当前位置: 仪器信息网 > 行业主题 > >

单线态氧

仪器信息网单线态氧专题为您整合单线态氧相关的最新文章,在单线态氧专题,您不仅可以免费浏览单线态氧的资讯, 同时您还可以浏览单线态氧的相关资料、解决方案,参与社区单线态氧话题讨论。

单线态氧相关的论坛

  • 生物标记三部曲:绿色荧光蛋白、辣根过氧化物酶和小型单线态氧制造者

    生物标记三部曲:绿色荧光蛋白(GFP)、辣根过氧化物酶(HRP)和小型单线态氧制造者(MiniSOG)【towersimper注:本文为译文,每篇都有部分改动,仅用作研究之用,不得用作商业开发,转载请标明翻译者towersimper,第一篇来自Sowmya Swaminathan, Nature Cell Biology, "GFP: the green revolution", doi:10.1038/ncb1953, October 1, 2009;第二篇来自Andy, brainslab.wordpress.com,"Horseradish peroxidase as marker for anatomical em", April 3, 2011; 第三篇来自Andy, brainslab.wordpress.com, "MiniSOG, a light and electron microscopy fusable marker", April 16, 2011】 第一篇:绿色荧光蛋白: 绿色革命http://bbs.bioon.net/bbs/data/attachment/album/201107/23/1829154rjsutzjgu2tw4hf.jpg来自秀丽隐杆线虫(Caenorhabditis elegans)的两个触觉感受器神经元的细胞体(cell body)用编码β-微管蛋白的基因表达的绿色荧光蛋白标记,图片来自doi:10.1126/science.8303295.1994年,Chalfie等人在Science杂志发表一篇报道,表明来自维多利亚水母(Aequorea Victoria)的绿色荧光蛋白(green fluorescent protein, GFP),在没有任何A. Victoria的辅助因子存在下,能在活着的细菌和线虫细胞中用作蛋白定位和表达的标记。这种显示GFP作为体内研究蛋白的工具基本上改变了细胞生物学家能够解决的问题的性质和范围。1962年,Shimomura和他的同事们在A. victoria生物发光蛋白水母素(aequorin)的纯化过程中偶然间第一次发现了GFP。1974年,Morise和他的同事们在随后的纯化、晶体形成和从水母素到GFP能量转移的体外重建过程中,为GFP的荧光性质提供启迪,而且证实GFP接受来自水母素的能量转移后发射绿光。在此之后许多年,在外源系统中GFP是否需要水母素和可能来自水母的其他因子发出荧光,这仍然是一个公开的问题。1992年,也就是在GFP发现后的30年,Prasher等人克隆了编码GFP的基因,就为实验上评估它用作蛋白质的体内标记铺平道路。而在两年后,Chalfie等人证实当GFP在细菌和线虫细胞中表达时,它能够发出荧光。在线虫中,GFP是在一个表达β-微管蛋白的基因启动子的控制下表达的。它在线虫特异性神经元中的时空表达模拟了内源性β-微管蛋白基因的表达,因而证明GFP能够作为一种可靠的标记以便监控基因表达模式。此后不久,Roger Tsien的实验室对天然GFP进行改造使之变得更加明亮和耐光,以及在一个与常规显微镜过滤器装置相匹配的波长下激发,因而增加了它的实际适应性。GFP技术的下一个突破便是开发GFP变异体产生蓝色、青色和黄色荧光蛋白,因而能够使得影像实验在细胞和有机体中采用多种标记的蛋白。绿色荧光蛋白(GFP)是由238个氨基酸残基组成,在蓝色波长范围的光线激发下,会发出绿色荧光。而EGFP是增强型的GFP (enhanced GFP),发生了双氨基酸取代,亮氨酸(Leu)取代GFP上第64位苯丙氨酸(Phe),苏氨酸(Thr)取代了GFP上的第65位丝氨酸(Ser),与GFP相比,具有更强更稳定的绿色荧光。黄色荧光蛋白(yellow fluorescent protein, YFP)其序列与GFP基本相同,不同之处就是把第203位Thr以Tyr取代,这样的GFP不发出绿色荧光,而发出较长波长的黄色荧光。青色荧光蛋白(cyan fluorescent protein, CFP)与此类似,也是GFP第66位Tyr(酪氨酸)被Thr(色氨酸)所取代的结果,发青色荧光。由此可见,GFP标签与其它突变体GFP、YFP、EYFP、CFP的序列非常的类似,只有1-2个氨基酸残基的变化。

