当前位置: 仪器信息网 > 行业主题 > >

单层分析

仪器信息网单层分析专题为您整合单层分析相关的最新文章,在单层分析专题,您不仅可以免费浏览单层分析的资讯, 同时您还可以浏览单层分析的相关资料、解决方案,参与社区单层分析话题讨论。

单层分析相关的论坛

  • 【资料】单层过滤器的工作原理

    单层过滤器用于各类液体进行过滤、澄清、提纯处理等操作,它采用螺纹状结构、用优质的材料制造,不仅可以抗腐蚀而且还很耐用。单层过滤器可以根据不同的过滤介质及生产要求,更换不同的过滤材料,直接用微孔滤膜即能达到无菌过滤的目的。  单层过滤器的工作原理  1、用3~5%碳酸钠溶液反复冲洗,再用清水冲,然后消毒测PH值达许可范围。  2、检查单层过滤器的硅胶圈是否放置平整,以防漏水可将薄质的滤材用蒸馏水湿润后贴在滤板上,滤板则要放在硅胶圈内,装好滤材盖好上盖。  3、单层过滤器适用过滤介质:滤纸、、微孔滤膜、超滤膜、纱布、麻布、棉布等各种过滤材料。  4、逐渐打开进液阀至所需压力,排出空气即可过滤,一般工作压力0.1~0.2Мрa。  5、单层过滤器采用微孔滤膜精滤时,料液必须先用较粗滤材,经过预滤后使用,以免堵塞微孔滤膜,影响过滤质量。

  • 【讨论】单层石墨烯有没有晶格条纹

    石墨烯越来越热,对于其的电镜表征也成为大家关注的焦点,最近也做了几个类似的样品,对于单层石墨烯片,看不到晶格条纹,不知有没有理论可以证实. 还有一个问题就是:晶面间距和层间距是不是一个概念,大部分人认为不是一个概念,我也赞同,但具体到石墨烯中,如何区分,我们知道每层石墨烯层厚是0.34nm,那么石墨烯的晶面间距和层间距各是多少呢,与0.34nm由于什么关系,还望高手指教!

  • 【资料】单层过滤器的工作原理分享

    单层过滤器用于各类液体进行过滤、澄清、提纯处理等操作,它采用螺纹状结构、用优质的材料制造,不仅可以抗腐蚀而且还很耐用。单层过滤器可以根据不同的过滤介质及生产要求,更换不同的过滤材料,直接用微孔滤膜即能达到无菌过滤的目的。  单层过滤器的工作原理  1、用3~5%碳酸钠溶液反复冲洗,再用清水冲,然后消毒测PH值达许可范围。  2、检查单层过滤器的硅胶圈是否放置平整,以防漏水可将薄质的滤材用蒸馏水湿润后贴在滤板上,滤板则要放在硅胶圈内,装好滤材盖好上盖。  3、单层过滤器适用过滤介质:滤纸、、微孔滤膜、超滤膜、纱布、麻布、棉布等各种过滤材料。  4、逐渐打开进液阀至所需压力,排出空气即可过滤,一般工作压力0.1~0.2Мрa。  5、单层过滤器采用微孔滤膜精滤时,料液必须先用较粗滤材,经过预滤后使用,以免堵塞微孔滤膜,影响过滤质量。

  • 单层PTFE隔垫

    接着昨天的话题,对于硅(/橡)胶隔垫,在使用中可能会带来干扰,针对这种情况,就有了单层的PTFE隔垫~http://ng1.17img.cn/bbsfiles/images/2012/09/201209281636_393595_2067003_3.gif由于只有一层PTFE,所以不会带来硅氧烷的流失,而且便宜,对于挥发性不强且不需要重复进样的实验,还是一个不错的选择的~曾经有个客户,使用了几家的隔垫,都会对其待测物造成干扰,最后用了单层的PTFE隔垫才解决了问题~

