当前位置: 仪器信息网 > 行业主题 > >

催化剂载体

仪器信息网催化剂载体专题为您整合催化剂载体相关的最新文章,在催化剂载体专题,您不仅可以免费浏览催化剂载体的资讯, 同时您还可以浏览催化剂载体的相关资料、解决方案,参与社区催化剂载体话题讨论。

催化剂载体相关的资讯

  • 粉体测试促进催化剂生产
    测试结果有助于设计方案和原料的选择。工业催化剂作为一种复杂材料,需要不断精制提高加工效率同时减少对环境产生的影响。催化剂能够提高原料灵活性,降低能耗,增加选择性和延长使用寿命,对石油化工可持续性的提升发挥了重要的作用。对于商业化非均相催化剂,添加粘合剂、填料、致孔剂和增塑剂等,将活性相和载体转化为特定几何形状和性能稳定的产品。由于大多数催化剂成分为粉料,因此有效的粉体加工是催化剂高效生产的先决条件。托普索公司位于丹麦灵比,作为化工、炼油行业中高性能催化剂和专利技术的全球领导者,提供超过150种催化剂。该公司应用粉体表征技术,如ft4粉体流变仪,对催化剂生产设备的设计方案进行优化,改进原料的选择。确定与粉体传输过程密切相关的特性,从而制定设备选型的标准,最大限度降低新工厂的运行成本。此外,辅助筛选原料,降低意外停工的风险,有助于加快粉体加工效率。催化剂生产非均相催化剂加工简单,生产高效,在炼油和化工行业中尤为普遍。这种催化剂是多元络合物,结构为毫米尺度,化学性能和机械性能优异[1]。化学性能取决于活性相的有效分散和传质、传热的精确控制。催化剂寿命,即维持反应和选择性的时间,是关键的商业因素。控制机械性确保整个催化剂床层产生的压力降可控,维持稳定、长效反应所需的机械强度。机械摩擦也会破坏催化剂性能。从活性相和载体的结合开始,配方开发人员通过一系列添加剂的组合,实现催化剂工业化并满足工艺需求。添加剂包括炭黑或淀粉等致孔剂——热处理分解,形成颗粒内孔隙,以及增强机械成型的增塑剂和润滑剂[2]。催化剂的生产取决于这些成分的有效组合和重现。作为一个复杂、多步骤过程,主要涉及[2,3]:• 粉料原料的准备;• 通过喷雾干燥、球化、压实、湿法造粒、挤出等过程形成的预混物和团聚“中间体”;• 硬化和精制,例如还原,洗涤涂层或离子交换。粉体传输和可控定量,作为众多加工过程的基本要素,要求设计方案和操作实践的效率最大化。除了特定的单元操作,还需表征粉体,理解、解释并控制催化剂整个生产过程的表现。托普索公司通常使用激光衍射法测试粒径分布,振实密度评价原料和中间体。但凭这些数据去选择和确定加工设备仍不可靠。此外,这些测试并未充分评估原料的替代品是否匹配特定工艺。单凭这些测量技术,工艺方法的开发无法达到最优,包含一定程度的错误,引入新物料或更换供应商时停机的风险增大。托普索公司还加入了罗格斯大学催化剂制造联盟。这一小组汇集了不同学科的研究学者,从事催化剂生产改进项目。成果之一是基于动态、剪切和整体粉体特性的测试[4],开发出更好的方法选择催化剂组分的失重(liw)进料器。托普索公司运用此项工作的成果来设计、选择和优化liw进料器;现有粉体测试在实践过程中极具潜力,同时也提高了公司对这一收益的认知。托普索公司使用ft4粉体流变仪进行内部评估,获得75种原料的动态、剪切和整体特性数据(总计超过25个特性)。在此成功试验的基础上,公司于2012年购买仪器成为用户。确定设计方案为了优化新仪器的应用,托普索公司进行深入评估,包括运用主成分分析(pca),建立原料特性数据库,确定能否减少常规测量的次数,最大程度地减少成本,这也是一个重要的商业考虑。公司还进行了不同粉体传输设备性能与特定粉体特性相关性的研究。这项工作确定了粉体传输应用中三个关键的属性:可压性,透气性和粘结应力。可压性量化粉体受到固结应力时的体积变化,通过测量整体密度与所施加正应力的函数(图1左、中)得到。虽然粘性较强的粉体相比自由流动的材料更可压,pca分析说明可压性是独立变量,与其他参数无关。关键粉体整体特性图1.测量可压性(左、中)和透气性(右)有助于理解粉体行为。透气性测量了粉体对于气流的阻力,通过测量特定固结压力下粉床压力降与气流速度的函数(图1右)得到。空气不易夹带,能够轻松穿过透气性较好的粉体,与之相比,透气性较差的粉体容易滞留空气。透气性与传输过程极其相关,例如气动传输和料斗下料。粘结应力由剪切盒确定,该测试测量了固结粉层相对另一粉层剪切所需的应力。剪切盒主要量化固结粉体从静止到流动变化的难易程度。因此,粘结应力与固结的粉体、低流速工艺操作最为相关,尤其是料斗下料过程。通过评估这三个特性,托普索公司能够选择最佳的传输方式,使用气动传输或者流体隔膜泵。