当前位置: 仪器信息网 > 行业主题 > >

催化排放气体

仪器信息网催化排放气体专题为您整合催化排放气体相关的最新文章,在催化排放气体专题,您不仅可以免费浏览催化排放气体的资讯, 同时您还可以浏览催化排放气体的相关资料、解决方案,参与社区催化排放气体话题讨论。

催化排放气体相关的论坛

  • 【金秋计划】高纯度气体与流量控制在催化实验中的作用

    催化实验是化学、材料科学和工业生产中至关重要的一环,其目的是评估催化剂在不同反应条件下的性能和选择性。为了获得准确和可靠的实验结果,使用高纯度的反应气体和精密的流量控制系统是不可或缺的。这不仅可以确保实验条件的一致性,还能够精确地表征催化剂的活性和稳定性,从而为催化剂的设计和优化提供重要数据支持。 [b]1. [b]催化实验中的反应气体使用[/b][/b] 在催化实验中,反应气体作为催化反应的原料或反应环境,直接影响催化剂的表现。常见的反应气体包括氢气、氧气、氮气、甲烷、二氧化碳等,这些气体通过催化剂表面发生反应,生成目标产物。为了准确评估催化剂的性能,实验中必须严格控制反应气体的纯度和流量。 [b]2. [b]高纯度反应气体的重要性[/b][/b] 使用高纯度的反应气体在催化实验中具有多方面的重要意义: [list][*][b]避免副反应的干扰[/b]:反应气体中的杂质可能引发副反应,从而影响催化剂的实际性能表现。例如,在氢化反应中,氧气或水蒸气的杂质可能导致催化剂表面氧化,降低其活性或改变选择性。因此,使用高纯度气体能够减少这些不必要的副反应,确保实验结果的准确性。 [*][b]保证催化剂的选择性[/b]:催化剂的选择性是指其促进特定产物生成的能力。气体杂质可能与催化剂表面发生竞争性吸附或反应,导致产物分布的改变。因此,高纯度的反应气体有助于精确评估催化剂对目标反应的选择性,避免由于杂质引起的误差。 [*][b]提高实验的可重复性[/b]:使用高纯度气体可以减少批次之间的差异性,使得实验条件更加可控,从而提高实验的可重复性。对于工业应用或催化剂的规模化生产,这种一致性尤为重要。 [/list] [b]3. [b]精密流量控制系统的作用[/b][/b] 除了气体纯度,精密的流量控制系统也是催化实验中不可或缺的部分。流量控制的准确性直接影响反应物的供给速率和反应条件的稳定性,从而对催化反应的结果产生重要影响。 [list][*][b]精确调节反应条件[/b]:通过精密流量控制系统,可以精确调节反应气体的流速,确保每次实验在相同的气体供给条件下进行。这对于评估催化剂的活性和选择性至关重要,因为催化反应的速率和产物分布往往依赖于反应物的供给速度。 [*][b]动态实验条件控制[/b]:在某些催化实验中,研究者可能需要在实验过程中动态调节反应气体的流量,以模拟实际工业过程中的工况变化。精密流量控制系统可以实现这种实时调整,帮助研究者更全面地评估催化剂的性能。 [*][b]提高实验安全性[/b]:许多反应气体(如氢气、氧气、甲烷等)具有易燃易爆性或毒性。精密流量控制系统能够确保气体供给的安全性,避免由于气体流量过大或波动导致的安全事故。 [/list][b]4. [b]选择合适的高纯度气体与流量控制系统[/b][/b] 在实际的催化实验中,选择合适的高纯度气体和流量控制系统至关重要。以下是一些关键考虑因素: [list][*][b]气体纯度要求[/b]:根据催化反应的敏感程度,选择适合的气体纯度。通常情况下,气体纯度应在99.999%(5N)或更高,以最大限度减少杂质的影响。 [*][b]气体供应商的选择[/b]:选择信誉良好的气体供应商,以确保气体的纯度和稳定性,同时要求供应商提供详细的气体成分分析报告。 [*][b]流量控制设备的精度[/b]:流量控制系统应具备高精度和高稳定性,确保在不同实验条件下的准确调节。选择时应考虑流量计的量程、响应速度以及与实验系统的兼容性。 [*][b]系统校准与维护[/b]:定期校准和维护流量控制系统,确保其长期稳定运行。同时,气体输送系统的密封性和防泄漏设计也是保障实验安全的重要方面。 [*]在催化实验中,使用高纯度的反应气体和精密的流量控制系统是确保实验结果准确性和可靠性的关键。高纯度气体能够避免副反应和杂质干扰,从而准确评估催化剂的性能和选择性。精密流量控制系统则保证了实验条件的可控性和安全性,使研究者能够深入探索催化剂的行为特性。这两者的结合不仅有助于获得高质量的实验数据,还为催化剂的设计和工业应用提供了坚实的基础。[/list]

  • 催化反应的应用领域

    工业的应用现代化学工业的巨大成就与催化剂的使用是分不开的。约90%以上的化学工业产品是借助于催化过程来生产的。例如,从煤炭和石油资源出发合成了甲醇、乙醇、丙酮、丁醇等基本有机原料,改变了过去用粮食生产的途径;合成纤维的生产减轻了人类对棉花的依赖;塑料的发展减轻了人类对木材的依赖。合成橡胶、化肥、医药、合成食品、调味品的生产都与催化剂的使用分不开。例如,硫酸的生产,相比于二氧化氮作催化剂的铅室法,产品浓度低、杂质多、产量小;用铂作催化剂可使硫酸产品浓度达98%以上,可制得发烟硫酸;用钒作催化剂后,产品质量大大提高,成本大幅度下降。又如炼油工业中的催化裂化,用分子筛催化剂代替无定形硅铝胶催化剂后,由于分子筛的择形作用,改变了裂化产物的分布,得到了高质量产品。生态上的应用处理各类废弃物。二氧化碳 + 废塑料轮胎→汽柴油+可燃气+炭黑,既解决了空中环境堵塞,又将地面废弃物转化为能源;煤+地面农、林、牧、城市生活废弃物、城市工业废弃物→汽柴油+可燃气+炭黑,既解决了地面的污染问题,地面生态通道的堵塞,和煤排出的CO2问题,又将煤、地面废弃物转化为急需的汽、柴油基础油,它产生的可燃气体和天然气的低碳排放是一个水平:排出的可燃气体,碳排放量为16%,天然气的碳排放量12%。优化化石能源的产业结构。用先进的催化技术和仿生能源的工艺方法,将炼油工业转化为资源节约型的工业结构。石油→汽柴油+可燃气+炭黑,以高科技手段,打破垄断,形成资源节约型产业,把地下化石能源成本降下来。 相比于传统炼油,设备成本为(1/5) 生产成本为(1/2),且更多的产出来源于石油中的生物质。

  • 三元催化_台式XRF分析仪

    三元催化器,是安装在汽车排气系统中最重要的机外净化装置,载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属。 它可以把废气中的HC、CO变成水和CO2,同时把Nox分解成氮气和氧气。  HC、CO是有毒气体,过多吸入会导致人死亡,而NOX会直接导致光化学烟雾的发生。经过研究证明,三元催化器是减少这些排放物的最有效的方法。通过氧化和还原反应,一氧化碳被氧化成二氧化碳,碳氢化合物被氧化成水和二氧化碳,氮氧化合物被还原成氮气和氧气。三种有害气体都变成了无害气体。三元催化剂最低要在350摄氏度的时候起反应,温度过低时,转换效率急剧下降;而催化剂的活性温度(最佳的工作温度)是400℃到800℃左右,过高也会使催化剂老化加剧。在理想的空燃比(14.7:1)下,催化转化的效果也最好。它安装在发动机排气管中,通过氧化还原反应,二氧化碳和氮气,故又称之为三元(效)催化转化器。

  • 【资料】环境保护催化剂简介!

