当前位置: 仪器信息网 > 行业主题 > >

大气甲烷排放

仪器信息网大气甲烷排放专题为您整合大气甲烷排放相关的最新文章,在大气甲烷排放专题,您不仅可以免费浏览大气甲烷排放的资讯, 同时您还可以浏览大气甲烷排放的相关资料、解决方案,参与社区大气甲烷排放话题讨论。

大气甲烷排放相关的资讯

  • HT8600大气甲烷激光开路分析仪,助力中国甲烷排放控制新征程
    近年来,随着全球气候变化问题的加剧,甲烷排放成为引起广泛关注的环境挑战之一。在应对这一问题的过程中,《甲烷排放控制行动方案》应运而生,为我国在甲烷排放控制方面制定了明确的战略和计划。甲烷排放形势严峻 甲烷,作为全球第二大温室气体,具有增温潜势高、寿命短的特点,对全球变暖贡献率达25%,其贡献仅次于二氧化碳,与CO2相比,甲烷吸附热量能力更强,20年内的全球增温潜势(GWP)相当于CO2的84倍,100年内的GWP100为CO2的28倍,已成为全球气候变化不可忽视的因素。 国际能源署(IEA)数据显示,2022年全球和我国甲烷排放量分别为35580.13万吨、5567.61万吨,我国甲烷排放量占全球比重为15.65%。我国虽然在甲烷资源化利用方面取得一定成效,但在统计监测基础、法规标准体系和技术管理能力等方面仍然面临一系列挑战。 甲烷排放控制不仅关系到气候效益,还涉及到能源资源化利用、环境保护和生产安全等多个方面的问题。政策解读《甲烷排放控制行动方案》的出台旨在通过全面、有序的措施,提升我国在甲烷排放统计核算、监测监管等基础能力,积极参与全球气候变化治理。亮点解读:1) 指导思想明确:以新时代中国特色社会主义思想为指导,贯彻生态文明思想,坚持减排与发展、安全的统一,引导经济社会全面绿色转型。2) 工作原则清晰:统筹协调、夯实基础、分类施策、稳妥有序、防范风险,形成了科学而灵活的工作原则,旨在多方面推动甲烷排放控制工作。3) 主要目标明确:在“十四五”和“十五五”期间,逐步建立政策、技术、标准体系,提升相关基础能力,实现甲烷资源化利用和排放控制的积极进展。4) 重点任务突出:加强监测、核算、报告和核查体系建设,推进能源、农业、垃圾和污水处理领域的甲烷排放控制,强化污染物与甲烷协同治理。5) 技术创新和监管加强:鼓励技术创新,推进关键技术的研发与应用,加强对甲烷排放控制的监管,提高数据质量。海尔欣助力中国甲烷排放控制新征程 在这一重要的甲烷排放控制行动中,宁波海尔欣光电科技有限公司旗下“昕甬智测”国产创新品牌HT8600大气甲烷激光开路分析仪,专门用于实时监测大气中甲烷气体的浓度,为环境监测和空气质量管理提供可靠数据支持。 仪器采用量子级联激光技术,应用两面暴露在大气中的高反射率镜面对中红外激光进行多次反射,有效光程达数十米,测量目标气体对特征吸收峰处中红外激光能量的微弱吸收,通过对吸收峰光谱曲线的实时积分进行痕量气体的浓度反演。开放式光腔,避免闭路仪器管道吸附问题造成的延迟,实现10Hz无损高频浓度输出,使检测更灵敏、响应更快速。 海尔欣自2004年创立以来,致力于量子级联激光技术的多领域应用,践行“光谱技术助力零碳地球”的企业使命,履行社会责任,在大气污染防治和温室气体减排方面,公司一直发挥着积极作用。我们认识到控制甲烷排放对于可持续发展的关键性,在产品研发中注重可持续性,努力通过技术手段推动企业、行业的绿色发展。HT8600的产品设计、生产和售后服务等环节都考虑到了对环境的影响,致力于为客户提供更环保、更高效的解决方案。结语总的来说,《甲烷排放控制行动方案》的制定标志着我国在应对气候变化、加强环境保护方面迈出了坚实的步伐。HT8600大气甲烷激光开路分析仪将发挥其独特的优势,帮助各行业准确获取甲烷排放数据,为实现监测、核算和报告等任务提供强有力的技术支持,为我国在全球环境治理中发挥更为积极的作用。
  • 乘风“碳中和”|大气污染物排放---非甲烷总烃(NMHC)分析
    乘风“碳中和”|大气污染物排放---非甲烷总烃(NMHC)分析高丽助力“碳达峰”、“碳中和”“加强生态文明建设,确保实现2030年前二氧化碳排放达到峰值、2060年前实现碳中和的目标。”为了实现蓝天愿景,兑现对全世界的减排承诺,自2021年起,一系列规划和阶段性目标都会陆续落地,围绕“碳中和”这个核心风向标,更大力度推动节能减排,应对气候变化带来的挑战。我国碳达峰、碳中和愿景与美丽中国建设目标高度协同,应尽快构建新一代大气污染防治科学体系。政策把“治标和治本很好地结合起来”,并特别指出“大气污染物与温室气体要协同减排”。本期继温室气体分析、CO2催化还原产物分析这些典型解决方案之后,赛默飞再次隆重推出甲烷/非甲烷总烃分析方案,共同助力“碳达峰”、“碳中和”。 赛默飞非甲烷总烃分析解决方案非甲烷总烃(NMHC)通常指除甲烷(主要是C2-C8)外的所有挥发性烃,也称为非甲烷总烃。在生产车间,如果非甲烷总烃气体超过一定浓度,对工人的健康是有害的。如果这些气体暴露在阳光下,还会产生光化学烟雾,对大气环境造成严重影响。 该方案主要用于环保大气监测单位,也用于诸多工业企业(例如石油、化工、制药、金属冶炼企业)的工业废气排放的监测与检测。执行的标准:HJ 38-2017 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法HJ 604-2017 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法 针对NMHC检测,赛默飞提供三个非甲烷总烃分析的应用方案供用户选择,配置功能强大的变色龙软件,提供灵活的报告模板,可以通过直接编辑公式计算得到非甲烷总烃的质量浓度(以甲烷或以碳计,mg/m3)。最大程度的简化工作,方便用户日常分析操作。赛默飞方案 非甲烷总烃的分析方案特点见表1:表1:非甲烷总烃方案特点 方案一根据环境保护标准《HJ 604-2017环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》要求,由低浓度到高浓度依次通过定量环取1.0 mL气体样品注入气相色谱仪,分别测定总烃、甲烷。以总烃和甲烷的浓度(μmol/mol)为横坐标,以其对应的峰面积为纵坐标,分别绘制总烃、甲烷5个浓度点的校准曲线。 01高浓度NMHC的5个浓度点依次为50, 100, 200, 400, 800 μmol/mol。 1.1 高浓度非甲烷总烃标气色谱图如图1:图1:NMHC色谱图(高浓度5个浓度点叠加谱图)1.2 高浓度NMHC总烃校准曲线,线性相关系数R2=0.9999,校准曲线见图2:图2:总烃校准曲线(高浓度)1.3 高浓度NMHC甲烷校准曲线,线性相关系数R2=0.9999,校准曲线见图3:图3:甲烷校准曲线(高浓度) 02低浓度NMHC的5个浓度点依次为1, 2, 4, 8, 16 μmol/mol。 2.1低浓度非甲烷总烃标气色谱图如图4:图4:NMHC色谱图(低浓度5个浓度点叠加谱图)2.2低浓度NMHC总烃校准曲线,线性相关系数R2=0.9999,校准曲线见图5:图5:总烃校准曲线(低浓度)2.3低浓度NMHC甲烷校准曲线,线性相关系数R2=0.9999,校准曲线见图6:图6:甲烷校准曲线(低浓度) 方案二/方案三采用双FID检测器测定非甲烷总烃,色谱图见图7:图7:NMHC色谱图(双FID检测器) 赛默飞除了典型方案以外,还可根据用户的预算及分析需求,进行方案调整或全定制化方案设计,为用户打造完整的解决方案。
  • 北京拟发布城镇污水厂大气排放标准 新增非甲烷总烃等指标
    p   对于城镇污水处理厂大气污染物的排放标准,目前全国执行的是《城镇污水处理厂污染物排放标准》(GB18918-2002)和《大气污染物综合排放标准》(GB 16297-1996),也可参考《恶臭污染物排放标准》(GB14554-1993)和《挥发性有机物无组织排放控制标准》(GB 37822-2019),但还没有专门的城镇污水处理厂大气污染物国家排放标准。 /p p   近年来,北京市关于城镇污水处理厂恶臭扰民的投诉屡见不鲜,仅2013年到2018年间,北京市环境保护投诉举报热线即受理关于污水处理厂异味问题的市民投诉举报近800件,并呈波动式增加趋势,2018年受理污水处理厂异味投诉数量较2013年增加了三分之一。因此,北京市生态环境局提出《城镇污水处理厂大气污染物排放标准》研究编制计划。 /p p   近日,北京市生态环境局发布了北京市地方标准《城镇污水处理厂大气污染物排放标准》(征求意见稿),公开征求意见。 /p p   与《城镇污水处理厂污染物排放标准》(GB18918-2002)相比, strong 北京市地方标准《城镇污水处理厂大气污染物排放标准》(征求意见稿)在厂界浓度增加了甲硫醇和非甲烷总烃两项指标,收严了氨和硫化氢两项指标,臭气浓度和甲烷(厂区最高体积浓度)没有变化。在排气筒限值方面,设置了氨、硫化氢、臭气浓度、甲硫醇和非甲烷总烃五个指标。 /strong /p p   据统计,2018年北京市共登记城镇污水处理厂(站)133家,设计污水处理能力693万立方米/日,约占全市污水处理总能力的93% 全年实际污水处理量超过19亿立方米,约占全市污水处理总量的95%。可以看出,与数量多、规模小的农村污水处理设施相比,城镇污水处理厂是北京市污水处理的主力军。 /p p   从城镇污水处理厂的规模和实际处理量看,日处理能力10万吨/日以上的污水处理厂15家,实际处理污水量占污水处理总量的73.3% 处理能力为5~10万吨/日的污水处理厂16家,实际污水处理量占比13.6% 处理能力1~5万吨/日的污水处理厂39家,实际污水处理量占11.5% 1万吨/日以下的污水处理厂63家,实际污水处理量仅占1.6%。由此可知,处理能力1万吨/日以上的污水处理厂是城镇污水处理的主体。 /p p   据2018年核发的污水处理厂排污许可证情况,全市共许可城镇污水处理厂122家。其中,仅有10家采取了各生产环节全覆盖的废气收集治理措施,这些污水处理厂多为近年来新建或升级改造,工艺以A2O为主 有32家污水厂对预处理、污泥处理等重点环节配备了废气收集治理设施 其余80家污水厂则没有废气治理设施。 /p p   未来,北京市污水处理厂排污许可证发放的时候,会将这些指标纳入自行监测范围之内。 /p p 附件: a href=" https://www.instrument.com.cn/download/shtml/950958.shtml" target=" _blank" 《城镇污水处理厂大气污染物排放标准》(征求意见稿) /a /p p a href=" https://www.instrument.com.cn/download/shtml/950960.shtml" target=" _blank" 《城镇污水处理厂大气污染物排放标准》(征求意见稿) 编制说明 /a /p
  • Nature Communications | 通过大气观测推断中国二氯甲烷排放的快速增长
    近日,北京大学环境科学与工程学院胡建信课题组联合英国布里斯托大学(University of Bristol)、中国气象局气象探测中心等机构,在《Nature Communication》期刊上发表题目为《Rapid increase in dichloromethane emissions from China inferred through atmospheric observations》的论文。该论文通过大气观测数据发现中国二氯甲烷(CH2Cl2)排放量正在快速增加,这可能会导致南极臭氧层的恢复过程被推迟。该论文通讯作者为北京大学环境科学与工程学院胡建信教授、中国中国气象局气象探测中心姚波研究员和英国布里斯托大学Matthew Rigby教授。Rapid increase in dichloromethane emissions from China inferred through atmospheric observationsAbstractWith the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH2Cl2). The emissions grew from 231 (213–245) Gg yr&minus 1 in 2011 to 628 (599–658) Gg yr&minus 1 in 2019, with an average annual increase of 13 (12–15) %, primarily from eastern China. The overall increase in CH2Cl2 emissions from China has the same magnitude as the global emission rise of 354 (281&minus 427) Gg yr&minus 1 over the same period. If global CH2Cl2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH2Cl2 emissions.摘要 随着《关于消耗臭氧层物质的蒙特利尔议定书》的成功实施,臭氧消耗物质在大气中的丰度继续缓慢下降,南极臭氧空洞正在出现恢复的迹象。然而,不受管制的短寿命人为氯烃排放量的不断增加抵消了其中的一些收益。在此,我们报告了中国工业产生的二氯甲烷 (CH2Cl2) 排放量的增加。其排放量从2011年的231 (213-245) Gg yr-1增加到2019年的628 (599-658) Gg yr-1,年均增长为13 (12-15)%,而且主要来自中国东部。中国 CH2Cl2 排放总量的增加幅度与同期全球排放量增加幅度 354 (281-427) Gg yr&minus 1相同。如果全球 CH2Cl2 排放量保持在2019年的水平,与没有 CH2Cl2 排放的情景相比,它们可能导致南极臭氧恢复延迟约 5 年。ReferenceAn,M., Western, L.M., Say, D. et al. Rapid increase in dichloromethane emissions from China inferred through atmospheric observations. Nature Communnications 12, 7279 (2021). https://doi.org/10.1038/s41467-021-27592-y(Published)
  • 昕甬智测甲烷分析仪:助力大气甲烷监测