由于气动传输设备的造价较高,需要适合的排气系统来清除粉体夹带的空气,因此这一决定具有重大的成本影响。通常流体隔膜泵的安装成本仅为气动传输系统的10-30%。已有的设计方案,需要大约一年的时间开发并获得批准,原则如下:• 如果可压性小于36%,适合流体隔膜泵。• 如果可压性大于38%,需要气动传输系统。• 如果可压性介于36-38%,选择取决于透气性和粘结应力的值。由此确定两种方式的抉择标准。作为可压性测试的结果之一,粉体的松装密度也很重要,由此决定所选系统的传输能力。量化选用这一方式累积节省的成本也非常容易。一套全新气动传输系统成本约为80000美元,而流体隔膜泵系统通常少花费约55000美元。根据现有的设计标准确定传输系统,托普索公司自2012年底起成功安装了六套流体隔膜泵系统,并且从2015年起更换了两个现有的气动传输系统。假设每个流体隔膜泵系统的成本为气动传输系统的30%,仅根据新安装系统的保守估计,对于整体造价约34万美元的项目而言,使用粉体流变仪进行成本缩减也很可观。这说明对仪器的明智投资获得了巨大回报。优化原料的选择此外,深入的粉体表征也优化了原料选择。这项工作的目的是筛选粉体特性,可靠预测催化剂生产过程中新材料的性能,也无需投入实际工厂试验,更具体地说,确认新材料与现有材料的性能可比。这种评估在更换供应商或使用替代原料时十分关键,特别是选用价格较低的替代材料缩减成本。粉体测试仪器可以获得:• 剪切特性,包括壁面摩擦角,尤其是研究料斗性能,与连续粉体流动相关的料斗倾角和下料口尺寸;• 可压性和松装密度;• 动态特性包括基本流动能(bfe)和稳定性指数(si)用于评估粉体动态流动性。动态粉体性能通过测量桨叶旋转穿过样品时阻力和扭矩(图2)得到[5]。向下行径穿过预处理后的样品产生bfe值,这是一个高度灵敏的流动性参数,量化了低应力条件下受约束流动的行为。重复bfe测试还可以量化粉体的稳定性,结果为si,该值的定义是多次测试前后bfe值的比值。si接近于1说明粉体物理性能稳定;该值高于或低于1通常与分层、摩擦或团聚等现象有关,这些都可能导致性能变差。动态粉体特性图2.动态特性非常敏感,与不同工艺性能相关。这一测试可以确定粉料在投入工厂前,不同供应商或原料替代品的表现是否良好。粉体加工过程是否会发生间歇传输或堵塞,导致意外停机,从而影响生产效率。因此,能够在不中断工厂生产的情况下找出潜在问题是一大收获。公司现在定期参考上述指标筛选材料,同时全面分析新材料,增补原始数据库,逐步优化实践并扩展粉体测试仪器所提供的价值。强力工具设计和运行粉体处理设备,对工艺工程师来说是一场持久挑战,优化和测试替代设备仍然重要。幸运的是,理解不同工艺与原料之间的相容性,以及选用合适的粉体测试确定这一相关性,近年来已有长足进步。托普索公司的经验验证了粉体测试在催化剂生产中的可行性,其实相关工艺对于大多数生产部门也很常见。通过测量动态、剪切和整体性能,托普索公司强化了liw进料器选型的过程。基于粉体的可压性、透气性和粘结应力数据,为粉体传输确定了可靠的设计方案,确定选用经济型设备的条件。此外,现在公司也能无需工厂试验,可靠评估是否选用新料或更换供应商。粉体测试仪器都提供了关键的数据和丰厚的投资回报。参考文献1.“catalysts for optimal performance,” haldor topsøe, lyngby, denmark, viewable via: www.topsoe.com/products/catalysts2.mitchell, s., et al., “from powder to technical body: the undervalued science of catalyst scale-up,” chem. soc. rev. (feb. 2013).3.catalyst manufacturing center, rutgers university, homepage, https://cbe.rutgers.edu/catalyst-manufacturing-center.4.wang, y., et al., “predicting feeder performance based on material flow properties,” powder tech. (dec. 2016).5.freeman, r., “measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell,” powder tech (oct. 2006).
