸 类似物,最初为病毒RNA聚合酶抑制剂,曾被用 来治疗丙型肝炎,且对多种RNA病毒如SARS- CoV,MERS-CoV, Ebola 病毒和 Marburg 病毒具 有广谱抑制活性。在生物体内,galidesivir首先被 转化成相应的三磷酸核昔,再以此形式插入病毒 新合成的RNA链中,导致RNA转录或复制的提 前终止[70]。因此,其有望成为治疗新冠肺炎的候 选药物[71]。阿兹夫定(azvudine,FNC,13,图7)是首个核 首类双靶点HIV抑制剂,针对多种HIV耐药毒株有良好的抑制活性[72]。新冠肺炎疫情爆发后,在我国进行的一项临床试验(CTR2000029853)显 示,阿兹夫定可以显著缩短新冠肺炎轻中症状患 者的核酸转阴时间,对重症患者也具有潜在的治 疗作用。同时临床上未观察到任何与药物有关的 不良反应,安全性有充分保障。目前针对阿兹μmol• L-1。特别是 S416的选择指数达到10 000以上,且无激酶抑制 活性,在治疗浓度下对宿主细胞毒性极小,基本克 服了脱靶效应,作为广谱抗冠状病毒抑制剂具有 极大的开发潜力。此外,DHODH抑制剂有望在 新冠肺炎的治疗中发挥免疫抑制作用,降低“细 胞因子风暴”产生的炎症损伤。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 基因泰克DiCE联手寻找高难靶点小分子药物
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/c0290159-fbc4-4ab5-91e7-f62c88308bf5.jpg" / /p p   strong  新闻事件 /strong /p p   昨天基因泰克宣布将与DiCE Molecules合作开发小分子药物。DiCE的技术平台是DNA编码化合物库(DEL)合成、指导演化、组合化学的复合体,从几亿到上十亿的化合物开始、利用独特优化系统号称可以为任何靶点找到类药配体。这个合作主要研究现在公认的非成药靶点。根据协议,DiCE将获得一定首付和各种里程金,但具体金额都没有公开。 /p p    strong 药源解析 /strong /p p   DiCE 是斯坦福大学Pehr Harbury教授于2013年创建的新技术公司,主要利用DEL技术搜索化学空间,为困难靶点寻找小分子配体。去年已经与赛诺菲签订了5年、最多12个靶点的合作计划,获得5000万首付和潜在每个靶点1.8亿各种里程金(总额可达23亿)。昨天是第二次与大药厂合作。 /p p   第一代DEL只是用DNA作为一个条形码记录每个化合物的合成历史。这与其它条形码、如不同长度的烷烃没有本质区别,但因为DNA可以通过PCR放大所以反应可以用很少量反应物、因此DEL库可以非常大,上10亿的库并不困难。后来David Liu等人利用DNA的互补双链不仅标记反应物、还可以作为模板控制哪些反应物参加反应。Liu创建了Ensemble并与多家大药厂合作开发困难靶点药物,但今年宣布解散。DEL到目前为止最大的成功据我所知是葛兰素的RIP抑制剂。这个发现不仅利用了DEL,而且还有很多其它最前沿的药物化学技术,值得大家学习一下(这里)。找到的RIP抑制剂选择性和其它性质在激酶抑制剂里确实非常优秀。 /p p   DiCE的平台虽然细节很少,但号称是加上筛选压力和遗传变异机制。选择压力比较容易想象,所有筛选平台都要找到个别“适者”、多数情况下就是与靶标蛋白结合的化合物,然后淘汰绝大多数不合时宜的化合物。DiCE的平台是多轮DEL合成。所谓遗传大概是指保留苗头化合物的需要性质,变异则应该是改变分子的某个模块。和天然蛋白只有20个氨基酸不同,DEL的模块可以远远多于20个。这个过程也可能重复合成第一代化合物库里面已经包括的化合物,但更系统的SAR可以增加筛选准确性(去除假阳性、回收假阴性)。 /p p   DEL可以在更广阔化学空间更高效筛选先导物,但适合DEL的化学反应是有限的、每个化学反应可以买到的起始原料是有限的。DEL涵盖的空间很大、但对寻找新药不一定最重要。虽然很多技术号称可以合成天然产物类似物,但多数只能合成简单的分子类型,DiCE似乎还只能合成多肽类似物。当然更重要的障碍是筛选压力(即优化系统)。优化指标现在还基本是一本糊涂账,我们即不知道哪些性质候选药物需要有、也不知这些万里挑一的化合物有哪些致命隐私。对于抗体药物选择性可以比较可靠地假设已经合格,但小分子药物城府要深得多,经常在关键时刻才交代脱靶活性。虽然GSK的RIP1抑制剂说明DEL可能非常有用,但Ensemble的倒闭也说明DEL也只是诸多技术中的一个。 /p p /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制