当前位置: 仪器信息网 > 行业主题 > >

大气温室气体

仪器信息网大气温室气体专题为您整合大气温室气体相关的最新文章,在大气温室气体专题,您不仅可以免费浏览大气温室气体的资讯, 同时您还可以浏览大气温室气体的相关资料、解决方案,参与社区大气温室气体话题讨论。

大气温室气体相关的资讯

  • 134万!复旦大学大气温室气体分析仪采购项目
    项目编号:1639-224122240313项目名称:复旦大学大气温室气体分析仪预算金额:134.0000000 万元(人民币)最高限价(如有):134.0000000 万元(人民币)采购需求:序号/ No.货物名称/Name of the goods数量/Quantity简要技术规格/Main Technical Data* 交货期/ Delivery schedule1大气温室气体分析仪预算金额:人民币134万元最高限价:人民币134万元 1套氧化亚氮、一氧化碳精度测定值满足世界气象组织(WMO)的性能要求(氧化亚氮精度小于0.1ppb,一氧化碳精度小于2ppb)合同签订后2个月货到复旦大学。(空运)/ DPU Fudan University within two months after signing the contact .合同履行期限:合同签订后2个月货到复旦大学。本项目( 不接受 )联合体投标。
  • Picarro G2301/G2401——局地污染对大气温室气体测量的影响
    Picarro G2301/G2401——局地污染对大气温室气体测量的影响江苏海兰达尔 2023-06-02 14:49 发表于江苏文献链接:https://doi.org/10.5194/amt-16-2399-2023引言自2012年以来,新的高时间分辨率(~1Hz)的测量技术开始用来测量大气中CO、CO2和CH4的摩尔分数。这使得在现场测量中能够检测到局地污染事件的发生,这在以往较低时间分辨率的测量中是无法看到的。特别是在冬季,造雪机和汽油吹雪机的使用会导致德国Schneefernerhaus(ZSF)站点测量的CO产生强烈的峰值,必须手动标记,以防止对观测记录产生影响。同时,由于影响Schneefernerhaus地区CO、CO2和CH4的本地来源可能就在ZSF站点附近,因此进气管路位置的改变也可以减少对气体浓度时间序列的影响。研究目的在这项研究中,我们分析了Schneefernerhaus站点(ZSF)和山脊测量点(ZGR)环境空气的测量结果,重点描述了当地的污染事件,并比较了这些事件对ZSF和ZGR测量的影响。站点介绍Zugspitze是德国的最高峰,山顶海拔2962m。它位于德国南部的阿尔卑斯山北部,与奥地利接壤。周围地区主要由裸露的土地、森林和牧场组成,远离城市。大气温室气体的测量在Zugspitze峰顶以下300m的Schneefernerhaus(ZSF)站点进行,ZSF站点(海拔2669m)的进气口安装在五楼的研究平台上。2018年,德国气象局(DWD)新安装了一条290m长的不锈钢进气管线,用于ZSF站点从山脊处的ZGR观测点进行采样测量。自2018年10月开始,可以同时测量Schneefernerhaus和位于其上方山脊处环境空气中CO、CO2和CH4的摩尔分数。测量地点的位置(包括ZSF和ZGR站点)测量设置分别使用三台气体浓度分析仪对环境空气中的CO、CO2和CH4摩尔分数进行测量,这些分析仪安装在ZSF站点的站房内,并通过两条采样管线与两个高度的采样口相连。其中一条通向ZSF站点的研究平台(海拔2669m),另一条通向山脊的ZGR观测点(海拔2825m)。除了两个高度的环境空气以外,分析仪还同时测量相同的校准和目标气体以进行质量控制。测量程序由多位旋转阀控制,通过三台分析仪收集测量样气,实验装置如下图所示。ZSF站点的CO2和CH4使用Picarro G2301进行测量,CO的测量则使用LGR EP30分析仪。环境空气以500mL/min从五楼的研究平台通过平台上方2.5m处的玻璃入口泵入,为了避免结冰,玻璃入口的顶部被加热。然后,部分气流通过冷阱进行干燥,以减少水汽对测量的影响。从研究平台入口到分析仪的空气在整个系统中的停留时间约为35s。山脊ZGR观测点的CO2、CH4和CO测量使用Picarro G2401分析仪,样气通过290m长的管线从山脊处采集到Schneefernerhaus站房内,采气流速为16L/min。山脊的进气口进行了防雨处理,但并不加热。从采气到进入分析仪测量,环境空气在整个系统中停留的时间约为6min 40s,因此在对两个站点测量数据进行比较时,对Picarro G2401的1min平均测量数据进行了-6min的移动。环境样气测量和质量控制的实验设置示意图研究结果(部分)ZSF和ZGR站点测量的CO,CO2和CH4摩尔分数根据三种气体摩尔分数的时间序列来看,与山脊相比,ZSF站点能观察到明显的强污染事件,这些主要可以从CO的测量中看出,部分污染事件从CO2和CH4也可看出。特别是在降雪季节,有超过400ppb的高CO污染事件。这些峰值是由于在站点前使用汽油吹雪机进行除雪或者使用造雪机准备滑雪区导致的。2019年1月,大雪和雪崩导致站点前大量使用汽油吹雪机,在此期间,Schneefernerhaus测量到CO摩尔分数高达28000ppb,并且CO2和CH4也出现了相应的峰值。此外,CO2的峰值还可能是由研究人员在进气口附近的测量平台上工作引起的。这些在站点附近出现的本地污染事件需要经站点工作人员手动识别和标记,以减少和避免它们对测量的影响。ZSF QC和山脊测量的CO,CO2和CH4摩尔分数具有相似的时间序列,且这两个时间序列遵循相同的季节变化。CO的摩尔分数范围为48~342ppb,CO2的摩尔分数呈季节循环,夏季值最低,在390~440ppm之间,CH4摩尔分数在1872~2100ppb之间。正如预期的那样,山脊和Schneefernerhaus周围空气的测量显示出类似的整体模式,但在山脊上,它们受到本地污染的影响要小得多。ZSF和ZGR站点CO,CO2和CH4摩尔分数时间序列(所示数据平均为1min)Schneefernerhaus和山脊处本地污染事件的比较虽然在Schneefernerhaus观测到了强烈的CO和CO2局地污染事件,但这些强烈的事件没有出现在山脊测量的时间序列中。在山脊的观测中,只有当风从东南面的Schneefernerhaus站吹来时,才会看到一些小的峰值。然而,这些污染事件的幅度也比同期在Schneefernerhaus测量的污染事件要小的多。在CO和CO2的测量中,大约83%的时间段里面没有在山脊处发现相应的峰值。即使是在Schneefernerhaus发生CO浓度超过1000ppb的极高污染事件时,通常也不会在山脊处测量到。对ZSF和ZGR站点CO和CO2浓度平均值进行差值计算发现,当使用具有本地污染的ZSF时间序列时,存在大量较大的正差异,而当计算中使用ZSF QC数据时,这种强烈的正差异就消失了。这表明,两个站点之间浓度测量的巨大差异正是由于Schneefernerhaus当地污染导致的。同时,这也表明了站点工作人员成功地排除了Schneefernerhaus时间序列中强烈的局地污染事件。ZSF和ZGR站点1min平均测量值差值的频率分布结论高时间分辨率下测量的环境空气显示,由人类活动引起的局地污染事件能显著影响大气CO和CO2的摩尔分数。这些高峰主要发生在冬季和白天,这些数据需要站点工作人员进行手动标记。为了防止这种当地污染的影响,我们需要在一个更高的地方进行额外的测量,以进行比较。而在山脊处进行另一个点的测量能有效规避当地污染对于CO,CO2和CH4摩尔分数测量的影响,特别是在冬季,未来在两个点进行长期连续的观测对于站点获取大气温室气体的背景数据非常重要。编辑人:陆文涛审核人:史恒霖
  • 环境空气温室气体验证测试单位征集开始啦!
    继“关于公开征集《固定污染源温室气体(CO2、CH4、N2O)排放连续监测系统/便携监测仪器检测作业指导书》(仪器技术要求)编制研究验证测试单位的通知”,中国环境监测总站又发布了“关于公开征集环境空气温室气体及其示踪物(CO2、CH4、N2O、CO)高精度连续自动监测系统应用验证测试单位的通知“。此文件征集熟悉环境空气温室气体(CO2、CH4、N2O、CO)高精度连续自动监测系统的单位,参与仪器验证测试。此文件中规定了仪器原理范围:序号原理CO2CH4N2OCO1光腔衰荡光谱法,参照《大气二氧化碳(CO2)光腔衰荡光谱观测系统》(GB/T 34415-2017)光腔衰荡光谱法,参照《大气甲烷光腔衰荡光谱观测系统》(GB/T 33672-2017)光腔衰荡光谱法光腔衰荡光谱法2离轴积分腔输出光谱法,参照《温室气体 二氧化碳测量离轴积分腔输出光谱法》(GB/T 34286-2017)离轴积分腔输出光谱法,参照《温室气体 甲烷测量 离轴积分腔输出光谱法》(GB/T 34287-2017)离轴积分腔输出光谱法离轴积分腔输出光谱法3气相色谱法,参照《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)气相色谱法,参照《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)。气相色谱法,参照《Analytical Methods for Atmospheric SF6 Using GC-μECD》(WMO/GAW Report No.222),与SF6同时分析。气相色谱法4高精度非分散红外(NDIR)高精度非分散红外(NDIR)高精度傅里叶红外(FTIR)。高精度非分散红外(NDIR)5高精度傅里叶红外(FTIR)高精度傅里叶红外(FTIR)————如无意外,将来环境空气温室气体监测仪器将从上述五种原理中选出或全部可使用。 关于公开征集环境空气温室气体及其示踪物(CO2、CH4、N2O、CO)高精度连续自动监测系统应用验证测试单位的通知 为配合开展地面大气中主要温室气体浓度监测,探索自上而下的碳排放量反演方法,编制环境空气温室气体及其示踪物自动监测仪器技术标准、规范,服务支撑城市碳排放监测和核算结果的校验。中国环境监测总站仪器质检室、大气室拟联合组织开展环境空气温室气体及其示踪物(CO2、CH4、N2O、CO)高精度连续自动监测系统应用验证测试工作,现向社会公开征集有意向参与的单位,有关事项公告如下:一、项目名称环境空气温室气体及其示踪物(CO2、CH4、N2O、CO)高精度连续自动监测系统应用验证测试。二、项目内容拟按照总站仪器质检室编制的《环境空气温室气体及其示踪物(CO2、CH4、N2O、CO)高精度连续自动监测系统应用验证测试方案(草案)》(附件1),于2021年9月-11月(暂定),在总站深圳质控创新中心仪器适用性检测实验室开展相关产品验证测试。总站将根据报名情况和疫情防控要求,确定具体比对时间。三、申报单位条件1.申报单位须在中华人民共和国境内注册,具有独立法人资格,具有独立承担民事责任和履行合同能力,在近三年内的经营活动中没有违法记录。不接受联合申报或个人申报。2.申报单位须指派熟悉环境空气温室气体(CO2、CH4、N2O、CO)高精度连续自动监测系统的技术人员,积极配合仪器质检室,按照规定要求开展工作。3.申报单位申请参与验证测试的仪器原理须在《环境空气温室气体及其示踪物(CO2、CH4、N2O、CO)高精度连续自动监测系统应用验证测试方案(草案)》列举的范围内。4.申报单位应具有丰富的经验,参与过环境空气监测仪器适用性检测的企业优先。四、申报受理及评选程序1.本公告在中国环境监测总站网站(www.cnemc.cn)公开发布,公开征集工作自本公告公布之日起开始,申报单位可自行下载相关材料,并按照附件2准备申报材料。2.报名表一式2份,由法定代表人签字并加盖公章。申报材料纸质文件需于2021年8月31日前寄送至中国环境监测总站仪器质检室(地址:北京市朝阳区安外大羊坊8号乙,邮编:100012,收件人:赵瑞峰),并将扫描件电子版发送至zhaorf@cnemc.cn。(材料命名为:单位名称+环境空气温室气体验证测试申报)。3.中国环境监测总站将按照公开、公平、公正的原则,通过“自由申报、择优比选”等程序确定项目的承接单位,并在网站公示。五、相关说明本项目不收取任何费用,自愿参与,入选的参与验证单位需提供1台(套)样机,并负责仪器现场安装、调试、运行维护及耗材备件。仪器参与验证测试期间的设备、耗材及人员等现场测试相关费用由各参与单位承担。六、联系人李铭煊:010-84943152赵瑞峰:010-84943282;zhaorf@cnemc.cn附件1:环境空气温室气体及其示踪物(CO2、CH4、N2O、CO)高精度连续自动监测系统应用验证测试方案(草案).docx附件2:申报材料目录.docx中国环境监测总站2021年8月6日
  • Picarro G2401——利用后向轨迹模型估计北极大气温室气体的空间分布