  • 【求助】请教怎样制备均匀的单层纳米膜

    最近用200nmSiO2(水溶液)制备单层纳米膜,用旋转成膜的方法,但是膜很不均匀,用液液自组装的方法也失败,因为看不出分层,请教各位怎样才能制备均匀的单层膜呢?如果用旋转的方法怎样设定时间和速度,而掖液自组装又应该怎么做呢?谢谢大家了,急用啊

  • 【求助】求助:怎么制备均匀的纳米单层膜

    最近用200nmSi(水溶液)制备单层纳米膜,用旋转成膜的方法,但是膜很不均匀,用液液自组装的方法也失败,因为看不出分层,请教各位怎样才能制备均匀的单层膜呢?如果用旋转的方法怎样设定时间和速度,而掖液自组装又应该怎么做呢?谢谢大家了,急用啊

  • 单层玻璃反应釜的注意事项和故障与排出方法?

    单层玻璃反应釜也叫作单层玻璃反应器,在单层玻璃反应釜在实验室进行中试或者小试过程中,本公司售后经常遇到的问题,做如下总结,供大家参考学习,交流。一、使用过程注意:  1、在使用前一定要认真的检查单层玻璃反应釜是否有损坏、接口是否吻合,注意拿的时候要轻拿轻放。  2、一定要保持接口的清洁,所以可以用软布擦拭,也可以真空脂涂膜都是不错方式。  3、反应釜的接口不能太紧,所以要保持一定的松动性,否则会影响功效发挥。  4、开始工作时候一定要保持机械从低到高速运行,同时关机的话必须保持机械停止了旋转方可以。  5、在单层玻璃反应釜使用过程中,聚四氟开关如果拧得过紧会损伤玻璃。  6、每次使用反应釜后应该及时的进行清理,保持机械的清洁干净,从而更好的提升机械的工作性能发挥,所以定期对密封圈进行清洁是相当必要的保养措施,使用过程中一定要注意防潮防水性能,以免造成导电现象发生。 二、故章与排除的方法:  1、开启电源开关,指示灯不亮:外接电源未通或接触不良,请专业电工检查电源、插座。  2、保险管短路,将电源开关置于OFF位置看,再换置保险管。  3、电源指示灯亮看,但不旋转,旋转轴生锈。电机、电气箱故障。  4、真空突然消失,玻璃有裂痕,检查玻璃部件;开关有破损,调换开关。  5、电机温度过高、超负荷:停机,用手使机轴转,是否很重,清除密封圈与玻璃轴接触不上的污垢,涂上真空脂。  6、转速显示与实际不符:电压不稳定,自身有误差。