    催化剂工业中的一类产品,用于借助催化作用来消除环境污染的工艺。自20世纪70年代汽车排气催化净化技术商业化以后,此类催化剂与石油炼制催化剂、化工催化剂(包括石油化工催化剂和无机化工催化剂并列为催化剂工业中的三大类产品。环境保护用催化剂通常有较高的催化活性,能将浓度本来很低的污染物经催化转化为无毒物;能承受较高的作业负荷,以节约催化剂用量和治理污染的设备投资;能在室温或不太高的温度下作业,以减少治理污染所需的能耗。被处理的气体,通常含有粉尘、重金属、含硫化合物、含氯化合物、酸雾等,因此要求催化剂的抗毒能力较强,化学稳定性好,具有足够的催化剂寿命。有时,要求有良好的催化剂选择性不致因副反应所生成的产物造成二次污染。在环境治理工程中,由于被污染物的组成、浓度、温度等常有变化,故要求催化剂能在较宽的反应条件下保持其效率,这与典型的化工生产中所用的催化剂是有所不同的。   燃烧催化剂  用完全催化氧化的方法使可燃性污染物质转化为二氧化碳和水的催化剂。广泛用于治理工厂的排气污染,主要是一氧化碳、烃类及其含氧衍生物,如醇、醛、酮、酯等引起的污染。第一次世界大战时曾用CuO和MnOx为催化剂,置于防毒面具中以净化毒气(一氧化碳等),在室温下即有效。催化燃烧技术现在广泛地用于排放有机溶剂废气的行业和排放可燃尾气的化工厂。将直接燃烧和催化燃烧法比较,依据不同的污染物,起燃温度(为保持反应正常进行所需的最低温度)分别为600~800℃和室温至400℃,即用催化法治理污染的起燃温度低,可节约能源。最常用的催化剂是以铂、钯、氧化铜、氧化锰、氧化钴、氧化镍、氧化钒等为活性组分,以氧化铝为载体。含贵金属的催化剂极为活泼,在催化剂中的含量通常为0.3%~0.1%,它们甚至在低于100℃时可使烃类完全转化,铂转化一氧化碳效率优于钯,而对烃类的燃烧活性则反之。以甲烷为例,催化燃烧活性顺序为Pd>Pt>Co3O4>PdO>Cr2O3>Mn2O3>CuO>CeO2>Fe2O3>V2O5>NiO>MoO3>TiO2。非贵金属氧化物催化剂价廉,但起燃温度较高。近年来,在处理大气量的催化燃烧炉中,多采用蜂窝状造型的催化剂,后者为柱状制件,沿柱体的轴向开有许多平行的孔道,形似蜂窝。这种造型的催化剂对气流的阻力比球状催化剂小得多。

  • 【求助】光催化还原产物定量分析

    各位老师好,我想请教一个问题:光催化还原CO2,尾气排放中有CO生成,液相产物有甲酸等。那么,在不知道进入气相色谱的气体量是多少的情况下,该如何定量分析CO有多少呢?或是哪位老师能给个测定气相产物的方法呢?先谢谢各位老师了

  • 催化转化器

    转化器是什么呢?它是汽车上面的一个小东西。可是汽车少了它那是万万不行的。其实这个东西我还真没有见过,它的外观还是黑色的,远处看好象是塑料做成的。其实它是钢做成的。外型也挺可爱的,那我们一起来研究一下,们来看看催化转化器综述:随着环境保护要求的日益苛刻,越来越多的汽车安装了废气催化转化器以及氧传感器装置。它安装在发动机排气管中,通过氧化还原反应,将发动机排放的三种废气有害物CO、HC和NOx转化为无害的水、二氧化碳和氮气,故又称之为三元(效)催化转化器,其催化剂大都含有铂、锗等贵金属或稀土元素,价格昂贵,在正常情况下,它的寿命为八万公里左右。由于三效催化转化器的工作要求比较严格,如果使用不当,会造成催化器失效层损坏。在高温度过高 常温下三元催化转化器不具备催化能力,其催化剂必须加热到一定温度才具有氧化或还原的能力,通常催化转化器的起燃温度在250—350℃之间。催化转化器工作时会产生大量的自量越高,氧化的温度也愈高,这都会使未燃烧的混合气进入催化反应器,造成排气温度过高,影响催化转化器的效能。硫和铅来自于汽油,磷和锌来自于润滑油,这四种物质及它们在发动机中燃烧后形成氧化物颗粒易被吸附在催化剂的表面,使催化剂无法与废气接触,从而失去了催化作用中毒现象还是比较高的,在三元催化器无法启动,发动机排出的炭烟会附着在催化剂的表面。这样长期下来便使载体的孔隙堵塞,影响其转化效能。催化转化器对污染物的转化能力有一定的限度,因此必须通过机内净化技术将原始排气降到最低。如果排放的废气污染物各成分的浓度、总量过大,比如混合气偏浓等,就会影响催化器的催化转化能力,降低其转化效。在排气状况就发生变化,安装三元催化器的位置就不同,这都会影响三元催化转化器的催化转化效果。因此,不同的车辆,应使用不同的三元催化转化器。然在发动机排气管中安装氧传感器并实现闭环控制,其工作原理是氧传感器将测得废气中氧的浓度,转换成电信号后发送给ECU,使发动机的空燃比控制在一个狭小的。还有它的注意事项:1.安装有催化器的汽车绝对不允许使用有铅汽油。 2.要避免催化转化器发生磕碰。 3.汽车不要长时间怠速,以防催化转化器烧坏。 4.要避免突然加速,以防止催化转化器过热。   5.要保证发动机正常运转,以防止催化转化器排气净化率最佳。由于三效催化转化器发动机始终处于理论空燃比的情况下工作,这时排气净化率最高。发动机电控系统、点火系统和燃油系统的故障都会使发动机工作不正常,混合气浓度偏离理论空燃化,使排气净化率降低,三效催化转化器寿命缩短。你们看一个催化转化器都有这么多条件,还有这么多的知识值得我们去看,去读,去理解,你们懂了吗?

