当前位置: 仪器信息网 > 行业主题 > >

代谢变化

仪器信息网代谢变化专题为您整合代谢变化相关的最新文章,在代谢变化专题,您不仅可以免费浏览代谢变化的资讯, 同时您还可以浏览代谢变化的相关资料、解决方案,参与社区代谢变化话题讨论。

代谢变化相关的资讯

  • 离子淌度质谱,开启阿尔兹海默病代谢变化的微观视窗|李灵军团队新成果
    2024年7月24日,威斯康星大学麦迪逊分校李灵军教授的团队在Nature Communications期刊发表题为Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer’s disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics的研究论文,该研究开发并应用高分辨率离子迁移质谱技术,深入解析了阿尔兹海默病(AD)小鼠大脑中甘油磷脂(GP)的结构和功能变化,论文共同第一作者是博士后徐书玲和博士研究生朱致君。GP是细胞膜的重要组成部分,其代谢失衡与AD的发病机制密切相关。GP是细胞膜的重要组成部分,在能量储存、信号转导、细胞增殖和凋亡等多种生理过程中发挥着关键作用。GP代谢的失调与包括阿尔茨海默病在内的多种神经退行性疾病密切相关。传统脂质组学方法难以解析GP的精细结构特征。常规的液相色谱-质谱(LC-MS)脂质组学方法只能检测GP的脂肪酸组成,而难以解析其更精细的结构特征,例如sn-位置异构体,从而阻碍了对GP分子的精确研究。高分辨率离子淌度质谱技术揭示GP结构异构体。李灵军教授团队利用高分辨率离子淌度质谱(HRdm IMS)技术,开发了一种四维(4D)脂质组学策略,用于解析GP的sn-位置异构体。该策略利用机器学习库对GP sn位置异构体进行大规模、深入的结构分析。使用HRdm策略可将漂移管离子迁移谱(DTIMS)的分辨率从~50提升至250,同时仍然允许毫秒级 IMS 分离 GP sn-异构体而无需任何仪器修改。构建GP数据库和预测模型。研究进一步构建了一个全面的实验性 4D GP 数据库,其中包含从混合小鼠脑脂质提取物中鉴定出的 498 种 GP。并通过机器学习算法预测了2500种GP的CCS值和保留时间,构建了扩展的4D库。这使得自动化识别和分析GP成为可能。AD小鼠大脑中GP的时空变化。结合实验数据库和扩展库,研究者从小鼠脑的三个功能区(海马、脑皮层和小脑)中,鉴定和定量了超过540种具有sn位置信息的GP种类,揭示了野生型(WT)和APP/PS1 AD小鼠模型脑中GP的时空变化。潜在生物标志物及研究结果。该研究结果表明,GP结构异构体可能是AD进展的潜在生物标志物。例如,海马区的某些GP种类在AD进展中显著减少,而其他区域则出现不同程度的增加或减少。这些发现表明,GP代谢的区域特异性变化可能与AD的病理进展密切相关。技术优势及未来发展方向。与传统方法相比,HRdm IM-MS策略在灵敏度和分辨率上有显著提升。通过多路复用离子注入和后处理数据处理技术,HRdm策略显著提高了IM-MS测量的灵敏度和分辨率,而无需仪器修改。研究人员利用HRdm策略,成功地实现了GP sn-位置异构体的区分和精确定量,为脂质组学研究提供了一个强大的工具。未来,该种策略结合生物学验证手段,可以提供深入的脂质结构表征,还可以灵敏地监测参与 GP 重塑的酶的差异表达,最终为许多疾病病理学提供关键的机制见解。综上所述,这项基于高分辨率离子迁移质谱技术的4D脂质组学策略的研究,不仅为阿尔茨海默病的研究带来了新的突破,也为更广泛的生物医学研究提供了强大的技术支持。随着这一策略的不断优化和应用,我们有理由相信,未来在神经退行性疾病及其他复杂疾病的研究中,HRdm IM-MS策略将发挥越来越重要的作用。原文链接:https://www.nature.com/articles/s41467-024-50299-9更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 代谢组学,妙手何来?|迈理奥,开拓代谢组学新科技的先锋
    今天要讲到的代谢组学妙手来自何方? 来自我们优秀的用户——迈理奥(Meliomics)。迈理奥的快速崛起,源自于他们对代谢组学领域的深刻理解和持续创新,而安捷伦出色的仪器和解决方案也为其提供了重要支持。日前,我们有幸采访到了迈理奥首席科学家厉良教授(加拿大皇家科学院院士)和学术总监李佳博士,深入了解了代谢组学领域及其检测环节所面临的挑战与机遇。厉良教授是享誉国际的质谱和代谢组学专家,加拿大皇家科学院院士、加拿大国家代谢组学研究创新中心联合主任、加拿大阿尔伯塔大学终身教授、人类代谢组计划联合发起人、人类代谢组学数据库 HMDB 联合创始人,积累了丰富的学术成果,获得诸多行业赞誉。图 1. 厉良教授正在接受采访 什么是代谢组学? 随着人们生活水平的提高,健康已成为重要关注点。常规体检通过检测肌酐、尿酸、胆红素等代谢物来评估健康状态。然而,对于某些复杂的疾病,常规检测方法可能无法提供足够的信息,需要更先进的技术来辅助。以新生儿筛查为例,代谢组学技术能在几分钟内快速识别 40 多种遗传代谢病的生物标志物。那么,什么是代谢组学呢?代谢组学是通过质谱等高通量技术手段,研究和发现特定生理时期内生物体的所有低分子量的物质,并进行定性和定量分析,探索代谢物变化与生物过程之间的有机联系。简单来说,代谢组学就是研究生物体内所有小分子代谢物的科学。癌细胞为了满足自身快速增殖的能量需求,通常会加速和增加生物能量代谢途径,包括通过糖酵解提高葡萄糖摄取以及引起三羧酸循环的变化。想象一下,借助代谢组学技术,我们有望在癌症早期进行发现和干预,避免病情发展到晚期扩散才进行治疗。这种早期诊断和干预策略,能够显著提升治疗效果,改善患者的生存质量。 图 2. 葡萄糖、乳酸和三羧酸循环对抗肿瘤免疫的影响 质谱检测在代谢组学领域面临哪些挑战?如何应对? 代谢组学领域的研究在检测环节面临很多挑战,厉良教授介绍到,代谢物常用质谱进行检测,但检测方法还有几个层面亟待提升。迈理奥正在通过颠覆性的创新技术克服常规代谢组学方法的瓶颈,从而提升检测的准确性和效率。 01 代谢物的检测覆盖率:很多代谢物电离效率不高或难以在色谱柱上保留,导致质谱不容易捕捉到这些物质。针对这一问题,迈理奥巧妙运用了化学衍生化的方法,使代谢物拥有疏水基团和叔胺结构,显著提高其色谱柱的保留性能和离子化效果,结合安捷伦高分辨质谱仪器,提升代谢物检测灵敏度 10-1000 倍,可检测8000-13000 个色谱峰对,极大地提升了代谢物的检测效率。使得更多的代谢物能够被准确、全面地检测到。 02 代谢物的定量分析:代谢物的准确定量应使用其对应的同位素内标矫正,但并不是所有代谢物均有同位素内标,或即使有,价格往往非常昂贵。针对这一难题,迈理奥采用同位素双标记的方法,为每种代谢物生成一一对应的同位素内标,进行精确的定量分析。代谢组学研究中很多时候不需要绝对定量检测,仅需要通过相对定量检测确定代谢物的变化趋势,即可为进一步研究和转化提供重要参考。 03 代谢物的鉴定:质谱灵敏度较高,因此会检测到很多离子信号,但是如何鉴定其为具体的某种代谢物,这方面能力仍然需要提升。 为了得到更准确的代谢物鉴定结果,迈理奥建立了专业的三层级代谢物鉴定数据库,实现了1400+个代谢物的精准鉴定和7000+个代谢物的可靠推定。为了进一步提高代谢物的鉴定能力,迈理奥正在构建基于 AI 的规模更大、更专业化的数据库,此举旨在提高鉴定精度,确保检测结果的准确性,从而为科学研究和临床应用提供更加可靠的支持。图 3. 迈理奥技术人员进行代谢组学实验 在代谢组学研究领域,质谱仪需要满足哪些要求? 在代谢组学研究领域中,质谱仪发挥着非常重要的作用,因此厉良教授认为,质谱仪需要尽量满足以下要求:1灵敏度,确保能够检测出样本中浓度很低的化合物,使多种代谢物的峰强度和面积都能得到很好的体现; 2分辨率,确保能够区分并准确识别具有接近质量数的多种代谢物;3稳定性,确保从样品前处理、液相分离、到质谱检测等各个环节都保证较高的稳定性,从而确保大队列和长时间的检测项目都能保证检测输出的一致性; 4数据处理能力,确保有软件能便捷地把各种峰型的结果进行分析汇总。图 4. 安捷伦仪器安捷伦的高端质谱仪器,在灵敏度、分辨率、稳定性和数据处理方面都可以满足需求,而且在性价比方面也占有一定优势,方便将来向更多的实验室推广整套技术和解决方案。图 5. 安捷伦软件界面 代谢组学的临床转化和应用前景? 在基因组-转录组-蛋白质组-代谢组的系统生物学框架内,代谢组学处于最下游,最接近生物表型,比其他组学更具时间敏感性,因此可以更容易直接与表型建立关系。通俗点讲,就是我们的基因可能不会经常变化,但是代谢物却在一直变化,观察整个代谢组的变化,可以评估人体的健康或疾病状态,例如最常见的就是糖检测和诊断糖尿病之间的联系。 图 6. 系统生物学与人体表型之间的联系目前,代谢组学在临床领域的应用主要有三个方面:1疾病生物标志物的发现:代谢组学可以帮助识别与特定疾病相关的生物标志物,这些标志物可用于疾病的早期诊断、疾病的分型或预后评估。这对于提高疾病的检测精度和患者管理具有重要意义。 2药物代谢与反应监测:在药物开发的临床试验阶段(包括一期、二期和三期),代谢组学通过分析代谢组的变化,帮助明确药物的作用机制。此外,它还可以用于评估不同人群对治疗的响应水平,支持精准医疗的实施。3疾病预防和健康管理:通过观察多种代谢物(如指纹图谱)的变化,代谢组学可以评估个体的整体健康状况,并预测潜在的疾病风险。这为早期干预提供了依据,有助于预防疾病的发生。 迈理奥是谁?作为开拓代谢组学新科技的先锋,迈理奥在首席科学家厉良教授的全程指导下,组建了以归国博士赵爽为核心的专业团队,创建了全球领先的 DeepMarker MT 代谢组学平台和 DeepMarker LT 脂质组学平台,专注于全方位、个性化、一站式的科研服务和创新医疗诊断技术的开发,推动生物标志物探索、健康检测等生命科学领域的创新与变革。 颠覆性的技术创新突破了常规方法的瓶颈,已应用于数百项研究,涉及疾病诊断、健康监测、药物研发、中医药研究、食品农业、环境监测等领域,助力高水平的科学研究以及高效的临床转化,成果显著,如阿尔茨海默症(加拿大脑计划)生物标志物的探索、乌帕替尼(艾伯维)的新适应症疗效评估、食品发酵过程监测等,体现了更高灵敏度、高覆盖率、高精准定量、高稳定性的全方位、多层面的领先优势。结语代谢组学作为后基因组时代发展最快、最热门、极具潜力的组学新兴学科,广泛应用于生命科学各领域,为发现生物标志物、探寻疾病机制等提供了强大的技术平台。感谢迈理奥一直走在突破代谢组学技术瓶颈、助力千亿级疾病早筛市场的道路上。安捷伦也将继续与迈理奥及各位行业合作伙伴通力协作,通过提供尖端、稳定、高性能的产品平台,以及专业的服务和支持,助力更多本土企业实现创新和发展。
  • 清华大学药学院胡泽平:代谢组学与代谢流分析技术
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 代谢是生理的基础。近年的研究证明,绝大多数人类疾病,如癌症、糖尿病和心血管疾病等都与代谢异常相关。因此,针对疾病的代谢水平上的分子机制研究已成为基础生物、转化医学研究和药物研发的焦点之一,而代谢组学和代谢流分析是代谢研究重要技术手段。 br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 今天介绍的这位专家是清华大学药学院的胡泽平,其 span style=" text-indent: 2em " 课题组的主要研究方向是以先进的生物质谱为平台,发展高效、精准的新型代谢组学和代谢流分析技术;揭示生理、疾病及药物耐药性的代谢分子机制与功能;针对疾病及药物耐药性的代谢漏洞,设计新型药物治疗靶标和治疗方案;并以功能性生物标志物和药物代谢组学促进药物研发、实现精准治疗。以下内容整理自网络资源,以飨读者。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c22bd31-db8f-4927-a06a-643abb6f2757.jpg" title=" 胡.jpg" alt=" 胡.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 清华大学药学院 胡泽平研究员 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/bcc4f1f2-3e98-495b-ba32-e7fce58b1e48.jpg" title=" 胡2.png" alt=" 胡2.png" / /p p style=" text-indent: 2em line-height: 1.75em " strong style=" text-align: justify text-indent: 2em " Q:代谢组能让我们全面理解一个生物系统,它能为研究者提供许多功能性信息。请您介绍一下,目前代谢组学主要研究手段有哪些?该领域目前的研究及临床应用情况如何? /strong /p p style=" line-height: 1.75em "   胡泽平:代谢是生物体进行生命活动的基础,代谢紊乱已被证明与糖尿病、肿瘤、炎症等诸多疾病密切相关。代谢组学是代谢研究的重要技术手段之一。 /p p style=" line-height: 1.75em "   从研究目的和方法的角度看,通常可将代谢组学分为非靶向代谢组学和靶向代谢组学两种类型。非靶向代谢组学致力于尽可能全面地对生物体系中的所有内源性小分子代谢物进行系统分析,而靶向代谢组学则更侧重于针对科研人员所感兴趣的一组特定的代谢物进行分析。此外,近年来,结合非靶向和靶向两种方法优势的“拟靶向”代谢组学方法也得到一定程度的发展。分析手段方面,代谢组学主要采用液相色谱-质谱联用(LC-MS)、气相色谱-质谱联用(GC-MS)、核磁共振(NMR)等分析平台,其中最为常用的是LC-MS平台。 /p p style=" line-height: 1.75em "   随着近年来人们越来越多的认识到代谢研究的重要性,代谢组学在生命科学和医药研究中也得到更为广泛的应用,包括细胞代谢调控、代谢新通路、疾病代谢机制、药物新靶标发现与确证、药物药效及毒性评价、疾病诊断或预后生物标志物、药物代谢组学、精准用药等领域。 /p p style=" line-height: 1.75em "    strong Q:我们看到目前代谢组学在促进药物研发、实现精准治疗的过程中,越来越受到重视,与其它研究方法相比,它的优势有哪些?还有哪些需要克服的困难? /strong /p p style=" line-height: 1.75em "   胡泽平:代谢物处于生物系统中生化活动的终端,因此反映的是已经发生的生物学事件。此外,基因表达和环境因素的变化对生物系统所产生的影响都可在代谢物水平上得到最终的表型体现。因此,与其他组学相比,以小分子(通常指分子量& lt 1000)代谢物为主要研究对象的代谢组学能够更为准确地反映生物体的终端和整体信息。通过代谢组学分析,可以深入理解相关的代谢异常。 /p p style=" line-height: 1.75em "   尽管代谢组学在上述的研究领域取得了广泛应用,其自身的发展仍然存在一些需要解决的问题。由于代谢物种类多样且浓度差异大,代谢物的分析仍然存在多方面的挑战,如基质效应、离子化抑制、代谢物的鉴定等。与其他组学特别是已经很大程度上实现了标准化的基因组学和转录组学相比,代谢组学的应用受到了不同实验室间差异性的阻碍,涉及大样本量如临床样本的代谢组学研究更需要高度可重复的可靠代谢组学分析方法,因此亟需进一步推进代谢组学的方法学标准化,包括从样品采集、制备和处理到数据的分析和解释的整个过程,从而在各实验室之间实现更为一致和可重复的代谢组学研究,以更高的准确度和精确度检测代谢表型的微妙差异。此外,检测和鉴定更多低丰度代谢物以实现更广泛的代谢组覆盖是代谢组学的另一项技术挑战。如干细胞代谢、肿瘤代谢异质性、发育代谢、免疫代谢等很多代谢研究中的可及样本量通常极少,需要超高灵敏度的方法来实现准确分析。另外,多组学数据整合正成为代谢研究的重大需求和技术瓶颈,需要开发新的生物信息学工具,将代谢组学与其他组学(基因组学、转录组学和蛋白质组学)相结合,并对多组学数据进行数据整合和预测建模,以加速大数据的多组学研究。 /p p style=" line-height: 1.75em "    strong Q:通过生物质谱发展超灵敏度的新型痕量代谢组学和代谢流分析技术是您的课题组研究方向之一,请您介绍下,为什么要发展超灵敏的痕量代谢组学方法?什么是代谢流分析?它的具体作用是什么? /strong /p p style=" line-height: 1.75em "   胡泽平:如前面提到的,如干细胞代谢、肿瘤代谢异质性、发育代谢、免疫代谢等很多代谢研究中的可及样本量通常很少,需要超灵敏的方法来实现准确分析。这将为深入理解干细胞、疾病、发育和免疫细胞的代谢分子机制提供必需的技术支持,同时也将为捕捉早期肿瘤病人血液中细微的代谢变化、检测和鉴定更多低丰度代谢物以实现更广泛的代谢物覆盖、及发现早期诊断生物标志物提供技术基础。我们前期发展的基于三重四级杆质谱的超灵敏靶向代谢组学技术率先使在5,000-10,000个分离自小鼠的造血干细胞中进行代谢组学分析成为可能,并由此取得重要生物学发现,这充分证明了超灵敏痕量代谢组学技术的重要性。 /p p style=" line-height: 1.75em "   虽然代谢组学是研究代谢的重要技术手段,但由于代谢网络是复杂并且动态变化的,而代谢组学仅能提供静态的代谢物丰度信息,因此仍存在局限性。代谢流分析技术则可以很好地弥补这一局限。代谢流分析技术利用稳定同位素标记特定的化合物,通过分析下游代谢产物的稳定同位素标记模式,推算出该化合物在在细胞内代谢通路中的周转速率、方向和分布规律 通过对不同状态的生物体进行代谢流分析,即可得到生物体特定代谢通路的活跃程度,从而在动态水平上描述细胞的代谢活性。结合代谢组学和代谢流分析技术,可以更好地理解细胞内代谢网络的代谢物水平变化、流量分布和周转速率,发掘主要代谢异常通路及其生物学功能,并揭示其上下游相互调控机制。这可为理解疾病发生机制、药物靶点发现与确证等提供强有力的科学依据。代谢流分析已经广泛应用于代谢相关疾病如糖尿病、癌症、免疫、神经退行性疾病等的发病机制研究中。 /p p style=" line-height: 1.75em "    strong Q:我们了解到,您在2016年12月加入了清华大学药学院并建立了代谢组学与疾病代谢课题组。您认为您课题组的主要特色是什么?到目前为止,课题组进展怎样?已经取得哪些重要成果? /strong /p p style=" line-height: 1.75em "   胡泽平:我们课题组多年来致力于疾病的代谢机制研究与药物新靶标的发现与确证,重点专注于以发现和确证药物新靶标为导向,通过发展新型痕量代谢组分析(包括代谢组学和代谢流)技术,揭示生理、疾病、或耐药性的代谢异常新通路并深入阐释其分子新机制,来发现和确证新型药物靶标,逐步形成了“发展新技术、揭示新机制、鉴定新靶标”的主要研究特色。具体来说为: /p p style=" line-height: 1.75em "   发展并验证基于色谱-质谱联用技术(LC-MS和GC-MS)的超灵敏痕量代谢组学方法,用于分析痕量样本(尤其是干细胞、发育)中的代谢物变化规律 发展基于稳定同位素示踪的代谢流分析技术,用于分析代谢异常通路的动态周转速率与方向 /p p style=" line-height: 1.75em "   以所发展的代谢组学和代谢流分析技术,结合转录组学、生物信息学和分子 / 细胞生物学等方法,发掘与生理(干细胞、发育)、疾病(癌症、感染性疾病、心肌肥大)或药物耐药性相关的代谢重编程通路及其关键代谢酶,揭示其相应的功能与分子调控机制 /p p style=" line-height: 1.75em "   基于上述功能和机制研究,发现与疾病、耐药性相关的代谢漏洞(代谢脆弱性),确证其作为新药、克服耐药的新型分子靶标的可行性,进而用于新药研发或联合用药 发掘相应的生物标志物,用于指导临床精准用药。 /p p style=" line-height: 1.75em "   我们课题组目前已经发展了一系列基于色谱-质谱平台的代谢组学(靶向和非靶向)和代谢流分析技术方法。其中包括一种前面所提及的超灵敏的痕量靶向代谢组学方法,可在极少量(~5,000)细胞中进行代谢组学研究,并应用该方法与合作者揭示了造血干细胞异于其他造血细胞群的代谢特征及其生物学意义。此外,我们以所创建的代谢组学和代谢流分析方法为基础,进行了多项疾病代谢机制的合作研究,包括阐释了癌症细胞中新的代谢通路 非小细胞肺癌的发病、恶性黑色素瘤的转移、以及造血干细胞的代谢重编程及其分子机理,为深入理解癌症发病或转移机制,并发现新型治疗靶标提供了分子基础。 /p p style=" line-height: 1.75em "   在2016年12月回国以来的工作中,我们:1. 率先揭示了ASCL1低表达的小细胞肺癌(SCLC)亚型依赖于次黄嘌呤脱氢酶(IMPDH)介导的嘌呤从头合成的代谢机制,确证了IMPDH可作为该亚型SCLC治疗的药物新靶标,并发现了特异性靶向IMPDH的新药咪唑立宾,突破了数十年来SCLC治疗缺乏有效靶向治疗药物的瓶颈(Cell Metabolism, 2018) 2. 率先揭示了“发热伴血小板减少综合症”(Severe fever with thrombocytopenia syndrome, SFTS)病毒感染后引发精氨酸代谢异常,继而导致血小板减少和T细胞免疫功能抑制的潜在致病机制 并在临床试验中确证了“精氨酸补充疗法”可以促进患者恢复,为治疗这一致死率高达10-30%的病毒性传染病、降低病死率提供了重要的新理论和新策略(Science Translational Medicine, 2018)。