    引言 在全球气候变化的大背景下,油气甲烷减排的重要性与紧迫性日益凸显。甲烷作为全球气候变暖的第二大温室气体,全面控制其排放具有重大意义。研究显示,至2030年,全球甲烷排放量可通过现有技术削减57%,近四分之一的排放量可在不产生净成本的情况下消除,甲烷减排因此受到国际社会广泛关注。油气甲烷监测技术的重要性 油气甲烷是一种重要的温室气体,其排放量逐年上升,对全球气候变化产生显著影响。在我国,油气甲烷作为能源体系的重要组成部分,其开发与利用对国家能源安全具有战略意义。然而,在油气开采、输送和利用过程中,甲烷泄漏问题突出,既造成资源浪费,又可能引发火灾、爆炸等安全隐患。因此,研究油气甲烷监测技术对于减少温室气体排放、提高能源利用效率和保障安全生产具有重要意义。 在COP28会议上,解振华表示,最新发布的《行动方案》首次明确了中国重点领域甲烷排放的控制目标,这是我国第一份全面专门的甲烷排放控制政策性文件,对未来一段时间甲烷排放控制工作具有顶层设计和系统部署的作用。这份文件不仅对进一步控制甲烷排放具有重要的指导意义,还将对经济社会高质量发展产生重要影响。《行动方案》提出了加强甲烷监测核算报告和核查体系建设,加快推进能源、农业、废物处理领域排放控制等八项重点任务。我国将在保障能源安全与粮食安全的基础上,采取更有力的政策和措施,推动甲烷排放控制取得更大成效。昕甬智测助力大气环境监测 在当前环境保护和气体监测的背景下,大气中甲烷的排放和浓度成为关注焦点。甲烷作为农业、工业和交通等领域的重要气体,其排放与环境质量和空气污染密切相关。为准确监测大气中甲烷浓度,以及更好地监测大气中温室气体的组分和浓度,宁波海尔欣光电科技有限公司推出了昕甬智测 HT8600大气甲烷激光开路分析仪与HT8840便携式多组分高精度温室气体分析仪。HT8600大气甲烷激光开路分析仪 采用量子级联激光吸收光谱技术(QCLAS),应用两面暴露在大气中的高反射率镜面对中红外激光进行多次反射,有效光程达数十米,测量目标气体对特征吸收峰处中红外激光能量的微弱吸收,通过对吸收峰光谱曲线的实时积分进行痕量气体的浓度反演。 HT8600大气甲烷激光开路分析仪的高频浓度分析特性,使之非常适合于微气象涡动相关(Eddy Covariance)测量技术,结合通量观测系统可准确定量不同生态系统和大气间甲烷的净交换通量。HT8840便携式多组分高精度温室气体分析仪 HT8840便携式多组分高精度温室气体(二氧化碳/CO2、甲烷/CH4、水/H2O)分析仪基于量子级联激光技术设计,利用气体分子在中远红外的“指纹”吸收谱,使用半导体量子级联激光器(QCL)作为光源,使激光通过中红外增强型光腔,被中红外光电探测器接收透射光并提取和分析透射光谱,准确反演获得目标温室气体成分的浓度,实现对目标温室气体分子的更精确、更及时、更科学的测量。 HT8840便携式多组分高精度温室气体在仪器箱内实现快速响应的温室气体测量,采用独立强吸收谱线,使其不受其他气体分子光谱的交叉干扰。该系列便携式温室气体分析仪能够可由太阳能或锂电池供电,实现温室气体浓度的定点或移动连续观测。总结 油气甲烷减排对于全球气候变化的控制具有重要意义。通过采用先进的激光光谱技术,可以实现大气中甲烷浓度的精准监测。这将有助于政府、企业和社会各界更好地了解甲烷排放状况,制定科学合理的减排措施,推动我国实现绿色低碳发展。在今后的工作中,海尔欣昕甬智测会继续加大对油气甲烷监测技术的研发和推广力度,为全球气候治理和绿色低碳发展贡献力量。
  • 全球甲烷排放有了“超级监视器”
    一张卫星图像显示美国新墨西哥州南部上空的甲烷羽流图片来源:NASA/JPL-CALTECH甲烷是一种隐秘的温室气体,会不可预测地在管道和气田等处爆发。科学家一直在想办法“捕捉”这些气体排放的行为。过去,调查人员必须从地面或飞机上监测可能的排放点。现在,他们可以从太空和世界任何地方自动监测到大规模、短暂的甲烷泄漏。据《科学》报道,这项新技术使用人工智能检查了欧洲卫星每天收集的1200万个观测数据,有助于未来在国际甲烷排放观测站等地收集的数据中发现羽流。领导这项工作的是荷兰空间研究所的科学家。仅上个月,他们就监测到192股甲烷羽流,其中一些是持续性的,一些是间歇性的,排放速度均超过10吨/小时,在除南极洲之外的每一个大陆都有发现。荷兰空间研究所的自动甲烷探测器依赖于哨兵-5P卫星上的对流层监测仪器(TROPOMI)。该研究所大气科学家、新研究合作者Ilse Aben表示,卫星频繁的、全球化的覆盖能对任何大规模的甲烷释放发出警报。但问题是数据量太大,很难发现这些羽流。为此,研究人员开始向人工智能寻求帮助。荷兰空间研究所博士生Berend Schuit研究了多年的TROPOMI数据,确定了约800个已知的羽流场景和2000个没有羽流的场景。有了这些场景,研究人员便可训练人工智能算法识别羽流。之后,研究人员通过训练第二个人工智能,发现其中可能属于人为因素造成的误报,从而产生可靠的结果。他们进一步测试算法,发现了2974股独特的甲烷羽流,超过40%与石油和天然气开发有关,另外33%与垃圾填埋场有关、20%与煤矿有关。由于TROPOMI的分辨率不够精确,因此无法确定每股羽流的精确位置。但未来的卫星数据应该会使画面更加清晰。美国亚利桑那大学遥感科学家Riley Duren表示,过去,研究人员必须瞄准已知有甲烷排放的地点,才能找到新的甲烷排放点。而这项新技术“有助于为未来范围不断扩大的全球甲烷卫星生态系统的运行监测奠定基础”。
  • Picarro | 杭州塔基甲烷观测网络估算全球变暖下废物处理产生的甲烷排放
    说到温室气体,大家熟知二氧化碳占比最大,而仅次于它的第二大温室气体正是甲烷(CH4)。尽管甲烷在大气中的浓度比二氧化碳低得多,但它的温室效应却比二氧化碳高数十倍。这意味着每单位的甲烷会比二氧化碳更有效地捕获和保留地球表面的热量,加剧全球气温上升。据 《全球甲烷评估》报告表明,目前全球甲烷排放中有60%与能源开采、农业活动、废弃物处理这三类人类活动直接相关。人类主要聚集地——城市,主要的甲烷排放就是废弃物处理。国内的研究团队在杭州,通过塔基CH4观测网络进行了全球变暖下废物处理CH4排放的相关研究。大气中的甲烷是导致全球变暖的第二大人为因素。然而,从城市到全国尺度,其排放量、成分、时空变化等在很大程度上仍不确定。废物处理(包括固体废物填埋场、固体废物焚烧和污水)产生的CH4排放占城市人为CH4总排放量的50%以上,考虑到CH4排放因子(EFs)对基于生物过程的源(如废物处理)的高温敏感性,在不同全球变暖情景下估算未来CH4排放量时会出现较大差异。此外,温度与废物处理CH4排放之间的关系仅在少数特定地点进行了研究,缺乏整个城市的代表性。上述因素导致城市尺度CH4排放(尤其是来自废物处理)的评估存在不确定性,并且预测的变化仍未得到探索。本文通过杭州塔基CH4观测网络进行了全球变暖下废物处理CH4排放的相关研究。研究人员将2020年12月1日至2021年11月30日杭州3个塔基观测网络(临安大气本底观测站:30.30° N,119.72° E;138.6 m a.s.l.,Picarro G2401气体浓度分析仪,进气口高度53 m;大明山观测站:30.03° N,119.00° E;1485.0 m a.s.l.,Picarro G2401气体浓度分析仪,进气口高度10 m;杭州站::30.23° N,120.17° E;43.2 m a.s.l.,Picarro G2301气体浓度分析仪,进气口高度25 m)获取的每小时CH4浓度与WRF-STILT大气传输模型和贝叶斯反演方法相结合,以限制CH4排放清单。并建立月温度与反演后废物处理CH4排放之间的关系,以量化排放因子在所预测的不同全球变暖情景下的变化。测量系统(建议横屏查看)●使用真空泵经外径为10 mm的专用取样管线取样,以5 L/min的速度传送至仪器,环境空气从塔顶至仪器的停留时间小于 30 s。●样气首先通过泵前端的过滤器。其次,通过(泵之后)设置为1 atm表压的减压阀旁通,以释放多余的空气压力。●样气通过冷阱干燥以减少水汽影响。通过质量流量控制器将玻璃阱的流出气流设置为300 mL/min,略高于分析仪的流量需求,多余的气体通过一个不锈钢“T” 型三通接头排放至周围环境中,以确保传送入分析仪的样品处于接近环境气压的状态。●VICI 8 通多位阀切换工作标气/目标气体/样气。●使用充满压缩环境空气的校准气瓶作为目标气体 (T),定期检查系统的精度和稳定性。两个标气每6 h/12h测量一次,通过两点线性拟合校准CH4观测值。WRF-STILT大气传输模型:模拟CH4浓度,其中选择蒙古UUM,韩国TAP,日本RYO和YON,以及瓦里关5个NOAA CH4大气背景站作为潜在背景值。贝叶斯反演方法:约束模拟的CH4排放通量,优化模拟结果【结果】(a)杭州站,(b)临安站和(c)大明山站的模拟足迹年平均值;EDGAR v6.0清单中的(d)人为CH4排放总量,(e)废物处理CH4排放量;(f) 废物处理占人为CH4排放总量的比例杭州市每小时CH4浓度观测值和模拟值(反演前)(a)、模拟值(反演后)(b)对比;(c)杭州市日平均CH4浓度对比反演前后杭州市甲烷排放量对比未来气候变化情景下温度对垃圾填埋甲烷排放因子的影响【结论】1、模拟的CH4浓度存在明显的季节性偏差,主要是年和月尺度废物处理偏差所致。反演后的CH4排放呈现出明显的季节变化,夏峰冬谷,主要是废物处理的贡献;2、先验清单中,杭州废物处理CH4年排放量为10.4×104t,反演后下降至5.5(±0.6)×104t,下降了47.1%。人为CH4排放总量(不包括农业土壤)从15.0×104t下降到9.6(±0.9)×104t,表明2021年全年高估了36.0%;临安站观测结果表明,浙江省或长三角地区的年CH4排放量被略微低估了7.0%;3、反演后,每月废物处理产生的CH4排放量与气温呈显著线性关系,温度升高10℃时排放量增加38%-50%;4、在RCP8.5、RCP6.0、RCP4.5和RCP2.6情景下,到本世纪末,杭州市废物处理CH4排放因子将分别增加17.6%、9.6%、5.6%和4.0%;5、整个中国的相对变化也显示出高度异质性,表明未来全国甲烷排放总量预测存在很大的不确定性6、建议在最近的CH4排放清单和未来的CH4排放预测中应耦合温度依赖性排放因子。
  • 欧洲地区农业领域氨气与甲烷排放分析与应对方法
    随着全球关注气候变化日益增加,农业领域的氨气和甲烷排放成为环保和可持续发展的重要议题之一。欧洲地区作为世界上重要的农业生产地之一,其氨气和甲烷排放情况备受关注。本文将就欧洲地区农业领域氨气和甲烷排放的调研数据进行整理和分析。氨气排放情况根据欧洲环境署(EEA)的数据,农业是欧洲地区主要的氨气排放源之一,占总排放量的约94%。氨气排放主要来自动物粪便和尿液、化肥使用以及畜禽饲养。根据2019年的数据,欧洲地区的氨气总排放量约为2,316千吨,其中德国、法国和荷兰等国是主要排放国家。氨气排放不仅对空气质量造成影响,还可能导致酸雨和氮肥过量沉积,对生态系统造成损害。欧洲各国已采取措施,如改进动物饲养管理、减少化肥使用等,以降低氨气排放。然而,要实现氨气排放的显著减少,仍需要加强监测和执行相关政策。甲烷排放情况甲烷是一种温室气体,对全球变暖有较大影响,而农业活动也是甲烷的重要排放源之一。据国际能源署(IEA)数据,欧洲地区农业领域约占总甲烷排放量的40%。主要的甲烷排放源包括反刍动物的消化过程、稻田种植以及有机废弃物的分解。根据欧洲联盟委员会的数据,2019年欧盟28个成员国的农业甲烷排放约为1,275百万吨,略有下降。然而,反刍动物的消化过程仍是主要的甲烷排放源,占比约为52%。为减少甲烷排放,欧洲地区已开始采取一系列措施,如改进饲料管理、减少反刍动物数量、改进稻田种植方式等。同时,生物气体捕捉和利用技术也被引入,以减少甲烷的释放。政策与应对欧洲地区已经意识到农业领域氨气和甲烷排放的重要性,并制定了一系列政策来减少排放。欧洲绿色协议: 欧洲绿色协议是欧盟提出的一项旨在使欧洲在2050年前实现碳中和的计划。其中包括了农业领域的排放削减目标,特别是通过改变农业实践来减少氨气和甲烷的排放。农业环境政策: 欧盟成员国在农业领域实施了一系列的环境政策,旨在鼓励农民采用更环保和可持续的农业实践。这些政策可能包括减少化肥和农药使用、提高农田管理效率,以及鼓励农民采用氮肥的更有效使用方式,以减少氨气排放。碳排放交易体系: 欧盟实施了碳排放交易体系(EU ETS),涵盖了一系列不同部门的碳排放,其中也包括一些农业相关的排放。这鼓励企业和机构减少碳排放,并为排放权进行交易,从而降低总体排放。农业创新和研究: 欧洲各国投资在农业领域的创新和研究,旨在开发更有效的农业实践,以减少温室气体排放。这可能涉及新的农业技术、肥料管理方法以及畜牧业的管理方法。气候政策和国际承诺: 欧洲国家参与了国际气候协议,如巴黎协定,承诺在全球范围内减少温室气体排放。农业领域的排放削减也是其中的一部分。技术与创新检测农业氨气与甲烷排放至关重要。宁波海尔欣光电科技有限公司的HT8700大气氨激光开路分析仪(点击跳转产品)可以针对农业领域的氨气和甲烷进行科学、精准的检测与分析。【点击查看】湖北农科院:国家农业环境潜江观测实验站建设【点击查看】中国农业大学:华北农区开展秋冬季地气氨交换通量高频观测【点击查看】中科院大气所:亚热带稻田施肥期间氨排放通量
  • 甲烷监测对比,谁才是农田气体排放监测的王者?
    项目背景甲烷 (CH4) 这种强温室气体的大气浓度近年来一直在以前所未有的速度上升,自 2020 年以来增长率创历史新高。甲烷在大气中的寿命约为 10 年,而二氧化碳 (CO2) 的寿命为 100 年,甲烷的温室效应是二氧化碳的25倍,主要来源包括农业、化石燃料开采和废弃物处理等。这些特点使得减少甲烷排放成为短期减少人为全球变暖的优先目标,精准测量大气中甲烷的浓度对于研究其环境影响和制定减排政策具有重要意义。本测试旨在对比HealthyPhoton公司生产的HT8600大气甲烷激光开路分析仪与另一款成熟的商用甲烷分析仪的性能。通过对比两款仪器在农田中甲烷排放的通量和浓度的测量结果,评估其在精准性、灵敏度和稳定性方面的表现。测试方法测试在济南的一片农田中进行,该区域为典型的农业生态系统,能够真实反映农业活动对大气甲烷浓度的影响。具体步骤包括:1. 在农田不同位置设置测试点,安装两款仪器。2. 在2024年7月7日至7月9日期间进行多次测量,记录数据。3. 分析数据,比较仪器的灵敏度、准确性和稳定性。测试表现浓度/EC通量对比1. 甲烷浓度 (CH4 Concentration):中间部分显示了两台仪器的甲烷浓度测量值,单位是ppbv。从图中可以看出,两台仪器的测量结果非常接近,但在某些时段会有略微差异。2. 湍流通量 (EC Flux):底部显示了两台仪器测量的湍流通量(μmol+1s-1m-2)的变化情况。两台仪器的测量值整体趋势一致,但在某些时段有较大的差异,尤其是在高通量时段。原始通量与校正后通量对比表明HT8600和商业甲烷分析仪在测量甲烷浓度和湍流通量时具有较高的一致性,但也显示了在不同条件下可能存在的一些差异。X轴是经过校正的商业分析仪的湍流通量(单位:μmol+1s-1m-2),Y轴是HT8600的原始湍流通量数据(单位:μmol+1s-1m-2)。图中的点基本上沿着Y=1.09X的回归直线分布,R² 值为0.9868,表示两者之间的相关性非常高。表明HT8600的原始通量与经过WPL校正的商业分析仪测量值具有很高的线性相关性和一致性,HT8600的性能得到了很好的验证,且数据处理过程更容易、由矫正过程造成的可能的误差更小。共谱密度对比图中的Y轴是标准化的共谱密度,X轴是标准化频率。三种测量方式的共谱密度在大部分频率范围内都非常一致,符合经典湍流谱理论(-4/3斜率线)。表明HT8600在不同频率下的共谱密度表现与商业分析仪和基准温度的共谱密度表现非常接近,表明HT8600在动态响应和频率分辨率方面具有良好的性能。测试小结HT8600与市面上较为成熟的商业甲烷分析仪在测量甲烷浓度和湍流通量时具有较高的一致性,且在动态响应和频率分辨率方面具有良好的性能。这两款仪器都展现了较高的测量精度和稳定性,为环境监测和科学研究提供了可靠的技术支持,为大气甲烷监测的理想选择。相关产品
  • 四方仪器先进光学技术助力油气行业甲烷排放高精度监测
