当前位置: 仪器信息网 > 行业主题 > >

待测蛋白质样品溶液

仪器信息网待测蛋白质样品溶液专题为您整合待测蛋白质样品溶液相关的最新文章,在待测蛋白质样品溶液专题,您不仅可以免费浏览待测蛋白质样品溶液的资讯, 同时您还可以浏览待测蛋白质样品溶液的相关资料、解决方案,参与社区待测蛋白质样品溶液话题讨论。

待测蛋白质样品溶液相关的资讯

  • SPE应用文集004:从稀释水溶液中萃取和浓缩蛋白质
    J.T.Baker做为SPE(固相萃取)技术的发源地,拥有庞大的应用文献库,为了使得广大客户更好的使用SPE这项越来越被广泛应用的样品前处理技术,自2011年5月开始,J.T.Baker将定期翻译这些应用文献,陆续上传,敬请广大客户点击阅读,如有任何疏忽错漏,恳切的希望可以得到您的指正,一经核实,有精美礼品赠送。 《从稀释水溶液中萃取和浓缩蛋白质》(Extraction and Concentration of Protein from Dilute Aqueous Solution) 应用领域:生物/生物科技 目标分析物:牛血清白蛋白BSA 样品基质:水 萃取柱:BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL 安全防护设备:护目镜和防护面罩,手套,实验服,B型灭火器,通风橱 样品制备:配置20mL BSA溶液(1mg/1mL),以0.025M pH=7磷酸缓冲溶液为溶剂 小柱活化:加入10mL甲醇活化,5mL 0.5M pH=7磷酸盐缓冲溶液活化,6mL 0.025M pH=7磷酸盐缓冲溶液平衡,保持过程中小柱始终处于润湿状态 上样与清洗:关闭真空泵,加入5mL 0.025M pH=7磷酸盐缓冲溶液,装上75mL储液器,缓慢抽出20mL的样品,用4mL0.025M pH=7磷酸盐缓冲溶液淋洗,移去储液器 洗脱:用2 X 0.5mL 异丙醇:水:三氟乙酸 60:40:0.1,收集洗脱液 分析方法:UV 以上即为固相萃取步骤,相关产品信息如下: B7216-06 BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL B7120-00 75mL储液器及适配器 B3246-01 磷酸二氢钾, ' BAKER ANALYZED' ® B9093-03 甲醇, ' BAKER ANALYZED' ® HPLC B9095-03 异丙醇, ' BAKER ANALYZED' ® HPLC B9470-00 三氟乙酸, ' BAKER ANALYZED' ® HPLC B4218-03 水, ' BAKER ANALYZED' ® HPLC 您也可以点击下载英文原版应用文献:http://jtbaker.instrument.com.cn/down_172268.htm 关于J.T.Baker :   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Macron&trade 两大品牌有140多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 蛋白质浓度测定常用的三种方法
    测定蛋白质浓度的方法有很多,科研工作者广泛使用的方法比如紫外吸收法,双缩脲法,BCA方法,Lowry法,考马斯亮蓝法,凯氏定氮法等等 ,今天小编以UV法,BCA法,考马斯亮蓝法,其中的三种方法的测定蛋白质浓度的原理、优缺点、操作以及注意事项做详细介绍。UV法这种方法是在280nm波长,直接测试蛋白。选择Warburg 公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白 质。从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受 到平行物质的干扰,如DNA的干扰;另外敏感度低,要求蛋白的浓度较高。(1)简易经验公式 蛋白质浓度(mg/ml) = [1.45*OD280-0.74*OD260 ] * Dilution factor(2)精确计算 通过计算OD280/OD260的比值,然后查表得到校正因子F,再通过如下公式计算最终结果:蛋白质浓度(mg/ml) = F *(1/d) *OD 280 * D,其中d为测定OD值比色杯的厚度,D为溶液的稀释倍数BCA法原理:BCA(bicinchonininc acid)与二价铜离子的硫酸铜等其他试剂组成的试剂混合一起即成为苹果绿,即 BCA 工作试剂。在碱性条件下,BCA 与蛋白质结合时,蛋白质将 Cu2+ 还原为 Cu+,工作试剂由原来的苹果绿色变为紫色复合物。562 nm 下其光吸收强度与蛋白质浓度成正比。BCA 蛋白浓度测定试剂盒,Abbkine的蛋白质定量试剂盒(BCA法)提供一个简单,快捷,兼容去污剂的方法,准确定量总蛋白。成分试剂 A100 mL试剂 B2 mL标准蛋白(BSA)1 mL×2,1 mg/mL保存条件 运输温度:室温(标准蛋白 4~8 ℃ 运输)保存温度:室温(标准蛋白 -20 ℃ 保存)有效日期:12 个月使用方法方法一:96 孔板1. 配制 BCA 工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液。充分混匀。2. 将蛋白标准品按 0 μL,1 μL,2 μL,4 μL,6 μL,8 μL,10 μL 加入 96 孔板的蛋白标准品孔中。加灭菌双蒸水补足到 10 μL。取 10 μL 待测样品加入 96 孔板的待测样品孔中。每个测定要做 2~3 个平行。3. 向待测样品孔和蛋白标准品孔中各加入 200 μL BCA 工作液(即样品与工作液的体积比为 1:20),混匀。4. 37 ℃ 温浴 30 min。冷却至室温。5. 酶标仪 562 nm 波长下测定吸光度。6. 制作标准曲线。从标准曲线中求出样品浓度。方法二:试管法1. 配制工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液,充分混匀。工作液配制的量要与测定所用的比色杯对应。每个测定要做 2~3 个平行。本处列举的比色体系所用的是 0.5 mL 的比色杯。如比色杯规格不同,体系需要放大到实验将采用的比色杯准确读数所需要的体积。2. BSA 标准品和样品的准备:样品用水或其它不干扰显色反应的缓冲液配制,使待测定的浓度位于标准曲线的线性部分。每个反应准备 3 个平行测定。标准曲线一般 5~6 个点即可。根据样品的估测浓度确定各点的具体浓度。稀释 BSA 时可以用水或与样品一致的溶液。如待测样品的浓度约为 200 μg/mL,可按下表的次序加入 BSA 标准品、样品及 BCA 工作液。3. 取适量体积的标准蛋白,以蛋白液:工作液=1:20 的比例混匀。37 ℃ 温浴 30 min。冷却至室温。4. 将样品与标准品在 562 nm波长下测定吸光度。考马斯亮蓝法实验原理:考马斯亮蓝 (Coomassie Brilliant Blue) 法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量测定微量蛋白浓度快速、灵敏的方法。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。目前,这一方法是也灵敏度最高的蛋白质测定法之一。考马斯亮蓝 G-250 染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰 (lmax) 的位置,由 465 nm 变为 595 nm,溶液的颜色也由棕黑色变为蓝色。通过测定 595 nm 处光吸收的增加量可知与其结合蛋白质的量。研究发现,染料主要是与蛋白质中的碱性氨基酸 (特别是精氨酸) 和芳香族氨基酸残基相结合。突出优点(1)灵敏度高,据估计比 Lowry 法约高四倍,其最di蛋白质检测量可达 1 mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比 Lowry 法要大的多。(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要 5 分钟左右。由于染料与蛋白质结合的过程,大约只要 2 分钟即可完成,其颜色可以在 1 小时内保持稳定,且在 5 分钟至 20 分钟之间,颜色的稳定性最好。因而完全不用像 Lowry 法那样费时和需要严格地控制时间。(3)干扰物质少。如干扰 Lowry 法的 K+、Na+、Mg2+ 离子、Tris 缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA 等均不干扰此测定法。缺点(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g-球蛋白为标准蛋白质,以减少这方面的偏差。(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、 Triton X-100、十二烷基硫酸钠 (SDS) 等。试剂与器材1、试剂 考马斯亮蓝试剂:考马斯亮蓝 G-250 100 mg 溶于 50 mL 95% 乙醇中,加入 100 mL 85% 磷酸,用蒸馏水稀释至 1000 mL。2、标准和待测蛋白质溶液(1)标准蛋白质溶液结晶牛血清蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度用 0.15 mol/L NaCl 配制成 1 mg/mL 蛋白溶液。(2)待测蛋白质溶液。 人血清,使用前用 0.15 mol/L NaCl 稀释 200 倍。3、器材 试管 1.5×15 cm(×6),试管架,移液管管 0.5 mL(×2) 1 mL(×2) 5 mL(×1);恒温水浴;分光光度计。操作方法 一、制作标准曲线 取 7 支试管,按下表平行操作。摇匀,1 h 内以 0 号管为空白对照,在 595 nm 处比色。绘制标准曲线:以 A595 nm 为纵坐标,标准蛋白含量为横坐标,在坐标纸上绘制标准曲线。二、未知样品蛋白质浓度测定 测定方法同上,取合适的未知样品体积,使其测定值在标准曲线的直线范围内。根据所测定的 A595 nm 值,在标准曲线上查出其相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。注意事项(1)在试剂加入后的 5-20 min 内测定光吸收,因为在这段时间内颜色是最we定的。(2)测定中,蛋白-染料复合物会有少部分吸附于比色杯壁上,测定完后可用乙醇将蓝色的比色杯洗干净。(3)利用考马斯亮蓝法分析蛋白必须要掌握好分光光度计的正确使用,重复测定吸光度时,比色杯一定要冲洗干净,制作蛋白标准曲线的时候,蛋白标准品最好是从低浓度到高浓度测定,防止误差。
  • 蛋白质样品清洁验证中TOC分析仪的比较
    总有机碳TOC一般理论所有TOC分析仪都具备两种功能:将水中有机碳氧化成二氧化碳CO2,并测量所产生的CO2。TOC可用于对未正确清洁的设备中的杂质和残留物进行定量,以及检测所有含碳化合物:药物活性成分 (Active Pharmaceutical Ingredients, API)、清洁剂、蛋白质和中间产物。用来测量TOC的分析技术有着相同的目标:把有机分子完全氧化成CO2,检测所生成的CO2,并以碳浓度表示。所有方法都必须区分无机碳和有机碳,无机碳可能来自水中溶解的CO2和重碳酸盐,而有机碳则是由样品中有机分子氧化而成的。总碳(TC)是有机碳与无机碳之和,因此测得的总碳(TC)减去测得的无机碳(IC)的值就是TOC:TOC=TC–IC。各种TOC测定仪的不同之处在于氧化样品水中有机物的方法,以及检测样品中所生成CO2浓度的方法。不同的检测方法对样品分析的准确度有很大影响,进而影响清洁验证检测程序。TOC氧化技术市面上所有TOC测定仪都使用以下两种方法之一来氧化有机化合物并将之转换为CO2气体:燃烧法,或紫外(UV)+过硫酸盐法。燃烧技术使用氮气、氧气或空气流,温度在600°C以上。燃烧方法在氧化步骤中也使用催化剂。该类方法中常用的催化剂有氧化铜、氧化钻或铂。UV过硫酸盐氧化方法利用UV光使有机物完全氧化为CO2。将样品暴露在设备内汞蒸汽灯的UV光之下,将样品内的有机物转化为CO2气体。对于浓度大于1 ppm的样品或化合物 ,则在样品流中加入过硫酸盐并混合均匀,从而利用接受照射的样品生成的负价氢氧(HO-)基来确保氧化过程顺利进行。过硫酸盐是一种强氧化剂,在UV辐射下生成硫酸盐和氢氧基,可将有机化合物完全氧化为CO2。TOC检测方法为检测CO2浓度,分析仪器需要使用检测方法以区分样品中的CO2和其他分子。现有两种检测方法:非色散红外(Non-Dispersive Infrared, NDIR)或电导检测。用于气体测量的NDIR技术依靠各种气体在红外光谱范围内的能量吸收特征来判别分子类型。运用NDIR技术的TOC测定仪使红外线穿过两根完全相同的导管射入检测器。第一个导管作为参比池,充满无红外吸收的气体,如氮气。第二个导管(池)用于气体样品的测量。电导检测方法使用电导传感器,通过计算电导率确定CO2的浓度。为计算TOC,水溶液通过两个电导传感器,其中一个检测总碳(TC)浓度而另一个检测无机碳(IC)浓度。根据检测结果,计算出样品的TOC浓度。NDIR方法可对含碳范围在0.004–50,000 ppm的样品进行定量,而电导率法可以进行十亿分之一(part per billion, ppb)级的定量。总体而言,NDIR和电导率检测器对于低浓度的TOC有足够的灵敏度,但会受到离子干扰。使用只允许CO2选择性透过的半透膜可减轻此因素的影响。Sievers® TOC技术与众不同的特点结合使用UV过硫酸盐氧化与独特的选择性CO2膜技术,是Sievers系列TOC分析仪优于常规TOC技术(如燃烧 NDIR技术)的众多要素之一。Sievers技术能持续为用户提供更为精确的TOC读数。在Sievers基于选择性膜的电导方法中,CO2传送模块中的选择性CO2膜可阻止离子进入,在使CO2无阻通过的同时,排除了干扰化合物和氧化副产物。选择性CO2膜消除了背景干扰,并防止非碳基化合物和副产物聚集。清洁验证是一项充满挑战的工作,因为各种样品的TOC浓度有时是未知的,因此很难达到最佳分析条件。以下几个优点确保了UV过硫酸盐+膜电导技术在清洁验证应用中无可比拟的分析结果。试剂自适应功能保证完全氧化为使清洁验证样品完全氧化,Sievers M系列TOC分析仪具有试剂自适应功能,可优化酸和过硫酸盐氧化剂的流量。非催化燃烧方法非催化燃烧方法消除了向燃烧反应器中添加催化剂的定量(根据样品中碳浓度而定)时的人为误差。燃烧氧化方法会产生毒性气体。若清洁验证样品中含氯化物,燃烧可能生成对人体有潜在危害的气体,某些TOC分析仪不吸收这类气体。无需NDIR检测器NDIR检测器需要一定的时间来预热 (30到45分钟),因此造成更多的停工时间和样品积压。NDIR技术需要经常进行校正(每小时或每天),具体时间由清洁验证样品的碳浓度决定。这类检测器经常出现校正漂移现象。校正时间占NDIR仪器运行时间的6%到10%。不用载气NDIR检测器的载气价格不菲,并且泄漏和不稳定的校正经常会引起高TOC背景。载气污染也可能造成检测困难和引起碳的高背景。出色的灵敏度和高回收率Sievers TOC分析仪的电导池由高纯度石英制成,提供更佳的稳定性和0.03 ppb级别的检测。图1和表1从灵敏度和TOC回收率两个方面,就牛血清蛋白(Bovine Serum Albumin, BSA)对Sievers TOC技术与传统燃烧-NDIR TOC技术进行比较。图1. 牛血清蛋白 (BSA) TOC回收百分比对比研究表1. 牛血清蛋白 (BSA) TOC回收百分比对比研究****该对比研究使用完全校准后的仪器。分析之前,先进行并通过系统适应性测试。对两种仪器,制备并使用同一BSA储各溶液。研究在可控的环境中进行;分析期间,仪器未出现偏差。为什么说现在正是改用Sievers TOC分析仪进行清洁验证的时候?HPLC分析很漫长,增加了实验室清洁验证分析所需时间。使用HPLC将导致数小时或数天的停工,造成高额成本并减少提供给患者的产品数量。有例子表明,某些制药企业单日停工损失超过100万美元。表2将Sievers TOC分析仪与燃烧/催化-NDIR和燃烧-NDIR TOC分析仪进行了详细比较,其中包括估算的月运行成本。TOC是一种用于低浓度级别有机化合物检测的、简单快速的分析方法,并且可用于检测无法使用HPLC检测的污染物。与常规方法相比,TOC已被证明可减少75%以上的停工时间和方法验证时间。FDA出台的指导方针——21世纪现行药物生产质量管理规范 (cGMP' s for the 21st Century),旨在加强和更新药物制造规则,使用TOC分析进行清洁验证,与专属性分析方法相比 (如HPLC)在质量和效率上的优势已引发越来越多的关注。表2. TOC方法比较联系我们,了解更多!