    Picarro G2401——利用后向轨迹模型估计北极大气温室气体的空间分布江苏海兰达尔 2023-04-03 10:58 发表于江苏收录于合集#温室气体3个#大气2个原文链接:https://onlinelibrary.wiley.com/doi/10.1002/mma.6046摘要在这项研究中,我们使用了一种被称为FLA的被动风传感(遥感)数值技术来模拟大气组分浓度的平均有效场,并展示了方法和研究结果。用数值方法求解了假设扩散波峰数无限大的温室气体空间分布的拟二维重构问题。这项研究是基于2016年7月至2017年8月在喀拉海别雷岛对大气中甲烷和二氧化碳的现场测量。我们分析了北极地区甲烷和二氧化碳空间分布的差异和共同特征,甲烷的浓度随着从大陆移动到偏远海域而趋于下降,相反,对于二氧化碳,在整个大陆上都观测到了较低的值,但随着远离海岸线而增加。对于这两种温室气体,2017年的平均大气浓度相对于2016年也有所增加。01观测介绍观测地点(别雷岛)位于俄罗斯亚马尔半岛以北5至10公里的喀拉海,于2016年至2017年夏季进行,测量站点建设在西北海岸(73.32°N, 70.05°E)。大气二氧化碳和甲烷的浓度测量使用Picarro G2401温室气体分析仪,该系统能够在连续无人值守的条件下进行高精度监测。根据工厂报告来看,Picarro G2401对二氧化碳和甲烷的测量精度分别为50ppb和1ppb(1σ,5秒测量平均)。在不使用参考气体的1个月内,最大漂移量为二氧化碳不超过500ppb,甲烷不超过3ppb。基于其低漂移和低校准频率的需求,该系统非常适应远程连续测量。02后向轨迹使用HYSPLIT4软件计算了不同月份下测量的4天后向轨迹(图1)。可以看出,气流的模式在每年和每月都有显著的变化。在2016年7月和2017年8月,都观测到了西西伯利亚中纬度地区的气团入侵。除2017年7月外,在其它月份,来自北极地区的气团都到达了别雷岛。图1 别雷岛监测站4个不同月份下的4天后向轨迹03研究结果图2为2016年和2017年二氧化碳和甲烷浓度的平均有效场的模拟结果。二氧化碳浓度(图2A、B)和甲烷浓度(图2C、D)的空间分布的一般特征有根本上的区别。对于二氧化碳,在整个大陆上都观测到较低的值,并且它们随着远离海岸线而增加。相反,在大陆及其邻近地区的甲烷浓度要高于偏远海域。这种空间分布上的差异是可以被解释的,因为甲烷的来源主要是大陆,包括各种自然和人为排放。例如,湿地和淡水系统被证明对北极地区的大气甲烷有重大贡献。主要的人为来源则是化石燃料燃烧和石油天然气工业。与此同时,在测量期间,陆地植被明显处于活跃的物候状态,这提供了强大的二氧化碳汇,因此其在陆地上的大气浓度较低。图2 不同年度月份二氧化碳和甲烷浓度的平均有效场在模拟的不同区域,有许多高甲烷浓度的“点”是意料之外的,这种镶嵌分布的形成可能与长距离的气体传输和海面可能的排放有关。因为来自海洋的甲烷的一个强大来源是海底永久冻土层和大陆架水合物,它们在该地区的分布也不均匀。此外,2016年夏季在俄罗斯北极地区观测到的温度异常可能是2016年海面以上温室气体空间分布差异更大的原因。对2016年和2017年的平均有效场的比较表明,2017年的二氧化碳和甲烷浓度相对于2016年均有所增加。结论在这项研究中,我们证明了基于监测点现场测量和空气颗粒物轨迹来评估大气组分平均浓度场的可能性。模拟的甲烷和二氧化碳浓度场的情况如下。二氧化碳在整个大陆的浓度较低,随着远离海岸线而升高,甲烷浓度分布则相反。根据计算结果,得到了模拟区域内海面上甲烷浓度空间分布较高的镶嵌模式。2017年,两种温室气体(二氧化碳和甲烷)的大气浓度相对于2016年都有所增加。编辑人:陆文涛审核人:史恒霖
  • 基于大气浓度观测反演温室气体排放量,进而验证传统自下而上清单结果的方法
    第三届中国温室气体监测研讨会”将于2023年11月18日至19日在上海召开,会议由复旦大学大气与海洋科学系承办,采用线下会议的形式。 一、会议背景 2015年《巴黎协定》签署,目标将全球平均气温较前工业化时期上升幅度控制在2摄氏度以内,并努力将温度上升幅度限制在1.5摄氏度以内,随后全球各国积极为应对气候变化行动制定计划。2020年9月中国明确提出2030年前“碳达峰”与2060年前“碳中和”的双碳目标。及时掌握准确的温室气体排放信息是实现《巴黎协定》目标和双碳战略的前提。《政府间气候变化专门委员会(IPCC)2006年国家温室气体清单指南2019修订版》首次完整提出基于大气浓度观测反演温室气体排放量,进而验证传统自下而上清单结果的方法。2020年世界气象组织(WMO)成立全球温室气体综合信息系统(IG3IS)计划,并组织编写《城市温室气体排放监测最优做法》(Urban Greenhouse Gas Emission Observation and Monitoring Best Research Practices)和《国家温室气体排放监测最优做法》。为了促进中国温室气体监测的同行交流,2019年和2020年分别在中国科学院大气物理研究所和线上举行了第一届和第二届“中国温室气体监测研讨会”,研讨了中国温室气体监测进展和应用,成立了“中国温室气体监测联盟”,并在AAS、AOSL和CCR联合发表专刊“Atmospheric GHG measurement and application in China”。近几年来,我国环境、气象、海洋、林业等业务部门分别开展了全国尺度、试点城市、重点行业、海洋及林业等的温室气体排放和碳汇监测。国家科研计划以集成化、自动化、智能化为主攻方向,推动形成一批自主知识产权的监测装备。但是,如何准确定量多种温室气体排放时空变化规律,特别是区分自然源和人为源CO2排放,依旧是国内外科学研究和业务体系的难点和挑战。在国内外新形势下,第三届“中国温室气体研讨会”将聚焦温室气体监测评估对双碳目标的支撑以及新技术新方法的应用,推动我国温室气体监测同行交流,为建立有效的温室气体监测体系提供精准的科学理解、技术支撑和解决方案。二、目的1)促进中国温室气体监测同行交流2)研讨温室气体监测评估对双碳目标的支撑3)推动中国温室气体监测仪器自主研发和应用三、会议主要信息会议时间:2023年11月18至19日注册时间:2023年11月17日14:00-20:00会议地点:粤海酒店 牡丹厅(上海市虹口区逸仙路328号)交通和住宿指南见下文五、组委会姚波(联合主席,复旦大学大气与海洋科学系/大气科学研究院)曾宁、刘毅、韩鹏飞(联合主席)(中国科学院大气物理研究所)陈辉林(南京大学大气科学学院)刘诚(中国科技大学精密机械与精密仪器系)吕洪刚(国家海洋环境预报中心)牛振川(中国科学院地球环境研究所)孙康(中国环境监测总站)王绍强(中国地质大学(武汉)地理与信息工程学院)六、会议内容专题1:区域、城市尺度及海洋等的碳监测和反演——案例和经验专题2:监测和反演的质控及自上而下(Top-down)和自下而上(bottom-up)方法的比对验证专题3:温室气体监测新技术新方法和国产温室气体监测仪器研制进展七、会议日程11月17日下午:会议报到、注册11月18日上午:开幕式及特邀报告下午:专题1报告及集体讨论11月19日上午:专题2及集体讨论下午:专题3及集体讨论、闭幕总结报告形式:口头报告或快闪八、会务费用会议不收取注册费,往返交通及食宿自理
  • UoW FTIR 多要素温室气体分析仪引导温室气体在线测量技术最前沿
    温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。 UoW FTIR 多要素温室气体气体分析仪由澳大利亚Wollongong 大学研发,由ECOTECH 合作生产,并提供全球范围内的分销及符合ISO9001 标准的售后服务。UoW FTIR 多要素温室气体气体分析仪应用多光程&mdash &mdash 傅里叶红外变换(FTIR)光谱测量解析技术和高性能红外检测元器件,结合了完善的控制软件系统,能够全自动地运行,在线精确连续测量环境大气(或其他种类的混合气体)中多种温室气体成分的浓度及其同位素丰度,运行成本低,适于长期连续观测。也可以根据用户需求,改变地相应的配置,测量其他种类的痕量气体。 自第一台Uow FTIR 多要素温室气体气体分析仪投入现场观测应用以来,10 余年间,在全球已有多个用户将本仪器用于环境大气和本底地区大气的温室气体观测,并开发了温室气体以外的测量功能。这些用户包括:澳大利亚的Wollongong 大学、Melbourne 大学、公共财富科学与工业研究组织(CSIRO)、科学与技术组织(ANSTO),新西兰的国家水和大气研究所(NIWA),德国的Heidelberg大学、Bremen 大学、Max Planck 研究所,韩国的国家标准研究所、中国气象局(CMA)等。 下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 仪器特点 @ 同时在线测量多种温室气体的浓度和同位素丰度,应用方式广泛、多样 1 同时测定CO2、CO、CH4、N2O 的大气浓度,以及CO2 中&delta 13C、水汽中&delta D 和&delta 18O 的丰度。 2 可以一路或多路连续进样,测量多种温室气体浓度及同位素丰度; 3 可在测量塔不同高度采集样品,进行温室气体(包括水汽和CO2 的同位素)的垂直廓线测量; 4 可车载连续监测; 5􀁺 连接静态箱进行土壤中温室气体的通量测量; 6􀁺 在实验室中批量测量采样瓶或采样袋中的空气样品; 7􀁺 标准传递测量:在实验室中,通过测量将高等级标准气的量值关系传递给较低等级的标准气体。 8 其他气体成分的测量 9􀁺 在中红外谱段有已知吸收光谱的任何气体都可以用本仪器定量测量,如:NH3、碳氟化合物、HF 和SiF4 等。 10 根据气体物种不同,最低检测限为1-20ppbv。 @ 全自动运行,可遥控,维护成本低、消耗量少 1 五合一测量(一台仪器同时测量5 个物种/要素),综合运行成本低2􀁺 日常观测只需要参照气(洁净空气)每天一次检测,无需高等级标准气; 3􀁺 无需液氮或深冷除湿; 4􀁺 随机携带采样气体干燥器和多进样口 5􀁺 全自动运行,并可通过网络遥控运行 UoW FTIR 多要素温室气体气体分析仪 中文样本下载链接:http://www.instrument.com.cn/netshow/SH101597/C131047.htm http://www.instrument.com.cn/netshow/SH101597/C131047.htm UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。
  • 中国气象局发布《2021年中国温室气体公报》
    1月9日,中国气象局发布《2021年中国温室气体公报(总第11期)》。中国气象局科学与气候变化司副司长张兴赢介绍,这是中国气象局服务碳达峰碳中和的重要决策服务产品,与联合国世界气象组织(WMO)发布的《2021年WMO温室气体公报》相辅相成。2021年全球温室气体浓度监测与分析情况张兴赢指出,大气温室气体浓度联网监测分析是历次联合国政府间气候变化专门委员会(IPCC)科学评估报告和联合国气候变化框架公约等的数据来源和科学基础。世界气象组织/全球大气监测网(WMO/GAW)负责协调大气温室气体及相关微量成分的系统观测和分析。2022年10月26日,世界气象组织发布《2021年全球温室气体公报》。公报采用的大气温室气体浓度数据来自全球大气本底观测站、区域站和贡献站的观测资料。公报内容显示:全球大气主要温室气体浓度继续突破有仪器观测以来的历史记录,二氧化碳浓度达到415.7±0.2 ppm、甲烷浓度达到1908±2 ppb、氧化亚氮浓度达到334.5±0.1 ppb,2021年全球大气二氧化碳浓度增幅约2.5 ppm,略高于过去十年2.46 ppm的平均增幅。2021年全球大气甲烷和氧化亚氮浓度也达到了新高,增幅分别达到18 ppb和1.3 ppb。公报特别强调,近两年全球大气甲烷年增幅显著提高,是自1983年开始系统性记录以来的最大增幅。根据美国国家海洋和大气管理局的温室气体指数分析结果:2021年由大气长寿命温室气体引起的辐射强迫相比1990年上升了约49%,而这其中二氧化碳的贡献超过80%。甲烷是大气中第二重要的长寿命温室气体,单位温室效应高于二氧化碳,对全球温室气体辐射强迫总增长的贡献约为17%左右。2021年中国温室气体浓度监测与分析情况中国气象局在WMO框架下,协调中国区域的温室气体及相关微量成分高精度观测。自20世纪80年代开始,中国气象局陆续建成了由1个全球大气本底站和6个区域大气本底站组成的大气本底观测站网,实现对《京都议定书》管控的7大类30余种温室气体(二氧化碳/甲烷/氧化亚氮/六氟化硫等)观测,形成了观测-运行监控-维护标校-质量控制-应用分析等于一体的温室气体本底观测业务体系。张兴赢介绍,其中甲烷是从20世纪90年代初开始在青海瓦里关全球大气本底站开展观测,2009年起逐步在其他区域本底站建立在线观测业务,积累了我国最长序列的高精度甲烷观测资料。截止目前,中国气象局已经组建了包含60个观测站的国家温室气体观测网,同时有3颗具备全球主要温室气体监测能力的卫星在轨运行,形成天、空、地一体化的温室气体立体观测能力。《2021年中国温室气体公报》显示:2021年中国瓦里关国家大气本底站观测的二氧化碳的浓度为417.0±0.2 ppm、甲烷的浓度为1965±0.6 ppb,氧化亚氮的浓度为335.1±0.1 ppb,与北半球中纬度地区平均浓度大体相当,二氧化碳浓度较2020年增幅为2.5ppm,与全球增幅持平,甲烷浓度较2020年增幅约21ppb,略高于全球同期增幅。2021年我国6个区域本底站的二氧化碳和甲烷浓度与2020年相比总体呈现增加趋势。张兴赢表示, 未来,中国气象局将进一步提升观测能力,形成覆盖我国16个气候关键区并辐射全球主要纬度带的全要素温室气体本底观测骨干网,不断提升二氧化碳、甲烷等温室气体高精度、高密度的观测能力,进一步支撑碳源汇监测核校业务,为顺利实现我国碳达峰目标和碳中和愿景提供科学监测支撑。
  • 环保展热门展品盘点——温室气体篇