另外,我们在非小细胞肺癌对EGFR TKI的耐药性、心肌肥大的代谢机制等研究中也取得了一些进展,目前相关工作正在顺利开展中。 /p p style=" line-height: 1.75em "    strong Q:在许多代谢过程中代谢产物的动态变化范围存在个体差异问题,且易受到饮食、环境、年龄等各种因素影响,所以代谢物作为生物标记物存在一定局限性。在高噪音背景下检测出代谢组生物标记物有一定难度。您在研究过程中是否遇到过类似情况?针对这一问题,研究人员有何对策? /strong /p p style=" line-height: 1.75em "   胡泽平:作为精准医学的“关键词”之一,生物标志物的发现已经成为当前医学领域的研究热点之一。包括代谢组学等在内的组学技术的快速发展为发现生物标志物带来了更大的可能性。如前所述,代谢物是存在于信号通路的终端产物,因此代谢组学所提供的信息与表型更为接近,更适于疾病分型和标志物发现的研究。但是在实际研究尤其是在人体研究中,不同代谢物的水平本身相差悬殊,并且容易受到年龄、性别、饮食、是否用药等其他因素的干扰。此外代谢组学常用的技术手段如质谱检测也容易受到其他杂质的干扰,表现为强烈的背景噪声,而且不同的检测和分析体系,有不同的噪音模式。因此,基于代谢组学的生物标志物发现需特别注意排除artificial的因素影响,而这一直以来都是相关研究的挑战和难题。从代谢组学分析技术层面来说,可通过利用高特异性、高灵敏度的平台,如液相色谱-串联质谱(LC-MS/MS)和高分辨质谱等,并采用严格的质量控制,来对包括低丰度次生代谢物在内的尽可能多的代谢物进行全覆盖分析,并进行可靠的代谢物鉴定。从生物学角度来说,单独某一种代谢物的升高,既可能是因为合成途径的增强,也可能是由于消耗途径的抑制。因此可通过分析代谢通路上、下游代谢产物来寻找一组(而不是单一的)相关性生物标记物 尤其重要的是,针对相关性生物标记物进行进一步的生物学功能和机制验证,从而实现“功能性生物标志物”的发现,将对疾病的准确诊断或预后发挥更为重要的意义。 /p p style=" line-height: 1.75em "    strong Q:您在清华大学药学院开展代谢组学分析技术和疾病代谢研究,您认为代谢组学分析技术在药物研发中所起的作用是什么?将来还可以应用在哪些方面? /strong /p p style=" line-height: 1.75em "   胡泽平:多年来的研究证实,代谢在疾病的发生、发展中起着重要作用。代谢组学研究生物体在受到病理生理刺激或遗传修饰后(包括基因或环境的改变),其内源性代谢产物的种类及数量变化,因此所有对生物体系有影响的因素均可反映在代谢组中。利用代谢组学技术对代谢组的静态和动态进行分析,可以帮助我们理解代谢异常的生物学变化过程,在疾病的病理机制、治疗靶点的发现和验证、药物的作用及毒性研究中发挥着重要作用。 /p p style=" line-height: 1.75em "   近年来,代谢组学在理解疾病(如肿瘤)的病理机制,以及药物的作用、毒性、耐药机制研究中的作用已经受到广泛关注。因此,代谢组学在新药靶标发现与确证,以及克服耐药性的研究,以及相应的药物研发中将发挥越来越重要的作用。此外,药物代谢组学在指导临床精准用药中也将扮演更令人鼓舞的角色。 /p p style=" line-height: 1.75em " br/ /p p style=" text-align: justify text-indent: 0em line-height: 1.75em "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 胡泽平课题组研究方向: /span /p p style=" text-align: justify text-indent: 0em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   基于色谱-质谱联用平台的新型代谢组学(靶向、非靶向)和代谢流分析(metabolic flux analysis)技术开发:创建和验证基于色谱-质谱联用平台(LC/MS和GC/MS)的高灵敏度、高特异性、高通量的代谢组学技术,用于分析和发现生物样本的代谢组特征与异常 创建稳定同位素示踪的代谢流分析技术,用于测量分析代谢异常相关通路的动态周转速率和方向。两者作为代谢水平上分子机制研究的互补有力工具。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 生理(干细胞、发育)、疾病(癌症、肥厚型心肌病、感染性疾病)、抗癌药物耐药性的代谢分子机制与功能:利用代谢组学和代谢流分析,结合转录组学、生物信息学和细胞、分子生物学等技术,发掘与疾病、干细胞或药物耐药性相关的代谢重编程与异常代谢通路,理解其功能与分子调控机制 并针对其代谢脆弱性发现新型药物或联合用药的分子靶标,用于新药研发、疾病分子分型和精准治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 基于分子机制的功能性生物标志物研究:基于代谢组学筛选和代谢分子机制研究,发现并验证高灵敏度和高特异性的功能性生物标志物,用于癌症早期检测或药物疗效预测 并对患者进行分层,以不同治疗方案实现精准治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 药物代谢组学(pharmaco-metabolomics)与精准治疗:以药物代谢组学分析用药患者代谢表型的个体差异及其与药物应答(药效和毒性)及药代的相关性,并揭示其分子机制,以指导临床用药、促进药物研发、实行精准治疗。 /span /p p style=" line-height: 1.75em " br/ /p
  • 代谢组学研究最新进展与代谢物鉴定分析交流会顺利举行
    p   strong  仪器信息网讯 /strong 2016年5月6日,由中国科学院大连化学物理研究所代谢组学研究中心与大连达硕信息技术有限公司联合主办的代谢组学研究最新进展与代谢物鉴定分析交流会通过仪器信息网网络讲堂平台顺利举行。 /p p   本次会议采取了网络直播与现场会议相结合的模式,300多名用户报名参加了在线的网络直播会议,同时有近50名来自有大连理工大学、黑龙江中医药大学等高校的研究人员在大连化物所参加了现场会议。 /p p   据介绍,本次交流会的举行主要是为了庆祝OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统开发完成。该系统由大连达硕信息技术有限公司与中国科学院大连化学物理研究所代谢组学研究中心共同开发完成,基于近2000个标准化合物,4个主流网络数据库,以及用户自建数据库,可实现代谢物的快速、批量、准确定性分析。 /p p style=" TEXT-ALIGN: center" img title=" 会议直播.jpg" style=" HEIGHT: 347px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201609/insimg/dc5e6755-def3-4ad1-b27d-8b13c1d917d8.jpg" width=" 500" height=" 347" / /p p style=" TEXT-ALIGN: center" img title=" 许国旺2c.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/606abeb9-aeb1-45dc-937f-46d81e32daad.jpg" / /p p   会议中,中国科学院大连化学物理研究所代谢组学研究中心许国旺研究员首先从代谢组学概述、代谢组学研究方法、代谢组学应用的新进展、前景展望等四个方面对代谢组学做了详细介绍。 /p p   代谢组学是研究生命体对于内在基因突变、病理生理变化以及外在环境等因素刺激作用下的体内的动态多元的代谢物响应,定性定量描述生物体内所有内源性代谢物。与其他组学相比,基因及环境因素改变而引起的变化在代谢组上体现的更为显著,并且代谢组变化快速、使得其对环境变化的应答更为及时灵敏,对于发现实际表型变化前的早期代谢扰动具有重要的潜力。目前,代谢组学在疾病、植物、肠道菌群、药物研发、食品等领域都有应用。 /p p   许国旺在报告中提到“基因组学和蛋白质组学告诉你可能发生了什么,而代谢组学则可以告诉你已经发生了什么,疾病变化往往在代谢组中能更早的体现出来,因而在早期疾病诊断中更具优势。” /p p   对于代谢组学的未来的发展,许国旺介绍说如何更好的表征代谢物,拓展代谢组学的分析能力,从而促进代谢组学在生化医学领域的应用是大家所关注的,如进行规模化代谢物鉴定,提高对所获取代谢物信息的利用率 高通量分析,应对大规模代谢组学分析 提高对低丰度代谢物信息的利用 由经典的表型发现向功能表征推进等。 /p p   大连达硕信息技术有限公司总经理曾仲大博士在会议中介绍了OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统的开发背景,需要解决的主要问题,采取的解决方案和关键技术,以及相应的应用实例。 /p p   曾仲大介绍说代谢物的鉴定是后续深度生物解释的基础和前提。而目前普遍认为,常规方法(主要指LC-MS sup n /sup 、GC-MS和NMR)能检测和鉴别的代谢物应不到样品中代谢物总量的10-15%。一次常规的代谢组学血液分析,在所获得了成千上万质谱特征中,往往仅能鉴定出几十至上百种代谢物,且大多数情况下并没有验证其准确性。 /p p   OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统融合多级质谱的精确质量数与保留时间信息,实现未知代谢物的多层次鉴定分析。该软件的特色在于快速、准确的实现未知代谢物定性,减少繁复的操作步骤,降低对使用者的要求。它拥有信息完备的自建标准数据库、集成了主流网络数据库、采用先进的定性匹配算法、能够实现多层次未知物定性,可实现定性经验的传递,以及丰富的数据库功能。 /p p   本次会议得到了用户的充分认可,会后仪器信息网的网友们通过多种渠道对许国旺研究员和曾仲大博士带来的精彩报告表示感谢。错过会议的网友们可查看本次网络讲座的视频回放,了解报告详细内容。请见链接: a href=" http://www.instrument.com.cn/webinar/Video/play/103101" http://www.instrument.com.cn/webinar/Video/play/103101 /a /p
  • 阿拉丁代谢物 | 解码生物体的代谢蓝图
    阿拉丁代谢物 | 解码生物体的代谢蓝图 「一」 代谢物——生物体内外的化学“翻译官” 代谢物是生物体内外的化学物质,反映了生物在不同生理和病理状态下的代谢活动。它们不仅是研究生物标志物和代谢途径的关键工具,更是解析生命奥秘的重要窗口。 「二」代谢组学——揭示生命的“翻译图谱” 代谢组学通过全面分析生物体内的所有代谢物(代谢组),揭示生物在不同环境和条件下的全面代谢状态。这种系统生物学方法不仅有助于理解生物的生理状态和疾病机制,还为药物研发、疾病诊断和个性化医学提供了重要支持。 「三」阿拉丁® 代谢物的科研应用 (1)生物标志物的探索者:精确捕捉并分析生物体内的微小变化,为早期疾病诊断提供重要依据,助力精准医疗。(2)药物开发的智囊团:深入研究药物在体内的代谢途径和安全性,加速新药研发进程,确保药物的有效性和安全性。(3)健康风险的预测师:通过代谢物分析,评估个体的健康状况和潜在风险,支持个性化健康管理和预防性医疗。 为什么选择阿拉丁? (1)卓越的品牌影响力和信誉保证:作为科创板上市公司,阿拉丁连续十几年被评选为“最受用户欢迎的试剂品牌”,深受全国科研院所、高等院校和A股上市公司的信任。(2)全面的产品覆盖和高效的供应链:拥有覆盖全国的现代化物流仓库和超过7.5万种常备库存产品,为您提供广泛、全面的选择。(3)优质的产品和服务创新:阿拉丁通过电子商务平台,为科研工作者提供便捷的在线购物体验。我们以进口替代为己任,持续优化产品结构和服务意识,为科研创新提供可靠支持。(4)科技驱动和持续创新:我们通过不断提升研发能力和产品质量,推动科学进步。作为上市公司,阿拉丁公司以稳定的生化试剂质控和标准,为客户提供信心和支持。 产品货号产品名称规格/纯度包装规格U111899尿素99.999% metals basis25g/100g/500g/5kgL118493L-乳酸≥98%(T)1g/5g/25g/100gG116306D-(+)-葡萄糖超纯级,≥99.5%25g/100g/500g/1kg/5kgK105570α-酮戊二酸99%,用于细胞培养25g/100gH2748824-羟基壬烯醛≥97%1mg/5mg/25mg/50mg/100mgH110523氢化可的松98%1g/5g/25g/100gD106380去氢表雄酮99%1g/5g/25g/100g/500gP129960前列腺素E1≥98%(HPLC)1mg/5mg/25mg/100mg/250mg 欢迎访问我们的官网,了解更多关于阿拉丁代谢物的信息。
  • 贾伟教授眼中的代谢组学
    最近代谢组学的创始人、英国帝国理工的Jeremy Nicholson教授一直在鼓吹“表型组”,即Phenomics。表型组的概念目前还不是那么清晰,可以笼统地理解为研究某一生物或细胞除了基因组以外的所有组学的集合,而其中最核心的部分,就是代谢组!上个月复旦大学的唐惠儒教授(唐教授曾在帝国理工的寺院练过多年的弹指神通)告诉我,复旦的金力教授正在牵头开展基于表型组的大型队列研究。在队列研究的范畴内,他们把表型组定义为个体从胚胎发育到出生、成长、衰老以及死亡过程中的形态特征、功能行为、分子组成规律,分成三个层面 - 生物特征、物理特征、化学特征,来进行系统的测量。  我个人很推崇这个表型组研究的策略,因为前面文章讨论过 – 基因组学不可能是精准医学的唯一手段。如果说疾病是遗传因素和包括生活方式在内的所有环境因素共同作用的一种结果的话,表型组反映的信息则更接近疾病本身。  我们知道细胞内的生命活动由众多基因、蛋白质、以及小分子代谢产物来共同承担,而上游的(核酸、蛋白质等)大分子的功能性变化最终会体现于代谢层面,如神经递质的变化、激素调控、受体作用效应、细胞信号释放、能量传递和细胞间通讯等,所以代谢组处于基因调控网络和蛋白质作用网络的下游,所提供的是生物学的终端信息。如同我们在长江的上游建大坝或对江水改道,这些项目的生态影响会在下游的河道和地域体现出来一样,我们经常说,基因组学和蛋白组学告诉你可能发生什么,而代谢组学则告诉你已经发生了什么。  我们称细胞内的代谢物特征性变化为代谢指纹 (Metabolic Fingerprints),分泌到胞外的代谢物为代谢足迹 (Metabolic Footprints)。与基因组、转录组学和蛋白组学比较,代谢组学还具有以下特点。首先,基因和蛋白表达在功能水平上的微小变化会在代谢物上得到放大,从而使检测更容易 其次,许多基因和蛋白的非功能性变化不会在代谢物上反映出来,从而起到了上游信息向下游传递过程中“噪音过滤”的效果 第三,代谢物的种类要远小于基因和蛋白的数目,物质的分子结构也要简单得多,因而代谢组学所采用的代谢物信息库,远没有全基因组测序及大量表达序列标签的数据库那么复杂。另外,常见代谢产物在各个生物体系(如植物的初级代谢、微生物、动物)中都相似,所以代谢组学研究中采用的平台技术可以在不同的生物体系中得到应用。  唐人孟浩然有两句诗 - 人事有代谢,往来成古今。从万物皆有兴衰代谢的角度来看,我们的生物世界其实是由代谢组组成的,是这些不同的代谢组让我们生物界呈现出五彩缤纷、气象万千的表型。我们地球上的各种植物含有几十万种(大约25-50万种植物化学分子)代谢物,微生物界大约有几万种代谢物,而我们哺乳动物体内常见(分子量小于1500)代谢产物有5-7千种。这三类代谢组互相渗透,植物和微生物的代谢物通过食物、营养补充、药物等形式进入我们人体的代谢网络,也使我们每一个人的代谢表型呈现出各种不同的特征。  我曾经在以前的一篇博文中把人体的代谢网络比喻成我们所居住的都市交通网络,从市中心(譬如上海的人民广场)到城市外围的任意一点(如浦东国际机场)理论上有无数条途径可走,但大家都知道最可行的途径也就是少数几条。而我们现在究竟要走哪一条道路去机场,主要看这一刻我们的交通工具、交通状况、时间和资金情况。生命活动其实也是一样的,我们人类三万多基因,尽管功能基因所占比例不大,但它们排列组合之下,就会出现无穷多种可能性,而奇妙的是,在指挥系统近乎无穷多种可能的指令下,仅仅产生出几万种蛋白,而下游的代谢物和代谢通路更少,尤其是主要的代谢通路(交通主干线)更是屈指可数,可以在一张白纸上画清楚。那么这说明什么呢?说明再复杂的生物系统在它的功能层面有着简单的、共性的一面。有人对收集到的各种癌细胞进行检测,发现了共有大约5百万种基因突变方式,但这些变化再复杂还是有章法可循的,它们无非是要在功能层面(譬如代谢层面)实施调整和转换,达到一个或几个简单的目的 – 要么获取更多的能量,要么获得更多的物质,或者设法排除更多的废弃物,或者增强自身的抗氧化抗应激(抗药物)能力。总之癌基因调控的目的明确 - 要生存、增殖、从周边掠夺资源并向周边扩散。如果我们能够这样来看问题,我们就可以在寻找共性的变化中把复杂问题简单化,而代谢组学将是疾病分子表型和功能研究中的一门核心技术!  再举个例子来说明为什么代谢组学重要。现在肠道菌群研究已经成为科技界最为火爆的领域之一,你搞生物的话要是不谈点菌群啥的你都不好意思出门开会!但是,这个领域目前玩的只有一个技术 – 测序,不是16S rRNA测序就是NextGen宏基因测序!测序告诉我们的是什么呢?是肠道细菌的种类信息,从门到属到种(有时甚至能到株)的分类和丰度值,如同你要研究一个城市的安全问题,这个检测技术可以帮你搞到一本覆盖全市大多数居民的花名册,仅此而已。两个肠道菌群组成相差很大的健康人站在一起,我们无法判断他们结构上的差异意味着什么,如果两个人用同一种饮食,这些菌群差异在两个人代谢和生理上会带来的什么样的功能性变化我们尚难以预测。当然菌群研究者们说他们可以通过检索数据库获得功能信息,但这些功能信息怎么来建模预测呢?每一种代谢功能下各种细菌进行相加或是加权后相加?那么互相抵消互相干扰的怎么算呢?最简单明了的代谢功能表征方法就是测代谢组!由此获得的数据是各种细菌集成的功能以及与宿主共同作用下的最终结果!  但是,代谢组学目前尚无法全面进入精准医学和相关健康领域的产业化服务。其主要瓶颈有两个,一是标准化的问题,二是通量的问题。代谢组学往前发展的一个必经之路是定量化和标准化。基因测序技术目前成为转化研究和技术产业化的首选工具,一个重要原因是这种高通量检测技术的标准化已日渐成熟并正在行业内逐步得到普及。目前国内测序行业多家企业在基因组数据分析处理(包括测序采样与分析、碱基读出、载体标识与去除、拼接与组装、间歇填补、重复序列标识等等)逐步建立了统一的标准和流程。我们可以把华大基因比喻成秦统一六国,它积极参与国际领域内大数据管理、整合和共享标准的建立,利用自身硕大的测序平台体量和技术实力,在技术标准方面成为行业内的执牛耳者。而代谢组学则还没有发展成熟,还处于春秋战国诸侯争霸时期。  目前代谢组学除了核磁共振仪外,主要分析仪器为质谱。而包括飞行时间质谱(TOF)、三重四级杆串联质谱(TQ)、四级杆飞行时间串联质谱(QTOF)、离子回旋共振质谱(ICR)、轨道离子阱(Orbitrap)等高分辨质谱仪的生产厂家不下十家。这些厂家都有自己独特的仪器配置、数据处理软件、以及数据库。不同厂家用的工作软件和数据库之间都无法对话(cross-talk),因此一旦购买了某一个厂家的设备来做代谢组学,研究者往往只有照搬该厂家提供的全套分析工具,因而整个行业缺乏包括数据处理标准、数据分析途径、生物描述规范、以及报告标准在内的统一的代谢组学标准流程或标准协议。对于代谢产物鉴定,各个实验室的做法也是参差不齐,有的完全依赖国际数据资源库,有的用厂家自带数据库,有的用自己的标准品来鉴定,以致于数据的质量良莠不齐!  代谢组学要想全面进入临床医学和健康产业的服务领域,需要化大力气解决技术平台的行业标准化问题。从代谢组学设备生产厂家到各个实验室之间都需要逐步改变工作模式,从各自为战百花齐放到互相合作统一标准,共同建立行业内的技术规范,不同平台产生的数据可以交互验证(cross-validation),最终建立起一个行业内可以共享的代谢组学数据库。  也只有在行业普遍接受的技术标准的前提下,我们才可能扩大检测规模。而没有一定的检测通量,例如一次检测数万或数十万样本的能力,代谢组学技术也很难在大型研究项目和精准医学领域扮演一个有意义的角色。前面说到复旦大学开展的基于大型队列的表型组学研究,目前已经纳入计划的队列达到二十万人,以每个人在六个时间点采集样本计,总样本数就达到了120万份,随着计划的推进,样本数将持续上升。可以想象,只有采用统一的技术标准和具备足够检测通量的代谢组学实验室才可能承担这类项目的研究工作。  记得八十年代读书的时候看过一部纪录片《话说长江》,有二十五集,当时这部电视播出后举国轰动,中国观众在信息闭塞了几十年后,通过一条流淌了数千万年全长六千多公里的河流的介绍,第一次直观的、全景的在电视中看到了自己国家广袤的大地、多彩的人文、以及长江流域美丽的自然风光。每天晚上随着主题歌响起,每个人的心里开始激动和期盼,“你从雪山走来,春潮是你的丰采 你向东海奔去,惊涛是你的气概̷̷ ”同样,我们今天尽管科学高度发达,人类对于自身几乎是所有的重大疾病的发病机制的认知水平还处于Dark Ages(黑暗时代)阶段,随着基因组学的日趋成熟和表型研究工具如代谢组学的广泛应用,我们将会把基因和表型信息连接起来,有可能逐步打开一些疾病的黑箱,像了解一条古老的河流一样逐步认识我们的生命,一步一步地逼近疾病和生命的本质!