  • ​研究蛋白质热稳定性的几种方法
    研究蛋白质热稳定性的几种方法蛋白跟核酸不一样,核酸都是由四个碱基组成,只是组成的顺序不一样,但是整体的结构都是类似的双螺旋结构。而蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。所以每个不同功能的蛋白长得样子其实都是不同的。蛋白的高级结构决定其功能,行使功能需要正确折叠。蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。蛋白质在一定的物理和化学条件(加热、加压、脱水、振荡、紫外线照射、超声波、强酸、强碱、尿素、重金属盐、十二烷基硫酸钠)下,其空间构象容易发生改变而失活,因此研究蛋白的构象和构型变化对其应用有重要的价值。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。热变性是蛋白质变性中最常见的一类现象。蛋白质的热稳定性是指蛋白质多肽链在温度影响下的形变能力,主要体现在温度改变时多肽链独特的化学特性和空间构象的变化,变化越小热稳定性越高。蛋白质的热稳定性受到不同温度、pH值、离子强度等外界因素的影响,在生物技术、药物研发以及食品工业等领域,具有重要意义。蛋白质变性温度是生物学家们研究蛋白质的热稳定性的一个重要的概念,是指蛋白质在特定温度条件下受到热力作用时,其结构发生变化的温度点,一般温度较高时,蛋白质从稳定的三维结构变化成松散的无序结构。蛋白质的热稳定性一般使用热变性中点温度(meltingtemperature,Tm)来表示,即蛋白质解折叠50%时的温度。蛋白质的热变性过程与其空间构象的改变密切相关,Tm值能反映变温过程中蛋白质构象改变的趋势,是衡量蛋白质热稳定性的一个重要指标。蛋白质Tm值的测定在生物医药行业具有广泛的应用,如嗜热蛋白、工业酶等的改造与筛选,蛋白质药物与配体、制剂或辅料的相互作用,蛋白质药物的缓冲液稳定条件筛选等。目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 01 圆二色谱法(CD)圆二色光谱(简称CD),或红外(傅里叶变换红外(FourierTransformInfrared,FTIR)光谱),是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单的方法。圆二色谱法诞生于20世纪60年代,其原理是利用左、右两束偏振光透过具有手性结构的生物大分子等活性介质,获得的圆二色谱来分析其结构特点,是蛋白质、核酸、糖类等生物大分子二级结构分析的常规手段之一。蛋白由α螺旋和β折叠构成,α螺旋和β折叠在红外和紫外光段有特异的光吸收。蛋白质对左旋和右旋圆偏振光的吸收存在差异,利用远紫外区(190~260nm)的光谱特征能够快速分析出溶液中蛋白质的二级结构,进而分析和辨别出蛋白质的三级结构类型,变温过程中测量蛋白等物质的圆二色谱,能反映其随温度升高结构变化的趋势。此外,通过测定蛋白质在不同温度下的平均残基摩尔椭圆度[θ]可以获得蛋白质的Tm值。特点:圆二色光谱(CD)适用于测定稀释溶液的热稳定性,操作相对简单,成本较低。但是相关仪器很昂贵,对缓冲液要求也高,要求溶液不能有任何的紫外吸收,也很难做到高通量检测。 02差示扫描量热法(DSC) 蛋白变性时会有温度变化,检测温度变化就能知道蛋白变性程度。差示扫描量热法的应用始于20世纪60年代,是在程序控温下,通过测量输给待测物和参比物的功率差与温度的关系,以获得吸放热量的技术。差示扫描量热法能定量测量热力学参数,可提供与蛋白质热变性过程中构象变化有关的热效应信息。差示扫描量热法(DSC)是一个很经典的一个技术,基于的蛋白变性过程中对热量的吸收。蛋白是有三维结构的,比如氢键,疏水键,范德华力。一旦通过加热然后把结构破坏掉,需要吸收热量。所以可以测量热量变化,就是加热结构变化过程中的热量吸收。通过对参照物和样品同时进行升温或冷却处理,测定两者为保持相同温度所产生的热量差,从而计算蛋白质的Tm值。特点:差示扫描量热法(DSC)能够提供直接的热量变化数据,定量准确、操作简便。但检测通量低、耗时较长,需要的样品体积和浓度比较大。相关仪器中最核心的部件是样品池,对周围环境要求极高。 03 动态光散射法(DLS)动态光散射是基于光学的方法,检测的是蛋白变性之后会发生聚集,导致颗粒的大小发生改变,对散射信号的影响。蛋白在变性过程中,从一个规则高级折叠结构打开,变成一个线性的松散结构。本来外部是亲水的氨基酸,内部是疏水的氨基酸。一旦打开之后,这些疏水的氨基酸会相互就是结合到一起。就是因为疏水的一个相互作用,然后变成一个球状聚集体。此过程会引起这个光的散射的变化。基于动态光散射的信号随着加热的过程的变化就代表粒径的变化,可以计算出蛋白质的Tm值。动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。特点:动态光散射可以做到孔板式的检测,具有比较高的通量。但是对于某些样品的检测有限制,因为并不是所有的蛋白在变异之后都会形成这种聚集体,而有一些可能需要很高的浓度才会提升,浓度较低条件下,就观察不到粒径的变化。 04 外源差示扫描荧光法(DSF)差示扫描荧光(DSF)也被称为热荧光法(ThermoFluor),是一种经济高效且易于使用的生物物理技术,通过检测当温度升高或变性剂存在时荧光发射光谱的相应变化来确定蛋白质的变性温度(热变性温度Tm值或化学变性Cm值)。Pantoliano等最先应用此技术测定了上百种蛋白质的热稳定性。差示扫描荧光法分为添加外源荧光染料与不添加荧光染料两种方式,都是利用加热使蛋白内部疏水基团暴露这一特点进行检测Tm值。传统DSF经常使用350/330比值法来进行数据分析根据荧光源不同分为内源荧光DSF和外源荧光染料DSF。基于外源染料荧光的DSF其原理是利用能与蛋白内部疏水基团相互作用的染料为荧光源。蛋白质加热变性后疏水基团暴露,疏水基团与亲和性染料结合产生荧光信号,检测荧光强度变化测定蛋白质的Tm值。特点:借助荧光定量PCR适用于高通量筛选,信号强度可控,灵敏度和准确性都较高。但添加的外源染料可能会对蛋白质结构和功能产生影响,且操作较复杂,不适用于所有蛋白研究。比如做膜蛋白研究时,溶液环境中需要添加双亲性的分子,一端疏水一端亲水。这种情况荧光分子会直接结合到疏水端,导致直接产生荧光信号。并且染料种类的选择、浓度的选择也很繁琐。外源荧光染料DSF也可能会产生背景荧光以及非特异吸附等假阳性结果。 05 内源差示扫描荧光法(inDSF)内源差式扫描荧光inDSF,基于蛋白质中特定氨基酸的荧光特性。这些氨基酸的荧光强度与其所处的微环境密切相关,因此,当蛋白质的结构发生变化时,这些氨基酸的荧光信号也会随之改变。不需要额外的荧光染料加入到检测体系中,利用蛋白内部芳香族氨基酸的自发光原理。不需要任何额外的标记或固定步骤,避免引入结果的不确定性。研究发现,蛋白质分子中芳香环氨基酸在处于不同极性的微环境时(如疏水或亲水环境中),其被激发的内源荧光的最大发射光谱会发生位移。蛋白质中内源荧光主要来自含芳香环氨基酸如色氨酸(Trp),苯丙氨酸(Phe)和酪氨酸(Tyr),其中以色氨酸内源荧光最强。当它在蛋白内部时,发射光主要在330波段,当蛋白一旦去折叠,暴露在溶剂中,发出的光就会从330波长红移到350。所以通过280激发,检测330/350的比值变化,就能测量蛋白质的Tm值。以色氨酸为例,在蛋白质疏水的内核微环境中,其内源荧光最大发射波长在330nm左右,而在亲水的极性微环境中,色氨酸的内源荧光最大发射波长则出现在350nm左右。蛋白质热变性或者化学变性通常会导致色氨酸残基周围微环境的极性发生变化,使通常被包埋于蛋白质疏水内核的色氨酸逐渐暴露于亲水的环境中,从而导致发射内源荧光最大发射波长发生红移(RedShift),即向更大的波长区域移动。特点:内源差式扫描荧光DSF无需复杂的样品处理或标记步骤,实验过程简单方便。但不是所有蛋白质都含有足够的荧光基团,所以对于部分样品检测灵敏度不够,且检测可能会受其他基团影响。 06 技术对比总结总得来说,DSF和DLS法在样品用量及测定效率上更有优势,比较适合进行高通量筛选。但DSF法需要样品含有色氨酸、酪氨酸或额外添加荧光染料,这可能会对样品测量范围带来一定限制,DLS对样品浓度有要求。DLS还可以获取聚集体粒径大小的信息。DSC法虽然在样品用量与检测效率上不及DSF,但作为量热的经典方法仍是不可缺少的Tm值测量手段,在进行批量样品的热稳定性筛选时,可以使用DSF法初筛,DSC法复筛。此外,DSC能测定蛋白质变性过程中的热容变化ΔCp、焓变ΔH、解折叠自由能ΔG、玻璃态转变温度、分子流动临界温度等其他重要热力学参数。CD作为检测蛋白二级结构的经典方法,在Tm值测定方面具有其独特优势和一定的局限性,也是研究加热过程中蛋白结构改变的重要方法。蛋白质Tm值测定具有重要的实际应用价值,例如辅助生物药物开发、生产和质量控制,评估生物相似性、优化蛋白药物配方等,还可以作为探索蛋白质高级结构的手段之一指导蛋白质工程,如比较不同突变对蛋白质稳定性的影响,研究结构域改变与功能活性改变关联性等。比较不同Tm值测定方法,全面了解技术特点及测量效果对于Tm值测定的实际应用具有一定的指导意义,在科研或生产工作中可以灵活选用或联用多种技术来阐明不同条件下的结构变化特点。 07 国产蛋白稳定性分析仪PSA-16 北京佰司特科技有限责任公司于2023-10-01日推出了自主研发的第一款国产蛋白稳定性分析仪,该设备性能和参数达到进口设备的水平,价格却远低于进口产品,弥补了目前国产自主设备在蛋白稳定性专业研究分析领域的空白。多功能蛋白稳定性分析仪PSA-16是一款无需荧光染料、高通量、低样品消耗量的检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。 多功能蛋白稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白稳定性分析仪PSA-16在各学科的研究中都有重要的意义。1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )   上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。   本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。   蛋白质结构解析六十年来大事件   在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。   然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。   进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。   在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。   下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。   蛋白质结构解析的常用实验方法   1.X-ray衍射晶体学成像   X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。   后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。   X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。   上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)   2.NMR核磁共振成像   核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。   RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。   使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)   3.Cryo-EM超低温电子显微镜成像   电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。   Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )   将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。   近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。   除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。   蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放
  • 国家蛋白质科学中心:不容小觑的仪器集群
    【科技日报】探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象 图为蛋白质科学研究(上海)设施核磁共振分析系统。   生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。   在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。   国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?   为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。   不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。   &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。   可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。   雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。   在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。   围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。   史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。   上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。   要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。   找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。   在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。   高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。   传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。   上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。   &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。   五线六站 透视蛋白质内部结构   蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。   肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。   大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。   在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。   记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。   国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。   &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。   过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。   &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。   核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。   在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。   分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。   离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。   和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。   &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。   为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。   蛋白质研究为药物研发铺路   蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。   一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。   细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。   然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。   上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。   &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。
  • 走近大科学工程:国家蛋白质科学中心
    图为蛋白质科学研究(上海)设施核磁共振分析系统。   走近中国大科学工程   生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。   在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。   国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?   为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。   不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。   &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。   可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。   雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。   在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。   围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。   史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。   上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。   要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。   找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。   在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。   高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。   传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。   上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。   &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。   五线六站 透视蛋白质内部结构   蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。   肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。   大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。   在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。   记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。   国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。   &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。   过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。   &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。   核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。   在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。   分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。   离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。   和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。   &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。   为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。   蛋白质研究为药物研发铺路   蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。   一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。   细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。   然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。   上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。   &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。(原标题:探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象)