  • 双层面料拉伸断裂强力测试案例分析

    双层面料拉伸断裂强力测试案例分析

    [font=宋体]前言[/font][font=宋体]对于纺织品拉伸断裂强力的测试相信大多数实验室都测试过,因为它是纺织品检测项目中比较常见的一种测试项目,但是针对不同的纺织品又有各自的特点,这种情况下试样的选择似乎显得尤为重要。一般来说,检测过程体现的是产品使用状态下发生破坏的最差结果,也是产品质量的体现。所以,实验室在进行产品的测试前一定要把握上的选择方式,下面就以双层面料为例对其拉伸断裂强力测试时的取样做以下分析:[/font][font=宋体]案例描述[/font][font=宋体]话说某实验室承接了一项双层面料的拉伸强力测试订单。对于单层的面料标准中有明确的取样方法,实验室只要按照标准中的要求抽取有效宽度的试样进行测试即可。但是对于双层织物如何测试,标准中则没有明确规定。为了保证检测结果的准确性,实验室对双层织物进行了结构分析,还好还好两层面料比较容易分离,于是实验室对分离的单层面料进行了测试,为了保证样品的每个部位每个花型都能测试到,实验室分别从两层面料的不同花型、不同成分、不同位置分别取样测试,并报告了每一取样位置的单个测试结果和平均值,最后经过对客户要求的标准换算还是达标的,于是实验室出具了合格的报告。就这样过了一段时间,最后送检第三方测试的结果却是不合格的,实验室纳闷了,为什么实验室在检测时考虑到了产品结构的区别,每次的取样也是合规的为什么会出现不合格的情况哪?下面就以此来给大家做个分析:[/font]1. [font=宋体]结果计算的分析[/font][font=宋体]实验室在对织物结构进行分析时,能够将双层织物进行分离,同时也考虑到到了成分、花型等结构对检测结果的影响,但测试样品的数量应该按照相同成分、相同花型的同类样品进行平行测试,分别报告各自类型试样检测结果的平均值,而不应该将所有的试样结果计算平均值。[/font][align=center] [/align][align=center][img=,454,368]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241812550388_4272_2646158_3.png!w454x368.jpg[/img][/align]2. [font=宋体]结果报告的分析[/font][font=宋体]对于实验室结果的报告,不应该一味地按照标准求平均,而应该考虑产品的使用效果,对于双层织物来说不论是两层能否分离,应该作为一个整体报告结果,因为产品使用中最先断裂的部分就是产品的最弱部分,所以实验室在报结果时应该报检测结果的最低值。同时,因为双层织物是一个整体所以对于能分离的织物最终结果应该是最低值乘以[/font]2[font=宋体]才是产品的最终结果而不是通过换算来判断单层织物的平均值。[/font][align=center] [/align][align=center][img=,283,170]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241813058435_3837_2646158_3.png!w283x170.jpg[/img][/align][font=宋体]通过以上分析,实验室出现判断错误的原因有二:[/font]1. [font=宋体]结果计算最终结果应该是报告结果的最低值,而不是全部试样检测结果的平均值。[/font]2. [font=宋体]双层织物作为一个整体应该报告整体试样的结果,而不是单层织物的结果。对于客户要求的结果换算来说除以[/font]2[font=宋体],不一定代表的产品的最终要求,因为产品因为结构不同、成分不同,客户给定的应该是综合值,而不是单层结果乘以[/font]2[font=宋体]的计算值。[/font][align=center] [/align][align=center][img=,291,311]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241813155770_1202_2646158_3.png!w291x311.jpg[/img][/align][font=宋体]总之[/font][font=宋体]对于特殊结构的产品,实验室应改善总结,从使用者的角度考虑问题,来申报符合客户要求的结果。[/font]

  • 求助二维钙钛矿单层衍射花样分析

    各位大神分析这张衍射花样应该如何标定急急急已知a=b=3.8/c=14三个角度均为90度最重要的问题求助各位,为什么在亮点周围出现小斑点是卫星斑还是二次衍射样品厚度在2-5nm我自己认为是两套衍射花样绕中心原点旋转了一定角度组合而成,但是我计算出来的晶面间距标定的晶面指数计算夹角和我通过该衍射花样计算出来的夹角不符合[img]https://ng1.17img.cn/bbsfiles/images/2019/08/201908300021007483_348_3989749_3.png[/img]

  • Tg分析时样品的质量对结果有啥影响??

    Tg分析时样品的质量对结果有啥影响??谁能从热分析的原理上给详细解释下??我做了下试验,发现相差比较大,有1,2度只差的,也有5,6度之差的,大概是称样量大,Tg增大,也有不大呈规律性变化的样品,前提是样品都没有叠加,都是单层平铺在盘底的!