  • 固体测汞仪 催化管 成分

    除了原子荧光,冷[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法是应用最广泛的测汞方法,两种方法均可达到0.1ppb的检测限。其中冷[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法,分为原始液体法和固体法,检测方法一样,均是采用253.7nm的汞灯作为光源。液体法是通过氯化亚锡还原呈离子态的汞变为单质,固体法通过催化燃烧将汞变为单质,接着被金汞齐捕获,去除气体内的杂质后,金汞齐进入解析炉进行解析,通过时间积分获得汞的吸光度。我想问大家的是,催化燃烧,是用的什么催化剂或怎样的原理呢,没有查到类似的资料。

  • 三元催化剂的制备和原料选择

    [align=center][b]三元催化剂的制备和原料选择[/b][/align]稀土催化材料在汽车尾气净化中的作用 目前国外广泛开发应用于汽车尾气净化的催化剂基本上是由铂(Pt),铑(Rh)等贵金属组成的, 目前, 普遍使用的铂铑基贵金属三元催化剂主要通过Pt 的氧化作用净化HC , CO , 通过Rh 的还原作用净化NOx 。该催化剂虽具有活性高、净化效果好、寿命长等优点,但是造价也较高,尤其是Pt、Rh等受到资源限制。为了缓解Pt特别是Rh的供应与需求之间的矛盾,广泛使用价格相对便宜的钯(Pd),开发了Pt,Rh和Pd组成的催化剂以及钯催化剂。 人们发现用稀土代替部分贵重金属制成的催化剂成本低,而且能获得满意的净化效果。 稀土汽车尾气净化催化剂所用的稀土主要是以氧化铈、氧化镨和氧化镧的混合物为主,其中氧化铈是关键成份。由于氧化铈的氧化还原特性,有效地控制排放尾气的组分,能在还原气氛中供氧,或在氧化气氛中耗氧。二氧化铈还在贵金属气氛中起稳定作用,以保持催化剂较高的催化活性。所以开发稀土少贵金属的汽车尾气净化剂,是取稀土之长补贵金属贵属之短,生产出具有实用性的汽车尾气净化剂。其特点是价格低、热稳定性好、活性较高、使用寿命长,因此在汽车尾气净化领域备受青睐。 稀土元素外层电子结构相似,稀土元素间的催化性能差别比较小,总的催化活性比不上外层电子结构的过渡元素及贵金属元素。在现行的实用工业催化剂中,稀土一般只用作助催化剂或催化剂中的一种活性组分,很少作为主体催化剂。作为贵金属催化剂的助剂,稀土能够提高和改变催化剂的性能,其助剂的作用远远大于传统意义上的碱金属或碱土金属元素。我国的机动车排放污染严重,然而我国贵金属贫乏而稀土资源丰富,因此稀土应用于机动车尾气处理在我困得到广泛的应用。 稀上在机动车尾气净化催化剂中主要是具有储氧和催化作用,将其加入催化剂活性成组中,能提高催化剂的抗铅、硫中毒性能和耐高温稳定性,并能改善催化剂的空燃比工作特性。 稀土在TWC中的应用 稀土氧化物特有的性质早已引起了国内外催化剂研究工作者的广泛关注,然而到目前为止稀上氧化物多用作催化剂载体和助剂。稀土在催化剂中的作用主要有以下几方面。 1.汽车尾气净化催化剂活性成分 汽车尾气中的主要有害成分为碳氧化合物(Hc)、一氧化碳(CO)和氮氧化物(NO),在净化器中的化学反应包括氧化和还原反应。因此,需要找出一种能使氧化和还原两类反应同时进行的三元催化剂,使催化剂在汽车排气管内借助于排气温度和空气中氧的浓度,对尾气中的CO、HC和NO同时起氧化还原作用,使其转化成无害物质C02、H20和N2。 Ce、La稀土催化活性的研究结果表明:Ce02的引入明显提高了CO和NO的催化转化活性。因此,可用稀土氧化物完全或部分代替贵金属来担当催化剂的活性组分,催化还原Co、HC和No。2提高催化剂的抗中毒能力机动车尾气含有的Pb、S、P等是易使贵金属三效催化剂中毒的物质,这些物质在催化剂的表面活性位置上产生化学吸附,阻碍了反应的进行,使催化剂失去了催化活性。 稀上具有抗硫化物中毒能力是因为这些有毒物与其生成稳定相,如Ce203与硫化物反应生成稳定的C02(S04)3。在还原气氛中,这些硫化物又被释放出来并在Pt和Rh催化剂上转化成H2S,同尾气一起排出(产生有臭味的H2S)。稀上对硫化物的转化作用使含稀土的催化剂具有较强的抗中毒能力。 研究表明Ce02对尾气中S02组分有一定的储硫作用。汽车发动机在贫燃条件下工作时发生如下反应:6 Ce02+3S02一Ce2(S04)3+2C0203,在富燃条件下储存的硫会被释放,从而增强了催化剂的抗S中毒能力。 3提高催化剂的热稳定和机械强度 通常构成活化涂层的丫-A1203在800℃以上会转变成a-A1203,使密度增加,表面积减少,造成孔隙结构坍塌。并且在1200℃以上活化涂层会从载体上脱落,使气体阻力增大,催化活性降低。 加入Ce02能稳定丫-A1203晶体结构,使活化涂层在高温下保持稳定,抑制活性损失。氧化铈在还原或中性气氛下,在1473 K处理数小时后仍能保持60 m2g.1表面积,说明主要以Ce A1203存在的Ce3+阻碍了晶体生长和氧化铝的转变。 4. 自动调节空气燃料比(储氧能力提高催化剂的活性) (围绕汽车发动机工作时的理论空燃比,汽车废气的组成是会呈周期地发生变化.利用选种特性,把废气中的氧能可逆的进行吸附和放出的物质叫做氧的存储物质,CeO 有这种作用。) 许多研究发现,氧化铈等稀土氧化物具有储放氧能力。Ce02在贫氧区放出02,氧化C0和HC,在富氧区储存02,从而控制贵金属附近的气氛波动,使空燃比A/F稳定在化学计量平衡附近,起到扩大空燃比窗口的作用,保持催化剂的催化活性。 Ce02中的Ce能改变氧化态(Ce4+与Ce3+之间的转化),具有极好的储氧效应和释放氧能力,在贫燃/富燃条件下可以储存/释放氧气,从而可以提高催化剂对CO、HC、NO的转化率。 (当发动机瞬时富油而造成废气瞬时缺氧时,四价Cc (CeO2)可变成三价Ce(Ce2O3),释放出O2.当发动机瞬时贫油而造成废气瞬时富氧时, Ce2O3又结合O2而转化成CeO2,这就是所谓的氧的储备作用。 