  • 生物标记三部曲:绿色荧光蛋白、辣根过氧化物酶和小型单线态氧制造者

    第一篇来自Sowmya Swaminathan, Nature Cell Biology, "GFP: the green revolution", doi:10.1038/ncb1953, October 1, 2009;第二篇来自Andy, brainslab.wordpress.com,"Horseradish peroxidase as marker for anatomical em", April 3, 2011;第三篇来自Andy, brainslab.wordpress.com, "MiniSOG, a light and electron microscopy fusable marker", April 16, 2011第一篇:绿色荧光蛋白: 绿色革命http://www.biomart.cn//upload/userfiles/image/131175417948693.jpg来自秀丽隐杆线虫(Caenorhabditis elegans)的两个触觉感受器神经元的细胞体(cell body)用编码β-微管蛋白的基因表达的绿色荧光蛋白标记,图片来自doi:10.1126/science.8303295.1994年,Chalfie等人在Science杂志发表一篇报道,表明来自维多利亚水母(Aequorea Victoria)的绿色荧光蛋白(green fluorescent protein, GFP),在没有任何A. Victoria的辅助因子存在下,能在活着的细菌和线虫细胞中用作蛋白定位和表达的标记。这种显示GFP作为体内研究蛋白的工具基本上改变了细胞生物学家能够解决的问题的性质和范围。1962年,Shimomura和他的同事们在A. victoria生物发光蛋白水母素(aequorin)的纯化过程中偶然间第一次发现了GFP。1974年,Morise和他的同事们在随后的纯化、晶体形成和从水母素到GFP能量转移的体外重建过程中,为GFP的荧光性质提供启迪,而且证实GFP接受来自水母素的能量转移后发射绿光。在此之后许多年,在外源系统中GFP是否需要水母素和可能来自水母的其他因子发出荧光,这仍然是一个公开的问题。1992年,也就是在GFP发现后的30年,Prasher等人克隆了编码GFP的基因,就为实验上评估它用作蛋白质的体内标记铺平道路。而在两年后,Chalfie等人证实当GFP在细菌和线虫细胞中表达时,它能够发出荧光。在线虫中,GFP是在一个表达β-微管蛋白的基因启动子的控制下表达的。它在线虫特异性神经元中的时空表达模拟了内源性β-微管蛋白基因的表达,因而证明GFP能够作为一种可靠的标记以便监控基因表达模式。此后不久,Roger Tsien的实验室对天然GFP进行改造使之变得更加明亮和耐光,以及在一个与常规显微镜过滤器装置相匹配的波长下激发,因而增加了它的实际适应性。GFP技术的下一个突破便是开发GFP变异体产生蓝色、青色和黄色荧光蛋白,因而能够使得影像实验在细胞和有机体中采用多种标记的蛋白。绿色荧光蛋白(GFP)是由238个氨基酸残基组成,在蓝色波长范围的光线激发下,会发出绿色荧光。而EGFP是增强型的GFP (enhanced GFP),发生了双氨基酸取代,亮氨酸(Leu)取代GFP上第64位苯丙氨酸(Phe),苏氨酸(Thr)取代了GFP上的第65位丝氨酸(Ser),与GFP相比,具有更强更稳定的绿色荧光。黄色荧光蛋白(yellow fluorescent protein, YFP)其序列与GFP基本相同,不同之处就是把第203位Thr以Tyr取代,这样的GFP不发出绿色荧光,而发出较长波长的黄色荧光。青色荧光蛋白(cyan fluorescent protein, CFP)与此类似,也是GFP第66位Tyr(酪氨酸)被Thr(色氨酸)所取代的结果,发青色荧光。由此可见,GFP标签与其它突变体GFP、YFP、EYFP、CFP的序列非常的类似,只有1-2个氨基酸残基的变化。在GFP发现后的将近半个世纪以来,因为发现和开发绿色荧光蛋白,2008年诺贝尔化学奖被授予给Osamu Shimomura, Martin Chalfie和Roger Tsien,来表彰这次发现给后世带来的巨大影响。参考文献:Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).Shimomura, O., Johnson, F. H. & Saiga, Y., Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J. Cell. Comp. Physiol. 59, 223–239 (1962).Morise, H., Shimomura, O., Johnson, F. H. & Winant, J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13, 2656–2662 (1974).Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).第二篇:辣根过氧化物酶作为解剖学电子显微镜(anatomical electron microscopy)的标记要绘制诸如视网膜的大容量组织中的突触联系(synaptic connection) James R. Anderson等人于2009年就已经主张应当将分子表达谱(molecular profiling)与电子显微镜图片相关联。如今,这里给出一个例子来说明分子表达谱仪(molecular profiler)如何得到很好的利用。Jianli Li等人采用电穿孔技术产生将携带有靶向到细胞膜的辣根过氧化物酶(membrane-targeted horseradish peroxidase, mHRP)基因的表达构建物导入神经元。辣根过氧化物酶发射可放大的波长为428nm的荧光。这些研究人员就使用它作为解剖学上的标记,与蝌蚪神经元的连续切片电子显微镜图片(serial section electron microscopy, SCEM)在空间上相互关联。辣根过氧化物酶的优势之一在于它在包括线粒体/小泡(vesicle)在内的细胞膜上均匀分布。它也有助于鉴定长轴突(axon)/小直径的树突(dendrite)。但是另一方面,不同于其他的标记,它不得不在动物仍然活着的时候通过电穿孔技术导入细胞才有效果。下面是一系列电子显微镜图片,其中远侧树突分支(distal dendritic branch),蓝色显示;带有轴突末端(axon terminal, 用粉红色显示)的突触,用白色箭头符号指示:http://www.biomart.cn//upload/userfiles/image/131175420478195.jpg比例尺=1微米当从向右观看这一系列图片时,你能够看到树突如何缩减,而研究人员能够在他们的微回路(microcircuit)模型中重构这些图片。

