当前位置: 仪器信息网 > 行业主题 > >

单光子发射现象

仪器信息网单光子发射现象专题为您整合单光子发射现象相关的最新文章,在单光子发射现象专题,您不仅可以免费浏览单光子发射现象的资讯, 同时您还可以浏览单光子发射现象的相关资料、解决方案,参与社区单光子发射现象话题讨论。

单光子发射现象相关的资讯

  • 单分子单光子发射及其源阵列首次清晰展示
    p   记者从中国科学技术大学获悉,该校单分子科学团队的董振超研究小组,通过发展与扫描隧道显微镜(STM)相结合的单光子检测技术和分子光电特性调控手段,首次清晰地展示了空间位置和形貌确定的单个分子在电激励下的单光子发射行为及其单光子源阵列。国际学术期刊《自然· 通讯》9月18日发表了这项成果。 /p p   单光子源的研究一直是量子信息领域的核心内容之一,清晰可控的高密度单光子源阵列更是构建量子芯片器件和量子网络的关键。在众多的单量子发光体,包括半导体量子点、原子、分子、色心等,单分子体系由于其发光频率易于调控、谱线较窄、且发光行为具有高度的均一性而受到广泛的关注。此外,电泵单光子源还在纳米光电集成和相关量子器件方面具有潜在的应用前景。 /p p   但是,在迄今为止的单分子体系的电泵单光子源研究中,由于受到实验技术和荧光淬灭效应的制约,一直难以实现从空间位置和形貌确定的单个分子产生强而稳定的单分子电致发光信号,因此,基于单个孤立分子的电泵单光子发射行为一直未能得到清晰明确的展示。 /p p   中国科学技术大学单分子科学团队通过巧妙调控隧道结纳腔等离激元的宽频、局域与增强特性,拓展了测量极限,为在单分子水平上观测和调控分子的光电行为提供了有力手段。他们通过研究发现,所有分子均表现出近乎全同的单光子发射特性,实现了高密度单光子源阵列的构造和展示。 /p p   这些研究结果不仅为在纳米尺度研究金属附近分子的光物理现象提供了新的手段,也为研发面向光电集成量子技术的电泵单分子单光子源提供了新的思路。《自然· 通讯》杂志的审稿人评价说,“这个结果无疑开创了该领域的最新水平,为纳米光子源的研究和发展提供了新的机会”。 /p
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p   在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。 /p p   受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。 /p p   目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。 /p p   根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title=" 首台复合显微镜.png" alt=" 首台复合显微镜.png" / /p p style=" text-align: center " strong 国内外首台双光子-STED复合显微镜样机 /strong /p p   在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。 /p
  • 鑫图参与国家重点项目—“双光子-受激发射损耗(STED)复合显微镜”的研发
    2017年10月20日,科技部重点研发计划-数字诊疗专项"双光子-受激发射损耗(STED)复合显微镜"项目(2017YFC0110200)实施交流研讨会在南京举行,鑫图总经理陈兵在会上作了关于"下一代sCMOS相机"的技术汇报。 该项目以研发及产业化双光子-受激发射损耗(STED)复合显微镜为主要目标,力图在"适用于双光子成像的自适应光学技术"、"基于中空贝塞尔淬灭光场调控的STED 成像技术" 等关键技术上有所突破。在长工作距离显微物镜、飞秒激光器和CMOS 相机等核心部件能自主研发,实现高端光学显微镜的技术创新与装备国产化。项目研发团队是由多名在光学显微成像领域有着丰富研究与产业化经验的资深人员组成,在双光子显微成像、STED超分辨成像及仪器化开发方面都有着深厚的基础。在双光子显微成像方面,项目负责人郑炜博士从2006 年起就开始双光子显微成像的相关研究,自主研发了世界首台双光子\谐波\光声三模态显微镜。在STED成像方面,项目核心成员席鹏教授是国内公认的STED技术领航人,是他首次在国内实现了STED超分辨显微成像,并将STED分辨极限推进到19nm的理论极限,刷新了STED在生物成像上的记录。在产业化方面,申报企业南京东利来公司是中国光学与光子学标准技术委员会的委员单位,是中国显微物镜、目镜标准的第一起草单位。福州鑫图光电有限公司依托其在科学相机产业化方面的优势有幸参与其中,承担该项目核心部件sCMOS相机的研制,助力核心部件国产化目标。
  • 中国计量大学 ACS Nano: 镧系纳米片的光子发射调控与精细光谱结构解析 | 前沿用户报道
    本文转载自 知光谷成果简介二维材料凭借独特的物理和化学特性,有助于制备原子级超薄的光电子器件,近年来在全球引起广泛的研究兴趣。在光学性能调控及传感检测方面,二维材料也具有很大的研究及应用潜力。然而二维材料的多彩发光和可控制备依然是研究难题。为此,中国计量大学白功勋,徐时清教授团队与香港理工大学郝建华教授团队开展合作,在二维光电子材料与器件研究领域取得新进展。在ACS Nano期刊上发表了题为“Ultrabroadband Tuning and Fine Structure of Emission Spectra inLanthanide Er-Doped ZnSe Nanosheets for Display and Temperature Sensing” (镧系铒掺杂硒化锌纳米片的超宽带光子发射调控与精细光谱结构解析,及其显示与温度传感应用)的研究论文,第一作者为中国计量大学研究生刘源。图文导读团队通过选择宽禁带半导体ZnSe,通过固相烧结加液相剥离法,制备出多彩发光的掺稀土二维纳米片,实现了超大光谱范围的光子发射调控,解析了光谱精细电子能级结构。所制备的掺Er硒化铟纳米片物理和化学性质稳定,具有明显的丁达尔效应,且发光性能优良。图1 ZnSe:Er块材与纳米片在激光照射下的光学照片以及扫描电子显微镜图片图2 ZnSe:Er纳米片在980 nm激光照射下的4K精细发射光谱与对应的电子能级在近红外光的激发下,所制备的二维纳米片同时实现了上转换与下转换发光,发光范围覆盖紫外-可见-近红外三个区域。通过研究超低温(4K)精细发光光谱,观测到了在二维尺度下的铒离子丰富的次能级跃迁发射。团队深度解析了镧系铒离子在二维硒化锌基质中的电子能级精细结构。图3 ZnSe:Er纳米片在近红外980 nm激光激发下和紫外365 nm激光笔照射下的多彩发光将发光性能优异的纳米片与机械性能优异的光学硅胶PDMS结合,制备出柔性可拉伸的复合材料薄膜器件,可以抵抗液氮温度的处理。随着温度的变化,所制备的器件呈现出从绿色到红色的颜色变化,具有丰富的显示特性。另外,通过构建铒离子的两个次能级跃迁强度比与温度变化的关系,所制备器件展现出了优异的温度传感特性。本工作系统且深入地研究了二维材料的超宽光谱范围的光子发射调控及精细电子能级结构,对于基础物理光学研究及传感检测应用具有重要的价值与意义。相关工作得到了国家自然科学基金青年项目,浙江两化融合联合基金重点支持项目和浙江省自然科学基金重大项目的资助。文献信息Ultrabroadband Tuning and Fine Structure ofEmission Spectra in Lanthanide Er-Doped ZnSe Nanosheets for Display and Temperature Sensing文章署名作者:Yuan Liu, Gongxun Bai, Yongxin Lyu, Youjie Hua, Renguang Ye, Junjie Zhang, Liang Chen, Shiqing Xu, and Jianhua Hao文章链接:https://dx.doi.org/10.1021/acsnano.0c07547扫码查看文献
  • 日本将发射能精确测量深空X射线的太空天文台
    X射线成像和光谱任务(XRISM)将于8月28日在日本种子岛航天中心由H-IIA火箭发射升空。该任务旨在观察来自深空的X射线,并以前所未有的精度识别它们的波长。这将使研究人员更深入地了解从星系团如何形成到黑洞如何产生高能粒子喷流的天体物理现象。  XRISM是日本宇宙航空研究开发机构(JAXA)和美国国家航空航天局(NASA)的一项联合任务,欧洲空间局(ESA)也将有进一步的贡献,预计将运行3年左右。  据悉,该火箭还将发射智能探月着陆器SLIM,其目的是展示在月球表面精确选择着陆点的能力。如果成功,这将是JAXA首次登陆月球。  XRISM的独特之处在于它的X射线量热计,这是NASA在20世纪80年代开发的一项技术,可以通过百万分之一度的温度变化探测电磁辐射。单个X射线光子的能量与其波长有关,了解这一点将使天文学家能够区分化学元素的特征,帮助天体物理学家重建宇宙的历史。  XRISM的量热计还能够获取天体的光谱,包括星系间气体和黑洞吸积盘。而现有的X射线天文台只能采集点状光源的光谱,比如单个恒星。对于运动中的X射线源,光谱会因多普勒效应而发生偏移,例如,这可以揭示一个星系团是否由两个较小的星系团合并而成。星系间的物质也经常被位于星系中心的超大质量黑洞产生的物质喷流搅动。绘制这些漩涡的地图可以帮助天体物理学家了解喷流的神秘起源,以及它们是如何影响星系演化的。  XRISM将是日本第四次尝试在太空中部署X射线量热计。  2016年2月,JAXA发射了ASTRO-H卫星,后来更名为“瞳”。仅仅5周后,当仪器仍在进行校准和测试时,一个软件错误导致航天器失去控制并解体。  XRISM科学团队成员、美国芝加哥大学天体物理学家Irina Zhuravleva参与了“瞳”的研究。她说,2016年发表的研究结果“非常非常惊人”,而真实数据要比理论预测更详细。  “我们的模型缺少一些线条,观测结果表明我们对简单原子跃迁的理解是多么地不完整。这也激发了我们在实验室环境中研究等离子体的新兴趣。”Zhuravleva说,“我们终于有望开启X射线天文学的一个全新时代。”
  • 丹麦研究揭示二维材料中量子发射体的形成机制
    据丹麦技术大学官网信息,量子计算和保密通信都是基于单光子发射体,有关量子发射体的研究是量子技术至关重要的基石,将对通信技术产生革命性的影响。二维材料六边形氮化硼一直是最有吸引力的候选材料,但是科学界对六边形氮化硼中如何形成量子发射体的机理知之甚少。丹麦技术大学研究人员采用原子轰击与原子计算相结合的新方法,轰击二维材料六边形氮化硼中的单个氧原子,产生了量子发射体。在这一新的实验过程中,研究人员可以精确地调整击中目标的速度和氧原子数,并可以控制局部发光中心(localized luminescent centres) 的缺陷数量。此外,调节氧原子的速度和数量可以帮助了解这些发光中心的形成机理,并提供它们最可能的微观起源。这一理论和实验相结合的新方法,展示了量子发射体如何形成的机制,为深入认识量子发射体最可能的微观起源提供了极大的帮助。丹麦技术大学这一最新研究成果已经发表在科学进展杂志(Science Advances)上。下一步,研究人员将致力于在六边形氮化硼中定点生成量子发射体。实现了“位点选择(site-selectivity)”,就能够有效地将量子发射体集成到光学电路中(optical circuits)。
  • 发射探测仪器、建设地下实验室 上天入地寻找“黑暗家族”
    当我们抬头仰望星空,能看到繁星的点点光芒布满天穹。但在这些我们能看到的微光之外,宇宙实则是被更多的“黑暗”所填充。科学家认为,宇宙总质能的95%是由人类看不见、摸不着的暗物质和暗能量组成。它们组成的宇宙“黑暗家族”不发出任何信号、极难被探测,但却充斥在宇宙空间,成为人们最想要破解的谜团之一。当地时间7月1日,欧几里得太空望远镜在美国佛罗里达州卡纳维拉尔角发射升空。该望远镜将观测100亿光年范围内的数十亿个星系,创建迄今最大、最精确的宇宙“3D地图”,试图揭开困扰人类许久的暗物质和暗能量之谜。暗物质和暗能量的发现史要理解暗物质和暗能量,首先要解释清楚一个“悖论”,即暗物质、暗能量既然极难被察觉,人类最初又是如何确定它们存在的?20世纪30年代,瑞典天文学家在研究中发现,后发座星系团中星系的速度弥散度非常大,这意味着这个星系团中不同星系的运行速度有着很大的差别。对于星系团中那些运行速度极快的星系来说,仅靠星系团中发光物质的质量,不足以束缚住其如此巨大的运行速度。研究者根据位力定理计算出的星系团总质量要远大于根据发光度计算出的星系团质量。因此,天文学家大胆推测,在星系团中还存在着大量不发光、但却有质量的物质,并将其称为暗物质。如果打一个通俗的比喻,暗物质或许就像一个黑暗房间中的大象,它庞大的身躯填满了整座房间。但由于其本身并不发出任何光亮和信号,人们无从得知它的存在,而只能看见它头顶电灯发出的一点微光,并误以为那是宇宙“房间”内全部的存在。“暗物质是一种在天文观测中被发现的物质,它具有引力作用但不发光。对暗物质的粒子物理性质研究是当前粒子物理和宇宙学最重要的研究课题之一。”北京大学物理学院研究员刘佳介绍。暗物质虽然不可见,但能够被称之为“物质”,是因为其具备物质的基本特征,例如暗物质有质量、有引力,并且也有可能与其他粒子发生接触、碰撞。相较于暗物质,暗能量则更加令人捉摸不透。天文学家在20世纪末才真正认可暗能量的存在。暗能量概念的提出与宇宙加速膨胀理论密不可分。在过去很长一段时间内,天文学家普遍相信,由于天体间引力的存在,宇宙的膨胀速度在逐渐放缓。但在20世纪末,多个研究团队通过对不同距离、被称为宇宙标准烛光的Ⅰa型超新星进行观测后发现,地球与这些标准烛光的距离正在加速变远,即我们的宇宙在加速膨胀。明明引力能够拉近天体间彼此的距离,但为什么宇宙仍然在加速膨胀?天文学家据此认为,一定有尚未被发现的力量在对抗着引力,推动宇宙加速膨胀,暗能量的概念便由此而生。利用“引力透镜”探测暗物质虽然看不见,但暗物质、暗能量并非无迹可寻,它们各有证明自己存在的方式。中国科学技术大学物理学院天文学系教授蔡一夫告诉科技日报记者,引力透镜效应是证实暗物质存在的最常用的方法之一。其基本原理是,基于广义相对论,光线会因为大质量天体的引力而产生弯曲,类似于透镜对于光线的作用。而如果在地球和极其遥远的发光天体之间存在一些引力源,这些引力源的引力场便会像透镜一样,使经过其身边的光线发生变化。