    1. 油气行业甲烷减排势在必行工业革命以来,大气中的甲烷浓度增加了一倍多,甲烷所产生的温室效应在全球变暖中贡献了约三分之一。甲烷虽然影响巨大,但它是一种短期的气候污染物,在大气中的寿命大约为10年。如此短的生命周期意味着,通过减少甲烷排放可以较快降低全球变暖效应,有效调节全球气候变化。因此,甲烷减排是实现《巴黎协定》1.5℃温控目标的关键支柱之一。国际能源署(IEA)统计,2023年全球甲烷排放量为3.49×108 t,能源部门占比为36.8%,其中油气行业占能源部门排放总量的62%,达到0.80×108 t。根据IEA评估,油气行业有75%的甲烷减排可通过现有技术和最佳实践措施来实现,其中40%的减排可通过零成本管理实现。因此,油气行业甲烷减排潜力极大,且易于实现。国际上,欧美针对油气行业甲烷减排正陆续出台更加具体且日益严格的监管要求。在美国,2021年11月美国政府出台指导性文件《美国甲烷减排行动计划》,2022年8月美国总统签署的《通胀削减法案》中首次提出将对石油和天然气行业甲烷排放进行收费,2024年3月美国环保署(EPA)发布《新的、重建和改造的排放源的性能标准以及现有排放源的排放指南:石油和天然气行业气候审查》修订文件,2024年5月EPA发布《温室气体报告规则 石油和天然气系统》修订文件。在欧洲,2020年10月欧盟委员会出台指导性文件《欧盟甲烷减排战略》,2024年6月欧洲议会和理事会正式签署发布了欧盟首部旨在遏制欧洲和全球能源部门甲烷排放的法规《欧洲议会和理事会关于能源部门甲烷减排和修订(欧盟)2019/942的法规》。在我国,2023年11月生态环境部联合11部门发布国家政策文件《甲烷排放控制行动方案》,该文件提出了“十四五”和“十五五”期间甲烷排放控制目标,并明确指出,在“加强甲烷排放监测、核算、报告和核查体系建设”和“推进能源领域甲烷排放控制”中油气行业需要承担多项重要任务。2. 油气行业甲烷减排行动中关于先进监测设备的市场需求油气行业甲烷排放主要来自勘探、生产、加工和储运分销环节中的逃逸、放空和火炬不完全燃烧。逃逸性排放是指在各种设施及部件上无意或意外产生的泄漏。放空和火炬排放是维护安全等原因导致的有组织排放。油气行业甲烷排放呈现以下特点:(1)排放点数量多:每个生产现场或设施可能由成千上万个部件组成,其中可能包含几个到数百个排放点。(2)排放点地理分布广:每个井场、压缩站、天燃气厂和管道段都是潜在排放源,这些设施经常散布在偏远地区。(3)排放率的可变性:受许多因素影响,类似设备和工艺的排放率可能存在较大差异;此外,一些排放点是间歇性的。(4)难以感知:甲烷排放经常是无色无味的,在不使用专用检测设备情况下很难识别和估计排放。油气行业甲烷排放的这些复杂性特点给甲烷减排行动中的排放监测带来了巨大挑战。泄漏检测和修复(LDAR)以及测量、报告和验证(MRV)是油气行业甲烷减排行动中的两种重要系统方法。表1总结了这两种系统方法的基本定义、主要作用及相关甲烷排放监测的发展方向、法规进展和设备需求。表1 LDAR和MRV的基本定义、主要作用及相关甲烷排放监测的发展方向、法规进展和设备需求在国内高度重视甲烷减排的政策背景下,国内油气生产企业正在积极推动企业级甲烷减排行动,在LDAR和MRV应用中必然需要使用大量先进的场站级和源级甲烷排放监测设备。然而,国内高精度甲烷传感技术长期落后于国际先进水平,还没有国内设备制造商能够系统提供这些先进设备。在部分油气企业的试点和研究项目中,还是主要依赖使用进口设备。进口设备不仅存在使用成本过高的问题,也难以响应国内特定应用需求。因此,面对国内油气企业甲烷减排行动中对先进设备的广泛应用需求,迫切需要国内设备制造商加快研发高精度甲烷传感技术,并提供具备自主技术的场站级和源级甲烷排放监测设备。3. 油气行业甲烷排放监测的整体解决方案四方光电(武汉)仪器有限公司(简称四方仪器)是专业研制气体传感器及仪器仪表的高科技企业。四方仪器依托气体传感技术研发平台基础优势,成功研制了高精度TDLAS甲烷传感器模组,并为油气行业甲烷排放监测推出了一套整体解决方案,能够为油气生产企业提高LDAR检测效率、助力温室气体核算和构建MRV技术体系提供高精度甲烷排放监测及准确的定性与定量分析结果。3.1 四方仪器整体解决方案的框架体系本方案框架分为监测感知层、数据解析层和业务应用层。监测感知层主要产品包括:场站级水平的甲烷排放连续监测系统、车载甲烷排放监测系统和无人机甲烷排放监测系统;源级水平的便携式红外热像仪和便携式大流量采样器。多款监测设备和传感器组合适用于天然气生产开采、加工、储存、运输等不同环节,全方位、全流程采集和测量甲烷排放浓度等关键信息。数据解析层的软件平台基于5G网络通讯实时传输并显示测量数据,实时计算排放率,并判定排放事件和量化排放。数据解析层各软件平台分析结果相互结合可为业务应用层的油气生产企业应用目标提供关键技术支撑。图1 四方仪器整体解决方案的框架体系3.2 高精度TDLAS甲烷传感技术可调谐半导体激光吸收光谱法(TDLAS)是一种特别适用于高精度探测空气中甲烷含量的先进光学技术。TDLAS基本原理为,使用可调谐半导体激光器发射出特定波长激光束穿过被测气体,通过测量激光穿透气体后的强度衰减度,可以定量地分析计算获得被测气体的体积浓度。图2 TDLAS传感器原理图四方仪器研制的高精度TDLAS甲烷传感器模组具有以下技术特点:测量精度高,最小检测限可达ppb级;响应快,最高检测频率可达10Hz;具有极高的甲烷选择性,抗干扰能力强;环境适应性强;使用寿命长;模块化设计,易于安装与集成。图3 四方仪器TDLAS甲烷传感器模组3.3 四方仪器场站级和源级甲烷排放监测设备的核心技术、主要功能和应用范围图4 四方仪器-油气行业甲烷排放监测整体解决方案的应用示意图3.4 油田生产区域的甲烷排放监测应用设计图5 联合站区域甲烷排放连续监测的网格化监测点位设计图6 油井区域甲烷排放连续监测的网格化监测点位设计图7 油田生产区域车载甲烷排放监测的行驶路线及甲烷浓度示意图立即扫码下载《天然气管网全域多维气体监测一站式解决方案》
  • 中美科研合作发现全球湿地甲烷排放加剧,或威胁全球减排目标
    中国科学院青藏高原研究所(中科院青藏高原所)3月22日发布消息说,该所三极观测与大数据团队张臻研究员联合美国马里兰大学、美国宇航局及北京大学等科研人员最新完成的一项研究发现,全球湿地甲烷排放正在加剧,并可能在未来“扮演”更重要的角色,威胁全球碳排放控制目标。由中科院青藏高原所团队领衔完成的这项全球气候变化研究,利用陆面过程模型结合多个模拟实验,定量分析了2000-2021年全球湿地甲烷排放量的变化,相关成果论文近日在国际专业学术期刊《自然-气候变化》(Nature Climate Change)在线发表。论文通讯作者和第一作者张臻介绍说,湿地约占地球表面积的6%,是地球上最大的甲烷天然来源之一。甲烷是全球气候变化中仅次于二氧化碳的强效温室气体。随着全球温度的上升,湿地生态系统产生的甲烷微生物活动增加,释放出更多甲烷,这种现象被称为“湿地甲烷反馈效应”,是地球系统科学中重要的自然反馈过程,对气候变化有重要影响。联合团队在本次研究中发现,过去20年中,湿地甲烷排放量平均每年增加130万-140万吨。自2007年以来,大气中甲烷浓度开始快速增加,在2020和2021年连续两年创下历史新高,分别增加了1400万-2600万吨和1300万-2300万吨。张臻指出,此次研究表明,湿地甲烷排放的增加趋势,大大高于此前在未来严峻气候变化情景下平均每年增加90万吨的估算。已有观测数据显示,全球大气中的甲烷碳13稳定同位素含量呈持续下降趋势,这意味着大气甲烷来源的成分中,湿地等自然排放源可能是主导因素。结合陆面过程模型模拟实验,研究团队认为,在20年尺度上,甲烷排放这种高增长仅有不足5%的概率发生,但随着全球气候变暖的加剧,在一些地区,如非洲南部一些湿地,受极端气候事件影响,甲烷排放量异常增高。张臻表示,为更深入了解全球湿地甲烷上升的原因,联合研究团队这次还通过利用实地调查数据和再分析数据,估算出全球各大洲的湿地甲烷排放量。实地调查数据显示,南美洲是全球湿地甲烷排放最大贡献者,而卫星数据表明,南亚和东南亚也发挥了重要作用。联合团队研究认为,热带非洲湿地、亚马逊流域及周围湿地、南亚和东南亚的热带湿地及泥炭地可能成为贡献大气甲烷上升的重点地区。这些地区尚缺乏足够的观测资料,未来应利用卫星观测和多种观测方法加强对这些区域的监测。针对这一全球湿地甲烷排放定量分析成果,《自然-气候变化》同期发表伦敦大学皇家霍洛威学院尤恩尼斯比特(Euan Nisbet)教授的评论文章称,该研究中模型模拟结果与卫星遥感观测结果一致,表明湿地甲烷加剧效应对全球气候变化有重要影响。
  • Picarro G2210-i——奶牛场甲烷排放的同位素特征研究
    Picarro G2210-i——奶牛场甲烷排放的同位素特征研究江苏海兰达尔 2023-03-03 15:39 发表于江苏原文链接:https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021JG006675研究背景和目的甲烷的同位素特征是判断甲烷浓度升高的来源的重要工具,大气甲烷的全球稳定碳同位素比值(表示为δ13CCH4)随着CH4的大气摩尔分数的增加向更负值转变。最新的同位素证据表明,甲烷的上升可能主要是由于生物甲烷排放的增加,因为相较于化石和热源甲烷,生物甲烷的13C更少。基于这一解释,可能导致大气中甲烷浓度上升的生物来源主要包括反刍动物、稻田和湿地等。然而,鉴于我们对甲烷预算的理解仍然不完整,显然需要在区域一级对甲烷进行足够的同位素原位测量,以确定主导当前全球甲烷排放量上升的来源的位置和类型。在这项研究中,研究人员提供了来自加州圣华金谷(该州91%的奶牛群养殖在此处)一个奶牛场的δ13CCH4季节性大气测量数据。这项研究的主要目的是测量厌氧粪肥泻湖和肠发酵源区排放的δ13CCH4,并利用这一同位素特征值来确定该地区其它奶牛场的下风向羽流采样中检测到的甲烷热点的主要来源。同时,这些同位素特征有助于完善加州和全球甲烷预算的知识体系。测量仪器和方法研究人员使用移动平台收集了温室气体和污染物的连续测量数据,搭载设备包括Picarro CRDS分析仪G2210-i和G2401,GPS(记录地理位置和车速),二维声波风速计(测量风向、风速、空气温度和相对湿度)以及校准气瓶。从高度为2.87m的采样口吸入样品空气测量以下痕量气体:甲烷(CH4)、δ13CCH4、二氧化碳(CO2)、一氧化碳(CO)、乙烷(C2H6)。在每个测量周期的前后分别使用高、低两种浓度的混合标准气体对测量气体进行了校正。其中2018年秋季、2019年春季和2019年夏季使用的标气同位素值为-39.5‰,2019年秋季为-40.7‰,2020年冬季为-38.5‰。每个季节在参考测量地点收集微气象测量数据,使用的是安装在粪肥泻湖附近固定塔上的三维超声风速计(如下图1)。测量高度为2.4和11m,频率为20Hz,为了进行分析,只使用了来自2.4m高度测量的气象数据。另外在2020年1月15日,使用了一个由透明PVC材料制成的长方体腔室,用来从谷仓和静态粪堆中分离和测量。该腔室被放置在谷仓或粪堆表面,并通过Synflex管与移动平台的气体分析系统连接。对于每个样本,收集了10分钟的测量值。同时还通过与移动平台气体分析系统相连的同步管,测量了不同种类奶牛呼吸排放的δ13CCH4。图1 加州圣华金谷观测地点的设备布局和位置研究结果(部分)奶牛场不同来源的甲烷排放具有不同的甲烷同位素特征,在不同季节具有可比性(如下图3)。其中肠道发酵源的δ13CCH4信号比粪肥泻湖的甲烷更低。动物饲养区的δ13CCH4范围为-69.7±0.6‰~-51.6±0.1‰,而粪肥泻湖的δ13CCH4范围为-49.5±0.1‰~-40.5±0.2‰。同时观察到粪肥泻湖的同位素特征有一些细微的季节差异。甲烷观测值在畜栏、谷仓和粪肥泻湖之间的差异很大。在所有季节中,畜栏和谷仓的甲烷平均摩尔分数分别为5.4±3.4和8.5±6.3ppm,粪肥泻湖排放最高,为18.4±18.2ppm。图3 测量农场(畜栏、谷仓和粪肥泻湖)的季节性δ13CCH4同位素特征结论与讨论甲烷的稳定碳同位素测量是区分肠道和粪便甲烷的一种有价值的源解析技术。在试验农场内,肠道发酵源区和粪肥泻湖之间的δ13CCH4特征区分明显。这些源特征在整个季节都具有可比性,特别是来自粪肥泻湖,并且彼此之间的差异至少为~8‰。通过在下风向的观测显示,肠道发酵衍生的甲烷贡献率羽流中甲烷的0~93%,这随着排放足迹中动物畜舍和泻湖的数量而变化。测量奶牛场下风向甲烷的13C可能是监测和量化肠道和粪便排放比的有用工具,并可通过估算甲烷来源的贡献来评估减排策略的有效性。Picarro G2210-i高精度碳同位素分析仪Picarro G2210-i 同位素分析仪专为满足科学界实施实时甲烷排放源归属的需求而设计。高精度测量大气中甲烷和乙烷的功能与二氧化碳和水汽测量相结合,为用户提供一种用来测量并确定垃圾填埋场、压裂站和废弃油气井等甲烷排放源的独特工具。 编辑人:陆文涛审核人:史恒霖
  • 秋冬季大气污染攻坚,帮您捋捋非甲烷总烃的检测方案
    “十四五”期间,为实现我国碳达峰、碳中和愿景以及美丽中国建设目标,会持续加强对大气环境的治理力度,积极构建新一代大气污染防治科学体系。生态环境部于2021年10月29日联合多部门及京津冀各省市政府印发了《2021-2022年秋冬季大气污染综合治理攻坚方案》的通知。通知明确指出需加强环境质量监测能力建设,各地要按照《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》加强秋冬季颗粒物组分监测和VOCs(挥发性有机物)监测。众所周知,要完成VOCs监测离不开对NMHC(非甲烷总烃)的准确测试,今天,小编就来和大家一起捋捋。 图片来自生态环境部官网截图 VOCs和NMHCVOCs,是指参与大气光化学反应的有机化合物,或者根据有关规定确定的有机化合物。VOCs类物质成分复杂,有特殊气味且具有渗透、挥发及脂溶等特性,可导致人体出现诸多的不适症状。 在表征VOCs总体排放情况时,参考2019年之后发布的各行业大气排放标准《GB 37823-2019 制药工业大气污染物排放标准》、《GB 37824-2019 涂料、油墨及胶粘剂工业大气污染物排放标准》、《GB 39726-2020 铸造工业大气污染物排放标准》、《GB39727-2020 农药制造工业大气污染物排放标准》、以及《GB 37822-2019 挥发性有机物无组织排放控制标准》均采取非甲烷总烃(以NMHC表示)作为VOCs污染的控制项目。 现阶段非甲烷总烃结果用于VOCs总量控制是目前接受度较高的广谱性解决方案,有着以下的优势: NMHC(非甲烷总烃)主要测试标准离线测试《HJ 38-2017 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》《HJ 604-2017 环境空气 总烃甲烷和非甲烷总烃的测定 直接进样-气相色谱法》在线监测《HJ 1013-2018 固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》 离线检测方案参考HJ 38-2017、HJ 604-2017非甲烷总烃指在氢火焰离子化检测器(FID)有响应的除甲烷外的气态有机物的总和。所以非甲烷总烃的测试一般采取两根色谱柱配置两个FID检测器分别检测甲烷和总烃,再使用总烃的值减去甲烷的值即可得到非甲烷总烃数据。图1. 阀进样+GC-2010 Pro 利用岛津GC-2010 Pro系统气相建立了符合HJ 38-2017和HJ 604-2017标准要求的分析工业废气和环境空气中甲烷、总烃和非甲烷总烃的测定方法。采用十通进样阀,1mL定量环,在岛津GC-2010 Pro气相色谱仪上使用一根5A分子筛毛细管柱分析甲烷,另一根脱活石英毛细管空柱对总烃进行测定。图2和图3分别为标准气在甲烷分析柱及总烃分析柱上测试得到色谱图。 该方法一次进样可以完成甲烷和总烃的快速测定,方法灵敏度高,甲烷和总烃的检出限均小于0.03 mg/m3,定量限低于0.07 mg/m3,重复性RSD0.6%(n=6)。 在线检测方案参考HJ 1013-2018为应对日益增长的在线非甲烷总烃监测需求,岛津传承60多年气相色谱研发技术及50多年的烟气在线监测设计、生产及应用经验分别开发了应对污染源废气及环境空气的在线非甲烷总烃设备:污染源VOC-3000F及环境空气VOC-3000F(FB)。特点优势1、空气循环式色谱柱温控与APC自动流量控制技术相结合,重现性好2、更低检出限的FID检测器的应用, VOCs组分的定量更准、更灵敏3、触屏式色谱操作界面及智能检测功能,维护方便4、动态曲线跟踪补正功能(DCC)与多点校正技术的结合(专利号:202010352393.8)5、专业的空气样气采样预处理, VOCs吸附更小6、全高温防吸附、耐腐蚀预处理系统,专业应对各种复杂工况 结语岛津提供多种NMHC测试手段,为VOCs的总量测定提供强有力的技术支持,为VOCs的后续治理提供可靠数据支撑,为打好《2021-2022年秋冬季大气污染综合治理攻坚方案》贡献一份力量。助力打好蓝天保卫战,岛津在行动!