  • 【资料】试剂与生活——抗氧化剂!

    抗氧化剂:是阻止氧气不良影响的物质。 它是一类能帮助捕获并中和自由基,从而祛除自由基对人体损害的一类物质。如维生素A、C、E;例胡萝卜素(虾青素、角黄素、叶黄素,B-胡萝卜素等);微量元素:硒、锌、铜和锰等  饮食中抗氧化剂长期以来倍受国内外学者关注,这是因为①食物中抗氧化剂能够保护食物免受氧化损伤而变质②在人体消化道内具有抗氧化作用,防止消化道发生氧化损伤@吸收后可在机体其他组织器官内发挥作用④来源于食物的某些具有抗氧化作用的提取物可以作为治疗药品。抗氧化剂的作用机理包括鳌合金属离子、清除自由基、淬灭单线态氧、清除氧、抑制氧化酶活性等。

  • 特殊的化学发光现象之二:非可见光区区的CL

    由于化学发光信号的检测多采用光电倍增管,后者只对400 ~ 750 nm 的光辐射具有响应,因此早期化学发光的研究也局限于这一波长范围的光辐射。从广义上来说,伴随化学反应的任何波长光辐射都可以认为是化学发光。因此,可以采用不同的检测器对不同波长范围的化学发光进行检测,从而扩展化学发光的研究范围。对于非可见光区的化学发光,目前研究最多的是近红外区的化学发光(IR-CL),往往用于激发态化学反应的机理和动力学等的研究而不是用于分析测定,可以获得有关激发态振动和转动能级的信息。常见的IR-CL 反应往往发生在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]或者气体分子在固体表面的反应,以避免复杂基体的干扰。小分子的IR-CL小分子振动激发态的生成可以有很多方式,最常见的包括活性氧和原子态氢诱导的IR-CL 现象。活性氧参与的红外化学发光反应可以有三种情况。(1) 活性氧与气态小分子发生碰撞反应生成新的激发态物种。文献中常见的反应体系包括:氧原子与乙烯分子反应生成处于振动激发态的CO、CO2、HCO、H2CO 等,在红外区产生多峰发射;大气中的N 原子与活性氧分子反应生成激发态的NO*而产生极光现象。(2) 化学反应生成单线态氧而在1268 nm 处产生单线态氧的双分子发射。这种情况比较普遍,例如亲核试剂催化双环氧乙烷(Dioxirane)分解可以生成单线态氧而发光;亚油酸过氧化物与HOONO 反应也可以生成具有红外发射特性的单线态氧。(3) 单线态氧还可以通过电子-电子能量转移将能量传递给共存的Bi2、Se2等二聚体得到振动激发态而产生红外化学发光。此外,水合三氧化物(Hydrotrioxide)在分解生成自由基的过程中也伴随着红外光发射