暗物质同样具有引力,因此其也会对光线产生引力透镜效应,从而有机会被我们探测到。“通过引力透镜效应来勾勒暗物质的分布是目前最主要的探测手段之一。”蔡一夫说道。相较于暗物质,暗能量的探测则更为困难。由于至今仍无法确定暗能量的来源及特质,科学家一直无法直接探测它。蔡一夫表示,目前探测暗能量的主要方式,仍是依靠对Ⅰa型超新星的标准烛光测距来实现。宇宙的膨胀会拉伸我们与标准烛光的距离,我们收到的标准烛光的光线会因此产生红移效应。通过对大量标准烛光红移数据的收集、分析,天文学家将有机会探究宇宙膨胀的历史,揭示暗能量的本质。虽然对于暗能量的研究至今仍无定论,但关于暗能量来源的讨论一直是天文学界的热门话题。有许多科学家认为,黑洞或许就是暗能量的来源。不久前,一个国际科研团队对星系中央黑洞开展观测,结果表明黑洞可能是暗能量的来源。在这项最新研究中,科学家比较了拥有中心黑洞的遥远星系和本地椭圆星系的观测结果,发现星系中央黑洞的质量比90亿年前增长了7—20倍,如此快速的质量增长无法用吸积和合并来解释,因此研究者大胆引入暗能量来解释这一现象。多管齐下寻找蛛丝马迹虽然困难重重,但人类在寻找暗物质、暗能量上一直没有放弃努力。在此次发射欧几里得太空望远镜前,人类已经作出诸多尝试。在暗物质探测方面,我国发射的“悟空”号暗物质粒子探测卫星是世界上观测能段范围最宽、能量分辨率最优的暗物质粒子探测卫星。其可以通过测量高能宇宙射线来发现暗物质的踪迹。通常认为,宇宙射线的源头一般是超新星爆发,但暗物质湮灭时也会产生宇宙射线。如果能够发现超新星爆发以外的宇宙射线来源,或许可以间接探测到暗物质。除了上天找答案,为了寻找暗物质,人们还深入地下数千米。暗物质不可见,但它会和其他物质发生碰撞。因此,当暗物质和普通物质的原子核发生碰撞后,普通物质的原子核会动起来,产生微弱信号,科学家能够通过检测这种信号来探测暗物质的存在。但这种方法需要苛刻的实验环境。由于信号实在太过微弱,为了把宇宙射线本底屏蔽掉,营造出极纯净的实验环境,其必须在地下深处进行,且深度越深,宇宙射线本底越低。我国便在四川锦屏山地下约2400米建设了地下实验室,其重要目标之一便是寻找暗物质。此外,刘佳也表示,通过可见物质寻找暗物质也是当今粒子物理的前沿热点问题。例如,暗光子便是理论学家构建的沟通可见物质世界和暗物质世界的媒介粒子之一。不久前,刘佳参与的研究团队发现,地球附近的超轻暗光子暗物质能够诱导射电望远镜反射板上电子的振荡,产生可观测的射电信号,另外偶极射电望远镜能够直接与这种暗物质产生射电信号。基于这种现象,研究团队提出了一种利用射电望远镜直接探测地球附近暗光子暗物质的新方法。而在暗能量探测领域,不久前中国科学院国家天文台参与的暗能量光谱巡天国际合作项目(DESI)向全球发布了首批科学数据,包括了120万个河外星系、类星体及50万颗银河系恒星的光谱。该项目计划在5年内获取超4000万个星系的光谱数据,旨在构造出三维宇宙空间的物质分布,揭示暗能量的本质以及宇宙膨胀历史。相比于此前探测暗物质、暗能量的仪器,欧几里得太空望远镜的优势是大而精。其观测范围足够宽广,能够覆盖超过三分之一的天空,并可以对其中10亿个星系分门别类绘制宇宙图谱。“欧几里得太空望远镜的突破在于其所获得的高清超大面积巡天数据,可以提高引力透镜,特别是弱引力透镜测量精度,使其统计误差显著降低。”蔡一夫介绍。通过对数十亿星系的精确观测,欧几里得太空望远镜将创建包含星系形状、位置和运动状况等信息在内的,迄今最大、最精确的宇宙“3D地图”,帮助天文学家推断宇宙暗能量和暗物质的属性,进一步加深对宇宙本质的了解。
  • 中科大发现全新的非线性电子散射现象
    中国科学技术大学合肥微尺度物质科学国家实验室陈向军教授研究组与罗毅教授合作,利用自主研制的扫描探针电子能谱仪发现了全新的非线性电子散射现象,该现象的发现有可能发展出一种革命性的固体表面单分子探测技术。研究成果发表在最新一期的《自然&bull 物理》上,中国科大徐春凯副教授是论文的第一作者。Phys.org网站和《亚洲科学家杂志》对研究成果做了专题报道。   电子能量损失谱学是分析材料化学组成的一种重要手段,它通过测量电子的非弹性散射获得原子分子的信息。然而在常规的电子散射中,非弹性电子只占极少的比例,大多数电子是没有能量损失的弹性散射电子。陈向军教授研究组将电子能谱学技术与扫描探针技术结合自主研制了扫描探针电子能谱仪,并利用针尖场发射电子束与石墨表面的银纳米结构相互作用,测量散射电子的能谱。实验表明,银纳米结构激发出的局域等离激元场可以导致非线性的电子散射现象,使得非弹性电子的强度显著增强。罗毅教授提出一种单电子两步过程的理论模型解释了这种非线性电子散射。   非线性电子散射不仅是一种全新的物理现象,它同时还会带来一种新的、具有潜力的谱学技术即&ldquo 非线性电子散射谱学&rdquo ,未来可以用于研究吸附在金属纳米结构上的原子、分子。非线性电子散射过程会大大提高信噪比,从而实现固体表面纳米空间分辨的原子分子谱学测量。   上述研究得到了科技部、国家自然科学基金委、教育部和中组部&ldquo 千人计划&rdquo 的支持。
  • 中国教授利用电子能谱仪首次发现非线性电子散射现象
    记者日前从中国科学技术大学获悉,该校合肥微尺度物质科学国家实验室陈向军教授研究组与罗毅教授合作,利用自主研制的扫描探针电子能谱仪首次发现了非线性电子散射现象,该现象的发现有可能催生出一种革命性的表面单分子探测技术。研究成果发表在最新一期的《自然· 物理》上。   电子能量损失谱学是分析材料化学组成的一种重要手段,电子打到样品上会损失能量而发生非弹性散射,电子损失的能量取决于样品原子及其所处的状态,通过收集测量非弹性散射电子,可以获得样品中元素分布和原子相互作用等信息。然而在常规的电子散射中,非弹性电子只占极小的比例,大多数电子是没有能量损失的弹性散射电子。   合肥微尺度物质科学国家实验室徐春凯副教授、陈向军教授及其同事将电子能谱学技术与扫描探针技术相结合,自主研制了扫描探针电子能谱仪。实验中,离样品表面只有几个微米距离的钨针尖加上电压后发射出携带能量的电子,电子与石墨表面的银纳米结构相互作用后,散射的电子被分析器收集并按照能量分类,从而获得它们的能量损失值。实验表明,电子在银纳米结构上激发出的局域的等离激元场(样品中电子集体运动形成的场)可以导致非线性电子散射现象,更多的电子损失能量,使非弹性电子的强度显著增强。罗毅教授提出了一种单电子两步过程的理论模型,解释了这种非线性电子散射。   非线性电子散射不仅是一种全新的物理现象,它同时还会带来一种新的、具有潜力的谱学技术&mdash &mdash &ldquo 非线性电子散射谱学&rdquo ,未来可以用于研究吸附在金属纳米颗粒上的单个原子或分子。
  • 振镜扫描和光子反聚束的结合-帮你命中想要的色心
    随着量子科学及技术的快速发展,单光子源已成为光量子信息研究中的关键器件,对量子计算起着至关重要的作用。NANOBASE将反聚束实验与快速拉曼和光致发光成像技术联用,该项技术将给科研工作者更便捷的手段进行与量子计算机等新兴技术密切相关的单光子源研究。单光子源具有独特的量子力学特性,其在量子技术和信息科学中得到了广泛的应用,包括量子计算机开发和密码学技术研究等等。常见的单光子源有金刚石中的氮空位(NV)色心、单个荧光分子、碳纳米管和量子点等。反聚束实验则是鉴别单光子源的重要表征方法。知识拓展”NV(Nitrogen-Vacancy)色心是金刚石中的一种点缺陷。金刚石晶格中一个碳原子缺失形成空位,近邻的位置有一个氮原子,这样就形成了一个NV色心。反聚束效应是一种量子力学效应,它揭示了光的类粒子行为。它是由于单光子源一次只能发射一个光子而产生的现象。由于两次光子发射之间必须完成一个激发和弛豫循环,两次光子发射之间的最小间隔主要取决于单光子源的激发态寿命。当将发光信号分成两束,采用两个检测器同时探测,每个光子只能被其中一个检测器探测到。即在同一时刻仅有一个检测器可以探测到光子。反聚束效应会导致两个探测器的信号在很短的延迟时间内呈现反相关(HBT实验)。“光子反聚束测试功能和常见的利用机械位移平台的mapping方式相比,采用扫描振镜的mapping方式无需样品发生任何位移,通过光斑在视场内的nm级位移来实现样品的成像。这种方式可以方便的和磁场,低温,CVD等其他设备结合在一起,实现“绝对”的原位测试,避免位移平台本身重复精度累积带来的成像扭曲和定位偏差。而全新推出的光子反聚束测量模块,在原本拉曼光谱、荧光寿命、光电流成像的基础上新增光子反聚束功能,在方便快捷的进行零声子线的测试的同时,还可以完成光子反聚束的测量,极大的简化色心的搜寻流程,迅速判断制备工艺水平。该模块有助于研究者用拉曼光谱和光致发光(PL)成像来表征样品,快速确定目标区域(可能有单光子源的区域),随后在同一仪器来进行反聚束实验。典型案例:对已经进行过氮离子注入处理过的纳米级金刚颗粒进行光谱分析,从而精准定位符合要求的潜在色心:上图1为在5X物镜下进行快速粗扫后得到的针对零声子线峰位强度成像,图2为40X物镜下粗扫获得的强度图像,可以看到十字标志处单独存在的一个潜在优质色心,图3为该点的PL光谱图,可以清晰看到637nm处的较窄的零声子线。利用扫描振镜直接将光斑移动至感兴趣的点位进行HBT测试,上图为测得的单个NV-所体现的光子反聚束现象。常见的处理金刚石样品的方法有很多,比如以浓硫酸和双氧水配备的食人鱼溶液浸泡和清洗,或者将金刚石样品放入空气中进行高温加热,经过处理后的金刚石样品表面氧化层被去除后,再通过飞秒激光辐射等方法进行N离子的注入,从而生成单个NV色心、多个NV色心发光点,以及高密度NV色心团簇。与显微共聚焦荧光系统联用的光子反聚束实验具有众多优势。不仅可以快速筛选NV色心的可能区域,还能实现空间分辨及对其单光子发光源特性的研究,这一技术可以有效地协助单光子源的前沿研究,助力新型量子技术的快速筛选和实验。 昊量光电作为NANOBASE公司在中国区域的du家代理商,全权负责其在中国的销售、售后与技术支持工作。如想进一步了解光子反聚束测试,或者有任何问题及反馈建议,欢迎与我们来联系
  • 中国团队率先登顶:实现单光子源“三项全能”
    p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201602/insimg/6c705e03-4866-4043-bc00-2acbbbf48ec4.jpg" title=" 2190009d92c102ae316.jpg" / /p p style=" text-align: center " 潘建伟(右)、陆朝阳 /p p br/ /p p   在一场长达15年的国际竞赛中,最近,中国科学技术大学潘建伟、陆朝阳研究小组拔得头筹,率先实现了同时兼备“三项全能”最优指标的单光子源,为实现大规模的光子纠缠和可实用量子信息技术开辟了一条新路。 /p p   这项工作1月14日在《物理评论快报》(Physical Review Letters)上发表。随后,美国物理学会的《物理》(Physics)网站以“全能的单光子源”为题刊发了推介文章,《自然》(Nature)杂志以“可实用化的单光子源”在其研究亮点栏目做了报道,英国物理学会《物理世界》(Physics World)和美国光学学会旗下的《光学与光子学新闻》(Optics & amp Photonics News)也做了长篇报道。 /p p   这个引发国际广泛关注的“单光子源”到底是什么?它有哪些性能、又有何应用?《知识分子》试图一探究竟。 /p p br/ /p p   对单光子的制备、操纵和测量是量子信息技术(如量子网络、量子计算)最基础的部分。如果把大规模可实用化的光学量子信息处理器看成一幢大房子,那么单光子就是一步一步垒成这个房子的砖头。房子要造得高,砖头的质量很关键。 /p p   优良、纯净、实用的单光子源是可扩展量子信息和量子计算绕不开的一个关卡。如今,它从理想变为现实,就像早些时候潘建伟、陆朝阳团队“多自由度量子体系的隐形传态”的实现一样,不仅突破了以往技术的局限,也让人们看到了量子信息技术大规模实用化的曙光。 /p p   对于未来可以真正用于可扩展、实用化的量子信息技术来说,所需的单光子发射器的优劣主要包括三个核心性能指标的考量:单光子性(Single-photon Purity)、全同性(Photon Indistinguishability)和提取效率(Extraction Efficiency)。光量子信息主要是利用量子干涉效应和量子纠缠等为基础进行信息编码、传输和处理的技术。而以上三项指标,与此息息相关。 /p p   什么是“单光子性”呢?大家记不记得上小学的时候,下课铃声一响,咱们都找三两个小伙伴一起出去玩儿。通常,自然界产生的光子也喜欢这样“抱团儿”。可是一抱团儿科学家操纵起来就很难了。他们希望得到的光子像通过旋转式栅门一样,一个一个独自走出来,便于进行操作。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201602/insimg/a637ed97-13c9-4b61-b8e0-1d009bb08fae.jpg" title=" 2cc0000242288e3da45.jpg" width=" 600" height=" 170" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 170px " / /p p br/ /p p   上、中、下三束光子,区别在于,越往下,光子越喜欢“抱团儿”。量子信息需要的正是最上面的那种。 /p p   此外,光量子计算不可避免地需要控制逻辑门操作,光子与光子之间必须进行某种“对话”。可是静质量为零、以光速飞行、神龙见首不见尾的单光子都气质高冷,绝大多数情况下都独来独往,不和其他光子来往。但是,在真正觅得知音的特殊情况下,光子还是能够和聊得来的同伴进行“对话”。对光子来说,“聊得来”是什么意思呢? /p p   1987年,美国罗切斯特大学的三位研究人员Chung-Ki Hong、Z.Y. Ou(区泽宇)和Leonard Mandel发现了一种双光子量子干涉效应,实现了两个单光子的“对话”【1】。这个过程的发生有一个至关重要的条件,就是两个光子一定要“全同” 也就是说,从量子力学原理上,两个光子一模一样,根本不可能分得清谁是谁。