  • 固液界面(SLIM)蛋白质结晶方法及新型结晶板研制
    成果名称 固液界面(SLIM)蛋白质结晶方法及新型结晶板研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 在结构生物学领域,晶体学是获得蛋白质原子结构的最普遍方法。近年来,尽管人们对蛋白质结晶原理的认识逐步深入,并且在方法研究方面不断有新的突破,但是国际上尚没有一个通用的可以获得蛋白质晶体的方法,蛋白纯化及晶体生长是一个劳动密集、成功率比较低的工作。在这种情况下,蛋白质晶体制备技术的自动化、并行化、小型化创新将大大简化蛋白晶体生长步骤,从而提高工作效率,十分必要。 在此背景下,苏晓东课题组提出一个新的蛋白质结晶概念,即固体液体界面方法(SLIM),该方法可降低蛋白结晶筛选时对蛋白质浓度及量的要求。SLIM主要基于提前滴加池液使其干燥便于储存运输,而后在&ldquo 干滴板&rdquo 上生长晶体时滴加蛋白溶液到&ldquo 干池液&rdquo 中,这为蛋白晶体生长提供了不同的动力学途径。这个方法的一个突出优点是可以利用自动化的多通道的移液设备大批量的准备许多&ldquo 干滴板&rdquo ,从而大大简化蛋白结晶过程并增加通量。为了使这个方法能够实用化,课题组需要尝试及采用各种高通量、自动化移液系统来制造大量低成本&ldquo 干滴板&rdquo ,同时还要设计并制备合适的结晶塑料板材。 作为&ldquo 仪器创制与关键技术研发&rdquo 基金首批支持的项目,在项目资金的支持下,通过结晶&ldquo 干滴板&rdquo 制备仪器的购置,以及结晶板材生产模具的试制,苏晓东教授这一新型蛋白质结晶板的研制工作得以顺利推进。目前,苏晓东课题组已经成功制备了蛋白质结晶&ldquo 干滴板&rdquo 样品,并已获得良好的效果,相关专利申请已进入国家阶段。接下来,课题组将继续与相关公司及厂家合作,进一步研制&ldquo 干滴板&rdquo 的大批量、高通量生产技术,实现该技术成果的转化。 应用前景: 蛋白质晶体制备技术的自动化、并行化、小型化创新将大大简化蛋白晶体生长步骤,从而提高工作效率,应用前景广阔。
  • 【研究应用分享】蛋白质分离纯化技术及具体步骤
    蛋白质的分离纯化在生物化学研究应用中使用广泛,是一项重要的操作技术。一个典型的真核细胞可以包含数以千计的不同蛋白质,一些含量十分丰富,一些仅含有几个拷贝。为了研究某一个蛋白质,必须首先将该蛋白质从其他蛋白质和非蛋白质分子中纯化出来。 蛋白质分离纯化的一般程序可分为以下几个步骤——01 材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。5. 酶法如用溶菌酶破坏微生物细胞等。02 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。03 蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。04 样品的进一步分离纯化用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析、亲和层析等等。有时还需要这几种方法联合使用才能得到较高纯度的蛋白质样品。05 蛋白质的分析测定通过物理或化学方法对蛋白质含量进行测定。蛋白质的分析纯化,不仅仅是选择合适的方法,必备的工具,例如微量均质器、干燥器、抗体保存盘等,也很重要。Bel-Art蛋白质分析纯化工具推荐本篇我们根据不同耗材在蛋白质分析纯化过程中的不同作用,分类为大家推荐几款合适的耗材。细胞裂解 热门优选 微量均质器-手持式货号:F65000-0000研磨组织和破碎细胞层析 热门优选 磁珠分离架货号:F19900-000分离结合在磁珠上的蛋白质以快速纯化透析热门优选 透析袋夹持器货号:F18237-0000测定热门优选贝塔盾货号:F24976-0001在进行C14分析时减少接触电泳热门优选 Spindrive&trade 轨道摇床平台货号:F37041-0001提供彻底、温和的凝胶混合,同时*限度地扩大实验室空间
  • 神八实验揭秘:线虫受辐射 太空中长蛋白质
    11月18日凌晨,神舟八号飞船搭载的生物培养箱在神八落地后几乎是刻不容缓地被送回北京。据介绍,培养箱中装载样品33种,开展了17项空间生命科学实验。如今实验有了什么进展?我们就从中选取几项实验,介绍给您——   神八实验揭秘   线虫的太空之旅   我是一条线虫,但不是你想象中的寄生虫,你可以叫我的英文名字:C.elegans。我坐着神八飞船,在太空进行了长达十六天半的旅行。   自然状态下,我生活在泥土中,以细菌为食。成年后身长约1毫米,人类在显微镜下才能看清。我通体透明,长得不好看。可大连海事大学环境系统生物学研究所孙野青教授和同事们,却常夸我是“可爱美丽的小天使”,还给我起了个好听的名字:秀丽隐杆线虫。   不是吹牛,我是天生的“航天员”。在空间生命科学领域,我的家族可谓声名远播。从1975年开始,我的同类就先后搭载美国国家航空航天局的航天飞机邀游太空。   为什么选择我们呢?一是因为我们在-80℃长期冻存后仍能恢复活力,是目前已知的唯一能低温冻存的多细胞真核动物。我在逆境时进入休眠期,像熊冬眠一样,不发育、不吃东西,时间可以长达2个月左右。二是我们基因组很小,仅为人类基因组的3%,但有约40%的基因与人类同源。据科学家们说,我们身上很多调控发育的基因和人类很相似,一旦研究清楚在空间辐射环境或空间辐射和微重力同时存在的环境下,我们的这些基因是如何变化的,将给航天医学及空间辐射损伤预警做出巨大贡献。   因此,我们在太空中要接受辐射,再把这些辐射损伤的印记带回来。所以我们在地面不能有任何损伤,坐飞机时都不能过安检,临上太空前还要在航天城“集训”两周,看我们能否顺利登舱。   这次上太空,我的“房子”是德国航空航天中心DLR研制的SIMBOX(生物支持系统实验盒)内的38个小盒子之一,大约18ml。这么小的空间,却住了十万伙伴。SIMBOX可不简单,它的里面安装了1g的离心装置,模拟地球的引力。我们分成两组,分别被装入在1g的离心机上和附近固定的房子里,有些伙伴只接受空间辐射,有的既接受空间辐射又感受微重力的。当返回地球后,我们就可以被比较分析变化的差别。我们屏住呼吸,停止发育,把空间环境影响的印记尽量留在身上。   接下来我们将继续配合孙教授课题组,给人类带来更多惊喜,大家拭目以待吧!   放线菌勇闯无重力空间   放线菌是“神八”的另一位旅客,它们比缝衣针尖还要小100倍,却是中科院微生物所黄英教授的心肝宝贝们。   别小瞧了放线菌!知道抗生素吧?70%是放线菌产生的。它们还是环境保卫者——难降解的塑料、化学除草剂、杀虫剂,可能都是放线菌的“美餐”,只要很短的时间,它们就能消灭这些顽固有机物。   黄英说,这次送上太空的有三种微生物,第一种是放线菌里的经典“美人”,它产生的色素像天空般蔚蓝,因此叫天蓝色链霉菌,正是出于颜色易于观察的原因,它是这次上太空的首选“模特” 第二种是放线菌里的“新人类”,它生命力旺盛,产生抗生素的能力又强又稳定,它有个暂定的名字叫卷须链霉菌C 第三种不是放线菌,叫枯草芽孢杆菌,有些洗衣粉里的酶,就是从它的分泌物中提取的。这次,它的命运是被两个同伴杀死,从而测试它们在太空环境下的抑菌能力。   放线菌被小心翼翼地放进通用生物培养箱,箱子保持23℃恒温和恒定的湿度,连空气成分都是照搬地球的,并且准备了充分的营养物。   送上太空,为什么又模拟地球环境呢?这叫微重力效应实验。地球引力对生物的影响,经常被人们忽视,但确实存在。比如,树木之所以能将根深深扎进土地里,就是因为地球引力的影响。对于放线菌而言,没有了地球引力,又会发生什么样的变化?这就是送放线菌上太空的原因所在。   此前科研人员曾在地面模拟微重力效应实验,结果发现它们产生抗生素的周期从1周缩短到4—5天,抗生素的产量也有所增加。   将它们送入太空,就是要看看在真实的微重力环境中,它们会发生什么变化。事实证明,在太空的微重力环境下,放线菌的生长和模拟微重力效应环境下相似,甚至效果更好一些。天蓝色链霉菌和卷须链霉菌C在太空中肆无忌惮的生长,杀死了更多的枯草芽孢杆菌,这说明它们释放出的抗生素浓度高于地球上的同类。   中科院微生物所接下来的工作,是进一步比对这些从太空中回来的“贵客”们的细微模样和抑菌能力,分析它们的基因性状,抓紧让它们“传宗接代”,看看下一代中会不会出现更美更壮的“佼佼者”。   太空中长出蛋白质   大约10厘米长、4厘米宽、5厘米厚——这个小黑盒就是由神八携带的、用于蛋白质晶体生长研究的“秘密武器”。打开这个“秘密武器”,可以看到120个排列整齐、大小一致的“小抽屉”,中科院生物物理所研究员仓怀兴解释说,每个“小抽屉”都装满了实验溶液,实验溶液中“漂浮”着一根内径1毫米、长12毫米的玻璃毛细管,毛细管里装着蛋白质溶液。“我们这个实验的主要目的,就是要在太空环境中让蛋白质溶液与实验溶液发生反应,看看能不能生长出质量更好的蛋白质晶体。”   蛋白质是生命的物质基础,没有蛋白质就没有生命。蛋白质分子是由氨基酸构成的,氨基酸的不同排列方式、也就是蛋白质分子的不同结构导致其产生不同的功能。   “要想知道哪种蛋白质有何功能,必须先了解它的结构。”仓怀兴说:“研究蛋白质分子的结构有两种方法,一是让其长出晶体,再用X射线照射 二是用核磁共振。”但当蛋白质分子比较大时,“比如一些病毒的蛋白质结构,核磁共振就看不到了。”   研究蛋白质分子结构是国际学界的热点。“近些年比较热门的应用是生物制药领域,因为很多病毒的外壳都是蛋白质。”仓怀兴介绍说,美、日、欧盟等发达国家早就将蛋白质分子送入太空,以便获得质量更好的蛋白质晶体,从而更加精细地了解蛋白质的结构。“据我了解,到目前为止,大概有25种蛋白质分子的高分辨率结构,是利用在空间实验中获得的蛋白质晶体取得的。我相信还有更多,不过很多制药公司都将其视为机密,在新药研制成功之前不会对外宣布。”   虽然有120个“小抽屉”,但此次实验只携带了14种蛋白质溶液。仓怀兴解释说:“蛋白质是种很奇怪的物质,不是说两种溶液相反应就必然能得到晶体,因此我们都做了充分的‘后备’。”仓怀兴说,得到的晶体已经被研究人员带到上海同步辐射光源进一步研究,“很快就会有结果了!” 空间微重力样品   神八里的绿色植物   “我们利用神八搭载水稻种子,进行高等植物在空间的代谢生物学研究。”中科院植物所的温晓刚说。水稻是空间生命支持系统中重要的食物来源,也是高等植物研究的模式植物,这是“神八”选择水稻种子的原因。   这些水稻种子被放置在植物生长容器中,以透光、透气、不透水的生物膜覆盖。“这些水稻种子在太空中萌发,生长成水稻幼苗。”温晓刚说,这些情况与地面上同一温度、湿度情况下生长的水稻种子进行对比,中科院植物所的研究人员就能够分析水稻幼苗在空间环境下的生长发育情况,考察空间飞行对植物代谢过程的影响。   温晓刚说:“经过空间飞行,水稻幼苗生长状态良好,发芽率达到91%以上,与地面实验一致。初步的光合生理实验结果显示,水稻幼苗在微重力等空间环境下,其光合系统的活性受到一定程度的影响,其中对光系统Ⅰ的影响大于对光系统Ⅱ的影响。”温晓刚解释,空间微重力会造成高等植物光合机构叶绿体中的类囊体膜结构发生改变,比如类囊体膜垛叠的基粒组分减少等,这种变化可能对植物光合系统的功能造成一定的影响。“实验结果正在进行进一步研究分析中。”接下来科学家们将深入分析得到的光合生理数据,并进行水稻幼苗叶片和根尖的亚显微结构分析,以及水稻叶片的蛋白质组学研究,同时研究空间飞行对水稻幼苗蛋白质组学的影响,特别是与光合作用相关的代谢过程以及与光合能量传递相关的蛋白的影响,分析空间环境下植物光合系统的变化规律。   神八中的“生物圈”   如果能在飞船密闭的空间里,建立这样一个“生物圈”:让食物产生、氧气供给、二氧化碳去除和废物再循环都变成现实,那宇航员们长期居住太空将不再是梦想。神八里就有一项空间简单密闭生态系统探索研究,我国科学家迈出了在太空自主建立受控生态生命保障系统(简称CELSS)的重要一步。   CELSS是生命科学、空间科学、环境科学、自动化和遥感科学诸多高新技术的集成。首先要在空间飞行器上进行模型实验,积累基本数据。神八飞船上,中科院水生生物研究所的科学家们构建了一个简单水生态系统,以纤细裸藻和小球藻作为主要生产者,澳洲水泡螺作为主要消费者,同时以自组织形式共培养细菌作为分解者。在硬件设计上,除了提供藻类生长与产氧所需的光源外,还增加了藻类生长密度检测装置,即时传送生长状态数据进行监控 并以特定的技术进行系统内的气体传质分布,增进气体在不同腔室的传递,以期在系统中实现气体、食物与废物处理的良性循环。中科院水生生物研究所的李小燕介绍,从目前得到的数据来看,藻与螺的生长都符合预期目标和已知规律,系统中的各要素基本实现自循环、自组织的功能。同时从神舟八号返回的样品中,可以在生物的空间飞行效应、空间共培养系统的物种相互关系,空间封闭生态系统的结构与功能三个方面剖析出重要的科学信息。
  • 生命科学研究中应用切向流技术(TFF)的DNA/蛋白质样品制备方案
    作者:钟丹丹博士,蒙敏博士 超滤技术专题系列 生命科学实验室的超滤设备 密理博提供的实验室超滤全套解决方案 尽管切向流过滤Amicon® Ultra的超速装置,提供优良的性能(使用水平吊篮转子尤佳)。更多的用于与大规模操作,但密理博为您开发了附有垂直膜面的生命科学实验室用超滤离心装置,常见的有 Amicon Ultra 离心超滤装置 密理博公司的Amicon离心超滤装置是一种理想的工具,可以用来对盐分、糖类、核酸、非水溶剂及其它一些低分子量物质进行去除和更换。它们还可以用来分离未结合上的游离标记物。 密理博离心超滤装置具有快速、方便、回收率高的特点,可替代并优于透析及乙醇沉淀。盐分通过滤膜的效率很高且不依赖于微溶质的浓度和大小。 Amicon Ultra内置超滤装置图解 Amicon Ultra 超滤离心管的使用方法 蛋白质样品: 把蛋白质样品加到Amicon Ultra的内管中,然后只需要10到20分钟的离心时间,就可把不需要的缓冲液和小分子超滤到外管里,从而在内管中获得高达30倍到80倍浓缩倍数的样品。 其它样品处理方法,请点击此处查看 Amicon Ultra使用示意图 Amicon Ultra 超滤离心管的应用 蛋白质样品浓缩、脱盐及缓冲液置换 样品中去垢剂的去除 双向电泳样品的制备 纯化血清多肽做生物标志物 抗体的快速浓缩 未结合标志物的去除 尿液的浓缩 核酸样品浓缩及脱盐 法医鉴定分析样品的预处理 更多有关生命科学实验室的超滤解决方案, 请咨询:china_bioscience_marketing@millipore.com 或 本文版权为密理博所有,欢迎转载或提出宝贵意见,转载时请注明密理博中国博客并附原文链接
  • 蛋白质结构分析新技术创测定速度纪录
    《自然-方法学》:蛋白质结构分析新技术创测定速度纪录   过去需几年时间完成的工作现在仅用几天即可完成   据美国物理学家组织网7月20日报道,隶属于美国能源部的劳伦斯伯克利国家实验室的科学家开发出一种利用小角度X射线散射技术测定蛋白质结构的新方法,大大提高了蛋白质结构研究分析的效率,使过去需要几年时间完成的工作仅需要几天即可完成,这将极大地促进结构基因组学的研究进程。   结构基因组学是一门研究生物中所有蛋白质结构的科学。通过对蛋白质结构的分析,可大致了解蛋白质的功能。结构基因组学重视快速、大量的蛋白质结构测定,而快速结构测定技术正是该学科研究面临的一个瓶颈问题。目前通常使用的两种测定技术,X射线晶体衍射和核磁共振质谱技术,虽然精确,但速度很慢,测定一个基因的蛋白质结构,动辄就需要几年的时间。随着新发现的蛋白质及蛋白质复合物越来越多,目前的分析速度远远不能满足研究的需要。   为解决这个瓶颈问题,劳伦斯伯克利国家实验室的科学家们借助了该实验室的先进光源(ALS)。他们运用一种称为小角度X射线散射(SAXS)的技术,对处于自然状态下(如在溶液之中)的蛋白质进行成像,其分辨率大约为10埃米(1埃米等于1/10纳米),足够用来测定蛋白质的三维结构。ASL产生的强光可以使实验所需材料减至最少,这使得该技术可以用于几乎所有生物分子的研究。   为了最大限度提高测定速度,研究小组安装了一个自动装置,可自动使用移液器吸取蛋白质样品到指定位置,以便利用X射线散射进行分析研究。他们还使用美国能源部国家能源研究科学计算机中心(NERSC)的超级计算资源进行数据分析。利用这一系统,研究小组取得了惊人的研究效率,在1个月内分析测定了火球菌的40组蛋白质结构。如果使用X射线晶体衍射技术,这可能需要花几年时间。同时,他们所获取的信息十分全面,涵盖了溶液中大部分蛋白质样本的结构信息。相比于在结构基因组学启动计划中使用核磁共振和晶体衍射技术仅能获取15%的信息量来说,这是十分巨大的进步。   高通量蛋白质结构分析有助于加快生物燃料的研究步伐,帮助解读极端微生物在恶劣环境中的繁荣之谜,更好地理解蛋白质的功能。研究小组之所以首先选择火球菌进行实验分析,就是因为它可用来生产清洁能源——氢。同时,在许多工业流程中都会出现高酸高热的环境状态,而这正是火球菌喜欢的生存环境。   但这种技术也有不足之处,追求速度会造成一种失衡,使成像质量相应打了折扣。与X射线晶体衍射成像的超高分辨率相比,小角度X射线散射成像的分辨率比较低,大约是10埃米。但这并不妨碍该技术的应用前景,因为并不是所有的研究都需要超高精度成像。对于结构基因组学研究来说,有时只要知道一种蛋白质与另一种蛋白质具有相似的结构,就可以了解其功能。而且,小角度X射线散射技术能够提供溶液中蛋白质形状、结构及构造变化等方面的精确信息,足以弥补其在成像精度方面的不足。   该研究成果刊登在7月20日《自然—方法学》杂志网络版上,美国斯克利普斯研究所和乔治亚州大学的科学家亦参与了该项研究。
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙 沃特世科技(上海)有限公司实验中心 氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC® HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。 氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC® 系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT® 质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。 沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。 参考文献 (1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875 (2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61 (3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloproteasecleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554 (4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933. (5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27 (6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217 (7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22. (8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506 (9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167 (10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820 (11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414 (12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40 (13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52. (14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogatingviral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132 (15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem. 2011, 3, 172-177 (16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 【热点应用】揭秘蛋白质的热稳定性!