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 高端仪器结合特有显像剂 可精确追踪肿瘤微小变化
    总是感觉不舒服,就是查不出病兆。临床上,这类病人并不少见。对于这类病人,更为精确的检查尤其重要。记者从第一医院主办的2016亚太地区肿瘤生物学和医学学术会议上获悉,该院引进国内自主研发的首台全数字PET—CT,依靠该院实验室特有的特异性分子显像剂,可跟踪到肿瘤细胞的凋亡、肿瘤新生血管的形成等各种肿瘤生物学行为。  今年50多岁的患者王先生,腹泻持续8年,曾就诊过多家医院,但就是无法治愈。最终,在第一医院通过PET—CT检查发现,其患有神经内分泌肿瘤肺类癌。 “神经内分泌肿瘤可生长于人体任何一个部位,有各种临床表现,包括腹痛、难以治愈的皮疹、顽固性高血压、胃溃疡等。”南京市第一医院核医学中心主任王峰介绍,神经内分泌肿瘤近年来发病率和患病率均显著上升,目前发病率达到5.25/10万,依靠传统的CT、核磁共振很多时候并不能准确揪出病兆。  记者了解到,南京地区已有多家医院拥有PET—CT这一高端检查设备。“对疾病的诊断,除了仪器,药物最为关键。”王峰告诉记者,传统的PET—CT检查仅仅反映细胞的糖代谢水平,但临床上发现,除了肿瘤会致细胞糖代谢水平异常,普通的炎症也会影响。该院正在试运行的PET—CT检查项目,将依靠该院实验室能够提供的特异性的分子显像剂,评价细胞的凋亡、肿瘤新生血管的形成、肿瘤受体的变化等。“说白了,就是能进一步全面评价肿瘤的生物学行为,为精准施治提供精准诊断。”王峰告诉记者,很多肿瘤在治疗过程中大小并没有发生变化,但其代谢水平会发生明显变化,这些依靠传统的CT和核磁共振根本无法看出来,PET—CT借助特异分子显像剂就可以观察到这些微小变化,从而找到肿瘤特异性靶点,给予相对应的靶向药物,会让很多愈后很差的肿瘤病人的生命得以无限期延续。  当天出席论坛的工程院院士陈志南表示,未来开展精准诊疗后,医生将清楚地了解到哪些药物对一部分患者有效,对另一部分患者无效。这样精准施治不仅可以减少药物对患者的副作用,也可以大大降低医疗成本,减少患者的负担。不过,我国的精准诊疗刚刚起步,因相应靶向药物的短缺,很多病人尚没有真正从中获益。
  • 聚焦代谢组学平台建设 促进技术向应用转化——访清华大学代谢组学平台主管刘晓蕙博士
    p   清华大学代谢组学平台为国家蛋白质科学研究(北京)设施清华大学蛋白质研究技术中心下设平台之一。经过几年的发展,该平台拥有了完善的代谢产物及脂质物质的二级数据库及常见内源性代谢物的信息采集与数据分析方法,可以提供准确的代谢组学和代谢流分析服务。如今代谢组学领域的人提到清华大学代谢组学平台就像是找到了组织一样。 /p p   仪器信息网编辑近期采访了清华大学代谢组学平台主管刘晓蕙博士,刘晓蕙博士从代谢组学研究现状、代谢组平台建设情况、发展机遇与挑战等方面进行了详细的讲解。 /p p style=" text-align: center " img title=" 刘晓蕙老师0.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/ad3dac0b-15d9-4275-aaec-cf6b762b4cb7.jpg" / /p p style=" text-align: center " strong 清华大学代谢组学平台主管 刘晓蕙博士 /strong /p p span style=" color: rgb(0, 112, 192) font-size: 20px " strong & nbsp & nbsp & nbsp 技术应用于实际,万变不离质谱 /strong /span /p p   刘晓蕙博士是一名年轻的80后,但是从事质谱研究却已经有14个年头了。不过期间她所研究的领域还是发生了很大变化。如,2003年博士就读于印第安纳大学,从事基于质谱的蛋白质组学方法开发研究 毕业以后,在布莱根医院/哈佛医学院进行博士后工作,主要从事质谱影像在临床中的应用工作 2013年回到清华大学,任蛋白质研究技术中心代谢组学平台主管,负责代谢组学平台的建立和发展。 /p p   对于三个研究方向的改变原因,刘晓蕙谈到,蛋白质组学、质谱成像、代谢组学学术上的关系是相辅相成的,方向变化是因为个人兴趣点的转移。“当时做了几年蛋白质组学方面的方法研究,觉得这些工作离实际应用较远。而我一直的想法是——希望做一些能真正帮助到别人的工作,同时质谱是不能抛掉的。” /p p   “博士毕业之际,听到布莱根医院/哈佛医学院招聘做‘质谱成像用于临床诊断’的博后,把质谱放在真正的临床当中、放在手术室里。当时冲着这个激动人心的项目就跑过去了。”刘晓蕙回忆到,“因为,大部分手术时用的影像还是术前的影像,在手术之中医生要凭着经验判断肿瘤组织是否切干净了。据统计这样做就算是乳腺癌这种成熟的手术至少有20%手术的肿瘤组织是没有切干净的。而质谱成像技术给出结果是非常快的,完全可以在手术进行时旁边放上一台,随时测试直到切干净为止,这样质谱发挥的作用就大了。” /p p   “后来,我意识到疾病诊断中小分子可能比蛋白质研究更有潜力,有些疾病在小分子上反应的更明显。因为小分子代谢物容易受到调控,而蛋白方面更多受基因影响,这个改变是很缓慢的。疾病状态、免疫系统变化等可能在小分子方面会更容易体现出来,还可以利用到我的质谱背景知识,发挥我的专长,同时还有家庭因素,所以就回到了清华大学。” /p p   谈到这些经历,刘晓蕙认为,“多积累不同背景的知识很有用,多接触不同知识背景的人也可以了解他们思考问题的方式。虽然我的研究方向发生了一定的变化,但不变的是一直在从事质谱方面的研究,也就是说最根本的东西从来没有变过。” /p p span style=" color: rgb(0, 112, 192) font-size: 20px " strong & nbsp & nbsp & nbsp span style=" color: rgb(0, 112, 192) " 目标:建立高通量的、结果可靠的代谢组学分析方法 /span /strong /span /p p   2013年刘晓蕙回国进入清华大学负责代谢组学平台的建设和运营,而平台主要做方法开发的工作。鉴于现在代谢组学整体发展程度还不够,平台进行方法开发时遇到了低覆盖率、数据库不完善等问题。为了解决以上问题,刘晓蕙带领团队从硬件、软件方面,在平台仪器配置、方法开发、数据库建设方面开展了一系列工作。 /p p   “工欲善其事必先利其器”,刘晓蕙的代谢组学平台是一个小而精的平台,只有四台仪器四个人。四台仪器都是质谱,包括高分辨的Orbitrap和高灵敏度的三重四极杆质谱。“因为之前做蛋白质组学时体会到了Orbitrap的优势,所以这次自然也选择了Orbitrap。在用Orbitrap采集数据的时候,用FS-ddMS2办法能够同时得到一此和二级信息,而且,Orbitrap只采一级的话也可以正负切换,通量提高了两倍。另外,三重四极杆的特性是灵敏度高,有些代谢产物做筛选的时候色谱条件不合适或者灵敏度达不到,这种情况下会用三重四极杆质谱方法做补充性的工作,结合起来可以达到准确分析的目的。 /p p   “现在代谢组学的方法还不是很成熟、不够完善,所以我们现在想建立的是高通量的、结果可靠的代谢组学分析方法,并且从数据采集到数据分析的整个流程实现自动化。”刘晓蕙说到。“为了实现代谢组学的高通量分析,数据库是非常关键的。目前,代谢组学研究的大部分人使用的还是线上的公共数据库,公共数据库不好的一点是不适合高通量分析。因为公共数据库鉴定100个样品的时候检索速度就会非常慢。所以,高通量分析的话最好使用本地数据库。我们自建的本地数据库即使搜索500个以上数据,使用普通电脑也没有问题。” /p p   另外,鉴于代谢物覆盖率低的问题,目前刘晓蕙的团队正在把不同小分子的检测方法补充进来,通过多种方法结合的方式提高代谢物的检测覆盖率。 /p p span style=" color: rgb(0, 112, 192) font-size: 20px " strong & nbsp & nbsp & nbsp span style=" color: rgb(0, 112, 192) " 代谢流、代谢表型研究兴起,代谢组学研究有待突破 /span /strong /span /p p   代谢组学是近些年广受关注的热点,不过,刘晓蕙认为,代谢组学要实现真正的突破还需要时间。目前,无论国内还是国外,其实都没有出现突破性成果。如,很多人想从药物靶点方面着手通过代谢去治疗癌症,但是并没有取得很明确的效果。 /p p   “现在国内欠缺的是代谢流方面的研究。”据刘晓蕙介绍,“代谢流主要是做机理分析,对于机理诠释方面是非常重要的。代谢通路监测方面,单纯监测代谢产物变化有时无法反应整条通路的变化。代谢通路属于网络调控,特异性较小。比如说,一个代谢产物发生变化是一个综合结果,可能有十几条代谢通路产生或消耗。再比如,针对某种病变,我们敲除一个调控蛋白,然后监测到某个代谢产物发生了变化。但是我们不知道它是从哪个通路来的,因为它反映的是重新调控后的稳态。所以,如果要监测它来源于哪条通路就需要做代谢流分析了。代谢流分析对于机理方面的诠释非常明确。” /p p   “质谱不能说是做代谢流分析的唯一的手段,但是却可以肯定的说质谱是代谢流分析的最好手段。现在有人在尝试用NMR去做代谢流分析,但是总体来讲,质谱因为较高的灵敏度或对复杂组分解析程度成为代谢流分析的主要技术。”刘晓蕙说到,“代谢流研究在代谢方面占的比重会越来越大,尤其是在生物学和免疫研究方面,大家会越来越多用代谢流去追踪特定的代谢通路。” /p p   刘晓蕙还指出,除了代谢流之外,代谢组学领域另一个研究热点是代谢表型研究,即通过代谢产物或者轮廓表征疾病的状态。现在很多人在做临床诊断生物标志物方面的工作,通过代谢物检测做一些临床疾病的早期诊断,包括对阿尔兹海默病、心血管疾病的早期诊断等。另外,质谱影像也是通过代谢物去表征疾病的状态,主要是通过组织样本的代谢轮廓去判断这个组织是正常组织还是癌症组织。 /p p style=" text-align: right "   采访编辑:仝令坤 刘丰秋 /p p   strong  后记 /strong /p p   关于质谱技术与代谢组学的关系,刘晓蕙认为不是代谢组学给质谱带来机遇,而是质谱技术的进步带给代谢组学以发展机遇。因为一般情况是技术发展推动学科发展,代谢组学发展很大程度上要依赖质谱等技术的发展。所以,采访中刘晓蕙特别提到,像赛默飞等仪器公司与科研单位以及高校的合作应该长期化、内容不断深入,达到双赢的目的。 /p p    strong 简历 /strong /p p   刘晓蕙,女,博士,清华大学生命科学院助理研究员、清华大学蛋白质研究技术中心代谢组学平台主管。2003年本科毕业于中国科学技术大学,2011年毕业于印第安纳大学并取得博士学位,2011-2013年在哈佛医学院/布莱根医院任博士后。2013年6月起受聘于清华大学生命科学院。研究内容主要应用质谱技术为基础研究脂质组学与代谢组学。 /p p & nbsp /p
  • 清华大学药学院胡泽平课题组应邀发表“代谢组学、代谢流技术及肿瘤药理”的综述文章
    清华大学药学院胡泽平课题组应邀发文系统总结了代谢组学和代谢流分析技术的最新研究进展,及其在肿瘤药理学应用中的重要研究进展,包括发现抗肿瘤药物靶点以及生物标记物、揭示药物作用机制和耐药机制、促进精准治疗等。值得一提的是,该综述首次系统地总结绘制了代谢流分析中各种稳定同位素标记示踪物的工作原理及其应用(详见图2),这将为代谢流分析技术在代谢研究领域和肿瘤药理中的广泛应用起到重要的推动作用。  增殖中的肿瘤细胞通常以代谢重塑的方式来提供更多的生物能量和物质,以满足其自身快速增殖的需求。譬如,沃伯格效应(Warburg effect)描述了即便是在有氧的情况下,肿瘤细胞仍然会上调糖酵解途径,并产生更多的乳酸。深入理解肿瘤中的代谢重塑对于我们发现新型治疗靶点,开发抗肿瘤药物有着重大的启示作用 而代谢组学和代谢流技术的发展则极大地促进了我们对于肿瘤代谢的理解。代谢组学能够给我们提供某一静态时刻下的大量代谢物信息,而代谢流分析能够动态地告诉我们某一代谢通路的流量变化。代谢组学和代谢流相辅相成,为我们理解肿瘤代谢打开了全面且动态的崭新视角。  图1. 基于液相色谱-质谱的代谢组学-代谢流分析流程简图  代谢组学分析主要分为三步骤:样品制备、数据采集、和数据处理分析与生物学意义阐释。生物样本经过提取处理后,通过色谱-质谱(mass spectrometry, MS)联用或核磁共振(nuclear magnetic resonance, NMR)来对代谢物进行分析和数据采集。简要数据处理则主要包括通过火山图和热图呈现代谢物的丰度和倍数变化,对代谢物进行通路富集分析。后续则可选择使用同位素标记的代谢流分析来揭示代谢通路的动态变化,并使用体外或者体内模型来进行代谢重塑的功能和机制验证。近年来的代谢组学技术取得一些重要进展,如胡泽平课题组发展的可用于极微量样本(如1,000-5,000个造血干细胞或者60个卵母细胞)的超灵敏代谢组学技术和Sabatini课题组发展的线粒体代谢组学等,都推动了代谢组学在代谢生物学和肿瘤生物学中的应用。  代谢流分析(metabolic flux analysis, MFA)可以动态地揭示代谢通路的流量变化。当一个代谢物产生积累时,可能是由于其生产的增加或者是消耗的减少。基于稳定同位素示踪法的MFA则可以帮助我们测量代谢流量:带有稳定同位素标记的代谢物经过生化反应,则会导致下游代谢产物的标记,产生在特定位置被同位素标记的M+1,… ,M+n代谢物。通过分析下游代谢物的标记模式及被标记代谢物的量,我们可以计算得出感兴趣的代谢通路的流量速度和方向信息。  图2. 稳定同位素标记示踪剂标记葡萄糖代谢通路(节选部分)  例如图2(A)中全13C标记的葡萄糖经过糖酵解反应,生成糖酵解终产物丙酮酸。丙酮酸又可经丙酮酸脱氢酶生成乙酰辅酶A,进入三羧酸循环(TCA cycle)。另外,葡萄糖作为磷酸戊糖途径和丝氨酸生物合成的底物,可以标记这两条代谢途径中的中间产物。通过分析特定通路的下游产物标记,我们可以得到在某段时间内的代谢流量。图2(B)则展示了全13C标记的葡萄糖通过糖酵解代谢为丙酮酸后,可以通过丙酮酸脱氢酶和丙酮酸羧化酶两种方式进入三羧酸循环,从而产生M+2以及M+3的TCA中间产物,进而我们可以分析得到两种酶所介导的不同通路信息。  代谢是高度复杂且受严密调控的动态变化网络。除了基于特定酶、转运体的调控外,通路之间可以通过同一中间产物而产生关联。如果能找到肿瘤细胞中相较于正常细胞而特定依赖的代谢通路,那么我们就可以精确地靶向肿瘤细胞进行治疗和干预。   图3. 促进肿瘤细胞生长的代谢通路及潜在治疗靶点  图3.展示了细胞中复杂的代谢通路,包括葡萄糖的代谢(糖酵解、磷酸戊糖途径)、脂肪酸代谢、核苷酸的合成、叶酸代谢等,其中特别标记了值得调控的关键酶和转运体,以及针对这些作为靶标已进入临床试验或者已经被FDA批准的小分子药物。譬如,在胶质瘤中曾报道过突变的异柠檬酸脱氢酶(IDH)可以介导肿瘤代谢物2-羟戊二酸(2HG)的产生,展示了IDH作为抗肿瘤靶标的潜力,从而引发IDH抑制剂的开发、获批与应用。  代谢组学与代谢流分析也可以在肿瘤药物研发中发挥重要作用,并可贯穿于每一步中:从发现靶点到理解药物作用机理,从耐药机制研究到指导精准治疗。  经过代谢组学分析后,差异代谢物和代谢通路可引导发现潜在的生物标记物和可靶向的代谢依赖性和弱点。潜在的生物标记物可帮助肿瘤的早期诊断、预后和药物有效性预测。通过结合代谢流分析,代谢靶标可以帮助新药研发,或者是帮助科研人员更好地理解现有药物的作用机制,以及如何产生耐药,从而改善现有疗法。药理代谢组学可以用于指导精准治疗 饮食干预疗法则可以作为药物治疗的辅助手段。  图4.代谢组学和代谢流分析技术在肿瘤药物研发和药理学中的应用  尽管代谢组学和代谢流分析极大拓展了我们对于肿瘤生物学的理解,但是领域中依旧存在诸多技术挑战和瓶颈,比如灵敏度不足、精准度不够、难以进行代谢流分析,以及至今无法实现真正意义上的单细胞代谢组学(特别是由于灵敏度的技术瓶颈)等等。相关的技术进步和新型方法开发都将进一步促进代谢组学和代谢流分析技术在不同生物医学背景下的应用。下一阶段的研究需要更好地整合、利用所获取的代谢重塑表型和机制信息,将其转化成更好的抗肿瘤疗法。药物研发方面需要更多地关注肿瘤微环境,尤其是肿瘤细胞与免疫细胞之间的代谢相互作用。多组学整合的应用,包括基因组学、蛋白组学、代谢组学等,将有助于加深我们对于肿瘤生物学的理解和利用,进一步加速抗肿瘤药物的研发。  以上综述文章于2021年3月1日应邀在线发表于国际知名学术期刊《药理学&治疗》(Pharmacology & Therapeutics),题为《代谢组学、代谢流分析与肿瘤药理学》(Metabolomics, metabolic flux analysis and cancer pharmacology),此前,胡泽平课题组曾于2019年获邀在国际知名临床药理期刊《临床药理学&治疗》Clinical Pharmacology & Therapeutics发表代谢组学技术及其在临床药理中应用的相关综述。  清华大学药学院胡泽平研究员与烟台大学药学院王洪波教授为本文通讯作者,2016级药学院本科毕业生梁凌帆与胡泽平课题组2020级博士研究生孙菲分别为本文第一、第二作者。本研究得到了国家自然科学基金委糖脂代谢重大计划重点项目(92057209)、基金委面上项目(81973355)、国家科技部重点研发计划(2019YFA0802100-02, 2020YFA0803300)、清华-北大生命科学联合中心、北京市高精尖结构生物学中心的资助。  点击链接,阅读原文:https://www.sciencedirect.com/science/article/abs/pii/S0163725821000292
  • 尝试用代谢组学打开中药的“黑箱”
    p   我们实验室近年来建立了基于代谢组学策略的药物代谢动力学新方法,在分子水平上刻画包括复方中药和天然产物在内的多成分药物(Multi-component Agents)在体内的整体、动态的代谢和相互作用过程。最近与上海中医药大学刘平教授团队合作,采用高通量代谢组学平台以及所建立的多组分药物生物信息学数据分析手段,开展了复方中药黄芪汤的药物动力学研究,结果于2017年7月4日在线发表于国际药理学期刊 Clinical Pharmacology & amp Therapeutics。 br/ /p p   药物动力学(pharmacokinetics, PK)是表征药物分子在生物体内随时间变化的吸收、分布、代谢和排泄(ADME)规律的方法。由于化学成分组成的复杂性以及在生物体内发挥药效成分的多样性,包括复方中药在内的多成分药物的代谢动力学研究一直以来是一个“瓶颈”。 /p p   这种技术和方法学的“瓶颈”包括:(1)缺乏整体性,以偏概全地将一种或数种成分来代表和预测包含了成百上千个化学成分的复方药物系统;(2)缺乏动态变化,只关注药物原型分子的数据而不涉及药物互相作用以及药物分子的体内代谢全过程;(3)缺乏生化效应的信息,只关注药物分子的化学变化而没有生物体对药物的代谢反应信息。 /p p   复方中药在体内的ADME是一个多成分化学系统和一个多层次多靶点的生物系统之间的相互作用过程,这个复杂的体内过程无法在还原论的思维下用一个或几个药物成分来简单还原。由于无法在理论和方法学上突破现有的瓶颈,目前定量检测单一化合物的药物PK方法很难真正描述中药整体性和动态性的体内代谢状况。因此,复方中药作为一个“黑箱”,其体内过程一直以来无法得到客观性的评价,用简单的还原方法得出的结果无法真正体现中医方剂配伍下具有协同效应的复方中药的临床价值。 br/   2010年的时候,我与四川大学华西药学院的兰轲博士合作(有意思的是我们俩是通过科学网认识的),共同提出了一种采用代谢组学方法同时监测多成分药物动力学的新策略—我们称之为“多药药物动力学Poly-PK (poly-pharmacokinetics)”。 /p p   这个新思想利用代谢组学技术,对药物自身的化学成分、体内产生的次级代谢成分,以及生物体的内源性的代谢物三组变量同时进行定性和定量检测,联合生物信息学方法对所获得的数据进行差异性和关联性的分析比较,获得远远多于传统药代动力学方法所能得到的药物代谢信息,体现复杂药物整体成分的代谢效应。 /p p   在这种新的研究策略下,我们于2012年将Poly-PK成功应用于普洱茶对人体代谢影响的研究,初步验证了其有效性和可行性。2015年应邀在Science杂志有关传统药物研究的副刊上撰文总结了多成分中草药体内Poly-PK的新策略。 br/   最近,我们与正在开展复方中药黄芪汤I期临床研究的刘平教授团队合作,对健康志愿者服用中药黄芪汤(含黄芪和甘草两味药)前后药物的多种化学成分在体内的吸收、代谢过程、以及对机体代谢网络的影响进行了系统研究。 br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/9541b4b8-ef6d-4598-854d-ba369ad3f4d5.jpg" title=" 1.jpg" / /p p br/ /p p style=" text-align: left "   研究结果显示黄芪汤包含有84种不同的化学成分,服药前志愿者体内被检测到292种体内代谢物,服药后则被检测到有532种代谢物。对服药前与服药后各时间点的代谢物分析比较,发现其中有485种代谢物发生变化,并且这种变化与服用黄芪汤有关。经生物信息学分析得知,黄芪汤中有56种成分是以原型成分形式被吸收进入血液,还有292种新成分(黄芪汤的次级代谢物)是黄芪汤中的原药成分通过机体代谢新产生的。另外,有166种体内的代谢物(内源性代谢产物)由于服用黄芪汤发生了显著变化。在此基础上,对这3组数据的相关性进行了系统分析。同时,黄芪汤成分被体内吸收和代谢后,能显著调节机体数十种内源性代谢物通路,也就是说黄芪汤中的成分在体内代谢过程的同时能对机体的代谢发生影响,即产生了药效作用。 