    2023年4月13日,由生态环境部和北京市人民政府主导,国家发展改革委、工信部、科技部、商务部等政府部门指导,有关行业组织和境外有关机构支持,中国环境保护产业协会主办的第二十一届中国国际环保展览会(CIEPEC2023)盛大开幕。环保展期间,众多环境领域热门产品一一亮相。而作为环境领域的热点,“双碳”成为本次环保展的热点方向之一。2021年9月,生态环境部发布《碳监测评估试点工作方案》,聚焦重点行业、城市和区域开展碳监测评估试点。国家号召,为取得更精确的碳排放数据,二氧化碳等温室气体也要像PM2.5等污染物一样被精准监控。相关信息显示,随着全国碳市场的一步步建立,截至2023年1月,我国已建成116个温室气体监测站点,其中26个高精度、90个中精度监测站点。温室气体监测,无疑会在接下来继续占据环境市场热点的位置。基于此,仪器信息网现独家策划“直击环保展!热门展品盘点”系列,今天带来的是温室气体篇(排名不分先后)。本次环保展,“高精度温室气体分析仪”似乎是各仪器企业不约而同关注到的商机。据了解,目前各大厂商推出的相关产品大体可分为高精度、中精度、低精度。其中,高精度温室气体分析仪主要是基于光腔衰荡光谱技术(CRDS)和离轴积分腔输出光谱检测技术,尤其以前者为主。据不完全统计,环保展上这几款高精度温室气体分析引人注目——海兰达尔 高精度温室气体监测系统海兰达尔是美国Picarro公司在国内的授权销售和售后服务商。据了解,Picarro的所有产品均基于其核心技术-光腔衰荡光谱(CRDS)技术,拥有超过45个光腔衰荡光谱专利。该高精度温室气体分析仪会自动进行水汽校正,排除掉水汽对CO2,CH4浓度测量的影响,这也是其如此高精度的最重要保证和Picarro产品区别于同类产品的最大特点。ABB LGR-ICOSTM GLA133无人机载高精度温室气体分析仪ABB展台上方悬挂着一台无人机,据了解,这台无人机为ABB LGR-ICOSTM GLA133无人机载高精度温室气体分析仪。该系列为基于无人机的微型便携式温室气体分析仪,重量轻便,适合安装在中型无人机(UAV)下面,仅需不到35w的电源,可同时测量并报告甲烷、二氧化碳和水蒸气浓度。并适合进行大面积的区域或难以进入的区域的温室气体排放通量测量。灵析光电 HGA-331高精度温室气体分析仪灵析光电推出的HGA-331高精度温室气体分析仪于聚光科技展台亮相。该分析仪由灵析光电自主研发,利用光腔衰荡光谱(CRDS)技术,可同时测量CO2、CH4、H2O三种气体浓度。分析仪独有的内部控温、控压算法,让分析仪具备了优异的精度、准确度、低漂移性能,可提供稳定到极致的测量。测量性能满足WMO标准,测量灵敏度达到十亿分之一(ppb),在数月运行中的漂移可以忽略不计。分析仪测量水汽,采用专有算法来校正样气中水汽的稀释效应,并输出CO2、CH4的干摩尔分数。岑锋科技高精度温室气体光腔衰荡光谱监测仪岑锋科技由中科院环境光学专业博士团队于2022年5月创立。该监测仪采用多波长-光腔衰荡光谱技术(CRDS),多组分同步探测等效吸收光程超60km,可达到ppb级灵敏度。精心设计的小型光学腔室、精确的温度和压强控制,让监测仪具备了一流的精度、准确度、低漂移和易用性。监测仪采用多波长CRDS技术,可实现多组分CO2/CO/CH4/H2O同步探测稳定的温度和压力控制,确保在外界环境条件变化的情况下进行准确测量。先河环保 XHCRDS100P高精度温室气体监测系统高精度监测领域,先河环保同样有展品展出。XHCRDS100P高精度温室气体监测系统包括XHCRDS100P监测仪、XHZDJY3000自动进样处理与控制系统等,可以对大气环境中的温室气体(CO2,CO,H2O,CH4)进行精准实时监测,具有已操作、稳定性高、维护量小等优点,适合各监测站点长期在线无人值守运行。河北子曰 高精度温室气体监测仪-ZYGHG201河北子曰的高精度温室气体监测仪-ZYGHG201同样采用光腔衰荡技术(CRDS),利用自主知识产权的光学测量结构及数据处理算法,测量光程可达30km,满足大气痕量气体的监测要求,可实现CO2,CH4,H20的连续在线监测。本次展会上的高精度温室气体分析仪远不止上述几款,中精度和低精度的产品也是厂商重点发展的对象,其中以固定源温室气体排放连续监测系统最多。谱育科技 EXPEC 2000 温室气体气相色谱在线连续监测系统谱育科技EXPEC 2000 温室气体气相色谱在线连续监测系统可配备温室气体专用型FID或ECD检测器,检测环境空气中CO2、CH4、CO、N2O和SF6等因子。样气先通过定量环,然后被温室气体专用色谱柱分离,CH4进入FID检测,CO和CO2先后进入甲烷转化炉,在镍催化剂作用下高温加氢还原为CH4后再被送入FID检测;NO和SF6被色谱柱分离后通过ECD检测。雪迪龙 AQMS-900GHG大气温室气体在线监测系统雪迪龙整合在气体分析领域的丰富经验,同样在本次展会上提供了碳监测解决方案。该系统依托比利时ORTHODYNE S.A.的GC-FID技术,采用FID检测器,灵敏度高,可同时分析环境空气中CO2、CH4、CO、NMHC;该系统分析周期≤10min,并采用高转换效率的甲烷转换装置,保证CO2、CO检出限。可适用于气象局、生态环境等部门对环境空气温室气体背景浓度监测、碳达峰、碳中和绩效评估、区域间温室气体浓度比较等。明华电子 MH3203 气体分析仪明华电子推出的MH3203 气体分析仪可实现固定污染源CO2、CO、CH4、N2O等气体检测,同时具备O2及烟温、流速等工况参数的测量功能。针对温室气体,该仪器可完成基于非分散红外(NDIR)、可调谐半导体激光吸收光谱(TD-LAS)、电化学传感器等技术多种气体的测量。锐意自控 温室气体排放分析仪Gasboard-3000GHG锐意自控的温室气体排放分析仪采用自主知识产权的微流红外隔半气室气体传感技术(国际发明专PCT/CN2018100767),可实现同时准确测量CO2、CH4、N2O等温室气体和烟气中的CO气体浓度变化,量程可低至200ppm,精度高达1%F.S.,具备抗气体交叉干扰能力强,漂移量更低等特点。同时针对高浓度CO2以及中高量程的CO测量需求,可选配公司自主知识产权的非分光红外NDIR气体传感器技术的传感器模组进行灵活配置,具备稳定性好、体积小、成本低等特点。皖仪科技 固定源二氧化碳排放连续监测系统固定源二氧化碳排放连续监测方面,皖仪科技在温室气体监测展台展出了固定源二氧化碳排放连续监测系统。其采用自主知识产权的非分光红外技术(NDIR),由温室气体监测子系统、温室气体参数监测子系统及数据采集与处理子系统组成,其中温室气体监测子系统的预处理单元、分析单元和数据采集与处理子系统安装在机柜内,可以连续监测二氧化碳浓度、氧含量等参数的湿基值、干基值和折算值以及根据温室气体温度、压力、流速、湿度等多项相关参数统计排放率、排放总量等。
  • 科学岛团队在温室气体通量监测方面取得新进展
    近日,中科院合肥研究院安光所高晓明研究员团队在可调谐激光吸收光谱技术(TDLAS)测量大气温室气体通量方面取得新进展,相关研究以《基于TDLAS的开放光路防污染多通池气体分析仪用于实时监测大气水蒸气(H2O)和二氧化碳(CO2)通量》为题发表在国际知名期刊Optics Express上。   大气中主要的温室气体有4种:二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)和水蒸气(H2O),减少大气层中温室气体浓度的方法之一就是通过土壤和植被保存碳元素。2020年我国在七十五届联合国大会上作出的“碳达峰、碳中和”的承诺,提升陆地生态系统碳汇是实现我国“碳中和”目标最绿色和经济的有效途径。为了解陆地生态系统对碳元素的吞吐情况,科学界提出利用空气流动产生的湍流涡旋测量温室气体的排放量。而基于可调谐激光吸收光谱涡度相关监测技术与设备是生态系统碳源汇及其碳收支过程通量观测的重要手段,其具有高灵敏度、高精度、高选择性,以及响应速度快等优点。涡度相关气体通量监测技术又分为开放光路式和闭路式两种,开放光路是一种原位测量,相比于闭路式测量,具有更低的系统功耗和重量。然而传统开放光路多通池长时间工作在野外环境中,存在镜片镀膜层容易被污染和腐蚀等问题。   针对上述问题,团队成员陈家金副研究员、梅教旭副研究员、古明思博士研究生等人,首次提出反面镀膜的防腐蚀、防污染开放光路多通池的设计,有效避免了外界环境对镜片膜层的污染和腐蚀,并将该设计应用于大气温室气体CO2和H2O的通量监测设备中,提高了开放光路系统的长期稳定性和耐用性。同时利用该设备在江苏省扬州市江都区马凌村良种场试验基地,对小麦季节农田生态系统CO2和H2O通量进行了为期一个月的外场对比观测实验,获得的数据结果与国际上主流商业仪器获得数据结果具有非常好的一致性。   该研究工作得到国家重点研发计划项目、国家自然科学基金等项目的资助。开放式TDLAS通量测量设备原理图现场测试照片和24小时与商业仪器浓度对比连续25天 (a) CO2 (b) H2O通量结果对比
  • 安光所在温室气体通量监测方面取得新进展
    近日,中科院合肥研究院安光所高晓明研究员团队在可调谐激光吸收光谱技术(TDLAS)测量大气温室气体通量方面取得新进展,相关研究以《基于TDLAS的开放光路防污染多通池气体分析仪用于实时监测大气水蒸气(H2O)和二氧化碳(CO2)通量》为题发表在国际知名期刊Optics Express(SCI二区,IF=3.833,光学类Top期刊)上。大气中主要的温室气体有4种:二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)和水蒸气(H2O),减少大气层中温室气体浓度的方法之一就是通过土壤和植被保存碳元素。2020年我国在七十五届联合国大会上作出的“碳达峰、碳中和”的承诺,提升陆地生态系统碳汇是实现我国“碳中和”目标最绿色和经济的有效途径。为了解陆地生态系统对碳元素的吞吐情况,科学界提出利用空气流动产生的湍流涡旋测量温室气体的排放量。而基于可调谐激光吸收光谱涡度相关监测技术与设备是生态系统碳源汇及其碳收支过程通量观测的重要手段,其具有高灵敏度、高精度、高选择性,以及响应速度快等优点。涡度相关气体通量监测技术又分为开放光路式和闭路式两种,开放光路是一种原位测量,相比于闭路式测量,具有更低的系统功耗和重量。然而传统开放光路多通池长时间工作在野外环境中,存在镜片镀膜层容易被污染和腐蚀等问题。团队成员陈家金副研究员、梅教旭副研究员、古明思博士研究生等人,首次提出反面镀膜的防腐蚀、防污染开放光路多通池的设计,有效避免了外界环境对镜片膜层的污染和腐蚀,并将该设计应用于大气温室气体CO2和H2O的通量监测设备中,提高了开放光路系统的长期稳定性和耐用性。同时利用该设备在江苏省扬州市江都区马凌村良种场试验基地,对小麦季节农田生态系统CO2和H2O通量进行了为期一个月的外场对比观测实验,获得的数据结果与国际上主流商业仪器具有非常好的一致性。该研究工作得到国家重点研发计划项目(2022YFF1300100,2017YFC0209700),国家自然科学基金(No. 41730103)等项目的资助。开放式TDLAS通量测量设备原理图 现场测试照片和24小时与商业仪器浓度对比 连续25天 (a) CO2 (b) H2O通量结果对比
  • 从招中标信息看温室气体监测站点正在采购哪些仪器?
    2021年9月,生态环境部发布《碳监测评估试点工作方案》,碳监测评估试点工作将聚焦区域、城市和重点行业三个层面,开展碳监测评估试点。据介绍,截至2023年1月底,5个试点行业共建成93台在线监测设备城市;14个试点城市,建成63个高精度、95个中精度监测站点。2023年9月,生态环境部办公厅发布了《深化碳监测评估试点工作方案》的通知。目标为“到2024年底,通过开展重点行业、省市和区域深化试点工作,初步建立较为完善的碳监测评估技术方法体系,探索建立个别重点行业、领域的碳监测评估业务化运行模式,推动碳监测评估试点成果创新应用,更好地发挥示范效应,为降碳减污和国际履约提供监测支撑。”试点工作计划在2023年10月--2024年12月进行,2025年1月--2025年3月,整理、总结深化试点成果及经验,组织编制深化试点工作报告和技术报告。那么,大气温室气体监测需要配备哪些仪器呢?从以下几个项目的招中标情况或者可以略窥一二:一、郑州市生态环境局郑州市城市大气温室气体综合监测评估项目项目编号:郑财招标采购-2023-305项目名称:郑州市生态环境局郑州市城市大气温室气体综合监测评估项目预算金额:23,857,000.00元开标时间: 2024年01月03日10时00分(北京时间)采购内容:A包:高精度CO2、CH4、CO、H2O分析仪4套、高精度CO2、CH4、H20分析仪1套、高精度CO、N2O分析仪1套。B包:环境空气ODSs(消耗臭氧层物质)及含氟温室气体监测系统1套。C包:环境空气温室气体二氧化碳连续自动监测仪20套、采样系统20套、数据采集软件20套、工控机20套、机架20套、户外监测机柜20套、电力、防雷系统20套。D包:生态系统通量监测设备(CO2、CH4)及服务1套、高精度气象观测系统8套。E包:环境空气温室气体自动监测系统站房1套。F包:(1)构建碳同化反演模式系统,利用碳卫星及地面观测数据,结合网格化地面清单数据,通过多层嵌套双向耦合的同化反演计算过程,实现对郑州及周边地区的CO2浓度同化和地表通量反演。(2)建设碳监测综合管理平台,实现高精度碳监测站数据管理与分析,碳排放清单输入与展示,卫星、无人机、走航等多种监测手段等多维数据输入,完成碳监测数据集成与应用。注:本项目A包已办理进口产品审批手续,允许采购进口产品。二、四川省生态环境厅温室气体监测建设项目(四次)公开招标采购公告项目基本情况项目编号:N5100012023002370项目名称:温室气体监测建设项目(四次)预算金额:4,450,000.00元开标时间:2023年12月21日 10时30分00秒(北京时间)采购标的:三、广东省揭西县气象局2023年揭西县森林生态综合监测建设项目(揭西县温室气体观测站建设项目项目编号:ZQC-23284(招标文件编号:ZQC-23284)项目名称:2023年揭西县森林生态综合监测建设项目(揭西县温室气体观测站建设项目)采购人:广东省揭西县气象局 中标(成交)金额:248.9000000(万元)四、河南省生态环境监测和安全中心高山空气监测站升级项目-中标公告采购项目编号:豫财招标采购-2023-1112采购项目名称:河南省生态环境监测和安全中心高山空气监测站升级项目评审日期:2023年11月29日采购需求:采购1套超光谱多种大气成分立体分布遥测仪和2套高精度在线温室气体监测仪(CO2、CH4、N2O、CO),其中每套高精度在线温室气体监测仪包含:高精度CO2、CH4温室气体分析仪1台,高精度N2O、CO温室气体分析仪1台,温室气体监测配套系统1套。中标情况:五、南京市城市环境空气高精度碳监测站点建设项目中标公告项目编号:SNZX-20230378项目名称:南京市城市环境空气高精度碳监测站点建设项目采购人:南京市生态环境局主要标的信息包1名称:高精度温室气体浓度分析仪(含CH4、CO2、CO)品牌/规格型号:唯思德光学、GGA-311、GGA-312C数量:2套单价:1260000元/套名称:高精度气象分析仪(风速、风向、温度、相对湿度、气压)品牌/规格型号:唯思德光学、WSD-WID数量:2套单价:40000元/套合同履行期限(交货期):合同签订后,在2023年12月31日前完成设备到货、安装调试。包2名称:高精度温室气体浓度分析仪(含CH4、CO2、CO)品牌/规格型号:敢为科技、GW-2082D数量:2套单价:750000元/套名称:高精度气象分析仪(风速、风向、温度、相对湿度、气压)品牌/规格型号:敢为科技、GXF500L数量:2套单价:20000元/套合同履行期限(交货期):合同签订后,在2023年12月31日前完成设备到货、安装调试。
  • 碳中和背景下 温室气体有哪些测量方法标准?