    #本文由马尔文帕纳科医药业务发展经理 韩佩韦博士供稿# 蛋白质的热稳定性研究对于加深对蛋白质的结构和功能的了解有着非常重要的意义。差示扫描量热技术(DSC)是直接测量热转变过程焓变(ΔH)唯一的分析方法,例如蛋白质,核酸或其他生物多聚物的热变性过程,为表征蛋白质及其他生物分子的热稳定性建立“金标准”技术。 一、焓变对于蛋白质的稳定性意味着什么? 1,什么是焓(hán)变(ΔH)? ΔH(焓变)是在恒压状态下将系统升高至温度T过程中摄取的总能量。对于蛋白质而言,这意味着用于使蛋白质发生去折叠所花费的能量(热量),此过程中 ΔH 是为正值,代表这是一个吸热过程。这种能量与蛋白质中所有原子和分子运动相关,以及维系蛋白质保持折叠构象中的键能。 通过将吸热谱图下方的面积进行积分(见图 1)可以计算得到焓变(ΔH)。焓变用每摩尔蛋白质的吸收的卡路里(或焦耳)来表示。由于蛋白质在 DSC 实验中暴露于升高的温度,因此蛋白质开始发生热变性,并伴随着非共价键的断裂。焓变(ΔH)与维系蛋白质天然(折叠)构象中所需的价键数量有关。焓变(ΔH)也取决于我们测量总蛋白质浓度的准确程度。如果蛋白质浓度不是很准确, 则会影响到计算出的ΔH值。 2,焓变(ΔH)值可以在实践中告诉我们什么? 当您比较不同蛋白质的DSC结果时,具有较大ΔH值的蛋白质不一定比具有较小ΔH的蛋白质更稳定。由于ΔH值会对蛋白质摩尔浓度归一化,因此该值通常与蛋白质的尺寸成比例。大多数蛋白质具有相同的键密度(单位体积内的价键数量),因此,期待具有较大分子量的蛋白质也具有较大的焓变(ΔH)值也是合理的。 3,焓变(ΔH)的决定因素是什么? 焓变(ΔH)取决于溶液中天然蛋白质的百分比。 一个非常重要的考虑是DSC仅测量初始处于折叠(天然)构象中的蛋白质的ΔH值。ΔH值取决于具有折叠(活性)构象的浓度。如果初始折叠蛋白质组分小于总蛋白质浓度(即活性浓度小于100%),则计算出的ΔH值将相应地变小。 下图显示了在储存期间的不同时间测量的相同蛋白质的DSC图谱。蓝色曲线图谱表示新鲜制备的蛋白质,是100%天然(折叠)蛋白质。当蛋白质样品在储存期间发生部分变性时,溶液中的天然蛋白质的比例开始下降,导致DSC图谱的焓变降低。当我们拥有100%天然蛋白质的参考DSC图谱时,我们可以根据不同状态样品的相对ΔH值来估计每个样品中的折叠蛋白质比例。 4,如何判断蛋白质是否失活? 到目前为止,我们已提及的焓变是指通过DSC仪器直接测量到的“热”焓,也就是热力学焓变,通常表示为ΔHcal,这是其他任何非量热技术,例如圆二色谱(CD),表面等离子共振(SPR)等技术不能获取的焓变量。 还有另一种其他技术可以获取的焓变类型,即范霍夫焓变 - ΔHVH,我们同样可以通过DSC数据计算得出。范霍夫焓变(ΔHVH)可从通过DSC非两状态模型(non-2-state model)拟合得到。 两种不同的焓变对蛋白质热稳定性的测定又有什么实际意义呢? 在DSC技术中,ΔHcal仅由DSC热转变峰曲线积分的面积来确定,而ΔHVH仅通过热转变峰曲线的形状来确定。转变峰形越尖锐,ΔHVH越大,反之亦然。ΔHcal是具有浓度依赖性的,但ΔHVH不是。 若ΔHcal/ΔHVH比例为1,通常意味着所研究的热转变状态符合两状态去折叠(Two-state unfolding model)模型。如果ΔHcal/ΔHVH比例大于1,则意味着存在显著密集的中间体存在 而ΔHcal/ΔHVH比小于1,则意味着存在分子间相互作用。 使用ΔHcal/ΔHVH可以帮我们估测是否有很大部分蛋白质是失活的。如果我们有一个简单的单结构域蛋白质,并且假定没有中间体,则我们可以预测,其去折叠过程的ΔHcal/ΔHVH的比值不会远离1。因此,如果ΔHcal显著低于ΔHVH,可以表明很大部分蛋白质已经失活。 综上所述,对DSC中ΔH数据的分析可以让我们了解蛋白质的去折叠机制,以及多少蛋白质处于其活性的天然构象。 二、TM值如何与和蛋白质稳定性相关? 中点转变温度TM我们可以从DSC数据中提取多个热力学参数,例如ΔH,ΔHVH(范霍夫焓变),ΔCP和ΔG,但最广泛使用的参数是TM。顺便提一下,这也是最容易和最准确的值 - TM是最大峰值所对应的温度。 “蛋白质稳定性”有多种定义。最常见的是,对于工业上有重要意义的蛋白质,该术语是指在生理温度下的功能(或操作)稳定性 即,他们可以在37°C下发挥多长时间的生物功能?这可以通过需要花几天或数周时间的等温研究来评估,或者,如果使用差示扫描量热法(DSC),则可以在几分钟内变性蛋白质。 通过DSC获得的哪个热力学参数与功能稳定性相关度最佳?事实证明,是TM值。 热力学稳定性(ΔG)是功能稳定性的较差的预测因子 技术上,ΔG仅适用于可逆去折叠过程,此外,它由TM,ΔH和ΔCP计算得到,后者可能很难获取。 一个例子是TM和ΔG与人肉杆菌蛋白抗原血清型C的半数聚集时间(half time)(作为功能稳定性的量度)的相关性,用作模型蛋白。ΔG与T1 / 2 agg. 相关系数(R)仅为0.4,而TM 与 T1 / 2 agg.的相关系数是0.92。(来自J Pharm Sci的数据,2011 Mar 100(3):836-48) 思考TM的一种方式: 如下图所示,假设我们用 DSC 扫描两种不同配方中的蛋白质或两种不同的蛋白质构建体,则 TM 值向低温方向 5℃ 的负偏移(稳定性下降)实际上反映了在 37℃ 条件下的 Fu (蛋白去折叠比例)由2%增加到 3%。温度 T 下的 Fu 蛋白可以通过图像化的方式估算,即温度 T 以下的曲线下阴影区域面积和整个曲线下方面积的百分比。 由于聚集体的生成可能是浓度依赖的过程,因此较高浓度的去折叠蛋白质(红色扫描曲线)将导致较快的聚合(更大组分的去折叠状态(U)才能转换为不可逆变性状态(I)。参见下面的原理图。 这种解析的一个推论是,曲线的整体形状应该是相似的。我们假定这种情况是对于在不同配方中的相同蛋白质或由一个母分子衍生出来的具有相似构建体的蛋白质。但是,对于完全不同的蛋白质,使用TM值作为用于稳定性比较的预测指标则应该谨慎使用。 扩展阅读(www.malvernpanalytical.com)Differential Scanning Calorimetry (DSC): Theory andpracticeDifferential Scanning Calorimetry (DSC) forBiopharmaceutical Development: Versatility and PowerThe Power of Heat: Digging Deeper with DifferentialScanning Calorimetry to Study Key Protein Characteristics PEAQ-DSC 微量热差示扫描量热仪:DSC差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简介、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 关于举办第14期蛋白质分离纯化技术专题研讨班的通知
    由中国生物工程杂志社(中国生物工程学会会刊)主办的第14期蛋白质分离纯化技术专题研讨班定于2012年9月15-16日在上海举行。本期研讨班课程综合了国内外最新的蛋白质分离纯化技术与方法,特别是广泛吸纳了历届参会代表的大量问题解答与反馈意见以及研发与产业中的实际应用需求,经权威专家的反复提炼而成。研讨班内容涵盖蛋白质样品制备、纯化策略、过程优化,相关的产品规定、政策解读以及技术经济分析等内容,并注意突出重点和难点,如基因工程上下游的整体策略、纯化中的具体难点,层析介质的选择等多方面,以及层析柱蛋白质失活等具体问题。   本期研讨班由中国科学院从事制备与纯化技术的一线专家授课,注重引导学员讨论实际案例,突出互动性以提高学习效果,从而帮助参会人员在短时间里高效率地掌握蛋白质分离纯化工具,获得规范和先进的蛋白质纯化与工艺开发知识和方法,提高蛋白质分离纯化实践中解决具体问题的能力。   本期研讨班课程涵盖了从样品制备到纯化策略和过程优化的全过程,主要内容包括:   蛋白质样品的获得层析预处理原则与技术:离心、过滤、超滤、双水相抽提蛋白质层析,包括:   (1)层析介质选择:层析介质特性对层析过程的影响——材质、孔径、官能团   (2)层析技术:分子排阻、离子交换、疏水层析、金属螯合、亲和层析等   (3)层析步骤整合方法:选择性、分辨率、动态载量、主要杂质的控制和去除   (4)蛋白质纯化平台:适应于分子生物学实验室蛋白质纯化的方法和实例   单克隆抗体纯化,包括:   (1)单克隆抗体的生化性质   (2)单克隆抗体纯化的工具   (3)单克隆抗体纯化的策略和方案   用于疫苗和基因治疗的病毒颗粒纯化策略和方法   (1)双水相技术   (2)整体柱分离技术:病毒颗粒的离子交换,疏水,IMAC及亲和层析纯化   蛋白质纯化的溶液体系   (1)蛋白质纯化的缓冲溶液组成和功能   (2)各种层析模式的常用缓冲溶液的设计和使用   蛋白质层析技术经济分析   研讨班还安排高效重组蛋白表达策略与经验介绍等专题内容。   会议时间、地点:2012年9月15-16日,中国科学院上海学术活动中心(好望角大饭店),地址:上海市肇嘉浜路500号。报到时间:2012年9月14日,报到地点:好望角大饭店一层。   参会办法:参会代表请于9月7日前填写会议回执后Email/邮寄/传真至会议主办单位中国生物工程杂志社,会议费每人1600元,在读研究生每人1400元(凭有效证件),食宿统一安排,费用自理。   联系方式:   通信地址:北京市海淀区中关村北四环西路33号中国生物工程杂志社(100190)   联 系 人:任红梅13641036700   电 话:(010)82624544,82626611-6511 传真:(010)82624544   电子邮件:renhm@mail.las.ac.cn   中国生物工程杂志社   2012年8月   第14期蛋白质分离纯化技术专题研讨班报名回执表   (参会代表请于2012年9月5日前Emial/传真/邮寄至中国生物工程杂志社) 单位名称 通信地址 邮编 姓名 性别 职称 电话 传真 E-mail 是否住会   第14期蛋白质分离纯化技术专题研讨班住宿预订表   (住会者请务必2012年9月5日前回传本表,否则无法安排住宿) 单位名称 联系人 电话 手机 电子邮件 代表姓名 性别 是否需要单人间 入住日期 离店日期   报到及住宿酒店   好望角大饭店,地址:上海市肇嘉浜路500号,酒店电话021-64716060。住宿标准:330元/天标准间。由于好望角大饭店属于政府采购指定酒店,对于事业单位的参会代表,可以凭工作证享受政府采购价格298元/标准间(含早餐)。
  • 关于举办第11期蛋白质分离纯化技术专题研讨班(基础班)的通知
    当前,我国以疫苗和单抗药物为主要领域的生物制药研发已经初具规模,生物工程中下游的关键技术与配套基础正在加速建立与完善,国际生物产业的发展也将加快向中国转移。基因工程下游技术、蛋白质分离纯化技术等作为生物技术研究与产业化中的一线技术,在新产品开发、工艺流程优化、基因工程项目规划与实施等方面极为重要。鉴于目前生物技术相关专业中蛋白质纯化等下游技术课程较为薄弱的问题,中国生物工程杂志社定于2011年7月在北京举办“第11期蛋白质分离纯化技术专题研讨班(基础班)”。基础班旨在使生命科学研究与生物技术应用领域的专业人员在从事蛋白质实验工作中,能够建立系统规范的掌握蛋白质纯化的概念和知识。此外,与以往举办的专题研讨班不同,中高级班专题研讨班以掌握蛋白质分离纯化全面知识和国际最新进展为主体,基础班则是系统讲解与演示生物工程下游技术的基础知识与操作技能。   本期研讨班将邀请中国科学院从事制备与纯化技术的一线专家授课,并结合大量实例具体讨论蛋白质纯化中的各种考虑要素,以专家讲座为主,辅以关键实验步骤演示与学员实际案例讨论,突出互动性以提高学习效果。   研讨班主要内容:   蛋白质样品的获得层析预处理原则与技术:离心、过滤、超滤、双水相抽提蛋白质层析,包括:   (1)层析介质选择:层析介质特性对层析过程的影响——材质、孔径、官能团   (2)层析技术:分子排阻、离子交换、疏水层析、金属螯合、亲和层析等   (3)层析步骤整合方法:选择性、分辨率、动态载量、主要杂质的控制和去除   (4)蛋白质纯化平台:适应于分子生物学实验室蛋白质纯化的方法和实例   单克隆抗体纯化疫苗病毒纯化基础,包括:   (1)单克隆抗体的生化性质   (2)单克隆抗体纯化的工具   (3)单克隆抗体纯化的策略和方案   (4)病毒疫苗的纯化流程   蛋白质纯化的溶液体系   (1)蛋白质纯化的缓冲溶液组成和功能   (2)各种层析模式的常用缓冲溶液的设计和使用   会议时间、地点:2011年7月2-3日,中国科学院文献情报中心一层院士厅(北京中关村北四环西路33号国家科学图书馆),报到时间:2011年7月1日8:00——18:00,报到地点:《中国生物工程杂志》编辑部。   参会办法:参会代表请于6月27日前填写会议回执后Email/邮寄/传真至会议主办单位中国生物工程杂志社,会议费每人1200元,在读研究生每人1000元(凭有效证件),食宿统一安排,费用自理。   联系方式:   通信地址:北京市海淀区中关村北四环西路33号中国生物工程杂志社(100190)   联 系 人:任红梅   电 话:(010)82624544(可传真),82626611-6511,13641036700   电子邮件:renhm@mail.las.ac.cn   中国生物工程杂志社   2011年6月   第11期蛋白质分离纯化技术专题研讨班(基础班)报名回执表 (参会代表请于2011年6月27日前Emial/传真/邮寄至中国生物工程杂志社) 单位名称 部门 通信地址 邮编 姓名 性别 职称 电话 传真 E-mail 是否住会 第11期蛋白质分离纯化技术专题研讨班(基础班)住宿预订表 (住会者请务必于2011年6月27日前回传本表,否则无法安排住宿) 单位名称 联系人 电话 手机 E-mail 代表姓名 性别 是否需要单人间 入住日期 离店日期   会议驻地:中科院第一招待所(010-62564642)、中科院中关村公寓(010-62635070),标准间每天150元。公交线路:913、983、740、696、826、466、641、26、47、320区间、运通113等各路公交车至中关村一街站即到。
  • 《美国化学会志》报道固体NMR新方法探测蛋白质的界面