  • 【求助】单层原子是否可以产生衍射

    请问:既然产生衍射的条件是必须满足厄瓦尔德球2dsinθ=nλ,而d为层间距那么单晶的单片层(单原子层)是否会产生电子衍射?请高人解答谢谢![em0808]

  • 层状二硫化钼:可调谐的光学平台

    层状二硫化钼:可调谐的光学平台

    随着石墨烯研究取得的巨大成功,其他的层状材料,特别是具有一定带隙的二维材料成为了纳米功能材料研究领域的新热点。二硫化钼(MoS2)是最具代表性的具有带隙的过渡金属硫化物二维材料。单层二硫化钼由三层原子层构成,上下两层均为硫原子,中间层为金属钼原子,硫原子与钼原子相互连接形成类似于石墨烯的六方晶格结构。特别的是,二硫化钼体材料为间接带隙(带隙为1.3eV),而单层二硫化钼为直接带隙(带隙为1.9eV),这种由间接带隙向直接带隙的转变使单层二硫化钼在可见光区域呈现极强的荧光辐射。这些独特的性能使层状二硫化钼,特别是单层二硫化钼在微纳光电探测、新型发光器件、可饱和吸收体、光学传感器等诸多领域都具有广泛的应用前景。实现对其能带结构和光谱特性的可控调谐,对层状二硫化钼的应用具有非常重要的实际意义。巨纳集团低维材料在线商城91cailiao.cn,在国内为广大客户提供高质量二维晶体材料,其中就包括过渡金属硫化物二维材料二硫化钼MoS2。基于近年来在层状二硫化钼的光谱特性、能带调谐与光电应用方面所取得的突破性进展,山西大学激光光谱研究所的肖连团教授团队系统总结了层状二硫化钼的晶体和能带结构,以及通过层间堆积角度、拉伸应力、环境温度、电学掺杂等物理手段实现对层状二硫化钼能带结构和光谱特性的调谐,讨论了准粒子在调谐中所起的作用,并对二硫化钼在未来研究存在的挑战和热点工作进行了展望。该文章首先介绍了单层二硫化钼的两种晶体结构及其能带特点,多层二硫化钼的堆叠方式及其稳定性。进而介绍了2H型二硫化钼中三种主要准粒子,即激子、三子(带负电的激子)、缺陷束缚的中性激子,它们的形成原因、能带结构、结合能以及对光谱形状和强度的贡献。随后文章详细综述了可用于调谐层状二硫化钼能带结构和光谱特性的方法,包括通过改变二硫化钼的层数实现从间接带隙到直接带隙的转变;通过改变双层二硫化钼的夹角来改变原子层之间的相互作用力;通过单轴和双轴拉伸力改变原子之间的距离;通过改变材料所处温度转换辐射和非辐射通道;通过掺杂(化学掺杂、气体吸附、缺陷掺杂、电学掺杂)改变层状二硫化钼与其表面物种的相互作用及电子转移;通过改变基底或者异质结的成分改变层状二硫化钼与接触面的相互作用;以及通过等离子体基元所带来的表面增强效应实现对层状二硫化钼的调谐。文章同时介绍了性能可调谐的层状二硫化钼在光电器件方面的应用,包括高灵敏光电晶体管和光电探测器、宽带的可饱和吸收体、微纳的光发射器件以及在气体和离子传感上的应用。最后还对未来在大尺寸高质量层状二硫化钼的合成与转移、层状二硫化钼在谷自旋电子器件和信息领域上的应用等研究方向和趋势给出了工作展望。该文章对于深入了解二硫化钼光电性能的调谐及其机理以及光电应用等方面将起到重要的指导意义。相关论文在线发表在Advanced Optical Materials(DOI: 10.1002/adom.201600323)上。[align=center][img=,500,500]http://ng1.17img.cn/bbsfiles/images/2017/07/201707071345_01_2047_3.png[/img][/align]

  • 常用的层析分析方法

    在分离分析特别是蛋白质分离分析中,层析是相当重要、且相当常见的一种技术,其原理较为复杂,对人员的要求相对较高,这里只能做一个相对简单的介绍。 一、 吸附层析 1、 吸附柱层析   吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。 2、 薄层层析   薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。 3、 聚酰胺薄膜层析   聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。

  • 噬菌体-----双层平板

    我想请问一下,就是做噬菌体的实验时,为什么要用双层平板啊?这个双层平板有什么作用吗?跟单层的话有什么区别

  • 【求助】多层复合膜的红外分析

    医药品的外包装膜,多层冲压在仪器红外分析,一般只能分析其两个表面,请问,中间的几层如何分析呢?使用仪器:FTIR-8400S(日本岛津)谢谢!