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201602/insimg/f0a83479-4236-480b-89c3-ec4762c23af7.jpg" title=" 2190009d92b6d091060.jpg" width=" 600" height=" 169" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 169px " / /p p br/ /p p   Hong-Ou-Mandel干涉效应原理图。当两个一模一样的光子分别从上、下方向射向一个半透半反的分束器,结果存在1、2、3、4四种可能。其中,2、3这两种情况在原理上都无法区别,而且相位相消,因而剩下1、4两种可能:要么都从上方走,要么都从下方走。其实,Hong-Ou-Mandel干涉效应也进一步说明了光子不抱团儿的重要性——只有两个单光子输入分束器,该效应才存在。 /p p   至于提取效率呢?提取效率衡量的是从谐振腔跑出来到达第一级透镜的光子数占产生光子数的比例。可想而知,当然是越大越好,因为对于N个光子的体系来说,总的效率是单个量子点提取效率的N次方,如果提取效率不够大,总效率会非常小,大规模的应用也只能是空中楼阁啦。 /p p   三个指标同时达到优良,实现起来到底有多难呢? /p p   在过去的将近二十年里,优良的单光子源是国际上许多小组努力的目标。2000-2001年,加州大学、剑桥大学和斯坦福大学等研究组实现了基于非共振激发量子点产生的单光子源【2-4】。量子点(Quantum Dot)是由分子束外延方法人工生长的纳米尺寸原子团簇。由于材料性质,电子在各方向上的运动都受到囚禁,所以量子限域效应显著,形成分立的能级。电子受到激发,在分立能级之间跃迁,就能发射我们需要的单光子。 /p p   之前非共振激发有着致命的缺陷。首先,它使得产生的光子频谱加宽 其次,产生光的波长之所以会偏离激发光的波长,是因为激发到高能级的电子会先跃迁至附近的某个能级(即弛豫过程),再跃迁至低能级发射光子,而弛豫过程的时间人们无法控制,所以发射时间会有“抖动”,以至于到两个原本需要“对话”的光子可能无法同时达到,压根儿打不着照面儿。 /p p   采取共振激发方法(量子点产生的光子波长等于激发光波长)能克服这两个问题。但是,其技术代价是,如何滤除比单光子信号强一百万倍以上的激光背景。2009年,赵勇、陆朝阳等所在的英国剑桥大学卡文迪许实验室Atatü re小组利用激发光和产生光的偏振性质不同来消除激光背景,观测到了量子点荧光【5】。 /p p   但是,Atatü re团队实现的单光子源采取的是连续激发,产生的光子效率低而且时间是随机的,这无法在量子信息方面得到应用。因为若要光子发射器为我所用,人们需要一个控制光子的“开关”——我这厢一按“激发”,那厢光子就往外跑 我一按“停止”,发射器就不再发射光子。 /p p   这样的“开关”在2013年由潘建伟、陆朝阳小组实现,他们首创量子点脉冲共振激发方法,实现了当时国际上品质最好的量子点单光子源,单光子性和全同性分别达到99.7%和97%【6】。但美中不足的是,提取效率只有6%,主要就是由于量子点材料折射率、平面腔结构设计等各方面技术限制。也就是说,前面提到的三个指标还是无法同时达到优良。 /p p   进一步的发展需要更好的半导体工艺。在该团队最新的工作中,通过高精度分子束外延生长与纳米刻蚀工艺结合,获得了低温下与量子点单光子频率共振的高品质因子光学谐振腔。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201602/insimg/cd22bc7b-83e9-4a47-9787-524d4b518837.jpg" title=" 2530007b5cce561408e.jpg" / /p p br/ /p p   一根根“柱子”就是光学谐振微腔,由一层层的“镜面”构成。腔中的红点就是量子点,量子点受激产生光子。完美的谐振腔设计保证光子达到我们需要的指标。 /p p   如果我们把腔中的红点放大了看,就能看到量子点的真容,像下图这样。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201602/insimg/37928bf4-28c3-4d05-8627-681452aa9152.jpg" title=" 2530007b5ced818c032.jpg" / /p p br/ /p p   紫红色的部分就是利用高精度分子束外延生长技术制备的量子点。科研人员在纳米尺度上控制砷化镓和砷化铟,让它们长成图中的样子,就是为了巧妙设计量子点的尺度和形状,形成势能壁垒,将电子和空穴束缚其中,砷化镓和砷化铟原本都有各自的能带结构,在这样的势肼中,连续的能带变成了分立的能级,这就是受激辐射产生光子所需的二能级结构——电子吸收能量从基态跃迁至激发态,再通过受激辐射回到激发态,同时放出一个特定状态的光子。 /p p   经过精心设计和多次尝试,最终的综合指标令人满意,单光子性、全同性和提取效率分别达到了99.1%、98.5%和66%【7】。这是国际上首次能够把这三项指标在同一个量子点上结合在一起,达到“三项全能”。 /p p   这项工作距离大规模光子纠缠还有多远?这是很多人关心的问题。 /p p   虽然提取效率达到了66%(理想的水平实际应该可以达到85-99%),但最终被探测器探测到的光子只有20~30%,也就是说,探测效率还需要进一步提高。实现更高的提取和探测效率,将是量子信息技术下一阶段中进行协同创新、系统集成要抢占的高地,也是将量子技术推向实用化的必经之路。 /p p   潘建伟团队估计,能操纵20-30个光子,量子模拟机就可以在波色取样问题上实现与现有最好的商用经典计算机一样的处理能力 由于并行处理能力,若能控制50个左右的光子,就可以在特定问题上跟目前最好的超级计算机——天河二号一较高下。那也许就是量子计算和经典计算“华山论剑”的激动时刻了。 /p p   (特别致谢:中科大上海研究院张文卓副研究员对本文亦有贡献。) /p p   参考文献: /p p   【1】C. K. Hong, Z. Y. Ou, and L. Mandel,Measurement of Subpicosecond Time Intervals Between Two Photons by Interference,Phys. Rev. Lett. 59, 2044(1987) /p p   【2】P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, A Quantum Dot Single-Photon Turnstile Device, Science 290, 2282 (2000) /p p   【3】C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered Single Photons from a Quantum Dot, Phys. Rev. Lett. 86, 1502 (2001) /p p   【4】Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper Electrically Driven Single-Photon Source, Science 295, 102 (2002) /p p   【5】A. N. Vamivakas, Y. Zhao, C.-Y. Lu, M. Atatü re, Spin-resolved quantum-dot resonance fluorescence, Nature Physics 5, 198-202 (2009) /p p   【6】Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C.-Y. Lu, J.-W. Pan, On-demand semiconductor single-photon source with near-unity indistinguishability, Nature Nanotechnology 8, 213-217 (2013). /p p   【7】X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Hö fling, C.-Y. Lu, J.-W. Pan,On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar, Phys. Rev. Lett. 116, 020401 (2016) /p p br/ /p
  • 全球首创的时间分辨发射光谱(TRES)新型系统横空出世
    日前,德国PicoQuant、意大利NIREOS和Micro Photon Devices公司联合开发了一种基于干涉仪记录时间分辨发射光谱(TRES)的全新紧凑型系统,而该系统搭建的模块分别由这三家公司提供。时间分辨发射光谱(TRES)新型系统是基于NIREOS研发的超稳型干涉仪GEMINI,它能直接将样品的荧光发射光谱和荧光寿命进行Mapping,具有高时间和高光谱分辨率(即TRES)等特点,也正是因为这些特点时间分辨发射光谱(TRES)新型系统将光谱的变化过程直接提升到了ps量级的分辨率。该系统功能非常强大,但光路却极其简单。在样品测试中,信号光通过NIREOS 的紧凑和超稳定的GEMINI干涉仪获得高分辨率的全光谱信息;然后由Micro Photon Devices的PDM系列探测器进行单光子检测;最后,经过PicoQuant的时间相关单光子计数器(TCSPC)PicoHarp 300获得高时间分辨率的荧光寿命信息,最终获得时间分辨发射光谱(TRES)。具体光路示意和探测及分析,请参见下图所示:图1:光路示意 图2:功能简介 图3:软件界面 如需了解更多该系统的完整实验光路和功能演示视频等相关资料,请联系我们!
  • 潘建伟等实现世界最佳单光子源
    2月4日,英国《自然》子刊《自然—纳米技术》以长文形式,发表了中国科学技术大学教授潘建伟、陆朝阳等人关于量子点脉冲共振荧光确定性高品质单光子源的研究工作。这是我国量子点光学量子调控领域发表在《自然》系列期刊上的第一篇论文。   量子点是一种通过分子束外延方法制备的纳米晶体,又被称为“人造原子”,可以为量子保密通信和光学量子计算提供理想的单光子源。此前,美国加州大学、斯坦福大学和英国剑桥大学等研究组实现了基于非共振激发量子点产生的单光子源。然而,由于单光子发射时间抖动、激子退相干等,不可避免地引起光子品质下降,光子全同性只能达到70%左右,无法进一步应用于可扩展量子信息处理。   要发展能够真正实用化的光量子信息技术,关键技术之一是实现确定性的高品质单光子源。为此,微尺度物质科学国家实验室的潘建伟、陆朝阳等在国际上首次发展了一套新颖的量子点脉冲共振光学激发、多重滤波技术,显著消除了消相干效应,解决了单光子源的确定性和高品质这两个基本问题。   实验产生的单光子源信噪比超过300:1,二阶关联函数小于1.5%,光子全同性优于97%,这些技术指标使得中国在这一领域的研究跻身世界前列,为可扩展光学量子计算和基于自旋的固态量子网络的实现奠定了基础。审稿人称赞这是一个“令人惊喜的高质量实验”。
  • 我国声发射检测技术获得国际肯定
    记者日前从中国特检院获悉,该院副院长沈功田研究员在日前闭幕的2013年世界声发射会议(简称WCAE-2013)上,成功当选国际声发射学会(简称ISAE)理事长。ISAE的永久秘书处也设立在中国特检院,由中国机械工程学会无损检测分会管理。   本次会议由国际声发射学会主办,中国机械工程学会无损检测分会和中国特检院承办。来自美国、日本、澳大利亚、中国等13个国家的97名代表出席会议。会议收录论文86篇,其中口头报告41篇。会议期间,国际声发射学会召开了委员大会,选举产生了由来自9个国家的13人组成的第一届理事会和执行委员会,我国的沈功田研究员任理事长、李邦宪研究员任秘书长。   ISAE由中国和美国联合发起成立。这是在声发射领域,乃至无损检测领域首次由我国组织并发起的国际组织,彰显了我国声发射研究的水平和在国际上的影响力。ISAE理事会的成立,建立了中国声发射科技工作者与国际声发射领域专家深入交流的平台,促进了我国声发射检测技术的发展与推广应用,让世界见证了中国声发射技术的新发展,提高了我国声发射检测技术乃至无损检测技术的国际地位和国际影响力。   材料中局域源快速释放能量产生瞬态弹性波的现象称为声发射,大多数材料变形和断裂时都有声发射发生。用仪器探测、记录、分析声发射信号,并利用声发射信号对声发射源的状态作出正确判断的技术称为声发射检测技术。声发射技术适用于大型结构件的快速动态监测、检测和结构完整性评价,在石油化工、电力、冶金、材料试验、民用工程、航天和航空、金属加工、交通运输等领域开展了广泛的应用,且正在向生物等其他领域扩展。   我国的声发射检测应用面最广的是压力容器安全性检测和评价方面。现在有超过100家检测机构从事压力容器声发射检测。自1984年,中国特检院一直致力于特种设备的声发射检测技术的研究和应用,是国内声发射技术的领导者,在全国范围内建立了产、学、研、政四位一体的60多人的研发团队,承担国家科技攻关、科技支撑和社会公益科研项目近20项,制定国家或行业声发射检测技术标准10多项,开发声发射和管道泄漏检测仪器4种,培养声发射高级检测人员23名,中级近700名。其取得的科研成果获得国家科技进步二等奖2项,省部级科技奖励1等奖3项、二等奖6项。这项技术为企业解决了特种设备在线检测与安全评价的技术难题,既可及时发现和排除安全隐患,为生产安全提供技术保障,也可延长设备的运行周期,为企业带来可观的经济效益和社会效益。仅对大庆炼油厂、燕山石化、镇海炼化、华北制药、江西铜业等18家企业开展的3000多台次压力容器和大型常压储罐声发射检测应用进行统计,就为他们减少了12亿元的停产损失。《中国质量报》
  • 27载电镜人新探索:高效捕获电子态信息的软X射线发射光谱——访吉林大学电镜中心主任张伟教授