  • 麦克仪器提供全套催化剂表征仪器加速催化剂开发
    Loyola大学研究人员考察麦克仪器的气体吸附仪和催化剂评价装置。 材料表征技术全球领导者麦克仪器(micromeritics),扩展了其用于多相催化剂测试的仪器组合,因此客户现在可以很容易地选择多个高效协同工作的系统来加速催化剂开发。麦克仪器的研究级气体吸附仪ASAP2020和全自动实验室催化剂评价装置Microactivity Effi,为目前流行且强大的组合。ASAP2020用于定量活性催化剂和载体的主要物性,Effi可用于相关条件过程的催化剂评价,来自Universidad Loyola (Seville, Spain)的Dr Manuel Antonio Díaz Pérez是使用这一双仪器解决方案进行高效催化剂研究的最新客户之一。 “当谈到建立我们的新实验室时,我毫不犹豫地直接去麦克仪器公司复制了一套在以前的工作中证明对我有价值的测试设备,” Díaz Pérez博士 表示,“EFFI是非常有效和高度可靠的。硬件稳定,软件直观,如果您需要,更换部件非常容易。我对ASAP 2020的体验主要是为了物理吸附来研究表面积和孔隙率,这是任何多相催化剂都需要的性能表征。展望未来,我希望投资于Micromeritics的更多设备,以进一步增强我们的研究能力。他们提供的一系列设备可得到丰富的相关和有用的数据,可加快催化剂的开发。” Díaz Pérez博士在University of Loyola工程系内建立一个新的实验室,以开发解决特定环境问题的新材料。研究课题包括将生物燃料转化为大宗化学构件的催化剂和二氧化碳的吸附剂。ASAP2020气体吸附仪为物理吸附加化学吸附配置,采用体积法分析催化剂的表面积,孔容和孔径分布,这些参数定义了反应物和产品进出活性催化剂位点的难易程度,帮助研究者在分子级别优化反应环境。Effi催化剂评价装置可用于研究催化剂活性、选择性、产率和典型条件下的失活,可得到动力学数据和合适的催化剂再生条件。 “高质量、可靠的分析设备是一项值得投资的项目,” Díaz Pérez博士表示 “这对实验室的日常运行和生产力有很大影响。麦克仪器的产品非常好用,该公司在具体分析和应用方面提供快速有效的帮助。我相信我们购买的新仪器将对我们正在进行的研究做出重要贡献。” Micromeritics Microactivity Effi 催化剂评价装置 Micromeritics ASAP 2020 Plus 气体吸附仪关于麦克仪器麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。同时具备丰富的科学知识库和一流内部生产制造, 麦克仪器公司产品覆盖了石油加工、石化产品和催化剂、食品和制药等多个行业,以及为下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等提供最前沿的表征技术。在Particulate Systems旗下,麦克仪器公司发现并商业化独特和创新的材料表征技术,对核心产品线进行补充。商业测试实验室–Particle Testing Authority (PTA)实验室可提供表征分析测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。仪器咨询:400-860-5168转0677
  • 麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力
    ▼点击蓝字,关注麦克▼麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力原位直接评估反应条件对催化剂主要性能的影响麦克仪器公司推出了新的原位催化剂表征系统(ICCS),原位直接评估反应条件对催化剂主要性能的影响。ICCS是Micromeritics公司和PID Eng&Tech公司的专业知识相结合的产物,PID Eng&Tech公司最近被Micromeritics公司收购,并以其微反应器和中试工厂技术而闻名。