    在4月30号出版的《美国化学会志》(JACS, 2008, 130, 5798)上报道了中科院武汉物数所杨俊博士在美国University of Delaware 用固体NMR新方法研究蛋白质界面的研究工作。 一些生物大分子,如膜蛋白,蛋白质复合体,蛋白质纤维等,在生命过程中起着极为重要的作用,但是由于难于得到这些生物分子的单晶以及它们在溶液中的低溶解度, 用X-ray和液体NMR很难得到它们的结构。一个典型的例子是膜蛋白质。膜蛋白约占与人类基因编码有关的蛋白质的30%,一些重要的生命活动如能量转换、信息识别与传递、物质运送和分配都与膜蛋白密切相关。但是到目前为止,只有157种(总共约3万种)膜蛋白的三维结构结构是已知的。对于这些“困难”的生物大分子,固体NMR被认为是最有前途的研究手段之一。自从2002年德国科学家首次用魔角旋转NMR得到固体蛋白质的三维结构以来,这几年这个领域飞速向前发展。随着高磁场NMR仪器的使用,魔角旋转NMR探头技术的发展,固体蛋白质样品制备技术的成熟和一批两维到四维固体NMR脉冲序列的使用,魔角旋转NMR研究蛋白质的能力大大提高,魔角旋转NMR已经能够对25-30 KDa的蛋白质进行NMR信号全归属和相应的结构和动力学研究。 在这个研究中,杨俊和University of Delaware 的同事Tatyana Polenova设计了一组新脉冲序列,他们用这组脉冲序列研究了用不同同位素标记的thioredoxin蛋白质组装体的分子内和分子间的界面。首先他们用理论模拟和NMR实验证实了固体NMR中的REDOR技术可以用来消除13C,15N全富集的蛋白质主链上的15N信号,实现了用一个蛋白质样品同时进行NMR信号归属和蛋白质界面研究。借助于对远程相互作用敏感的1H/13C REDOR和PAIN-CP技术, 他们设计了两个脉冲序列,用不同核自旋对的相关性观察到了蛋白质界面上空间相近的残基对。另外,他们还设计了两个脉冲序列对蛋白质另外一段的主链上的15N信号进行了归属。这组固体NMR的脉冲序列和相应的同位素标记方法将可以在更大的蛋白质复合体的界面研究中使用。
  • 校准蛋白质分析仪的重要性及步骤
    蛋白质分析仪是生物化学和分子生物学实验室中重要的设备,它用于定量分析蛋白质样品,支持从基础研究到药物开发的广泛应用。为了确保蛋白质分析的数据准确性和重复性,定期进行仪器的校准是至关重要的。本文将讨论校准仪器的重要性,并概述有效的校准步骤。   蛋白质分析仪校准的重要性首先体现在保障数据质量上。精确的蛋白质测量对于了解生物样本中的蛋白质表达水平、检测疾病标志物、验证药物作用靶点等都至关重要。未经校准的仪器可能导致错误的结果,影响研究结论和治疗决策。   校准仪器有助于满足监管要求。在制药和临床领域,蛋白质分析必须符合严格的法规标准。定期校准的仪器能够产生符合这些标准的数据,帮助企业和医疗机构遵守法规,减少合规风险。   可以提高实验室之间的数据一致性。不同实验室使用的不同仪器,即使型号相同,也可能因为使用环境和操作习惯的差异而产生不同的测量结果。通过实施标准化的校准程序,可以确保不同实验室之间的测量结果具有可比性,这对于多中心研究和数据分析尤为重要。   蛋白质分析仪的校准步骤通常包括以下几个关键环节:   选择适当的标准物质:使用已经由认证机构校准过的标准蛋白质溶液作为参考。这些标准物质应当覆盖仪器的工作范围,并且具有已知的浓度和特性。   控制环境条件:在进行校准之前,确保实验室的环境条件(如温度和湿度)符合仪器的使用要求。环境因素对蛋白质测量有显著影响,因此控制这些条件对于获取准确结果至关重要。   操作人员培训:确保操作仪器的人员具有足够的知识和技能,以正确执行校准程序。这包括了解仪器的工作原理、操作规程以及校准的具体步骤。   执行校准程序:按照制造商提供的说明书或行业标准进行校准。这可能包括预热仪器、执行零点调整、检查和调整测量系统等步骤。   记录和验证:记录校准结果,并根据需要进行调整。完成校准后,使用标准物质验证仪器是否达到了预期的准确度。   定期复校:根据仪器的使用频率和制造商的建议,定期重复校准流程。这有助于及时发现和修正任何潜在的问题,保持仪器的较佳性能。   综上所述,校准蛋白质分析仪对于确保数据的准确可靠、满足法规要求、提高实验室间数据的一致性至关重要。通过遵循正确的校准步骤,用户可以确保他们的仪器始终处于较佳工作状态,从而获得高质量的测量结果。
  • 超大孔填料在蛋白质分离纯化中的应用
    p & nbsp /p p   层析纯化技术由于其高选择性、灵活性、易放大性等优点,已经成为蛋白质药物纯化中不可或缺的技术。传统的层析填料为多糖基质,孔径一般在100 nm以下。1970年代出现了大孔和微孔无机材料硅填料,虽然增大了孔道、提高了层析的分辨率和流速,但只能在PH2-7.5范围内稳定,不利于分离纯化在碱性范围内稳定的蛋白质或是需要碱性层析条件的分离,从而限制了其在大规模快速分离蛋白质层析上的应用。多孔聚合物微球由于其高的比表面积、高的机械强度和多样的表面特征,常被用作层析分离纯化的填料。目前已发展出了多种表面基团、基质种类的层析填料,成功用于疫苗、病毒、抗体、酶、细胞因子等的分离纯化。 /p p   span style=" color: rgb(0, 176, 240) " strong  层析纯化病毒、病毒样颗粒等生物大分子的瓶颈问题 /strong /span /p p   随着病毒、病毒样颗粒在疫苗、肿瘤治疗、免疫治疗中的地位越来越重要,这类复杂生物大分子的分离纯化需求也逐渐增加。然而传统填料由于孔径较小,蛋白质只能以扩散方式通过填料,传质速率慢,处理量低,造成分离时间长、容易失活等问题[1]。当蛋白质体积较大时,填料表面在吸附一层蛋白后,由于体积位阻以及静电排斥作用,会阻碍其它的蛋白质进一步进入孔内,造成填料的载量下降。另一个限制是病毒或疫苗,尤其是带有包膜的病毒或疫苗,在狭窄的填料孔径内发生吸附时非常容易发生结构变化,破坏其整体结构。在乙肝病毒表面抗原(HBsAg)的纯化中发现这种病毒样颗粒在层析时会发生解聚[2],经过离子交换层析分离后,疫苗的回收率通常不到50%[3, 4]。而抗原的结构发生变化以后,就会对其免疫原性产生影响,所以需要在纯化过程中尽可能维持抗原的结构。 /p p   为了解决针对病毒及病毒样颗粒纯化的瓶颈问题,目前已有采用膜色谱、超大孔贯穿孔颗粒填料及整体柱的策略进行纯化的案例,成功纯化了包括人乳头瘤病毒、番茄花叶病毒、流感病毒、腺病毒、慢病毒及各种病毒样颗粒。 /p p span style=" color: rgb(0, 176, 240) " strong   病毒及病毒样颗粒的分离纯化 /strong /span /p p   根据文献报道,超大孔填料相比传统层析填料不仅在载量及处理速度上有极大的优势,还更有利于病毒及病毒样颗粒的结构保持。 /p p   例如,在重组乙肝病毒表面抗原的分离纯化中,采用具有120nm及280nm超大孔径的离子交换填料DEAE-AP-120 nm和DEAE-AP-280 nm(商品名为中科森辉的Giga系列)具有比传统填料DEAE-FF高7倍以上的动态载量[1]。此外,采用ELISA测定抗原收率,发现采用超大孔填料能够减少重组乙肝病毒表面抗原在层析过程中的裂解,从而显著提高活性抗原的收率。 /p p style=" text-align: center " img width=" 576" height=" 450" title=" 1.jpg" style=" width: 415px height: 282px " src=" http://img1.17img.cn/17img/images/201808/insimg/3b67db18-4291-4ab6-9874-209cd57644af.jpg" /    /p p style=" text-align: center " 重组乙肝病毒表面抗原在不同孔径离子交换填料上 /p p style=" text-align: center "   的吸附动力学[1] /p p style=" text-align: center " img width=" 497" height=" 345" title=" 2.jpg" style=" width: 387px height: 289px " src=" http://img1.17img.cn/17img/images/201808/insimg/07fdf233-77a5-4c30-8d20-faf7f044b54a.jpg" /   /p p style=" text-align: center "  重组乙肝病毒表面抗原从不同孔径的填料上洗脱下来的 /p p style=" text-align: center "   ELISA回收率[1] /p p   对病毒的分离纯化同样有类似的效果。例如在灭活口蹄疫病毒的纯化中,DEAE-FF导致严重的病毒裂解。而采用具有100nm以上孔径的超大孔填料,不仅载量提高10倍以上,还能显著提高病毒在填料上吸附时的热稳定性,从而减少病毒的裂解,具有更高的收率。最终的分离纯化单步收率达90%以上[5]。 /p p style=" text-align: center "    span style=" font-size: 14px " strong 灭活口蹄疫病毒在传统填料与超大孔填料上的吸附解离过程 /strong /span /p p   与商品填料的小孔道填料相比,超大孔结构可能从以下几方面提高对蛋白质构象的稳定性: /p p   1)增大孔道(受限空间):根据蛋白质折叠行为计算显示,蛋白质的折叠速率与空腔大小、形状密切相关,也即当填料孔道与蛋白的相对尺寸超过某一阈值后,蛋白的折叠行为将不受空腔大小影响。与数十纳米中孔结构的传统填料的相比,数百纳米超大孔结构会因孔道增大、与蛋白接触面积减小,从而对某一尺寸下蛋白质的变构行为有所改善。 /p p   2)界面曲率:小孔径填料孔道曲率大,填料与蛋白质接触面积大,因此受更大吸附力影响,蛋白质二级结构变化越严重。而曲率更大的超大孔孔道对蛋白二级结构的保护比狭窄孔道更有优势。 /p p style=" text-align: center "   span style=" font-size: 14px " strong  表面曲率变化对蛋白接触面积的影响 /strong /span /p p   3)改善配基与蛋白活性区域的接触面积:超大孔微球内部数百纳米孔道在修饰配基后可能会有效改善传统填料狭窄孔道内由于配基拥挤造成的蛋白质失活现象。 /p p   4)减少蛋白在孔道内的静电排斥作用:有研究者认为,在离子交换填料上蛋白质起初会在孔道入口处形成一圈静电层,这一静电层会对后来蛋白继续进入孔道产生排斥作用从而使孔道关闭,动态载量下降。如果将超大孔填料修饰为离子交换树脂,由于孔道尺寸显著扩大可能会有效改善蛋白吸附静电层对孔道的封闭作用,从而有效引导蛋白质进入超大孔道,提高回收率。 /p p span style=" color: rgb(0, 176, 240) " strong   快速分离蛋白质及pDNA /strong /span /p p   除了应用于病毒及病毒样颗粒的分离纯化的分离纯化,利用超大孔填料传质速度快的优势,将超大孔填料镀上亲水表层,再接上不同配基制成多种形式的层析填料,用于快速高分辨率的纯化蛋白混合物或质粒。超大孔填料制备成的亲和层析、反相层析和离子交换层析填料广泛的应用在蛋白质的分离纯化方向,显示出超大孔填料比传统分离填料高速高分辨率的蛋白质纯化优势。 /p p   例如以肌红蛋白、转铁蛋白和牛血清白蛋白的混合溶液为模拟体系,考察不同流速下超大孔聚苯乙烯阴离子交换介质(DEAE-AP,商品名为Giga系列)的分离效果,并与DEAE 4FF介质进行了对比。实验结果(图2)显示,作为对照的DEAE-4FF介质在流速达到361 cm/h时,分离效果已明显降低,而超大孔介质可以在流速高达1084 cm/h的条件下操作,分离效果良好,能够在6 min内实现三种生物大分子的快速分离。 /p p style=" text-align: center " img width=" 588" height=" 170" title=" 3.jpg" style=" width: 473px height: 144px " src=" http://img1.17img.cn/17img/images/201808/insimg/65df31ac-bd00-4a08-8a5a-feedfa1aa990.jpg" / /p p   span style=" color: rgb(0, 176, 240) " strong  超大孔填料应用前景与展望 /strong /span /p p   近年来,随着生命科学的发展,生物样品越来越复杂,如人的血样、尿样、组织样品等,对生物分离分析技术提出更高的要求。根据超大孔填料固有的诸多优点,通过合成不同种类的超大孔固定相及在固定相上做不同功能的衍生,超大孔填料已经被广泛应用于生物分离分析中,但也存在一些问题。因此,发展新的制备手段,优化制备条件和过程,探索制备和分离机理,对于开辟新的应用领域以及开展实际样品的分离分析有更大的理论和现实意义。 /p p   根据已有的文献报道,我们可以预测今后几年的相关工作仍会集中在以下几个方面: /p p   (1)规则的聚合物整体材料内部形态。如获得规则的3D网络骨架,可控的孔径尺寸和分布。 /p p   (2)继续在微分离系统中扩展其应用。如在加压电色谱、微流控芯片材料、微流色谱和纳流色谱系统,甚至纳米器件开发等诸多方面大显身手。 /p p   (3)表面物理化学性质的调控向功能化、智能化方向发展。如基于分子印迹技术、温度响应以及pH响应的表面智能化的整体材料。 /p p   (4)制备规模整体柱的开发及其在生物下游技术中的应用。 /p p   目前,已经有一部分整体柱实现了商品化,但种类有限,还无法与种类繁多的颗粒型填充柱相提并论,也远未能满足分离分析的需求。而颗粒型的超大孔填料,由于其制备较困难、批次间重复性较差、价格昂贵等,也没有得到广泛的应用。相对于超大孔填充柱,有机相整体柱存在因流动相变会发生溶胀或收缩、机械强度差、比表面积小、柱容量差以及聚合过程中产生的微孔不利于小分子样品的分析等问题,现有报道大都用于生物大分子的分离。硅骨架整体柱也存在必须预先聚合好装入套管中,制备繁琐,比表面积较小的问题。因此,如何以更简便、有效的方式制备高效新型的超大孔填料并将其应用于实际样品的分离分析仍然是今后工作的重心。在实际工作中所面临的层出不穷的问题也是推动新型超大孔填料制备技术和方法发展的源源不竭的动力,在诸多的尝试中很可能就会出现某些性质优良的超大孔填料,这也预示着将来商品化的超大孔会越来越多。 /p p span style=" color: rgb(0, 176, 240) " strong   部分商品化的超大孔层析介质 /strong /span /p p    strong 超大孔填料因其具有独特的多孔结构,与传统填料相比具有更加优良的渗透性和传质速率,可以在较低的操作压力下实现高效和快速的分离,已成为继多聚糖、交联与涂渍、单分散之后的第四代分离填料。可以预测,随着制备技术的不断提升,超大孔填料在生命科学、医药、环境和化学化工等领域必将大有可为。 /strong /p p   参考文献 /p p   [1] M.R. Yu, Y. Li, S.P. Zhang, X.N. Li, Y.L. Yang, Y. Chen, G.H. Ma, Z.G. Su, Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity, Journal of Chromatography A, 1331 (2014) 69-79. /p p   [2] P.M. Kramberger P, Boben J, Ravnikar M, ?trancar, A.S.m.c.a.b. in, p.a.f.q.o.t.m. virus., J. Chromatogr. A 1144(1). /p p   [3] W. Zhou, J. Bi, J.-C. Janson, A. Dong, Y. Li, Y. Zhang, Y. Huang, Z. Su, Ion-exchange chromatography of hepatitis B virus surface antigen from a recombinant Chinese hamster ovary cell line, Journal of Chromatography A, 1095 (2005) 119-125. /p p   [4] W. Zhou, J. Bi, J.C. Janson, Y. Li, Y. Huang, Y. Zhang, Z. Su, Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenulapolymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering, Journal of Chromatography B, 838 (2006) 71-77. /p p   [5] S.Q. Liang, Y.L. Yang, L.J. Sun, Q.Z. Zhao, G.H. Ma, S.P. Zhang, Z.G. Su, Denaturation of inactivated FMDV in ion exchange chromatography: Evidence by differential scanning calorimetry analysis, BiochemEng J, 124 (2017) 99-107. /p p /p