    在过去的近百年里,电子显微镜在现代材料科学研究中起着不可或缺的作用。随着电子显微镜技术的发展,能量色散光谱(EDS)、波长色散光谱仪(WDS)以及电子能量损失谱(EELS)等基于电子显微镜的光谱分析手段不断涌现。在电镜空间分辨率的基础上,这些光谱分析手段为电镜表征又赋予了能量分辨率的维度,通过将两者相融合,电镜技术得以在分析过程中获得高能量分辨率和高空间分辨率并存的结果。近年来,随着先进光谱分析手段的发展,出现了一种基于电镜且十分便捷高效的X射线发射光谱分析方法:软X射线发射光谱(SXES)。吉林大学张伟教授在国内、乃至国际,较早的围绕SXES展开了系列研究,并取得了诸多亮眼成果。近三十年,张伟教授围绕电镜,在诸多材料体系均有代表性成果产出,这不仅基于他对电子显微学的热爱,也离不开对电镜技术的“敏感”。近日,仪器信息网有幸采访了张伟教授,请其分享了SXES技术的最新进展与应用潜力,也聆听了其与电镜的故事。张伟,吉林大学电子显微镜中心主任、材料科学与工程学院“唐敖庆学者”领军教授。现任吉林省电子显微镜学会理事长、英国皇家化学会会士(2022),科睿唯安“全球高被引科学家榜单”(2023,交叉学科)。关注电化学能源存储/转换材料的表/界面的化学和物理调控及与性能的构效关系,强调先进材料的电子显微分析。作为学术带头人引进人才来吉林大学工作前,先后在日本国立材料研究所、韩国三星综合技术研究院、德国Fritz-Haber研究所、丹麦技术大学、西班牙能源协作研究中心从事合作和独立的科学研究。2017年起先后任电子显微镜中心副主任、主任。2020年起任唐敖庆学者-领军教授。27载电镜魅力职业:既是技术手段,更是一门学问“热爱,往往收获意外的惊喜”1997年至2004年,张伟在我国电子显微学重要发展地之一的中国科学院金属研究所攻读硕士和博士,师从我国著名电子显微学专家李斗星研究员、隋曼龄教授。在此,张伟开始开展电镜相关研究,与电镜结缘,并对这个学科产生浓厚兴趣。2004年博士毕业以后又先后在多个国家从事合作和独立的科学研究。2014年开始到吉林大学工作。这十余年间,虽然研究的材料体系广泛、领域不同,但电镜都是最重要的研究手段或对象。回顾以往,“因为我可能经历的地方很多,当时我的直觉,在哪个地方离开的时候都要留下些什么”。在这种直觉和热爱驱动下,十余年的科研历程收获诸多“意外惊喜”,每个领域和阶段也都有一些值得回忆的成果。攻读博士期间,张伟专注于金属与合金的研究。利用电镜深入探索,通过快速加热的方法,发现了传统钛合金中一种特殊的相变形式——快速升温马氏体相变。由于马氏体相变在材料科学和凝聚态物理领域都扮演着至关重要的角色,这一成果在当时备受关注,不仅发表在应用物理快报上,还得到了中国科学院官方报纸科学时报的专门报道。在德国研究期间,基于团队自由的学术氛围,得以深入研究一些有趣的方向。在电镜中,张伟发现了一种超大单胞的表面终结状态,这在当时具有重大意义。传统观念上,透射电镜主要研究块体结构,但此研究成功挑战了表面研究的难题。通过调整衬度传递函数,结合先进球差电镜中的HAADF-STEM技术,揭示了超大单胞结构表面终结于非完整通道的现象,解决了团队长期关于侧面或表面态原子排布的争议。这一工作发表后,引起了广泛关注,并启发了后续相关的诸多研究。回顾这一发现,张伟认为这依旧是自己目前最具原创性的工作之一。随后在丹麦继续研究期间,张伟在电镜中随意观察石墨烯样品时,意外发现石墨烯上会留下痕迹,敏锐地意识到这可能是一种纳米书写工具。于是深入探究,最终发表了题为“以石墨烯为纸,电子束为墨”的纳米书写技术论文。发表后迅速受到国家科技日报海外头版头条报道,这一结果因他灵活的想法和电镜的作用而备受关注,也让张伟备受激励。回国后,张伟致力于能源存储领域研究,并与西班牙能源协作研究中心和韩国基础科学研究所合作,发现了氢氧化物赝电容超级电容器的新机制,即氢离子的嵌入脱出过程,而非传统认为的表面氧化还原反应。成果发表受到广泛关注,至今被引超过250多次。2019年诺贝尔化学奖获得者古迪纳夫教授甚至专门撰写文章评价了这一工作的重要意义。尽管运用了多种研究手段,但核心仍是张伟对电镜的敏锐洞察,通过观察特征形貌演变和电子衍射谱分析,发现了充电和放电结构的高度相似性,这一发现对后续研究起到了关键作用。张伟讲授“电子显微镜魅力职业”课堂一瞥问及在诸多材料体系中都有一定成果的原因,张伟讲到,“一个可能是我兴趣在,再有一个也确实热爱”。正如张伟曾经给本科生、研究生和留学生讲授几门相关的课程“材料科学测试方法”、“电子显微镜应用与实例分析”或讲座“电子显微镜魅力职业与追求”中所阐释的,电镜除了是生存手段,更成为喜欢的一个魅力职业。“双管齐下”的学科:电镜既是手段,更是一门学问在谈到电子显微学这门学科时,张伟认为,首先,电子显微学是一门实用性极强、应用范围广泛,起着为其他学科服务支撑的重要作用。但另外,电子显微学本身也蕴含了丰富的理论,是一门需要不断研究、探索和突破的学问。作为现代科研的重要支撑学科,电子显微学在材料物理化学等领域扮演着不可或缺的角色。无论是探索新现象、新机理,还是揭示物质结构,电镜都发挥着举足轻重的作用。通过电镜对材料的深入研究,科学家们得以发现许多未知的领域,为科学进步贡献着力量。回顾以往,许多革命性成果的获得,正是依赖于电子显微学的突破性发现。例如,碳纳米管、准晶的发现等,背后都离不开电子显微学的直接贡献。同时,随着电镜技术的飞速发展,空间分辨率、能量分辨率以及时间分辨率等方面都取得了前所未有的提高,这些进步离不开新的理论支撑。例如,空间分辨率方面,球差电镜如今已经能够达到0.5埃甚至0.4埃的尺度。然而,一篇物理快报中提到,如果能克服某些限制,分辨率甚至可以达到0.01埃以下。这些突破性的进展,都需要其他学科的研究支持,以实现对分辨率不断突破的目标。总之,电子显微学是一门“双管齐下”的学科。它在支撑其他学科发展的同时,也在自身领域内不断取得新的突破和进展。二者相辅相成,共同推动着电子显微学不断向前发展。张伟的科研工作也与电子显微学的以上两个特性十分契合,在不同材料体系中广泛应用电镜的同时,也在围绕一些电子显微技术进行系统研究。2017年,吉林大学成立电子显微镜中心,张伟先后任电子显微镜中心副主任、执行主任、主任,并开始“双肩挑”的工作。一方面继续在材料学院从事科研工作,一方面也在电镜中心负责管理行政工作,同时也开始“回归”电镜相关研究,希望能通过一些原创性工作,为电子显微学的发展做出一些贡献。其中,软X射线发射光谱的应用与发展就是张伟近来比较聚焦的一个研究方向。探索新方向:基于电镜,以高能量分辨率表征电子态信息的SXES技术SXES技术发展历程:一种高效表征键合电子态信息的光谱方法诞生X射线发射光谱(XES)属于X射线光谱学,其分析原理是入射电子束辐照内层能级电子使其激发,被激发的电子脱离原来稳定的系统,内壳层会存在空穴,此时整个系统处于一种不稳定的激发态。与此同时,外层电子会向内壳层的空穴发生跃迁(退激发De-excitation),从而促使X射线的发射,通过分析发射光子的能量可以获得相关材料的电子信息。X射线发射光谱有多种类型,其中,软X射线发射光谱(SXES)也可用于确定材料的电子结构。1924年,林德(Lindh)和伦德奎斯特(Lundquist)首次发表了关于X射线发射光谱的实验结果,随后X射线发射光谱被广泛应用在材料研究中。虽然这些早期研究提供了对小分子电子构型的基本见解,但X射线发射光谱直到在同步辐射设施提供高X射线强度束后才得到更广泛的应用。近年来,随着先进光谱分析手段的发展,出现了一种基于电子显微镜且十分便捷高效的X射线发射光谱分析方法:软X射线发射光谱(SXES)。SXES的能量分辨率和检出限分别可以达到0.3 eV和20 ppm,优于EDS(120-130 eV、5000 ppm)和WDS(8 eV、100 ppm)。这意味着SXES的诞生为研究更精细的材料电子结构提供了更多的可能性。SXES与WDS,EDS对比(参考日本电子数据,根据安装的装置不同而不同)SXES作为附着在电子显微镜上的光谱分析方法,其目标是获得更高的分辨率,为了达到超高的能量分辨率以及空间分辨率,该技术也经历了几代漫长的发展。2000年,日本东北大学M Terauchi等人开发了连接到透射电子显微镜的第一代亚电子伏特分辨率软X射线光谱仪(JEM 2000FX)。光谱仪由VLS光栅和冷却的CCD探测器组成。首次在TEM中以0.6 eV能量分辨率的特定样品区域观察到价带(VB)的部分态密度(DOS)。然而,由于空间分辨率仅为1μm,在分析更小结构时能力不足。2002年,第二代软X射线发射光谱仪被开发。与第一代相比,能量分辨率从0.6 eV提高到0.4 eV,空间分辨率从1 μm提高到400 nm。可以设置两种不同的光栅,能量范围为60-1200 eV。然而,高能量区域的收集角和能量分辨率仍然不够。因此,从2008年到2012年,日本科学技术振兴机构(JST)资助了一项产学研联合种子创新项目,开发了一种光谱仪,该光谱仪利用VLS光栅作为色散元件,以达到超高的能量分辨率,可以在50 eV到4000 eV的宽能量范围内对软X射线光谱进行测量。成功研发出新一代商用软X射线发射光谱仪(SS- 94000 SXES),随后日本电子以商业化产品推向市场。该光谱仪带有两个光栅,可以检测50 -210 eV的一阶光谱和高达420 eV的二阶光谱,以及更高阶的光谱。该光谱仪可以探测到70多种元素的软X射线发射信号。到目前为止,SXES已经成为在纳米尺度上描述材料物理性质的成熟技术。SXES技术优势:高分辨,无损、化学键状态、锂元素分析X射线发射光谱工作原理示意图X射线发射主要是由电子束辐照引发的电子从价带(键合电子)到核心能级的电子跃迁。发射的X射线携带着有关键合电子(如Li的2s电子,C的2s和2p电子)的能量状态信息。通过检测电子从价带跃迁到内壳引起的X射线发射(上图),可以获得键合电子的部分态密度。由于核心能级态具有良好的对称性,发射强度分布反映了价带的部分态密度。作为一种基于电子显微镜的光谱分析方法,在样品制备过程中无需对样品进行特殊处理;在低加速电压下工作时,可以实现纳米级空间分辨率;在对简单金属、半导体和铝基化合物进行光谱分析时可以探究其能带结构效应。也就是说,一种新的、方便的表征键合电子态信息的光谱方法诞生了,该方法正在蓬勃发展,并在各个领域中得到应用。SS-94000 SXES检测金属Li图谱(图自日本电子)关于SXES技术的优势,张伟表示,一方面是分辨率高,其能量分辨率和检出限分别可以达到0.3 eV和20 ppm,优于EDS和WDS。这意味着SXES的诞生为研究更精细的材料电子结构提供了更多的可能性。另一方面,SXES还具有可视化和选择分析区域的优势,这使得SXES能够获得材料的局部或平均信息。此外,SXES 还具有几个独特的优势。第一,SXES的检测深度在几纳米到几百纳米之间,这使得SXES能够对样品进行无损的分析。其次,由于SXES具有非常高的能量分辨率和检出限,因此高能量分辨率的SXES可用于分析材料中化学键的状态。第三,也是最重要的一点,SXES可以对材料中的锂元素进行分析,这对于当下热点研究的新能源材料、能量存储材料中的应用是十分重要的。SXES技术应用进展:成果广泛,应用潜力被低估当前,从事基于电镜SXES技术研究与应用的团队较少,国际上主要是日本在推进相关研究,张伟则是我国鲜有的从事相关应用研究团队。日本偏技术推进,而张伟则在应用研究方面做了系列工作。并在全球率先发表了以基于电镜SXES技术应用研究为主题的综述。安装于吉林大学的国内首台基于扫描电子显微镜的软X射线发射光谱仪吉林大学也在2017年,购置了国内首台基于扫描电子显微镜的软X射线发射光谱仪(SS-94000 SXES),配置在JSM-7900F热场发射扫描电子显微镜上。基于SXES,张伟团队成功地将SXES应用于电化学能源和电催化领域,并为团队一些文章提供了关键数据,起到画龙点睛的作用。近两年来,张伟团队产出6篇实验型文章,1篇综述型文章。在水系电池领域,通过SXES揭示了CuHCF正极材料中铵离子的可逆嵌入/脱出,伴随Cu/Fe可逆价态转变的储能机制,发表于国际纳米领域的权威期刊Nano Lett上(Nano Lett. 23 (2023) 5307-5316)。在双离子电池工作中,团队利用SXES技术检测了石墨电极中Li-K和C-K边发射峰,证明了Li+成功的预嵌入石墨电极中,发表在国产卓越行动计划期刊JEC上(Journal of Energy Chemistry 71 (2022) 392-399)。团队将SXES与XANES的结果一同分析,研究了充放电过程中Bi电极和碱金属离子(Li+、Na+ 和K+)之间的电子结构演化过程,发表在影响因子高达20.4的ESM期刊中(Energy Storage Materials 45 (2022) 33-39)。此外团队也将这种表征手段应用于OER中,采用熔融盐辅助硼热反应法制备了FeCoB2。通过SXES对OER反应后催化剂的表征,证实OER反应后的催化剂中B原子与FeBO4中B的存在形式相同,与XPS的结果一致(Journal of Energy Chemistry 72 (2022) 509-515)。在HER中,通过SXES对反应前后对MXene量子点催化剂进行表征,证明了在电化学反应后,-Cl基团被氧基团取代,从而优化了HER性能,在EEM期刊上发表,并且作为封面 (Energy Environment Materials 6 (2023) e12438),正逢MXene量子点获得诺贝尔化学奖之际。在ORR中,借助SXES 分析了铠甲催化剂的电子结构,通过对比金属Co元素引入的Co-NC催化剂与没有金属引入的NC催化剂的SXES峰位,表明金属Co物种的引入会使石墨电子结构发生变化,与同步辐射的结果一致,并且在国产卓越行动计划期刊JEC上发表(Journal of Energy Chemistry 70 (2022) 211-218)。随后团队对SXES在锂离子电池中的应用进行了全面的总结,在专注研究材料领域创新性研究成果的国际顶级快报MRL期刊上(年发文量74篇)发表了全球首篇关于软X射线发射光谱仪在锂离子电池研究领域应用的综述型文章,(Materials Research Letters 11 (2022) 239-249)并对SXES未来的发展提出了合理的展望。近两年,张伟团队产出的部分成果显然,SXES将成为在材料科学领域剖析电子结构信息的一个非常重要和强大的表征手段。尽管已经取得了一些进展,但SXES技术在许多的研究领域中的作用仍然被忽视。张伟认为,随着应用的不断深入,相关成果不断涌现,相信SXES技术会受到更多科研工作者的青睐。SXES作为一种简单、方便的光谱分析工具,并不局限于能源和催化领域。另外,张伟也十分看好SXES与其他表征手段联用技术,通过SXES辅助其它表征手段可以简化材料电子结构的研究,通过与其他表征手段的结合可以实现1+1远远大于2的效果。2024年1月,日本电子软X射线发光分光器出货第100台合影留念关于SXES技术的未来展望,张伟十分看好SXES技术以及相关联用技术,并认为,虽然目前SXES技术的研究与应用还处于一个相对初期的阶段,但相信在仪器使用者、研究者,以及仪器企业等多方共同努力下,SXES技术必将在材料电子结构研究领域掀起一个巨大浪潮,从而促进催化、能源以及其他领域的蓬勃发展。后记基于电镜技术,张伟在多个材料体系研究中取得显著成果,并较早投入SXES技术的研究,取得了系列突破。分享经验时,他强调了兴趣的重要性,提倡夯实基础知识,聚焦研究领域,并注重多学科交流。他特别提到,科研应摆脱功利心态,以平和之心面对挑战。就像团队学生们以“正能量满满”来描述张老师,兴趣为伴,乐观的心态下,有生活也有理想,科研与生活之旅中自然收获惊喜。或许,这便是张伟与电镜故事的真实写照。附:4分钟视频一览SXES的特点和功能(视频自日本电子官网)