  • 求老师帮忙做一下图谱分析,这是自由基

    实验目的:用DMPO捕获Fenton中的羟基自由基实验步骤:按照H2O2与二价铁摩尔比4:1投加(H2O2为100mM,二价铁25mM),调节pH为3,加入DMPO。实验现象:在加入DMPO后溶液由浅黄色(Fenton正常颜色)迅速变为紫黑色。反应5min后用毛细管吸取测量。峰型如下。有一些疑惑:首先可以看到是三线峰,查阅文献单线态氧为三线峰,但文献提出单线态氧的捕获剂是TEMP,与我的捕获剂DMPO不符。那么这又是什么呢?其次,三线峰两边的波浪又是怎么引起的?为什么没有捕捉到羟基自由基?同时做了羟基自由基猝灭实验,发现去除率降低很多,那可以解释羟基自由基为主要的氧化物质。为何EPR没有测出来?DMPO是网上刚买的,低温保存,应该没有问题吧?[img]https://ng1.17img.cn/bbsfiles/images/2022/03/202203301806101717_7304_5399976_3.png[/img]

  • 番茄红素的作用与 好处

    http://simg.instrument.com.cn/bbs/images/default/em09511.gif番茄红素是植物中所含的一种天然色素。,胡萝卜素的一种,主要存在于茄科植物西红柿的成熟果实中。它是目前自然界中被发现的最强抗氧化剂。科学证明,人体内的单线态氧和氧自由基是侵害人体自身免疫系统的罪魁祸首。番茄红素清除自由基的功效远胜于其他类胡萝卜素和维生素E,其淬灭单线态氧速率常数是维生素E的100倍。它可以有效的防治因衰老,免疫力下降引起的各种疾病。所以,它受到世界各国专家的关注。 另外还有抗衰老、抗辐射和保护皮肤、乳房和子宫保健、提高男性生育能力等作用。  常吃番茄红素的作用和好处。产品作用 1、 抗衰老:强抗氧化,释放电子中和自由基,促进细胞再生,延缓衰老;  2、 抗肿瘤:通过抗氧化作用抑制氧化游离基,降低肿瘤危险性,抑制肿瘤的生长; 、  3、 抗辐射,保护皮肤:抑制和清除自由基,防止外界辐射、紫外线对皮肤的伤害;  4、 调节血脂,预防心血管疾病;  5、 对乳房和子宫的保健,减少乳腺癌和宫颈癌的发病率;  6、 可提高男性生育能力。  产品特点: 1、 最强的抗氧化剂 番茄红素是目前世界上发现的最强的抗氧化剂,被西方国家称为“植物黄金”。 科学证明,人体内的单线态氧和氧自由基是侵害人体自身免疫系统的罪魁祸首。番茄红素清除自由基的功效远胜于其他类胡萝卜素和维生素E,其淬灭单线态氧速率常数是维生素E的100倍。它可以有效的防治因衰老,免疫力下降引起的各种疾病。  2、 防癌抗癌 番茄红素通过有效清除体内的自由基,预防和修复细胞损伤,抑制DNA的氧化,从而降低癌症的发生率。 番茄红素还具有细胞间信息感应和细胞生长调控等生化作用。它能诱导细胞连接通讯,保证细胞间正常生长控制信号的传递,调控肿瘤细胞增殖,起到抗癌防癌作用。 补充番茄红素可以降低罹患子宫肌瘤、宫颈癌、前列腺癌的风险。  3、 降低心血管疾病的危险性 自由基造成的退化效应,是心血管疾病的头号元凶。一旦产生血液中脂质过氧化连锁反应,使脂肪酸产生聚合作用。当这些大分子的脂质聚合物沉积在血管壁时,便会使血管发生硬化和阻塞。 在欧洲的多家医学研究中心所做的临床试验显示,番茄红素由于其很强的 抗氧化作用,可以有效地预防和减轻心血管疾病,降低心血管疾病的危险性。

  • 氧化态炉窑 还原态炉窑

    各位大侠,无机化学工业污染物排放标准中提到了氧化态炉窑和还原态炉窑,日常检测中要怎样区分呢

  • 请教:芘这种物质为什么出现两个荧光发射峰?