ICCS使研究人员能够有效地量化反应对定义催化剂参数(如活性中心数量)的影响,所得数据直接支持开发更有效的多相催化剂。 麦克仪器的化学吸附技术如程序升温分析和脉冲化学吸附在全球范围内应用逛逛。另一方面,MicroActivity Effi是一种高度自动化的催化剂筛选工具,用于测量工艺相关条件下的产率、转化率、选择性和催化剂再生。ICCS将化学吸附和程序升温技术(如TPR、TPO和TPD)与Microactivity Effi的现有功能相结合,从而可以对催化剂进行表征、测试,然后对其进行重新表征,以评估反应的影响。所有这些都是在严格控制的条件下进行的,没有受到外部环境污染的风险。 ICCS催化剂原位表征系统集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 当ICCS与Microactivity Effi直接相连时,ICCS可以进行原位化学吸附测试,可以对催化剂、催化剂载体和其他材料进行分析,不会有暴露在外部环境中的风险,因为不需要将样品从反应器中取出。这消除了大气气体和湿气污染的可能性,因为大气气体和湿气可能会损坏活性催化剂并损害数据完整性。程序升温实验,包括程序升温还原(TPR)、程序升温氧化(TPO)和程序升温脱附(TPD),可以在大气压或高达20bar的压力(取决于相关筛选系统的额定压力)下进行,提供有关高压下催化剂氧化还原性能的重要信息。可以使用相同的样品对相同的材料进行多种表征。 欲了解更多ICCS信息请点击查看Micromeritics原位催化表征系统 (ICCS) 与 Microactivity EFFI关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。设备咨询热线:400-860-5168转0677
  • 大连化物所实现高温稳定的铜基催化剂的研制
    近日,大连化物所碳资源小分子与氢能利用创新特区研究组(DNL19T3)孙剑研究员、俞佳枫副研究员团队,与日本富山大学Noritatsu Tsubaki教授、我所电镜技术研究组(DNL2002)刘岳峰副研究员等人合作,成功构建了800℃高温稳定的铜基多相催化剂。合作团队结合磁控溅射(Sputtering,SP)和火焰喷射(Flame spray pyrolysis,FSP)两种负载型催化剂制备新技术,分别对金属铜的电子结构和TiO2载体的可还原性进行重构,首次在较低温条件下构建了非贵金属铜基催化剂上经典的金属载体强相互作用(Strong metal-support interaction, SMSI),进而实现了耐水耐高温铜催化剂的可控制备。  长期以来,铜基催化剂因其廉价和高活性而被广泛应用于多种工业催化反应中。但受限于较低的塔曼温度,铜纳米颗粒极易在300℃以上烧结聚集而导致失活,严重限制了其高温应用。因此,构建可稳定铜颗粒的保护层,从根本上限制其聚集长大是解决这一问题的关键技术之一。然而,金属铜的功函数较低,且对氢气活化能力较弱,很难诱导载体物种向其表面迁移形成包裹,无法像传统贵金属一样在温和条件下形成金属载体强相互作用。  本工作中,合作团队通过利用自主开发的SP技术,改变了Cu的外围电子环境,同时采用FSP技术,增加了氧化物中晶格氧无序度,分别促进电子转移和载体还原,实现了在300℃较温和条件下即可形成SMSI。研究发现,在高温(550-800℃)CO2加氢(逆水气变换)反应条件下,该铜基多相催化剂可连续稳定运行700小时,且未见颗粒长大。本工作实现了铜催化剂上SMSI的构筑和调控,阐明了催化剂表界面上的反应过程和催化机理,为提高铜基催化剂的水热稳定性提供了全新策略,有望进一步拓宽铜基催化剂的高温应用领域。  近年来,孙剑团队在CO2加氢和先进纳米催化材料的制备和新应用方面取得了系列成果,采用SP技术(Sci. Adv.,2018;ACS Catal.,2014)和FSP技术(ACS Catal.,2020;Chem. Sci.,2018;Chem. Comm.,2021;Appl. Catal. B: Environ. ,2016)先后开发了一系列与传统催化剂不同性质的催化材料,并成功应用于加氢、氧化、重整等多种催化反应中。  