  • 光电倍增管才是单光子探测的yyds
    随着科技的突飞猛进,我们逐渐揭开了光子的神秘面纱。由于光子的微弱特性,直接观测和探测它是一项巨大的挑战。因此,研发出能够探测单个光子的探测器成为了科学家们追求的重要目标。市面上已经有多种单光子探测器,比如光电倍增管、光子计数探头、MPPC和SPAD等。它们各有千秋,但要说到单光子探测的顶尖高手,那非光电倍增管莫属。那么,这些单光子探测器是如何工作的呢?接下来,让我们一一揭开它们的神秘面纱!01 光电倍增管光电倍增管的工作原理如下图所示:当单个光子到达阴极面的时候,由于光电效应会产生光电子,产生的光电子在聚焦电场的作用下进入倍增级实现连续的倍增,从而实现电信号的连续放大,最后通过阳极输出,这个过程就实现了单光子信号的探测。图1 端窗型光电倍增管结构02 光子计数探头除了光电倍增管裸管,也有光电倍增管模块能做到单光子探测,也被称之为光子计数探头。光子计数探头是在能够做单光子探测的光电倍增管的基础上增加了如下的信号处理电路,可以将单光子的输出信号转换为TTL 信号输出,通过对TTL信号进行计数,就可以得到光子数量,方便实际测试。图2 光子信号处理电路03 多像素光子计数器(MPPC)除了上面的真空电子管类型的光子计数探测器之外,目前半导体器件也能够进行光子计数,常见的就是多像素光子计数器,滨松也称之为MPPC,硅光电倍增管。其中,MPPC是一种由多个工作在盖革模式的APD组成的光子计数型器件,其中APD(雪崩光电二极管)是一种具有高速度、高灵敏度的光电二极管,当加有一定的反向偏压后,它就能够对光电流进行雪崩放大。而当APD的反向偏压高于击穿电压时,内部电场就会变强,光电流则会获得105~106的增益,这种工作模式就叫APD的“盖革模式”。在盖革模式下,光生载流子通过倍增就会产生一个大的光脉冲,而通过对这个脉冲的检测,就可以检测到单光子,实现单光子探测!图3 MPPC输出示意图04 单光子雪崩光电二极管(SPAD)除了MPPC之外,半导体探测器中单光子雪崩光电二极管也能进行单光子探测,我们称之为SPAD。SPAD可以理解为它是由单个MPPC像素形成的探测器,它只有一个像素点,也就是只有一个能工作在盖革模式下的APD,所以它无法反映光强度的变化,只能是对光的有无做出反应。而MPPC由于是多个像素的阵列,我们可以根据输出信号的幅度来判断光信号的强度。但是SPAD也能做到单光子的探测。05 光电倍增管单光子探测优势通过以上介绍我们可以看到,目前单光子探测器主要分为真空电子管和半导体探测器两个类型,他们都能实现单光子的探测,那么光电倍增管的优势在哪呢?光敏面积光敏面积是单光子探测中比较关键的一点。相对来说,面积越大,能够探测到的光子数也就越多,同时前端的光路也会相对比较简单,不需要复杂的聚焦系统。由于光电倍增管是真空电子管,我们是可以通过控制阴极面积的大小来决定探测器的光敏区域。目前滨松最大的光电倍增管阴极面直径能做到20英寸,光子计数探头模块阴极面积最大的直径在25毫米,能够满足不同光斑大小的探测需求。但是对于MPPC来讲,由于面积大小与其性能有直接联系,比如,暗计数率同光敏面积成正比,面积的增加会导致暗计数率的增加。由于半导体的固有热噪声较大,暗计数会随着面积的增加进一步导致波形堆叠,难以对单光子信号进行分析。此外,面积越大,寄生电容越大,影响MPPC的响应速度。暗计数暗计数是指探测器在没有光子进入的时候,探测器本身的信号输出。其中光电倍增管是真空电子管器件,噪声的主要来源是阴极面的热电子发射,暗计数的值大概在百个级别,常见的光子计数探测器H10682-110,典型的暗计数在50 cps,最大值在100 cps。而MPPC和SPAD是半导体探测器,不仅光子可以产生载流子,热电子也会产生载流子,热电子生成的载流子也具有单光子水平的信号电平,并且暗计数的水平明显高于光电倍增管的暗计数,暗计数的值大概上千,常见的MPPC光子计数模块C13366-1350GD,典型的暗计数在2.5 kcps,最大值在7 kcps。弱光信噪比不管是真空电子管还是半导体探测器,他们都能实现单光子探测,但是由于噪声的存在,相同信号的输入,会导致不同的信噪比。相对来说,信噪比越大,说明其中的噪声比较小,能够有效地反映信号的情况。通过对比目前滨松常见的光子计数探头和半导体光子探测器型号在同样光强环境下的信噪比,可以看到,在弱光环境中,光电倍增管具有一个很好的信噪比。图4 不同类型探测器弱光信噪比对比(光子计数探头&MPPC&SPAD)通过以上对比我们可以看到,光电倍增管在单光子探测中,具有面积大、噪声小、信噪比高的特点,所以在弱光探测环境中,我们还是推荐使用光电倍增管!以上就是本期的讲解,如果还有其他问题,欢迎评论区留言或者直接联系相关工程师获取技术支持。相关阅读喏,你要的光电倍增管全解析在这里~想了解光电倍增管原理及应用,这一场报告就够了关于光电倍增管(PMT)模块的选型与使用光电倍增管:光照灵敏度&辐射灵敏度“差别”在哪?光电倍增管动态范围的定义不是?而是?光电倍增管(PMT)分压器设计原理
  • 神州八号飞船成功发射 进入预定轨道
    中广网北京11月1日消息 神舟八号飞船于北京时间11月1日5时58分发射升空,并顺利进入预定轨道。飞船将在两天内与天宫一号进行首次空间交会对接。目前天宫一号运行稳定,满足交会对接任务要求。   神舟八号起飞瞬间 中广网记者路林强摄   中国载人航天工程新闻发言人武平表示,与以往飞船发射不同,这次交会对接任务要求飞船“零窗口”发射。为确保将飞船发射到与目标飞行器共面的轨道,神舟八号必须在天宫一号轨道面经过发射点后的一定时间内准时点火起飞,否则就需要消耗很多的推进剂来修正两者之间的轨道面偏差。   点火瞬间:轰鸣声震动大地 橘红色火焰照亮夜空   记者:让我们直接进入最激动人心的点火时刻,现场点火时间是5点58分07秒,这与此前预设的火箭发射零窗口时间分秒不差。我的位置是距离发射塔架15 公里的指控大厅里,当零号指挥员发出最后的点火口令时,我看到火箭底部两边喷出火焰。几秒钟之后火箭升空,橘红色的火焰把黑色的黎明照亮,天空好像变成一幅桔红色的泼墨画,我甚至能看清云彩的轮廓。   还有一个有意思的现象是,火箭升空的开始,我听不到任何的声音,过了一段时间以后指控大厅才传来轰隆隆的轰鸣声,玻璃也开始明显的颤抖。神舟八号打入云层之后就消失在了我的视线里,但是巨大的轰鸣声和玻璃的颤抖仍然持续了数十秒,这种感觉非常奇妙。[详细]   3日凌晨与天宫首次交会对接   据北京飞控中心副总工程师周建亮介绍,神八这次任务的重点是完成交会对接。也就是为接下来的飞船能够载人上天而进行模拟飞行,所以在神八的前端加装了交会对接装置,同时神八入轨轨道也与前几次有很大的不同。   周建亮:神舟七号飞船入轨的轨道高度是近地点高度200公里,远地点高度350公里,现在神舟八号入轨远地点高度是330公里,之所以采取这样一个轨道的方案,主要是出于交会对接的需要。   周建亮:后面有两次交会对接工作,第一次是在3号凌晨,另一次是在14号。也正是因此,神八升空之后的控制动作将非常的密集,在今天中午12点左右,神八运动到第五圈届时将进行第一次轨道控制,抬升它的近地点高度。此后在明天当它运行到第13圈、16圈、19圈、24圈时,还将进行4次轨道控制。这样经过5次远距离的导引控制,在3号凌晨时就可以进行第一次交会对接。然后进行锁紧,也就是我们之前所说的让天宫和神八的接吻能够更加紧密更加严丝合缝。   此后在天宫一号与神舟八号组合飞行12天之后,也就是在本月14号时,神八将撤离天宫一号,然后再进行对接,他们共同飞行2天之后,16号神八将第二次撤离天宫一号,17号返回地面,这样天宫其神八交会对接工作就算圆满完成。   “成都造”仪器将控制神八飞船安全返回   备受关注的神舟八号飞船于今日5时58分发射。“神八”飞天,而“成都造”的“静压高度控制器”,则控制着其安全着陆。记者10月31日获悉,由中航工业成都凯天电子股份有限公司研制生产的静压高度控制器,从“神一”一直应用到“神八”!   据专家介绍,静压高度控制器是飞船回收系统的核心部件之一,被定为飞船的A级产品,是飞船回收舱打开降落伞系统的关键控制单元。飞船返回舱进入大气层,到达距地面11公里高度时,安装在返回舱内壁的静压高度控制器发出开伞指令,飞船的控制操作系统收到信号后,拉出引导伞、降落伞、减速伞和主伞。飞船下降到6公里和5公里高度时,静压高度控制器再次发出信号,监测主伞是否工作正常,如果主伞出现意外,静压高度控制器将再次发出指令,启动备份伞,确保飞船回收舱百分之百安全降落。   除此之外,该公司还为“神八”提供了两种型号的压力信号器,主要使用于飞船对接压控装置和目标飞行器供氧组件。作为对接压控装置的功能部件,这两种信号器安装于运输飞船轨道舱内 作为供氧组的功能部件,安装在目标飞行器实验舱内。其主要功能是感受并指示组件的压力变化,为飞船的控制系统提供有力的压力数据保证。(成都日报)   神八天宫交会对接系统上海研制   与以往神舟系列飞船单独飞行不同,神八肩负着“交会对接”新任务,因此在它的轨道舱和天宫的实验舱前面,都各有一个对接机构,分别称为主动对接机构和被动对接机构。主、被动两套对接机构上,总共有13个电机、243个齿轮、680个轴承、5个电磁拖动机构、5个电子单机和2套结构本体,各自承担着他们的重要角色。   十多分钟的空间对接,却让上海航天人忙了12年。从1999 年开始,对接机构就进行了方案论证,以及大量研制、试验工作,神八和天宫两套对接机构在上海航天人“老中青”三代的目睹下成长起来。樊萍回忆道,“从方案论证到正样产品出厂,对接机构的结构外形没有变动过,但是里面部件几乎全部被改进了。”   记者获悉,上海航天技术研究院作为承担我国载人航天工程任务的主要单位之一,承担了神舟八号对接机构分系统、电源分系统、推进舱结构与总装、测控通信子系统以及总体电路分系统相关设备的研制工作。   据悉,天宫与神八此次要完成两个重要任务,一是完成交会对接 二是完成组合体运行,收集遥测数据、大气环境以及温度控制。试验结束后,神八返回舱将返回地面,天宫继续在太空服役,等待神九和神十飞船前来对接。只有三次都对接成功,中国的载人航天工程第二步战略目标才全部达到。   1992年,中国就正式确立了载人航天工程分三步走。第一步,发射两艘无人飞船和一艘载人飞船,开展空间应用实验。第二步,在第一艘载人飞船发射成功后,突破载人飞船和空间飞行器的交会对接技术,并利用载人飞船技术改装、发射一个8吨级的空间实验室,解决有一定规模的、短期有人照料的空间应用问题。第三步,建造载人空间站,解决有较大规模的、长期有人照料的空间应用问题。   据外媒报道,有美国学者认为,天宫一号相当于美国1973 年发射、1979年坠落的首个空间站天空实验室。这个载人空间站上拥有“阿波罗”望远镜和其他仪器,主要观测太阳和地球,还从事人类在失重状态下生理和心理反应等各种科学研究工作。对此,《国际太空》杂志副主编庞之浩却打趣道,与国外20吨级以上的同类试验性航天器相比,天宫一号在功能和用途方面有相似之处,但质量较小,只有8吨,因此称为“迷你空间实验室”更妥当。   下一步,中国还将建造较大规模的空间站。有消息称,中国空间站预计在2020年左右建成。(东方网)
  • 共振X射线发射光谱下发现稀土金属价态转变新进展
    稀土元素是现代科技中不可或缺的元素,在磁性激光、光纤通信、新能源、超导、航天航空、军事国防等领域有着不可替代的作用,是21世纪重要的战略元素。6月27日,北京高压科学研究中心研究员丁阳带领的国际研究团队在高压稀土金属价态转变研究领域获突破性进展。相关研究以《80 GPa左右单质金属铕(Eu)的新价态转变》为题发表于《物理评论快报》(Physical Review Letters)。 价态转变—价电子数的变化,是稀土金属及其化合物中普遍存在的物理现象,反映了局域4f电子在外界(比如压力、掺杂、温度)作用下向非局域化转化的过程,而这种非局域化转化标志着材料中大规模电子关联的开始。在此过程中,由于局域电子和非局域价电子之间的竞争等相互作用,稀土元素会衍生出许多奇异的量子现象,如价态转变、金属到绝缘体的转变、超导等,而这些都会极大影响稀土元素的磁、光、电等物理性质。因此揭示这些变化机制,将为设计研制面向国家战略需求的量子演生新材料,促进新型功能器件诞生及推动新能源产业升级提供巨大机遇。 在该研究中,研究人员使用同步辐射X射线共振发射光谱和X射线衍射技术,探测了Eu在高压下的电子和晶体结构变化,压力高达160万大气压。他们发现,在约80万大气压的压缩下,Eu中也发生了明显的价态变化,而且价态转变恰好与Eu在相同压力下的晶体结构变化相吻合;并提出Eu中这种电子重构归因于所谓的Promotional模型—4f轨道的电子向5d导带的跃迁导致的结果,为研究稀土元素的价态变化提供了重要的实验依据和理论模型。 “共振X射线发射光谱(RXES)是迄今为止在高压下研究稀土元素价态变化的最强大的实验技术,它可以提供可靠的电子结构测量,从而使我们能够检测到Eu在高压下电子结构的变化。”丁阳说。 据了解,目前该实验成果也是国内首次利用共振X射线发射光谱在如此高的压力下研究稀土元素4f 的电子结构,极大推进了高压调控4f电子研究的发展,同时也为我国同步辐射谱学技术的发展提供了重要参考。 据悉,北京高压科学研究中心博士后陈碧娟博士为该文第一作者,北京高压科学研究中心研究员丁阳和陕西师范大学的昌峻研究员为通讯作者,合作单位包括流体物理研究所、北京应用物理与计算数学研究所、吉林大学、美国阿贡国家实验室、中国科学院物理研究所等。 相关工作得到了国家自然科学基金项目、挑战者计划、国家重点研发计划项目、美国DOE-NNSA’s Office of Experimental Sciences等联合资助。
  • 2011年日立场发射扫描电镜图片大赛评选结果揭晓