    碳达峰、碳中和是目前和未来一段时间内生态文明建设工作的热点和重点。环境及污染源排放温室气体的直接测量是核算和评估等工作的基础和数据支撑,仪器信息网对我国现行温室气体测量方法标准进行了梳理。  国家标准  《大气二氧化碳(CO2)光腔衰荡光谱观测系统》(GB/T 34415-2017)由中国气象局提出,规定了基于光腔衰荡光谱观测系统观测本底大气中二氧化碳(CO2)浓度的安装环境、原理及系统组成、性能要求,适用于光腔衰荡光谱法在线观测本底大气CO2浓度。  《温室气体 甲烷测量 离轴积分腔输出光谱法》(GB/T 34287-2017)由中国气象局提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体甲烷浓度的方法概述、测量条件、测量准备、测量方法和标校方法等,适用于开展温室气体甲烷浓度的测量。  《温室气体 二氧化碳测量 离轴积分腔输出光谱法》(GB/T 34286-2017)由中国气象局提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体二氧化碳浓度的方法,适用于开展温室气体二氧化碳浓度的测量,在非污染大气下,其测量精度应小于0.1×10-6mol/mol。  《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)由中国气象局提出,规定了本底大气二氧化碳和甲烷浓度气相色谱在线观测方法,包括观测环境、观测系统组成、性能要求、观测流程以及系统维护等,适用于气相色谱法在线观测本底大气二氧化碳和甲烷浓度。  《气体中一氧化碳、二氧化碳和碳氢化合物的测定 气相色谱法》(GB/T 8984-2008)由中国石油和化学工业协会提出,规定了气体中一氧化碳、二氧化碳和碳氢化合物的气相色谱测定方法,适用于氢、氧、氦、氖、氩、氪和氙等气体中一氧化碳、二氧化碳和甲烷的分项测定,以及一氧化碳、二氧化碳和碳氢化合物的总量(总碳)测定。  行业标准  《温室气体 二氧化碳和甲烷观测规范 离轴积分腔输出光谱法 》(QX/T 429-2018)是气象行业标准,规定了利用离轴积分腔输出光谱法观测二氧化碳、甲烷浓度的测量方法及观测系统、安装要求、检漏与测试要求、日常运行和维护要求、溯源以及数据处理要求等,适用于温室气体二氧化碳、甲烷浓度的离轴积分腔输出光谱法的在线观测和资料处理分析等。  《固定污染源废气 二氧化碳的测定 非分散红外吸收法》(HJ 870-2017)是环保行业标准,规定了测定固定污染源废气中二氧化碳的非分散红外吸收法,适用于固定污染源废气中二氧化碳的测定,方法检出限为0.03%(0.6g/m3),测定下限为0.12%(2.4g/m3)。  《本底大气二氧化碳浓度瓶采样测定方法-非色散红外法》(QX/T 67-2007)是气象行业标准,规定了本底大气中二氧化碳浓度的非色散红外测定方法,适用于本底大气瓶采样样品二氧化碳浓度的测定。  地方标准  《畜禽舍二氧化碳快速检测技术规程》(DB 37/T 2143-2012)是山东省地标,规定了畜禽舍二氧化碳快速检测采样点的设置、二氧化碳的采集、检测与结果判读,适用于畜禽舍在养殖过程中产生和排放的二氧化碳的快速检测。  团体标准  《气体中甲烷、氧化亚氮和二氧化碳浓度测定 气相色谱法》(T/LCAA 005-2021)是北京低碳农业协会团体标准,规定了气体中甲烷、氧化亚氮和二氧化碳浓度测定相关的术语和定义、测量步骤和气体浓度计算等技术要求,适用于各类气体样品中的二氧化碳、甲烷和氧化亚氮的浓度测定。  《火力发电企业二氧化碳排放在线监测技术要求》(T/CAS 454-2020)是中国标准化协会团体标准,规定了火力发电企业烟气二氧化碳排放在线监测系统(简称CDEMS)中的主要监测项目、性能指标、安装要求、数据采集处理方式、数据记录格式以及质量保证,适用于火力发电企业产生的二氧化碳排放量的在线监测。采用化石燃料(煤、天然气、石油等)为能源的工业锅炉、工业炉窑的二氧化碳排放量在线监测可参照执行。  综上,我国气象、环保、石油化工、农业等部门均提出了二氧化碳测量方法标准,涉及到的方法原理有离轴积分腔输出光谱法、非分散(不分光、非色散)红外光谱法、傅里叶红外光谱法、气相色谱法以及快速检测法等。这些方法根据原理、采用方式及特性不同,适用于各类应用场景。
  • 2022年温室气体公报解读
    2022年温室气体公报解读世界气象组织(WMO)全球大气观测计划(GAW)站网观测到全球大气中CO2浓度在2022年达到417.9ppm,显示全球大气平均CO2浓度上升到过去200万年以来的新高。位于中国青海瓦里关的欧亚大陆唯一的GAW全球本底站观测到大气CO2浓度在2022年也达到419.3ppm,是自1990年我国在瓦里关开始全球大气温室气体观测以来的最高值,表明人类活动排放的温室气体持续在大气中累积。应对气候变化、全球温室气体减排、碳中和面临的压力依旧。20世纪90年代初,中国气象局首先在瓦里关国家大气本底站开展温室气体观测,后续在北京、上甸子、浙江临安、黑龙江龙凤山、云南香格里拉、湖北金沙和新疆阿克达拉等6个区域大气本底观测站开展温室气体的联网观测,分别代表京津冀、长三角、东北林带和松嫩平原、川滇及高原边缘带、洞庭鄱阳两湖平原和天山地区的大气本底特征。左下图是1990~2022年中国瓦里关国家大气本底站和北半球中纬度美国夏威夷冒纳罗亚(MaunaLoa,MLO)站大气CO2月平均浓度长期变化,右下图是全年在轨运行的两颗卫星监测得到的2022年中国陆地区域大气CO2年均柱浓度分布图。世界气象组织(WMO)于2023年11月15日发布的《WMO温室气体公报(2022年)第19期》显示,2022年主要温室气体的全球大气年平均浓度达到新高,二氧化碳(CO2)为417.9±0.2ppm,甲烷(CH4)为1923±2ppb,氧化亚氮(N2O)为335.8±0.1ppb,分别为工业化前(1750年之前)水平的150%、264%和124%。中国气象局瓦里关国家大气本底站瓦里关站2022年的观测数据显示,大气CO2、CH4和N2O年平均浓度分别为419.3±0.2ppm、1979±0.6ppb、336.5±0.2ppb,与北半球中纬度地区同期平均浓度大体相当,但都略高于全球平均值。2022年全球大气CO2、CH4和N2O浓度相对于2021年的绝对增量分别为2.2ppm、16ppb、1.4ppb,瓦里关站分别为2.3ppm、14ppb、1.4ppb。过去10年(2013~2022年)全球大气CO2、CH4和N2O的年平均绝对增量分别为2.46ppm、10.2ppb、1.05ppb,同期瓦里关站分别为2.16ppm、9.8ppb、1.09ppb。六个区域大气本底站大气CO2和CH42022年平均浓度与2021年相比大多呈增加趋势。卫星监测显示:2022年全球和中国陆地区域年平均大气CO2浓度分别达到415.0±2.9ppm和417.2±2.9ppm。相比2021年,增长2.3ppm和2.0ppm。全球年平均大气CO2浓度增量略低于过去10年(2013~2022年)的平均绝对增量(2.5ppm),而中国陆地区域年平均大气CO2浓度增量则明显低于过去10年平均绝对增量(2.5ppm)。CO2CH4N2O全球瓦里关全球瓦里关全球瓦里关2022年的年平均浓度417.9±0.2ppm419.3±0.2ppm1923±2ppb1979±0.6ppb335.8±0.1ppb336.5±0.2ppb2022年相对于1750年的百分比150%264%124%2022年相对于2021年的绝对增量2.2ppm2.3ppm16ppb14ppb1.4ppb1.4ppb2022年相对于2021年的相对增量0.53%0.55%0.84%0.71%0.42%0.42%过去10年的年平均绝对增量2.46ppmyr-12.16ppmyr-110.2ppbyr-19.8ppbyr-11.05ppbyr-11.09ppbyr-1表格 1 2022年全球和瓦里关站3种主要长寿命温室气体(CO2、CH4、N2O)的年平均浓度、过去1年的增量和过去10年的年平均增量。图1 1990年以来瓦里关站大气CO2、CH4、N2O浓度(上图)及其增长率(下图)上图中的蓝点表示月平均值,红线为其线性拟合曲线;下图中的红点表示月增长率,灰色柱为增长率年平均二氧化碳(CO2)是影响地球辐射平衡最主要的长寿命温室气体,对过去10年和过去5年辐射强迫增幅的贡献分别约为79%和77%。工业化前(1750年之前)全球大气CO2平均浓度保持在278.3ppm左右,由于人类活动排放(化石、生物质燃料燃烧、水泥生产以及土地利用变化等)的影响,全球大气CO2浓度不断升高。2022年全球和瓦里关站CO2年平均浓度分别达417.9±0.2ppm和419.3±0.2ppm,过去10年的年平均绝对增量分别为2.46ppm和2.16ppm。2022年其他区域站大气CO2年均浓度月均值与2021年同期相比总体上呈现增加之势。甲烷(CH4)是影响地球辐射平衡第二重要的长寿命温室气体,至2022年在全部长寿命温室气体浓度升高所产生的总辐射强迫中的贡献率约为19%。约40%的甲烷来自自然源排放(如湿地和白蚁),约60%来自人为源(如反刍动物、水稻种植、化石燃料开采、垃圾填埋和生物质燃烧)。工业化前全球大气CH4年平均浓度保持在722ppb左右。全球大气CH4的年增量在20世纪80年代末约为12ppbyr-1,1999~2006年间降至近乎为零,2007年以来,大气中的CH4再次增加。2022年全球平均和瓦里关站大气CH4的年平均浓度分别达到1923±2ppb和1979±0.6ppb,过去10年的年平均绝对增量分别为10.2ppb和9.8ppb。2022年其他区域站大气CH4年均浓度月均值与2021年同期相比总体上呈现增加之势。氧化亚氮(N2O)是影响地球辐射平衡的重要的长寿命温室气体,至2022年在全部长寿命温室气体浓度升高所产生的总辐射强迫中的贡献率约为6%。N2O通过自然源(约57%)和人为源(约43%)排入大气,包括海洋、土壤、生物质燃烧、化肥使用和各类工业过程。工业化前全球大气N2O年平均浓度保持在270.1ppb左右。由于人类活动排放,全球大气的N2O浓度不断升高。中国气象局于1996年首先在瓦里关站开展N2O的观测,至2009年逐步扩展到了7个大气本底站。2022年全球和瓦里关站的N2O年平均浓度分别达335.8±0.1ppb和336.5±0.2ppb,过去10年的年平均绝对增量分别为1.05ppb和1.09ppb。世界气象组织全球大气观测计划(WMO/GAW)负责协调温室气体的全球网络化观测和分析。截至目前,该观测网包括32个全球大气本底站、400余个区域大气本底站和100余个贡献站。中国气象局4个大气本底站(青海瓦里关、北京上甸子、浙江临安和黑龙江龙凤山)已列入WMO/GAW大气本底站系列,并按照WMO/GAW的观测规范和质量标准开展观测。瓦里关站的观测资料已进入WMO世界温室气体数据中心(WDCGG),用于《WMO温室气体公报》,以及WMO、联合国环境规划署(UNEP)、政府间气候变化专门委员会(IPCC)等的多项科学评估。设备推荐Picarro G2508 气体浓度分析仪通过同时测量五种气体(N2O、CH4、CO2、NH3 和 H2O),从根本上简化了土壤通量研究,且描绘了温室气体土壤排放的全貌。土壤与大气之间的温室气体交换是全球碳循环和氮循环的关键一步。G2508 易于集成土壤检测腔室,无需组装或同步不同的气体分析仪,就可以实现所有主要温室气体的行为观测。G2508 采用精密光腔衰荡光谱(CRDS)技术,以达十亿分之一(ppb)的灵敏度测量气体浓度,其漂移可忽略不计。而且,Picarro 独特的算法可以对 N2O、CH4 和 CO2 的浓度自动进行水汽影响校正。
  • 上海拟建“7+1”温室气体监测站
    减少碳排放是控制全球气候变暖的有效手段,而衡量减排效果离不开对基础碳排放量的精确核算。从上海市生态环境局获悉,申城正在全力推进碳监测试点工作,计划建立基于包括固定站点、无人机监测、卫星遥感在内的多源温室气体监测体系,为长期跟踪评估提供数据支撑。上海是生态环境部确定的全国8个碳监测评估综合试点城市之一。上海市环境监测中心副主任伏晴艳介绍,上海碳监测试点主要包括四方面内容:开展城市大气温室气体监测、推进重点行业温室气体排放监测、构建高分辨率温室气体排放清单、探索开展碳排放核算校验体系。大气环境温室气体监测拟建设基于“固定站点+无人机监测+卫星遥感”的多源大气环境温室气体浓度监测体系,摸清本底,跟踪评估大气中CO2长期变化趋势;碳源排放监测拟开展重点行业温室气体在线监测试点,推进基于实测的主要行业碳排放状况、本地化排放因子及碳源数据库构建、CO2在线监测技术规范编制等工作;碳汇监测和碳通量评估拟构建高时空分辨率温室气体排放清单,积极推进生态碳汇监测评估,建成高分辨率的区域碳源汇反演数值模型,服务支撑城市碳排放量核算校验,评估上海市减排增汇达成碳中和的潜力。上海已初步确定7个温室气体监测站:嘉定外冈、宝山杨行、静安国媒、青浦金泽、松江车墩、浦东张江、奉贤海湾;1个温室气体背景监测站,位于崇明东滩。
  • 商机:单项达3864万!温室气体监测招标热度继续!