相关成果以“Ultra-high Thermal Stability of Sputtering Reconstructed Cu-based Catalysts”为题,于近日发表在《自然-通讯》(Nature Communications)上。该文章的第一作者是大连化物所DNL19T3俞佳枫。该工作得到国家自然科学基金、中国科学院青年创新促进会、兴辽英才青年拔尖人才计划、大连市杰出青年科技人才计划、大连化物所创新基金等项目的支持。(文/图 俞佳枫、孙剑)  文章链接:https://doi.org/10.1038/s41467-021-27557-1
  • 大连化物所等发展出碱(土)金属钌基配位氢化物合成氨催化剂新体系
    近日,中国科学院大连化学物理研究所复合氢化物材料化学研究组研究员陈萍、郭建平团队,与丹麦技术大学教授Tejs Vegge团队、大连化物所研究员李海洋团队/江凌团队合作,在催化合成氨研究方面取得进展。该研究首次将配位氢化物材料应用于催化合成氨反应中,开发出一类新型碱(土)金属钌基三元氢化物催化剂,实现了温和条件下氨的催化合成。  氨是重要的化工原料和颇具前景的能源载体,实现温和条件下氨的高效合成具有重要科学意义和实用价值。以化石能源驱动的现有合成氨工业是高能耗、高碳排放的过程。因此,在以可再生能源驱动的“绿色”合成氨过程中,低温低压高效合成氨催化剂的开发是核心技术,也是科研工作者追求的目标。  本工作中,科研团队开发的碱(土)金属钌基三元氢化物(Li4RuH6和Ba2RuH6)催化剂材料可实现温和条件下氨的催化合成。该催化剂材料是一种离子化合物,由Ru的配位阴离子[RuH6]4-和碱(土)金属阳离子Li+或Ba2+构成,在低温(-是电子和质子传递载体,Li+或Ba2+通过稳定NxHy物种降低反应能垒,通过多组分协同催化,使N2和H2以能量较优的反应路径转化为NH3。  该类三元氢化物催化剂作为独特的化合物催化剂,在组成、结构、反应动力学性质、活性中心作用机制等方面显著不同于常规多相合成氨催化剂,而与均相合成氨催化剂存在一定关联,这为多相固氮和均相固氮研究架起了桥梁。该研究丰富了合成氨催化剂体系,并提出了“富电子、多组分活性位点”合成氨催化剂设计策略,为进一步探寻低温低压高效合成氨催化剂提供了新思路。  相关研究成果以Ternary Ruthenium Complex Hydrides for Ammonia Synthesis via the Associative Mechanism为题,发表在《自然-催化》(Nature Catalysis)上。研究工作得到国家自然科学基金委员会基础科学中心项目“空气主份转化化学”、中科院青年创新促进会等的支持。  论文链接
  • 预防催化剂中毒,元素分析不用愁
    岛津ICP光谱测试尿素水溶液多种金属元素 GB17691-2018《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(以下称国六)已经正式实施,继燃气汽车之后,城市车辆将于2020年7月1日进入国六a排放阶段。与国五排放标准相比,国六排放标准中氮氧化物(NOx)和颗粒物(PM)排放限值分别加严了77%和67%,并新增了粒子数量(PN)的限值要求。 为了达到国六排放标准,尾气后处理系统都会设置选择性催化还原(SCR)系统,以便有效降低尾气中氮氧化物含量。尿素水溶液是SCR 系统主要消耗品,在催化剂作用下,将氮氧化物还原成氮气和水。SCR催化剂通常以TiO2为载体,负载W、Mo、V、Mn 等活性金属。如果尿素水溶液金属离子浓度过高,特别是钾离子和钙离子,会减少催化剂表面的活性位,造成催化剂中毒,从而降低NOx的转化率,缩短SCR催化剂的寿命,所以在GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》中对各种金属离子杂质含量有明确的限量要求。 表1 分析参数 岛津ICPE-9820全谱发射光谱仪测试尿素水溶液多种金属元素 ICPE-Solution独特的“自动确定最佳波长”功能,可以从全部波长范围的测定数据中,在数据库中自动检索提取可能存在的光谱干扰信息,自动确定最佳波长。 