    2011年11月22日,由天美公司和日立高新共同组办的“2011年日立场发射扫描电镜图片大赛”评选结果在“日立场发射扫描电镜最新技术研讨会”上揭晓,最终,上海硅酸盐研究所吴伟拍摄的“分子筛/内核为Fe3O4上SiO2纳米材料负载Ce2O3”在众多参赛作品中脱颖而出,摘得特等奖,喜获ipad一部。 这幅作品所用样品内核为Fe3O4的SiO2纳米球(直径100nm左右)负载了Ce2O3纳米颗粒。 SiO2与Ce2O3导电性差,尽量分散粉体减少团聚、使用4号光镧减少入射电流,同时LA5混合少量BSE信号等方法,有效减少荷电现象。作品充分体现了S-4800电镜的低加速电压优势,样品表面细节清楚,分辨率高,混入了背散射电子信号,突出了成分差异。 获得本次大赛特等奖作品“分子筛/内核为Fe3O4上SiO2纳米材料负载Ce2O3”(吴伟拍摄) 此次大赛是由天美公司和日立高新领导及工程师组成评委会,经过激烈讨论,严格选拔,最终选出20余幅参赛作品作为入围作品,并在2011年11月22日举办的“日立场发射扫描电镜最新技术研讨会”上由参会专家及用户代表投票选出图片所获奖项,除一等奖外,另评出给力奖2名,分别是微电子所余嘉晗拍摄的金属栅刻蚀以及高能所田甘/周亮君的艺术感强的图片,优秀奖2名,分别是安徽大学林中清的大工作距离高分辨率的磁性样品/Al2O3模板图片和昆明植物所的任宗昕老师拍摄的南瓜花粉。贡献奖15名,分别是:北京师范大学李永良、广州能源所苏丽芬、中国石油大学(华东)李彦鹏、四川大学史进春、苏州纳米所张琰/黄凯、河北师范大学李纪标、南京工业大学黄小健、厦门大学吴元菲、复旦大学曹惠、同济大学胡惠康、北京理化测试中心邓平晔、第四军医大学李艳玲、工信部第五研究所施明哲、苏州大学王思兵、以及长春光机所赵海峰。详细信息请参看“日立场发射扫描电镜摄影大赛初选作品公示”。 给力奖作品“金属刻栅”(余嘉晗拍摄) 给力奖作品“SnO2 /ZnO”(高亮君/田甘拍摄) 优秀奖作品“磁性样品及难拍的Al2O3模板”(林中清拍摄) 优秀奖作品“南瓜花粉”(任宗昕拍摄) 本次大赛从9月底发出通知,到11月4日截稿,共有70余人参赛,共收到来自全国各地的样品图片100多幅,样品种类各异,金属材料,高分子材料,石墨烯,水泥,分子筛等等。再次感谢各位老师的踊跃参与和积极投稿,我们将响应各位老师的要求,以后多举办此类活动。
  • 国内首台自主研发的场发射扫描电镜亮相BCEIA 2015并获得金奖
    p    strong 仪器信息网讯 /strong 2015年10月27日,第十六届北京分析测试学术报告会及展览会(BCEIA 2015)在北京国家会议中心隆重开幕。本次展会特别展示了由中科科仪承担的国家重大科学仪器设备开发专项《场发射枪 a href=" http://www.instrument.com.cn/zc/em.asp" target=" _self" title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 扫描电子显微镜 /span /a 开发和应用》项目的实施成果——国内首台自主研发的肖特基场发射枪扫描电镜产品KYKY-EM8000F。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201510/insimg/e4968a88-8fbd-4d58-b933-0e416021ccea.jpg" title=" 图0.jpg" / /p p style=" text-align: center " strong 肖特基场发射枪扫描电镜KYKY-EM8000F /strong /p p   在《场发射枪扫描电子显微镜开发和应用》项目的实施过程中,中科科仪突破了30kV场发射电子枪、低像差物镜设计与制造等关键技术,实现国产场发射枪扫描电镜零的突破,并且产品的分辨率优于1.5nm@30kV。KYKY-EM8000F场发射枪扫描电镜的研制成功,是我国电子光学研究水平的集中体现,将成为我国电子光学领域的重要成果,对摸索我国高端大型科学仪器的发展模式具有重要意义。 /p p   在KYKY-EM8000F展示期间,科技部、中国分析测试协会的相关领导对于该产品都给予了极大的关注,并提出了相应的指导意见。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201510/insimg/209cd609-5181-4d3d-b265-53ed504eb338.jpg" title=" 图..jpg" / /p p   科技部侯建国副部长、张泽院士、吴学梯司长、吴波尔原司长、原科技平台中心副主任张渝英等一行人来到中科科仪展台前参观,详细了了解KYKY-EM8000F场发射扫描电镜的研制过程,对国内首台场发射扫描电镜的研制成功表示祝贺,勉励中科科仪在将来的产品开发中取得更大成绩。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201510/insimg/7e475557-6c04-4cc5-96d3-da70578a759c.jpg" title=" 图2..jpg" / /p p   BCEIA2015大会主席、国务院参事、科技部原副部长刘燕华先生等一行人也特地来到中科科仪承担的国家重大科学仪器设备开发专项展台参观,详细了解KYKY-EM8000F场发射扫描电镜的情况,祝贺中科科仪在电镜开发方面取得的进展,强调一定要爱护好中科科仪这个国产电镜的唯一品牌,指出产品开发要以市场为导向,以服务用户为目标,注重产业化,把科学仪器自主创新摆在突出位置。 /p p   同时在本次展会上,KYKY-EM8000F场发射枪扫描电镜还在31家单位申报的41个项目中脱颖而出,荣获了“BCEIA 金奖”。 /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201510/insimg/f9217118-5176-41a4-8718-fdc42fddaef7.jpg" title=" 图3..jpg" / /strong /p p style=" text-align: center " strong “BCEIA金奖”颁奖现场 /strong br/ /p p   据中科科仪电镜部孙占峰研究员介绍,KYKY-EM8000F的销售台数已超过5台。首台产品于2014年11月21日正式交付给中国科学院大学,同年12月10日,双方共建了中国科学院大学—北京中科科仪股份有限公司“电子显微技术”联合实验室,为KYKY-EM8000F的应用研究搭建了平台。 /p p   中国科学院大学在该仪器上已经开展了“国家自然基金”课题(51272281)以及“中国科学院科研装备项目”(yz201356)的材料形貌研究,对材料的观测尺度涵盖了微米级到纳米级,分析了掺杂碳材料的形貌演化规律,发现了碳材料的生长奇异现象。获得的图像显示了在碳沉积过程中掺杂金属前驱体,会使金刚石发生纳米化 在生长驱动力增大的条件下,无定形碳会发生分叉和交叉生长,这种现象在以往的碳材料研究中从未报道过。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201510/insimg/8fc2f44e-1567-409d-ac4e-18084b5169fe.jpg" title=" 图4.jpg" / /p p style=" text-align: center " strong 中科科仪电镜部孙占峰研究员 /strong /p p   另外据介绍,《场发射枪扫描电子显微镜开发和应用》项目在新应用方法或解决方案、样品前处理设备、可拓展仪器应用领域的关键部件和数据库等方面也进行了卓有成效的研究,如进行了场发射枪扫描电镜在半导体集成电路的检测技术研究 建立了超过100万兆的秀丽隐杆线虫连续切片扫描电镜成像原始数据库 编制了环境空气-大气粒子(PM2.5)形貌观测与无机元素分析等行业标准建议稿 成功开发了连续超薄切片收集装置和微操作装置等样品前处理和功能拓展装置等。 /p p   通过该项目的实施,中科科仪和合作单位已申请并受理国家发明专利11项,软件著作权2项,发表相关论文2篇,起草相关行业标准建议稿2项 形成了场发射枪扫描电镜的技术资料1套,建立了包括院士、教授、高级工程师在内、覆盖国内扫描电镜研制和应用优势单位的人才队伍,培养了满足国家重大需求的高精尖仪器和电子显微学专业人才,这将为相关电子光学仪器的开发和应用提供有力的技术支撑。 /p p style=" text-align: right " 编辑:秦丽娟 /p
  • 华东师范大学武愕教授团队在中红外单光子光谱学研究中取得重要突破
    近期,华东师范大学重庆研究院武愕教授科研团队在中红外单光子光谱学研究中取得重要突破,利用基于量子关联的波长-时间映射方案实现具有单光子探测灵敏度的中红外光谱学测量,无需依赖于光谱仪、干涉仪或阵列型探测器,有效降低了噪声对单光子光谱测量的影响,为样品的非破坏性检测提供了新方法。研究成果以“Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping”为题,于2024年4月19日在线发表于Science Advances。博士研究生蔡羽洁为论文第一作者,陈昱副研究员、Konstantin Dorfman教授和武愕教授为论文通讯作者。该项工作得到了国家重点研发计划、国家自然科学基金委等项目资助。中红外光谱能够揭示多种分子的基础吸收带和复杂化合物独特的光谱特征,是研究物质结构的重要工具。傅里叶变换红外(FTIR)光谱仪作为中红外光谱的常规测量仪器,主要构成部件为干涉仪系统,除结构复杂、体积庞大外,商售中红外探测器效率低、噪声大等问题严重影响了中红外光谱的研究。中红外频率上转换通过非线性和频过程,将中红外光子与强泵浦耦合并利用硅基单光子探测器实现有效探测。其优势是消除了对中红外探测器和干涉仪的需求,从而实现稳定且紧凑的结构。目前,使用高功率泵浦激光结合高亮度中红外照明是提取高信噪比光谱的直接方法。但在超灵敏中红外频率上转换的相关应用场景中,需要在复杂环境中有效地提取微弱信号,此时强泵浦在非线性晶体中产生的参量噪声难以滤除,影响了探测灵敏度。由于光敏样品和量子相干现象对光学探针的强度存在限制,在中红外上转换光谱中使用的明亮中红外照明并不适合此类应用场景。此外,红外光谱学研究均需要使用光谱仪、干涉仪或昂贵的多像素探测器才可实现中红外光谱采集。面对弱光照下进行样品高灵敏光谱分析的需求,提升探测灵敏度,降低噪声对光谱测量影响并避免机械扫描结构,是亟待解决的关键难点。通过自发参量下转换过程产生宽带关联光子对,分别为波长位于中红外波段的信号光子和近红外波段的预报光子。信号光子通过频率上转换到近红外波段,利用硅基单光子探测器探测。关联的近红外预报光子通过一根10公里的单模光纤,群速度色散允许波长到时间映射的实现。光纤介质内不同频率的光具有不同的速度,将在不同的时刻到达探测器,导致通过色散介质后的脉冲包络会在时域上展宽,从而可以反映出光脉冲的频谱信息。由于上转换光子继承了中红外信号光子的量子相关性,通过对上转换光子和近红外预报光子之间的量子相关性进行符合测量,可以非局域地将中红外信号光子所携带的光谱信息映射到相关测量的时间域中。得益于量子相关性,在每脉冲0.21个光子的中红外光强条件下,30分钟曝光时间的光谱平均信噪比达到了54.6,可以实现嘈杂环境中的弱中红外信号的检测。研究团队在无需光谱仪、单色仪或干涉仪,以及阵列型探测器的情况下,实现了1.18微米宽带中红外单光子上转换光谱探测。
  • 强发射线星系光谱研究取得进展
    近日,由中国科学院上海天文台研究员郑振亚带领的早期宇宙与高红移星系团组牵头,联合中国科学院大学、中国科学技术大学、美国宇航局戈达德太空飞行中心、加拿大曼尼托巴大学等国内外研究单位,基于目前最大的绿豌豆(Green Pea,GP)星系光谱搜寻样本,在近1550例绿豌豆星系中发现了5例具有双峰窄线的特殊星系,进一步分析表明这类特殊天体可能起源于活动星系核(Active Galactic Nuclei,AGN)的合并。这一成果有望揭示绿豌豆星系这一类特殊星系中的大质量星系和超大质量黑洞的联合演化特征。7月19日,相关研究成果发表在《皇家天文学会月刊》(MNRAS)上。绿豌豆星系,因呈现为绿色、致密的光学形态而得名,具有极强的发射线,特别是电离氧[OIII]发射线。绿豌豆星系通常是质量较小、贫金属丰度、恒星形成活动活跃的低红移星系,被认为是早期星系在近邻宇宙中的对应体。部分绿豌豆星系中显示出活动星系核的活动迹象,体现了核区超大质量黑洞活动的特征。因此,系统地搜寻研究绿豌豆星系,能够帮助天文学家更深入地探讨早期星系的形成与演化。同时,研究绿豌豆星系的AGN样本为开展早期超大质量黑洞与寄主星系的联合演化的研究带来启示。联合研究团队,基于郭守敬望远镜(LAMOST)河外巡天项目的绿豌豆星系样本,对LAMOST光谱发射线轮廓进行了分析(如图)。LAMOST河外巡天项目的绿豌豆星系样本是目前最大的豌豆星系光谱搜寻样本,囊括近1550例豌豆星系光谱,比此前的斯隆数字巡天(SDSS)光谱证认的豌豆星系样本数目提升了一倍以上。研究发现,在近1550例豌豆星系光谱中,仅有5例具有明显双峰窄线的绿豌豆星系,根据X射线、中红外、射电等多波段测光和光谱数据,利用能谱拟合和光学谱线诊断的方法高度可信地认证了该样本中的AGN活动。结合发射线轮廓以及光学形态,研究表明,这些星系的双峰轮廓的物理来源更可能是双AGN合并而不是外流或气体盘。上海天文台博士研究生林如秋表示,这五例绿豌豆星系的双峰发射线的成分非常窄,形态致密无法分辨盘结构而且没有明显倾斜角度,因此双峰源于外流或者气体盘的可能性低。郑振亚表示,这5例绿豌豆星系比一般2型AGN中的双峰发射线星系有更强的[OIII]的等值宽度(等值宽度定义为线强与连续谱的比值),而导致这个现象的原因可能与早期宇宙中星系并合相关,即将进行的LAMOST绿豌豆星系新一期巡天项目将有望为我们提供更多此类特殊星系样本,进一步揭示大质量星系和超大质量黑洞的联合演化情况。研究工作得到国家自然科学基金、中智天文研究合作项目,中国巡天空间望远镜(CSST)一期科学项目、上海天文台培育项目和上海市自然科学基金的支持。左列为五个双峰窄线豌豆星系的Pan-STARR光学gri三色伪彩图。图片尺寸为10角秒×10角秒。右列为光谱发射线拟合结果。黑线为观测光谱、蓝线为拟合成分、红线为模型光谱。
  • 《场发射扫描电镜的理论与实践》新书发布会圆满召开!