  • 基于镜像酶正交酶切的蛋白质复合物规模化精准分析新方法
    蛋白质作为生命活动的执行者,通过自身结构的动态改变,以及与其他蛋白质相互作用组装为蛋白质复合物,调控各种生物学过程。因此,如何实现蛋白质复合物的精准解析已成为当前生命科学的研究热点。化学交联结合质谱(CXMS)技术作为蛋白质复合物解析的新兴技术,利用化学交联剂将空间距离足够接近的蛋白质分子内或分子间的氨基酸残基以共价键连接起来,再利用液相色谱-质谱联用对交联肽段进行鉴定,实现蛋白质复合物的组成、界面和相互作用位点的解析。该技术具有分析通量高、灵敏度高、可提供蛋白质间相互作用的界面信息、普遍适用于不同种类和复杂程度的生物样品等优势,已成为X射线晶体衍射、低温冷冻电镜、免疫共沉淀等蛋白质复合物研究技术的重要补充。化学交联位点的鉴定覆盖度和准确度决定着该技术对于蛋白质复合物结构的解析能力。目前,为了实现蛋白质复合物的高覆盖度交联,研究人员发展了可用于共价交联赖氨酸(K)的氨基、谷氨酸(E)/天冬氨酸(N)的羧基、精氨酸(R)的胍基以及半胱氨酸(C)的巯基等多种活性基团的新型交联剂。进而,为了提高低丰度交联肽段的鉴定灵敏度,体积排阻色谱法、强阳离子交换色谱法,及亲和基团富集策略被提出用于交联肽段的高选择性富集,如可富集型化学可断裂交联剂——Leiker,与不具备富集功能的交联剂相比,通过亲和富集可以将交联位点鉴定数目提高4倍以上。胰蛋白酶镜像酶(LysargiNase)的酶切位点与胰蛋白酶互为镜像,可特异地切割赖氨酸和精氨酸的N端。由于LysargiNase的N端酶切特点,电荷主要分布在交联肽段的N端,在碰撞诱导裂解(CID)和高能诱导裂解(HCD)模式下产生以b离子为主的碎片离子,与胰蛋白酶酶切肽段以y离子为主的碎片离子互为镜像补充,为胰蛋白酶酶解肽段在质谱鉴定中b离子缺失严重的问题提供了很好的解决办法。由于具有较高的酶切特异性和酶活性,镜像酶已经成功地应用于蛋白质C末端蛋白质组鉴定、磷酸化蛋白质组研究、甲基化蛋白质组鉴定等方面,然而在CXMS中的应用仍未见报道。为进一步提高对蛋白质复合物结构及相互作用位点的解析能力,本文发展了LysargiNase与胰蛋白酶联合酶切的方法,基于镜像酶正交切割的互补特性,通过产生赖氨酸及精氨酸镜像分布的交联肽段,以增加特征碎片离子数量和肽段匹配连续性,从而提升交联肽段的谱图鉴定质量,达到提高交联位点的鉴定覆盖度和准确度的目的。通过分别对牛血清白蛋白及大肠杆菌全蛋白样品的交联位点鉴定结果的考察,评价该策略对单一蛋白样品和复杂细胞裂解液样品蛋白质复合物表征的应用潜力。蛋白质样品制备称取牛血清白蛋白粉末,以20 mmol/L 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES, pH 7.5)作为缓冲体系,配制0.1 mmol/L牛血清白蛋白溶液。大肠杆菌细胞(种属K12)在37 ℃下采用Luria-Bertani(LB)培养基培养24 h,然后于4 ℃以4000 g离心2 min,收集细胞沉淀。细胞沉淀采用磷酸盐缓冲液(PBS)清洗3遍后,悬浮于细胞裂解液(含20 mmol/L HEPES和1%(v/v)蛋白酶抑制剂)中,冰浴超声破碎180 s(30%能量,10 s开,10 s关)。匀浆液于4 ℃以20000 g离心40 min,收集上清,采用BCA试剂盒测定所得蛋白质含量。稀释大肠杆菌蛋白裂解液至蛋白质含量为0.5 mg/mL。化学交联样品制备以20 mmol/L HEPES(pH 7.5)为溶剂配制浓度为20 mmol/L 的BS3交联剂母液 将交联剂母液加入牛血清白蛋白的缓冲溶液及大肠杆菌蛋白裂解液中,使交联剂的终浓度为1 mmol/L,在室温条件下反应15 min 通过添加终浓度为50 mmol/L的淬灭溶液NH4HCO3进行交联反应淬灭,并在室温下孵育15 min 在冰浴条件下,将交联样品逐渐滴入8倍体积的预冷丙酮中,于-20 ℃静置过夜 在4 ℃条件下,以16000 g转速离心,去除丙酮,然后将交联蛋白用预冷丙酮清洗2次,去除上清液后,于室温挥发掉残余的丙酮 以8 mol/L尿素溶液复溶蛋白质沉淀 将牛血清白蛋白交联样品以5 mmol/LTCEP作为还原剂,于25 ℃下反应1 h进行变性和还原 将大肠杆菌样品以5 mmol/LDTT作为还原剂,于25 ℃下反应1 h进行变性和还原,避免大肠杆菌蛋白在酸性条件下发生变性 添加终浓度为10 mmol/L的碘乙酰胺(IAA),在黑暗中,于室温下反应30 min 以50 mmol/LNH4HCO3稀释样品至尿素浓度为0.8 mol/L后,将样品均分为两份,一份以蛋白样品与蛋白酶的质量比呈50:1的比例加入胰蛋白酶,于37 ℃酶解过夜,另一份加入终浓度为20 mmol/L的CaCl2,以蛋白样品与蛋白酶的质量比呈20:1的比例加入LysargiNase,并在37 ℃温度下酶解过夜。液相色谱-质谱鉴定及数据搜索上述所有样品经过除盐,使用0.1%甲酸(FA)溶液复溶,用超微量分光光度计测定肽段浓度,进行反相高效色谱分离和质谱分析。牛血清白蛋白样品采用Easy-nano LC 1000系统偶联Q-Exactive质谱仪平台进行质谱分析。流动相A: 2%(v/v)乙腈水溶液(含0.1%(v/v)FA) 流动相B: 98%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~10 min, 2%B~7%B 10~60 min, 7%B~23%B 60~80 min, 23%B~40%B 80~82 min, 40%B~80%B 82~95 min, 80%B。Q-Exactive质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 300~1800,分辨率为70000(m/z=200),自动增益控制(AGC)为3×106,最大注入时间(IT)为60 ms,母离子分离窗口为m/z 2。MS/MS扫描的分辨率为17500(m/z=200),碎裂模式为HCD,归一化碰撞能量(NCE)为35%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms,仅选择电荷值为3~7且强度高于1000的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。大肠杆菌样品采用EASY-nano LC 1200系统偶联Orbitrap Fusion Lumos三合一质谱仪平台进行质谱分析。流动相A: 0.1%(v/v)甲酸水溶液 流动相B: 80%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~28 min, 5%B~16%B 28~58 min, 16%B~34%B 58~77 min, 34%B~48%B 77~78 min, 48%B~95%B 78~85 min, 95%B。Orbitrap Fusion Lumos三合一质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 350~1500,分辨率为60000(m/z=200), AGC为4×105, IT为50 ms,母离子分离窗口为m/z 1.6。MS2扫描的分辨率为15000(m/z=200),碎裂模式为HCD, NCE为30%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms。仅选择电荷值为3~7且强度高于2×104的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。质谱数据文件(*.raw)采用pLink 2软件(2.3.9)对交联信息进行检索和鉴定。使用从UniProt于2019年4月27日下载的牛血清白蛋白序列和大肠杆菌序列,搜索参数如下:酶切方式为胰蛋白酶(酶切位置:K/R的C端)、LysargiNase(酶切位置:K/R的N端) 漏切位点个数为3 一级扫描容忍(precursor tolerance)2.00×10-5 二级扫描容忍(fragment tolerance)2.00×10-5 每条肽段的质量范围为500~1000 Da 肽段长度的范围为5~100个氨基酸 固定修饰为半胱氨酸还原烷基化(carbamidomethyl [C]) 可变修饰为甲硫氨酸氧化(oxidation [M])、蛋白质N端乙酰化(acetyl [protein N-term]) 肽段谱图匹配错误发现率(FDR)≤5%。映射胰蛋白酶与LysargiNase酶解样品的交联位点在牛血清 白蛋白晶体结构(PDB: 3V03)的映射 LysargiNase与胰蛋白酶酶解样品的交联位点对及单一交联位点的互补性LysargiNase与胰蛋白酶酶解样品共同得到的交联位点鉴定打分比较b+/++与y+/++离子碎片分别在α/β-肽段的碎片覆盖度LysargiNase与胰蛋白酶酶解的交联肽段质谱图大肠杆菌样品中LysargiNase与胰蛋白酶酶切鉴定蛋白质复合物信息互补性带点击了解原文:https://www.chrom-china.com/article/2022/1000-8713/1000-8713-40-3-224.shtml
  • 中山大学李惠琳:非变性质谱技术推动蛋白质结构研究,助力新药研发
    蛋白质是生命的物质基础,通过与不同生物分子间的相互作用在生物体内执行着各项重要工作,其功能与结构直接相关。因此,解析蛋白质及其复合物高阶结构对于深入理解蛋白质功能、生理现象及药物研发具有重要意义。过去的60余年,随着X-射线晶体衍射(X-ray)、核磁共振(NMR)以及冷冻电镜(cryoEM)等技术的出现和不断发展,蛋白质结构解析取得了长足发展。然而,如何在分析蛋白质时使其保持近似自然生理环境的非变性状态,对其动态、异质性、相互作用等属性的研究是结构生物学领域的热点和难点。  质谱技术的不断发展使其在蛋白质结构表征领域发挥了越来越重要的作用。非变性质谱(native MS)兴起于20世纪90年代,是一种可以分析蛋白高阶结构的生物质谱方法。与传统的破坏蛋白质立体结构和弱相互作用力的方法不同,非变性质谱采用质谱兼容的近生理pH值的溶液体系(主要为醋酸铵)和更温和的电离方式,使生物大分子在气相中能够最大程度地保持自然折叠状态、非共价相互作用和相关的生物学功能。因此,非变性质谱可以提供分子质量、寡聚态、构象(折叠vs 去折叠)、异质性、配体结合、靶蛋白-小分子亲和力以及复合物中蛋白亚基的相互作用网络关系等更具生物学意义的重要信息,为蛋白质“序列-结构-功能”关系提供分子基础,已成为结构生物学不可或缺的互补工具,在生物制药、蛋白一配体、蛋白一蛋白复合物结构分析等诸多领域具有广泛应用。  近年来,蛋白质结构研究领域经历着剧烈的技术迭代。2021年人工智能(AI) AlphaFol2横空出世,将蛋白质3D结构预测的精度从60%提升到90%以上,在给传统结构解析技术带来冲击的同时,也为结构质谱的发展提供了契机。  未来,非变性质谱技术的发展需要简化样品处理,提升仪器的灵敏度、分析通量和鲁棒性,实现内源性蛋白复合物样本的直接或原位分析,推动其在生物医药表征、蛋白多聚态等领域的更广泛应用。非变性质谱技术与离子消度(MS)、自上而下串联解离(top-down)、电荷检测质谱(CDMsS)等创新联用技术和方法的不断开发及完善,将极大地提升结构信息的广度、丰富度及精确度,补充生物物理学方法缺失的结构信息。同时,非变性质谱与cryoEM1、氢完交换质谱(HDX-MS)、交联质谱等技术联用将更加常态化,这些实验数据与AI结构预测算法的进一步整合将有效解决蛋白及蛋白复合物结构预测存在的精度问题,推动结构生物学发展,助力新药研发。  此外,非变性质谱技术的应用发展将更加关注:1)蛋白复合物结构一功能关系的研究,通过与计算机模拟(MD)、HDX-Ms、cryoEM等技术联用,揭示标志物蛋白在人类疾病发展过程中的作用,推动靶向药物设计和精淮医疗 2)通过研究小分子与靶蛋白的相互作用获取二者结合的亲和力信息,加速靶向药物筛选 3)翻译后修饰(PTMS)、突变等因素导致的蛋白高度异质性及其对蛋白或亚基折叠动力学、构象及构象变化、结合计量比等造成的结构和功能影响 4)蛋白与其他生物分子(配体、DNAA/RNA、金属离子等)之间的相互作用。  李惠琳,中山大学药学院教授,博士生导师。主要从事生物大分子质谱新技术的开发及应用,其研究主要侧重于1)开发整合结构质谱技术,并对蛋白质机器结构、功能和动态变化及靶向药物作用分子机制进行深入研究2)开发middle-down/top-down蛋白质组学技术,探索蛋白翻译后修饰在生命过程中的调控机制。承担国家自然科学基金项目3项,荣获美国质谱学会颁发的Postdoctoral Career Development Award (2014) ,入选珠江人才计划(青年拔尖人才,2019),其研究成果发表在Nature Chemistry, Analytical Chemistry, J. Am.Soc.Mass Spectrom.等杂志。  "非变性质谱技术研究与应用"专栏共收录7篇论文,既介绍了非变性质谱技术的样品制备、离子源、质量分析器、联用技术等基础内容,也涵括了样品提取、样品引入、离子化及电荷操控等方式,以及在蛋白结构及构象解析、蛋白・蛋白相互作用等领域的应用,代表了国内非变性质谱技术的发展现状。希望本专栏能成为《质谱学报》广大读者颇有价值的科技文献,同时也希望更多的学者加入到非变性质谱研究领域,推动我国结构质谱技术的创新发展。