br/ img src=" http://img1.17img.cn/17img/images/201707/insimg/e541d04f-280a-4c86-94d6-205fbbba75b9.jpg" title=" 2.jpg" style=" width: 600px height: 500px " width=" 600" vspace=" 0" hspace=" 0" height=" 500" border=" 0" / /p p   这个工作首次在临床试验中验证了Poly-PK研究思路的有效性和技术可行性。我们将Poly-PK结果与常规的药物PK结果做了比较,用UPLC-TQMS(三重四级杆)定量检测的五种药物成分与Poly-PK中的相应结果完全一致,但是后者能够提供的信息远远超出前者,所检出的化合物种类和数量、观察到的药物互相作用关系,以及获得的人体代谢应答信息(药效信息)是基于单一化合物的传统PK方法无可比拟的。 br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/7a5ae499-214d-479f-a887-8ab245aa00c0.jpg" title=" 3.jpg" / /p p   Poly-PK也同样适用于复方化学药(西药)的研究。从Poly-PK概念的提出,到采用普洱茶在人群中开展验证性研究(proof of concept study),再到真正意义上的临床药代动力学研究,历时7年,因为觉得有意义,便一直摸索着做下来了。Poly-PK整合了药物分子轮廓分析和定量代谢组学技术,采用一系列多变量统计分析方法,可同时对数百种药物成分的体内代谢变化以及人体的代谢应答(药效)进行系统评价,研究展示了复杂的(黄芪汤中的)药物原型成分、经过代谢的次级成分、机体在(黄芪汤)药物影响下发生的代谢变化以及三者之间的相互关系,在系统水平上描绘出复杂药物系统的体内ADME全过程。 br/ br/ /p p strong 主要参考文献 /strong /p p 1. Lan K, Jia W. An integrated metabolomics and pharmacokinetics strategy for multi-component drugs evaluation. Current drug metabolism. 2010, 11(1):105-14. br/ /p p 2. Xie G, Zhao A, Zhao L, et al. Metabolic fate of tea polyphenols in humans. Journal of proteome research. 2012, 11(6):3449-57. br/ /p p 3. Lan K, Xie G, Jia W. Towards polypharmacokinetics: pharmacokinetics of multicomponent drugs and herbal medicines using a metabolomics approach. Evidence-based complementary and alternative medicine: eCAM. 2013 2013:819147. br/ /p p 4. Jia W, Fang T, Wang X, Xie G. The polypharmacokinetics of herbal medicine. Science, The Art and Science of Traditional Medicine. 2015, 350, 6262:871. https://www.sciencemag.org/custom-publishing/collections/art-and-science-traditional-medicine-part-3-global-impact-traditional br/ /p p 5. Xie G, Wang S, Zhang H, Zhao A, Liu J, Ma Y, Lan K, Ni Y, Liu C, Liu P, Chen T, and Jia W. Poly-Pharmacokinetic Study of a Multicomponent Herbal Medicine in Healthy Chinese Volunteers. Clinical Pharmacology & amp Therapeutics. 2017, Jul 4. doi: 10.1002/cpt.784. [Epub ahead of print]. /p
  • SCIEX宣布推出用于常规和全面代谢与生物分解代谢研究的新型生物转化解决方案
    此次推出的生物转化解决方案采用了首款实现商用的蛋白质分解产物自动鉴定软件,能够加快代谢物和分解产物的鉴定速度。马萨诸塞州弗雷明翰 (2017 年 3 月 29 日) 全球知名的生命科学分析技术公司 SCIEX 今天宣布,其不断壮大的药物发现和开发解决方案家族再添新成员。常规生物转化解决方案和高级生物转化解决方案采用 SCIEX 全新的 MetabolitePilotTM 2.0 软件。这些全新的解决方案能够实现小分子代谢和生物制剂分解代谢研究的自动化,并且可以加快研究速度。两种解决方案均具备自动化结构解读、高级处理选项和抗体偶联药物 (ADC) 分析模板等功能,可以提供直观的代谢数据处理,从而提高常规和全面代谢物鉴定研究的效率,并节省成本。生物转化研究是小分子和大分子药物开发的必要组成部分。无论研究人员是迫切需要在药物发现中找到软点并确定代谢物,还是希望有十足把握确定药物开发中所有可检测的代谢物或多肽分解产物,SCIEX 都能提供可以满足科学家要求的集成式解决方案。SCIEX 的常规生物转化解决方案由 ExionLC™ AD 系统、X500 系列 QTOF 系统(四极杆飞行时间)平台和 MetabolitePilot 2.0 软件组成。SCIEX 操作系统的用户界面简单易用,能帮助制药研究人员简化小分子和大分子的高通量代谢物鉴定与软点分析。该解决方案可以鉴定化合物的主要代谢物,并以尽可能简单的方式向化学家和生物学家报告,能够迅速、准确地完成高通量筛选,从而缩短项目周期。SCIEX 的高级生物转化解决方案在 SCIEX TripleTOF® 6600 系统上使用客观公正的 SWATH® 采集技术,只需一次进样就能开展深入、全面的代谢/分解代谢研究。如今,利用 MetabolitePilot 2.0 软件,需要全面鉴定分子的所有代谢物和生物转化产物的制药研究人员能够实现代谢物和分解产物数据的自动化处理,这样就可以高度精确地鉴定传统小分子代谢物和复杂生物制剂分解产物的结构。“截至目前,在进行生物制剂分解代谢研究时,客户可以选择的处理软件并不多。此外,数据处理和解读通常都是手动进行,耗时耗力。这些采用 MetabolitePilot 2.0 软件的新型解决方案能够对生物制剂分解代谢数据进行智能处理。”SCIEX 制药/CRO 业务高级总监 Farzana Azam 说,“通过结合使用 SWATH 采集技术,研究人员只需一次进样就能完成分析,并且可以实现样品的全面覆盖。这让他们有信心不漏掉任何重要的低水平含量代谢物/分解产物。生物转化解决方案提供灵活的选择,不但可以快速鉴定代谢物和分解产物,而且能够进行更深入的代谢和分解代谢研究,还可以实现快速处理。”要详细了解如何革新生物转化研究和探索 SCIEX 的生物转化解决方案,请访问:sciex.com/biotransform###SCIEX 简介SCIEX 帮助科学家和实验室分析人员寻找解决方案来战胜他们面临的复杂分析挑战,从而改善我们生存的世界。凭借在毛细管电泳色谱和液相色谱-质谱行业的全球领导地位和世界一流的服务与支持,公司成为全球数以万计的科学家和实验室分析人员值得信赖的合作伙伴,这些人员主要从事基础研究、药物研发、食品和环境检测、法医学及临床研究工作。SCIEX 拥有 40 多年的创新历史,擅长通过倾听客户心声和理解客户不断变化的需求,开发可靠、灵敏且直观的解决方案,不断重新定义常规和复杂分析可以实现的成果。有关详细信息,请访问 sciex.com。SCIEX 社交帐号:Twitter: @SCIEXnews、LinkedIn、Facebook。仅限研究使用,不可用于诊断程序。RUO-MKT-12-4947-AAB Sciex 以 SCIEX 的名义开展业务。© 2017 AB Sciex.本文涉及的商标均归 AB Sciex Pte.Ltd. 或其各自的所有者所有。AB Sciex™ 的使用已获得许可。联系信息 Stacey Sicurella SCIEX 全球公关和品牌经理 stacey.sicurella@sciex.com 508-688-7958编辑跟进 Patrick Farrell Sniper Public Relations(代表 SCIEX) pfarrell@sniperpr.com 603-583-5488
  • 空间代谢组学:单细胞空间代谢流分析新方法
    空间代谢组学:单细胞空间代谢流分析新方法原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘甜生物体内的代谢物和脂质不仅是细胞的关键组成模块,它们在信号传导、表观基因组调控、免疫、炎症和癌症发展中同样具有重要作用和意义。代谢组学分析是我们了解、评估生物体、器官和细胞状态的重要方式。而单细胞技术通过展示组织内部甚至单克隆细胞之间的细胞异质性,将生物学研究推进至新维度。质谱成像(MSI)技术可以从样品中创建特定化合物的图像,这些图像是由样品表面获得的数千个质谱生成的。每个记录的质谱都会为图像贡献一个像素,而每个质谱中的峰都可以生成一个图像。与其他成像方法相比,MSI无需化合物标记,可实现非靶向分析。本次与大家分享的是一篇最新发表于bioRxiv上的有关单细胞空间代谢流分析方法的文章[1]。研究人员基于AP-SMALDI Orbitrap平台开发了一种命名为“13C-SpaceM”的新方法,通过13C标记的葡萄糖示踪葡萄糖依赖性脂肪酸从头合成途径(glucose-dependent de novo lipogenesis)。本方法应用超高分辨率的基质辅助激光解吸/电离实现了单细胞质谱成像,并通过全离子碎裂模式(AIF)模拟了脂肪酸分析前处理过程中的皂化反应,对包括甘油磷脂在内的主要脂质中的脂肪酸部分实现了共同分析。超高灵敏度、高分辨质谱检测器为单细胞内脂肪酸同位素检测提供了准确的定性、定量结果。研究人员通过鼠肝癌细胞的常氧-低氧模型,对检测方法进行了验证,确认方法的有效性。之后应用本方法分别检测了ATP柠檬酸裂解酶基因敲降(ACLY knockdown)鼠肝癌细胞以及携带异柠檬酸脱氢酶(IDH)突变的小鼠胶质瘤脑组织切片,通过比较脂肪酸的同位素丰度变化评估脂肪酸从头合成比例以及外源性脂肪酸摄取的变化。分析结果揭示了在脂肪酸从头合成过程中,乙酰辅酶A池(Acetyl-CoA pool)中存在大量的空间异质性,这表明在微环境适应过程中发生了代谢重编程。01研究背景脂质在生物体生命过程中承担着多种重要作用,多数脂质是由脂肪酸合成而来。成年哺乳动物体内的细胞通常由血液中摄取脂肪酸,而脂肪、肝脏以及癌细胞还可以Acetyl-CoA为底物,从头合成脂肪酸[2]。Acetyl-CoA经过一系列代谢反应,可以生成含有16个碳的饱和脂肪酸棕榈酸(16:0),之后棕榈酸发生碳链延长或去饱和反应生成不同的饱和、不饱和脂肪酸,从而影响脂质组成。而Acetyl-CoA同样有多种来源,除了葡萄糖经由TCA循环生成的柠檬酸在ACLY作用下生成Acetyl-CoA以外,在缺氧环境下,葡萄糖后续代谢产物丙酮酸会转化为乳酸,从而无法合成Acetyl-CoA、进入脂肪酸合成途径。在此情况下,谷氨酰胺可通过还原羧化反应生成柠檬酸,进而合成Acetyl-CoA [3,4] 。另有文献报道,缺氧环境下的癌细胞还可以将乙酸作为脂肪酸合成的前体 [5,6] 。而Acetyl-CoA除了作为脂肪酸合成底物以外,对于蛋白翻译后修饰、基因表达等均有重要作用。通过监控脂肪酸合成和Acetyl-CoA代谢间的互动可以帮助我们深入理解癌细胞的生存状态。02分析方法大气压MALDI成像分析是通过AP-SMALDI5离子源配合Q Exactive plus高分辨质谱仪实现的。激光像素设置为 10×10 µ m,激光衰减器角度设置为33°。质谱在负离子模式下采用一级全扫描和全离子碎裂(AIF)扫描模式。AIF模式的隔离范围为 m/z 600-1000,扫描范围为m/z 100-400,分辨率 140k,最大注入时间500 ms,碰撞能量NC 25%。(图1)图1. 单细胞代谢流质谱成像分析流程(点击查看大图)MALDI分析前后,分别应用显微镜检测,确定细胞影像位置及MALDI消融标记位置。通过检测MALDI的消融标记,将其与细胞影像叠加,并通过应用数学公式进行解卷积,从而整合显微镜图像和MALDI图像。实现了应用MALDI成像质谱检测到的单细胞分子轮廓。(图2)图2. 整合显微镜和MALDI-MS分析结果实现单细胞质谱成像(点击查看大图)03鼠肝癌细胞常氧-低氧模型单细胞成像分析鼠肝癌细胞在添加25 mM的12C-葡萄糖或U-13C-葡萄糖后,用含1mM醋酸、2 mM谷氨酰胺和10%透析胎牛血清的无葡萄糖DMEM细胞培养基培养,在37°C、5% CO2的培养箱中在常氧(20% O2)或低氧(0.5% O2)条件下培养72小时。选择72小时的时间点是为了确保棕榈酸的同位素标记已经达到稳态。(图3)在低氧条件下培养的细胞被表达绿色荧光蛋白(GFP)标记。在共培养实验中,常氧和低氧细胞使用胰酶分离,每种条件下混合10000个细胞,在同一张玻璃片上进行培养,并在固定之前允许其附着3小时。图3. 由稳定同位素标记的13C6-葡萄糖生成细胞质Acetyl-CoA以及后续的脂肪酸和脂质合成途径(点击查看大图)通过质谱一级全扫描分析,质谱成像共检测到64种脂质,包括磷脂酸(PA)、磷脂酰肌醇(PI)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)等。具体脂质鉴定结果经过了常规LCMS脂质分析确认。在AIF模式下,检测到了11种含量最高的脂肪酸,相应检测结果同样与常规LCMS分析结果相符。为了验证本方法,研究人员检测了常氧-低氧培养的鼠肝癌细胞混合样本。通过对氨基酸同位素峰的定量分析,发现13C标记的棕榈酸(M0)主要在正常细胞中检出,而缺氧细胞中的棕榈酸以未标记状态(M+0)为主。通过GFP标记结果的对照,证明了本方法可以通过同位素峰分布有效识别不同培养状态的细胞。图4. 在常氧(GFP阴性)和低氧(GFP阳性)条件下的原代鼠肝癌细胞共培养模型的显微镜和质谱成像结果(点击查看大图)图5. 通过GFP标记验证识别不同培养模式细胞的准确性(点击查看大图)04单细胞Acetyl-CoA池标记水平分析研究人员使用了两种表达不重叠的shRNA序列(ACLYkd oligo1和ACLYkd oligo 2)细胞系以及一个对照组细胞系。通过使用1 μg/mL的四环素处理细胞72小时实现了ACLY沉默。质谱成像数据是以10 μm的像素大小获得的,每个细胞的平均面积为550μm2,平均每个细胞有12个像素。通过应用二项式模型计算每个细胞的acetyl-CoA池标记程度p值,从而量化细胞质中acetyl-CoA池中从葡萄糖衍生的同位素标记acetyl-CoA的比例。测试结果与预期相符,ACLYkd细胞中的acetyl-CoA池标记水平低于对照组。值得注意的是,两种ACLYkd细胞之间的差异非常明显。ACLYkd oligo1的结果呈双峰分布,p值的差异明显较大,表明该细胞系存在两个亚群体。其中一个模式显示的p值与对照组相近,说明存在一个“沉默失败”的细胞亚群。ACLYkd oligo1第二个模式具有的p值明显则低于ACLYkd oligo 2,表明ACLYkd oligo 1中还存在一个“强沉默”的亚群,在这些细胞中,沉默效率非常高,导致acetyl-CoA同位素标记比例大幅降低。在ACLYkd oligo 2中,acetyl-CoA池的标记程度以及GFP报告基因强度显示出更均一的分布。M+2峰是最能表现出ACLYkd oligo1细胞中“强沉默”群体的低acetyl-CoA标记表型的质谱峰。M+8峰则为对照组细胞的特征标记峰。M+2和M+8之间的差异可以作为显示异质性的指标,用于展示葡萄糖对细胞质中acetyl-CoA的相对贡献。因此,13C-SpaceM能够检测ACLY敲降细胞中的异质性,并识别不同的亚群体。这种单细胞和空间异质性无法通过整体分析揭示,显示了13C-SpaceM方法的独特优势。图6. 细胞ACLY敲降后acetyl-CoA的同位素标记程度分析(点击查看大图)05肿瘤组学中氨基酸合成异质性的空间组学分析研究人员分析了从横向植入表达突变型异柠檬酸脱氢酶(IDH)和红色荧光蛋白(RFP)的GL261胶质瘤细胞的小鼠大脑组织切片。在采集组织前的48小时,小鼠被喂食未标记的或含有U-13C葡萄糖的液体饮食。首先,研究人员分析了12C-葡萄糖饮食的肿瘤携带小鼠大脑切片中的酯化脂肪酸组成。通过比较质谱TIC与显微镜明场和荧光成像,发现整个大脑(包括肿瘤区域)的质谱离子响应很高(图7a)。测试过程中,肿瘤区域与组织切片的其余部分分别采用10μm和50μm激光分辨率进行分析。对不同脂肪酸的空间分析揭示了在非肿瘤携带的脑半球组织中,脂肪酸丰度存在高度的异质性,我们可以仅根据它们的脂肪酸组成来识别的某些结构,如胼胝体和前连合部,这两个区域都富含油酸(18:1)且棕榈酸(16:0)、硬脂酸(18:0)和花生四烯酸(20:4)的含量低。有趣的是,尽管棕榈酸、油酸、硬脂酸和花生四烯酸在肿瘤和周围的大脑组织中的含量相似,肉豆蔻酸(14:0)和棕榈酸(16:1)在肿瘤组织中则明显增加。与大脑其它部分相比,肿瘤中必需脂肪酸亚麻油酸(18:2)和α/γ亚麻酸(18:3)也明显增高。之后,研究人员分析了喂食含有U-13C葡萄糖饮食的小鼠肿瘤组织,从肿瘤组织中选择性分离出的5种主要从头合成的脂肪酸的同位素分布(图7c)。三种饱和脂肪酸肉豆蔻酸(14:0)、棕榈酸(16:0)和硬脂酸(18:0)的13C摄入丰度较高,同位素分布最大分别可至M+10,M+12和M+14。其中,肉豆蔻酸M+0的强度极低,几乎完全源自脂肪酸从头合成。由于肉豆蔻酸对一些重要信号蛋白的翻译后修饰很重要,这一发现表明胶质瘤可能选择性地上调肉豆蔻酸的合成以促进自身生长。相比之下,两种单不饱和脂肪酸,棕榈酸(16:1)和油酸(18:1)的M+0同位素的相对丰度较高。硬脂酸和油酸的M+2同位素丰度明显增加,表明它们是由未标记的前体(即棕榈酸和棕榈酸)延长形成的。研究人员进一步利用棕榈酸的同位素分布计算acetyl-CoA池中源自葡萄糖的比例,发现肿瘤组织内的该比例同样具有显著的空间异质性(图7d)。图7. 小鼠脑胶质瘤组织内部脂肪酸代谢空间异质性分析(点击查看大图)总结本文作者开发了一种全新的单细胞代谢流成像检测方法,将超高激光分辨率的大气压MALDI与高分辨率、高灵敏度的质谱检测器相结合,对细胞和肿瘤组织内的葡萄糖依赖性脂肪酸从头合成途径实现单细胞层面的空间分析。不仅为单细胞水平空间探测代谢活动提供了新的方法,还为正常和癌症组织中的脂肪酸摄取、合成和修饰分析提供了前所未有的视角。参考文献:1. Buglakova E, Ekelö f M, Schwaiger-Haber M, et al. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Preprint. bioRxiv. 2024 2023.08.18.553810. Published 2024 Feb 28. doi:10.1101/2023.08.18.5538102. Rö hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016 16(11):732-749. doi:10.1038/nrc.2016.893. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011 481(7381):380-384. Published 2011 Nov 20. doi:10.1038/nature106024. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011 108(49):19611-19616. doi:10.1073/pnas.11177731085. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 2:23. Published 2014 Dec 11. doi:10.1186/2049-3002-2-236. Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015 27(1):57-71. doi:10.1016/j.ccell.2014.12.002如需合作转载本文,请文末留言。
  • 代谢组学揭示肠癌患者临床诊断依据