其反应方程式如下:2 CeO2-- Ce2O3+1/2O2.) 5.助催剂的作用 汽车尾气中含有约l0%的水蒸气,Ce02可以促进水气转移反应产生还原性气体,可以在缺氧时提高CO的净化率,同时H2可用在NO的还原中,提高NO在富燃区的净化率。CO+H2O- -CO2+H2 为了弥补富Pd及全Pd催化剂中Pd在催化还原NO方面的能力不足,在Pd内加入La203,这种Pd-La催化剂在性能上完全可以和Pt.Rh催化剂媲美。 6.提高活性涂层的催化活性 加入CeO2 使活性涂层中贵金属颗粒保持分散, 避免因烧结而导致催化格点减少, 使活性受损。在Pt/γ2Al2O3 中添加CeO2 , 由于CeO2 能在γ2Al2O3 上单层分散( 最大单层分散量为01035 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]eO2Pgγ2Al2O3 ) , 改变了γ2Al2O3 的表面性质, 从而提高了Pt 的分散度。当CeO2 含量等于或接近于分散阈值时, Pt 的分散度达到最高。CeO2 的分散阈值即为它的最佳添加用量。Rh 在600 ℃以上氧化气氛中, 因高温氧化生成的Rh2O3 与Al2O3形成固溶体而失去活化作用。CeO2 的存在将减弱Rh与Al2O3 之间的反应, 保持Rh的活化作用。La2O3也能防止Pt 超微细粒长大。将CeO2 和La2O3 添加到PdPγ2Al2O3 后发现, CeO2 的加入促进了Pd 在载体上的分散, 并且产生一种协同还原作用。Pd 的高度分散及其与CeO2 在Pd/γ2Al2O3 上的相互作用是催化剂具有高活性的关键。 CeO2 还是一种有效的烃类氧化催化剂。在考察Pt/ CeO2 上CO 氧化时发现Pt 和CeO2 界面处的晶格氧起着重要作用。在真空或还原气氛中CeO2表面可以产生低价铈和氧缺陷, 具有优异的氧化还原催化性能和气敏功能, 特别是具有与吸附分子交换电荷、交换物种的功能。CeO2 在氢作用下易产生低价铈和氧空位。Pt/ CeO2 可吸收[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]氢并再释放出来。在常温下部分还原的CeO2 上吸附氧形成分子离子氧物种。氧物种可部分脱附, 高于170 ℃时均可转化为晶格氧 。另外, CeO2 对γ2Al2O3 载体的改性, 有利于钯催化剂上表面氧物种的脱附和氧化再恢复, 从而促进Pd/ CeO22γ2Al2O3催化剂的氧化作用。催化剂的制备工艺非常复杂,从配方的粉体原材料选择:催化剂粉体主要的材料是三氧化二铝、铝胶、稀土材料(氧化镧、氧化铈、氧化锆等)进行工艺混合,再由不同比例的贵金属活性组分添加,通过800度的高温制备而成。整个制备的工艺是一个科技含量非常高和严谨的流程。三元催化转化器的结构三元催化转化器主要由外壳、隔热保护罩、中间段、入口和出口锥段、弹性夹紧材料、防直通密封催化剂等几部份组成, 其中催化剂作为三元催化转化器的技术核心包括载体、涂层两部分。2.1 载体 基本材料为陶瓷(MgO2, Al2O3,SiO2)。目的是提供承载催化剂涂层的惰性物理结构。为了在较小的体积内有较大的催化表面,载体表面制成为蜂窝状。2.2 涂层在载体表面涂敷有一层极松散的活性层,它以金属氧化物γ-AL2O3 为主。由于表面十分粗糙,这使壁面的实际面积增大了约7000 倍,大大的增加了三元催化转化器的活性表面和储存氧的能力。在活性层外部涂敷有含锆Zr 和铈Ce 等元素的助催剂,含有铑Rh、钯Pd、铂Pt 等贵金属的主催化剂。市场现状(2)— 国内催化剂生产量估算[table][tr][td][b]厂 家[/b][/td][td][b]年产量(万升)[/b][/td][/tr][tr][td]昆明贵研催化剂有限责任公司[/td][td]300[/td][/tr][tr][td]无锡威孚力达[/td][td]60(剂)+20(封装)[/td][/tr][tr][td]天津化工研究设计院[/td][td]50[/td][/tr][tr][td]天津卡达克[/td][td]50(封装)[/td][/tr][tr][td]其他[/td][td]30[/td][/tr][tr][td]合计:[/td][td]500[/td][/tr][/table][img=,499,267]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD7D.tmp.jpg[/img][img=,480,361]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD8E.tmp.jpg[/img]三元催化剂的制备过程,提高催化效率,关键在于选用合适的催化剂。催化剂要求粒径小,大比表面积,同时要求高分散性,要求分散吸附性能强。市场上主流的效果最好的纳米氧化铈生产厂家有:杭州九朋新材料有限责任公司,其生产的纳米氧化铈比表高达200-300平,且分散性好,价格合理,同时还生产纳米氧化铝,纳米氧化铝溶胶,铂铑钯催化剂。另一家是山东加华,外资企业,主要生产氧化铈,出口为主,价格较高。要更换新的三元催化如何选择呢? 1、原厂件:4s如果你依然信任他,而且你也能够承担高出好几倍的价格,那么可以选择,关键是三元催化原厂件厂家一般都没有质保,原因很简单,因为新车的时候都很难质保。 2、品牌件:这个选择的难度就比较大了,因为今天中国的三元催化市场太吓人,从100元的三元催化到1万元的都有,一家三口人都可以在家里生产三元催化,这个市场是乱的把外星人都吓跑了,这么一个高科技含量的配件今天在中国变成家庭作坊都可以生产,这也难怪为什么主机厂基本在中国放弃了在用车市场,因为实在无法竞争。那我们消费者选择起来可就更难了,外行根本看不懂啊。其实方法还是有的。再乱的市场也有正规做事情的企业。