    2020年6月,国家《生态环境监测规划纲要(2020-2035年)》首次将温室气体监测纳入常规监测体系,二氧化碳(CO₂)、甲烷(CH₄)、氧化亚氮(N₂O)等名词再次引发国家和业界人士的关注。2021年两会,碳达峰、碳中和目标被两会写入政府文件。2022年,中国共产党第二十次全国代表大会于10月16日上午10时在北京人民大会堂开幕。“双碳”、“碳中和”、“低碳”等环境领域相关热词也被代表们频频提及。高精度温室气体监测的标准化、常态化,将为监控碳排放提供重要数据支撑。温室气体,是否会在未来成为环境监测市场的“巨大蛋糕”?10月,仪器信息网发现了这一商机,并进行了盘点:温室气体市场千万中标!这些或许只是“前菜”正如预测,千万中标信息仅仅是市场“前菜”。继10月盘点之后,温室气体监测市场热门招标中标仍然保持在快速升温状态。11月前两周,某网站上已发布以“温室气体”为关键词的招标信息十数条(不完全统计),最高达3864万!招标!碳监测项目,温室气体检测项目1.济南市碳监测评估试点项目项目概况:济南市碳监测评估试点项目招标项目的潜在投标人应在相应公告界面获取招标文件,并于2022-12-05 09:30 (北京时间)前递交投标文件。采购需求:本项目计划开展温室气体立体监测,包括建设 8 个高精度监测站点、4 个碳通量监测站点、60 个温室气体中精度监测站点、1 套温室气体走航监测系统,开展碳同位素手工监测、卫星遥感监测、无人机飞行监测、地基遥感监测,基于多源监测数据,探索“自上而下”同化反演温室气体排放的方法,为济南市碳排放的核查校验提供数据支撑。预算金额:本项目预算金额为 38648000.00 元,其中:A包 红外吸收光谱技术高精度温室气体监测设备及涡度相关法二氧化碳通量监测设备 9600000.00 元, B包 光腔衰荡光谱技术高精度温室气体监测设备 7080000.00 元, C包 闭路中精度CO2监测设备 4440000.00 元, D包 走航监测设备 8208000.00 元, E包 碳同位素(14C)实验室分析服务 3640000.00 元, F包 温室气体卫星遥感、无人机、地基监测服务 5680000.00 元。详情参见:http://www.ccgp.gov.cn/cggg/dfgg/gkzb/202211/t20221113_18999676.htm2. 邢台市2022年企业温室气体排放技术服务工作项目项目概括:邢台市2022年企业温室气体排放技术服务工作项目招标项目的潜在投标人应在通过邢台市公共资源交易系统或惠招标(www.hbidding.com)免费自行下载获取招标文件,并于2022年11月28日09点00分(北京时间)前递交投标文件。采购需求:邢台市2022年企业温室气体排放技术服务工作项目,详见招标文件预算金额:55.98万元详情参见:http://www.ccgp.gov.cn/cggg/dfgg/gkzb/202211/t20221107_18960247.htm3. 东北师范大学环境学院多通道土壤温室气体通量测量系统(进口)设备采购项目概况:东北师范大学环境学院多通道土壤温室气体通量测量系统(进口)设备采购 招标项目的潜在投标人应在采用网上获取采购文件的方式;获取招标文件,并于2022年11月30日 09点00分(北京时间)前递交投标文件。采购需求:多通道土壤温室气体通量测量系统(进口)设备采购;数量:1套(详见招标文件“第五章 项目需求”)。预算金额:205万元人民币详情参加:http://www.ccgp.gov.cn/cggg/zygg/gkzb/202211/t20221107_18959754.htm4. 复旦大学大气温室气体分析仪国际公开招标项目概况:复旦大学大气温室气体分析仪 招标项目的潜在投标人应在上海市长寿路285号恒达大厦16楼获取招标文件,并于2022年11月22日 10点00分(北京时间)前递交投标文件。采购需求:大气温室气体分析仪(简要技术:规格氧化亚氮、一氧化碳精度测定值满足世界气象组织(WMO)的性能要求,氧化亚氮精度小于0.1ppb,一氧化碳精度小于2ppb)预算金额:134万元人民币详情参见:http://www.ccgp.gov.cn/cggg/dfgg/gkzb/202210/t20221031_18916326.htm中标!温室气体检测项目此外,中标信息正在陆续公布。据不完全统计,2022.11.1-2022.11.15,该市场中标总金额已达1900万,超过10月全月中标金额!项目金额中标单位标的四川省生态环境厅温室气体监测站1128万元四川发展环境科学技术研究院有限公司环境空气ODS及含氟温室气体监测系统,高精度温室气体监测系统成都市龙泉驿生态环境局47.8万元成都育阳碳环境科技有限公司2021年度温室气体清单和成都经开区(龙泉驿区)减污降碳协同增效实施方案编制延安市生态环境局黄龙分局29.6万元陕西超腾生态环境咨询股份有限公司环境治理服务江西省生态气象中心、抚州市气象局、新余市气象局、上饶市气象局740.8万元北京华云东方探测技术有限公司温室气体(CO2/CH4/H2O)浓度监测系统等
  • 减少温室气体污染,做地球的保卫者
    温室气体主要来源于化石燃料的燃烧,比如煤、石油和天然气的燃烧。这些化石燃料燃烧会释放大量的二氧化碳。另外,森林砍伐、土地利用方式变化、农田耕作、畜牧业等也是温室气体的主要来源。在工业化进程中,人类大量使用化石燃料,导致了温室气体的排放量增加。虽然高耗能产业规模在缩减,产品需求在减少,化石能源的消费和碳排放将经历一个先升后降的自然达峰过程,但是目前化石燃料仍然是全球范围内主要的能源来源,因此温室气体的排放量仍然不容忽视。此外,土地利用方式和农业活动也是温室气体的来源之一。森林砍伐、土地利用方式变化以及农田耕作等活动会导致植被破坏和土壤侵蚀,进而影响碳循环和温室气体排放。畜牧业也是温室气体的主要来源之一,因为动物的呼吸作用和肠道发酵会产生大量的甲烷和二氧化碳等温室气体。温室气体的监测主要是对环境空气中产生温室效应的主要气体进行监测的过程。这些气体包括甲烷(CH4)、二氧化碳(CO2)和氧化亚氮(N2O)等。测试方法主要有非分散红外光度法(NDIR)、气相色谱法(GC) 、可调谐半导体激光吸收光谱法(TDLAS)、光腔衰荡法(CRDS)、激光差分中红外法(IRIS)和傅里叶变换红外光谱法(FTIR)等。智易时代的HGA-1008型CO2气体分析仪是一款适用于国内环保、温室气体监测、碳排放管控等在线气体的分析仪表,主要由红外传感器(光源、气体吸收池、探测器)、数据采集单元、信号接口板及控制电路、电源等部分组成。 本产品主要基于红外相关滤波技术(GFC)和非分散性红外技术(NDIR)实现二氧化碳(CO2)浓度的测量,具有精度高,稳定性好,响应时间快等特点,可广泛应用于电力、化工、水泥、钢铁、冶炼等场景。ZWIN-GHG06系列温室气体在线监测仪是集成CO、CO2、CH4、N2O、风速、风向、温度、湿度、大气压等环境监测因素,数据采集传输、视频监控管理及信息技术平台为一体的模块化环境空气温室气体在线监测设备。设备采用泵吸式采样方式,高度集成电化学传感器与非分散红外传感器模组及气象参数传感器,模块化的搭配突出高性价比,为环境空气温室气体在线监测提供数据支撑及溯源分析。
  • 安光所团队在温室气体星载探测方面取得进展
    近期,中科院合肥研究院安光所光学遥感研究中心熊伟研究员团队为满足温室气体探测的需求,针对优化设计的大气主要温室气体监测仪(GMI-II),研发了新型干涉数据相位校正算法,相关成果发表在国际知名期刊 Remote Sensing和Optics Express上。   目前,利用卫星遥感对全球温室气体排放清单校核是实现国家双碳战略的重要手段之一,其中温室气体含量及其浓度的微量变化对碳监测载荷探测精度提出了极高的要求。针对高灵敏、高稳定、高时效等诸多要求,超分辨光谱技术成为实现温室气体遥感探测的优势途径。熊伟团队在国际上率先提出利用空间外差超分辨光谱技术进行大气温室气体吸收光谱的定量监测,利用该技术研制的大气主要温室气体监测仪(GMI-II)成功应用于高分五号(02)星。   监测仪的观测数据存在复杂相位畸变,团队从畸变机理出发,利用单色光干涉数据,首先提取出仪器固有的空间相位畸变进行校正,再对仪器中频率相关的相位畸变进行校正,实现目标光谱的高精度复原。利用监测仪的在轨观测数据进行了算法验证,相比于传统的相位校正算法,新型相位校正算法的校正光谱RMS降低了81.37%。   相关研究得到了国家重点研发计划、国家自然科学基金和中科院重点部署等项目资助。GMI-II 探测原理新型相位校正方法与传统Forman法校正光谱对比:(a)CO2-1通道;(b)CH4通道;(c)CO2-2通道GMI-II反演全球XCO2和XCH4柱浓度数据(2021.11~2021.12)
  • 科学岛团队在温室气体星载探测方面取得进展
    近期,中科院合肥物质院安光所光学遥感研究中心熊伟研究员团队为满足温室气体探测的需求,针对优化设计的大气主要温室气体监测仪(GMI-II),研发了新型干涉数据相位校正算法,相关成果发表在国际知名期刊 Remote Sensing和Optics Express上。目前,利用卫星遥感对全球温室气体排放清单校核是实现国家双碳战略的重要手段之一,其中温室气体含量及其浓度的微量变化对碳监测载荷探测精度提出了极高的要求。针对高灵敏、高稳定、高时效等诸多要求,超分辨光谱技术成为实现温室气体遥感探测的优势途径。熊伟团队在国际上率先提出利用空间外差超分辨光谱技术进行大气温室气体吸收光谱的定量监测,利用该技术研制的大气主要温室气体监测仪(GMI-II)成功应用于高分五号(02)星。针对监测仪的观测数据存在复杂相位畸变的情况,团队从畸变机理出发,利用单色光干涉数据,首先提取出仪器固有的空间相位畸变进行校正,再对仪器中频率相关的相位畸变进行校正,实现目标光谱的高精度复原。利用监测仪的在轨观测数据进行了算法验证,相比于传统的相位校正算法,新型相位校正算法的校正光谱RMS降低了81.37%。相关研究得到了国家重点研发计划、国家自然科学基金和中科院重点部署等项目资助。GMI-II 探测原理 新型相位校正方法与传统Forman法校正光谱对比:(a)CO2-1通道;(b)CH4通道;(c)CO2-2通道GMI-II反演全球XCO2和XCH4柱浓度数据(2021.11~2021.12)
  • 9位嘉宾干货分享∣我国温室气体监测工作进展如何?