  • 秋冬季大气污染攻坚,帮您捋捋非甲烷总烃的检测方案
    “十四五”期间,为实现我国碳达峰、碳中和愿景以及美丽中国建设目标,会持续加强对大气环境的治理力度,积极构建新一代大气污染防治科学体系。生态环境部于2021年10月29日联合多部门及京津冀各省市政府印发了《2021-2022年秋冬季大气污染综合治理攻坚方案》的通知。通知明确指出需加强环境质量监测能力建设,各地要按照《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》加强秋冬季颗粒物组分监测和VOCs(挥发性有机物)监测。众所周知,要完成VOCs监测离不开对NMHC(非甲烷总烃)的准确测试,今天,小编就来和大家一起捋捋。 VOCs和NMHCVOCs,是指参与大气光化学反应的有机化合物,或者根据有关规定确定的有机化合物。VOCs类物质成分复杂,有特殊气味且具有渗透、挥发及脂溶等特性,可导致人体出现诸多的不适症状。 在表征VOCs总体排放情况时,参考2019年之后发布的各行业大气排放标准《GB 37823-2019 制药工业大气污染物排放标准》、《GB 37824-2019 涂料、油墨及胶粘剂工业大气污染物排放标准》、《GB 39726-2020 铸造工业大气污染物排放标准》、《GB39727-2020 农药制造工业大气污染物排放标准》、以及《GB 37822-2019 挥发性有机物无组织排放控制标准》均采取非甲烷总烃(以NMHC表示)作为VOCs污染的控制项目。 现阶段非甲烷总烃结果用于VOCs总量控制是目前接受度较高的广谱性解决方案,有着以下的优势: NMHC(非甲烷总烃)主要测试标准 离线检测方案参考HJ 38-2017、HJ 604-2017非甲烷总烃指在氢火焰离子化检测器(FID)有响应的除甲烷外的气态有机物的总和。所以非甲烷总烃的测试一般采取两根色谱柱配置两个FID检测器分别检测甲烷和总烃,再使用总烃的值减去甲烷的值即可得到非甲烷总烃数据。 图1. 阀进样+GC-2010 Pro 利用岛津GC-2010 Pro系统气相建立了符合HJ 38-2017和HJ 604-2017标准要求的分析工业废气和环境空气中甲烷、总烃和非甲烷总烃的测定方法。采用十通进样阀,1mL定量环,在岛津GC-2010 Pro气相色谱仪上使用一根5A分子筛毛细管柱分析甲烷,另一根脱活石英毛细管空柱对总烃进行测定。图2和图3分别为标准气在甲烷分析柱及总烃分析柱上测试得到色谱图。 该方法一次进样可以完成甲烷和总烃的快速测定,方法灵敏度高,甲烷和总烃的检出限均小于0.03 mg/m3,定量限低于0.07 mg/m3,重复性RSD为应对日益增长的在线非甲烷总烃监测需求,岛津传承60多年气相色谱研发技术及50多年的烟气在线监测设计、生产及应用经验分别开发了应对污染源废气及环境空气的在线非甲烷总烃设备:污染源VOC-3000F及环境空气VOC-3000F(FB)。 特点优势1空气循环式色谱柱温控与APC自动流量控制技术相结合,重现性好2更低检出限的FID检测器的应用, VOCs组分的定量更准、更灵敏3 触屏式色谱操作界面及智能检测功能,维护方便4 动态曲线跟踪补正功能(DCC)与多点校正技术的结合(专利号:202010352393.8)5 专业的空气样气采样预处理, VOCs吸附更小6 全高温防吸附、耐腐蚀预处理系统,专业应对各种复杂工况 结语岛津提供多种NMHC测试手段,为VOCs的总量测定提供强有力的技术支持,为VOCs的后续治理提供可靠数据支撑,为打好《2021-2022年秋冬季大气污染综合治理攻坚方案》贡献一份力量。助力打好蓝天保卫战,岛津在行动! 撰稿人:姚天明 *本文内容非商业广告,仅供专业人士参考。
  • Picarro G2301——苏州大气甲烷的时间模式和决定因素
    Picarro G2301——苏州大气甲烷的时间模式和决定因素江苏海兰达尔 2023-07-07 13:06 发表于江苏文献链接:https://doi.org/10.1016/j.apr.2023.101830研究背景在过去的几年里,中国经历了日益加剧的城市化,特别是经济最发达和城市化程度最高的长三角(YRD)地区。由于该地区城市的发展方向和农业化发展水平不同,不同城市之间的大气甲烷分布差异很大。目前对该地区大气甲烷的研究主要是基于一个城市的一个站点的观测,这可能会限制我们对甲烷浓度分布的理解,因为甲烷浓度在不同区域,甚至一个城市内也存在不同。因此,对该地区大气甲烷的观测仍然是不确定的并且稀少的。苏州是YRD地区中心的一个重要城市,拥有中国密度最高的产业和最富有的企业。然而,对于该城市大气甲烷的研究却很少。在此,研究人员基于对城市和郊区的三个站点的观测,系统地分析了苏州城市的大气甲烷,目的在于了解苏州不同区域的甲烷浓度分布和差异,并掌握其调节因素。研究方法观测地点从2020年1月至2021年12月,在苏州市的三个站点连续测量大气甲烷浓度(如下图)。这三个站点分别为吴江站(WJ),相城站(XC)和张家港站(ZJG),均设置在各区(市)的气象局内,由南向北依次分布。其中WJ站和XC站都与河流接壤,靠近城市边界,这使得它们可以成为郊区站点的代表。而ZJG站靠近市中心,因此被归类为城市站点。此外,在三个站点周围均有大型的公园广场,太湖则位于相城区的西南部。地理位置和相应的采样点测量系统三个站点的大气甲烷均使用Picarro G2301高精度温室气体分析仪进行连续测量,时间分辨率为1Hz。许多相关的研究表明,Picarro系统对于二氧化碳和甲烷摩尔分数的测量敏感而准确。空气样品通过真空泵从专用的10mm采样管进入到-50℃甲醇浴中,干燥至约-35℃露点后输送至Picarro测量系统。整个过程中,样气从入口到分析仪的停留时间小于30s。同时,记录气象参数(包括气温、压力等)。在这项研究中,研究人员使用了三瓶与WMO/GAW(甲烷:±2ppb)尺度相关的标准气体来校正测量和检查系统的性能,这一方法已在许多中国其它WMO/GAW站点有过使用。研究结果空间和时间模式位于苏州北部的ZJG站的年平均甲烷浓度是这三个站中最高的,这可能归因于城市内部功能的空间差异。张家港市重工业较密集,且靠近中国重要的稻米生产地区常熟市。尽管存在差异,但从三个站点监测到的高度相关的甲烷水平(如下图)来看,它们全年都有一个共同的来源。因此,可以用这三个站点的甲烷平均值来表示苏州市的特征。苏州三个站点大气甲烷浓度的关系基于年度观测数据,苏州市的年甲烷平均浓度为2125.33ppb,高于周边的临安站以及中国西南部的海螺沟站。同时,通过简单地减去2020年的年平均值,可以得到苏州大气甲烷的年平均增长率为8.02ppb yr-1,高于近十年全球的平均增长率以及瓦里关本底站1994~2017年间的平均增长率,但低于同样位于YRD地区的临安站的年平均增长率。根据自下而上的模型,来自自然来源的甲烷全球排放已经超过了人为来源,这其中来自湿地以及河流、湖泊等陆地淡水系统的排放量更是天然甲烷排放的主要来源。苏州作为经济发达的城市,可能有很强的人为甲烷排放,但我们仍然不能说甲烷主要来自于人为排放。因为苏州紧邻太湖,而太湖是中国最大的淡水湖之一,平均深度仅1.9米,是大气甲烷的强大来源。此外,黄海作为一个大型的自然湿地,距离苏州市仅有100公里,这可能是另一个大型的自然来源。从季节变化来看,苏州市大气甲烷水平春季和冬季较低,夏秋两季较高,这种模式也与以往的研究结果一致。同时,有一个有趣的现象,甲烷摩尔分数的谷值出现在每年的7月和8月,但一旦有降雨,甲烷会立即上升。这一现象可能是因为,强烈的光解反应在干燥期(持续高温干旱)积累了大量的OH自由基,这加剧了甲烷的消耗(甲烷被OH自由基氧化),导致浓度下降。而一旦开始下雨,湿沉降对于OH自由基有显著的去除作用,甲烷的浓度可以得到恢复。城市甲烷浓度的驱动因素双极图显示,在WNW,W和WSW方向的低风速(<3m s-1)下,甲烷存在高浓度情况,这表明观测站点存在来自西南方向的局部来源。在长江三角洲地区,水稻种植和湿地是大气甲烷的主要来源。因此,位于西南部的太湖湿地可能是重要的贡献者。双极图显示了不同季节的风速与甲烷浓度之间的相关性此外,对24小时后向轨迹的聚类分析显示,站点还分别受到东北方向的黄海和东南方向的东海的传输影响,这两者是苏州大气甲烷的重要来源,来自这些方向的气团路径占了总数的一半以上。当这些气团经过上海时,它们可能会携带来自能源和化工企业等各种来源的受污染的甲烷。2020年和2021年苏州三个站点的24小时后向轨迹聚类分析结论这项研究记录了长三角地区经济发达城市苏州的三个站点连续两年的甲烷测量,这三个站点甲烷的平均浓度能作为苏州城市的代表值。苏州甲烷的年平均浓度呈上升趋势,不同季节甲烷浓度存在显著差异,其中夏秋季较高,冬春季较低。位于苏州市西南部的太湖以及黄海和东海的传输是苏州大气甲烷的重要区域来源。编辑人:陆文涛审核人:史恒霖感谢本文作者浙江工业大学 方双喜教授团队对本推文的指导与支持!
  • 明确甲烷监测体系建设实施要点,8部门印发《广东省甲烷排放控制工作方案》
    8月26日,为积极应对气候变化,加强甲烷排放控制,根据生态环境部等11部门印发的《甲烷排放控制行动方案》(环气候〔2023〕67号),结合本省实际,广东省生态环境厅等8部门印发《广东省甲烷排放控制工作方案》,加快形成甲烷排放监管体系,推进减污降碳协同增效,有力有序有效控制甲烷排放。《方案》提出,到2025年,甲烷排放控制政策、技术和标准体系逐步建立,甲烷排放统计核算、监测监管等基础能力有效提升,甲烷资源化利用和排放控制工作取得积极进展。城市生活垃圾资源化利用率和城市污泥无害化处置率持续提升,污水处理甲烷回收利用水平持续提升。种植业、养殖业单位农产品甲烷排放强度稳中有降。到2030年,甲烷排放控制政策、技术和标准体系进一步完善,甲烷排放统计核算、监测监管等基础能力明显提升,甲烷排放控制能力和管理水平有效提高,甲烷排放持续稳步下降。全省废弃物处理往资源化、减量化方向持续推进。种植业、养殖业单位农产品甲烷排放强度进一步降低。能源领域甲烷排放得到有效控制。其中,重点任务“监测体系建设行动”指出:探索开展甲烷排放监测试点,在重点领域推广甲烷排放源监测,建设农田甲烷排放试验监测站。在现有的生态环境监测体系下,逐步建立地面监测、无人机和卫星遥感等天空地一体化的甲烷监测体系。结合省级温室气体清单编制工作,推动温室气体排放数据综合管理系统建设,建立重点行业企业甲烷排放核算和报告制度,推进甲烷排放因子本地化,逐步实现甲烷排放常态化核算,促进跨部门数据共享。探索开展大气甲烷浓度反演排放量模式等研究,加强反演数据对核算数据的校核。文件具体内容如下:广东省生态环境厅等8部门关于印发《广东省甲烷排放控制工作方案》的通知粤环〔2024〕6号各地级以上市人民政府,省有关单位:  经省人民政府同意,现将《广东省甲烷排放控制工作方案》印发给你们,请认真组织实施。广东省生态环境厅 广东省发展和改革委员会广东省科学技术厅 广东省工业和信息化厅广东省财政厅 广东省住房和城乡建设厅广东省农业农村厅 广东省能源局2024年8月22日广东省甲烷排放控制工作方案为积极应对气候变化,加强甲烷排放控制,根据生态环境部等11部门印发的《甲烷排放控制行动方案》(环气候〔2023〕67号),结合我省实际,制定本工作方案。一、总体要求坚持以习近平生态文明思想为指导,全面贯彻党的二十大和二十届二中、三中全会精神,深入贯彻习近平总书记对广东重要讲话、重要指示精神,坚持降碳、减污、扩绿、增长协同推进,处理好减排和发展、安全的关系,以经济社会发展全面绿色转型为引领,以夯实基础能力为关键,以高效利用、技术创新、协同控制为手段,加快形成甲烷排放监管体系,推进减污降碳协同增效,有力有序有效控制甲烷排放。到2025年,甲烷排放控制政策、技术和标准体系逐步建立,甲烷排放统计核算、监测监管等基础能力有效提升,甲烷资源化利用和排放控制工作取得积极进展。城市生活垃圾资源化利用率和城市污泥无害化处置率持续提升,污水处理甲烷回收利用水平持续提升。种植业、养殖业单位农产品甲烷排放强度稳中有降。到2030年,甲烷排放控制政策、技术和标准体系进一步完善,甲烷排放统计核算、监测监管等基础能力明显提升,甲烷排放控制能力和管理水平有效提高,甲烷排放持续稳步下降。全省废弃物处理往资源化、减量化方向持续推进。种植业、养殖业单位农产品甲烷排放强度进一步降低。能源领域甲烷排放得到有效控制。二、重点任务(一)固废填埋甲烷减排行动。建立生活垃圾分类处理体系,推进生活垃圾再生资源回收利用。生活垃圾填埋场设置导气收集设施,对填埋气体进行无害化处理。鼓励采取库容腾退、生态修复等措施有序推动填埋场封场整治。到2025年,珠三角地区实现垃圾“零填埋”,粤东西北地区垃圾焚烧占比达65%以上,全省城市生活垃圾资源化利用率不低于60%。(省发展改革委、生态环境厅、住房城乡建设厅等按职责分工负责)(二)废水处理甲烷减排行动。全面提升城镇生活污水收集处理能力,推进污水资源化利用和污泥无害化资源化处理。开展高甲烷排放行业企业甲烷回收利用试点示范,推广应用先进适用技术和成果。鼓励有条件的污水处理项目采用污泥厌氧消化等方式,并加强沼气回收利用。到2025年,全省地级及以上城市污泥无害化处置率达到95%以上,其他城市达到90%以上。(省发展改革委、科技厅、工业和信息化厅、生态环境厅、住房城乡建设厅等按职责分工负责)(三)种植业甲烷减排行动。强化稻田水分管理,推广稻田节水灌溉技术。鼓励试点改进稻田施肥管理,推广缓控释肥、有机肥替代化肥、秸秆炭化还田、秸秆基质还田、秸秆腐熟还田等技术。选育推广高产、优质、低碳水稻品种,示范好氧耕作等关键技术,创建示范项目和工程。推广绿色高效种养模式,开展水旱轮作试验示范,集成示范全过程绿色高质高效技术模式。(省发展改革委、工业和信息化厅、农业农村厅等按职责分工负责)(四)畜禽养殖减排行动。以畜禽规模养殖场为重点,推广工业化生产的集约化养殖模式,推广低蛋白日粮、全株青贮等技术和高产低排放畜禽品种,降低单位畜禽产品肠道甲烷排放强度。改进畜禽粪污处理设施装备,推广粪污密闭处理、气体收集利用或处理等技术,建立粪污资源化利用台账,实施畜禽粪污养分平衡管理,提高畜禽粪污处理水平,减少畜禽粪污排放甲烷等温室气体。到2025年,全省畜禽粪污综合利用率达到80%以上,2030年达到85%以上。(省发展改革委、工业和信息化厅、农业农村厅、生态环境厅等按职责分工负责)(五)农业碳汇提升行动。推广有机肥施用、秸秆科学还田、绿肥种植、粮豆轮作、有机无机肥配施等技术,构建用地养地结合的培肥固碳模式。将农田整治提升作为重点事项,推进退化耕地治理,提高土壤肥力,提升固碳潜力。持续推进秸秆肥料化、饲料化、能源化、原料化和基料化利用,发挥好秸秆直接还田耕地保育固碳和种养结合功能。推广秸秆还田后的水分、氮肥优化管理等科学技术措施,提高土壤固碳能力。到2025年,全省秸秆综合利用率稳定在86%以上。(省发展改革委、工业和信息化厅、农业农村厅、能源局等按职责分工负责)(六)可再生能源替代行动。发展农村沼气,鼓励有条件地区建设规模化沼气工程,推进沼气集中供气供热、发电上网,开展生物天然气车用或并入燃气管网等替代化石能源的试点示范。推广生物质成型燃料、打捆直燃、热解炭气联产等技术,配套清洁炉具和生物质锅炉,推广太阳能热水器、太阳能灯、太阳房,利用农业设施棚顶、鱼塘等发展光伏农业,助力农村地区清洁用能。(省发展改革委、农业农村厅、能源局等按职责分工负责)(七)油气系统甲烷减排行动。促进油气田放空甲烷排放管控,鼓励企业因地制宜开展伴生气与放空气回收利用,不能回收或难以回收的,应经燃烧后放空。完善油气领域泄漏检测与修复技术规范体系,推动全产业链泄漏检测与修复常态化应用。加强管线先进维检修技术、设备的研究与应用,有效提升甲烷泄漏控制能力。全面强化无组织排放控制,减少施工和使用过程中甲烷逸散排放。科学规划设计新建油气作业项目,在确保生产安全的基础上,努力逐步减少常规火炬燃放。到2025年,油气行业单位油气当量甲烷排放强度下降40%以上,油气放空气回收利用率达到50%以上。(省发展改革委、住房和城乡建设厅、生态环境厅、应急管理厅、市场监管局、能源局等按职责分工负责)(八)污染物与甲烷协同控制行动。制定重点领域污染物与甲烷协同控制技术指南,构建污染物减排与甲烷排放控制一体推进的治理体系。加强挥发性有机物与甲烷协同控制,妥善处置工业生产产生的含甲烷可燃性气体。推进垃圾填埋场恶臭污染物与甲烷协同控制。鼓励对废水有机物含量高、可生化性较好的行业依法依规与城镇污水处理厂协商水污染物纳管浓度。推动机动车船动力系统技术提升,实现污染物与甲烷协同控制。到2025年,污染治理与甲烷排放协同控制能力明显提升。(省发展改革委、工业和信息化厅、生态环境厅、住房城乡建设厅、农业农村厅等按职责分工负责)(九)监测体系建设行动。