    近年来,医学领域的基础研究日趋系统化和多学科交叉,系统生物学的迅猛发展翻开了临床实践、药物研发的新篇章。作为国内较早涉足系统生物学研究的贾伟教授研究团队,近年来应用代谢组学技术对各种临床疾病的早期预测、诊断和预后的生物标志物进行了广泛的研究,现以结直肠癌的系列研究为例介绍我们的研究进展。  研究团队首先采用气相色谱质谱联用、液相色谱质谱联用分析方法,结合单维统计、多维统计的代谢组学研究技术,对I-IV期的64名肠癌患者和65名健康志愿者分别进行了血清和尿液代谢标志物的筛查,并进一步在扩大的研究对象101名肠癌患者和103名健康人中对所发现的潜在代谢标志物进行了验证。  研究结果显示,肠癌患者与健康人的血清代谢物组成具有显著差异。肠癌患者的糖酵解通路中的两个代谢产物丙酮酸和乳酸在血清中呈显著性升高,三羧酸循环中的琥珀酸、异柠檬酸、柠檬酸中间产物呈下降趋势 油胺在肠癌病人血清中的含量也有显著性降低 尿素循环代谢物精氨酸、鸟氨酸和瓜氨酸在病人血清中均显著降低,脯氨酸、羟基脯氨酸和谷氨酸也显著下降 另外,色氨酸及其相关的代谢物5-羟基色氨酸和5-羟基吲哚乙酸在肠癌组和正常组之间有显著性差异,提示与5-羟色胺的代谢相关。研究结果还显示,血清代谢产物不仅可以将肠癌Ⅱ-Ⅳ期的患者与健康人明显区分开,还能将Ⅰ期的早期肠癌患者与健康人也区分开来。我们的相关研究结果从2009年开始陆续发表在专业领域内具有较大影响力的杂志Journal of Proteome Research(2009和2013)上。  尿液代谢组学结果同样显示,结直肠癌患者和正常人的代谢谱亦呈显著差异。结直肠癌患者中的色氨酸代谢上调,组胺和谷氨酸代谢通路、三羧酸循环和肠道菌群代谢紊乱。另外,结直肠癌病人中紊乱的代谢谱,如5-羟色氨酸代谢物、三羧酸循环代谢和肠道菌群代谢物在手术后得到明显改善。研究进而开展了二甲肼(DMH)所致结肠癌早期病变的SD大鼠模型的研究,同样发现这些代谢物的波动和紊乱。研究结果发表在Journal of Proteome Research (2010和2012)上,并得到美国ACS和TIME(时代周刊)为代表的多家权威媒体的重点报道和关注,对该研究结果和前景给予了极高的评价。  在结直肠癌血清和尿液的代谢组学研究基础上,我们对肠癌的组织也进行了深入的研究,对组织的研究可以有效规避血清、尿研究中由于饮食差异等外界因素对体内代谢物的影响带来对研究结果的影响。研究团队首先对来自上海地区的结直肠癌和癌旁组织进行研究,发现了一组在癌和癌旁组织中具有显著性差异的代谢物。进而对来自北京、浙江和美国加州另外3个不同地区的结直肠癌和癌旁组织也进行了研究。结果显示肠癌组织中总的代谢物变化趋势在4个不同地区的样本具有很高的相似性,其中的15个代谢分子呈现出完全一致的变化趋势。进一步研究发现这些差异性代谢物的变化与所在的代谢通路上的基因表达水平的变化呈高度的一致性。这些差异代谢物包括上调的犬尿氨酸、b-丙氨酸、谷氨酸、半胱氨酸、2-氨基丁酸、棕榈油酸、焦谷氨酸、天冬氨酸、次黄嘌呤、乳酸、豆蔻酸、甘油、尿嘧啶、腐胺,以及下调的肌醇。差异表达性的基因包括LDHA、TALDO1、GOT2、MDH2、ME1、GAD1、ABAT、PANK1、DPYD、ACLY、FASN、SCD、IDO1、GPX1、GSTP1、GSR、GSS、GGCT、ANPEP、CAT、ERCC2。结合代谢物和基因表达变化发现的结直肠癌的代谢物模式和基因表达模式特点主要可以从三个方面阐释其生物特性:1)“瓦伯格效应”(Warburg Effect):这是肿瘤细胞能量代谢的典型特征,表现在大量地摄取葡萄糖进行有氧糖酵解,生成大量的乳酸,同时为不断生长的肿瘤细胞提供生物合成原料 2)伴随着糖酵解的上升,用于大分子物质合成的代谢中间体显著上升:肿瘤细胞的代谢会产生大分子中间体来支持细胞生长,导致某些特定的游离脂肪酸(豆蔻酸、棕榈油酸)和核酸(次黄嘌呤)的浓度上升。在肿瘤细胞中,高表达的ACLY、 FASN和SCD同样提示了脂肪酸合成的增强。而b-丙氨酸在肿瘤细胞生长中明显的变化可能与脂肪酸合成中的乙酰辅酶A和丙二酸辅酶A有着密切的联系,提示这种变化可能与肠道菌群代谢有相关性 3)肿瘤细胞内维持较高的氧化应激水平:我们发现肿瘤组织内具有抗氧化活性代谢物的浓度显著上升。由于肿瘤细胞加速合成代谢而产生较高的活性氧,从而使胞内氧化应激水平上升。所发现的这些具有抗氧化活性的代谢产物在肿瘤组织中被大量的合成,提示肿瘤细胞通过改变代谢模式,用还原性的分子来平衡活性氧,从而在较高的氧化应激水平下维系其生理和代谢功能。实验中发现,氧化应激的生物标志物视晶酸、2-氨基丁酸在肿瘤细胞中上升。同时,与谷胱甘肽相关的基因包括GPX1、GSR、GGCT、GSTP1也在肿瘤组织中显著升高。该研究结果发表于国际知名的癌症研究期刊ClinicalCancer Research(2014)。  我们相信对结直肠癌的系统性的代谢研究,对寻找和发现具有临床早期诊断和预后价值的生物标志物研究提供了极大的可能性,为未来的临床转化研究奠定了坚实的基础。     原文出处:  1.Qiu, Y. Cai, G. Su, M. Chen,T. Zheng, X. Xu, Y. Ni, Y. Zhao, A. Xu, L. X. Cai, S. Jia, W., Serummetabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS.Journal of Proteome Research. 2009, 8, 4844–4850.  2.Qiu, Y. Cai, G Su, M. Chen, T. Liu, Y. Xu, Y. Ni, Y. Zhao, A. Cai, S. Xu, L. X. Jia, W.,Urinary Metabonomic Study on Colorectal Cancer. Journal of Proteome Research.2010, 9, 1627–1634.  3.Cheng, Y., Xie, G., Chen, T., Qiu, Y., Zou,X., Zheng, M., Tan, B., Feng, B., Dong, T., He, P., Zhao, L., Zhao, A., Xu,LX., Zhan,g Y., Jia, W. Distinct urinary metabolic profile of human colorectalcancer. Journal of ProteomeResearch. 2012, 11(2):1354-63.  4.Tan, B, Qiu,Y, Zou, X, Chen, T, Xie, G, Cheng, Y, Dong, T, Zhao, L, Feng, B, Hu, X, Xu, L.X, Zhao, A, Zhang, M, Cai, G, Cai, S, Zhou, Z, Zheng, M, Zhang, Y & Jia, W.Metabonomics identifies serum metabolite markers of colorectal cancer. Journalof Proteome Research 2013, 12, 1354?1363.  5.Qiu, Y. Cai,G. Zhou, B. Li, D. Zhao, A. Xie, G. Li, H. Cai, S. Xie, D. Huang,C. Ge, W., Zhou,Z. Xu, L. Jia, Weiping Zheng, S. Yen, Y. Jia, W. Metabonomicsof human colorectal cancer: new approaches for early diagnosis and biomarkerdiscovery. Clinical Cancer Research.2014, 20(8):15.
  • 人工甜味剂可能影响人体糖代谢
    科研人员通报,人工甜味剂或许会干扰人体控制血糖的能力,导致可视为糖尿病前兆的代谢变化。在讨论这一发现的新闻发布会上,以色列魏茨曼科学研究学院(Weizmann Institute of Science)的免疫学家埃兰伊莱纳夫博士(Eran Elinav)表示,这“恰好是我们”用甜味剂代替糖时“通常希望避免的那种情况”。科学家们在以小鼠为主的实验对象身上进行了大量实验,以支持他们的结论:甜味剂会改变消化系统中的微生物菌群。研究人员指出,不同的菌群构成会改变葡萄糖的代谢,导致餐后血糖浓度升得更高、回落的速度也更慢。伊莱纳夫的以色列合作者中,包括魏茨曼学院的计算机科学与应用数学教授埃兰赛加尔(Eran Segal)。他们的这项发现发表在周三出版的《自然》杂志(Nature)上。芝加哥大学(University of Chicago)的病理学教授凯瑟琳R纳格勒(Cathryn R. Nagler)没有参与这项研究,不过在《自然》杂志上进行了相关评论,称他们的研究结果“非常有说服力”。她指出,包括肥胖症和糖尿病在内的许多症状已被认为与微生物菌群的变化有关。“本研究表明,我们应该退后一步,重新评估我们对人工甜味剂的广泛使用,”她说。此前对人工甜味剂的健康影响进行的多项研究,得出了相互矛盾、令人困惑的结论。一些研究认为,甜味剂与减重有关;另一些则正好相反,发现饮用健怡汽水的人实际更重。还有一些研究的结论是,人工甜味剂与糖尿病正相关。不过这些结论并不完全可信:那些放弃糖,而消费甜味剂产品的人可能本已超重,易于罹患糖尿病。尽管承认得出广泛结论或决定性的结论还为时尚早,但伊莱纳夫表示,他已经对自身行为做出了改变。“我喝很多很多的咖啡,大量使用甜味剂,和很多人一样,以为它们起码不会伤害我的身体,说不定还有好处,”他说。“基于我们的研究得出的意外结果,我个人选择不再使用甜味剂。”“我并不认为,我们提出的证据足以修改目前的饮食建议,”他接着说。“但我希望,这将引发一场良好的讨论。”在初步实验中,科学家们把糖精(粉色包装的纤而乐[Sweet’N Low]的甜味剂)、三氯蔗糖(黄色包装的善品糖[Splenda]的甜味剂)或阿斯巴甜(蓝色包装的怡口[Equal]的甜味剂)添加到饮用水中,让10周大的小鼠摄入。其他小鼠则喝白水,或者添加了葡萄糖或普通食糖的水。一周之后,饮用白水或糖水的小鼠变化不大,但摄入人工甜味剂的那组小鼠明显出现了葡萄糖耐受不良。葡萄糖耐受不良表明身体处理大量糖分的能力降低,可能会导致更加严重的疾病,比如代谢综合征和2型糖尿病。当研究人员对小鼠使用抗生素,杀死其消化系统中的很多细菌之后,它们的葡萄糖耐受不良问题就消失了。目前,科学家尚无法解释甜味剂是如何影响这些细菌的,以及为什么在葡萄糖代谢过程中,糖精、阿斯巴甜和三氯蔗糖这三种不同的分子导致了类似的变化。科学家们假设葡萄糖代谢中的变化是由细菌的变化引起的,为了进一步检验这个假设,他们开展了另外一系列只针对糖精的实验。科学家们从摄入了糖精水的小鼠身上取出肠道细菌,注入到从未接触过任何糖精的小鼠体内。随后这些小鼠也出现了葡萄糖耐受不良。DNA测序表明,在摄入糖精的小鼠的肠道中,糖精明显改变了细菌种类的组合。接下来,研究人员开始追踪营养和肠道细菌对人体长期健康的影响。这项研究有381例非糖尿病患者参加,研究人员发现,任何一种人工甜味剂的摄入,都和葡萄糖耐受不良体征之间存在着相关性。此外,有没有摄入人工甜味,肠道细菌会不一样。最后,研究人员招募了七名通常不使用人工甜味剂的志愿者,并在六天时间中,让他们摄入了美国食品与药品管理局(Food and Drug Administration,简称FDA)建议的糖精最大摄入量。结果七人中有四人的血糖值出现了与小鼠类似的变化。此外,当他们把人类受试者的细菌注入到小鼠的肠道中后,小鼠再次出现了葡萄糖耐受不良,这表明该效应在小鼠和人类中是相同的。“我认为这个实验很令人信服,”纳格勒博士说。有趣的是——“让我们觉得既震惊又有趣”,西格尔博士说——出现了这种效应的人,其肠道细菌不同于没有经受它的人。这表明,人工甜味剂的任何效应都不是放之四海而皆准的。这也表明,益生菌——含有活细菌的药品——可用于改变肠道细菌群,以逆转葡萄糖耐受不良。哈佛大学公共卫生学院(Harvard School of Public Health) 的营养和免疫学教授弗兰克?胡(Frank Hu)博士没有参与这项研究,他称该研究很有趣,但还远远不能就此做出结论,因为受试者人数不足,他说,“我认为这项人体研究的正确性存在问题。”研究人员表示,未来的项目会对阿斯巴甜、三氯蔗,以及甜叶菊等其他甜味剂进行详细研究。
  • 让代谢产物再无“漏网之鱼”
    药物代谢是通过多种药物代谢酶进行生物转化,将药物极性增大通过机体的正常系统再排泄至体外。药物通过代谢器官(主要为肝脏)代谢后,药理活性发生变化可能产生毒副作用,因此药物代谢的研究属于药物的安全性评价的重要一环,并且研究药物在体内的代谢路径,可以为潜在新靶点的发现以及进一步的新药开发提供重要线索。Orbitrap IQ-X专为药物代谢量身定制的数据采集流程和Compound Discoverer软件嵌合的药物代谢高分辨数据处理流程强强联合,让科研小伙伴们从此提高生产力,让代谢产物再无“漏网之鱼”,用最酷的仪器,产生最理想的数据,发最顶jian的paper。诚然,要“一网打尽”药物在机体内转化的代谢产物是很有难度的,首先样品基质很复杂,我们要找的代谢物很可能掩埋在一丛丛响应高大的基质峰里,这个对于仪器的要求核心是超高分辨率,可以将代谢物和基质干扰在分辨率这个维度区分开来,但即便区分开了,我们也希望能高效地采集到所有代谢产物的碎裂谱图;另外基质峰那么多,肉眼怎么可能把数据里的全部代谢产物提出来进一步分析呢?因此对于软件的要求是快速地将代谢产物找到且不漏掉。这两方面的难题分别对应硬件和软件,接下来让我们来瞅瞅高大上的“二强”是如何解决掉这些难题的~Orbitrap IQ-X & Compound DiscovererOrbitrap IQ-X专为药物代谢量身定制的数据采集流程:Orbitrap IQ-X的分辨率高达100万(@200m/z),帮助采集到准确度最da化的质谱图,不仅可以使代谢产物离子和背景干扰离子分离得更开,而且同位素的精细分布信息和二级甚至多级测得的高质量精度的碎片离子质荷比可以给出代谢产物的精zhun元素组成并初步推断代谢产物的碎裂丢失结构单元。比如说对于分子量在500左右的含硫代谢物,分辨率至少设置12万,两个A2同位素峰才能达到分离的效果。另外,实测的12万分辨下的A2同位素的分离图,相比于理论12万分辨率下模拟的同位素分离图来说,由于受到基质的干扰和化合物响应强度不够的影响,A2同位素的分离效果通常要差于理论模拟的同位素分离情况,因此我们在实验中需要对五百左右的含硫代谢物进行准确定性时,需要分辨率设置至少12万,如果分子量超过500,需要的分辨率就更高了。另一个让人难以望其项背的功能是首次推出Real-Time Library Search——实时谱图库搜索的智能MS3触发功能,此功能开发的基础在于代谢产物与母药具有结构相似性,结构相似性体现在质谱谱图上,就是代谢产物和母药的碎裂谱图存在共有碎片;开发的目的在于自动化、高效地获取代谢产物的二级甚至多级信息。实时谱图库搜索的智能MS3触发功能直接嵌合在采集方法模版中,方法设置中一键拖拽即可加载这个采集流程。从示意图中可以看到它是实时地将扫描的二级谱图与母药的标准品谱图库进行相似度匹配,对具有共有碎片的二级谱图中独有的碎片离子触发MS3碎裂谱图的采集,MS3触发可精zhun定位可能的药物代谢物的母离子,简化数据分析的同时,也为代谢产物的结构鉴定提供二级谱图甚至多级谱图信息。(点击查看大图)Compound Discoverer软件嵌合的药物代谢高分辨数据处理流程Compound Discoverer(简称CD)软件在药物代谢产物筛查这块功能非常完善,示意图中分别标注了基于质量亏损过滤(filter by mass defect,MDF)的非目标代谢物的查找模式和目标代谢物查找模式。非目标代谢物查找模式中,基于母药和代谢物结构类似,具有共同特征二级碎片离子的特点,对所有MDF过滤查找出的潜在目标代谢物再进行特征碎片离子搜索,匹配上特征碎片的代谢物就会标记class coverage得分,匹配上的二级碎片越多,该化合物的class coverage分数越高。目标代谢物查找模式是基于给定母药的分子式,根据选择的代谢反应库进行代谢物搜索。CD软件写入了常见的一相和二相代谢反应(见示意图),并支持自定义代谢反应的写入,在目标代谢物查找模式中,可对所有查找到的代谢物以及其二级碎片进行代谢反应解析和结构注释。(点击查看大图)另外CD软件3.2版本(及以上版本)支持中性丢失的搜索,CD软件中引入了常见的特定中性丢失片段,也支持自定义中性单元,可以将丢失特定中性碎片的代谢产物快速搜索出来。(点击查看大图)最常见的代谢物鉴定流程以m/z 482.19391为例,示意图如下,首先进行一级同位素模式匹配(图b),绿色标注的为匹配上的同位素峰;其次与母药二级谱图比对进行碎片离子解析,图c为m/z 482.19391的二级原始谱图与母药二级谱图的镜像对比图,图中质谱峰标注为蓝色对应的碎片离子为母药或其碎片可通过代谢反应产生,标注为绿色对应的二级碎片为与母药相同的碎片离子,标注了颜色的碎片离子均会注释结构和相对应的代谢反应,大大有利于代谢物的结构推测。(点击查看大图)小结Orbitrap IQ-X的高分辨性能、独一无er的采集方式配备CD软件的全面代谢物查找模式中,创新代谢产物采集模式,提高代谢产物查找模式的丰富性,全面覆盖代谢产物查找范围,即便在复杂基质中也能轻松应对未知代谢产物的查找和鉴定。如需合作转载本文,请文末留言。
  • 布鲁克核磁 & 质谱网络研讨会 — 代谢组学专题
    布鲁克作为全球知名的仪器供应商,多年来一直专注于开发核磁和质谱技术在代谢组学研究中的应用,并不断取得突破性进展。此次,布鲁克核磁共振联合质谱部门将举办代谢组学行业专场网络研讨会。会中,布鲁克的技术专家们将为您带来核磁共振和质谱技术在行业的最新应用。您将了解到:核磁代谢组学方案疾病的发生必然导致机体出现病理生理异常,进而诱导体内代谢物水平发生变化。而代谢组学通过对体内复杂代谢物的动态变化进行分析,实现疾病的早期诊断和个性化治疗监控。本报告将分享Bruker Biospin最新发布的疾病诊断研究(IVDr)方案,包括一键式全自动地完成人体体液样本的NMR数据采集、谱图解析、代谢物定量以及疾病诊断分析。该报告将分享许多应用实例,敬请期待。质谱高通量代谢组学方案代谢组学是继基因组学、转录组学及蛋白质组学之后发展起来的一门新兴组学,主要的研究对象是脂质,氨基酸等小分子代谢物。代谢组学的研究通常会伴随快速稳定检测大批量样本的困扰,仪器的性能和结果的稳定性是保证此类研究质量的关键,布鲁克质谱以其优越的性能在高通量的样本分析方面表现出了极大的优势,为代谢组学的分析提供了稳定优异的分析平台。时间和地点:2020年5月27日,周三,下午14:30-16:00观看方式:点击观看演讲嘉宾:任萍萍博士布鲁克核磁高级应用科学家毕业于中科院武汉磁共振中心,在NMR及分析化学领域发表SCI十余篇,参编2019年科学出版社出版的分析检测类教材一部。樊朝阳布鲁克道尔顿应用工程师负责代谢组学质谱新技术的推广,有丰富的代谢组学质谱分析经验。
  • 基于NMR的代谢组学研究助力新冠肺炎重症早发现*
    虽然造成新冠肺炎(COVID-19)的新型冠状病毒(SARS-CoV-2)主要是呼吸道病毒,但这种疾病会累及全身的器官。除了肺部损伤和呼吸困难外,新冠肺炎患者还表现出神经、肾、肝和血管受损的症状。 研究表明,新冠肺炎患者具有与健康对照者不同的、提示代谢紊乱和血脂异常的代谢谱,且它们也与疾病的严重度相关联。这提升了利用代谢组学来识别具有最高重症风险的新冠肺炎患者的可能性。然而,大多数此类研究只是将新冠肺炎患者与健康对照者进行比较,导致无法确定这种关联是新冠肺炎特有的,还是只是提示危重疾病的普适性标志。 来自德国吕贝克大学的研究人员,通过将接受重症监护室(ICU)治疗的新冠肺炎患者,与在同一ICU进行心源性休克治疗的患者进行比较,研究了代谢谱的特异性。 近乎完美的区分 研究人员分析了5名接受ICU治疗的新冠肺炎患者、11名新冠病毒检测阴性的心源性休克患者,以及58名健康对照者的代谢和脂蛋白谱。他们在布鲁克Avance IVDr平台*(配备TXI探头的布鲁克核磁共振代谢分析系统)上总共分析了276份血清样品。初步的非靶向NMR代谢组学和脂质组学研究表明,新冠肺炎患者与健康对照者及心源性休克患者之间都存在差异。通过针对性分析,研究人员能够量化来自NMR谱图的代谢物和脂蛋白,并识别引起最大差异的代谢物类别。这些分析实现了对新冠肺炎患者与健康对照者及心源性休克患者近乎完美的区分。 为了进一步研究新冠肺炎的代谢影响,研究人员对代谢物和脂蛋白进行了比对分析。结果显示,有许多与能量状态紊乱、肝损伤和血脂异常相关的一致变化。 与其他重症患者截然不同的代谢谱 被识别出的一些关键特征包括低谷氨酰胺/谷氨酸比值,这是由分解代谢疾病状态下谷氨酰胺消耗增加所导致的。这一重症感染的典型指标与新冠肺炎有关联,但与心源性休克无关联。 苯丙氨酸是新冠肺炎患者出现上升的另一特征参数。该氨基酸通常在肝脏中代谢,其水平上升提示肝功能受损。 一些标志物提示能量代谢严重紊乱和代谢抑制,包括葡萄糖水平升高,以及组氨酸、蛋氨酸和乳酸水平降低。但是,这些变化只是新冠肺炎患者相比健康对照者所存在的差异,而与心源性休克患者相比没有这些差异,这表明它们可能不是新冠肺炎所特有的,而是提示危重患者能量状态紊乱的普适性指标。 根据之前的研究,研究人员还发现,新冠肺炎患者的脂蛋白谱严重紊乱,提示心血管疾病风险上升。该脂蛋白谱中很大一部分都与心源性休克患者不同。尤其要提到的是,新冠肺炎患者的极低密度脂蛋白(VLDL)、小颗粒VLDL组分及中密度脂蛋白水平上升——它们相比更大的低密度脂蛋白颗粒更易导致动脉粥样化;因此是引起心血管疾病和心脏损伤的风险因素。此外,新冠肺炎患者的甘油三酯水平相比健康对照者和心源性休克患者都有上升。 惊人的关联 该研究还研究了无症状感染或轻症之后持续发生的代谢变化。为此,研究人员分析了来自18个具有新冠病毒抗体的人的34份血清样本,并与来自相同年龄和性别的、不具有新冠病毒抗体的对照者的样本进行了比较。两组患者在采血前的急性冠状病毒感染检测均为阴性。 主成分分析(PCA)显示,两组之间的代谢谱和脂蛋白谱无显著差异,区分度很低,说明总体血清谱无显著差异。研究人员表示,这意味着新冠肺炎感染康复之后代谢谱回归正常。 然而,在来自曾经的轻症感染者的样本中,发现了抗体滴度和代谢健康标志物之间的关联。例如,抗体滴度与心血管风险标志物(包括小颗粒LDL-6、胆固醇和磷脂)呈负相关。还发现抗体滴度与作为代谢健康标志物的甘氨酸呈正相关。研究人员指出,他们无法从现有数据中确定因果关系,但拥有健康的代谢状态的个体可能更有可能对病毒产生有效的免疫反应,使得感染后的抗体滴度更高。 总之,研究人员表示,他们的发现表明新冠肺炎重症患者的代谢高度紊乱,包括分解代谢状态、肝损伤和严重血脂异常等。这一信息表明,基于NMR的代谢组学研究可被进一步用于患者的识别和分层,以帮助预测新冠肺炎的严重度。 *布鲁克核磁共振波谱仪仅供研究人员使用,不能用于临床诊断。 参考资料 Schmelter F, Foeh B, Mallagaray A et al. (2021) Metabolic markers distinguish COVID-19 from other intensive care patients and show potential to stratify for disease risk. medRxiv preprint. doi: https://doi.org/10.1101/2021.01.13.21249645.