    作为当前环境的热门话题,温室气体一直吸引大家的眼球,从相关试点工作的布局和开展,到各地温室气体监测站的建设、相关的标准体系建设及仪器配备(招中标)等都在逐步推进。按照2021年9月生态环境部发布的《碳监测评估试点工作方案》,碳监测评估试点工作将聚焦区域、城市和重点行业三个层面,开展碳监测评估试点。区域层面,基于现有国家环境空气质量监测网背景站及地基遥感站,结合卫星遥感手段,进一步完善监测网络,开展区域大气温室气体浓度天地一体监测、典型区域土地利用年度变化监测和生态系统固碳监测;城市层面,综合考虑城市的能源结构、产业结构、城市化水平、人口规模、区域分布等因素,选取唐山、太原、上海、杭州、盘锦、南通等16个城市,分基础试点、综合试点和海洋试点三类,开展大气温室气体及海洋碳汇监测试点;重点行业层面,选择火电、钢铁、石油天然气开采、煤炭开采和废弃物处理五类重点行业,国家能源集团、中国宝武、中国石油、中国石化、光大环境等11个集团公司开展温室气体试点监测。2023年5月份,生态环境部召开例行新闻发布会上获悉,通过初步组建网络,从无到有建设碳监测网络,截至发布会我国已经实现重点行业、城市、区域三个试点层面全覆盖, 5个试点行业共建成93台在线监测设备;建成63个高精度、95个中精度城市监测站点,有序实施国家空气背景站点升级改造。生态环境部生态环境监测司副司长蒋火华就碳监测问题表示,生态环境部将启动碳监测评估第二阶段试点工作,重点是做好三方面工作:一是扩大行业试点范围。稳步扩大火电、钢铁等行业试点,逐步增加参试企业,提升试点工作代表性。二是深化技术体系构建。进一步完善碳监测技术指南和标准规范,为开展碳排放监测、碳通量监测、环境浓度监测打下更扎实基础。三是强化监测法精准支撑。加快突破流量监测等碳监测关键技术,提升利用监测数据校核核算数据的科学性。2023年9月26日,生态环境部召开9月例行新闻发布会。发布会上,生态环境部环境影响评价与排放管理司司长刘志全就温室气体排放环境影响评价试点等相关问题回答记者提问。据介绍,2021年以来,组织浙江、重庆等9个省(区、市)聚焦钢铁、建材、有色、石化化工等6个重点行业共548个建设项目开展温室气体排放环境影响评价试点,并取得了初步成果;指导试点地区制定建设项目温室气体排放环评技术指南10项,包括综合性指南4项,钢铁、煤化工等重点行业技术指南6项。同时在试点地区结合行业特色,提出重点行业温室气体排放量核算参数和评价基准。据悉,下一步,将按照党中央、国务院碳达峰碳中和工作部署,深化温室气体排放环评试点,落实降碳减污扩绿增长协同推进要求,选择重点地区、重点行业和重点领域逐步扩大试点的范围和类型,探索将甲烷等非二氧化碳温室气体管控纳入试点,加强关键技术研究,整合各地试点研究成果,完善相关政策和技术体系,推动加强法治保障,夯实温室气体排放环评基础。为了进一步探索当前我国大气监测技术与应用研究进展,仪器信息网将于2023年10月11日-13日组织召开“第四届大气监测技术及应用”网络会议,其中就“温室气体”话题专门开始了为期1天的主题论坛,邀请了中国环境监测总站、中国科学院大气物理研究所、中国气象科学研究、国家计量院 、上海市减污降碳管理运行技术中心、上海市环境监测中心、山东省济南生态环境监测中心等多个单位的嘉宾,就碳监测网络建设、温室气体监测试点工作进展、检测技术、计量体系等多方面的话题进行分享,点击报名》》》 会议报名链接:https://www.instrument.com.cn/webinar/meetings/dqjc2023/
  • “温室气体排放监测关键技术与设备” 十二五项目通过验收
    p   近日,受科技部社会发展科技司委托,中国21世纪议程管理中心在北京组织召开“十二五”国家科技支撑计划 “温室气体排放监测关键技术与设备”项目验收会,项目组织单位安徽省科技厅的同志参加了会议。验收专家组认真听取了项目汇报,详细审查了验收材料,对项目完成情况和经费使用情况进行了评价,一致同意项目通过验收。 /p p style=" text-align: center " img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/05f79d14-bf14-4bba-b611-42f234bf680b.jpg" / /p p   “温室气体排放监测关键技术与设备”项目旨在针对我国温室气体排放监测关键技术设备与技术规范的需求,研发多目标、多组分温室气体排放的监测仪器设备,在典型企业进行应用示范,并制定温室气体排放监测的有关技术规范。 /p p   项目实施以来,结合我国温室气体排放监测仪器设备的发展现状,通过产学研联盟的优势互补和技术高效转移模式,研制出了温室气体点源排放傅立叶变换抽取式监测设备、温室气体便携式傅立叶红外光谱检测设备、温室气体面源排放开放光路傅立叶红外光谱连续监测设备、多参数温室气体浓度场监测可调谐二极管激光吸收光谱(TDLAS)设备、工业燃煤CO2排放总量自动在线监测仪设备、非色散红外(NDIR)烟气CO2气体浓度检测技术与装备、烟气CO2排放计量在线监测设备等十余种大气和烟气温室气体监测装备。项目在马钢集团、山东碳素、大唐洛河电厂、华容电厂等企业开展了应用示范,并取得了良好的示范效果。 /p p   项目建立了科研院所、产业和行业用户之间长期的战略合作关系,实现了优势互补,形成了具有竞争力的温室气体监测仪器产业链。项目的实施为我国大气温室气体排放监管和碳排放交易提供了技术支撑,具有明显的社会效益和经济效益。 /p p & nbsp /p
  • 温室气体监测必看!几类关键原理方法及技术要求!
    众所周知,温室气体监测技术方法主要包括非色散红外法、气相色谱法、光腔衰荡光谱法、离轴腔积分系统法等。自《“十四五”生态环境监测规划》发布以来,各地有关单位纷纷响应,在补齐碳监测技术短板方面重点发力。尤其2022年9-11月,与温室气体监测相关的文件,频频出台,不断加强在温室气体及其同位素监测分析技术、排放源和环境空气温室气体自动监测设备技术要求及检测方法、温室气体监测质量控制和量值传递/溯源体系等方面的投入。与此同时,与温室气体监测相关的技术、标准等方面的问题也应运而生。温室气体监测方面的技术要求,官方有哪些发布、尚待发布?工业企业、实验室、监测部门在实际应用场景中,如何选择适合的温室气体监测手段?不同监测手段的原理差异性如何?如何攻关新技术研究的核心难点?碳同位素监测如何持续助力精准溯源?碳监测量值溯源体系是否建立?……2022年3月17日,仪器信息网3i讲堂独家策划“第一届碳排放检测与监测”会议圆满结束,反响热烈,年初的直播间,我们共同约定在2022年末,将再次为大家呈现关于“温室气体监测”的最新技术成果和进展。带着这份承诺,3i讲堂将于11月30日举办“第一届温室气体监测”网络大会,与8位重量嘉宾,在直播间共同寻找答案:(福利:点击此处,快速免费报名,优先审核)嘉宾一:杨勇 上海市环境监测中心 高级工程师报告:环境空气高精度二氧化碳、甲烷连续自动监测技术及应用作为《碳监测评估试点工作方案》(环办监测函〔2021〕435号)入选试点城市,上海环境监测中心在温室气体在线监测方面的进展和经验有哪些?且听杨老师婉婉道来。嘉宾二:余贺 德国元素 产品专家报告:温室气体的同位素分析传统的浓度变化监测仅能够反映气体累积的整体过程,无法确定变化的原因,温室气体的同位素分析有助于研究这些气体的源和汇,帮助我们理解温室气体的来源和释放规律。嘉宾三:卢波 岛津企业管理(中国)有限公司 应用工程师报告:温室气体气相色谱快速分析主要介绍实验室离线分析温室气体所用到的仪器设备以及岛津的应用解决方案。一次进样4分钟内完成温室气体CO2,N2O,CH4的分析,且重复性优于0.3%,灵敏度达ppb级;可根据需要扩展分析SF6,C2H6,C2H4,C2H2等。嘉宾四:张迪生 江苏省南京环境监测中心 副主任/研究员报告:固定污染源cems现场检查要点及案例分析产生温室气体的因素复杂多样,且排放主体难以确定。与过去更注重末端降碳减排相比,如今越来越多的城市开始将功课前移,对温室气体的“精准溯源”成为治理的第一步,实现精细化排查。嘉宾五:徐驰 中国环境监测总站 工程师报告:环境空气二氧化碳、甲烷高精度监测量值溯源技术要求三项技术要求主要起草人,权威解读!嘉宾六:张智杰 赛默飞世尔科技(中国)有限公司 应用工程师报告:基于稀释法的排放源CO2监测系统主要 介绍赛默飞基于稀释抽取法排放源CO2方案组成结构及系统特点。嘉宾七:李熠豪 上海北分科技股份有限公司 副总经理报告:高精度红外激光技术在大气温室气体的应用嘉宾八:朱卫东 中国仪器仪表学会分析仪器分会 在线分析仪器专家组委员 教授级高工报告:腔衰荡吸收光谱与离轴积分腔输出光谱检测技术及其在温室气体监测的应用简要介绍温室气体监测的主要应用领域及腔衰荡吸收光谱(CRDS)与离轴积分腔输出光谱(OA-ICOS)的技术进展及其应用;重点介绍了CRDS及OA-ICOS的检测技术、原理结构、系统装置。及国内外产品的CRDS及ICOS高精度温室气体分析仪;并介绍了在城市温室气体监测站及研究院所的应用。(点击图片,免费报名,优先审核)
  • 中国气象局规范高精度温室气体二氧化碳浓度自动观测系统建设
    中国气象局日前印发《高精度温室气体二氧化碳浓度自动观测系统建设指南》(以下简称《指南》),以期充分发挥气象资源优势,快速构建覆盖我国主要城市和区域的温室气体浓度高精度观测网,规范全国气象部门开展高精度温室气体二氧化碳浓度及通量自动观测系统的建设与运行。《指南》明确了现阶段高精度温室气体浓度与通量自动观测系统的基本观测要求,强调在布局时各地要统筹集约建设,确保测量准确度、精度等满足国家标准和技术指标要求,利用气象部门现有观测站网与资源优势,加强沟通协调、多元投入,快速构建覆盖我国主要城市和区域的温室气体浓度高精度观测网。《指南》建议在我国省会城市和重点城市,至少建设一个温室气体观测站;在区域气候代表性较好的高山气象站点,开展温室气体在线观测;在国家气候观象台、中国气象局野外科学试验基地中,选择有一定海拔高度、代表不同地球系统圈层下垫面特征的站点,开展温室气体浓度高精度观测和通量监测,以获得区分人为排放和自然碳汇作用的碳源、碳汇反演基础数据;宜选择部分具有较大区域代表性的站点,开展碳同位素观测,以获得区分陆地和海洋生态系统的基础数据。“开展大气成分观测,不仅是应对气候变化的需要,也是法律赋予气象部门的职责和义务。其中,大气温室气体浓度的观测是气候与气候变化监测中的一项重要内容。”全国气候与气候变化标准化技术委员会大气成分观测预报预警服务分技术委员会秘书长张晓春介绍。面对国家生态文明建设的新形势新任务新要求,中国气象局于2021年组建了温室气体及碳中和监测评估中心,并在全国数十个城市新建、改建温室气体观测站。《指南》作为气象部门开展温室气体观测的纲领性指导文件,不仅对未来站网建设做出系统性规划,也对已有站点的完善与优化给出具体指导。未来,气象部门将进一步加强温室气体观测业务顶层设计、科学规划,持续推进温室气体观测能力建设。作为国内最早开展大气温室气体二氧化碳本底浓度业务观测的部门,中国气象局从20世纪90年代初,率先在瓦里关大气本底站开展大气温室气体二氧化碳本底浓度的长期业务化观测,积累了长序列的监测结果并获得国际认可。如今,在全国建立了以7个大气本底站为核心的全国温室气体观测网,以及较为完善、与国际接轨的温室气体观测标准规范、运行保障、溯源标校等业务体系,主导编制、颁布的与温室气体观测相关的7项国家标准和7项气象行业标准,成为国内其他行业、部门和单位开展温室气体观测设备研发、组网监测等工作的重要参考和依据。
  • 亚洲清洁空气中心:美国加州的温室气体监测方法与经验