    根据荧光的定义,荧光是从第一激发态的最低振动能级的单线态跃迁到基态的能量辐射。我们知道物质的基态和第一激发态的最低振动能级的单线态之间的能量差别是一定的,但是芘这种物质却在373nm和391nm处出现了强的荧光峰,请教这是什么原因? 另外,这两个峰的和芘分子的结构有什么联系(芘的分子构型非常对称,四个苯环叠在一起)?谢谢各位!!!

  • 低频RFIC技术在轮胎压力监测系统中的应用

    安装在内圈上的直接TPMS单元连接到阀杆以测量轮胎压力, [url=http://www.ic37.com]IC[/url] 将测量无线传输到专用TPMS控制器或车辆的电子系统控制器。这些设备采用不可更换的电池制造,其设计时考虑了功耗。为了节省功率,大多数TPMS架构通常使用发起器,其发送低频RF信号,使得每个TPMS单元在返回到低功率模式之前唤醒并发送更新的轮胎压力数据。在这个TPMS设计中,一个低频RF发起器唤醒每个安装在轮胎上的单元,然后将这些单元发送到专用的接收器或接收器中。集中式子系统(由Pa[u]nas[/u]onic提供。)专为支持这种启动功能而设计,Atmel ATA5276 IC驱动125 KHz LC谐振回路电路,启动此唤醒过程。 ATA5276由[u]MCU[/u]通过简单的单线接口控制,将控制逻辑与VCO相结合,产生125 KHz信号,用于驱动发射器LC[url=http://www.ic37.com]线圈[/url]电路。通过使用数据驱动器件的DIO引脚而不是使用简单的“使能”信号,工程师还可以使用ATA5276将ASK调制数据传输到TPMS单元.除了提供简单的唤醒信号外,Atmel ATA5276还可以向TPMS单元传输数据:使用数据驱动DIO切换DRV,从而产生ASK调制信号线圈。 (由Atmel提供。)安装在每个轮胎上的实际TPMS测量单元包括压力传感器,信号处理级和RF发射器。使用启动器时,轮胎侧的唤醒电路可以像模拟比较器一样简单,例如Maxim MAX9075。在这种方法中,比较器将检测设计有与发射器匹配的谐振频率的线圈的输出(图3)。当比较器达到阈值时,它可以驱动单个晶体管,驱动启动信号到TPMS测量单元。响应其谐振电路检测到的信号,轮胎侧TPMS唤醒电路可以发送TPMS电路的其余部分使用由模拟比较器切换的单个晶体管使能信号。 (由Maxim Integrated Products提供。)压力测量实际轮胎压力测量依赖于压力传感器,这些压力传感器提供与温度相关的差分输出信号,通常是高度非线性的,具有较大的偏移和偏移漂移。需要信号调理电路来提供所需的线性化,校准和温度补偿。为了简化TPMS设计的这一阶段,工程师可以利用德州仪器(TI)PGA309或Maxim MAX1452等集成器件,以及专门设计用于传感器信号调理所需的片上子系统的IC(图4)。TI PGA309等专用信号调理IC提供实现压力非线性,温度相关输出的线性化,补偿和校准所需的功能传感器。 (德州仪器公司提供。)TI PGA309包括完整的传感器调节信号链,集成了输入多路复用器,可编程增益仪表放大器,线性化电路,电压基准,控制逻辑和输出放大器。工程师可以通过其单线数字接口校准器件,并将校准参数存储在片外存储器(如SOT23-5 EEPROM)上。Maxim MAX1452是一款精密信号调理器,集成了可编程增益放大器,数模转换器(DAC),温度传感器和内部EEPROM。该器件使用模拟放大来初始提升输入信号,然后进行模拟温度校正,最后使用数字电路完成校正。该器件专门用于传感器调节应用,允许工程师通过编程改变传感器电桥激励电流或电压来校准和校正传感器信号。RF link对于TPMS单元的通信核心,工程师可以从不同的ISM RF设备中进行选择。对于仅需要传输能力的TPMS轮胎安装单元设计,Maxim 7044,Micrel MICRF112,Silicon Labs Si4020/Si4021和Texas Instruments CC1070等设备提供完整的解决方案,需要最少的外部元件,包括晶体,阻塞电容器,以及功率放大器输出和天线之间的适当匹配元件。Maxim MAX7044提供300 MHz至450 MHz范围内的OOK/ASK传输。与同类产品中的其他器件一样,MAX7044只需极少的外部元件。然而,MAX7044能够提供高达13 dBm的输出功率,同时在2.7 V时仅提供7.7 mA的电流。Micrel MICRF112发送器在300至450 MHz频段内提供ASK/FSK调制,输出功率高达10 dBm。 MICRF112能够在低至1.8 V的电源电压下工作,与此类大多数器件相比,最小电源电压通常为2.0至2.2 V.Silicon Labs Si4020/Si4021 ISM发送器提供了完全集成的解决方案,仅需外部晶振和旁路滤波器。引脚兼容器件包括一个集成PLL,具有快速建立时间,可在433,868和915 MHz频段内工作。 Si4020还可在315 MHz频段工作,而Si4021则提供更高的输出功率(433 MHz时为8 dBm,而Si4020为3 dBm)。