  • 江苏大学陈全胜团队: 通过HS-SPME-GC/MS结合代谢组学分析鉴定超声波辅助康普茶发酵过程中的挥发性物质及其代谢途径
    Introduction茶菌等传统微生物发酵饮料使用富含蔗糖的茶水作为原料,经酵母和细菌共发酵而成。红茶作为茶菌发酵的主要原料,也被称为康普茶,具有促进胃肠道消化、抑制肠道有害微生物生长、抗氧化特性、促进血管舒缩、辅助预防心脑血管疾病的功能。发酵是康普茶香气产生的关键工序,可以产生大量的醛、酸、酮和其他化合物。目前,红外、微波、超声波等物理加工技术已成功应用于食品发酵,与传统加工技术相比更能促进风味的形成。其中,超声波处理的茶叶非常稳定,通过物理作用增强参与香气合成基因的表达,使得茶叶形成不同香气化合物。近年来,顶空固相微萃取(HS-SPME)样品前处理方法因其对样品需求量小、不需要有机溶剂、操作简单、灵敏度高、重现性好等特点,已成功应用于各种茶叶香气物质的提取。超声提取技术具有速度快、成本低、操作简单、环保、效率高等优点,是增强茶叶香气释放的一种特殊方式。因此,HS-SPME结合超声波技术可能适用于茶叶发酵过程的分析。代谢组学可以同时实现所有代谢物的全面定性和定量分析。现阶段,基于HS-SPME结合气相色谱-质谱(GC/MS)技术的组学方法已广泛应用于挥发性化合物的代谢组学分析。然而,结合HS-SPME-GC/MS与代谢组学方法,用于康普茶代谢产物变化与代谢途径之间的关系的研究鲜有报道。本文改进了康普茶的发酵工艺,并通过单因素和响应面分析进行优化。采用HS-SPME-GC/MS技术对康普茶发酵过程进行代谢组学分析,探究其代谢产物变化,并进一步分析代谢途径及其对挥发性化合物性质的影响(图1)。图1. 基于HS-SPME-GC/MS的代谢组学结合多元分析研究康普茶发酵过程中的特征挥发性物质和代谢途径。Results and Discussion发酵条件的确定不同超声频率下发酵液中总糖和茶多酚的消耗率如图2A和2B所示。结果表明,超声处理和非超声处理的样品其总糖和茶多酚的消耗率存在显著差异。优选发酵时间为3 d。根据采样时间记录发酵周期为S0~S7,其中发酵初期阶段记录为S0。此外,优选23 kHz的超声波频率为后续实验的最佳频率(图2C),优选pH 3.2为后续发酵的最佳条件(图2D),优选30 °C为最佳温度(图2E)。以发酵后总糖和酚的消耗率为响应值,进行Box-Behnken分析,建立高度拟合的茶提取物发酵条件的三元回归模型。图2. 探究超声处理对(A)茶多酚消耗率、(B)糖消耗率的影响,(C)五种超声频率对茶多酚和糖消耗率的影响,(D)五种pH值对茶多酚和糖消耗率的影响,(E)五种温度对茶多酚和糖消耗率的影响。采用扫描电子显微镜(SEM)表征23 kHz处理组和对照组茶菌的形态。结果表明,对照组表面光滑圆润,而超声后的细胞表面存在凹痕和皱纹(图3)。这可能与20~40 kHz频率下的急性气穴现象有关。超声波处理可以提高微生物中相关酶的活性,从而提高发酵效率。图3. SEM表征超声对茶菌形态的影响,(A和B)超声处理组,(C和D)对照组。代谢组组成分析GC-MS-TQ8040具有高通量和智能操作特性,配备高亮度离子源和高效碰撞池,可用于超灵敏分析。保留时间、已鉴定化合物列表、缩写、CAS号和分子式如表1所示。 表1. 基于HS-SPME-GC/MS鉴定康普茶发酵过程中的代谢物。132种气味活性化合物被分为10组(32种醇类、13种酮类、16种烯烃、18种酯类、14种烷烃、11种芳烃、9种酸类、7种醚类、4种氮挥发性化合物和1种硫化物)。康普茶发酵过程中挥发物的代谢谱表明,鉴定的化合物分离良好。采用单因素方差分析和Tukey图基事后检验法验证上述132种挥发性化合物在发酵过程中具有显著性。132种高贡献挥发物的方差分析统计如表2所示。表2. 康普茶发酵过程中挥发性成分的相对峰面积变化及其与发酵时间的相关性。标志性挥发性物质的分析采用主成分分析(PCA)将发酵样品分为不同类群,结果表明,发酵和未发酵的茶叶具有不同的挥发性物质成分(图4A)。发酵过程中茶叶的挥发性物质经历周期性的变化。进一步采用PCA的载荷图解释S0~S7代谢物变化差异的具体成分,结果如图4B所示。2-甲基丁酸、D-柠檬烯和苯乙醇等香气化合物有助于康普茶的整体花香、酸甜和柠檬味,并且远离零点,对PC1和PC2有显著贡献,从而影响发酵液的气味特征。PLS-DA得分图显示出更好的模型拟合(组间差异更显著),PC1和PC2分别占比59.1%和7.6%(图4C)。如图4D所示,选择了25种挥发性化合物。苯乙醇增强了“花香”风味,改善了整体的感官香气质量,并增强了康普茶的“甜”香气特征。其难闻气味可能是由2-甲基丁酸引起。挥发性成分的鉴别结果表明,发酵工艺对康普茶挥发性成分具有显著影响。此外,这些挥发性化合物被认为是康普茶发酵过程中的主要特征香气成分。图4. (A)康普茶样品的多元统计分析和质谱数据集的PCA得分图,基于PCA模型的(B)康普茶样品中变量的载荷图、(C)PLS-DA得分图、(D)PLS-DA评选的前25种挥发性化合物。特征代谢物的鉴定结合载荷图和VIP得分进一步筛选特征代谢物。结果如图5所示,部分差异代谢物与康普茶发酵过程呈线性相关。叶醇、二十烷、水杨酸异辛酯、2-甲基丁酸、邻伞花烃、甲基三十烷基醚、苯乙醇和棕榈酸异丙酯的含量与红茶发酵时间呈正相关。其余化合物(甲氧基苯肟、芳樟醇、雪松醇、二氯乙酸、癸酯)与储存时间呈负相关。图5. 12种代谢物的箱形图表明发酵中存在显著差异。代谢途径分析本文介绍了特征挥发物的产生途径、形成机制以及它们之间的转化关系。康普茶发酵过程中发现的特征代谢物的代谢途径如图6所示。图6. 康普茶发酵过程中发现的特征代谢物的代谢途径。Conclusion本文采用单因素优化实验和响应面分析确定康普茶的最佳发酵条件为30 °C、pH 3.2、23 kHz。通过代谢组学技术监测超声辅助处理过程中挥发性物质的综合变化。总而言之,鉴定了由132种成分组成的综合代谢组学图谱,并成功进行多元统计分析,筛选VIP>1的25种特征代谢物作为生物标志物。此外,详细研究了代谢途径以及各种挥发性物质的转化。结果表明,发酵后期存在挥发性物质转化的代谢途径。综上所述,在康普茶发酵过程中可以通过优化工艺加快和改进反应过程。本文为红茶菌发酵代谢产物的变化及影响机制的研究提供了重要的理论价值。
  • 拓展组学研究的边界 _ 赛默飞携手迈特代谢共建战略合作实验室
    拓展组学研究的边界 | 赛默飞携手迈特代谢共建战略合作实验室近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与武汉迈特维尔生物科技有限公司(以下简称:迈维代谢)合作实验室签约暨揭牌仪式在武汉隆重举办!国际知名代谢组学专家海南大学罗杰教授、知名蛋白质组学专家中国医学科学院苏州系统医学研究所叶子璐研究员出席并见证签约仪式。本次战略合作将通过结合赛默飞全球领先的质谱技术和迈维代谢领先的组学技术创新平台,推动双方深入拓展蛋白质组学及代谢组学分析研究领域,进一步推动新技术在医学研究、生命科学领域的成果转化和应用,开启多组学驱动的数字生命新时代!赛默飞与迈维代谢签约仪式多组学研究对于生物体内的各种生物过程、疾病的发生机制以及药物的研发都有着重要的意义。迈维代谢创造性开发了以“广泛靶向”专利技术为核心的高通量、超灵敏代谢组技术平台,已成为国内代谢组学领域发展最快、成果最多的知名企业之一。本次的战略合作,通过联合赛默飞强大的质谱技术,将进一步帮助迈维代谢拓展蛋白质组学及代谢组学分析的无限可能,深入更多组学研究高精尖领域,达到前所未有的研究深度。赛默飞色谱与质谱业务中国区商务副总裁何燕女士为迈维代谢颁发 Orbitrap Astral 高分辨质谱仪中国首批用户证书 近年来以质谱分析技术为核心的多组学研究,极大的推动了精准医学的进步,迈维代谢专注于领先的代谢组学服务,自主创新建立了220万代谢物的专属数据库,与赛默飞的战略合作将进一步帮助迈维代谢拓展蛋白质组学等多组学领域,从广泛的靶向分析到更广阔的非靶向分析,结合产学研发展需求,助力精准医学的研究和临床和转化! 会议邀请了中国医学科学院苏州系统医学研究所叶子璐研究员,为参会人员带来《Faster and ultra-sensitive analysis of proteomes enabled by narrow-window DIA》报告,为大家带来 Orbitrap Astral 高分辨质谱在蛋白质组学的最新全球数据,让与会专家领略到 Astral 在蛋白质领域的无限潜力。赛默飞液质应用专家带来《赛默飞全新一代高分辨质谱技术提升蛋白组学分析极限》报告,报告中提到 Astral 从解决通量的 8 分钟超过 8000 个蛋白的鉴定水平,到追求鉴定覆盖度的 15000 个蛋白的鉴定,Orbitrap Astral 高分辨质谱仪兼具超高的检测通量和深度蛋白组覆盖能力。在代谢组学方面,Astral 既能提供高质量分辨率的一级图谱,又能利用非对称轨道无损质量分析器提供快速、高灵敏度的二级图谱采集,从而开发出全新的 workflow(SQUAD),在一次上样中完成精准定性定量的过程,解决了代谢组学走进大数据时代的问题。系统生物学研究内容主要包括“基因-蛋白-代谢-表型”等多个层次,越来越多研究表明,多组学已成为生命科学和医学研究的重要工具。“基因组反映了可能发生的变化,蛋白组和代谢组反映了正在或者已经发生的变化”,迈维代谢持续创新质谱技术,创新性的开发出了广泛靶向代谢组检测技TM,建立了行业领先的植物代谢数据库和医学代谢物数据库 MWDB,真正实现了“高通量、超灵敏、广覆盖”,尽可能多的检测样本中所有的小分子化合物。与此同时,迈维代谢和赛默飞达成战略合作,在引进新一代质谱平台 Orbitrap Astral 并同步配置 Orbitrap Exploris 120 质谱仪后,双方进一步深入技术联合开发,携手努力打造为世界领先的创新蛋白质组和代谢组研发中心。加快和深化对拓展蛋白质组学及多组学领域的探究,更好地服务于生命科学和医学健康研究领域,助力精准医学高质量发展!关于迈维代谢武汉迈特维尔生物科技有限公司(简称“迈维代谢”) ,总部位于武汉国家生物产业基地,此外建有上海/嘉善华东研发中心、长沙 GMP 生产中心、武汉迈维医学检验实验室,另设北美子公司,是国内首家代谢组学境外公司。公司专注于提供领先的代谢组学技术服务及创新临床检测产品应用,致力于代谢基础研究、分子设计育种、疾病诊断、药物研发及与代谢组学相关领域应用研究,为生命科学研究、改善人类健康做出持续贡献。
  • 时空分辨药物代谢组学——中枢神经系统新药研发的可视化利器
    中国医学科学院北京协和医学院药物研究所贺玖明研究员团队以封底文章在《药学学报》英文刊(APSB)2022年第8期(IF:14.903)发表了题为“A temporo-spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging”的研究论文,建立了一种时空分辨的代谢组学方法(基于AFADESI-MSI的时空药物代谢组学),可全景式描绘脑中药物代谢和效应的时空特征,为中枢神经系统作用新药研发提供了一种有力的可视化工具和新的视角。  封底图 | 表征鼠脑中中枢神经药物的微区域药代动力学和药效学的时空代谢组学方法策略和工作流程  研究背景  中枢神经系统(CNS)具有复杂而脆弱的结构,在大脑的许多微区域之间具有高度的互连性和相互作用。大脑是人体复杂的器官,可以细分为许多微区域。脑中多种内源性功能代谢物在不同的微区分布不均匀。脑微区的代谢酶、受体、配体、蛋白和血流的功能差异也会导致药物的空间分布和疗效差异。大脑是中枢神经系统疾病的靶点,大多数中枢神经系统药品只有在进入大脑后才会发挥作用。因此了解药物及相关内源代谢物在大脑中的原位分布的信息对于评估药物疗效、毒理学和药代动力学具有重要意义。  目前研究大脑的常用功能性脑成像技术(包括组织化学标记、免疫荧光、MRI、PET、全身放射自显影等),仅提供脑组织结构的图像,不能在分子水平上进行分析,可监测的物质种类也有限。另一方面,脑内药物分析通常使用的基于组织匀浆或微透析采样的高效液相色谱-质谱(HPLC-MS)技术获得的结果仅能反映采样微区的平均代谢水平,而缺乏分子在整个大脑中的空间分布的信息。质谱成像技术(MSI)不需要复杂的预处理和特殊的化学标记,具有高通量、高灵敏度和高分辨率的特点,可检测已知或未知小分子代谢物的定性、定量和空间分布信息。  本研究使用AFADESI-MSI空间代谢组学研究表征了临床中枢神经系统药物奥氮平(OLZ)和大鼠脑内内源性代谢物,并进行了给药期间的时空变化以及脑微区药物动力学和药效学研究,成功地展示了OLZ及其作用相关代谢物的时空特征,并为中枢神经系统药物作用的分子机制提供了新的见解。  研究思路  研究方法  1. 实验分组/研究材料:饲养一周的雄性 Sprague-Dawley 大鼠  (1) 实验组:4组(3只/组),口服OLZ溶液(50mg/mL)后 20 分钟、50 分钟、3 小时和 12 小时用高浓度乙醚。  (2) 对照组:1组,3只/组  2.技术路线  2.1. 鼠脑的微区划分:15个微区,包括尾状壳核(CP)、大脑皮质(CTX)、海马(HP)、下丘脑(HY)、丘脑(TH)、小脑皮质(CBC)、小脑髓质(CM)、髓质 (MD)、脑桥 (PN)、大脑导水管 (CA)、中脑 (MB)、穹窿 (FN)、梨状皮质 (PC)、嗅球 (OB) 和胼胝体 (CC)。  2.2 质谱成像:AFADESI-MSI分析(全扫描及MS2扫描)  2.3代谢物定性:人类代谢组数据库 (www.hmdb.ca)、Metlin、MassBank和LIPID MAPS  研究结果  1.通过AFADESI-MSI绘制大鼠大脑中的内源性代谢物和药物图谱  无论是正离子模式还是负离子模式,使用AFADESI-MSI空间代谢组学均可从治疗组和对照组脑组织切片中获得内源性代谢物信息。在100-500 Da的低质量范围内,可以检测到氨基酸、核苷、核苷酸、有机酸、脂肪酸等极性小分子代谢物和γ-氨基丁酸 (GABA)、肌酸、肉碱、乙酰肉碱和磷脂酰胆碱等神经递质类代谢物;在500-1000 Da的高质量范围内,可以检测到一些脂质,包括鞘磷脂(SM)、磷脂酰乙醇胺(PE)、磷脂酰胆碱(PC)、溶血磷脂酰胆碱(LysoPC)和磷脂酰肌醇 (PI) 等。原型药物 OLZ 及其代谢物 2-羟甲基 OLZ 在正离子模式下被检测,结果如图1C1和D1所示。这些结果表明,非靶向质谱成像的方法可以在一次实验中同时绘制外源性药物和内源性代谢物的图谱,并可以获得它们的空间分布特征和微区域丰度变化。  图1 | 使用 AFADESI-MSI 从脑组织切片获得的外源性药物和内源性代谢物的质谱成像结果  2.鼠脑中奥氮平(OLZ)及其代谢物的时空变化  OLZ是一种用治疗精神分裂症的药物,大脑是其主要靶器官。本实验为探究给药时间药物在大脑各功能微区的分布情况,分别在给药后20 min、50 min、3 h和12 h收集治疗组和对照组大鼠脑组织进行MSI分析。OLZ 及其代谢物 2-羟甲基 OLZ 的在鼠脑分布结果如图2A所示。  这些结果表明,OLZ 可以很容易地穿透脑血屏障,主要分散在脑室和脑实质组织中,但并不是均匀分布在大脑的所有微区域中。给药后20分钟发现OLZ主要分布在大脑皮质中。50分钟后,OLZ的水平显著增加。随着时间的推移,大脑中的药物信号迅速下降到成像检测限以下。同时作者发现,2-羟甲基OLZ主要分布在穹窿中,其在各个微区的分布格局与OLZ不同。  这些结果表明,OLZ药物的吸收、分布和代谢的速率在大脑的不同微区不同,表明微区对药代动力学有影响。它还证明了所提出的基于AFADESI-MSI 的时空药物代谢组学方法能够同时说明药物及其代谢物在大脑复杂微区域中的水平和空间分布的变化。  图2 | 脑微区OLZ和其代谢产物2-羟甲基OLZ的时空变化  3.OLZ 对神经递质类代谢物的的微区调控  OLZ药物治疗精神分裂的作用机制是阻断多巴胺 D2 受体或血清素 2A 受体调节神经递质类代谢物(NTs)。然而OLZ的微区效应和分子作用机制仍不清楚。因此作者分析了与OLZ生理活动密切相关的NTs的时空变化,包括GABA、Glu、谷氨酰胺 (Gln) 和腺苷。NTs的AUC变化率如图3B1-B7所示。  GABA(γ-氨基丁酸)是中枢神经中的一种神经递质,可抑制神经中枢。空间代谢组检测结果显示GABA(m/z 104.0706)主要分布在下丘脑中,药物干预后下丘脑的 GABA 受到轻微调节。但同时在梨状皮质和嗅球中观察到药物干预后GABA显著上调。Glu 是中枢神经中的一种主要神经递质,对神经细胞具有兴奋作用。在药物干预后,Glu及其代谢物Gln的时空动态模式在脑部微区中呈现出相对一致的变化趋势。腺苷广泛分布在中枢神经系统中,是大脑中的一种兴奋性和抑制性神经递质,并在脑中不均匀分布。并且在给药3小时后海马和下丘脑中的高水平腺苷显著增加,表明当药物积累时腺苷的上调会更加明显。组胺、乙酰胆碱(Ach)、牛磺酸等神经递质类物质都有各自特征的微区分布,以及在给药后具有上调的趋势。  上述神经递质类物质的靶向成像分析结果表明,该方法可以检测到与中枢神经药物作用机制相关的大量原型药物及其代谢物和内源性代谢物的空间分布和变化。这对于阐明中枢神经系统药物的作用机制和了解精神分裂症及相关疾病具有重要意义。   图3 | 药物对脑内NTs分布和AUC变化率的影响  4. OLZ 药物干预的微区代谢调控  组织和器官的内源性代谢变化可以反映药物刺激的效果。为探索药物干预后的微区代谢效应,通过药物代谢组学测试研究了内源性代谢物的分子谱及其动态变化的分布信息。分别在OLZ和生理盐水给药后 50分钟采集每组治疗和对照大鼠的三个脑组织样本进行微区域分析。  OPLS-DA结果表明,基于正离子模式和负离子模式下脑微区的定量分析,对照组和治疗组分别明显分开。总共筛选和鉴定了 90 种差异内源性代谢物,作为药物作用相关效应物,它们在大脑微区域中发挥了巨大作用。其中81种被MS2鉴定,9 种被同位素模式鉴定。差异代谢物包含了很多种类型的代谢物,包括氨基酸、脂肪酸、甘油磷脂、有机酸、多胺和酰基肉碱。  经过分析确定了治疗组和对照组之间显著差异的七种代谢途径,包括丙氨酸、天冬氨酸和谷氨酸代谢、D-谷氨酰胺和D-谷氨酸代谢、牛磺酸和亚牛磺酸代谢、淀粉和蔗糖代谢、甘油磷脂代谢、精氨酸和脯氨酸代谢、精氨酸生物合成、嘌呤代谢和柠檬酸循环(TCA循环)。下面对影响较大的丙氨酸、天冬氨酸、谷氨酸和甘油磷脂代谢的异常代谢途径进行重点分析。  图4 | 对照组和治疗组中鉴定的差异代谢物的层次聚类分析 (HCA)  4.1 丙氨酸、天冬氨酸和谷氨酸代谢紊乱  异常的Glu-Gln循环在精神分裂症的病理生理过程中起重要作用。丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物在老鼠脑的时空分布如图5所示。柠檬酸在大脑大部分微区分布均匀;与对照组相比,表达显著提高,结果提示药物干预加速了TCA循环的代谢,为机体提供了更多能量。Glu也均匀分布在各个微区,药物干预后呈下调趋势。它的代谢物Gln 和 GABA,主要在下丘脑和的多个微区中上调。  根据通路分析和代谢谷氨酸脱羧酶(GAD)酶反应,推测OLZ直接激活GAD促进GABA合成。GABA可增加糖酵解中己糖激酶的活性,从而加速葡萄糖的代谢。空间分布结果表明葡萄糖分布在大脑的所有微区,但给药后主要分布在梨状皮质和嗅球中,给药后20分钟血糖水平显著升高。  图5 | 丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物的时空分布  4.2.甘油磷脂代谢途径的紊乱  甘油磷脂有助于控制肝脏脂质代谢,促进记忆力,增强免疫力,延缓衰老。甘油磷脂代谢途径代谢物的时空分布如图6。这项研究的结果表明,在给药后,大多数脂质在大多数微区域中显示出上调。OLZ在临床应用中具有代谢副作用,如体重增加、血脂异常、高甘油三酯血症和胰岛素抵抗。实验结果证明,脂质代谢的上调可能导致OLZ治疗期间的副作用。  图6 | 甘油磷脂代谢途径代谢物的时空分布  相关讨论  作者开发的时空药物代谢组学方法,使用质谱成像技术MSI来表征大脑中枢神经药物的药代动力学和药效学。结果表明,该方法可有效识别与药物作用相关的内源性分子效应物。评估OLZ药物对脑组织的微区域效应,并证明其穿过血脑屏障后的微区域药代动力学和药效学方面的有效性。该方法清楚地展示了原型药物及其代谢物 2-羟甲基OLZ在大鼠大脑不同微区的药代动力学。也在脑部微区现一些神经递质类物质和其它小分子极性代谢物,并显示出与药物干预相关的多种代谢途径。发现天冬氨酸、谷氨酸和甘油磷脂代谢途径的调节可能与 OLZ 临床使用观察到的治疗和不良反应有关,为了解其作用的分子机制提供了关键信息。  小鹿  与基于LC-MS的常规药物代谢组学分析手段相比,基于AFADESI-MSI的时空药物代谢组学技术具有同时检测内源性和外源性物质的静态水平变化,并提供大脑不同微区的动态时间依赖性趋势和空间分布信息的优势,能够非常准确地呈现原位和微区域分子变化规律。在此基础上将药代动力学和药效学与代谢途径相关联,有利于获得关键信息,从而更深入地了解药物作用的分子机制。基于AFADESI-MSI 的时空药物代谢组学技术不仅是阐述中枢神经系统药物的原位药代动力学和药效学全面有效的工具,也可为脑组织内源性代谢物的变化以及其它动物组织的原位代谢研究提供重要信息。  该研究工作,药物所2017级硕士研究生刘丹为作者,贺玖明研究员为独立通讯作者。工作得到国家自然科学基金和医科院创新工程项目的资金资助。