  • 新型蛋白质表征仪器系统使生物治疗分析得到改观
    p style=" text-indent: 2em " RedShift& #8482 BioAnalytics公司推出了一款新型蛋白质表征平台——AQS3& reg PRO,这一平台结合了强大的、高度集成的自动化生物分析软件,为生物医疗行业带来了高灵敏度的光谱分析。 /p p style=" text-indent: 2em " 用户通过这一平台可以观察浓度范围在0.1至200 mg/mL的蛋白质二级结构变化,并能进行集成性、可量化、稳定的结构检测和相似性检测,为用药的安全性和有效性提供重要支撑。它能够提供多种属性的测量,减少甚至消除了使用不同工具进行各种单一属性测量的需要。此外,AQS3pro还具有先进的自动化多样本分析功能,大大简化了生物医疗产业的分析工作流程。 /p p style=" text-indent: 2em " RedShift& #8482 BioAnalytics公司的首席技术官Eugene Ma表示:“ AQS3prois是生物物理表征领域的一项重大进展——将红外光谱应用在生物医疗领域的诊断分析上。这一平台是我们内部一流研发团队与大量行业专家、学术专家倾力合作的结晶。其检测的准确性、重复性和重现性已在数百个样本中得到验证,这些样本包含有数千种尺寸量度的蛋白质。有力的数据支撑和合作伙伴的热情增强了我们对AQS3Pro的信心,我们相信这一成果具有相当大的产业化价值。” /p p style=" text-indent: 2em " AQS3Pro新系统使用了RedShift& #8482 BioAnalytics公司的微流控调制光谱学(MMS)专利技术,这一技术将针对微流体的中红外激光光谱分析与先进的信号处理相结合,对蛋白质的二级结构进行测量。它能够在0.01至200mg/mL的浓度范围内对蛋白质直接进行无需标记的测量,在生物医药研发和制造过程经常遇到的各种条件下,无需样品稀释,就可以进行样品表征。其检测是高度自动化的,其多样品检测功能、便捷化操作设置和最先进的生物分析软件进一步提升了检测流程的效率。创新而灵活的分析套件也使得光谱数据的常规分析高度自动化,其先进的检测分析工具能够方便地获得样品的结构性变化,并对这些变化的影响进行深入分析。 /p p style=" text-indent: 2em " “我与RedShift& #8482 BioAnalytics一直在AQS3PRO的验证性测试中合作。”美国特拉华大学的Christopher Roberts教授说, “这一平台将MMS和红外光谱应用在蛋白质溶液的分析中,让我们能够对多种样本、多种浓度范围蛋白质的二次结构性变化,进行同时的原位量化测量。无论是对从事蛋白质基础性研究的科学家,还是负责生物产品开发的工程师,AQS3PRO都将带来极大的助益。” /p
  • AOAC通过了Sprint真蛋白质快速测定仪用于肉类产品的蛋白质快速测定方法
    CEM 公司&mdash &mdash 全球领先的实验室仪器设备供应商,近日宣布AOAC(美国官方分析化学师协会)已经通过了Sprint蛋白质快速测定方法为官方正式方法2011.04,该方法依据蛋白质标签技术适用于猪肉、牛肉和家禽的原料肉和加工肉以及肉制品的蛋白质含量的快速测定。 &ldquo 我们非常高兴AOAC①国际协会能够认可并通过这些方法&rdquo ,CEM公司总裁兼CEO Michael J. Collins说,&ldquo 这确实是一项革命性的技术,非常有价值,可以广泛地应用在食品领域,但一直缺少官方认可。现在,随着这个方法的被公众的普遍接受,未来将会有更多的公司享受到Sprint带来的省时、准确、高效和绿色环保。 在该方法的批准进程中,CEM 公司的Sprint蛋白质快速测定仪被作为该方法研究的指定仪器。方法有效性和准确性的验证过程建立在蛋白质含量在9%-40%之间的牛肉、猪肉及家禽肉和肉制品等具有广泛代表性产品蛋白含量数据之上。 Sprint 采用了iTAG这种专门的、无毒的蛋白质标签溶液,该溶液可以和原料肉、加工肉中蛋白质的赖氨酸、组氨酸和精氨酸及N末端结合并自动计算出蛋白质含量。一体化、操作简便的Sprint机器可以在2分钟内快速测出多种产品的蛋白质含量。该方法比传统的凯氏定氮法更加安全,无需高温以及强腐蚀性化学试剂。2009年,Sprint蛋白质快速测定仪基于它的绿色环保的反应条件,被美国国家环保局(US EPA)授予&ldquo 总统绿色化学挑战者奖&rdquo 。 目前,Sprint 蛋白质快速测定仪广泛应用于乳品、谷物蛋白含量的检测并作为标准方法得到AOAC和AACC认可: AOAC Method 967. 12 液态奶、花色奶、调味乳饮料、咖啡伴侣、黄油等; AOAC Method 930. 33 冰激凌、速冻甜食、雪糕等; AOAC Method 930. 29 全脂奶粉、脱脂奶粉、营养强化奶粉、婴幼儿配方奶粉等; AACC② Method 46-14B 适用于谷物、宠物食品、动物饲料等。 ①AOAC------Association of Analytical Communities(美国官方分析化学师协会)的缩写.是一个拥有127年历史的非营利性科学组织,在分析结果领域赢得了世界的信任,是美国食品生产领域的权威标准机构.经AOAC批准通过的方法,对于方法结果的准确性是一种认可,对采用AOAC方法的厂家生产产品的安全性和合理性提供了一定的信任。 ②AACC------American Association of Cereal Chemist(美国谷物化学师协会标准是由美国谷物化学师协会)的简称,负责制订的谷物分析与测试方法标准。AACC标准自1922年问世以来,一直是谷物科技领域的重要检验依据。此外用这些方法分析的结果还常常被用作诉讼或司法的依据。 参考 http://www.cem.com/{e_BASE}page74.html 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 大连化物所提出蛋白质相互作用识别和干预机制分析新方法
    从中国科学院大连物理研究所官网了解到,近日,中国科学院大连化学物理研究所研究员王方军团队在蛋白质复合物形成和干预机制分析新方法研究方面取得进展,通过溶液状态蛋白质赖氨酸两步稳定同位素标记和定量蛋白质组学分析,实现对蛋白—蛋白识别关键位点区域的精确探测,并可评估小分子对蛋白质复合物的构象识别干预情况。蛋白质的结构和相互作用决定了其生物学功能,目前对溶液状态蛋白—蛋白识别和结构动态变化研究仍然缺乏高灵敏度的分析方法。此前,研究团队发现蛋白质上赖氨酸的原位标记反应性与其所处微观结构中的氢键、静电相互作用强度密切相关;提出以蛋白质上所有赖氨酸位点为内源性反应探针,通过定量赖氨酸在蛋白—蛋白,蛋白—小分子结合前后的标记反应性变化,精确探测蛋白质识别过程中的关键区域。为进一步提高赖氨酸反应性定量分析的通量和灵敏度,该团队进一步发展了溶液状态蛋白质“活性—变性”赖氨酸两步稳定同位素标记定量策略(TILLRP),系统研究了重组SARS-CoV-2 S1蛋白质和人体ACE2受体之间的相互作用情况;发现S1蛋白质RBD Lys386-Lys462区域的赖氨酸位点在S1-ACE2复合物形成前后标记反应性发生了显著改变;提出可以利用该区域赖氨酸的标记反应性调控水平评估小分子活性物质对S1-ACE2识别的干预情况,可能有助于相关治疗药物分子的研发。该研究结果发表在《化学科学》(Chemical Science)上。上述研究工作得到国家自然科学基金、大连化物所创新基金等项目的资助。王方军简介:中国科学院大连化学物理研究所分析化学博士,师从邹汉法研究员,博士生导师,主要研究方向为复杂生物样品高效分离表征:激光-质谱高灵敏度分析、生物分子高校标记与功能解析、翻译后修饰蛋白组学分析。担任中国蛋白质组学专业委员会理事、中国分析测试协会青年学术委员会委员。
  • 关于举办第七期蛋白质分离纯化技术专题研讨班的通知
    随着现代生物技术与生物产业的迅速发展,蛋白质分离纯化已成为现代生物工程的关键技术。应国内生物技术科研界与产业界的需求,中国生物工程杂志社(中国生物工程学会、中国生物技术发展中心、中国科学院文献情报中心主办)围绕蛋白质分离纯化与抗体制备、蛋白组学技术与应用举办了一系列的专题研讨班。本期研讨班由国内从事制备与纯化技术的一线专家授课,课程内容综合了国内外蛋白质分离纯化领域的新技术、新方法,兼顾国内研发及产业工作中的实际需求,同时重视与吸纳往届参会代表的意见反馈,从而使课程内容不断成熟完善。   第七期蛋白质分离纯化专题研讨班将于2010年6月23-24日在上海举办。本期研讨班内容涵盖蛋白质样品制备、纯化策略、过程优化,相关的产品规定、申报政策以及技术经济分析等,旨在帮助生命科学研究与生物技术应用领域的专业人员在短时间里高效率的掌握蛋白质分离纯化工具,提高蛋白质分离纯化实践中解决具体问题的能力。   研讨班主要内容:   l 蛋白质样品的获得   l 层析预处理原则与技术:离心、过滤、超滤、双水相抽提   l 蛋白质层析,包括:   (1)层析介质选择:层析介质特性对层析过程的影响——材质、孔径、官能团   (2)层析技术:分子排阻、离子交换、疏水层析、金属螯合、亲和层析等   (3)层析步骤整合方法:选择性、分辨率、动态载量、主要杂质的控制和去除   (4)蛋白质纯化平台:适应于分子生物学实验室蛋白质纯化的方法和实例   l 单克隆抗体纯化,包括:   (1)单克隆抗体的生化性质   (2)单克隆抗体纯化的工具   (3)单克隆抗体纯化的策略和方案   l 蛋白质纯化的溶液体系   (1)蛋白质纯化的缓冲溶液组成和功能   (2)各种层析模式的常用缓冲溶液的设计和使用   l 蛋白质层析技术经济分析   会议时间、地点:2010年6月23-24日,上海光大会展中心西馆三层2号会议室(上海市徐汇区漕宝路66号)   报到时间、地点:2010年6月22日,上海华夏宾馆   参会办法:参会代表请于6月10日前填写会议回执后Email或传真至会议主办单位中国生物工程杂志社,会议费每人1500元,在读研究生每人1300元(凭有效证件)。食宿统一安排,费用自理。   联系方式:   联 系 人:任红梅13641036700,吴飞13693693883   通信地址:北京市海淀区中关村北四环西路33号中国生物工程杂志社(100190)   电 话:(010)82624544,82626611-6511 传真:(010)82624544   电子邮件:renhm@mail.las.ac.cn   蛋白质分离纯化技术专题研讨班报名回执表   (参会代表请于2010年6月10日前Emial/传真至中国生物工程杂志社) 单位名称 通信地址 邮编 姓名 性别 职称 电话 传真 E-mail 是否住会   蛋白质分离纯化技术专题研讨班住宿预订表   (住会者请务必2010年6月10日前回传本表,否则无法安排住宿) 单位名称 联系人 电话 手机 电子邮件 姓名 性别 是否需要单人间 入住日期 离店日期 报到及住宿酒店: 会议住地:上海华夏宾馆(021-51001610),标准间每天300元。地址:上海市徐汇区漕宝路38号
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 关于举办第九期蛋白质分离纯化技术专题研讨班的通知
    近日,《国务院关于加快培育和发展战略性新兴产业的决定》中将生物产业列为我国经济发展的支柱产业,这意味着生物技术及产业发展在未来时间将得到更多的资金和政策支持,以疫苗、抗体、蛋白质药物作等为主的生物产业必将得到快速发展。结合产业发展的需求,为帮助生命科学研究与生物技术应用领域的专业人员系统掌握蛋白质分离纯化工具与关键技术,中国生物工程学会继续教育工作委员会与中国生物工程杂志社在成功举办多次蛋白质产品分离纯化、生物工程下游技术、蛋白质组学专题研讨班的基础上,定于2010年12月4-5日在广州举办第九期蛋白质分离纯化技术专题研讨班。   第九期蛋白质分离纯化专题研讨班的内容经过多位专家的反复提炼,综合了国内外蛋白质分离纯化领域的新技术、新方法,广泛吸纳往届参会代表的意见反馈和研发及产业工作中的实际需求。研讨班内容涵盖蛋白质样品制备、纯化策略、过程优化,相关的产品规定、政策解读以及技术经济分析等内容 同时突出重点和难点,例如基因工程上下游的整体策略、纯化中的具体难点,层析介质的选择等多方面,以及层析柱蛋白质失活等具体问题。本次研讨班由中国科学院从事制备与纯化技术的一线专家授课,并采用专家讲座为主、引导学员讨论实际案例为辅的学习方式,突出互动性以提高学习效果,从而可以在短时间里高效率的掌握蛋白质分离纯化工具,提高蛋白质分离纯化实践中解决具体问题的能力。   研讨班主要内容:   蛋白质样品的获得   层析预处理原则与技术:离心、过滤、超滤、双水相抽提   蛋白质层析,包括:   (1)层析介质选择:层析介质特性对层析过程的影响——材质、孔径、官能团   (2)层析技术:分子排阻、离子交换、疏水层析、金属螯合、亲和层析等   (3)层析步骤整合方法:选择性、分辨率、动态载量、主要杂质的控制和去除   (4)蛋白质纯化平台:适应于分子生物学实验室蛋白质纯化的方法和实例   单克隆抗体纯化,包括:   (1)单克隆抗体的生化性质   (2)单克隆抗体纯化的工具   (3)单克隆抗体纯化的策略和方案   蛋白质纯化的溶液体系   (1)蛋白质纯化的缓冲溶液组成和功能   (2)各种层析模式的常用缓冲溶液的设计和使用   蛋白质层析技术经济分析   会议时间、地点:   2010年12月4-5日,广州广大商务酒店(广州市大学城中环西路230号)   报到时间:2010年12月3日   报到地点:广州广大商务酒店   参会办法:参会代表请于11月26日前填写会议回执后Email或传真至会议主办单位,会议费每人1600元,在读研究生每人1400元(凭有效证件)。食宿统一安排,费用自理。   联系方式:   通信地址:北京市海淀区中关村北四环西路33号中国生物工程杂志社(100190)   联 系 人:任红梅13641036700   电 话:(010)82624544,82626611-6511 传真:(010)82624544   电子邮件:renhm@mail.las.ac.cn   中国生物工程学会继续教育工作委员会、中国生物工程杂志社   2010年11月 第九期蛋白质分离纯化技术专题研讨班报名回执表 (参会代表请于2010年11月26日前Emial/传真至主办单位) 单位名称 通信地址 邮编 姓名 性别 职称 电话 传真 E-mail 是否住会 第九期蛋白质分离纯化技术专题研讨班住宿预订表 (住会者请务必2010年11月26日前回传本表,否则无法安排住宿) 单位名称 联系人电话 手机 电子邮件 姓名 性别 是否需要单人间 入住日期 离店日期   报到及住宿酒店位置:   会议住地:广州广大商务酒店(020-39360988),标准间每天280元。地址:广州市大学城中环西路230号。   具体路线:   1. 从机场:乘坐机场大巴快线2号线至裕通大酒店(约22元),换乘B25路公交车至广大生活区,即到广大商务酒店。或者乘坐地铁至大学城南站,换乘381、382路公交车至广大生活区,即到广大商务酒店。   2. 从火车站:乘坐地铁至大学城南站,换乘381、382路公交车至广大生活区,即到广大商务酒店。(提示:广州火车总站、火车东站、火车南站均可乘坐地铁。到达火车北站的会议代表,可以先乘车到广州总站,之后再沿路线提示。)