    北京师范大学测试中心研究员李永良,从事扫描电镜的教学和测试工作30多年,从最初的钨灯丝扫描电镜到现在的场发射扫描电镜,深刻感受到扫描电镜技术进步带来的巨大变化。很多新技术的出现,如新型场发射电子枪、浸没式物镜、穿镜二次电子探测器、模拟背散射等,大大提高了扫描电镜整体性能,但目前在国内论述场发射扫描电镜的专著较少。因此李永良老师撰写了《场发射扫描电镜的理论与实践》,希望为读者正确理解扫描电镜提供帮助。4月29日,仪器信息网联合北京师范大学测试中心研究员李永良召开了《场发射扫描电镜的理论与实践》新书发布会,近4000名来自行业内的相关专家和学者线上参与了此次会议,共同探讨了场发射扫描电镜的前沿技术与应用,总观看人数超过了6000次,会议氛围热烈。北京师范大学测试中心 研究员 李永良《场发射扫描电镜的理论与实践——理论部分》场发射扫描电镜的出现,标志者扫描电镜进入一个崭新的时代,扫描电镜取得的巨大进步:新型电子枪、浸没式物镜、穿镜二次电子探测器、模拟背散射、E×B和电子束减速等新技术的应用,极大地提高了扫描电镜的性能,场发射扫描电镜已经成为各类分析测试实验室必备的仪器。系统地论述了扫描电镜中电子束和样品的相互作用、场发射扫描电镜的结构和成像原理,通过实操案例详细地介绍了场发射扫描电镜的调试过程和工作参数的选择,重点介绍了样品制备及场发射扫描电镜在生物、环境和材料等领域的应用。燕山大学亚稳材料制备技术与科学国家重点实验室 高级实验师 张兵《电子背散射衍射技术及其新进展》电子背散射衍射是利用装配在扫描电镜上的附件对晶体材料的微区取向以及结构进行分析的一种表征手段。日前,电子背散射衍射技术有了新进展,不仅涵盖了测试方式、硬件设备以及标定算法的变化,更拓宽了其应用范围广泛应用于多个领域,包括织构、取向分析;晶粒尺寸和形状分析;晶界、亚晶及孪晶性质的分析;局部应力分析;变形行为及方式分析;材料失效分析;物相分析及鉴定等,可见电子背散射衍射技术将在材料科学领域发挥更加重要的作用。布鲁克(北京)科技有限公司 应用科学家 陈剑锋《拓展电镜的检测领域——微纳尺度里高端元素分析及表征技术》主要介绍了布鲁克的纳米分析仪器的技术特色及应用领域。其中,XFlash7具备一系列技术特色,、包括Slim-line技术、最大化探测器立体角、高达1000kcps的输出计数率、无与伦比的信号处理速度、可视化谱峰剥离、EDS空间分辨率估算等,可广泛应用于多个领域。北京师范大学测试中心 研究员 李永良《场发射扫描电镜的理论与实践——实践部分》首先详细讲解了扫描电镜的新技术:新型电子枪、浸没式物镜、穿镜二次电子探测器、模拟背散射、E×B和电子束减速。接着指导了读者如何进行像散校准,要仔细调试电子束电磁对中、找出消像散时的初始位置、一边消像散,一边微调聚焦,时刻保持图像清楚。在校正像散过程中从2万倍开始(如像散太大,还要降低倍数),再校正5万、10万、15万和20万像散。当聚集时图像不会出现拉长现象,只会在模糊和清晰之间来回变化,就表示像散校准完成。最后介绍了场发射扫描电镜在植物花粉、纳米材料、PM2.5、建材、沉积膜、磁性粉末和纳米催化剂等方面的应用。各位专家的精彩讲解视频将实时同步至会议页面:https://www.instrument.com.cn/webinar/meetings/fesem240429/ ,一旦视频回放上线,我们将第一时间通过会议平台及官方渠道告知各位。您也可以通过仪器信息网-视频号观看回放,随时回顾专家的精彩见解。
  • 上海应物所丰质子核镁22双质子发射研究获进展
    p style=" text-align: justify " & nbsp & nbsp 近日,中国科学院上海应用物理所核物理研究室与中科院近代物理研究所、中国原子能科学院等合作,在兰州重离子加速器装置放射性束流线(RIBLL)上开展的丰质子核β缓发衰变实验测量中,观测到22Mg(镁22)在14.044 MeV的同位旋相似态(IAS态)存在明确的2He(氦2)集团双质子发射现象。相关研究成果发表在《物理快报B》上。 /p p style=" text-align: justify " & nbsp & nbsp 放射性是不稳定原子核的重要特性之一。常见的衰变方式有α、β、γ衰变等,而双质子放射性是在质子滴线附近的偶Z核中可能存在的一种奇特衰变方式,即原子核通过同时发射两个质子的方式进行衰变。双质子发射涉及两个质子的关联与相互作用,发射方式比单个质子的发射过程要复杂得多,因此研究十分困难,而发射机制是该衰变方式中最重要的物理问题之一。双质子发射的机制可以分为三种:第一种为级联发射;第二种为直接三体发射;第三种为2He集团发射。前两种方式基本上是无关联的质子发射过程,后一种方式才是人们感兴趣的双质子发射。由于发射出的两个质子间的动量和角度关联包含了核子波函数的具体形态及核子间的相互作用等信息,因而对核结构的研究具有非常重要的科学意义。目前发现的双质子发射核只有少数几个,这给双质子衰变的系统研究带来了很大的困难。世界上各个国家的核物理实验室都在努力发现更多的双质子发射核,并对包括双质子衰变在内的原子核的奇异放射性进行深入系统的实验及理论研究。 /p p style=" text-align: justify " & nbsp & nbsp 上海应物所研究员方德清、博士研究生王玉廷等在兰州重离子加速器装置的放射性次级束流线(RIBLL)上开展了22Al的β缓发衰变实验测量。22Al被注入厚度约为60微米的硅微条探测器时,完全被阻止在硅微条探测器中的22Al先发生β衰变,布局到22Mg的激发态,处于激发态的22Mg将再发生质子、双质子或g等衰变。实验中,探测器阵列同时测量了衰变发射出的单个或两个质子以及g射线。实验测得的带电粒子能量信号与g射线信号的符合,确认了22Mg存在从14.044MeV激发态到20Ne的第一激发态的双质子发射过程。进一步的理论模拟与实验数据比较得出,上述双质子发射过程的机制有约29%的几率为2He集团发射。 /p p style=" text-align: justify " & nbsp & nbsp 关于22Mg的激发态双质子发射现象,上海应物所马余刚团队曾在2015年通过日本理化学研究所的RIPS束线实验测量已明确观测到在包含14.044 MeV态的较大激发能范围内(12.5~18MeV),存在约30%的2He集团发射机制(Physics Letters B 743, 306 (2015))。 & nbsp & nbsp 此次在RIBLL上开展的实验得到的结论与其结果一致,但由于RIBLL上的实验数据中有发射的两质子能量与g射线的符合,完全确定了该双质子发射是从22Mg的14.044 MeV激发态到20Ne第一激发态的衰变过程。该实验测量结果提供了22Mg的IAS存在稀有的2He集团双质子发射的实验证据,对理解丰质子核的奇异衰变性质具有重要意义。 /p p style=" text-align: justify " & nbsp & nbsp 该研究得到了国家重点研发计划、国家自然科学基金委“重离子物理”创新研究群体等项目的共同资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/a7188f8a-092a-42d3-b51b-623256420928.jpg" title=" W020180807411280688274.jpg" / /p p br/ /p
  • 聚光科技E5000电弧直读发射光谱仪顺利通过辐射测试认证
    电磁辐射是指在电磁振荡过程中,电磁波向四周传播传递能量的现象。长期的电磁辐射会对人体的心血管系统、视觉系统、神经系统和生殖系统造成极大的危害,是心血管病、癌突变,不孕不育、白内障的主要诱因。电弧发射光谱仪的原理是通过高频引燃,产生大功率电弧火焰,实现样品的蒸发和激发,进行各元素的测定。因此,长期使用电弧发射光谱仪器的工作人员深受电磁辐射的危害,做好电弧发射光谱仪的电磁辐射屏蔽防护十分必要,更是仪器生产厂商对客户责任感的体现。  聚光科技(杭州)股份有限公司生产的E5000全谱直读电弧发射光谱仪是国内首台非金属粉末元素分析的台式全谱直读发射光谱仪,其将电弧激发光源与Paschen-Runge型全谱CCD 光谱仪相结合,通过激光定位与程控电极,自动调整电极位置,实现激发间距的精确控制,利用高阵列CCD 数采获得了激发样品的全谱信息,通过实时扣除背景与干扰校正,直接获得分析结果。与传统摄谱仪相比,仪器操作简单,自动化程度高,谱线信息丰富,测定结果快速准确。  E5000采用新一代数字电弧光源,替代了传统的电弧源,电极在矩室内全自动对准激发,无需人工直接观察调节间距,有效防护人眼,屏蔽了大量电磁辐射;此外,数字电源体积更小,可直接置于仪器内部,无需加长激发线连接外置的交流电源,有效降低大电流传导过程中产生的辐射。  辐射测试结果显示,正常工作时,若电弧光源无防护措施,电磁辐射显著高于国家标准限定的40dBN;如果有效屏蔽掉电源的电磁辐射,使用长的激发线激发时,高频300MHz以上的电磁辐射稍有降低,但300MHz以下的电磁辐射仍然较大。而经过完全防护的E5000仪器在正常工作时电磁辐射显著降低,完全符合国标中关于仪器设备的电磁辐射限定要求,具体结果如下图。E5000全谱直读电弧发射光谱仪电磁辐射测试结果  国家电子计算机外部设备质量监督检验中心是经国家主管部门审查认可的,具有第三方公正地位的国家级质量检验机构。经国家电子计算机外部设备质量监督检验中心的辐射骚扰场强试验(30MHz~1GHz)测试认证,聚光科技(杭州)股份有限公司研发生产的E5000电弧直读发射光谱仪符合国标GB 9254-2008《信息技术设备的无线电骚扰限值和测量方法》的B级标准要求。E5000全谱直读电弧发射光谱仪辐射骚扰场强试验检验报告
  • 高分辨 不挑样:蔡司新一代Gemini场发射扫描电镜线上发布【附宣传片】
    2021年3月24日下午,由蔡司显微镜主办,仪器信息网协办的“蔡司新一代场发射扫描电镜新品发布会”成功线上举办,蔡司新一代Gemini场发射扫描电镜系列——GeminiSEM 360,GeminiSEM 460,GeminiSEM 560在云端悉数亮相。会议吸引近500名电镜用户及“蔡粉儿”报名参会。【文末彩蛋:发布会完整暖场视频】经典传承,历久弥新。蔡司此次发布的Gemini扫描电镜新品再一次进化升级,GeminiSEM 360,GeminiSEM 460,GeminiSEM 560也正是Gemini电子光学系统也针对不同的应用场景衍生出的三款型号。Gemini系列新品,左至右:GeminiSEM 360,GeminiSEM 460,GeminiSEM 560本次云端新品发布会由新品主题报告、特邀专家报告,及拓展应用报告组成。首先,蔡司显微镜高级应用专家蔡琳玲为大家分享了本次发布蔡司新一代Gemini场发射扫描电镜的详细产品信息及创新细节。据介绍,GeminiSEM 360搭载1型Gemini镜筒,是一款高通用性成像工具。其物镜为静电透镜+磁透镜复合透镜,在提高其电子光学性能的同时将它们对样品的影响降至更低。即使对极具挑战的样品(例如磁性材料)也能进行高品质成像。Beam booster技术具有镜筒内的电子加减速功能,可确保获得小束斑和高信噪比;Gemini镜筒内带有平行设计的镜筒内二次电子和背散射电子探测器,可实现信号的高效采集,同步获取形貌衬度和成分衬度像。GeminiSEM 460搭载2型Gemini镜筒,专为应对复杂的分析工作而设计。它除了复合透镜和镜筒内加减速设计以外,利用双聚光镜设计实现更加灵活的束流调节。您可以在小束流的高分辨成像模式与大束流的分析模式之间进行无缝切换,对称设计的EDS接口可让您获得无阴影的成分分布图,而物镜无漏磁设计可以让您获得无畸变的大面积EBSD花样。您还可以通过加装各种原位实验附件将Gemini 460升级为一个自动化原位实验平台。GeminiSEM 560搭载3型Gemini镜筒,带给您极致的高分辨成像体验。该款镜筒拥有两个可协同工作的电子光学系统:Nano-twin透镜和新型电子光学引擎Smart Autopilot,可通过聚光镜优化所有工作条件下的电子束会聚角,进一步提升分辨力;还可实现1倍到200万倍的无缝过渡,大视野导航和亚纳米成像一镜到底。此外,新一代Gemini扫描电镜还拥有一系列功能和附件,可进一步丰富您的应用场景、降低操作难度。接着,复旦大学信息科学与工程学院陈宜方教授结合课题组研究进展,为大家分享了蔡司扫描电镜在纳米科技和工程建设中的应用。报告讲解了其团队从2013年至今,利用纳米加工技术(电子束光刻、纳米压印光刻、光学光刻、STM光刻等)与蔡司电镜检测技术作为基础工具,在纳米科学方面开展的广泛应用工作,包括纳米仿生学研究、光子纳米喷射效应的超分辨聚焦透镜、超表面光场调控、新型光电器件、同步辐射X射线光学系统关键部件、微波/太赫兹波段MMIC通讯技术等。相关的丰富的研究成果也获得广泛的国内国际合作。最后,蔡司显微镜高级应用专家李洪进一步为大家分享了蔡司关联显微分析解决方案。蔡司多维度&多尺度&多手段显微镜技术包括:一站式关联显微解决方案(ZEN core+Altlas 5软件与LM-SEM-FIB-XRM硬件);丰富的样品信息,让分析更全面(BF,DF,C-DIC,POL,FL等光镜和能谱EDS信息);向导式操作流程,专门的关联样品夹具让分析更简单;图像自动测量,高级图像处理和自动测量,机器学习分割等,让分析更高效等。彩蛋1:暖场视频之蔡司显微镜彩蛋2:暖场视频之蔡司显微镜Seeing beyond
  • Advacam发布MiniPIX EDU 掌上光子计数X射线探测器 新品
    千呼万唤始出来:为教育而生,MiniPIX EDU掌上光子计数X射线探测器 产品介绍:MiniPIX EDU是一款以教育教学为使用目的而设计定价的小型X射线探测器。它把现代的辐射成像技术带进课堂,让学生可以探索围绕在我们身边却看不见的电离辐射世界,可以了解不同类型辐射的来源,观察这些放射性同位素是如何在自然界和建筑、城市、工业等人造环境中移动。美国宇航局(NASA)在太空中也使用了同样的技术来监测宇航员受到的太空辐射。MiniPIX-EDU可记录非常低的放射性强度,这种强度无处不在。学生可以记录到许多普通材料物体上的放射性强度,例如吸尘器里或口罩上的一点点花岗岩、灰尘或纸袋碎片;可以在白天观察空气中放射性物质的移动;寻找宇宙μ子并查看他们的方向;看看海拔高度如何影响辐射类型的存在;可以尝试搭配豁免源,并对其发出的辐射进行屏蔽;可以检查放射性衰变的规律;可以直接观察不同的辐射类型是如何与物质相互作用的,以及随后会发生什么。将MiniPIX EDU设备插入PC的USB端口,启动软件就可以开始使用了。也可搭配专为教学应用而研发的的RadView辐射可视化软件,迷人的电离粒子图像将立刻呈现在你面前。主要特点:专为教育教学设计,与传统的X射线探测器相比,具有更高的性价比 体积小巧,形似U盘 通过USB接口连接,笔记本电脑即可运行(支持Windows,MacOS or Linux) 人性化软件操作界面 主要参数:读出芯片Timepix像素大小55x55μm传感器分辨率256x256pixels一帧动态范围11082暗电流none接口USB2.0最大帧频55fps尺寸88.9x21x10mm重量30g工作模式:类型模式精度描述帧率(读取所有像素)Event13bit/frame 1 output image: Number of Events per pixel ToT13bit/frame 1 output image: Sum of all Energies deposited in given pixel (Time Over Threshold) ToA13bit/frame1 output image: Time of arrival of first event in given pixel 典型应用:教育:运用现代辐射成像技术的课堂每种被探测到粒子的类型都以放大的形式被呈现。可以将最感兴趣的粒子轨迹保存到日志文件中,以供之后分析。在上图中我们可以看到,在过去几天的历史图表中显示了四个类型粒子的计数。不同类型的粒子会呈现不一样的神秘图案α粒子会产生较大的圆形斑点;β射线显示为狭窄的波浪线,像“蠕虫”;γ射线会产生小点或斑点;宇宙μ子观察到为长直线。你甚至可以观察到一些更为罕见的现象:δ电子,α和β粒子序列形成的抽象花,高能质子的轨迹… 技术平台:源自捷克技术大学实验及应用物理研究所的Advacam S.R.O.,致力于在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像探测器和X射线成像解决方案。Advacam核心的技术特点是其X射线探测器(应用Timepix芯片)没有缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系,其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司为advacam公司在中国的独家授权代理,现可提供MiniPIX样机免费试用,如有需要,请联系我司工作人员预约时间。创新点:由捷克Advacam S.R.O.于2020年5月推出最新款掌上型X射线探测器MiniPIX EDU。 与之前同系列产品项目,它的定位专门面向课堂,可以作为一款教学工具。是专为教育教学而设计定价的探测器。它把现代的辐射成像技术带进课堂,让高校,甚至是高中的学生得以探索围绕在我们身边的电离辐射世界,可以了解不同类型辐射的来源,观察这些放射性同位素是如何在自然界和建筑、城市、工业等人造环境中移动。它可以搭配advacam公司专为教学展示目的研发的RadView辐射软件,将电离粒子图像以可视化在线的方式呈现。这一用途,基本填补了国内这一领域的空白。 MiniPIX EDU 掌上光子计数X射线探测器
  • 打破垄断 我国成为第二个掌握固体紫外单光子探测器技术的国家
    一根燃烧的蜡烛1秒钟可以发射出100亿亿个以上的光子,要探测到能量如此小的单个紫外光子一直是世界技术难题。记者昨天获悉,南京大学电子科学与工程学院长江特聘教授陆海为首的研究团队近来获得突破,在国内首先研制出超灵敏度的固体紫外单光子探测器,从而使中国成为继美国之后第二个掌握这一核心技术的国家。   &ldquo 自然界中波长小于280纳米的紫外光几乎为零,所以我们探测它相当于在暗室中探测光,只要发现一个小光点就一定是目标。&rdquo 陆海介绍说,可探测400纳米以下紫外辐射的紫外光探测器,是火焰探测、环境监测、生物医药、空间科学等领域所急需的关键部件,也是关系到国家安全的关键技术,可以用来检测海上油污、卫星遥感监测雾霾等。   光子是光的最小能量量子,也是光作为信息载体的最小传输单位。一根蜡烛1秒钟释放出的超100亿亿个光子中,假设紫外光子只占万分之一,那么在完全不考虑飞行损耗的情况下,1公里以外,面积为1平方厘米的镜头1秒钟只能接收到1000个紫外光子。专门用来捕捉这些&ldquo 小家伙&rdquo 的单光子探测器一直是世界各国研究和竞争的焦点。   陆海举例说,导弹的飞行尾焰中存在像指纹一样的特殊紫外光谱成分,但距离越远能够传输过来的紫外光就越微弱。利用超灵敏度紫外单光子探测器就有可能在上千公里以外探测和分辨出来袭飞弹,为反制或者规避提供宝贵时间。之前,国际上只有美国罗格斯大学、弗吉尼亚大学、通用电气研发中心三家美国单位成功研制碳化硅单光子探测器。而南大研究团队此次获得突破后,跻身成为第四家。   南大研究团队研制出的紫外单光子探测器,基于碳化硅半导体芯片技术,能灵敏捕捉到紫外单光子,并且打破了过去依赖于超低温条件的瓶颈。&ldquo 我们的探测器在150℃下仍能正常工作,这是原来任何单光子探测技术都无法达到的。&rdquo 陆海说。这一突破也引起了国际关注,欧洲的《今日半导体》杂志专门长文报道了南大的这一研究成果。   同时,该探测器有显著的成本优势,有望向民用领域大规模推广,比如高压输电线和高铁供电线路上出现电晕、污闪时,可用其远程检测和定位。&ldquo 目前,紫外火灾报警器用的真空紫外光敏管,综合成本很高。&rdquo 陆海拿出一枚耳钉大小的器件介绍说,未来用如此小的单光子探测器件,不仅造价更便宜,而且防爆、使用寿命更长。   眼下,南大研究团队在该领域的部分研究成果已开始进入产业化阶段。过量的紫外线照射易诱发皮肤癌,韩国三星公司日前发布的Note4手机就装备了微型紫外线传感器,受到消费者欢迎。而南大研究团队正在和华为合作的贴片封装紫外探测器,尺寸比米粒还小,也将安装到手机或智能手环中,藉由它,用户可随时随地检测所处环境的紫外线强度,以及时防护。
  • 第十七届全国声发射学术研讨会于河北大学隆重开幕!