    美国加州长期面临气候变化的严峻挑战,近年来多次经历林火、干旱、洪水等一系列自然灾害,使得应对气候变化成为加州亟须解决的问题。2006年,加州政府通过第32号议会法案(Assembly Bill 32),明确提出“到2020年,加州将其温室气体排放量减少到1990年水平”的目标,并要求加州空气资源委员会(California Air Resources Board, CARB)建立世界上第一个全面的监管和市场机制计划,以实现可量化的、成本有效的温室气体减排。此后,加州政府陆续通过多项法案及行政命令,对温室气体减排目标的时间进程及行业减排要求做出明确规定。2000—2020年间,加州的GDP增长了50%以上,但温室气体排放总量、人均温室气体排放量与单位GDP温室气体排放量分别下降约20%、30%和50%,实现了GDP和温室气体排放的脱钩。加州有效的温室气体排放管控,有赖于完善的温室气体监测体系,其在体系建设与应用方面的做法和经验,可以为我国相关工作的开展提供启发与借鉴。加州的温室气体监测方法介绍加州建立了温室气体排放的“分层观测系统”,在不同尺度上对温室气体进行测量,以确定排放源。该系统涉及多种温室气体监测方法,每种都具有其优势和局限性,适用于不同的监测目的。1.固定站点监测网络加州的温室气体监测网络于2010年开始运行,包括7个由CARB运维的固定监测站点,以及一些与其他研究伙伴合作的监测站点。CARB为这些站点配备了先进的分析设备,包括Picarro、LGR温室气体分析仪等,对二氧化碳、甲烷、水汽、一氧化二氮、一氧化碳等温室气体进行测量。位于威尔逊山(Mt. Wilson)的山顶观测站可以提供对黑碳,含氟气体以及挥发性有机物(VOC)的测量。此外,CARB 还部署了能够测量二氧化碳和甲烷同位素特征的分析仪,以进一步细化排放清单。这类固定监测站点及网络可提供针对固定地理位置的连续测量值,但一般不能针对具体行业或排放源进行测量。2.机载遥感机载遥感可用于测量局部的温室气体排放,识别单个温室气体羽流(plume)。机载遥感在加州已经被用于对设施级别的甲烷排放进行监测,使用配备甲烷监测仪的小型飞机在不同海拔高度以及不同风向围绕排放设施进行飞行测量,对该设施每小时的甲烷排放量进行量化。此外,机载遥感也被用于对相关行业的温室气体泄漏检查。但机载遥感通常只能提供瞬时测量,无法提供时间上的连续数据。目前,该技术在加州的农业、能源、废物管理等部门广泛应用。3.通量塔对于范围较大的分散性面源,可使用通量塔对场地局部的温室气体排放进行测量。通量塔通过测量气体的垂直浓度梯度来测量排放通量,可以针对较大的面源区域进行连续测量,并提供通量短期变化的详细信息。这一监测方式在加州常被用于监测乳制品厂、垃圾填埋场、稻田等重要温室气体排放区域。4.卫星遥感卫星遥感技术可以提供在空间、时间上连续、高频的采样,这对监测空间上分散以及时间上存在间歇性的排放源具有十分重要的意义。但是,卫星遥感数据在空间上的分辨率较为粗糙,需要结合相关设施位置、排放清单、地面温室气体监测网络等对具体排放情况进行识别。温室气体监测在加州的应用案例温室气体监测在加州主要服务于两类目标,一是服务于排放清单的编制工作,帮助相关部门全面了解温室气体排放情况;二是服务于气候变化减缓措施,通过识别和修复温室气体泄漏点实现温室气体减排。优化排放清单加州在洛杉矶威尔逊山顶设立了一个温室气体超级监测站(Mt. Wilson Observatory Station)。洛杉矶位于加利福尼亚州西南部的盆地,西南侧紧邻太平洋,其余三侧被较低山脉包围。威尔逊山位于洛杉矶北侧,山顶海拔约1.7千米。该地区的盛行风向由海岸向东北方向吹向威尔逊山底部。在气温上升的白天,对流层边界层上升使来自洛杉矶的温室气体得到充分混合并达到山顶观测站;在气温下降的夜晚,混合的空气被限制在降低的边界层中。基于这一边界层高度的昼夜变化,白天和夜晚在威尔逊山顶观测站采集到的样本可以分别代表洛杉矶本地的温室气体排放水平以及全球的背景排放水平,从而可以对洛杉矶区域的温室气体排放进行估算。估算结果将与通过模型方法建立的温室气体排放清单进行对比,并对排放模型进行修正和更新,从而帮助优化排放清单。识别并修复温室气体泄漏点2010年后,甲烷羽流测绘技术取得重要进步。该技术可以对单个甲烷羽流进行实时测量,适合用于寻找大型、局部的甲烷排放源。CARB对这项技术进行了深入探索,在2016—2018年进行了第一轮大规模飞行监测研究,对加州的大型甲烷排放源进行了调研,总计调查了27.2万家设施,在所有甲烷排放的重点行业均发现了甲烷羽流。在2020年和2021年,CARB进行了第二、三轮飞行研究,旨在测试这些监测数据是否能够支持甲烷减排行动。2020年,CARB在业界招募自愿参与的设施,通过机载遥感发现甲烷羽流时,将羽流图像传送至设施管理人员,并要求操作员实地调查寻找造成羽流的原因。2021年,CARB向业界所有相关设施通报了飞行计划,在事后分享了拍摄的羽流图像并要求对设施进行整改。在这两轮飞行研究中,约80%的设施找到了甲烷泄漏点。利用小型飞机进行的飞行监测仅适用于对甲烷缓解策略的研究和试点试验,长期持续的监测还需要依赖卫星遥感技术。为此,加州已安排1亿美元购买相关卫星数据,并计划在2023年底至2024年初发射两枚卫星。此前,加州在针对石油、天然气以及垃圾填埋场的甲烷控制法规中,明确提出每季度进行泄漏检测和修复的要求。利用遥感数据指导甲烷泄漏点识别并修复的行动,可以补充相关行业进行季度泄漏检查的工作。2023 年 6 月,CARB 工作人员提出了对加州石油和天然气甲烷法规的拟修改意见,其中包括要求设施在获得 CARB通过遥感监测发现的甲烷羽流相关信息后,对泄漏点进行检查和修复。同时,加州也在考虑对其他行业采取类似的监管行动。附:在10月11-13日,仪器信息网将举办“第四届大气监测技术及应用网络会议”,其中,在11日设置了大气温室气体监测专场,邀请多位来自中国环境监测总站、中国科学院大气物理研究所、国家计量院、上海市低碳中心等行业内资深专家进行碳试点监测、温室气体监测量值溯源、中精度二氧化碳监测反演等报告分享!免费报名点击:https://www.instrument.com.cn/webinar/meetings/dqjc2023/
  • 《2020年中国温室气体公报》公布 全球二氧化碳浓度继续升高
    9月29日,中国气象局发布《2020年中国温室气体公报(总第10期)》。当日,中国气象局科技与气候变化司副司长严明良在中国气象局10月新闻发布会上介绍,2020年我国6个区域本底站的二氧化碳和甲烷浓度与2019年相比总体呈现增加趋势。中国气象局科技与气候变化司副司长严明良(图片来源:中国气象局)严明良表示,《2020年中国温室气体公报(总第10期)》与联合国世界气象组织(WMO)发布的《2020年WMO温室气体公报》相呼应,报告了中国2020年主要温室气体监测数据情况。严明良介绍,目前中国气象局有7个国家大气本底站开展温室气体业务观测,分别为青海瓦里关、北京上甸子、浙江临安、黑龙江龙凤山、湖北金沙、云南香格里拉和新疆阿克达拉。瓦里关国家大气本底站是世界气象组织全球32个大气本底站之一。2020年瓦里关国家大气本底站观测的二氧化碳、甲烷和氧化亚氮的浓度分别为414.3±0.2 ppm、1944±0.7 ppb、333.8±0.1 ppb,与北半球中纬度地区平均浓度大体相当,二氧化碳浓度较2019年增幅约2.5ppm,与全球增幅持平。2020年我国6个区域本底站的二氧化碳和甲烷浓度与2019年相比总体呈现增加趋势。据悉,中国气象局在世界气象组织框架下,协调中国区域的温室气体及相关微量成分高精度观测,所用数据处理方法、标准、流程均与国际接轨,自上世纪九十年代开始温室气体本底浓度观测。从2016年起,我国发射3颗二氧化碳在轨卫星,2018年开始开展机载温室气体在线观测和平流层温室气体原位观测试验。2021年,中国气象局组建了包含44个国家级气象观测台站和16个省级气象观测站在内的国家温室气体观测网。截至目前,已经初步形成天、空、地一体化的温室气体立体观测能力。温室气体主要包括《京都议定书》限排的二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)、六氟化硫(SF6)、氢氟碳化物(HFCs)、全氟化碳(PFCs)、三氟化氮(NF3),以及《蒙特利尔议定书》限排的消耗臭氧层物质。世界气象组织/全球大气监测网(WMO/GAW)负责协调大气温室气体及相关微量成分的系统观测和分析。大气温室气体浓度联网监测分析是历次《联合国政府间气候变化专门委员会(IPCC)科学评估报告》《联合国气候变化框架公约(UNFCCC)》、WMO和联合国环境规划署(UNEP)《臭氧损耗科学评估报告》等的数据来源和科学基础。2021年10月25日,WMO发布《2020年全球温室气体公报》。公报采用的大气温室气体浓度数据来自WMO/GAW、全球大气气体先进试验(AGAGE)等。公报称,全球大气主要温室气体浓度继续突破有仪器观测以来的历史记录,二氧化碳、甲烷和氧化亚氮的浓度分别达到413.2±0.2 ppm、1889±2 ppb、333.2±0.1 ppb,2020年大气二氧化碳浓度增幅约2.5 ppm,高于过去十年平均增幅(2.4 ppm)。2020年全球大气甲烷和氧化亚氮浓度也达到了新的高度,增幅分别达11 ppb和1.2 ppb。根据美国国家海洋大气局(NOAA)的温室气体指数分析结果,2020年由大气长寿命温室气体引起的辐射强迫相比1990年上升了约47%,而其中二氧化碳的贡献超过80%。会上,严明良还表示,未来,中国气象局将进一步提升观测能力,形成覆盖我国16个气候关键区并辐射全球主要纬度带的全要素温室气体本底观测骨干网,增强全球大气二氧化碳和甲烷宽覆盖、高精度、高时空分辨率的业务化观测能力,基于我国自主卫星,联合多种星载探测手段,提高全球温室气体监测水平,为顺利实现我国碳达峰目标和碳中和愿景目标提供科学监测支撑。中国气象局气象探测中心副主任张雪芬在会上透露,“十四五”期间,中国气象局计划在全国16个气候关键观测区增补9个大气本底站,现正在开展前期的选址等相关工作。中国气象局气象探测中心副主任张雪芬(图片来源:中国气象局)同时,“十四五”期间,中国气象局还计划在我国主要的地、市级以上城市以及区域代表性好的地区,开展以二氧化碳为主的温室气体浓度的高精度在线观测和通量观测,并且有针对性地推动开展甲烷等非二氧化碳等温室气体浓度的观测,以满足我国碳中和监测评估系统的评估的需求。此外,中国气象局还将进一步加强国家级、省级在温室气体观测计量、标校溯源等方面的能力,进一步发挥中国气象局在我国温室气体监测方面的优势。
  • 全球大气尘埃的增加掩盖了温室气体的变暖效应
    最新研究发现,全球大气尘埃——来自沙漠沙尘暴的微观空气传播颗粒等从沙漠等土地上产生的大气尘埃,对地球具有轻微的整体冷却效应,掩盖了温室气体引起的全部变暖。图源:NASA Scientific Visualization Studio该研究由加州大学洛杉矶分校发表于《自然综述-地球与环境》(Nature Reviews Earth and Environment)。研究发现,自19世纪中期以来,沙漠沙尘的数量增长了大约55%,这增加了沙尘的冷却效果。研究首次证明了大气沙漠尘埃的整体冷却效果。大气尘埃的一些影响使地球变暖,但由于尘埃的其他影响实际上抵消了变暖——例如通过将阳光散射回太空,驱散使地球变暖的高空云层,该研究计算出尘埃的整体影响是冷却的。“如果尘埃水平下降,甚至只是停止增长,变暖可能会加剧。” 研究的主要作者,加州大学洛杉矶分校大气物理学家Jasper Kok说。“我们发现沙漠尘埃增加了,并且很可能略微抵消了温室变暖,这是当前气候模型中缺失的。增加的灰尘并没有导致大量的冷却,气候模型仍然接近。但我们的研究结果表明,仅温室气体就可能导致比模型目前预测的更多的气候变暖。”Jasper Kok将这一发现比作在高速驾驶汽车时发现车辆的紧急制动器已部分接合。正如完全松开刹车可以使汽车行驶得更快一样,停止灰尘水平的增加可能会略微加速全球变暖。虽然自前工业化时代以来,大气沙漠尘埃水平总体上有所增加,但趋势并不稳定——一路上升和下降。由于有太多的自然和人为影响的变量会导致尘埃水平增加或减少,科学家无法准确预测未来几十年大气尘埃的数量将如何变化。“燃烧化石燃料产生的一些微小的空气传播颗粒也暂时有助于冷却。但是,尽管科学家们花了几十年的时间来确定这些人造气溶胶的后果,但到目前为止,沙漠尘埃的确切变暖或冷却效果仍然不清楚。研究人员面临的挑战是确定尘埃已知的变暖和变冷效应的累积效应。”“除了大气与阳光和云层的相互作用外,当尘埃落回地球时,它会通过沉淀在雪和冰上而变暗,使它们吸收更多的热量。尘埃还通过沉积铁和磷等营养物质来冷却地球。例如,当这些营养物质降落在海洋中时,它们支持浮游植物的生长,这些浮游植物从大气中吸收二氧化碳,从而引起净冷却效应。”Jasper Kok说。自1850年以来,人类活动使地球变暖了1.2摄氏度,或2.2华氏度。如果没有尘埃的增加,气候变化可能会使地球变暖多出约0.1华氏度。“随着地球接近科学家认为特别危险的2.7华氏度变暖,十分之一度都很重要。”“我们希望气候预测尽可能准确,而这种灰尘的增加可能会掩盖高达8%的温室变暖。通过增加沙漠尘埃,占大气颗粒物质量的一半以上,我们可以提高气候模型预测的准确性。这非常重要,因为更好的预测可以为如何缓解或适应气候变化的更好决策提供信息。”研究人员使用卫星和地面测量来量化空气中微观矿物颗粒的当前数量。他们确定全球有2600万吨这样的颗粒——相当于漂浮在天空中的约500万头非洲大象的重量。接下来,他们查看了地质记录,从冰芯,海洋沉积物记录和泥炭沼泽样本中收集数据,这些样本都显示了从天而降的大气尘埃层。来自世界各地的样本显示沙漠尘埃稳步增加。由于土壤干燥、风速提高和人类土地利用的变化,例如,将水用于灌溉,并将边缘沙漠地区变成牧场和农业用地,灰尘可能会增加。Jasper Kok说:“虽然由于这些类型的土地利用变化而导致的尘埃水平增加主要发生在世界上最大的沙漠的边界上,如非洲的撒哈拉沙漠和萨赫勒地区以及亚洲的戈壁沙漠,但类似的变化也发生在加利福尼亚州的欧文斯湖,现在也发生在加利福尼亚州的索尔顿海。”他强调:“虽然大气尘埃的增加在一定程度上掩盖了温室气体使气候变暖的全部潜力,但研究结果并未表明气候模型是错误的。气候模型在预测未来的气候变化方面非常有用,这一发现可以进一步提高其实用性。”
  • 温室气体监测技术现状及进展如何?哪些监测要点值得关注?