精确称取20±0.01g车用尿素溶液样品于100 mL容量瓶中,加入50 mL去离子水,再加入5 mL硝酸,去离子水定容至刻度并摇匀,使用ICPE-9820上机测试。 图1 Ca元素标准曲线图2 Ca元素谱峰轮廓图 表2 车用尿素样品分析结果注:N.D.表示未检出。 采用ICPE-9820高盐进样系统和直接进样(标准加入法)测定了柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中的10种杂质元素,结果表明所测市售尿素水溶液金属含量符合GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》要求,该方法无需分离基体、无需样品前处理、不加内标,测定结果准确,方法操作简便,可满足柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中杂质元素的检测技术需求。 撰写人:段伟亚、孙友宝
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 原子层沉积技术——“自下而上”精准构建和调控异质催化剂结构和性能
    引言 异质催化剂的合成通常借助于传统的湿法化学法,包括浸渍法、离子交换和沉积-沉淀法等。然而,这些方法合成的催化材料往往具有非常复杂的结构和活性位点分布不均匀等问题,这些问题会显著降低催化剂的催化性能,特别是在选择性上,阻碍了科学家们在原子水平上理解催化剂的结构-活性关系。此外,在苛刻的反应条件下通过烧结或浸出造成的活性组分的损失会导致催化剂的大面积失活。因此,亟待发展一种简便的方法来调控催化剂的活性位结构和其在原子水平上的局部化学环境,从而促进对反应机理的理解和高稳定性催化剂的合理设计。 原子层沉积(ALD, Atomic layer deposition)是一种用于薄膜生长的气相催化剂合成技术,目前已成为一种异质催化剂合成的替代方法。和化学气相沉积(CVD, Chemical vapor deposition)一样,其原理是基于两种前驱体蒸汽交替进样,并在载体表面上发生分子层面上的“自限制”反应,实现目标材料在载体表面上的沉积。通过改变沉积周期数、次序和种类等方法可以实现对催化剂活性位结构的原子精细控制,进而为研究者提供了一种 “自下而上”可控合成催化剂的新策略。 美国Arradiance公司的GEMStar系列台式原子层沉积系统(如图1所示),在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅可在8英寸基体上实现厚度均匀的膜沉积(其厚度均匀性高于99%),而且适合对具有超高长径比孔径的3D结构进行均匀薄膜覆盖,在高达1500:1长径比微纳深孔内部也可均匀沉积。图1. 美国Arradiance公司生产的GEMStar系列台式三维原子层沉积系统 在本篇文章中,我们将介绍利用ALD方法在负载型单金属 和双金属催化剂精细设计方面的进展和ALD方法在设计高效催化剂方面的特点与优势。同时,我们也整理了利用ALD技术制备单原子和双原子结构金属催化剂的方法与策略以及利用氧化物可控沉积调控金属催化活性中心周围的微环境,从而实现提升催化剂活性、选择性和稳定性的方法。后我们也将展望ALD技术在催化剂制备领 域中应用的潜力。ALD合成负载型催化剂 近年来,研究者对各种氧化物和碳基材料基底上的金属ALD催化剂进行了广泛研究。由于高温下ALD生长的金属原子在氧化物和碳基基底上的高迁移率,沉积物通常以金属纳米粒子形式存在,而不是二维金属薄膜。如图2a所示,金属纳米颗粒的尺寸大小和负载量可以通过调整ALD循环次数和沉积温度变化来进行调控,且金属颗粒的尺寸分布通常非常狭窄。近期,中国科学技术大学的路军岭课题组使用ALD技术发展了一种双金属纳米粒子的合成新策略,即使用较低的沉积温度和合适的反应物,在负载的单金属纳米粒子表面增加二金属组分,获得原子可控的双金属纳米粒子(如图2b, PtPd双金属纳米粒子)。