探索开展甲烷排放监测试点,在重点领域推广甲烷排放源监测,建设农田甲烷排放试验监测站。在现有的生态环境监测体系下,逐步建立地面监测、无人机和卫星遥感等天空地一体化的甲烷监测体系。结合省级温室气体清单编制工作,推动温室气体排放数据综合管理系统建设,建立重点行业企业甲烷排放核算和报告制度,推进甲烷排放因子本地化,逐步实现甲烷排放常态化核算,促进跨部门数据共享。探索开展大气甲烷浓度反演排放量模式等研究,加强反演数据对核算数据的校核。(省发展改革委、生态环境厅、农业农村厅等按职责分工负责)(十)科技创新支撑行动。加大科技研发支持力度,持续开展资源化利用、高产低排放育种、监测等关键技术的研发创新,发布各领域甲烷减排技术目录,形成一批综合性技术解决方案。加快推进重点领域甲烷排放控制装备和技术集成化和产业化,部署建设一批国家重点研发创新项目和重大工程。全面落实生活垃圾填埋场污染控制、城镇污水处理厂污染物排放等标准,鼓励大型企业开展甲烷减排,推动相关产业发展。(省发展改革委、科技厅、生态环境厅等按职责分工负责)(十一)标准体系建设行动。开展甲烷排放相关标准制修订工作,适时提升油气甲烷泄漏排放标准,制订水稻、畜禽养殖及废物资源化利用甲烷排放控制技术规范,制修订甲烷排放监测、核算、报告、核查等技术规范,完善甲烷利用项目温室气体减排量核算方法,及时更新缺省排放因子。开发固体废弃物资源化利用等减少甲烷排放的方法学。(省发展改革委、工业和信息化厅、生态环境厅、农业农村厅、市场监管局等按职责分工负责)(十二)经济激励政策创新行动。推进具有甲烷减排效益的项目纳入EOD项目库。探索研究水稻种植和畜禽养殖甲烷减排奖补政策。探索将甲烷纳入广东碳市场或碳普惠等市场机制,支持符合条件的甲烷利用和减排项目开展温室气体自愿减排交易。鼓励甲烷排放控制工程项目开展气候投融资。(省发展改革委、财政厅、生态环境厅、住房城乡建设厅、农业农村厅等按职责分工负责)三、保障措施(一)加强组织领导。省生态环境厅会同有关部门,制定具体落实措施,加强统筹协调和调度指导,推动信息互联互通,形成工作合力。充分发挥行业协会等社会团体作用,督促企业自觉履行社会责任。(省发展改革委、科技厅、工业和信息化厅、财政厅、生态环境厅、住房城乡建设厅、农业农村厅、能源局等按职责分工负责)(二)强化责任落实。健全甲烷减排工作协调机制,加强省与市县政策的纵向协同和财政政策与相关体系的横向协同,形成政策与资金的工作合力,确保各项重点举措落地见效。生态环境部门会同有关部门加强行动方案实施情况的跟踪调度分析,定期调度落实甲烷排放控制目标任务。(省发展改革委、科技厅、工业和信息化厅、财政厅、生态环境厅、住房城乡建设厅、农业农村厅、能源局等按职责分工负责)(三)加强国际合作。通过气候变化南南合作、“一带一路”绿色发展国际联盟等平台,在甲烷控制政策、技术、标准体系、甲烷监测、核算、报告和核查体系以及减排技术创新等方面加强交流合作。(省发展改革委、科技厅、工业和信息化厅、生态环境厅、住房城乡建设厅、农业农村厅等按职责分工负责)(四)强化宣传引导。开展对甲烷排放监测、核算、报告和核查体系建立以及污染物与甲烷控制的相关培训。充分利用各类传统媒体和新媒体,拓宽宣传渠道,加强对甲烷排放控制的气候、经济、环境和安全效益的宣传,开展甲烷减排优秀做法和典型经验做法宣传。(省发展改革委、生态环境厅、住房城乡建设厅、农业农村厅等按职责分工负责)附件:广东省甲烷重大项目专栏广东省甲烷重点项目专栏专栏1固废填埋甲烷减排行动实施要点1.珠三角地区的江门市和粤东粤西粤北地区的阳江、河源、清远、云浮市等焚烧能力占比较低的地市,要加快谋划和推进焚烧发电项目建设,提升焚烧处理能力。2.对于有富余焚烧能力的地区,鼓励开展生活垃圾填埋场存量垃圾筛分治理工作,腾退填埋场库容。3.鼓励通过联合重整方式实现垃圾填埋气柔性制备绿色氢气/甲醇,实现资源高效利用,减少甲烷排放。支持广州市垃圾填埋气联合重整柔性制备绿色氢气/甲醇关键技术示范项目。专栏2 废水处理甲烷减排行动实施要点1.推进污泥源头减量和末端无害化处置,推行“深度脱水+焚烧掺烧”技术路线,按“集中+分散”模式建设污泥处理处置设施。鼓励引导污泥干化减量,鼓励与燃煤电厂协同处理、与城市固废协同资源化利用。支持推进佛山市生活垃圾资源化(掺烧)项目、东莞市污泥焚烧处置设施等项目建设。2.鼓励食品饮料、造纸等行业和园区开展工业废水厌氧处理甲烷回收利用试点示范项目。专栏3 种植业甲烷减排行动实施要点1.开展华南双季稻节水减排与绿色高产关键技术研发与集成示范。根据粤、东、西、北和珠三角稻作区的气候生态环境和耕作模式(直播、抛秧、机插秧等)特点以及各地稻米产业的品种需求,筛选适用于直播和机插秧等耕作模式的低甲烷排放、节水耐旱和优质高产品种4-6个。通过节水灌溉、水肥耦合高效运筹技术和秸秆好氧还田耕作等关键技术的创新集成低碳高产综合技术模式2-3套,建立低碳高产综合技术示范基地2000亩,技术示范推广50000亩次,培训农技人员600人次以上。2.开展农业水旱轮作碳减排及耕地固碳增汇试验示范项目。从土壤灌溉优化管理、低碳减排栽培技术模式构建、耕地固碳增汇等技术研究形成不同水旱轮作模式下的协同控制甲烷和氧化亚氮排放的肥料运筹和栽培管理技术,开展技术集成与应用示范。3.推广集成示范全过程绿色高质高效技术模式。采用无人拖拉机耕田,无人平地机整地,无人插秧机和无人直播机播种,无人收割机收获,机械烘干的现代化种田模式,进行耕、种、管、收及加工,实现了全程机械化、信息化、智能化融合发展。专栏4 畜禽养殖减排行动实施要点1.鼓励畜禽粪污还田利用,指导规模养殖场制定畜禽粪肥还田利用计划,推动建立畜禽粪污处理和粪肥利用台账。加快畜禽粪污资源化利用先进技术和装备研发,支持养殖场户建设畜禽粪污处理和利用设施。积极推广全量收集利用畜禽粪污、全量机械化施用等经济高效的粪污资源化利用技术模式。支持畜禽养殖粪污处理气体收集利用工程及协同控制示范项目建设。2.开展畜禽养殖甲烷排放控制技术研究与示范推广。开发微量高效的甲烷减排高效饲料添加剂,研究制定畜禽生产过程中甲烷排放核算标准,开展畜禽甲烷减排评估工作,建立科学有效的畜禽养殖全过程甲烷排放控制方案,开展试点示范工作,进行新技术示范推广。专栏5 秸秆综合利用行动实施要点1.开展基于秸秆低碳高值利用的稻田固碳减排产业链技术集成与示范,创建基于植物成型的生物炭碳足迹计量方法,制定秸秆低碳利用技术标准/规程1-2个,建立相应的试验示范区1-2个,合计面积500亩-1000亩。2.开展水稻秸秆低碳利用技术示范项目,基于还田方式、水分管理和养分管理集成并构建水稻秸秆低碳利用综合技术。建设典型示范区3个,示范面积500亩以上,评估示范技术对甲烷排放、有机碳、产量等的影响,形成可推广的技术模式。3.开展零甲烷排放的固碳型秸秆基快递包装材料及应用示范,建成可消纳1万亩农田秸秆的示范基地,建成千吨级秸秆基复合材料及易回收循环利用快递箱加工生产示范线。专栏6 监测体系建设行动实施要点1.开展甲烷监测技术试点项目,以深圳市为试点,构建环境条件的垃圾填埋场甲烷浓度监测和排放反演方法,建立全面、高准确度的城市垃圾填埋场甲烷排放清单,全面了解城市的垃圾填埋场排放规模和分布,并进一步推广至其他重点行业和区域(如工业园区、港口码头等)的甲烷浓度监测及排放反演,以提升对不同行业和区域的甲烷排放源的认知水平。通过这种“自上而下”的方法系统梳理整个城市的甲烷排放情况,为甲烷控排行动提供数据支撑。2.开展省稻田甲烷监测技术试点示范项目,围绕我省主要稻田种植区域,采用原位监测耦合大尺度气象数据,建设1个广东省稻田甲烷原位监测体系,全面系统监测稻田生态系统甲烷碳排放,结合实地监测数据和模型预测,评估广东省典型稻田甲烷减排固碳潜力。
  • 基于TDLAS技术测量大气及土壤甲烷呼吸研究取得新进展
    近日,中科院合肥研究院安光所高晓明研究员团队在利用可调谐激光吸收光谱技术(TDLAS)测量大气甲烷(CH4)及土壤甲烷呼吸方面取得新进展,相关研究以《用于生态应用的双增强型多通池波长调制光谱CH4传感器》为题发表在国际知名期刊Optics Express上。CH4作为一种在大气中存在寿命较短的温室气体,其排放的控制对于减缓温室效应有着重要意义。在CH4循环中,土壤既是既是它的来源,也是固碳减少大气碳的去处,土地的利用方式会对CH4循环造成重要影响。为了了解不同土壤在CH4循环中的贡献,需要测量土壤中CH4通量。TDLAS是气体检测中常用的技术之一,具有高灵敏度、高精度、高选择性,以及响应速度快等优点。为了获得更高的检测灵敏度,通常使用多通池来增加吸收光程。传统的赫里奥特池存在镜面利用率低,为达到更长的光程需要增加多通池基长所导致的吸收池体积庞大的问题。团队刘锟研究员、王瑞峰博士研究生等人提出一种双增强型赫里奥特多通池,采用再入射的方法在33.3厘米的多通池基长下实现了73.926米的有效吸收光程,再结合温度控制和吸收线锁定等优化方法,提高了系统的长期稳定性和耐用性,研发的设备探测极限达到10ppbv。团队还利用该设备对草地CH4通量进行了测量,并对大气CH4进行了长期观测。该研究工作得到国家重点研发计划项目,国家自然科学基金等项目的资助。CH4传感器原理图草地CH4通量测量示意图与通量测量结果
  • 《甲烷排放控制行动方案》明确:在重点领域推广甲烷排放源监测
    生态环境部、外交部、国家发展和改革委员会、科学技术部、工业和信息化部、财政部、自然资源部、住房和城乡建设部、农业农村部、应急管理部、国家能源局等11部门在7日公布《甲烷排放控制行动方案》(以下简称《方案》),明确提出“十四五”和“十五五”期间甲烷排放控制目标,这是我国开展甲烷排放管理控制的顶层设计文件。甲烷是全球第二大温室气体,具有增温潜势高、寿命短的特点。积极稳妥有序控制甲烷排放,兼具减缓全球温升的气候效益、能源资源化利用的经济效益、协同控制污染物的环境效益和减少生产事故的安全效益。近年来,我国在甲烷资源化利用方面取得一定成效,但甲烷排放控制仍然面临统计监测基础较为薄弱、法规标准体系尚不完备等问题,技术和管理能力亟待提高,需要采取更加有力的措施,切实提升甲烷排放统计核算、监测监管等基础能力,全面有序推进甲烷排放控制工作,积极参与应对气候变化全球治理。《方案》指出:加强甲烷排放监测。探索开展甲烷排放监测试点,在重点领域推广甲烷排放源监测。根据我国甲烷排放特征,在现有的生态环境监测体系下开展甲烷环境浓度监测,逐步建立地面监测、无人机和卫星遥感等天空地一体化的甲烷监测体系。加强关键技术创新。加强不同领域甲烷排放特征规律研究,持续开展资源化利用、高产低排放育种、监测等关键技术的研发创新,强化甲烷排放控制技术示范工程建设,将甲烷排放控制相关技术纳入国家重点推广的低碳技术目录,加快推进重点领域甲烷排放控制装备和技术的集成化和产业化,部署建设一批国家重点研发创新项目和重大工程。按照《方案》,“十四五”期间,甲烷排放控制政策、技术和标准体系逐步建立,甲烷排放统计核算、监测监管等基础能力有效提升,甲烷资源化利用和排放控制工作取得积极进展。种植业、养殖业单位农产品甲烷排放强度稳中有降,全国城市生活垃圾资源化利用率和城市污泥无害化处置率持续提升。“十五五”期间,甲烷排放控制政策、技术和标准体系进一步完善,甲烷排放统计核算、监测监管等基础能力明显提升,甲烷排放控制能力和管理水平有效提高。煤矿瓦斯利用水平进一步提高,种植业、养殖业单位农产品甲烷排放强度进一步降低。此后,石油— 7 —天然气开采行业力争逐步实现陆上油气开采零常规火炬。附:甲烷排放控制行动方案.pdf
  • 生态环境部:关于控制副产三氟甲烷排放的通知
    各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局:  《〈关于消耗臭氧层物质的蒙特利尔议定书〉基加利修正案》(以下简称《基加利修正案》)将于2021年9月15日对我国正式生效。自生效之日起,我国须履行《基加利修正案》关于控制副产三氟甲烷(HFC-23)排放的管理要求。为进一步明确HFC-23履约要求,确保实现履约目标,现就有关事项通知如下:  一、自2021年9月15日起,二氟一氯甲烷(HCFC-22)或氢氟碳化物(HFCs)生产过程中副产的HFC-23不得直接排放。  二、除作为原料用途和受控用途使用外,副产HFC-23应采用《关于消耗臭氧层物质的蒙特利尔议定书》缔约方大会核准的销毁技术(见附件)尽可能销毁处置。  三、企业应建立HFC-23副产设施及销毁处置设施运行台账,对HFC-23产生量、销毁量、储存量、使用量、销售量等进行监测和计量,并按有关规定报送数据,具体规定将另行发布。  四、企业应加强HFC-23排放管理,配套HFC-23存储设施(设备)或采用其他措施,避免在销毁处置设施出现停车等紧急情况时向大气直接排放HFC-23。当HFC-23回收、存储和销毁设施无法正常运行时,应停止相应HCFC-22或HFCs的生产,防止HFC-23直接排放。  五、企业应加强装置、设备的维护管理,防止HFC-23泄漏和排放,并接受生态环境主管部门的检查。  六、鼓励企业开展生产技术革新和升级改造,降低HFC-23副产率,开发推广将HFC-23作为原料用途的资源化利用技术。  各级生态环境主管部门要积极督促和协助企业认真执行上述规定,切实做好HFC-23排放管理工作。对违反上述规定的企业,各地生态环境主管部门应会同有关部门依据《消耗臭氧层物质管理条例》有关规定予以查处。  附件:《关于消耗臭氧层物质的蒙特利尔议定书》缔约方大会核准的HFC-23销毁技术清单  生态环境部办公厅  2021年9月10日  (此件社会公开)  抄送:发展改革委、工业和信息化部办公厅,中国石油和化学工业联合会,中国氟硅有机材料工业协会。  附件《关于消耗臭氧层物质的蒙特利尔议定书》缔约方大会核准的HFC-23销毁技术清单编号技术简介1气体或烟气氧化气体或烟气氧化使用耐火材料衬里的燃烧室,利用天然气等辅助流加热烟气流而工作,典型的燃烧室温度大于1100℃,销毁物质停留时间1-2秒。该技术主要用于氟化工制造厂的生产设备,作为工厂工艺流程的组成部分,可连续运行,用于销毁废气流中的副产物。2液体喷射式焚烧液体喷射焚烧炉通常是带有一个或多个废物燃烧器的单室焚烧炉,液体废物被注入其中,被雾化成细小液滴,并在悬浮液中燃烧。切向燃烧通常用于促进湍流混合。之后通过淬火步骤,回收酸性气体以进行中和。废气被引导至吸收器以及干式/湿式洗涤器吸收。3反应炉裂解反应炉裂解利用了一个由石墨制成的圆柱形水冷式反应器,以及一个能使反应器温度达到2000℃的氢氧燃烧器系统。这样,设备避免了产生大量的烟道气,从而避免了污染物的大量排放,并使得回收酸性气体成为可能。4回转窑焚烧回转窑焚烧炉是耐火材料衬里的旋转圆柱钢壳,安装在水平方向的一个小斜面上。大多数回转窑都配有加力燃烧器,以确保完全消除废气,氢氟碳化物(HFCs)通常被用作燃料。回转窑常被纳入商业焚烧炉设施的设计中,可用于销毁各种废物。5氩气等离子弧氩气等离子弧热解过程将液态或气态废物直接与电等离子体炬产生的氩气等离子体射流(“飞行中”)混合。氩气可防止与割炬组件发生反应。废物在反应室(飞行管)中迅速加热到大约3000℃并发生热解。在热解之后,迅速进行碱淬火至温度低于100℃,限制二恶英/呋喃的形成,废气通过碱洗塔后释放。该技术具有很高的自动化水平和最低监管要求,以及与安全相关的快速关闭功能。6氮气等离子弧氮气等离子弧除氮气为工作气外,过程类似于氩气等离子弧。由直流等离子炬与水冷电极一起工作产生的热等离子体会分解消耗臭氧层物质(ODS)和HFCs。液化气可以直接从其加压存储设备送入反应器中,而液体先送入压力容器中,然后在送入反应器之前与压缩空气一起送入蒸发器中。来自等离子体的气体被送入氧化管,在其中首先使ODS和HFCs与蒸汽反应,分解为一氧化碳(CO),氢氟酸(HF)和盐酸(HCl)。将空气引入管的底部以将CO氧化为二氧化碳(CO2)。7与氢气和二氧化碳产生化学反应HFCs与氢气和二氧化碳的热反应导致其不可逆地转化为卤化氢(例如HCl和HF)和/或卤化物盐。销毁过程旨在产生和收集可销售的副产品(HCl和HF);使烟囱(废气)中的HCl、HF和CO含量降至最低。8过热蒸汽反应堆在过热蒸汽反应器中,卤代烃在高温气相中发生分解。首先将卤代烃,蒸汽和空气混合并预热至500ºC,然后将混合气送入电加热至850-1000ºC的管式反应器。分解主要通过水合作用产生HF、HCl和CO2。废气被引入洗涤塔冷却器,在冷却器中用氢氧化钙(Ca(OH)2)溶液冲洗将废气淬灭并中和酸。由于废气淬火,二恶英/呋喃的浓度降至最低。该技术在HFCs(包括HFC-23)的销毁方面具有很高的潜力。    注:本清单为《关于消耗臭氧层物质的蒙特利尔议定书》第30次缔约方大会核准的HFC-23销毁技术清单。
  • 全国首个化学纤维大气污染物排放地方标准发布!