    煤、石油、天然气等化石燃料的燃烧,工农业生产、机动车尾气排放等是温室气体的主要产生来源。常见的温室气体主要有二氧化碳(CO2)、臭氧(O3)、氧化亚氮(N2O)、甲烷(CH4)、氢氟碳化合物(HFCs)、全氟碳化合物(PFCs)及六氟化硫(SF6)等,其中,大气中CO2、CH4和N2O三种组分是当前温室气体监测的主要对象,它们的特征吸收光谱主要位于近红外和中红外光波段。研究和发展适用于不同空间、时间尺度的温室气体精确、快速、动态检测技术是环境气候研究的基础和前提。目前,国内外温室气体监测技术主要包括:非分散红外光谱技术(NDIR)、傅立叶变换光谱技术(FTIR)、差分光学吸收光谱技术(DOAS)、差分吸收激光雷达技术(DIAL)、可调谐半导体激光吸收光谱技术(TDLAS)、离轴积分腔输出光谱技术(OA-ICOS)、光腔衰荡光谱技术(CRDS)、激光外差光谱技术(LHS)、空间外差光谱技术(SHS)等。针对不同的应用场景,综合每个技术原理的测量优势,可以实现多空间尺度、多时间尺度、多气体组分的连续自动监测,满足生态、环境、气候研究对温室气体排放监测的多样需求。减污降碳一直是我国的重点工作。2021年9月,生态环境部印发《碳监测评估试点工作方案》,选取16个城市开展大气温室气体监测试点,探索推动建立碳监测评估技术方法体系,发挥示范效应。2022年8月,科技部、发改委、工信部、生态环境部等9部门联合印发《科技支撑碳达峰碳中和实施方案(2022—2030年)》,要提升单点碳排放监测和大气本底站监测能力,充分发挥碳卫星优势,构建空天地立体监测网络,开展动态实时全覆盖的二氧化碳排放智能监测和排放量反演。2023年7月,习近平在2023年全国生态环境保护大会上强调,要积极稳妥推进碳达峰碳中和,落实好碳达峰碳中和“1+N”政策体系等。随着国家“碳达峰”和“碳中和”战略的实施,温室气体的准确监测与评估将成为降碳目标的根本前提。据了解,已经进行试点的13个城市有一些共同的监测项目要求:高精度CO2、高精度CH4、高精度CO、高精度气象参数(风向和风速、温度、湿度、气压、降水量)等,而且要求至少有1个点位监测碳同位素(14CO2)。对于的固定源排放来讲,无论是CO2还是CH4的监测,国产仪器设备成熟度相对较高,而对于环境空气来讲,监测方式和技术难度较大。为了更有效控制温室气体的排放,建立碳核算体系,精确监测大气中的温室气体实时含量以及污染源、移动源温室气体排放量,国产仪器需要加大研发力度,根据应用测试情况来进行综合评估,用数据来说话。在10月11-13日,仪器信息网将举办“第四届大气监测技术及应用网络会议”,其中,在11日设置了大气温室气体监测专场,邀请多位来自中国环境监测总站、中国科学院大气物理研究所、国家计量院、上海市低碳中心等行业内资深专家进行碳试点监测、温室气体监测量值溯源、中精度二氧化碳监测反演等报告分享,欢迎大家踊跃报名!点击免费报名温室气体监测专场阵容(待更新):10月11日上下午 温室气体监测 免费报名点击 》》》主持人李亮中国环境监测总站 高级工程师主题:碳试点监测李亮中国环境监测总站 高级工程师中精度二氧化碳监测反演:以京津冀和济南为例韩鹏飞中国科学院大气物理研究所 副研究员待定马志强北京市气象局 研究员,上甸子本底站长温室气体监测量值溯源技术研究进展徐驰中国环境监测总站 工程师午休主持人段玉森上海低碳中心 副主任主题:碳排放管理、碳市场、碳普惠等管理对碳监测需求段玉森上海市低碳中心 副主任待定杨勇上海市环境监测中心 高级工程师温室气体计量体系研究毕哲国家计量院 副研究员待定王治非山东省济南生态环境监测中心 预报室主任报告嘉宾简介如下(部分):韩鹏飞 副研究员中国科学院大气物理研究所中国科学院大气物理研究所副研究员,主要研究碳中和监测、模拟、清单,减排增汇。徐驰 工程师中国环境监测总站1994年生,博士,工程师。2021年毕业于中国科学院生态环境研究中心环境科学专业,获理学博士学位。同年就业于中国环境监测总站质量控制与质量管理室(计量中心)。目前主要从事温室气体监测量值溯源与质量控制方法研究及新污染物监测计量与非靶标筛查技术研究,参与制修订国家计量技术规范2项,重点研发项目等科研课题4项,发表论文10余篇(其中一作SCI论文5篇)。杨勇 高级工程师上海市环境监测中心先后在北京市环境保护监测中心、上海市环境监测中心从事环境空气自动监测,目前主要负责上海市重点产业园区空气特征污染在线监控网、温室气体监测网建设和管理等工作,牵头制订了上海市《环境空气非甲烷总烃在线监测技术规范》等地方性标准,参与10余项国标和地标制修订,《产业园区恶臭污染智慧化监管溯源关键技术及应用》获得上海市科技进步二等奖。目前正组织国内外10余家不同方法原理、不同品牌高精度二氧化碳、甲烷连续自动监测设备在上海的测试工作。毕哲 副研究员国家计量院副研究员,2013年进入中国计量科学研究院气体分析室工作。主要承担环境气体成分量计量基标准的研究工作。作为课题负责人完成了“十三五”国家重点研发计划课题“家具产品中挥发性有机物(VOCs)高关注度物质标准物质及其现场智能检测设备的研究”等各类国家课题3项。参加了空气中二氧化碳、空气中氧化亚氮、氮气中有毒有害挥发性有机物、氮中丙烷、氮中氧、等国际比对十余项,均获得国际等效验证。成功申报了PAMS 57组分,TO14A 42组分,ODS15组分等多项国家一级标准物质。王治非 预报室主任山东省济南生态环境监测中心主要负责空气质量自动监测和预报预警相关工作,承担济南市高精度近地面监测站点建设、运维管理等。“第四届大气监测技术及应用网络会议”免费报名点击:https://www.instrument.com.cn/webinar/meetings/dqjc2023/
  • 上海城区温室气体自动监测站建在高层建筑上
    近日,上海环境空气温室气体自动监测静安国媒站在上海国际新媒体产业基地(国媒中心)商务楼26层楼顶落成,将与其他站点共同组成全市地面固定站点监测体系,为保证上海碳监测评估工作做出贡献。据了解,静安国媒站是上海中心城区唯一的监测点位,也是唯一依托城市建成区已有高层建筑的站点。上海市环境监测中心教授级高工刘启贞介绍,今年3月,上海完成了碳监测试评估试点方案的编制报送,计划要搭建天空地一体监测体系,通过多种渠道和方式监测大气环境中的温室气体。其中,地面固定站点要按照“7+1”的模式,其中7个监测点位主要分布于嘉定、浦东新区、奉贤等周边城区,1个参照站点在崇明东滩。静安国媒站的落成标志着全市“7+1”个温室气体监测站点已经全部建成。据介绍,选址建设过程中,静安区生态环境局积极配合上海市环境监测中心,充分结合区域地理位置特点和优势,通过实地排摸勘察、大气扩散建模、楼顶微气象研究等过程,最终确定了静安国媒中心塔楼顶为监测站点。静安国媒站的成功落成,不仅能为跟踪评估中心城区温室气体浓度变化趋势并估算城市二氧化碳通量提供实施数据,同时,站点也将成为静安区环境教育基地“双碳”实践点,成为社会公众走近温室气体监测,了解“双碳”工作的平台窗口。
  • 中国气象局部署大气本底和温室气体观测业务质量提升工作
    8月22日,中国气象局召开专题会议,部署推进全国大气本底和温室气体观测业务质量提升工作。副局长曹晓钟出席。全面提升大气本底观测质量,是中国气象局服务国家“双碳”战略实施,推动能耗“双控”向碳排放“双控”转变的重要举措。尤其是当前世界气象组织正在协调建设全球温室气体观测网,我国更有必要做好以大气本底观测为主的温室气体观测工作。会议强调,要推进落实大气本底观测高质量提升方案的各项任务,加强科学管理和数据质量评估,以更好地支撑地方经济社会发展和生态文明建设;进一步推进大气本底观测站新站的建设,加强业务人员培训;强化温室气体观测质量动态评估,通过实施业务准入,增强国家温室气体观测网的管理效能;加强温室气体观测的业务能力建设,高标准开展标校工作;做好温室气体数据共享工作,以更好地服务国家战略实施。2022年7月25日,中国气象局出台《大气本底观测业务质量提升行动方案》,明确到2025年,我国全球大气本底站的观测质量处于全球同类站点先进水平,并制定148项大气本底观测业务质量提升任务。截至目前,新增大气本底站观测试验、温室气体观测及其装备计量检定等方面工作均进展顺利。
  • 研究称永久冻土的温室气体排放必须被纳入全球气候目标
    假如冻土融化之后只释放二氧化碳,那么排放量尚能与人类产生的排放量大致相当。但实际上因冻土融化而进入大气的气体有10%–20%是甲烷。由于甲烷的温室效应在短期内比二氧化碳高80倍,释放甲烷给气候造成的影响比排放二氧化碳要严重四倍。近日,中国生物多样性保护与绿色发展基金会(中国绿发会、绿会)国际部获悉一篇关于永久冻土的碳排放必须被纳入全球气候目标的文章,现将该文编译如下,供感兴趣的读者参考。到本世纪末,快速变暖的北极永久冻土层向大气中排放的二氧化碳和甲烷很可能与一个大型工业国家的排放一样多,并且随着时间的推移,可能会超过美国自工业革命开始以来排放量的总和。但这只是锁定在有大量碳储存的北极地区以前常年冰冻但现在正在解冻的一种可能的未来情况。近日,发表于《环境与资源年度回顾》(Annual Review of Environment and Resources)上的一项新研究使用了十多年来的综合科学和区域模型,预测了在低、中、高变暖情景下,永久冻土区到2100年的累计排放量。研究的主要作者、北亚利桑那大学(Northern Arizona University)的泰德舒尔(Ted Schuur)说:“我们希望这些对未来北极碳排放的预测不仅能更新科学图景,还能成为致力于稳定气候、避免超过温度目标的政策制定的新指南。”该研究小组估计,如果全球社会通过减少化石燃料排放,将气温升高控制在2摄氏度或以下,那么在这种低变暖的情况下,到本世纪末,永久冻土将以二氧化碳和甲烷的形式释放550亿公吨温室气体。该团队的预测超出了之前的国际预测,因为它考虑了水文和生物地球化学动力学,以及永久冻土带特有的临界点。例如,科学家们正在目睹许多永久冻土区的突然融化,并导致地表塌陷。这会形成湖泊或引起地表水文的其他变化。一旦以前冻结的土地被侵蚀或下沉,储存在那里的碳就可以通过微生物呼吸进入大气。这种快速的非线性变化会迅速而永久地改变永久冻土层储存碳的能力,并可能使北极大片地区从吸收碳转变为释放碳。最近的估计表明,目前有五分之一的永久冻土容易受到突然融化的影响。哥伦比亚气候学院的大气科学家罗辛科曼(Roísín Commane)说:“一旦像一些模型预测的那样,随着气候变暖,永久冻土的碳排放量增加,那时我们就没有办法阻止这一进程。所以,我们可能需要比许多政府目前的计划更早地减少化石燃料排放,以避免触发地球气候可能的临界点或引爆点。”这项新研究根据气候变暖的进程,以及全球领导人为减少化石燃料排放所采取的行动,描述了九种不同的未来。研究的合著者吉多格罗斯(Guido Grosse)说:“无论哪种可能的情景成为现实,永久冻土层的碳排放都将是大气温室气体的一个巨大而实质性的因素。但各种不同的可能性,在影响全球整体碳预算的缓解方案之间,将存在巨大差异。”由于北极不受任何国家的监管,而且地处偏远,很难进行全面监测,研究人员强调,国际减排的努力必须在未来的气候目标和行动中考虑到该地区。该研究还强调了使用像永久冻土碳网络等协作网络和遥感技术等科学工具来监测该地区的重要性。罗辛科曼说:“遥感产品可以真正帮助我们查看和追踪永久冻土层正在发生什么,高分辨率传感器可以看到热岩溶土壤塌陷的证据,水体如何变化,甚至土壤的潮湿或结冰情况。但是,目前能够让我们了解永久冻土中有多少碳会最终进入大气的卫星设备是有限的,因此还需要在此进行投资。”泰德舒尔说,研究团队在今年夏天,在阿拉斯加的一个当地研究地点目睹了冬季创纪录降雪后大面积的永久冻土融化,碳损失是过去几十年平均水平的四倍。原文参看:https://phys.org/news/2022-10-permafrost-emissions-factored-global-climate.html参考链接:https://zh.unesco.org/courier/2022-1/xie-er-gai-qi-mo-fu-yong-jiu-dong-tu-rong-hua-jiang-dui-qi-hou-gou-cheng-zhi-jie-wei
  • 乘风“碳中和”| 应对气候变化---温室气体分析解决方案
    乘风“碳中和”| 应对气候变化---温室气体分析解决方案王健 全球变暖Global Warming近年来全球极端气象频繁发生,从德国罕见的洪水,到印度连年的酷暑,从美国加州肆虐的山火,到澳大利亚大堡礁珊瑚的大面积死亡,特别是今年夏秋季节我国河南、山西等省份发生严重的洪涝灾害无不在提醒我们,全球变暖正在深刻影响着人类的生存与发展。 温室气体浓度的持续增加是全球变暖首要原因,造成的后果不仅是全球平均气温上升、海平面升高,更多的是极端气象灾害的频繁发生,干旱与洪涝同在,严寒与酷暑并存,我们赖以生存的地球环境将更加脆弱,更加具有不确定性。 现实的危机提醒我们每一个人都不能置身事外,应对全球变暖、减少温室气体排放是人类共同目标。随着我国“双碳”目标的提出,国民经济的运行方式必将发生根本的改变,减少碳排放、绿色的、环境友好的发展方式必然越来越受到重视。温室气体浓度监测也必然成为重要的环保工具,助力“双碳”目标的达成。 国际公认的减排温室气体主要有6种,包括:二氧化碳(CO₂)、甲烷(CH4)、氧化亚氮(N₂O)、氢氟碳化物(HFCs)、全氟化碳(PFCs)、六氟化硫(SF6)。其中CO2的贡献最大,大气中浓度约为300-400ppm,主要来源于工业生产和化石能源的燃烧。CH4的浓度在2ppm左右,主要来源于自然环境和农业生产。氧化亚氮(N₂O)浓度为300-400ppb,主要来源于农业和畜牧业生产以及某些含氮的工业生产。氢氟碳化物(HFCs)、全氟化碳(PFCs)、六氟化硫(SF6)相对含量较低,但温室气体效应却很高,在大气中存留时间更长,同样不容忽视。其中六氟化硫(SF6)主要来源于电力行业绝缘气体,氢氟碳化物(HFCs)、全氟化碳(PFCs)主要来源于替代氟利昂的制冷剂以及一些化学试剂。 赛默飞定制化气相色谱仪目前国家环境检测机构普遍开展的监测组分是这四种:二氧化碳(CO₂)、甲烷(CH4)、氧化亚氮(N₂O)、六氟化硫(SF6)。赛默飞定制化气相色谱仪以其优异的灵活性和稳定性,为温室气体检测做出了两种配置方案。 主要部件:氢火焰检测器(FID),电子捕获检测器(ECD),甲烷转化器,及相应的切换阀和色谱柱。KNV-CMC1740 温室气体分析方案1基本配置:SSL 加三阀两柱分析系统检测器:FID/ECD/ 甲烷转化炉分析组分:CH4、CO2、N2O、SF6方法特点:分析时间小于 8 分钟;针进样,支持顶空进样方式。KNV-CMC1741 温室气体分析方案2基本配置:三阀两柱分析系统检测器:FID/ECD/ 甲烷转化炉分析组分:CH4、CO2、N2O、SF6方法特点:分析时间小于 8 分钟;阀进样,支持连续进样方式。 方法调试过程中所用的标准样品成分 浓度(ppm)N2O:0.3SF6:0.0001CO2:380CH4:1.8Air:Air基质 FID/ECD谱图: 赛默飞气相色谱仪在环境及温室气体检测积累了丰富的应用经验,并具有非凡的拓展能力,为了国家“双碳”目标的达成贡献我们的一份力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制