  • 【资料】固体酸催化剂!

    【资料】固体酸催化剂!

    酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 固体酸催化剂  性质  与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051910_194402_1643419_3.jpg[/img]红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。SiO2-Al2O3的酸中心模型 (见图)有多种模式。②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3H0+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051912_194404_1643419_3.jpg[/img]

  • 求助:催化氧化产物的气相色谱分析!

    各位高手,请问voc物质经过催化燃烧后如何进行色谱分析!催化反应后产物为高温气体,是直接进入色谱呢还是冷却后分别对液体和气体进行分析呢?直接进色谱的话,请问应该采取什么方法呢?如果分开的话,我tcd(填充柱)和fid(毛细管柱)都仅有一根柱子,应该如何进行呢?希望高人赐教,万分感谢!

  • 【讨论】国内外光催化反应器的发展情况

    【讨论】国内外光催化反应器的发展情况

    随着我国社会经济的迅速发展,不可避免地伴随着大量废弃物排放,这导致了严重的环境污染和生态破坏。这些因素正危及我国居民生存安全。另外,调查表明环境污染问题也会影响到我国的可持续性发展。所以,保护与治理环境是构建环境友好、和谐社会和实现我国社会经济叮持续发展的重要任务。传统污染物处理方法不能彻底消除降解污染物,也容易造成二次污染,使用范围窄。仅适合特定的污染物,还伴随着能耗高,不适合大规模推广等缺陷。近些年来,利用光催化技术降解和消除污染物得到人们的广泛关注。光催化氧化技术是一种集高效节能、操作简便、反应条件温和、同时可减少二次污染等突出特点于一身的一项新的污染治理技术,而且从地球卜物质循环的角度来看,光催化技术可以将大量的有机污染物降解为CO2和H2O.从而被植物利用.形成了循环,如图l所示,可以说光催化技术正足人类所急需的一种技术。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206281052_374718_2556116_3.jpg 光催化技术起源于20世纪70年代.自从日本学者Fujishima和Honda发现了利用TiO2单晶可将水光催化分解之后。世界范围内,便开始了光催化氧化技术在污水处理、空气净化、抗菌杀毒等方面的应用研究,于是光催化技术受到全世界的广泛关注。并得到了快速发展。如今人们对于光催化技术的研究主要分为对光催化剂的研究(如TiO2、ZnO)和对光催化反应条件的研究,其中。对反应条件的研究中,人们为了让光催化氧化反应能稳定和高效的进行,会设计出相应的反应器,用来为反应提供良好的平台,一个设计良好的反应器,将能大大提高反应体系的反应效率,从而达到高效、节能、稳定等目的。1 光催化反应器的设计依据 光催化反应器的设计主要目的是为了给光催化氧化反应提供高效和稳定的反应空间和环境。实现光催化过程对光的充分利用,从而提高反应效率。由于光催化反应需要有光子参与,光催化剂才能将光能转化成为化学反应所需的能量,来进行催化降解作用,因而在设计反应器的时候,最主要的两个理论依据就是光的传输理论和催化反应动力学理论。光的传输以及在光在反应器中的分布直接影响到催化剂对于光的吸收效率。充分均匀的催化剂分散可保证光在传输途中浪费少,这样催化剂对光的利用效率高,反之将会有较多催化剂由于得不到或者只接受到很少的光照而不能充分的进行光催化氧化反应。2 国内外光催化反应器的发展 早期的光催化研究大多是在一些很随意的反应条件下进行的。比如在液相光催化反应中,催化剂与污染物溶液混合时,一般的实验过程都是人工用玻璃棒进行搅拌。由于人为误差的因素难以避免,会对结果的准确性和再现性产生较大影响。为了满足对光催化反应器准确、稳定和高效的要求,反应器的设计也在不断的变化。一个设计较好的反应器,不仪可以提高光催化反应的效率,而且可以将其大规模化。可高效稳定的进行光催化作业,从而实现产业化。到目前为止,有一些类型的反应器已经用于诸如污水和空气处理的工业化应用。2.1流动床光催化反应器 流动床光催化反应器是将催化剂与待降解物质直接混合的一种反应器。一直以来,人们都在为满足不同的光催化反应要求,设计不同的反应器。应用最多的儿种类型的反应器包括椭圆型、底灯型和柱型,如图2所示。这几种反应器的特点是不仅效率较高,制作难度低。而且可以用于大多数的反应类型,可以同时满足液相和气相两种类型的光催化反应,因而得到了广泛的应用。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374721_2556116_3.jpg 椭圆型反应器(图2(a)所示)是将灯管和反应区分别放在椭圆的2个焦点上,这样可以很好的将灯管所发出的光集中在反应区内,减少了光的浪费,提高了整体的效率。虽然反应器中的反应区在椭圆型焦点上,但是这不表示灯管所发出的所有光线都能达到反应器,而且这种类型的反应器.光的传输路程较长,这样就增加了光在传输过程中的损失,并且反应区域内光的分布不均匀。底灯型反应器(图2(b)所示)是对椭圆型反应器的改进,它的光源位于抛物线的焦点上,但是光源的光线并不是聚焦在另一个焦点,而是从下往上射人反应区,光进入了反应区域后就不会再被反射回来。更大程度的利用了光源。柱型反应器是现在比较成熟的类型,一般可分为中灯外反应区(图2(c)所示)和中反应区外灯(图2(d)所示)2种。柱型反应器有着较高的光利用率和良好的对称性(可使光在反应区内均匀的分布,减少局部差异)。一些发达园家,这两种反应器已经用来处理污水,在这2种反应器中.光从光源发出来后,基本上都会通过反应区。特别是中灯外反应区这样的反应器.光的利用率几乎可以达到最大。在光源的光照强度合适的情况下,甚至可以不需要反射壁。都可以达到光的最大利用率。而且这种柱型的反应器制造难度小,成本低。适合大规模的生产和运用。因此现在的大多数针对反应器的研究,也是以柱型为模型来进行的。2.2 固定床光催化反应器 在近年来,人们将催化剂固定在一些载体表面来进行催化反应.即固定床反应器,这样避免了光催化剂的分离问题。固定床与传统的流动床的区别在于,催化剂不随液体或者气体一起流动.而是固定在玻璃或者其它介质表面,污染物流经其表面来进行反应。这样一来,人们就可能更精确的了解催化剂的性质,并易于控制催化反应的进行,也易于催化剂和反应物的分离。基于这种思路,人们设计了一些新型的光催化反应器,其中效果比较好的是平板型和喷泉型,如图3所示。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374722_2556116_3.jpg 平板型的反应器是将催化剂固定在平板上,在光照的条件下.将污染物液体或者气体缓慢的通过催化剂表面降解,属于层流型反应器。这种反应器的好处在于制造简单,待降解物经过催化剂的时候光照时间和光照强度基本一致,并很容易控制流动速度。当流速放慢的时候可提高反应物的降解程度。但是所需时问也就相应增加;当加快流速的时候虽然降解的程度不如流速慢的情况.但是所需时间较少。这种平板反应器可以根据不同的降解需求。调整流速,达到相应的效果。平板型的反应器还有另一个其他反应器不具备优点,由于催化剂是固定在平板上的。不会随着待降解物的流动而流动,也就省去了后续催化剂分离的步骤。但是也由于催化剂固定的原因,在降解一定时间后,催化剂的催化效率会降低,而更换催化剂比较困难,并且光的损失也比较严重。因为光源发出的光最多只有50%被利用.即使加装了反射壁.也会有大量的光损失掉。鉴于平板型反应器的造价低.易于控制的优点,很多实验室都运用平板反应器来进行一系列的光催化研究。 喷泉型反应器是近几年由Puma和Yueu等人提出的,此类反应器与平板型反应器大致相同,将催化剂固定在斜面上,在顶部固定光源,将待降解物斜面中心的喷嘴喷出,然后在重力作用下流经催化剂从而得到降解。此种反应器主要是用于研究催化剂的反应效率.由于结构相对比较复杂,所以应用也较少。还有很多种新型的反应器.比如球型反应器.这种反应器在理论上能达到非常高的光利用率,并且无论是光的分布。还是污染物的分布.还有催化剂的分布都能达到非常高的均匀性和稳定性.反应效率也是非常理想的,但是制作非常的困难.所以现在这种球型的反应器并不常见,是一种理想化的反应器。3 结语 随光催化技术的提高,光催化反应器也在被不断的改进和优化.越来越受到人们的重视.特别是光催化技术实现工业化后,反应器的设计需要进行系统的优化没计才能使光催化反应效率达到最优值,一个设计优良的反应器,不仅可以提高反应效率,还能减少对能源和原材料的浪费.提高经济效益。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206291103_374928_2556116_3.jpg

  • 【分享】稀土在催化中的应用

    稀土在催化中的应用[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14975]稀土在催化中的应用[/url]作者:(苏)Х.М.米纳切夫(Х.М.Миначев)等著;刘恒潜译出版项:科学出版社 / 1987.9目录:第一章 稀土元素氧化物的主要性质和物理性质第二章 简单气体的催化转化第三章 烃中的氢-氘交换反应第四章 烃的脱氢、脱氢环化和加氧反应第五章 裂化、烷基化、异构化和聚合反应第六章 醇的脱氢和脱水反应第七章 伯醇、酸的酮化和酯的合成第八章 有机物的氧化与还原反应和以CO和H2为主体合成烃与醇的反应第九章 其他反应附录: 用稀土作催化剂的专利资料结束语近十年来稀土催化的进展