    为防治环境污染,改善生态环境质量,保障人体健康,加强浙江省化学纤维工业大气污染物的排放控制,促进企业生产工艺、污染治理技术的进步和可持续发展,浙江省人民政府近日正式印发实施《化学纤维工业大气污染物排放标准》(DB33/2563—2022)(以下简称《标准》)。《标准》规定了化学纤维工业大气污染物排放控制要求、监测和监督管理要求等,据了解,这是全国首个化学纤维工业大气污染物排放地方标准。该《标准》涵盖以下污染物:化学纤维(用天然或合成高分子化合物经化学加工制得的纤维,涵盖GB/T 4754—2017中化学纤维制造业(C28),包括纤维素纤维原料及纤维制造(C 281)、合成纤维制造(C 282)和生物基材料制造(C 283));再生纤维(以天然产物(纤维素、蛋白质等)为原料,经纺丝过程制成的化学纤维);合成纤维(以石油、天然气及煤等产品为原料,用有机合成的方式制成单体,聚合后经纺丝加工制成的纤维。主要产品有聚酯纤维(涤纶)、聚酰胺纤维(锦纶)、聚丙烯腈纤维(腈纶)、聚丙烯纤维(丙纶)、聚乙烯醇纤维(维纶)、聚氨酯弹性纤维(氨纶)以及其他芳香族聚酰胺纤维等);生物基化学纤维(以生物质为原料或含有生物质来源单体的聚合物所制成的纤维);循环再利用化学纤维(采用回收的废旧聚合物材料和废旧纺织材料加工制成的纤维);挥发性有机物 VOCs(参与大气光化学反应的有机化合物,或根据有关规定确定的有机化合物。在表征VOCs总体排放情况时,根据行业特征和环境管理要求,采用总挥发性有机物(以TVOC表示)、非甲烷总烃(以NMHC表示)作为污染物控制项目);总挥发性有机物TVOC(采用规定的监测方法,对废气中的单项VOCs物质进行测量,加和得到VOCs物质的总量,以单项VOCs物质的质量浓度之和计。实际过程中,应按预期分析结果,对占总量90%以上的单项VOCs物质进行测量,加和得出);非甲烷总烃NMHC(采用规定的监测方法,氢火焰离子化检测器有响应的除甲烷外的气态有机化合物的总和,以碳的质量浓度计);VOCs 物料(VOCs质量占比大于等于10 %的原辅材料、产品和废料(渣、液),以及有机聚合物原辅材料和废料(渣、液));油雾(工业生产过程中挥发产生的油剂(矿物油、植物油、动物油、合成油等)及其加(受)热分解或裂解产物);工艺废气(生产过程及其辅助配套设施排放的废气。包括浆粕生产、原液制备、酸站、精炼、溶剂回收、聚合、纺丝、后处理、组件等清洗等生产工序)。作为对大气污染物监控的要求,《标准》指出,企业应按照有关法律法规、《环境监测管理办法》和 HJ 1139 等规定,建立企业监测制度,制订监测方案,对大气污染物排放状况开展自行监测,保存原始监测记录。并且,企业安装污染物排放自动监控设备的要求,按有关法律法规和《污染源自动监控管理办法》等规定执行。 大气污染物的分析测定采用表7中所列的方法标准:
  • 《固定污染源废气中非甲烷总烃排放连续监测技术指南(试行)》发布
    p   非甲烷总烃是目前固定汚染源挥发性有机物监测的主要指标之一。为规范非甲烷总烃的监测,生态环境部已发布多项标准:《HJ1013-2018 固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》、《HJ1012-2018 环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》等。 /p p   为落实《关于加强重点排污单位自动监控建设工作的通知》(环办环监〔2018〕25号)要求,规范污染源挥发性有机物自动监控设施安装、运行维护管理工作,生态环境部组织制定了《固定污染源废气中非甲烷总烃排放连续监测技术指南(试行)》,并与近日印发。 /p p   《技术指南》主要规范的是采用氢火焰离子化检测器(即FID)进行固定污染源废气中非甲烷总烃连续监测的系统,值得注意的是,若采用氢气钢瓶作为工作气源的,则应在监测站房内安装氢气报警器。 /p p   全文如下: /p p style=" text-align: center " strong 固定污染源废气中非甲烷总烃排放连续监测技术指南( 试 行 ) /strong /p p   为 span style=" color: rgb(255, 0, 0) " 规范采用氢火焰离子化检测器(即FID)进行固定污染源废气中非甲烷总烃连续监测系统 /span 的建设、运行和管理,制定本指南。 /p p    strong 一、安装建设要求 /strong /p p   (一)系统组成 /p p   固定污染源非甲烷总烃连续监测系统(以下简称NMHC-CEMS)由非甲烷总烃监测单元和烟气参数监测单元、数据采集与处理单元组成。 /p p    span style=" color: rgb(255, 0, 0) " NMHC-CEMS应当实现测量烟气中非甲烷总烃浓度、烟气参数(温度、压力、流速或流量、湿度等),同时计算废气中污染物排放速率和排放量 /span ,显示(可支持打印)和记录各种数据和参数,形成相关图表,并通过数据、图文等方式传输至管理部门等功能。 /p p   进入NMHC-CEMS燃烧(焚烧、氧化)装置,需要补充空气进行燃烧、氧化反应的废气,还应实现同时测量含氧量的要求。含氧量参与污染物折算浓度计算的,应按排放标准要求换算为大气污染物基准排放浓度。利用锅炉、工业炉窑、固体废物焚烧炉焚烧处理有机废气的,烟气基准含氧量按其排放标准规定执行。 /p p   (二)技术性能要求 /p p   满足《固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》(HJ 1013)中技术要求。 /p p   (三)监测站房要求 /p p   满足《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范》(HJ 75)中关于固定污染源烟气排放连续监测系统监测站房的要求。 /p p    span style=" color: rgb(255, 0, 0) " 若采用氢气钢瓶作为工作气源的,则应在监测站房内安装氢气报警器, /span 站房外张贴显著的防火标识,同时应按照《爆炸性环境 第1部分:设备 通用要求》(GB 3836.1)中相关规定配备防爆等安全设施。 /p p   (四)安装位置要求 /p p   满足HJ 75中关于固定污染源烟气排放连续监测系统安装位置的要求。 /p p   设置采样或监测平台时,应易于人员和监测仪器到达,当采样平台设置在离地面高度≥2m的位置时,应有通往平台的斜梯,宽度应≥0.9m,有条件的可采用旋梯、Z字梯或升降梯等。 /p p   (五)安装施工要求 /p p   满足HJ 75中关于固定污染源烟气排放连续监测系统安装施工要求。 /p p   固定污染源排放废气中含强腐蚀性气体时,样品经过的器件或管路需选用耐腐蚀性材料。室外部件的外壳或外罩还应至少达到《外壳防护等级(IP代码)》(GB/T 4208)中IP55防护等级要求。样品传输管线应具备稳定、均匀加热和保温的功能,其加热温度应符合有关规定,加热温度值应能够在机柜或系统软件中显示查询。 /p p    strong 二、运行管理 /strong /p p   (一)运维人员 /p p   NMHC-CEMS运维单位应根据NMHC-CEMS使用说明书和技术要求编制仪器运行管理规程,确定系统运行操作人员和管理维护人员的工作职责。运维人员应当熟练掌握NMHC-CEMS的原理、使用和维护方法。 /p p   (二)巡检和维护 /p p   NMHC-CEMS日常运行管理应包括日常巡检和日常维护保养,应满足HJ 75中日常巡检和日常维护保养的相关要求,运维人员应对NMHC-CEMS开展定期维护,保证其正常运行。 /p p   按照HJ 75附录G中表格形式做定期维护记录。定期维护应做到: /p p   1.对于使用氢气钢瓶的,每周巡检钢瓶气的压力并记录,有条件的应做到一用一备 /p p   2.至少每月检查一次氢气发生器变色硅胶的变色情况,超过2/3变色更换变色硅胶 /p p   3.对于使用氢气发生器的,应按其说明书规定,定期检查氢气压力、氢气发生器电解液等,根据使用情况及时更换,定期添加纯净水 /p p   4.至少每周检查一次除烃装置温度是否保持在350℃以上 /p p   5.至少每周检查一次出峰时间与标准谱图一致性情况是否符合仪器使用手册要求 /p p   6.至少每月检查一次燃烧气连接管路的气密性,NMHC-CEMS 的过滤器、采样管路的结灰情况,若发现数据异常应及时维护 /p p   7.至少每半年检查一次零气发生器中的活性炭和一氧化氮氧化剂,根据使用情况进行更换 /p p   8.使用催化氧化装置的NMHC-CEMS 每年用丙烷标气检验一次转化效率,保证丙烷转化效率在90%以上,否则需更换催化氧化装置 /p p   9.更换主要部件如色谱柱、定量环时,应对分析仪进行多点校准,并记录校准数据和过程,校准数据符合技术要求并且稳定后才可投入运行。 /p p   (三)定期校准 /p p   定期校准应满足HJ 75中定期校准的相关要求。按照HJ 75附录G中表格形式填写定期校准记录。 /p p   (四)质量保证 /p p   日常运行质量保证是保障NMHC-CEMS正常稳定运行、持续提供有质量保证监测数据的必要手段。当NMHC-CEMS不能满足技术指标而失控时,应及时采取纠正措施,并应缩短下一次校准、维护和校验的间隔时间。 /p p   (五)其他 /p p   考虑到涉及非甲烷总烃排放现场易燃易爆情况较多,日常运行管理中应遵照安全生产有关要求。 /p p   常见故障分析及排除应满足HJ 75中常见故障分析及排除的相关要求。 /p p    strong 三、数据审核和处理 /strong /p p   (一)数据审核 /p p   参照HJ 75中烟气排放连续监测系统(即CEMS)数据审核相关要求开展数据审核,并按照CEMS数据无效时间段相关要求进行无效时间段的数据处理。 /p p   (二)数据记录与报表 /p p   参照HJ 75附录D、HJ 1013附录A等表格形式记录监测结果,按照相关管理要求,定期将NMHC-CEMS监测数据,上报重点污染源自动监控与基础数据库系统,报表中应给出最大值、最小值、平均值、累计排放量、参与统计的样本数等相关信息。 /p p    strong 四、其他 /strong /p p   采用其他方式进行测量的系统可参照本技术指南执行。有关技术性能、监测站房、系统安装和校准维护等方面的具体指标要求,将在相关标准规范中予以详细规定。 /p
  • 北京大学环境学院与多方合作揭示二氯甲烷排放对南极臭氧洞恢复的潜在影响
    国际社会通过履行1987年达成的《蒙特利尔议定书》,在全球范围内实现了氟氯化碳(CFCs)和哈龙等消耗臭氧层物质的淘汰,平流层中的臭氧浓度正在逐渐恢复。2018年WMO/UNEP编著的臭氧科学评估报告中指出,中纬度地区和南极的臭氧层将分别在2040年和2060年前后恢复到1980年水平。但是一类未受国际公约管控的短寿命卤代烃延迟臭氧层恢复的影响开始突显,二氯甲烷是其中最主要的物质之一。与CFCs等物质相比,短寿命卤代烃的大气化学反应活性更强,不容易扩散传输至平流层。但南亚和东亚地区存在向平流层快速传输的通路,该地区的短寿命卤代烃排放量及其对臭氧层恢复的影响一直受到广泛关注。 环境学院与多方合作使用自上而下的排放估算研究方法对全球和中国尺度的二氯甲烷排放进行定量,并预测了二氯甲烷持续排放对臭氧层恢复的影响。研究者们利用全球5个AGAGE(Advanced Global Atmospheric Gases Experiment)背景站点的长期观测数据和12个盒子模型,通过数学反演揭示全球二氯甲烷排放的显著增长;同时利用中国气象局气象探测中心9个站点的长期观测数据,采用拉格朗日粒子模式(NAME)的后向轨迹足印,结合贝叶斯推断和马尔可夫蒙特卡洛的数学手段对中国的同期排放进行定量分析,发现过去十年中国二氯甲烷排放增长迅速,其全球占比由约三分之一增长到三分之二。研究认为,如果全球二氯甲烷的排放量按照过去十年的变化趋势进一步增长,可能使南极臭氧洞恢复时间延迟约5-30年。全球和中国二氯甲烷排放量 二氯甲烷是广泛应用的化工产品,控制二氯甲烷排放能有效防范其环境与健康风险。2021年10月,生态环境部将二氯甲烷纳入了《新污染物治理行动方案(征求意见稿)》。研究成果以“Rapid increase in dichloromethane emissions from China inferred through atmospheric observations”为题于2021年12月14日在线发表于《自然通讯》(Nature Communications)。北京大学环境科学与工程学院博士生安民得为论文的第一作者,北京大学胡建信教授、中国气象局气象探测中心姚波研究员和英国布里斯托大学Matthew Rigby教授为文章的共同通讯作者。论文链接:https://doi.org/10.1038/s41467-021-27592-y研究背景:北京大学环境科学与工程学院长期致力于保护臭氧层研究和决策支持。1993年和1999年牵头编制的《中国逐步淘汰消耗臭氧层物质国家方案》及其修订版获得国务院批复并实施。团队还研究编写了中国十几个替代淘汰消耗臭氧层物质行业战略和计划,通过履行上述战略和计划淘汰了消耗臭氧层物质5万余吨/年;多名教师参与《蒙特利尔议定书》不同专家委员会工作;团队多次获得奖励,包括国家“保护臭氧层贡献奖”特别金奖、国外“Leadership in ODS Phaseout in Developing Countries”和UNEP多项奖励。
  • 聚光科技应对大气污染物排放新标准的整体解决方案