  • 百家实验室:访国家蛋白质科学中心上海(筹)
    仪器信息网讯 2014年4月,我国生命科学领域中第一个综合性的国家级重大科技基础设施&mdash &mdash 蛋白质科学研究(上海)设施(以下简称为:上海设施)通过工艺测试,正式进入开放试运行阶段。近日,仪器信息网工作人员参观拜访了上海设施及同步筹建的国家蛋白质科学中心· 上海(以下简称为:上海中心),一睹这一国家级重大科技基础设施的先进水平和创新风采,上海中心科研项目高级主管汪利俊博士及行政事务主管高馨热情接待了我们。 国家蛋白质科学研究(上海)设施/国家蛋白质科学中心· 上海建筑群   为了形成国际一流的蛋白质科学研究体系,并为我国蛋白质科学研究提供&ldquo 利器&rdquo ,2008年11月,&ldquo 蛋白质科学研究设施国家重大科技基础设施项目&rdquo 列入国家高技术产业发展项目计划,项目分北京设施、上海设施两部分,其中北京设施以蛋白质组学研究为主,而上海设施以结构生物学研究为主。   两年后的2010年12月,上海设施在上海浦东张江高科技园区内动工建设,总投资7亿元,项目总建筑面积3.3万平方米。而今历经3年多建设,上海设施/上海中心正式进入试运行阶段,预计于今年年底正式面向多用户、多领域开放。   据介绍,上海设施配备了蛋白质科学研究所需的各种大型科学仪器设备,以及由上海设施的技术人员自主研发的规模化、系统化技术装备体系。目前,上海设施由基于同步辐射光源的五线六站、规模化蛋白质制备系统、质谱分析系统、核磁分析系统、电镜分析系统、分子影像系统、复合激光显微成像系统、数据库与计算分析系统、动物设施等平台组成,可为在分子水平、细胞水平和个体水平上研究蛋白质、蛋白质复合体、蛋白质机器的结构与功能提供全面和完整的技术与条件保障。   在各大平台中,最令上海设施团队自豪的是几项创新:其中一项是将蛋白质表达实现了从&ldquo 手工作坊&rdquo 到&ldquo 智能工厂&rdquo 的转变。目前,在科研界和制药业对于各种蛋白样品的需求日益强烈,但蛋白表达是一个公认复杂、高成本、耗时和资源占用的过程。上海设施规模化蛋白质制备系统自主设计了五套大型自动化装置,将软件控制、硬件设备和生物应用结合在一起,实现了大规模蛋白表达过程的自动化(包括克隆、蛋白表达和纯化)。 高通量自动化克隆系统   整个流程实现了自动化,从大规模PCR扩增开始,依次自动进行重组质粒的构建、细胞生长、诱导表达、蛋白表达(构建了大肠杆菌、昆虫细胞、哺乳动物细胞三种表达体系),最终完成蛋白纯化及蛋白性质表征。以克隆过程为例,实验效率从传统手工一人次一天10个基因克隆提升到一天1000个基因克隆。   第二项创新则是分子影像系统自主研发的高精度激光双光镊系统。据悉,设备的所有零部件都购自现成。光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现亚纳米级位移和亚皮牛级力的测量。依靠这套系统,激光是&ldquo 镊子&rdquo ,能研究蛋白质如何折叠、变形,以及大分子生物酶的工作原理。高精度激光双光镊系统   第三项创新则是上海设施团队基于平台开发的相关研究方法。有了最先进的仪器,没有相应的研究方法也是枉然。为此,上海设施/上海中心的年轻PI们除了从事科学研究外,方法开发也是他们工作的重点。   以核磁系统分析平台为例,上海设施目前拥有5台核磁共振波谱仪,其中有国内第一台最高磁场强度的核磁共振设备(布鲁克900M NMR),主要用来测试蛋白质的溶液结构。上海中心PI周界文带着研究人员开展了核磁共振新技术的开发和新方法的研究。目前新方法的主体研究已完成,正进入软件测试阶段,对推广核磁共振技术在结构生物学领域的广泛应用有重要意义,特别是对依托高场强核磁共振设施进行大蛋白质的三维结构测定过程将更加可行。 布鲁克900M 核磁(左)、安捷伦800兆核磁(中)、安捷伦600兆核磁(右) 布鲁克600兆核磁(左)、安捷伦700兆核磁(右) 核磁系统分析平台一览   同样,上海设施的质谱分析系统平台也很强大,拥有赛默飞、AB SCIEX、安捷伦、沃特世等主流质谱品牌的仪器13台,是全国目前最大、质谱仪器种类最全的质谱分析平台之一。这个实验室在上海中心PI黄超兰的主持下,已自主研发了一系列国内其他实验室尚不具备的研究手段,吸引了全国各地甚至美国的诺奖获得者的研究组等多家科研单位前来合作,在短短半年间已有超过70多个合作项目在进行。 赛默飞质谱系统 (2台 Q Exactive、1台LTQ Orbitrap XL、1台LTQ Orbitrap Elite、1台 LTQ Orbitrap Elite-ETD) AB SCIEX质谱系统 (左上:QTRAP 6500、左下:Triple TOF 5600+、右:MALDI-TOF/TOF 5800) 安捷伦质谱系统 (1台 6530Q-TOF、1台6550 ifunnel Q-TOF、1台6490 QQQ) 沃特世质谱系统 (左:Xevo TQ-S 右:Synapt G2-Si HDMS) 质谱分析系统平台一览 (左:FEI TitanKrios 300kV 球差矫正透射电镜 右上:FEI TF20 场发射冷冻透射电镜 右下:FEI T12 冷冻透射电镜) 电镜分析系统平台一览 (左上:ZEISS Cell Observer SD 转盘式激光共聚焦 左下:NIKON N-SIM 超高分辨率显微镜 右上:LEICA SP8 激光共聚焦显微镜 右下:OLYMPUS FV1200MPE 双光子显微镜) 复合激光显微成像系统平台一览   此外,上海中心还自主研发了一套科研物资管理系统(e-Supply),所有实验室的研究人员都可通过ID登录系统下单购买实验试剂、耗材,资金从课题组经费账户中扣除,而上海中心则能以&ldquo 团购&rdquo 方式,拿到最优的价格。并且上海设施还为供应商提供了库存仓库,供应商只需付较少的费用就可以把上海设施常用的试剂、耗材存于此,这样也极大方便了研究人员,省去了试剂耗材运送的时间。现该系统已获国家计算机软件著作权,除管理上海中心物资外,还兼管筹建中的上海科技大学的物资,不久有望在中科院其他研究院所推广。 科研物资管理系统(e-Supply) 供应商在上海设施库存的商品 数据库与计算分析系统机房   上海设施不仅仅是一个供科学家使用的科研平台,更是一个具有强大科研能力的科学中心。目前,上海中心有PI 14位,仅在上海设施试运行期间,上海中心各研究组就已获得了包括中科院战略性先导科技专项和国家重大科学研究计划项目在内的多项重大课题,相关研究成果已在《自然》、《癌细胞》等国际著名学术刊物上陆续发表。   许琛琦研究组在阐明人体免疫机制方面取得突破性进展,首次证明钙离子能够改变脂分子功能来帮助T淋巴细胞活化,提高T淋巴细胞对外来抗原的敏感性,从而帮助机体清除病原体。   周界文研究组在研究重要离子通道蛋白p7的精细空间结构以及p7与抑制剂金刚烷胺类药物相互作用的分子机理方面也取得重大突破,相关研究成果将大大推动新一代抗丙型肝炎病毒治疗手段的研发。   周兆才研究组研究发现原癌蛋白质YAP的一个天然拮抗剂蛋白&mdash VGLL4,并在蛋白质晶体结构解析的基础上发展出一个针对YAP的多肽类抑制剂,为以胃癌为代表的肿瘤治疗提供了新的策略和途径。   雷鸣、张荣光研究组的研究论文首次在原子水平上解析了端粒酶的结构,第一次从原子层面对脊椎动物端粒酶复合物中蛋白质-RNA的相互作用进行了描述。   未来,上海设施将对中国乃至全球的科学家开放,旨在让上海设施发挥其更大的作用与价值。(撰稿:杨娟)   附录:国家蛋白质科学研究(上海)设施及国家蛋白质科学中心· 上海网址 http://www.sibcb-ncpss.org/   http://www.ncpss.org
  • 戴安公司参加第六届中国蛋白质组学大会
    此次大会由中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)主办,北京蛋白质组研究中心和复旦大学共同承办的第六届中国蛋白质组学大会定于2009年7月28~31日在江苏省泰州市召开,共有600余各单位用户参加了此次会议。戴安公司市场部和液相产品专家等在这次大会上展示了自己蛋白质领域新产品,双梯度液相DGLC和全二维离线蛋白分离Nano-LC及钛液相系统,该系列液相产品配备上质谱检测器,与同类产品相比较显示出了很大的优势特点,如一台双梯度液相相当于两台液相,Nano-LC自动进样器同时又是馏分收集器,钛液相系统的泵对蛋白质比较不锈钢泵和惰性流路有明显优势。作为此次中国蛋白质组学大会的银牌赞助商,戴安公司举办了蛋白质组学支撑技术专题会议,戴安公司新加坡技术专家讲蔡滨博士解了戴安公司Nano-LC在全自动离线二维蛋白质分离上的应用,听众听取该技术讲解后,对戴安公司蛋白质领域产品更加了解,并表达了合作意向。 戴安公司成立于1975年(纳斯达克股票:DNEX),位于美国硅谷Sunnyvale。公司奋斗目标是不断为全球化学工作者提供高科技产品,帮助减少繁复而耗时的实验室工作环节。公司成立同年,戴安公司发明了世界第一台离子色谱,该项革命性的分析技术使得全球化学工作者能够从混合物中快速分离鉴别出各项离子成分。历经几十年的发展,到目前为止戴安各项成熟技术已被大大扩展,包括离子色谱仪IC(全球市场份额80%),高效液相色谱HPLC包括毛细管和微流量液相色谱Nano-LC(全球市场份额40%),氨基酸直接分析仪AAA-Direct,快速溶剂萃取仪ASE和固相萃取仪Autotrace及在线分析仪器等。 Dionex Corporation was founded in 1975 with the goal of helping chemists become more productive by providing them with products that eliminate repetitive, time-consuming tasks. At the time, Dionex was developing ion chromatography (IC), an innovative analytical technique that enabled chemists to quickly separate, isolate, and identify ionic components of chemical mixtures. Since then, the scope of Dionex technology has expanded to include a broad range of techniques, including IC, high-performance liquid chromatography (HPLC) including capillary and nano LC, AAA-Direct,accelerated solvent extraction (ASE), automation, and on-line process analys 戴安中国市场部
  • 大连化物所:基于nMS表征影响蛋白质结构的分子机制
    近日,连化物所生物分子结构表征新方法研究组(1822组)王方军研究员、刘哲益副研究员团队与西南交通大学封顺教授团队合作,利用我所自主搭建的高能紫外激光解离—串联质谱仪器,揭示了质子化氨基酸侧链的正电荷在电喷雾离子化过程中影响蛋白质结构的分子机制,为质谱精确表征蛋白质高级结构提供了参考。非变性质谱(nMS)是研究蛋白质及其复合物组成和高级结构的前沿质谱技术。在nMS分析中采用生物兼容溶液和非变性电喷雾离子化将蛋白质从液相转移至气相并保持高级结构和相互作用。然而带正电荷的质子化氨基酸侧链在失去水分子的溶剂化稳定作用后,会与空间接近的蛋白骨架羰基形成氢键,通过分子内溶剂化稳定侧链正电荷。虽然有报道通过离子迁移—质谱检测到了分子内溶剂化引起的蛋白质碰撞截面积变化,但是对其发生的具体位点和引起结构变化的区域仍然缺乏有效分析手段进行精确表征。在本工作中,研究团队利用我所自主搭建的高能紫外激光解离—串联质谱仪器和蛋白质光解离质谱数据处理软件系统,通过蛋白质紫外光解离碎片离子的价态分布和位点解离碎片产率分析,探测到肌红蛋白带电残基侧链分子内溶剂化的具体位点,以及对蛋白质结构影响的区域位置。团队系统表征了不同价态(质子化数目)下的蛋白质结构差异,发现高电荷价态下蛋白质气相结构易受分子内溶剂化效应的影响而偏离溶液态结构,低电荷蛋白质离子的气相结构更加接近溶液状态。研究团队进一步证明,冠醚18C6与蛋白质带电侧链的络合主要发生在溶液中,随后在电喷雾离子化过程中起到稳定蛋白质结构的作用。紫外激光解离质谱分析揭示冠醚主要结合在蛋白质离子的高电荷密度区域,通过阻断带电侧链的分子内溶剂化使蛋白质气相结构更加接近溶液状态。相关研究结果展示了高能紫外激光解离质谱在同时获取蛋白质序列和动态结构信息中的显著优势,为nMS表征中蛋白质溶液结构的保持和高效表征提供了重要的理论和技术参考。近年来,我所王方军和肖春雷研究员通过交叉学科联合创新攻关,在大连相干光源搭建了高能紫外激光解离—串联质谱实验线站,兼容50-150nm极紫外自由电子激光和193nm准分子激光解离模式,已在多肽(Anal. Chim. Acta,2021)、蛋白质(Cell Chem. Biol.,2022)、金属团簇(J. Phys. Chem. Lett.,2020;Sci. China Chem,2022)等大分子体系的解离和结构表征中取得了系列研究成果。相关研究成果以“Ultraviolet Photodissociation Reveals the Molecular Mechanism of Crown Ether Microsolvation Effect on the Gas-Phase Native-like Protein Structure”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的共同第一作者是我所1822组联合培养硕士研究生周伶强和刘哲益。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制