  • 【金秋计划】+固体核磁共振新进展!揭示固体催化剂表面物种吸附状态

    [size=16px][font=arial][color=#222222]近日,中国[/color][/font][font=arial][color=#222222]科学院[/color][/font][font=arial][color=#222222]大连化学物理研究所研究员侯广进团队利用高压原位固体核磁共振(NMR)技术,揭示了部分还原氧化铈催化剂表面上非解离吸附活化双氢物种的独特化学状态。相关成果发表在《美国化学会志》上。 [/color][/font] 氢气在固体催化剂表面的吸附活化是合成氨、合成气转化、储氢等诸多能源化工过程的关键步骤,这引发了研究人员对于催化剂表面氢物种化学状态及催化功能的研究兴趣。然而,受限于表面氢物种环境敏感的特点及固体催化剂表面结构复杂性问题,对催化剂表面氢物种的实验观测存在挑战。因此,亟需发展对表面氢物种的原位、高分辨分析方法,以研究其吸附位点、电子与几何结构、与催化剂的相互作用及对催化反应的影响等重要科学问题。 固体核磁共振技术是高分辨研究催化剂表面吸附物种的重要谱学技术。然而,常规的非原位固体核磁共振方法难以研究表面氢物种在内的气氛敏感的活性物种的真实化学状态。侯广进团队前期克服技术挑战,开发出了高温高压原位固体核磁共振技术,该技术具有较宽的压力和温度操作窗口,并用于固、液、气等多相体系的原位固体核磁共振研究中,揭示了材料合成机制、气体吸附、主客体相互作用、催化反应路径及动力学等关键科学问题。 本工作中,研究人员利用高压原位固体核磁共振技术,研究了氧化铈催化剂表面氢物种的化学状态。团队通过引入HD气体,原位动态下采集二维J耦合2H-1H相关谱,发现并证明了部分还原氧化铈表面存在非解离吸附的双氢物种。团队进一步通过精准测量其J耦合常数及运动弛豫的NMR分析,确定了该双氢物种的活化吸附状态,揭示了HD分子吸附在催化剂表面,H-D键被活化拉长。随后,团队与西安交通大学常春然教授理论计算团队合作,结合不同还原程度的氧化铈吸附氢气的原位1H NMR观测及DFT计算结果,证实了该双氢物种的吸附状态,及其与氧化铈表面氧空位缺陷之间的关联。此外,研究人员借助乙烯加氢的探针反应,利用原位NMR技术观测到了该物种的催化转化过程。 该工作有助于加深对固体催化剂表面氢气吸附活化过程的认识,相关研究分析方法也有望拓展用于研究其它气体的吸附转化过程,从而指导相关催化剂和催化过程的精准设计。[/size]

  • 【原创大赛】正交法优化车用金属催化器中贵金属前处理条件研究

    【原创大赛】正交法优化车用金属催化器中贵金属前处理条件研究

    引言随着国内经济的快速发展,机动车辆的保有量迅速增加,机动车的废气污染导致环境空气质量的恶化,已经开始影响人们的身体健康,并引起了广泛的关注。为此为了减少机动车废气对环境空气的污染以满足日益严格的排放法规,加载车用催化转化器成为降低尾气污染物排放的一种有效措施。由于陶瓷载体生产成本低,容易制造成型,且具有抗冲击、抗压力、抗磨损、抗高温等优点,目前国内市场应用最广泛的主要以陶瓷为载体的催化转化器,但它的抗震性和热传导性差,而金属载体恰好可弥补这一缺点,安装金属载体催化转化器的机动车可快速起燃,能显著改善冷启动性能和废气排放。无论陶瓷载体还是金属载体的催化转化器,减少机动车废气排放的有效活性组分多采用贵金属元素,因而准确测定催化转化器的贵金属含量对于保证其催化性能满足国家法规具有重要的意义。目前,对于陶瓷载体的催化转化器中贵金属分析的相关研究较多,消解方法主要是酸溶法、碱熔融法、火试金法、湿法冶金等,分离富集方法包括共沉淀法、萃取法、离子交换法、吸附法、液膜法、生物吸附等,仪器分析方法有火焰原子吸收光谱法、但以电感耦合等离子体发射光谱法(ICP-OES)和电感耦合等离子体质谱法(ICP-MS)为主。对于金属载体的催化转化器中贵金属的检测研究很少,催化器生产企业多以间接的方法测量(测定金属载体经过涂层浆料后剩余浆料中贵金属含量的变化),对很少对金属载体催化化器中的贵金属含量进行直接测定。为此,本文对金属载体催化器中贵金属含量的直接测定进行了研究,通过碱熔融法对金属载体催化转化器不同溶解条件及碲共沉淀条件进行试验比较,用ICP-MS作为最后分析测定,选出最佳的试验条件。1 实验部分1.1 仪器及工作条件美国安捷伦科技有限公司生产的电感耦合等离子体质谱仪ICP-MS 7500a型;马弗炉;美国Millipore公司生产的Milli-Q Academic超纯水系统;莱伯泰科EH45A plus型电加热板。ICP-MS7500a工作条件:入射功率1.38kw,工作气体为氩气(体积分数不小于99.9996%),冷却气流量15L/min,载气流量1.2L/min,辅助气流量0.0L/min,采样深度7.6,雾化室温度2℃,蠕动泵转速0.1rps,质谱扫描方式跳峰。1.2 试剂材料单元素标准储备溶液:Pt、Pd、Rh、In、Tl均为1000mg/L(国家有色金属及电子材料分析测试中心提供)。氯化亚锡溶液(1mol/L):22.56g氯化亚锡溶于25mL盐酸,用水稀释到100mL。碲溶液(5g/L):0.625g二氧化碲溶于20mL 盐酸,用水稀释到100mL。盐酸、硝酸为优级纯,氢氟酸、过氧化钠为分析纯,实验用水为去超纯水。1.3 实验方法1.3.1分析样品制备将金属载体(带有催化器外壳)放入烧杯中,加入盐酸与水体积比为1:1的盐酸,多次添加盐酸直至催化器内芯体全部溶解,然后进行负压抽滤溶解有样品的酸液,将滤饼和残渣收集在蒸发皿至于加热板上蒸干驱赶盐酸,再放入马弗炉中灰化。灰化样品放入研磨机中进行混合研磨,研磨后样品进行过筛(孔径75μm),研磨后样品在200℃烘箱内烘约2h后置于干燥器中冷却备用。1.3.2样品碱熔融处理称取一定量过氧化钠(是样品称样量的5倍~20倍)均匀铺在刚玉坩埚底部,称取0.5g(精确至0.0001g)样品平铺在其上,将样品与过氧化钠混合,然后盖上坩埚盖放入马弗炉中,从室温升温至设定温度600℃-900℃并在设定温度保持10min-40min,碱熔融结束后,待马弗炉温度冷却至室温后取出坩埚。再将坩埚放入1000mL大烧杯中,倒入200mL盐酸与水体积比为1:3的盐酸,在加热板上加热至沸腾10min,取下冷却后洗出坩埚。1.3.3碲共沉淀加入一定量盐酸调节酸度(0mL-40mL),加入10mL 碲溶液到烧杯中,再加入5mL氯化亚锡溶液,放在加热板上微沸15min,再加入10mL 碲溶液和5mL 氯化亚锡溶液,煮沸一定时间(15min-60min)后,加入2mL氯化亚锡溶液看是否还有沉淀,如不再产生沉淀放置冷却,冷却后共沉淀颗粒变大。将共沉淀用溶剂过滤器过滤,用盐酸与水体积比为1:5盐酸洗涤沉淀及滤膜至无色。将沉淀和滤膜一起转入原烧杯中,加入王水10mL,加热溶解沉淀,冷却后将滤膜取出,将溶液倒入塑料瓶中定量待测。1.3.4空白试验和验证试验 随同样品作空白试验和同类型标准物质的验证试验。1.3.5测定方法依次测定标准溶液后,根据标准溶液系列浓度绘制成标准曲线。分别测定空白溶液和样品溶液,根据校准曲线测定样品中各元素的浓度,然后计算出样品中相应各元素的含量。1.4 正交试验设计以上进行的是单因素试验,得出的结果只是单个因素对回收率的影响,不能确定多个因素同时作用下哪个因素对回收率的影响最大。在上述单因素试验的基础上,选取过氧化钠加入量、熔融温度、加入盐酸体积、碲沉淀时间这四个因素进行正交试验。设计正交实验L9(34)见表1。表1 正交试验因素水平表Table 1 Factors