  • 日渐深入的机制解析研究——代谢组学在生物医学与食品科学领域的最新进展
    仪器信息网讯 我们知道细胞内的生命活动由众多基因、蛋白质、以及小分子代谢产物来共同承担,而上游的(核酸、蛋白质等)大分子的功能性变化最终会体现于代谢层面,如神经递质的变化、激素调控、受体作用效应、细胞信号释放、能量传递和细胞间通讯等,所以代谢组处于基因调控网络和蛋白质作用的网络的下游,所提供的是生物学的终端信息。因此科学家们常说,基因组学和蛋白组学告诉你可能发生什么,而代谢组学则告诉你已经发生了什么。  代谢组学(Metabolomics)是20世纪90年代末期发展起来的一门新兴学科,是研究关于生物体被扰动后(如基因的改变或环境变化后)其代谢产物种类、数量及其变化规律的科学。代谢组学着重研究的是生物整体、器官或组织的内源性代谢物质的代谢途径及其所受内在或者外在因素的影响及随时间变化的规律。代谢组学通过揭示内在和外在因素影响下代谢整体的变化轨迹来反映某种病理生理过程中所发生的一系列生物事件。  8月12日,仪器信息网举办了“2021年代谢组学技术及应用新进展”主题网络研讨会,聚焦代谢组学的前沿应用,包括其在生物医学以及食品科学领域的最新进展。(点击了解会议的回放视频)  在科学家们不断努力开发高覆盖率的组学方法的同时,代谢组学和脂质组学的整合正成为一种新兴的机制研究方法。代谢组和脂质组的整合提供了一个完整的代谢图谱,使全面的网络分析能够识别疾病病理中的关键代谢驱动因素,有助于研究脂质和其它代谢产物在疾病进展中的相互联系。  复旦大学生命科学学院/人类表型组研究院的唐惠儒教授团队的主要研究是代谢表型组,也就是小分子代谢物的定量组成及变化规律。通过结合核磁共振波谱、质谱及量子化学计算等多种技术,实现准确测量人类血液、尿液和唾液等样品中代谢物的绝对结构,定量它们的浓度及其变化规律。  本次会上唐教授作了题为《脂蛋白代谢组定量揭示病理生理内涵》的报告。  脂蛋白是脂质成分在血液中存在、转运及代谢的形式。脂蛋白代谢更是通过肝脏、肠道等大量器官参与的活动,如果代谢出现紊乱可引起一些严重危害人体健康的疾病。脂蛋白组分的定量方法常用的有核磁共振波谱法以及质谱法等。报告介绍了唐教授团队在脂蛋白代谢组定量揭示病理生理研究的最新工作进展,其团队当前正在进行的研究:通过分析10余个独立队列5万余人血浆/血清健康人群各脂蛋白亚类及组分的参比浓度范围,希望能够进一步定义什么是健康人。  中国科学院大连化学物理研究所刘心昱副研究员作了题为《代谢组学在重大疾病诊疗中的应用》的报告。  肝癌是严重影响我国人民健康的恶性肿瘤,早期无明显临床症状,发展快且易转移。报告介绍了刘心昱团队针对肝癌的早期筛查缺乏可靠标志物的问题,利用代谢组学技术全景解析了肝癌代谢紊乱,揭示了肝癌发生过程中的代谢重编程过程,发现并验证了肝癌早期诊断标志物。针对肝癌术后易复发转移,建立基于代谢小分子的风险预测模型,有效的预测肝癌患者术后复发转移风险。中国医学科学院北京协和医学院药物研究所贺玖明研究员作了题为《质谱成像空间代谢组学与脑科学研究》的报告。  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。目前,科学家对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量的分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  报告介绍了贺玖明团队开发的一种空间分辨代谢网络作图方法、高通量AFADESI-MSI方法和代谢组学策略,及其最新研究进展。中国检验检疫科学研究院的张九凯研究员作了题为《基于质谱的代谢组学及其相关衍生技术在食品真实性鉴别中的应用》的报告。  随着食品产业全球化布局进程的加快和食品供应链不断延长和复杂化,经济利益驱动的食品掺假现象日益凸显。以代谢组学为代表的组学技术能够针对食品中的尽可能多的代谢产物,从整体角度进行定性定量分析,为食品真实属性鉴别研究提供了一种新兴的研究工具。近年来,随着检测技术的发展,代谢组学产生了很多衍生技术,包括脂质组学、挥发组学和风味组学等。  报告介绍了代谢组学及其相关衍生组学技术在食品物种及品种鉴别、产地溯源、品质分级和掺假掺杂识别等真实属性鉴别研究,为进一步保证食品质量安全、保障消费者利益提供了技术支撑。
  • 代谢组学| 岛津质谱助力生物标志物的研究与发现
    导读代谢组学(Metabonomics / Metabolomics)是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分,已经应用到了诸如动物、植物、微生物的机理研究中,着重探索、发现与疾病、医药、功能相关的生物标志物(Biomarker)。生物标志物是指“一种可客观检测和评价的特性,可作为正常生物学过程、病理过程或治疗干预药理学反应的指示因子”,寻找和发现有价值的生物标志物已经成为当前生物、医药领域的研究热点。然而,生物标志物的发现,是一场砂砾淘金、去伪存真的艰难征程,面临诸多挑战。 挑战1 生物标志物的发现,海量筛选,准入高,难度大 相比于基因组学和蛋白组学,代谢组学难度急剧增加。原因有: 1. 目标物范围更广:基因/转录组只需测4种核苷酸排列,蛋白组测20种氨基酸排列,代谢组则包含各类小分子代谢物,要进行结构鉴定可比大海捞针; 2. 需要交叉专业知识:如将代谢组学应用在生物研究中,需要分析化学背景进行分离检测,这些数据的正确解析和可视化需要有统计分析的基础;最后需要了解生物学知识以诠释数据背后的生物学意义; 3. 软硬件要求高:使用的分析体系大都属于高端仪器及其配套软件,比如色-质谱联用系统里色谱可选GC-MS,LC-MS,CE-MS,质谱根据靶向、非靶向可选QQQ,Q-TOF,IT-TOF等;海量数据采集完毕还需要专业、多功能数据分析平台解读数据,最后还要对潜在生物标志物进行结构鉴定,因此代谢组学每一步都是准入高,难度大! 挑战2 如何去伪存真,减少无意义差异物,找到真正的生物标志物 代谢组学巨大的挑战之一,是如何减少生物样品本身,或采集、保存、前处理和分离检测过程中产生“非预期”或“噪音”代谢物,从而去伪存真,找到真正的差异生物标志物: 1. 个体情绪差异、非目标病因的生理差异(近期饮食习惯、喝水量、排尿量、运动量、生病、过敏)、其他药物的耦合作用/副作用,都会对个体代谢物产生非预期的影响; 2. 在采集样本时,如血样、组织、器官,采集者参差不齐的技术熟练度也会引入其他刺激和干扰因素; 3. 样品的保存同样会引入大量干扰物或造成样品变化。比如保存前是否存在溶血,保存温度,冷冻时间长短等,都会使样品产生不可预期的变化; 4. 不同的样品前处理手段,如液液萃取、固相萃取、蛋白沉淀等,其化学、物理选择性不同;另外,操作人员的熟练度、溶液量、溶液污染、萃取柱批间差等样本外的误差,都可能会造成样品组内和组间差异。 海量的待选小分子目标物,加上上述这些“不确定性”和“科学偏差”产生比生物标志物浓度更高、响应更强的无意义组别差异物,使得代谢组学在生物标志物发现的路上,困难重重,犹如大海捞针,沙里淘金。虽然后续的统计分析会把大多数的这类干扰物去除,却不能保证最终能得到正确的生物标志物,或使其处于最显著地位。 虽然代谢组学研究困难重重,但经过多年的研究探索,科研界都认同利用代谢组学的思路发现生物标志物是方向正确、前景广阔的,相信随着分析仪器,特别是高端质谱及其配套软件和科学家研究水平的提高,越来越多有用的生物标志物会被挖掘出来造福于人类。 岛津是全球领先的质谱研发、生产厂家:从上世纪70年代开始研发扇形质谱,成功生产了世界上第一台商品化扇形磁场型质谱GCMS LKB9000;80年代开发了基质辅助激光解析电离飞行时间质谱(MALDI-TOF)和电感耦合等离子体质谱(ICP-MS),岛津科学家田中耕一先生在2002年因为MALDI离子源的研发获得了诺贝尔化学奖,因此岛津拥有深厚的质谱研发基础和实力。 目前岛津质谱的产品线齐全,有机质谱包括单四极杆质谱(SQ)、三重四极杆质谱(TQ)、高分辨质谱离子阱飞行时间质谱(IT-TOF)和四极杆飞行时间质谱(Q-TOF);无机质谱有ICP-MS;生命科学领域有MALDI-TOF、质谱显微镜等。这些质谱仪器与分离技术联用,满足科学研究的各种需求。基于岛津高端质谱,国内高校研究所发表了多篇代谢组学用于脑卒中、癌症和动物生理相关的生物标志物发现的文章,在此系列微信中挑选出典型案例,帮助读者进一步了解疾病和生理现象。
  • 动物能量代谢测量技术宣传推广周
    北京易科泰生态技术公司动物能量代谢实验室,将于2017年9月15日至19日,举办动物能量代谢宣传推广周活动,期间特邀美国sable systems international公司首席科学家john lighton教授来华做报告和培训。具体活动安排如下:一、2017年9月15日下午动物能量代谢与生理生态研究测量技术报告会报告人:王德华研究员(中科院动物研究所)john lighton博士(美国sable公司首席科学家)等地点:北京师范大学京师大厦二、2017年9月16日参加由中国生态学会动物生态学专业委员会主办、北京师范大学生命科学学院承办的“第七届动物生理生态学学术会议暨孙儒泳院士学术思想研讨会”,john lighton博士将做“constraints and solutions in metabolic measurement”的会议报告三、2017年9月17-18日动物能量代谢测量技术报告与座谈会(根据需求反馈信息确定具体日程)主讲人:john lighton博士四、2017年9月19日活动汇总反馈及后续合作与技术支持安排john lighton教授30多年来致力于动物能量代谢测量技术的研究,先后在 nature、pnas及the journal of experimental biology等世界著名学术期刊上发表了90多篇学术论文,其于2008年编著出版的“measuring metabolic rates: a manual for scientists. oxford university press”一书,截止目前已达5514次引用。作为美国ssi公司(sable systems international)在中国的唯一指定代理和售后服务中心,易科泰生态技术公司从事动物能量代谢仪器技术服务已有十余年,为国内科研院校提供了上百套动物能量代谢仪器设备和相应技术服务,包括大小鼠等实验动物能量代谢与行为观测系统、牛羊等家畜家禽能量代谢测量系统、两爬类能量代谢测量系统、果蝇及昆虫能量代谢测量系统、斑马鱼及水生动物能量代谢与行为观测系统、人类能量代谢测量系统等,应用领域涵盖动物生理生态学研究、生物医学、家畜家禽营养与能量代谢研究、动物遗传与生物技术(能量代谢表型分析)、生态毒理学等,仪器设备采用国际先进的间接测热法(indirect calorimetry),并结合行为观测、环境调控(如温度调控等)、体温心率监测、红外热成像等技术;除实验室测量仪器外,还提供了大量fms、foxbox等便携式能量代谢测量仪器。公司还通过ecolab生态实验室平台,与中科院动物所(动物生理生态与能量代谢)、农科院畜牧所(家禽呼吸代谢)、农科院植保所(蚜虫呼吸代谢)、疾控中心、北京实验动物中心等保持密切合作关系。公司概况:易科泰自02年至今,已走过了15个年头。我们致力于从不同视角,不同尺度,不同技术平台研究测量生态系统结构、功能及其动态变化过程,引进、消化、吸收和创新国际先进生物生态科研技术,致力于植物表型分析技术的研究与开发,实验室植物表型分析平台目前配备有封闭式叶绿素荧光成像系统、便携式叶绿素荧光成像系统、叶绿素荧光仪、藻类荧光仪、植物高光谱仪、光合仪、co2/o2分析仪、植物光合生理生态监测系统、藻类培养与在线监测系统(光养生物反应器)、根系测量仪器等,具备500余平米温室,计划引进大型叶绿素荧光与rgb成像平台。ecolab实验室表型分析平台可以为用户提供作物抗性检测、胁迫生理生态研究检测、植物表型分析、优良品种及遗传育种检测等技术服务,并可承担植物表型分析技术培训、fluorcam叶绿素荧光成像技术培训、植物表型分析实验方案与仪器技术方案设计等,欢迎联系。公司优势:公司技术团队80%以上具备硕士或硕士以上学位,并与中国科学院研究生院、中科院植物研究所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学等建立了长期的技术合作交流关系。
  • UNCW Center for Mari发布珊瑚和其它底栖基质类型原位代谢测量系统 CISME新品
    珊瑚和其它底栖基质类型原位代谢测量系统 CISME CISME便携式潜水呼吸系统用于原位检测珊瑚和其它底栖基质的代谢率。这个名字来源于珊瑚原位代谢,并发音为“kiss-me”,以反映仪器与珊瑚之间的温和互动。 CISME在短时间孵化期间测量氧气通量和pH,其中水流量和光照水平由操作人员控制。从这些浓度变化计算呼吸(R)和光合作用(P)。样品环提供水样,可以滴定总碱度(TA)以测量钙化率(CA)。可以基于O2和CO2通量计算R和P,从中可以计算RQ和PQ。样品环也可用于实验性地引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 n 检测指标l 在原位孵育期间的氧气通量和pH值的变化,其中水流量和光由操作人员控制。根据浓度的变化,计算呼吸速率和光合速率。 l 样品环提供水溶液样品,用于总碱度(TA)滴定,从中计算钙化率。 l 样品环可用于进行实验,其中操作人员引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 n 参数l 测量O2的变化,以1秒的间隔测量pH值。l 泡沫密封容器抵至浅表面的珊瑚,珊瑚礁基质,如草皮,珊瑚藻和沉降块来捕获海水。l 可编程孵化程序(R,P,R + P,P + R,Custom multistep (自定义多步)。l 孵育体积:88ml+16ml样品环。l 可拆卸的样品环容积用于收集孵育的水溶液的子样品或引入添加剂。l 350-1200毫升min-1可变流量 通过泵反馈。l 可变光(PAR):0-2500μmolm-2s-1。l 无需破坏性取样。l 耐水压80米。l 附件:孵化分离生物体的流动室,如大型藻类,小动物 用于沉积物培养的适配器。 在藻类基质上检测n 实例CISME检测了位于波多黎各珊瑚礁:加勒比海珊瑚Orbicella faveolata上的 40个标记菌落的代谢率的季节变化。两个珊瑚礁位于波多黎各。每个珊瑚礁有20个被标记的珊瑚每个珊瑚每季度用CISME测量一次,以寻找新陈代谢的季节性变化模式一年重复检测4次。结果显示夏末R升高,但P没有变化,因此夏末的P / R比率较低。 P,CA和P / R比率≥实验室公布测量值,表明原地条件优于陆基海水系统。 使用可编程功能的CISME生成的P vs I曲线与使用Walz潜水荧光计的快速光曲线相比 原位海水酸化实验n 系统标准组成CISME由一个带有电子装置的浮力丙烯酸耐压外壳组成,通过防水电缆连接到孵化流量传感器头,操作人员将其连接到珊瑚/基质表面以进行孵化。l 一个主控机(包括:专有主板;O2板 适配器 WiFi卡 LED驱动器 编程和储存必要文件的USB 全部采用防水丙烯酸外壳)。 l 一个7200 aH的锂离子电池和充电器以及三个HD泡沫浮子。l 一个完整泵头“(由3D构成,具体包括:pH电极 光纤传感器 循环泵 LED光源 氯丁橡胶泡沫密封;另外还包括:三个牵开器“wings”,三个Cetacea牵开器和八个18毫升样品环 “仿真”环和环状填充物。l 一个粘度杯,用来培养小的独立样品。l 插拔连接器连接主控机与头部的电缆线,连接电池与主控机的电缆线,以及连接CISME与UW平板电脑的WiFi电缆线。 l 备件:二个额外的泡沫密封和胶水,二个额外的Presens点更换件和胶水 光纤维维修工具 备用O形圈。 备用' 仿真' 环和环形填充。 氧气校准套筒。 用于组装的工具和零件包:15 mm扳手,薄的15/22两用扳手,用于pH螺丝钉的长内六角扳手,O形圈镐,用于清洗螺丝钉的内六角扳手,带Molykote 111的洗涤器,额外的O形圈 ,硅胶包,Q-tips, l 许可证:允许使用装有专有的Android软件的平板电脑运行CISME。l 一个定制的潜水箱,用于安装系统。 l 一个运输箱,Seahorse brand品牌或同等产品(客户可以选择黑色,黄色或橙色)。l 一张录有用户手册和教学视频的DVD。n 选配水下平板电脑CISME定制的由Inova设计的SZ-Dive水下容器(HOUSE),抗压深度达 80米;安装了CISME安卓软件的三星Galaxy S2 8“平板电脑。 CISMEHOUSEn 有关的检测图片创新点:原位检测珊瑚和其它底栖基质的代谢率,也可用于实验性地引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 珊瑚和其它底栖基质类型原位代谢测量系统 CISME