    背景介绍 北京市环保部门新发布了五项大气污染物排放地方标准,涉及火葬场、锅炉、炼油与石油化工、印刷、家具制造等行业领域。五项标准将于2015年7月1日起实施,标准规定的污染物排放限值均达到国际先进水平。 挥发性有机物(VOCs)排放是此次新标准控制的重点,五项标准中有三项涉及挥发性有机物排放控制,分别是印刷业、家具业和炼油与石油化工。新标准首次提出了限制原辅材料中挥发性有机物含量的指标,以及工艺措施和管理要求,力争从源头上综合控制挥发性有机物的排放。 VOCs在常温下可以蒸发物的形式存在于空气中,它具有不同程度的毒性、刺激性、致癌性和特殊的气味性,这些都会对人体的皮肤和黏膜产生影响,甚至对人体产生急性损害,是空气中三种有机污染物影响较为严重的一种。 新标准解读 一、《DB11/1201&mdash 2015 印刷业挥发性有机物排放标准》 对比前后两次的征求意见稿可以发现,该标准内容上的变化比较大。对印刷油墨VOCs含量限值的要求也更为严格,比如单张纸胶印油墨的VOCs含量限值为3%(上次征求意见稿中要求第Ⅱ时段为4%);柔印油墨和凹印油墨不再区分溶剂基和水基,VOCs含量限值统一定为30%。此外,对于通过设备或车间排气筒排放的VOCs,最高允许排放浓度不再区分印刷方式,并删除了对最高允许排放速率的要求。 新标准规定:印刷油墨挥发性有机物含量限值在3%~30%的范围内。 印刷生产活动中,设备或车间排气筒排放的挥发性有机物浓度的限值要求如下:(单位:mg/m3) 污染物项目 Ⅰ时段 Ⅱ时段 苯 0.5 0.5 甲苯与二甲苯合计 15 10 非甲烷总烃 50 50 无组织排放监控点挥发性有机物浓度限值要求如下:(单位:mg/m3) 监控位置 苯 甲苯与二甲苯合计 非甲烷总烃 Ⅰ时段 Ⅱ时段 Ⅰ时段 Ⅱ时段 Ⅰ时段 Ⅱ时段 厂界 0.1 0.1 0.5 0.2 2.0 1.0 印刷生产场所 0.1 0.12.0 1.0 6.0 3.0 二、《DB11/1202&mdash 2015木质家具制造业大气污染物排放标准》 该标准为环保系统又一&ldquo 史上最严&rdquo 的地方环保标准,制定的主要目的是推动油性涂料彻底退出市场。据悉,中国涂料涂装业每年向大气排放的挥发性有机化合物(VOCs)总量约计430万吨,其中油性漆占比约为98%。相比油性漆,水性漆的环保优势明显,按照标准执行日期来说,从2017年1月1日起执行第二时段的要求,即北京市家具制造行业禁止使用有机溶剂型(油性)涂料喷涂工序。 新标准规定:企业生产使用的处于即用状态的涂料挥发性有机物含量限值Ⅰ时段在300g/L,Ⅱ时段在70~80 g/L之间。 企业生产设备或车间排气筒排放的大气污染物浓度应执行限值要求:(单位:mg/m3) 污染物项目 Ⅰ时段 Ⅱ时段 苯 0.5 0.5 苯系物 15 2 非甲烷总烃 40 10 颗粒物 10 5 无组织排放监控点挥发性有机物浓度限值要求如下:(单位:mg/m3) 监控位置 苯 苯系物 非甲烷总烃 Ⅰ时段 Ⅱ时段 Ⅰ时段 Ⅱ时段 Ⅰ时段 Ⅱ时段 厂区边界 0.1 0.1 0.5 0.2 1.0 0.5 非封闭涂装车间工位/或封闭涂装车间门窗口 0.1 0.1 2.0 0.5 5.0 2.0 备注:苯系物是指分子式中只含有一个苯环的芳烃统称。本标准中的苯系物仅包括苯、甲苯、二甲苯(间,对二甲苯和邻二甲苯)、三甲苯(1,2,3-三甲苯、1,2,4-三甲苯和1,3,5-三甲苯)、乙苯及苯乙烯合计。无标气物种以甲苯计。 三、《DB 11/ 447&mdash 2015炼油与石油化学工业大气污染物排放标准》 炼油与石油化工的相关排放标准是第一次修订,预计新标准执行后,可减少无组织挥发性有机物排放50%、二氧化硫和氮氧化物排放10%。 炼油与石油化工企业厂界环境空气中任何1小时的大气污染物平均浓度限值要求如下: (单位:mg/m3) 污染物 颗粒物 非甲烷总烃 苯 甲苯 二甲苯 氯化氢 厂界监控点处浓度 Ⅰ时段 1.0 4.0 0.4 0.8 0.8 0.01 Ⅱ时段 1.0 2.0 0.2 0.8 0.5 0.01 注:炼油与石油化学工业执行的国家大气污染物排放标准中,如某种污染物的企业边界浓度限值严于本标准,则执行该种污染物的国家标准。 挥发性有机物标准测定方法 序号 污染物项目 标准 1 苯 甲苯 二甲苯苯系物 HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法 HJ 584环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法 HJ 734固定污染源废气挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法 HJ 644环境空气挥发性有机物的测定 吸附管采样热脱附/气相色谱-质谱法 2 非甲烷总烃 HJ/T38固定污染源排气中非甲烷总烃的测定 气相色谱法 注:本标准实施之日后,国家再行发布的适用的大气污染物分析方法也应执行。 聚光科技整体解决方案 以上几项污染物排放标准中,挥发性有机物项目包括了苯、甲苯、二甲苯等苯系物以及非甲烷总烃,其排放浓度限值为0.1~50 mg/m3。聚光科技自主研发生产的专用款Mars-400 Pro型便携式气质联用仪可以结合吸附-热脱附法检测大气中苯、甲苯、二甲苯等苯系物的排放量,检测方法完全符合HJ 583、HJ 734、HJ 644等最新环境标准的要求。另外GC-2000型气相色谱仪可以检测污染源排气中的非甲烷总烃含量。 由于新标准增加了限制原辅材料中挥发性有机物含量的指标,以及工艺措施和管理要求,目的是让各家企业从源头上综合控制挥发性有机物的排放。因此对于传统检测方法,如实验室台式GC或台式GC-MS,其检测过程通常是用吸附管现场采样,再将采样管带回实验室用热脱附仪加热解吸后用GC或GC-MS分离分析。这种检测方法周期长,样品量大,人力成本高。而目前更多的环境监测部门和企业选择在线GC或便携式GC和GC-MS的方法进行过程控制,这种检测手段更灵活便捷,不仅缩短了采样时间和检测周期,而且对于污染排放的连续性监控更具有实施性。 对于浓度差异较大的污染源废气分析,传统的便携式GC和便携式GC-MS,都需要分析人员先预判样品的浓度,然后在仪器上安装合适的采集管路。如果浓度较小,安装和使用吸附管;如果浓度较高,则安装和使用定量环。当遇到浓度变化较大,如污染源分析,吸附管与定量环部件需相互更换时,则需要重新调试仪器,在实际操作中给分析人员带来较大的困难。因此在实际应用中,分析人员一般只会选用其中一种采样管路,由此也导致了仪器的应用范围缩小。 Mars-400 Pro型便携式GC-MS为聚光科技(杭州)股份有限公司最新推出的专用型便携式气质联用仪,该产品最大的特点是富集管与定量环兼容,实现ppt到百分含量的无缝分析,覆盖污染源到常规空气本底分析需求;预抽功能减小了采样流路的死体积与残留,提高分析的准确度和精密度;反吹功能减小了富集管和流路的残留,提高分析的准确度和精密度;采用专用VOCs分析色谱柱,保证VOCs分析的分离度。 Mars-400 Pro型便携式GC-MS 仪器同时内置定量环和吸附管,可以减少分析人员对浓度的预判难度。分析人员只需要在现场首先选用定量环高浓度分析,就能在5 min之内预判样品浓度,根据预判浓度选择采样方式。另外,Mars-400 Pro型便携式GC-MS可将外部控制软件安装在笔记本电脑上,可以对主机进行控制和调试,并可实现序列运行和循环运行,适用于污染源排放的连续监测。 GC-2000型气相色谱仪 GC-2000甲烷非甲烷定制款为聚光新推出的针对甲烷非甲烷总烃检测的专用气相色谱仪,该仪器为双柱双氢火焰离子化检测器气相色谱仪,利用阀进样系统分别测定样品中的总烃和甲烷含量,以两者之差测的非甲烷总烃含量,总烃检出限为0.009mg/m3,甲烷检出限为0.02mg/m3。可以满足标准HJ/T38的要求。 针对新标准中规定检测指标和检测限值,聚光科技利用Mars-400 Pro型便携式GC-MS和GC-2000甲烷非甲烷定制款分别检测苯系物和非甲烷总烃,全面解决排放标准中挥发性有机物的检测需求。便携式GC-MS吸附热解吸法操作简便,移动性强,不仅能够实现污染源排放的连续监测,也能够给更多的企业用户提供原辅材料中挥发性有机物的检测,为监管工艺过程提供数据支持,帮助用户从源头上控制挥发性有机物的排放。
  • 碳中和目标下,盘点近年来实施的大气污染物排放标准及相应检测仪器
    “加强生态文明建设,确保实现2030年前二氧化碳排放达到峰值、2060年前实现碳中和的目标。”为了实现蓝天愿景,兑现对全世界的减排承诺,自2021年起,一系列规划和阶段性目标都会陆续落地,围绕“碳中和”这个核心风向标,更大力度推动节能减排,应对气候变化带来的挑战。我国碳达峰、碳中和愿景与美丽中国建设目标高度协同,应尽快构建新一代大气污染防治科学体系。政策把“治标和治本很好地结合起来”,并特别指出“大气污染物与温室气体要协同减排”。专家们认为加快能源转型变革对深度融合大气污染防治和气候变化应对至关重要,“十四五”期间,大气环境治理更不能放松,特别是在碳中和目标下。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治环境污染,改善环境质量,生态环境部对之前相关标准进行了修订,将加油站在卸油、储存、加油过程,油品运输过程以及储油库储存、收发油品过程中油气排放控制要求、监测和监督管理要求进行了单独的规定,相应大气污染物排放标准已于2021年4月1日正式实施。为促进农药制造工业、铸造工业以及陆上石油天然气开采工业的技术进步和可持续发展,出台了相应工业大气污染物排放控制要求、监测和监督管理要求,同时对温室气体甲烷的排放提出了协同控制要求。相应大气污染物排放标准已于2021年1月1日正式实施。涂料、油墨及胶黏剂工业、制药工业以及VOCs无组织排放的相应大气污染物排放标准是在2019年发布并实施。无机化学工业污染物排放标准、合成树脂工业污染物排放标准、石油化学工业污染物排放标准和石油炼制工业污染物排放标准,这四项标准是在2015年发布并实施,目前仍未分离出单独的大气污染物排放标准,但其中涵盖了相应工业大气污染物排放控制要求。近年来实施的大气污染物排放标准(发布稿)标准号标准名称发布日期实施日期GB 20952-2020加油站大气污染物排放标准2020-12-312021-04-01GB 20951-2020油品运输大气污染物排放标准2020-12-312021-04-01GB 20950-2020储油库大气污染物排放标准2020-12-312021-04-01GB 39728-2020陆上石油天然气开采工业大气污染物排放标准2020-12-242021-01-01GB 39727-2020农药制造工业大气污染物排放标准2020-12-242021-01-01GB 39726-2020铸造工业大气污染物排放标准2020-12-242021-01-01GB 37824-2019涂料、油墨及胶粘剂工业大气污染物排放标准2019-05-252019-07-01GB 37823-2019制药工业大气污染物排放标准2019-07-292019-07-01GB 37822-2019挥发性有机物无组织排放控制标准2019-05-252019-07-01GB 31573-2015无机化学工业污染物排放标准2015-05-152015-07-01GB 31572-2015合成树脂工业污染物排放标准2015-05-152015-07-01GB 31571-2015石油化学工业污染物排放标准2015-05-152015-07-01GB 31570-2015石油炼制工业污染物排放标准2015-05-152015-07-01标准引用了下列文件或其中的条款涉及到了分析仪器,未来这些仪器将是重中之重。GB/T 14669 空气质量 氨的测定 离子选择电极法GB/T 14678 空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法GB/T 15264 环境空气 铅的测定 火焰原子吸收分光光度法GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法HJ/T 27 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法HJ/T 30 固定污染源排气中氯气的测定 甲基橙分光光度法HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法HJ/T 38 固定污染源排气中非甲烷总烃的测定 气相色谱法HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法HJ/T 42 固定污染源排气中氮氧化物的测定 紫外分光光度法HJ/T 43 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法HJ/T 56 固定污染源排气中二氧化硫的测定 碘量法HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法HJ/T 67 大气固定污染源 氟化物的测定 离子选择电极法HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法HJ 57 固定污染源废气 二氧化硫的测定 定电位电解法HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法HJ 533 环境空气和废气 氨的测定 纳氏试剂分光光度法HJ 539 环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 549 环境空气和废气 氯化氢的测定 离子色谱法HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法HJ 584 环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法HJ 629 固定污染源 废气二氧化硫的测定 非分散红外吸收法HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法HJ 657 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法HJ 685 固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 688 固定污染源废气 氟化氢的测定 离子色谱法HJ 692 固定污染源废气 氮氧化物的测定 非分散红外吸收法HJ 693 固定污染源废气 氮氧化物的测定 定电位电解法HJ 732 固定污染源废气 挥发性有机物的采样 气袋法HJ 734 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法HJ 777 空气和废气 颗粒物中金属元素的测定 电感耦合等离子体发射光谱法HJ 1006 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法HJ 1131 固定污染源废气 二氧化硫的测定 便携式紫外吸收法HJ 1132 固定污染源废气 氮氧化物的测定 便携式紫外吸收法
  • 加油站/储油库/油品运输三项大气污染物排放标准详细解读
    2020年12月28日,生态环境部和国家市场监管总局联合发布了《储油库大气污染物排放标准》(GB 20950-2020)、《油品运输大气污染物排放标准》(GB 20951-2020)和《加油站大气污染物排放标准》(GB 20952-2020)三项新标准,并将于2021年4月1日正式实施。 新标准自实施之日起,将全面代替GB20950-2007、GB20951-2007、GB20952-2007。新标准的实施将进一步推动储油库、油品运输和加油站VOCs有效减排,实现精准治污、科学治污和依法治污,提高企业治污的积极性,促进行业绿色、低碳、高质量发展。 接下来我们就一起来看一下,新标准有哪些值得关注的不同之处吧?PART.01GB 20952-2020 加油站大气污染排放标准 本次修订全面规定了加油站在汽油(包括含醇汽油)卸油、储存、加油过程中油气排放控制要求、监测和监督管理要求。标准修订的变化如下:➤ 1.适用范围与GB 20952-2007相比,扩大了适用范围,将加油站销售的含醇汽油也纳入管控范围。➤ 2.规范性引用文件与GB 20952-2007相比,增加了14个引用文件,主要是气态污染物监测方法、技术导则、技术规范等文件,明确了污染物排放监测的依据。例如HJ 55为企业边界浓度监测点位的选择提供指导;HJ 38、HJ 604和HJ 732为手工监测方法,使用气袋或注射器现场采集样品气体,利用气相色谱仪测量非甲烷总烃浓度。HJ 733采用便携式检测仪测量挥发性有机物,检测器类型包括火焰离子化检测器、光离子化检测器和红外吸收检测器等,结合本标准非甲烷总烃的监测要求,仅能使用火焰离子化检测器类型的检测仪进行泄漏浓度。➤ 3.术语及定义与GB 20952-2007相比,增加了6个术语。应重点关注的术语是新增的“含醇汽油”、“油气泄露检测值”。★含醇汽油含有10%及以下乙醇燃料的汽油(E10)或含有30%及以下甲醇燃料的汽油(M30、M15)。随着我国能源结构调整的持续深入,已有多个省份推广使用车用乙醇汽油和甲醇汽油,将含醇汽油纳入到标准中顺应能源发展趋势。★★油气泄露检测值采用规定的监测方法,检测仪器探测到油气回收系统泄漏点的油气浓度扣除环境本底值后的净值,以碳的摩尔分数表示。油气泄漏监测采样和测定方法按HJ 733的规定执行,即采用氢火焰离子化检测仪(以甲烷或丙烷为校准气体)检测油气回收系统密闭点位。➤ 4.油气排放控制要求与GB 20952-2007相比,进一步明确了油气排放控制要求:1)对卸油阶段油气排放控制,提出了具体操作规程要求;2)对储油油气排放控制,修改了储油油气密闭性部件要求,由“保证在小于750Pa时不漏气”修改为“油气泄漏浓度满足油气回收系统密闭点位限值要求”,增加了采用红外摄像方式检测油气回收系统密闭点位时,不应有油气泄漏;3)明确了在线监测系统的技术要求;4)调整了油气处理装置安装要求;➤ 5.