研究发现,在较低的温度下,金属基底会促进金属前驱体在其上的成核和ALD生长,而金属氧化物通常是惰性的,因此不能在低温下与金属前驱体反应和开始成核。图2. ALD合成(a)单金属Pt纳米粒子,(b) 双金属PtPd纳米粒子,(c)Pt 单原子催化剂在N掺杂的石墨烯上,(d)Pd单原子催化剂在g-C3N4上,(e)二聚的Pt2/石墨烯催化剂。 原子分散的金属催化剂,由于其特的催化性能和大的原子利用效率,越来越受人们的关注。使用ALD技术从气相中获得单原子催化剂具有很大的挑战性,因为ALD生长通常在高温下进行,金属的聚集会显著加剧,但考虑到ALD的自限特性,仍是有可能的。加拿大西安大略大学孙学良教授团队从事了先驱性的工作,在250℃下,对N掺杂的石墨烯表面进行五十次Pt ALD循环合成了Pt单原子催化剂(如图2c)。DFT计算表面,Pt单原子与N原子成键,其HER活性相对于商业Pt/C显著增强(~37倍)。类似的,路军岭团队通过调控石墨烯上的含氧官能团种类和数量,在150℃下对石墨烯表面进行一次Pd ALD循环(Pd(hfac)2-HCHO),合成了原子分散的Pd单原子催化剂(如图2d),没有观察到Pd团簇和纳米粒子的形成。除此之外,使用ALD技术还可以合成原子的超细金属团簇,如二聚物等。如图2d所示,路军岭团队报道了Pt2二聚体可以通过ALD技术在石墨烯载体上创建适当的成核位点 “自下而上”制备获得,即Pt1单原子沉积,并在起始位点上进行Pt原子的选择性二次组装。氧化物包覆实现金属催化剂的纳米尺度编辑 对于负载型金属催化剂来讲,其载体不仅仅是作为基底,也会通过电子转移或金属—氧化物相互作用,显著的调制金属纳米颗粒的电子性质。当氧化物层包覆在金属纳米颗粒上时,会形成新的金属-氧化物界面(如图3a),可以进一步改变金属纳米颗粒的电子性能和形貌,有望进一步提升其催化性能(如图3b)。金属纳米颗粒通常含有低配位位点(lcs)和高配位的台阶(HCSs),通过氧化物ALD沉积的选择性阻挡某些活性位点,局部改变其几何形态,影响催化过程中的化学键断裂和生成,导致不同的反应途径(如图3c)。另外,物理氧化包覆层还可以提高纳米颗粒的稳定性,在恶劣的反应条件下防止金属组分的烧结和浸出(如图3d)。在原子层面上控制氧化膜厚度,从而在高比表面材料上实现高的均匀性,使得ALD成为在纳米尺度上提高纳米金属催化剂催化性能的理想工具,且不会产生质量迁移的问题。图3. (a)ALD氧化物包覆负载型纳米离子生成新的金属——氧化物界面ALD合成,(b)ZnO包覆Pt纳米粒子催化剂显著提高催化活性,(c)ALD氧化铝包覆Pd/Al2O3显著提高催化选择性,(d)TiO2包覆层显著提高Co@TiO2催化剂催化稳定性。 总结和展望 催化剂的原子合成,是阐明催化作用的关键机制和设计先进高性能催化剂的关键。ALD特的自限制特性可实现催化材料在高比表面材料上的均匀和可控沉积,实现一步步和“自底向上”的方式在原子层面上构建复杂结构的异质催化剂材料。这些ALD催化剂具有较高的均匀性,使其相对于传统方法制备的催化剂,拥有更好的或可观的催化性能,并可作为模型催化剂有助于阐明催化剂的结构-性能关系。 参考文献:[1] Lu J. et.al, Acta Phys. -Chim. Sin. 2018, 34 (12), 1334–1357.[2] F. H. et al. J. Phys. Chem. C 2010, 114, 9758.[3] Elam, J. W. Nat. Commun. 2014, 5, 3264.[4] Liu, L. M. et al. Nat. Commun. 2016, 7, 13638.[5] You, R. et al. Nano Res. 2017, 10, 1302.[6] Huang, X. H. et al. Nat. Commun. 2017,8, 1070.[7] Elam, J. W. ACS Catal. 2016, 6, 3457.[8] Lu, J. ACS Catal. 2015,5, 2735.[9] Huber, G. W. Energy Environ. Sci. 2014, 7, 1657.