  • 氮吸附法测定比表面及孔隙率的技术

    任何粉体表面都有吸附气体分子的能力,在液氮温度下,在含氮的气氛中,粉体表面会对氮气产生物理吸附,在回到室温的过程中,吸附的氮气会全部脱附出来。当粉体表面吸附了满满的一层氮分子时,粉体的比表面积(Sg)可由下式求出: Sg=4.36Vm/W (Vm为氮气单层饱和吸附量,W为样品重量)而实际的吸附量V并非是单层吸附,即所谓多层吸附理论,通过对气体吸附过程的热力学与动力学分析,发现了实际的吸附量V与单层吸附量Vm之间的关系,这就是著名的BET方程,用氮吸附法测定BET比表面及孔径分布是比较成熟而广泛采用的方法,都是利用氮气的等温吸附特性曲线:在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对压力(P/P0),当P/P0在0.050.35范围内时,吸附量与(P/P0)符合BET方程,这是氮吸附法测定比表面积的依据;当P/P00.4时,由于产生毛细凝聚现象,即氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容、孔径分布。问题的关键是用甚么方法可以准确地把吸附的氮气量测量出来

  • 【求助】征求分析铬酸盐涂层的分析方法介绍

    急,因为要写毕业论文有关于分析铬酸盐涂层的分析方法,但是目前我查不到相关的资料,希望有搞表面分析的朋友能上传给我表面涂层分析技术的比较全面的介绍,包括元素的定性和定量分析(含厚度分析).因为比较急,希望大家了解能进行表面涂层分析的(厚度)资料给我,希望大家帮帮忙!

  • 植物冠层分析仪有哪些优势

    植物冠层分析仪有哪些优势

    [size=16px]  植物冠层分析仪是一种用于测量和分析植物群落中植物冠层结构的工具。它在生态学、林业、农业等领域中被广泛使用,有许多优势:  非破坏性测量:植物冠层分析仪通常使用激光、雷达或摄影等技术进行测量,这些方法不需要直接接触植物,因此不会对植物造成损伤,有利于长期监测和研究。  高效快速:与传统的人工测量方法相比,植物冠层分析仪可以快速地收集大量数据。这对于研究人员来说节省了时间和精力,并且能够获得更全面的数据集。  准确性和精度:现代植物冠层分析仪使用先进的传感器和算法,能够提供高度准确和精确的测量结果。这对于科研工作和资源管理决策非常重要。  多维信息获取:植物冠层分析仪不仅可以获取植物的高度信息,还可以获得关于植物分布、密度、覆盖度、树冠形状等多种信息,帮助研究人员更好地理解植物群落的结构与功能。  长期监测和比较:由于植物冠层分析仪具有非破坏性和高效快速的特点,可以用于长期的生态监测和植被变化的研究。研究人员可以跟踪不同时间点的数据,分析植物群落的动态变化。  自动化和标准化:使用植物冠层分析仪进行测量可以减少主观因素的影响,使数据更加客观和可重复。这对于科研的可靠性和数据比较具有重要意义。  适用于多种环境:植物冠层分析仪适用于不同类型的植被,包括森林、草原、农田等,扩展了其应用范围。  生态学研究与资源管理:植物冠层分析仪为生态学研究和自然资源管理提供了强大的工具。研究人员可以更好地了解植物群落的结构、物种多样性、生长状态等信息,从而制定更有效的保护和管理策略。  尽管植物冠层分析仪具有许多优势,但也需要考虑其成本、数据处理复杂性以及某些环境条件下的限制。云唐建议在选择使用植物冠层分析仪时,需要综合考虑其优势和局限性,以满足特定研究或管理的需求。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251010121585_7702_6098850_3.png!w690x690.jpg[/img][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制