  • 分子筛填料和催化剂

    常见分子筛3A分子筛4A分子筛5A分子筛10X分子筛13X分子筛13XAPG分子筛富氧分子筛XH系列制冷剂专用分子筛中空玻璃专用分子筛 分子筛催化剂SAPO-11: 芳烃和异构化芳烃的烷基化,二甲苯异构化,石油炼油,石油化工。ZSM-5: 甲醇转化,低碳烷烃脱氢。高硅ZSM-5为疏水性的。磷酸铝分子筛:电中性,气体干燥,裂解反应,脱氢反应,水合反应,酯化反应。TS:氧化还原性能,弱Lewis酸性,环烯烃、环烷烃以及不饱和醇的催化氧化。MCM:苯和丙烯烷基化,甲烷无氧芳构化,催化裂化,烯烃芳构化,甲苯歧化。SBA:催化氧化,催化加氢、聚合、缩合反应,烷基化反应,异构化反应,催化裂化,光催化,热分解。不知道有老师用过没有,能不能提供下供货信息啊

  • 【求助】固体测汞仪催化管问题

    固体测汞仪催化管中活性炭被掏出重填,造成输入压力3.6psi,说明这根催化管已经彻底不能用了吗?还有办法补救吗?催化管多少钱一支?

  • 【求助】表征催化剂活性用的混合气

    1.请教各位虫友,本人在做催化剂活性表征,配了一罐甲烷和空气的混合气,用GC测甲烷浓度是0.17%,将此罐通入催化剂活性测试仪中,在反应了四五个小时后,再测罐中气体发现甲烷浓度几乎为0了,是不是因为甲烷太轻比空气先从罐中出来呢?2. 如果甲烷比空气先出来,那就表示反应一段时间,罐中的气体成分就发生改变,就做不到浓度相同了,那有什么方法能够保证罐中出来的气体是稳定的,就是保证甲烷和空气能够以一定的比例出来,而不随时间变化?把罐平躺着放置能不能解决这个问题啊?

  • 【原创大赛】催化器中贵金属元素测定方法研究

    【原创大赛】催化器中贵金属元素测定方法研究

    1 前言汽车尾气排放污染已经成为大气环境污染的重要来源,不仅影响生态环境,而且还危害人体健康,因而世界各国都制定了严格的法规限制尾气的排放。安装尾气净化催化器是汽车最为有效的机外净化措施,欧美和日本等发达国家从上世纪70年代末就已经开始了贵金属三元催化剂的尾气净化研究,经过30多年的努力,贵金属三元催化器净化技术已经相当成熟,它可以有效地降低尾气中CO、HC、NOx的排放。随着排放法规的日趋严格如表1,对贵金属三元催化器的性能也提出了更高的要求,因而需要严格控制催化器中有效成分贵金属元素Pt、Pd和Rh的含量,以保证尾气符合排放标准的要求。对于催化剂中贵金属含量测定,国内外有不同测试方法的火试金重量法、、分光光度法、原子吸收光谱法、电感耦合等离子体发射光谱法、电感耦合等离子质谱法等,其中电感耦合等离子体质谱(ICP-MS)具有灵敏度高、检出限低、干扰少、多元素同时快速测定等优点。不论采用任何一种元素分析仪器都需要对催化剂进行必要的处理,通常采用常压湿法消解、高压湿法消解、微波消解等不同方法。本试验对陶瓷载体的贵金属催化剂进行常压湿法消解处理,尝试了多种酸消解,结果都不能把陶瓷催化剂完全消解,样品没有彻底消解因而不能保证贵金属元素的很好溶出。最后采用酸碱相结合的方式处理催化剂发现催化剂彻底溶解,并结合电感耦合等离子体质谱法测定进行了干扰问题、方法的精密度和准确度考察,结果表明该种处理方法效果很好。表1 美国和欧盟汽车排放标准(g/km)http://ng1.17img.cn/bbsfiles/images/2014/12/201412111234_526711_2770543_3.png2 实验部分2.1 主要仪器与试剂Agilent 7500a电感耦合等离子体质谱仪;莱伯泰科的EH45A plus型石墨电热板。天津市化学试剂五厂生产的优级纯试剂:硝酸(HNO3)、硫酸(H2SO4)、盐酸(HCl)、氢氟酸(HF)、高氯酸(HClO4)、氢氧化钠(NaOH)等;国家钢铁材料测试中心钢铁研究总院生产的标准溶液为1000μg/mL的铂Pt、钯Pd、铑Rh单标溶液;安捷伦科技公司生产的含有锂Li、钇Y、铈Ce、铊T1的10ng/mL调谐溶液;实验中所用水为超纯水。2.2 混合标准溶液配制将浓度为1000μg/mL的Pt、Pd、Rh单标溶液用1%硝酸配制成10ug/mL的混合标准溶液做储备液,然后再配制浓度为0ng/mL、50 ng/mL、100 ng/mL、200 ng/mL、500 ng/mL、1000 ng/mL等标准系列溶液。http://ng1.17img.cn/bbsfiles/images/2014/12/201412111302_526736_2770543_3.jpg2.3 ICP-MS仪器工作参数对ICP-MS仪器进行调谐优化仪器工作参数,以满足灵敏度(获得Li7、Y89和T1205最大计数)、精密度(RSD5%)、氧化物(CeO+/Ce+1.0%)、双电荷(Ce2+/Ce+3.0%)等各项考察指标,仪器工作参数如表2所示。表2 ICP-MS工作参数http://ng1.17img.cn/bbsfiles/images/2014/12/201412111235_526712_2770543_3.png3 结果与讨论3.1干扰及其消除研究在ICP-MS分析中一般存在质谱和非质谱两类干扰。一类为质谱干扰,贵金属的测定中主要会受到同量异位素、氧化物以及氩化物等离子干扰,见表3,消除质谱干扰一般的方式有选择合适的同位素、优化仪器工作条件、建立数学干扰方程校正等。表3 贵金属元素同位素测定的部分质谱干扰http://ng1.17img.cn/bbsfiles/images/2014/12/201412111235_526713_2770543_3.png对于同位素选择,每个元素至少有一个同位素可以避开其他同量异位素的干扰,如195Pt、105Pd和103Rh。同时还要根据样品基体中的成分来设定(做全扫描确定),如果样品中含有大量的Hf(其产生的氧化物可能与Pt在同一数量级上),此时应避开受干扰的质量数,选择不受影响的丰度也比较高的198。同样对于Pd测定,如果样品中含有大量的Sr,则会影响102Pd、104Pd、105 Pd、106 Pd,此时应选择不受Sr干扰的108或110;如果含有大量Zn,则会影响104Pd、106 Pd、108 Pd、110 Pd,此时应选择不受干扰的105;如果含有大量的Zr,则