  • 2017沈阳药物代谢研讨会圆满成功
    随着科学的迅速发展,药物代谢研究范畴早已远超出了传统药代动力学,药物代谢不再是一辅助性药学领域,已成为较为独立完整的药学学科,并全方位地渗透到与健康相关的各个领域。为推动我国药物代谢研究繁荣发展,由沈阳药科大学举办郑江教授率团队承办的“2017 沈阳药物代谢研讨会”如约于8月2-4日在沈阳举行。美国匹斯堡大学药学院的谢文教授、美国华盛顿大学药学院的Joanne Wang教授和沈阳药科大学/贵州医科大学的郑江教授用精彩讲座惊艳了到会的260多名嘉宾。SCIEX和Agela非常荣幸能够作为本次会议的协办方支持这样的学术盛会,大会可爱的志愿者们身着SCIEX的爱心T恤,上面书写着SCIEX的愿景“让质谱改变每个人的生活” ,也呼应了本次会议的宗旨“让药物代谢改变药物研发的进程”。 本次会议郑江教授及其团队进行了认真细致的准备,参会人数也大大超出预期,从原计划的100人猛增至260余人,参会者和业内学者均对大会的组织给予好评。同时,一是药物市场的持续热度,激发了大家参与的热情;二是国内药物代谢研究的基础相对还比较薄弱,迫切需要海内外有经验的专家学者提供这样的分享机会 。三位专家教授分享内容概述:谢文教授 谢文教授重点阐述了药物代谢酶的基因调控。主要内容包括:一. 简要介绍基因调控的基本原理;二. 核受体PXR和CAR对药物代谢酶/转运体的表达的调控作用;三. PXR在药物-药物相互作用以及遗传药理学中的意义以及作用机理;四. PXR和CAR以及代谢酶对于内源性物质的稳态以及疾病的发生和治疗过程中的调控作用以及实例分享。 Joanne Wang教授 Joanne Wang教授系统讲述了药物转运体的相关内容。主要内容包括:一. 概述膜转运的基本原理;二. 系统的介绍SLC(solute Carrier)和ABC(ATP-Binding Cassette)转运体家族;三. 阐述转运体在药物的体内处置,毒性,以及药物-药物相互作用等过程中所起的作用及机理;四. 分享了利用SLC膜转运体来增强药物的递送以及靶向性的实际案例。 郑江教授 郑江教授深度剖析了药物代谢内在的化学本质。主要内容包括:一.如何通过药物的化学结构来预测其可能代谢路径以及代谢产物;二. 药物代谢酶的作用机理;三. 由药物代谢所介导的代谢酶的失活作用以及药物的毒性的产生机制;四. 如何通过修饰药物的化学结构来增加药物的代谢稳定性或减弱药物的毒性。 作为质谱领域的知名企业,SCIEX资深应用工程师于怀东做了题为《SCIEX代谢物鉴定新方案---应用MetabolitePilotTM软件进行ADC药物及环肽代谢研究》报告,Agela市场部的郑晶经理做了《Agela色谱产品在药物分析中的应用》的报告。大会现场 大会晚宴设置了丰富多彩的活动,让学员们在一天紧张的学习后得到放松。所有与会者均感谢郑江教授及其团队的辛苦努力,构建了一个开放、自由的学术交流平台,感谢谢文教授,Joanne Wang 教授和郑江教授的精彩授课! 关于SCIEX公司SCIEX公司帮助科学家和研究员在他们面对的复杂的分析挑战中探索答案,改善我们生活的世界。SCIEX公司在毛细管电泳、液质联用的全球知名地位和领先的技术服务支持下,使它成为了在基础研究、药物开发、食品与环境检测、法医学与临床研究领域值得信赖的合作伙伴。伴随着超过40年的成熟创新,SCIEX公司擅长聆听和了解客户不断变化的需求,开发可靠、灵敏、直观的解决方案,继续重新定义在常规和复杂分析中可实现的部分。
  • 走近“中药代谢组学研究平台”
    走近“中药代谢组学研究平台” ——访沃特世用户黑龙江中医药大学王喜军教授   代谢组学是上世纪九十年代中期发展起来的一门新兴学科,是系统生物学的重要组成部分。研究中药这种成分复杂的混合物,代谢组学是最好的选择。同样,代谢组学也是中药质量控制的主要研究手段,有利于中药的出口和国际化。   根据代谢组学发展的要求,沃特世公司与代谢组学创始人Jeremy Nicholson教授合作,首创全球领先的超高效液相色谱UPLC技术,与高分辨质谱技术和计算技术结合,推出了以超高效液相色谱/高分辨质谱联用仪为代表的中药代谢组学研究平台。   2010年3月24日,仪器信息网受沃特世公司之邀,专访了沃特世中药代谢组学研究平台用户——黑龙江中医药大学王喜军教授,其结合科研实践中的使用感受,详细介绍了沃特世中药代谢组学研究平台具体应用情况。   Instrument:请简要介绍下目前您在中药代谢组学方向的研究课题以及所取得的科研成果。   王喜军教授:首先,我最开始的科研方向是天然产物及复方中药的体内代谢,即 “中药血清药物化学”。“中药血清药物化学”是在九七年提出来的,并于2002年获得了国家科技进步二等奖。在“代谢组学”概念提出后,我就将代谢组学和中药血清药物化学结合起来研究中药方剂的问题,在此基础上进一步提出了新的学科——中医方剂药物代谢组学。同时,我将自己所研究的课题与代谢组学“嫁接”在一起开展了中医症候本质研究。我们承担的国家973项目“基于体内直接作用物质的方剂配伍规律研究”也已经顺利结题。   Instrument:据悉,黑龙江省中药材GAP研究中心作为全国第一家GAP专业研究机构,是由王教授您组织建立的,请您谈谈该中心的成立背景及其主要工作内容。   王喜军教授:该中心是在“九五”末期“中药现代化研究及产业化行动”背景下建立的,这个主题就是要开展中药资源再生,实现可持续化发展。如果要进行中药材大面积有效生产,就要建立药材生产质量管理规范即所谓的GAP。实际上GAP是一个大概念,真正的GAP就是每种药材生产过程中的SOP(标准操作规程)。   该中心主要工作内容就是把黑龙江地道药材按GAP要求进行管理,但这就需要一个专业团队来进行具体研究,以获得相关的实验室试验数据做支撑。黑龙江省中药材GAP研究中心成立后已经先后完成八种黑龙江省的地道药材的GAP研究工作。此外,该中心还解决了中药材大面积生产过程中病害的无公害防治技术,提出了以中药治疗药用植物病害的理念,结束了中药只治疗动物和人类疾病的历史。GAP研究使得中药材生产由农民散在的经验模式种植,进入了科学管理规范状态。   Instrument:请问贵单位在科研工作中主要用到什么分析仪器?其中哪些属于沃特世“中药代谢组学研究平台”的产品?这个平台对您的科研工作起到了怎样的支撑作用?   王喜军教授:中药学是一门综合学科,我主攻体内分析方面的研究,所以分析仪器设备是非常关键的一个环节。目前科研工作中我们主要用到UPLC® 、Q-TOF、SYNAPT™ HDMS 、GC-MS等,另外还包括一些常规分析仪器,比如紫外分光光度计以及PCR等一些分子生物学仪器,其中大部分分析仪器都是沃特世产品。   由于我的专业是生药学,所以科研研究的核心还是药材品种质量。虽然一般分析仪器都能满足日常科研需要,但是不同分析仪器做出来的效果还是有差别的。如果科研需要更高要求的数据,那就对分析仪器质量性能提出了挑战。根据多年来使用感受,我认为沃特世公司的仪器在检测分辨率以及后期数据处理的工作站等方面都是不错的。   中药学无论是质量、活性成分研究以及效应评价,都不能以一种先入为主的态度去研究,而是需要先更多地去认识中药,然后才能更好地解析中药。如果一种仪器设备或手段能够提供更多的信息来让我了解中药,这个仪器可能就是比较好的。只有深入认识中药之后,才可能产生新的思路去研究它。而UPLC就提供了这样一个平台,可以让研究人员在短期内了解被分析样品大量的信息,提供良好数据支持新的思维。沃特世最早推出UPLC/ Q-TOF,它在使分离时间缩短的同时检测分辨率也相应提高,能够更快更好地检测出更多的被测成分。九十年代初,能够鉴定血清中三、五个成分就已经很不错了,而现在已经可以鉴定出四、五十个成分 当时需要用两小时进行分析检测,而现在可能只需要十分钟,这就是UPLC/Q-TOF的优势所在。   Instrument:据了解,王教授您最早购买了一台Q-TOF Micro质谱仪之后又购进一台SYNAPT HDMS质谱仪,请问是因为您所做的研究必须同时购置这两种仪器吗?这两种仪器对您的研究都有哪些帮助?   王喜军教授:因为我个人比较关注新技术、新产品,所以沃特世推出新品之后,我就希望了解新品的优势能具体解决科研中什么问题。比如SYNAPT™ HDMS质谱仪采用四极杆-离子淌度-飞行时间串联之后,与单纯Q-TOF相比,除了具有常规质谱仪按质量/电荷比分离的功能外,还能按照被检测物离子尺寸和形状来分离化合物。对于中药复杂成分来讲,有可能分开传统质谱不能分开的同分异构体分子,这无疑使得检测范围扩大,灵敏度提升。我在科研工作中使用SYNAPT HDMS,就是期望有可能开辟一个新的科研方向。   在已有仪器设备所限定的思维模式下,需要换一种新方法、新手段从而产生新的突破。人的思维与其知识积累、掌握的材料有关,一种新仪器提供的数据很有可能改变既有思维模式。例如我们目前所做的刺五加不同花丝长度的分析就采用这台质谱仪,它解决了科研过程中一些检测上的问题,包括后期多级分析。   Instrument:作为沃特世“中药代谢组学研究平台”的用户,您能否评价一下沃特世公司产品的性能以及该公司的售后服务?   王喜军教授:我在日本读博的时候就开始使用沃特世仪器,当时我们实验室里很多液相色谱仪都是Waters 990,所以对沃特世产品印象很深。我回国后留校从事科研教学工作,学校非常支持我的科研工作。根据我在日本留学时候的体会,建议学校购进了两台Waters 2996。随着沃特世仪器的不断升级以及研究领域的开拓整合,包括后期推出的中药代谢组学平台,逐渐引起我极大的兴趣,所以我在深入了解沃特世产品之后,决定将UPLC以及SYNAPT HDMS 和代谢组学软件MarkerLynx™ 引进来,用于我所从事的中药研究,以期待解决很多分析检测方面的问题。关于这部分,还需要提及了软件处理方面的重要性,一个应用平台要成功除了系统的硬件组成部分要过硬之外,很大程度上还取决于其软件支持方面 ,沃特世公司除了在硬件的稳定性、灵敏度方面不遗余力之外,还开发了配套的软件程序以帮助用户从复杂的质谱图中快速智能地查找出具有生物意义的标记物。例如,目前我们进行的疾病模型、方剂的配伍规律以及中药材基源物质的遗传多样性表型分析等方面研究都在使用这个中药代谢组学平台。   我经常给学生讲,无所谓什么好的手段或好的仪器,能解决问题的就是最好的。我需要质谱与前端分析仪器有效的整合成一种平台,在短时间内使得相似有效成分分离然后才能去检测。我之所以选择沃特世产品,就是因为其产品整合的比较好。其实从目前来讲,各种品牌的质谱仪之间的差别已经不是很大了,而如何将前端的分析仪器和后端的检测仪器有效地整合起来,使得从分析检测数据的采集到后期工作站数据的处理有效连贯起来,这就对不同品牌的仪器提出了较高的要求。不同研究课题之间的联系、通用、互用、整合,就要求检测仪器以及研究方法的一致性,检测手段连贯性、统一性、承接性。而沃特世产品很好的做到了这一点,所以我一直很信赖他们的产品。   我非常关注仪器的维修及时性问题。因为仪器使用过程中不可能预测何时会出现故障,何时需要维修,一旦出现故障,就需要维修或者及时更换零配件,否则仪器“停”了,整个研究工作也就停滞了。再加上我们所做的大部分都是生物样品,即使有低温冰箱也不行,很多成分还是在变化,这对科研项目来讲是非常致命的。不过通过与沃特世长期合作以及与其高层的沟通之后,这些问题目前解决的还是不错的,令人满意。
  • 新代谢的新冠病毒测试:质谱和机器学习
    巴西的科学家基于质谱和机器学习开发了一种针对新冠病毒的新诊断测试,该测试可测量参与甘油磷脂途径的代谢产物的丰度。它可以在数分钟内给出结果,还可以预测患者患该疾病的风险低还是高。新冠病毒测试自从新冠病毒大流行开始以来,医药界迅速制定了许多诊断测试方法,以便可以检测到病毒并将其控制。它们一般基于抗原检测,抗体检测和RNA扩增,并提供了对比程度的敏感性和特异性。现在,巴西的一大批科学家开发了一种新的测试方法,该测试方法采用了另一种方法,以寻找被新冠病毒感染扰乱的代谢物。它受到机器学习的支持,该机器学习用于识别和建模潜在的生物标记。该测试是在3组患者中使用合并血浆开发而成的,包括442名确诊的新冠病毒患者,23名未确诊的可疑病例和350名对照。用甲醇简单预处理并离心后,将血浆上清液用酸化的甲醇稀释,然后直接注入高分辨率质谱仪中。以正离子模式在140,000 FWHM的高分辨率下运行,无需进行初始色谱分离即可加快整个分析过程。使用离子m / z值,强度,宽度和分辨率对质谱数据进行预处理,并进行对齐,归一化和去噪。使用机器学习算法(例如自适应树增强,梯度树增强,随机森林,极端随机森林,偏最小二乘和支持向量机)确定了最有区别的特征。使用累积分布函数分析评估了代谢物作为潜在生物标志物的重要性,该分析将阳性新冠病毒血浆的值与对照组的值进行了比较,并确定了它们对疾病的正向或负向影响。进行了两轮培训和验证。新冠病毒区分代谢物该过程共鉴定出26个判别离子。在这些模型中,有7个无法确定,但是其余的19个模型被采用,其中8个对疾病有积极贡献,而第十一个则有负面贡献。将离子用于成对模型中的训练和验证,该模型利用成对的生物标志物强度之间的关系,而不是相对丰度。这种方法用于“尽管输入数据有所变化,但仍为模型增加了稳健性”。经过方法培训和验证后,这些离子用于新冠病毒的盲法测试中,特异性为96%,灵敏度为83.1%。这些数字至少与当前的血清学和PCR方法一样好。这些特殊的代谢物的使用得到了支持,因为许多是参与甘油磷脂代谢的脂质。它们包括七种甘油磷脂,三种固醇脂质,三种甘油脂,两种脂肪酸,一种鞘氨醇,一种嘌呤代谢产物和两种未知肽。在新冠病毒感染期间,它们各自的上升或下降反映了在其他情况下的行为,例如败血症和急性呼吸应激综合症。这些生物标记物还能够将住院十天以上,机械通气或死亡的高危患者与中度或轻度症状的低危患者区分开。他们还可以区分低风险患者和没有症状的患者。研究小组得出结论,他们的方法“在一个解决方案中,汇总了人口新冠病毒筛查的另一种选择,并通过风险分类为公共卫生工作提供了指导”。(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)根据Covid-19 Automated Diagnosis and Risk Assessment through Metabolomics and Machine Learning编写Published: Jan 20, 2021Author: Jeany Delafiori
  • 下行时代,安捷伦如何看待中国市场与竞争变化?
    2023,中国科学仪器行业整体呈下行之势。几家大外企时不时传出裁员消息;资本市场趋于保守,生物制药企业、上游创新工具公司融资热潮冷却;疫情结束,核酸检测工具市场回归常态,业务量几乎归零……足见行业整体日子都不好过。此外,俄乌战争、中美贸易争端等因素给企业长期经营带来不确定性。作为行业代表公司之一,安捷伦如何看待市场变化及不确定性?近日,仪器信息网就相关话题采访了安捷伦副总裁兼大中华区业务总经理杨挺,以及多位安捷伦中国区高管。2023慕尼黑上海分析生化展期间,安捷伦发布了两款质谱新品揭幕嘉宾(从左至右)为:安捷伦大中华区液质联用及自动化产品全国产品经理 赵嘉胤,安捷伦大中华区液相液质自动化产品业务拓展团队经理 赖丛芳,安捷伦副总裁兼大中华区业务总经理 杨挺,安捷伦大中华区销售拓展团队总经理 朱颖新仪器信息网:据仪器信息网统计,2022年中国质谱市场发生了30起融资,其中上亿的融资事件数量占比超过50%,对此您有什么看法?安捷伦将如何看待和应对这样的竞争变化?杨挺:首先,当前的质谱市场非常大,我们看到很多新方法、新标准从原来的LC、GC转向LC/MS、GC/MS。考虑到对检测限、灵敏度的要求,以及全球法规的制定等,未来会有越来越多的新方法、新标准会基于质谱平台开发和制定。因此,我觉得质谱市场还在扩大。另一方面,从国内的融资情况来看,不管是进口厂商还是国产厂商,都对LC/MS产品线投放了更多的关注,如英盛、谱育等在液质领域都有很多新的研发,这是非常好的现象。而安捷伦在LC/MS领域已经有了长足的积累,我们希望把全球最先进的技术和方案带给中国市场。无论是进口还是国产,都会有不同程度的竞争,我们会把用户按照领域和需求进行划分,从各方面参与竞争。我认为这些竞争都是良性的。仪器信息网:今年中国科学仪器市场整体呈下行趋势。安捷伦对营收预期做了哪些调整?郑欣:安捷伦Q2营收较去年同期增长6.8%,可以看出那时我们的营收还不错。但是Q3开始,我们从订货情况已经有了一些趋势,致使我们全球Q3和全年数字的下调。我认为这不是一个短期的情况,据内部估计可能要一直持续到明年上半年都会有一些业绩压力。对于市场来说,像制药这样的高端制造业客户利润下滑之后,预计新一轮扩张的流程会比较长,所以业绩在短期内不能及时恢复。过去两年,中国仪器市场的增速很高,疫情期间除了2020年稍微弱一点,整个行业其实没有受到太多影响。但这是不正常的,我们现在的经济不太能支撑这样的增长率。安捷伦大中华区高级市场总监 郑欣仪器信息网:今年可谓是生物制药“寒冬”,安捷伦对此有何评论?赵嘉胤:从大方向来看,整个制药行业是逆周期性行业,我们看好整个制药行业的未来发展。虽然短期遇到了些问题,但是我们更关注客户的长期发展。不过,在进行新产品设计与发布时也会考虑短期市场带来的影响,比如在短时间内为了帮助客户“降本增效”,推出了组合方案以及智能化功能等。同时,从企业长远的发展角度来说,我们也需要考虑如何帮助客户“提质增收”,比如如何在科研阶段帮助用户提高盈利,如何为用户提供更好的数据和更好的研发流程等。所以,短期的“降本增效”和长期的“提质增收”都是我们要考虑的。我认为,无论是制药还是生物制药的寒冬一定会过去的,这只是时间问题,整个市场向上的趋势是不会变的。仪器信息网:当前合成生物学研究领域热度高涨,其中有哪些市场机会?赖丛芳:我认为对于全球来说,合成生物学这个赛道还处于起步阶段,从上游的构建到中间的建模,再到现有的测试学习等各各阶段,都离不开分析仪器。我认为LC/MS、GC/MS等仪器都可以在很多环节被用到。因为合成生物学发展到现在还处于大量筛选的阶段,LC/MS的优势是可以帮助用户快速完成高通量的定量或定性的分析工作,所以当前应用较为广泛。许多中国,美国和其他区域的用户都在使用我们的RapidFire及质谱联用仪来进行分析研究,包括三重四极杆质谱仪和高分辨质谱仪。郑欣:代谢监测也是合成生物学现在比较关注的一个领域,要想快速做出一个结果,这就要求仪器对反应釜进行实时监测,目前对GC/MS、LC/MS都有这样的需求。
  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1. Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制