    2021年6月4日,第十七届全国声发射学术研讨会在河北大学隆重开幕。本届研讨会由中国机械工程学会无损检测分会主办,河北大学承办,旨在促进声发射技术发展,紧跟雄安新区建设国家战略部署,加强国内声发射领域专家学者交流。本届研讨会作为声发射技术研究与推广应用的交流平台,吸引来自全国声发射领域专家、学者与学生近三百人出席。此外,本届研讨会也得到了美国物理声学公司(PAC)北京代表处、清诚声发射研究(广州)有限公司、北京科海恒生科技有限公司等厂商的大力支持。大会现场4日上午,大会进行开幕式。开幕式由大会秘书长、河北大学质量技术监督学院副院长周伟教授主持,河北大学党委副书记杨立海教授、中国机械工程学会无损检测分会主任委员/中国特种设备检测研究院副院长沈功田研究员、中国机械工程学会无损检测分会声发射检测技术大会主席/东北石油大学李伟教授分别致辞。周伟教授主持开幕式杨立海教授致辞杨立海教授首先代表河北大学对与会嘉宾表示热烈欢迎,并对河北大学校史以及河北大学质量技术监督学院进行了简要介绍。沈功田研究员致辞沈功田研究员代表中国机械工程学会无损检测分会对第十七届全国声发射学术研讨会的召开表示热烈的祝贺。他讲到,1978年,随着全国无损检测学会的建立成立了第一届声发射专业委员会,并于1980年在黄山召开了第一届全国声发射学术研讨会,至今已成功举办十六届,现在要举办第十七届,研讨会的每一届都有记录,每一届都有会议文集,大家一直坚持着,并且把研讨会办得越来越好。李伟教授致辞李伟教授讲到,因受新冠疫情的影响,本次研讨会一波三折,推迟了近一年才召开,河北大学在前后约两年的时间里,多次研究和讨论会议的筹备工作,为本次会议的召开付出了巨大的努力。李伟教授在致辞时对河北大学表示了衷心的感谢,并预祝本次会议取得圆满成功。开幕式后,进入大会报告、主题报告以及研究生论坛环节。沈功田研究员、河北工业大学副校长胡宁教授、中国机械工程学会无损检测分会副主任/东北石油大学戴光教授、河北大学质量技术监督学院院长方立德教授、东北石油大学蒋鹏副教授、中南大学董陇军教授等依次带来了精彩的报告。大会报告环节由方立德教授、李伟教授、武汉市锅炉压力容器检验研究所霍臻研究员、周伟教授、河北大学李红莲教授、河北大学马连华副教授分别担任主持。沈功田研究员作大会报告报告题目:《特种设备声发射检测监测研究与应用30年》沈功田研究员从结构健康和完整性的声发射检测监测和评价、腐蚀的声发射检测监测与评价、泄漏的声发射检测监测、轴承的声发射状态监测与故障诊断、学术交流与人员培训等几方面展开讲述,回顾了自1986年到中国特检院参加工作,在压力容器、常压储罐、埋地管道泄漏、起重机械、客运索道和游乐设施等方面的声发射检测技术研究与应用工作。胡宁教授作大会报告报告题目:《基于线性与非线性Lamb波的材料损伤检测技术的最新进展》胡宁教授在报告中阐述了基于线性与非线性Lamb波的材料损伤检测技术的最新进展,讲到低频段的S0作为Lamb波基波、非线性诱发的对称零频模式、单向混频技术以及非线性波的信号处理等。戴光教授作大会报告报告题目:《声发射技术在结构检/监测领域应用的展望》戴光教授介绍了声发射的物理现象和检/监测原理以及声发射技术用于结构检/监测的工程背景,并对声发射技术在结构检/监测领域的应用做了展望。最后,他表示,我国的声发射技术在很多方面取得新进展,主要表现在科研院所、大专院校、检测机构的声发射仪器(含软件)的数量和质量有很大的提高,发表论文和科研成果的数量、水平不断增加,但也应当承认,与欧美国家相比,仍有一些差距,我们还需继续努力。方立德教授作大会报告报告题目:《基于声发射技术的气液两相流动噪声特性研究》方立德教授首先讲述了基于声发射技术的气液两相流动噪声特性研究的背景和意义,后对流动噪声理论展开了分析,并对课题组的流动噪声检测装置及流动噪声特性研究工作做了详细介绍。蒋鹏副教授作大会报告报告题目:《模态声发射技术在复合材料损伤评价中的应用与展望》蒋鹏副教授在报告中讲述了模态声发射技术理论基础及其研究进展,并介绍了课题组在复合材料典型损伤模态声发射评价技术、NOL环损伤模态声发射评价技术、复合材料容器损伤模态声发射评价技术等方面的研究成果。董陇军教授作大会报告报告题目:《复杂结构中声发射源定位方法及工程应用》董陇军教授介绍了复杂结构中声发射源定位方法的研究背景,阐述了课题组通过声发射源精细定位方法在深部岩体失稳微震震源机制、深部岩体对不同类型震源机制的响应模式、实时高精度微震监测与灾害预警防控系统研发等方面的研究工作。大会报告主持提问环节研究生论坛现场本次研讨会为期两天,6月5日,将继续进行大会报告和主题报告,此外,大会还特设了赞助商报告环节。据悉,会议结束后,会务组将带领各位参会代表进行雄安新区实地考察及冉庄地道战党史学习等活动。参会代表合影留念
  • 以“太行”之名,挺起透射电镜产业的中华脊梁——我国首台国产商业场发射透射电镜诞生
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产商业场发射透射电子显微镜TH-F120“太行”在广州发布。这标志着我国已掌握透射电镜用的电子枪等核心技术,并具备量产透射电镜整机产品的能力。  透射电镜技术跨越多个学科、工程技术复杂、攻关难度大。经过三年多努力,中国科学家们完成了我国首台100%自主知识产权的120千伏场发射透射电镜的整机研制,实现了0.2nm分辨率的成像能力,达到了产品化的水平。  “这对于我国摆脱进口依赖、实现高水平科技自立自强具有重大意义。”中国科学院院士、生物岛实验室主任徐涛介绍,这将打破国内透射电镜100%依赖进口的局面,场发射透射电子显微镜将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。  以“太行”之名,挺起透射电镜产业的中华脊梁  如果说光学显微镜揭开了细胞的秘密,那么透射电子显微镜则把纳米级的微观世界展示在人类眼前。1933年,世界上第一台透射电镜诞生,为科学研究提供更强有力的武器,也因此被誉为高端科学仪器皇冠上的“明珠”。  透射电镜具有极高的行业垄断性与技术门槛。行业数据显示,此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  生物岛实验室生物电子显微镜技术研发创新中心研究员孙飞早在2016年便带领团队联合中国科学院生物物理研究所启动了预研工作。  “我们通过广泛交流,集合了有志于从事国产电镜自主研制的科学家和工程师,涵盖了电子光学、机械、自动化控制、软件等相关领域。”孙飞介绍,其中既有来自国内外学界的科研人才,也有在产业界深耕扫描电子显微镜多年的领军人物,“大家都抱有同样的愿景,就是造出我们国家自己的透射电镜。”  2020年,这支来自全国各地甚至海外的队伍集结在广州的生物岛实验室组展开技术攻关。团队成立三年多以来,在国家自然科学基金委、科技部、广东省科技厅、广州市科技局的大力支持下,相关研发工作接连取得重大突破——先后成功研制120千伏场发射电子枪、120千伏低纹波高压电源、400万像素和1600万像素棱镜耦合CMOS电子探测相机、100万杂合像素直接电子探测相机等透射电镜核心关键部件。  据悉,电子枪是透射电镜的“光源”,其作用是发射高能电子束照射到样品上,是透射电镜最为核心的部件之一。“将原有的30千伏场发射电子枪提升为120千伏,要解决电子源发射稳定性、高压真空打火等问题。经过不断的摸索,我们突破国外相关技术壁垒,去年成功实现120kV场发射电子枪的稳定量产。”孙飞说到。如今,生物岛实验室是我国唯一有能力量产该透射电镜核心部件的单位。  孙飞直言,更大的困难在于如何将各个研制成功的部件组合起来实现联调,真正拿到高分辨率图像。“拿到分辨率优于0.2nm图像的那天,我们非常激动,我国终于突破这一关键技术。”  为了进一步推动透射电镜的产业化,生物岛实验室与国内领先的科学仪器公司国仪量子联合成立了广州慧炬科技有限公司,致力于将透射电镜技术商业化应用。  “我们成功走到今天,得益于生物岛实验室作为新型研发机构的特殊体制机制,保证了研发队伍的稳定。同体制内外并行发力,与产业界的紧密合作。同时,国家部委项目的支持,保证了项目研制的可持续性。”孙飞说。  此次广州慧炬科技有限公司推出的首款透射电镜新品TH-F120,取名源自中华名山“太行”,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。  向“珠穆朗玛”进发,将推出更高千伏电镜透视更厚材料  广州慧炬科技有限公司总经理曹峰正在推进“太行”的商业化应用。他介绍,场发射透射电镜在高端科研、产业发展应用广泛、意义重大。在生命科学研究领域,它可以看到蛋白质的生物结构;用在集成电路领域,可以实现半导体的缺陷检测;用在新材料领域,可开展锂电池的研发等等。  曹峰表示,“太行”是拥有原子级分辨率的显微放大设备,信息分辨率达0.2nm,可以呈现大多数晶体的排列结构。广州日报记者现场看到,“太行”能清晰呈现小鼠大脑中的髓鞘组织、小鼠肝脏细胞的里的线粒体。“它是多个技术的复合体。我们必须在每个环节都做到极致,才能保证设备整体达到超高分辨率。”曹峰说。  尽管“太行”是该公司推出的“入门级”产品,现已具备多项先进性能——一是自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可为用户带来更佳的图像衬度和分辨率;二是自主研制的高稳定性低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;三是标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;四是以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;五是预设充足的拓展接口和整机升级空间,满足用户需求迭代,有效延长整机使用年限。  曹峰透露,团队明年计划研制出200千伏场发射透射电镜。“电压虽然看起来只是增加了80千伏,但研制难度却是指数级增加,设备的稳定性、防护性都需要进一步探索。”  曹峰表示,电压越高意味着电子能量越高,就越能穿透更厚的样品。目前120千伏的电镜,可以穿透大约50纳米厚度的材料。但是对于常见的100纳米的材料,还需要200甚至300千伏的电镜。  在未来数年,该公司计划推出场发射透射电镜系列EM -F200“峨眉”、KL -F300“昆仑”,冷冻透射电镜系列YL -F100C“玉龙”、TGL -F200C“唐古拉”、 ZMLM -F300C“珠穆朗玛”,热发射透射电镜系列QL -T120“秦岭”、DX -LaB120“丹霞”。“我们的透射电镜产品取名均源自中华名山,代表慧炬立足中国、放眼世界,助力科研工作者勇攀高峰、不断突破。”曹峰说。  此次“太行”的发布,是生物岛实验室“二次创业”,向成果转化专业机构成功转型的缩影。作为广州市首批省实验室之一,生物岛实验室不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家,其中4家估值已经超亿元。通过技术作价、配比投入等方式撬动社会资本近1.5亿元,助力科研成果高效率转化,赋能产业科技创新,为广州高质量发展作出突出贡献。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制