  • 【求助】固体测汞仪催化管问题

    固体测汞仪催化管中活性炭被掏出重填,造成输入压力3.6psi,说明这根催化管已经彻底不能用了吗?还有办法补救吗?催化管多少钱一支?

  • 催化剂中金属比表面的测定

    催化剂的金属比表面积是催化剂表征中的一个项目,通过测定催化剂中金属和气体的反应,通过测定消耗气体的量计算出活性金属的量,计算出活性金属比表面积或金属分散度来表征。其主要结构就是一个反应装置和一个检测装置,测定结果跟反应条件和方法有非常大的关系。国内科研单位测定这个指标有两种方式:一是用气相色谱仪改造,二是用化学吸附仪中的金属表面积测定功能进行测定。在仪器展中检索到的国内化学吸附仪进口的基本也是比表面积仪的生产商如麦克、康塔、BEL等,国产的有浙江泛泰,外形跟麦克的很像,文献和高校中多用的是天津先权,但它可能不太宣传。其实它的结构也很简单,一个六通阀脉冲进反应气,通过一定温度下的催化剂,然后用TCD检测一下消耗掉的反应气。自己很想做一个,只是没有多余的气相色谱仪,其实最垃圾的能用就行了,程序升温也不用,对检测器要求也不高,有个六通阀、柱温箱、TCD就搞定了,想想以前单位报废掉多少国产的色谱仪,这里想用都没有。

  • 催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    [align=center][img=https://www.instrument.com.cn/webinar/meetings/catalyst2022/,690,151]https://ng1.17img.cn/bbsfiles/images/2022/06/202206101025467345_9400_3295121_3.jpg!w690x151.jpg[/img][/align][size=24px][color=#ff0000]催化剂表征与评价 主题网络研讨会[/color][/size][size=18px]举办时间:6月28日 14:00[/size][font=&]1、韩一帆(华东理工大学/郑州大学 长江学者、中原学者、教授/博士生导师):Elucidating Active Sites for Syngas to Olefins through F-T Reaction[/font]2、周琰(安东帕(上海)商贸有限公司 产品经理):气体吸附在催化剂表征中的应用3、刘丽萍(大连理工大学 高级工程师):固体多孔材料比表面积和孔结构分析方法应用探讨4、杨军(中国科学院过程工程研究所 研究员):贵金属基异质结构纳米材料及其电催化应用戳链接,[size=18px][color=#ff0000]免费[/color][/size]报名:[url]https://www.instrument.com.cn/webinar/meetings/catalyst2022/[/url]

  • 色谱法化学吸附仪在催化剂行业

    色谱法化学吸附仪在催化剂行业2013无机及同位素质谱会2014环境监测仪器形势大好第我国研制超分辨显微镜打破国际技食药总局发布组织申报国家科技计划欧盟成功研制出低成本便携式石棉检广东H7N9禽流感卷土重来疾控整站优化:最给力的优化编者按:在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在以往工作的基础上,研究人员提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。

  • 【求助】哪儿能做光催化降解的检测?

    我做了一些掺杂纳米二氧化钛的涂层,想检测一下涂层在光催化作用下对含有机物(例如有机磷或苯酚等)污水的净化效果,请问哪儿能做这种检测?另外还想做一下这种涂层对甲醛气体的降解检测,哪位知道啊谢谢各位

  • 高顺式聚丁二烯橡胶催化体系的分析研究

    [align=center][b][/b][/align][align=center][b]高顺式聚丁二烯橡胶催化体系的分析研究[/b][/align]2012年11月1日欧盟轮胎标签法规—EC1222/2009实施,要求出口欧盟的轮胎必须标示出轮胎的燃油效率、滑动噪声和湿抓着力等级。高顺式顺丁橡胶是生产高性能绿色轮胎的重要原材料,常见用于子午线轮胎、斜交轮胎胎侧和胎面配方中。不同催化体系的顺丁橡胶应用性能差异较大,尤其是稀土顺丁橡胶。橡胶行业对不同催化体系的高顺式顺丁橡胶的应用非常关注。主要基于以下诉求:1、轮胎厂急欲了解品牌轮胎中不同催化体系高顺式顺丁橡胶的应用方向,以便采购生胶原材料,提高自我品牌轮胎性能。2、合成橡胶生产厂急欲知道不同催化体系高顺式顺丁橡胶在轮胎中的应用现状与前景。3、合成橡胶应用技术研究人员急欲掌握不同催化体系高顺式顺丁橡胶的应用性能。采用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url](FAAS、GAAS)可以对高顺式聚丁二烯橡胶生胶及硫化胶催化体系进行定性、定量分析。1、采用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]对高顺式顺丁胶(单用和并用)进行定性。2、进行样品处理,样品处理有三种方法:A、干法灰化,B、湿法消解,C、半降解。3、采用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]测试样品中的钕、镍、钴、铝。优化测试条件,消除存在干扰。检测限能达到ppb级。4、根据检测结果,总结国内外轮胎用高顺式顺丁橡胶催化体系的不同及应用方向。

  • 催化反应疑问

    请问反应体系是这样:一种反应物1是液体,另一种反应物2(室温时是固体,加热到50度成液体),在室温下将2加入到1中,液体混浊,如将2加热到60度以液体形式加入到1中,观察到透明,请问2溶于1吗?反应温度调在65度以上,是不是可以认为2溶于1中,如果不加催化剂它们之间的反应是属于均相反应吗?如果在此反应温度下,催化剂加入后溶液呈混浊状或者催化剂明显不溶,那么此情况下反应是否属于非均相反应?还是非均相反应必须是两反应物分别处于两相中,采用一种相转移催化剂的反应才是真正意义的非均相反应?请各位做过催化研究的大侠帮我分析一下,在此表示十分感谢。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制