排放限值与GB 20952-2007相比,在保持原有排放限值基础之上,参照《挥发性有机物无组织排放控制标准》(GB 37822-2019),增加了加油站油气回收系统密闭点位油气泄漏排放限值,检测值应小于等于500μmol/mol。根据《排污许可证申请与核发技术规范 储油库、加油站》(HJ 1118-2020)和《大气污染物综合排放标准》(GB 16297-1996)要求,增加了企业边界排放限值,要求任意1小时非甲烷总烃平均浓度值不应超过4mg/m3。除此之外,删除了密闭性、液阻和气液比的频次(每年至少检测1次)要求。➤ 6.大气污染物监测与GB 20952-2007相比,增加了大气污染物监测章节,明确要求企业建立油气回收系统、维护、维修管理台账,按照环境监测管理规定和技术规范的要求设计、建设、维护采样口或采样测试平台。➤ 7.气液比检测设备与GB 20952-2007相比,修改了气液比检测设备的指标,如表1所示。PART.02GB 20951-2020 油品运输大气污染排放标准本次修订对汽车罐车、铁路罐车和油船等油品运输工具运输油气排放提出了全面控制要求,标准修订的变化如下:➤ 1.适用范围与GB 20951-2007相比,扩大了油品适用范围,在汽油的基础上增加原油、含醇汽油、航空煤油、石脑油等油品,也包括储油库内储存的与前述油品挥发性特征类似的循环油、组分油、凝析油、轻质油等,并将油船纳入标准,标准的名称由“汽油运输”修改为“油品运输”。➤ 2.控制要求与GB 20951-2007相比,增加了油船排放控制要求。无论是油罐车排放控制还是油船排放控制,均要求采用红外摄像方式检测油气收集系统密封点。➤ 3.排放限值与GB 20951-2007相比,在汽油罐车油气回收系统密闭性限值基础之上,参照《储油库大气污染物排放标准》,增加了运输工具油气密封点泄漏排放限值要求,检测值不超过500μmol/mol。➤ 4.污染物检测要求与GB 20951-2007相比,新增了污染物监测要求。1)运输工具所属企业应按照有关法律,依法建立企业自行监测制度,制定监测方案,每年至少对汽车罐车油气回收系统密闭性、运输工具油气密封点开展2次自行监测,2次监测时间间隔大于3个月,保存原始记录,并依法公布监测结果,2)汽车罐车生产企业应委托具有检测资质的机构对汽车罐车油气回收系统密闭性进行监测,并将检验结果向社会进行公开。3)采用氢火焰离子化检测仪(以甲烷或丙烷为校准气体)对运输工具油气密封点进行检测,监测采样和测定方法按HJ 733的规定执行。➤ 5.汽车罐车油气回收系统密闭性检测设备与GB 20951-2007相比,修改了系统密闭性检测设备的指标,如表2所示。PART.03GB 20950-2020 储油库大气污染排放标准本次修订全面规定了储油库储存、收发油品过程中油气排放控制要求、监测和监督管理要求。标准修订的变化如下:➤ 1.适用范围与GB 20950-2007相比,扩大了油品适用范围,在汽油的基础上增加原油、含醇汽油、航空煤油、石脑油等油品,也包括储油库内储存的与前述油品挥发性特征类似的循环油、组分油、凝析油、轻质油等。明确标准管控范围,删除了炼油厂,且不包括生产企业内罐区。➤ 2.规范性引用文件与GB 20950-2007相比,增加了13个引用文件,主要是气态污染物监测方法、技术导则、技术规范等文件,明确了污染物排放监测的依据。➤ 3.术语及定义与GB 20950-2007相比,增加了12个术语,删除了2个术语。重点关注的术语是新增的“处理效率”和删除的“烃类探测器”。★★新增“处理效率”油气经油气处理装置处理后的排放量削减百分比,根据同步检测油气处理装置进口和出口油气排放量进行计算,油气排放量是废气排气流量和油气排放浓度的乘积。进一步明确了处理装置处理效率的计算方法,将原来的排气浓度计算处理效率修改为根据油气排放量计算处理效率,除了测量油气排放浓度之外,还要进行废气排气流量的测量。★★删除“烃类探测器”该术语的删除意味着基于光离子化、红外等原理的便携式检测仪不适用于油气浓度的测量。➤ 4.储油控制要求与GB 20950-2007相比,完善了储油库控制要求,增加了油品储存浮顶罐运行、泄漏控制、维护与记录等要求。➤ 5.发油控制要求与GB 20950-2007相比,根据发油对象的不同,分类进行发油控制要求,并且增加了向铁路油罐车和油船发油的控制要求。另外要求采用红外摄像方式检测油气收集系统密封点。➤ 6.VOCs泄露控制要求与GB 20950-2007相比,新增了载有油品的设备与管线组件及油气收集系统,应按照GB 37822开展泄漏检测与修复工作。《挥发性有机物无组织排放控制标准》(GB 37822-2019)污染物监测要求中第12.4条规定“对于设备与管线组件泄漏、敞开液面逸散的VOCs排放,监测采样和测定方法按HJ 733的规定执行,采用氢火焰离子化检测仪(以甲烷或丙烷为校准气体)。”➤ 7.排放限值与GB 20950-2007相比,在保持原有排放限值基础之上,根据《大气污染物综合排放标准》(GB 16297-1996)和《排污许可证申请与核发技术规范 储油库、加油站》(HJ 1118-2020)要求,增加了企业边界排放限值,要求任意1小时非甲烷总烃平均浓度值不应超过4mg/m3。除此之外,删除了油气密闭收集系统泄漏检测和处理装置油气排放检测频次(每年至少检测1次)要求。
  • 北京市发布《餐饮业大气污染物排放标准》
    p   2018年1月8日,北京市制定并发布《餐饮业大气污染物排放标准》(DB11/ 1488-2018)(以下简称“标准”)。 /p p   《标准》规定了餐饮服务单位排放的油烟、颗粒物和非甲烷总烃(注:“非甲烷总烃”为表征“挥发性有机物”,简称“VOCs”的一种指标)三项污染物的排放限值,明确了三项污染物的监测要求和分析测定方法,提出了净化设备的运行操作要求,从而全面控制餐饮业的大气污染排放。该标准于2018年1月8日发布,并将于2019年1月1日起实施,其中油烟和颗粒物限值自标准实施之日起执行,非甲烷总烃限值自2020年1月1日起执行。 /p p   通过本《标准》的实施,引导餐饮服务单位采取有效措施控制餐饮业颗粒物及VOCs的排放,促进餐饮企业改造更换高效净化设备及加装VOCs去除装置,减少餐饮业大气污染物排放,为改善城市大气环境质量做贡献。 /p
  • 生态部联合印发《甲烷排放控制行动方案》明华产品方案助力
    近日,生态环境部等11部门联合印发《甲烷排放控制行动方案》,旨在“十四五”、“十五五”期间分阶段推进甲烷排放控制政策、技术和标准体系从逐步建立到进一步完善,甲烷排放统计核算、监测监管等基础能力从有效提升到明显提升…… 明华电子解决方案 明华电子积极响应,推出有组织排放甲烷监(检)测解决方案,助力《甲烷排放控制行动方案》有序推进。
  • 《2021年北京市大气污染物排放自动监控计划》印发 涉306家
    北京市生态环境局印发了《2021年北京市大气污染物排放自动监控计划》,要求列入计划的大气环境重点排污单位应于2021年9月30日前,安装大气污染物排放自动监测设备,并与北京市生态环境局监控平台联网。监控的排放口与监控项目按照《北京市固定污染源自动监控管理办法》执行。从计划可以看出,此次计划涉及的企业以热力企业和热电企业为主,还包括垃圾焚烧企业、汽车企业、环保企业等。那么相应的需要安装的大气污染物排放自动监控系统应该包括CEMS和VOCs等设备。计划还规定,本计划中已纳入《2020年北京市大气污染物排放自动监控计划》的单位,安装联网时限以2020年的规定为准。目前,北京市大气污染物排放自动监测设备安装联网及运行管理依据的主要技术标准及规范包括九项:1.《固定污染源自动监控(监测)系统现场端建设技术规范》(T/CAEPI 11-2017)2.《固定污染源烟气排放过程(工况)监控系统安装及验收技术指南》(T/CAEPI 25-2020)3.《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范》(HJ 75-2017)4.《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法》(HJ 76-2017)5.《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)及其修改单6.《污染治理设施运行记录仪技术要求及检测方法》(HJ/T 378-2007)7.《污染物在线监控(监测)系统数据传输标准》(HJ 212-2017)8.《污染源在线自动监控(监测)系统数据采集传输仪技术要求》(HJ 477-2009)9.《固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》(HJ 1013-2018)
  • 吴立冬研究员与合作者开发出海洋垂直深度分布算法,揭示未来海洋牧场降低甲烷排放的巨大潜力!
    中国水产科学研究院吴立冬研究员与北京大学物理学院沈路路助理教授及中国农业大学庄明浩副教授等合作开发了一个能解析不同粒径有机颗粒物在海洋垂直深度分布的算法,计算了浮游植物产生的有机碳在不同深度的物理沉降、分解和生物化学转化过程。结果显示,在水深不超过200米的浅海地区,浮游植物每年产生4200 Tg的有机碳,但是只有2.9 Tg会最终以CH4的形式释放到大气中,转化效率只有0.07%,该转化效率比淡水系统低了95%以上。主要原因是因为海洋高盐度环境,特别是硫酸盐的存在,会显著抑制甲烷的生成;同时海洋深度较大,CH4在从海底扩散到大气的过程中会更大比例在水体环境中被氧化。结果发现,与淡水环境相比,海洋的高盐度使得有机质产生甲烷(CH4)的效率下降了至少98%。全生命周期分析显示,淡水养殖中水体环境的CH4排放占据了50%的温室气体排放,而海水养殖环境几乎消除了该部分CH4排放,从而导致海水养殖生产系统的温室气体排放减少了至少40%。此研究从理论层次揭示了未来海洋牧场减少甲烷排放的巨大潜力。相关研究成果以“Marine aquaculture can deliver 40% lower carbon footprints than freshwater aquaculture based on feed, energy and biogeochemical cycles”为题,于2024年6月21日在线发表在《Nature Food》上(https://doi.org/10.1038/s43016-024-01004-y)。图1:浅海(水深小于200米)碳氮循环过程以及CH4和N2O产生的生物化学过程。本研究进一步开展了海水和淡水养殖生产系统全生命周期的碳排放,包括饲料生产、能源使用和水体环境的排放。结果显示,淡水养殖中水体环境的CH4排放占据了整个生产环节50%的温室气体排放。虽然海水养殖在饲料和能源生产的碳排放更高,但其几乎消除了水体环境部分的CH4排放,从而导致海水养殖生产系统的温室气体排放减少了至少40%。图2:淡水和海水养殖生产系统全生命周期的碳排放,主要包括饲料生产、能源消耗和水体环境的温室气体排放。
  • 不应低估甲烷在全球变暖中的作用
    当谈到全球气候变暖时,二氧化碳首先会占据头条,但考虑到甲烷作为一种强效温室气体的地位,其在全球变暖和气候变化中的作用也不应被低估。2022年10月,联合国世界气象组织发布的年度温室气体公报警告称,使地球变暖的三种主要温室气体,即二氧化碳、甲烷和一氧化二氮的大气水平在2021年都达到了历史新高,其中,从将近四十年前开始系统监测以来,2021年的甲烷浓度同比增幅最大。甲烷如何影响地球气候决定不同温室气体对气候影响的两个关键特征分别是气体在大气中停留的时间长度和吸收能量的能力。甲烷在大气中的寿命比二氧化碳短得多,停留时间大约是12年,而二氧化碳在大气中的时间长达几个世纪,不过甲烷在大气中吸收的能量却比二氧化碳多得多。因此在大气中,甲烷是仅次于二氧化碳的第二大人为因素产生的温室气体。甲烷的来源可以大致分为两类:自然来源和人类活动产生的甲烷排放。前者主要来自湿地、森林火灾等。后者包括农业、能源和石化工业的排放,以及人类排泄物的产生和处置等。在过去的200年里,由于人类活动的急剧增加,大气中甲烷的浓度以惊人的速度激增。事实上,现代的甲烷监测方法已经表明,目前环境中的甲烷含量大约是工业革命之前的2.5倍。长久以来,科学界对甲烷排放量的估计具有高度的不确定性。2000年至2007年期间,大气中甲烷的浓度似乎趋于稳定,这就引发了关于大气中甲烷是否为气候变化主要驱动因素的持续争论。但在2007年之后,大气中甲烷浓度开始持续上升。目前的测量结果表明,大气中甲烷浓度还将继续上升。《全球甲烷预算》提供的最新综合评估显示,每年全球甲烷排放量约为580亿吨,这包括来自自然来源的排放(约占排放量的40%),以及来自人类活动的排放(称为人为排放,占60%)。2022年2月斯坦福大学的科学家在《环境研究快报》(Environmental Research Letters)发表研究结论称,在100年的时间尺度上人类或许大大低估了甲烷这种“短期气候污染物”对气候的影响。去除甲烷的理由甲烷之所以令人担忧,是因为它对气候有着巨大的影响。2021年8月《自然》(Nature)发表的一篇文章中称,大气中二氧化碳含量是甲烷的两百多倍,甲烷虽然在大气中只占很小的一部分,但在释放后的头20年里,甲烷在地球大气中吸收热量的能力是二氧化碳的80倍左右。它的分解速度也比二氧化碳快得多,平均寿命约为10年,而二氧化碳的平均寿命为数百年。自前工业化时代以来,甲烷对全球变暖的贡献高达0.5℃,仅次于二氧化碳。甲烷的化学结构在吸收热量方面非常有效,这意味着在大气中甲烷含量稍微增加一点,就会对地球变暖的程度和速度产生重大影响。这是一个令人生畏的现实,但也提供了巨大的机会。由于甲烷在大气中停留的时间短,所以当排放减少时,它在大气中的浓度下降相对较快,这就能极大地抑制温度上升,因此有专家认为减少甲烷排放或许是改变未来10年全球气温变化路径的最容易的方法。2021年联合国的一份报告认为,减少人为造成的甲烷排放是迅速降低全球变暖速度的最具成本效益的战略之一,并为将气温上升限制在1.5℃的全球努力作出重大贡献。为了减少甲烷排放,科学家们一直在研究两个相关的问题。首先,甲烷的主要来源是什么?其次,最严重的影响在哪里?牲畜是最大的来源,占全球总量的31%。石油和天然气紧随其后,排放26%。其他来源包括垃圾填埋场、煤矿、稻田和水处理厂。在甲烷的自然排放源中,特别值得注意的是,虽然永久冻土系统不是最大的甲烷排放源,但它极易受到气候变化的影响。在一个更温暖的未来,这些系统排放的甲烷比例可能会显著增加,有研究估计,每年从北半球冻原陆地生态系统释放进入大气的甲烷约占全球自然界释放甲烷总量的25%。另一方面,减少牲畜产生的甲烷是一项巨大的挑战。人们可以少吃肉,但说服人们改变饮食习惯往往是困难的。此外,随着收入的增加,低收入和中等收入国家的肉类消费也在增加。从这个角度看,遏制其他行业的排放似乎相对容易一些。考虑到能源和石化工业是甲烷排放的两个主要来源,人类摆脱对化石燃料的依赖或许会成为控制地球大气中甲烷浓度的巨大一步。只要二氧化碳继续被排放到大气中,世界就会继续变暖。但控制甲烷和其他强效温室气体的排放可能会减轻负担。2021年9月27日发表在《皇家学会哲学汇刊A》(Philosophical Transactions A)上的分析显示,如果消除人类3年时间造成的强效温室气体的排放,将使全球表面温度降低约0.21℃,同时可以减少大气臭氧水平,每年可以防止约5万人过早死亡。这一发现打开了与二氧化碳去除直接比较的大门,科学界已经开展相关研究,并可能有助于塑造未来的国家和国际气候政策。南方周末特约撰稿 祝叶华
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制