  • 液态二氧化碳样品电导率

    大家有没有做过液态二氧化碳样品的电导率检测啊,非常好奇;我在别的论坛看到一个求助帖,问液态二氧化碳如何提高电导率。只用过[url=https://www.hach.com.cn/product/jcdiandao1]水质电导率传感器[/url],液态二氧化碳样品要检测的话,用什么类型电导率传感器呢,还有上面这个如何提高电导率的问题有没有老师有招的。

  • GC的APC失去控制(压力下不来)

    求助!进样的时候没注意,减压阀是全开,压力一下冲进去了,(但是有pb阀,样品应该没有冲到十通阀内),但是后面再切十通阀的时候,阀单线的APC压力400kpa下不来,正常是380kpa,阀切双线APC压力就正常,单线就失去控制,这是什么原因导致的有没有人告知一下!很急拜托拜托。

  • 經濟又環保 印度推廣使用太陽能鍋太陽能燈!

    印度一年約有三百至三百三十天是陽光普照的日子,太陽能幾乎無虞缺乏,ZF在多年前就補助鄉村貧戶使用太陽能鍋,免除婦女撿拾柴火的辛苦或燒煤的污染,最近又考慮將補貼貧戶購買燈用煤油的經費,換購太陽能燈使用,不但可免除煤油污染,也省下建設電力輸送系統的大筆費用。印度主管非傳統能源事務部自多年前開始,即大力推廣使用太陽能鍋,鼓勵本土廠商研發生產,同時也補助鄉村貧戶購買,結果成效卓著。據非傳統能源事務部官員表示,印度目前約有四十家小規模的太陽能鍋製造商,總年產量約七萬五千個,預計市場需求量至少可達一千萬個太陽能鍋。據非傳統能源事務部推廣處官員古普塔表示,最受鄉村居民歡迎的太陽能鍋,是由非傳統能源事務部自行研發的,一種由單片太陽能反射板組成的箱型太陽能鍋,使用簡便,適合家庭使用。其次,另有一種可供大眾食堂使用的組合型太陽能鍋系統,可將太陽能熱引導到廚房不同的烹調器皿使用。古普塔說,供一家四至五口使用的家庭用太陽能鍋,ZF補助後的成本約一千盧比(約二十三美元,合新台幣七百元左右),使用年限可達十至二十年,每年可節省三至四桶十六公斤裝的液化石油氣。大型太陽能鍋則需要銜接多個引熱系統,補助後的成本約五萬盧比,但功能不輸一般食堂器皿,一樣具有炒、炸、蒸、煮的功能,一小時內可供應一千多人熱騰騰的飲食。古普塔說,大型太陽能鍋可以產生五百公斤的蒸汽,足以供應五百人兩頓的餐飲。鑑於近年地球溫室氣體排放和空氣污染問題愈趨嚴重,以及國際油價高漲壓力,印度非傳統能源事務部也開始認真考慮進一步的因應對策,計劃將原用來補貼鄉村貧戶購買燈用煤油的部分經費,改以購買太陽能燈後交給貧戶使用,一來可以達到減碳和降低空氣污染的目標,二來可以減少居民感染呼吸器官疾病的機率,更可以減輕ZF採購油源的負擔。印度石油需求,有百分之七十以上仰賴進口。據古普塔表示,印度這項計畫已在最近送交總理府能源協調委員會審議,將在與全國各省地方ZF磋商後定案。古普塔表示,長期以來,環保團體就呼籲ZF當局廢除煤油補貼政策,改採親環保的替代能源,此外,地方居民也普遍歡迎這項計畫,因煤油容易引發黑煙污染,並造成使用者感染呼吸道疾病。

  • 气相进样后状态的疑惑?

    样品在进样口气化后,随载气进入毛细管柱中,但是一般进样口在200度以上,但是柱温箱中的起始温度在几十度,那么在几十度环境下,样品和溶剂会不会变成液态的了呢?还是在整个气路中包括毛细管柱中的压力很低,样品和溶剂不会液化还能保持气态呢?那进样口的压力和毛细管中的压力应该是不一样的吧?

  • 溶解态氧化亚氮测试

    请问大家有比较好简单的溶解态氧化亚氮测试方法嘛图片下的振荡注射器的恒温搅拌器有推荐嘛,我某宝根本找不到[img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404081900017049_3022_6423878_3.png[/img]

  • 【喜羊羊与灰太狼】擂台辩论赛之宣传资料

    【喜羊羊与灰太狼】擂台辩论赛之宣传资料

    [B][color=#DC143C][size=4][center]喜羊羊与灰太狼擂台辩论赛[/center][/size][/color][/B][center][img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907230951_161148_1608710_3.jpg[/img][/center]为什么狼要吃羊,出了个喜羊羊,灰太狼吃到了羊吗?采购工作也如此,采购人为什么会被忽悠,那是因为销售不吃你吃谁。采购计划开始后,我们都要经历几个过程:仪器的调研、招标、签合同、仪器验收、售后服务等等。一台色谱仪器,需要采购的内容包括了整台仪器、使用后的服务、使用中耗材及配件,等等。偶尔看到板油发帖在问,这台仪器怎么样?仪器怎么宣传的那么好,真有那么好吗?或者是某个公司不按合同办事,来发帖抱怨。比如[URL=http://www.instrument.com.cn/bbs/shtml/20090622/1966230/]【讨论】畅所欲言之付款方式[/URL],该帖就表现了销售与采购双方面的想法,我们也要换位思考问题,才能携手采购工作。为此,采购版特别推出“擂台辩论赛”系列活动,就让我们的“灰太狼”( 销售)和“喜羊羊”( 采购人)在擂台上一较高下,就某些有意见分歧的问题相互探讨、辩论,说出来分享,大家也可以相互理解,携手工作。活动回复帖要围绕主题,代表“灰太狼”观点的回复请用红色字,代表“喜羊羊”观点的回复请用蓝色字,代表中立观点的回复用默认的黑色字。[color=#DC143C]这期辩论赛就宣传资料展开讨论:采购人在看仪器宣传资料有的时候经常会认为有点夸张。仪器真的有那么好吗?色谱图这么漂亮,我怎么做不到?我们如何来看待这个问题?[/color]

  • 【求助】硫酸氧钛铵的结构式

    哪位能够知道硫酸氧钛铵的结构式或者在什么文献上见到过的或者哪本书或者资料上有这个东西谢谢!硫酸氧钛铵(NH4)2TiO(SO4)2ammonium titanyl sulfate

  • 氧化钛拉曼光谱

    氧化钛拉曼光谱

    [color=#444444]我制得的锐钛矿氧化钛粒径只有5-8纳米,但是测出的氧化钛拉曼光谱的基线是倾斜的?这是什么意思?[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/08/201908081411533155_9780_1843534_3.jpg!w690x517.jpg[/img][/color]

  • 国标方法5009.34测定二氧化硫方法,测定的是什么状态?

    二氧化硫在样品中存在游离态、结合态和不可逆结合态3种方式。 GB 5009.34附录A明确说明,标准中的盐酸副玫瑰苯胺方法(5.1.1白砂糖等固体样品)测定的是总二氧化硫,5.1.2(饼干和粉丝等固体样品)和5.1.3(葡萄酒等固体样品)没有加碱释放过程,直接用四氯汞钠溶液浸泡,可以理解为是游离态二氧化硫。 但标准没有说明蒸馏法(第二法)测定的是何种状态的二氧化硫。 各位大侠,可否讨论一下: 你的样品+测定方法,测定的的是何种状态的二氧化硫?你是怎样确定二氧化硫的状态的?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制