  • 中国科大等实现金属间化合物燃料电池催化剂的普适性合成
    近日,中国科学技术大学教授梁海伟课题组与北京航空航天大学教授水江澜课题组等合作,发展了一种高温硫锚定合成方法学,实现了小尺寸金属间化合物(IMCs)燃料电池催化剂的普适性合成,成功构建出由46种Pt基二元和多元IMCs催化剂组成的材料库,并基于该材料库发现了IMCs电催化氧还原活性与其二维晶面应力之间的强关联性。该项研究成果发表在国际期刊《科学》上。  金属间化合物又称原子有序合金,具有规整的表面或近表面原子有序排列结构和独特的电子特性,在众多化学反应中表现出优异的催化性能并因此受到广泛关注。特别是在质子交换膜燃料电池领域中,Pt基IMCs有望成为新一代低Pt阴极氧还原催化剂并大幅降低燃料电池核心部件膜电极的成本。虽然在热力学上,IMCs结构相对于传统的无序固溶体合金结构是稳定相,但IMCs的合成往往需要高温热处理来克服固相中原子有序化重排的动力学能垒(图2A)。然而,高温热处理不可避免会造成金属颗粒的严重烧结和活性金属表面积的降低(图2B),并最终导致Pt利用率的下降和燃料电池成本的大幅提升。因此,发展小尺寸Pt基IMCs催化剂的合成方法是大幅降低燃料电池成本的关键所在。  在该项工作中,研究人员基于梁海伟课题组近期在金属—碳载体强相互作用领域取得的系列成果,使用硫掺杂碳(S-C)为载体,发展了一种高温硫锚定合成策略(图2C),构建出由46种小尺寸Pt基IMCs催化剂组成的材料库,包括20种二元(囊括了所有3d过渡金属元素和数种p区元素)以及26种多元IMCs(图3)。系列谱学表征证实Pt和碳载体中掺杂的硫原子之间存在强键合作用,该作用极大程度上抑制了合金颗粒在高温下的烧结,从而能够在高温下形成平均尺寸小于5纳米的IMCs催化剂。X射线衍射和球差电镜表征证明了IMC物相的成功合成、小尺寸性、高度有序性以及规整的原子有序排列结构(图4)。  基于构建的庞大、完备的材料库,研究人员发现IMCs电催化氧还原本征活性与其二维晶面应力存在强关联性:在很宽的压缩应变范围内,其氧还原活性随着压缩应变的增加呈现单调上升趋势(图5A、B)。该现象不同于现有经典理论预测的火山关系趋势。研究人员猜测,由于存在压缩应变弛豫现象,最外层原子的真实压缩应变会显著小于测量值,从而无法表现出存在峰值的火山曲线关系。基于此,研究人员进一步预测:若能进一步通过减小IMCs的晶格常数增大压缩应变,将有望将催化活性推向峰值。  研究所制备的部分IMCs催化剂表现出优异的电催化氧还原性能。特别是氢氧燃料电池测试表明,PtNi IMC催化剂展现出记录性催化活性(0.9V电压下,质量活性高达1.84 A/mgPt)(图5C)。在氢空燃料电池测试中,尽管Pt用量比商业Pt/C催化剂低10倍以上,PtCo IMCs催化剂表现出与Pt/C催化剂相当的电池性能(图5D)。具有超低Pt负载的PtCo IMC阴极在高化学计量比气流下达到了1.08 W/cm2的峰值功率密度,展现出优异的应用前景。未来通过对碳载体的多孔结构和表面化学性质进行优化改性,有望降低局部氧传输阻抗来进一步提高氢空燃料电池性能。  本项工作的合作者还包括中科院高能物理研究所副研究员储胜启、中国科大同步辐射国家实验室教授朱俊发、电子科技大学教授崔春华以及中国科大微尺度理化中心博士林岳。该项工作得到了国家重点研发计划、国家自然科学基金、中央高校基本科研业务费专项基金、北京市自然科学基金重点研究专题以及中科院青促会的资助。  论文链接
  • Nano Energy:分子层沉积技术助力铂基催化剂性能提升
    由于在氢氧化(hydrogen oxidation)和氧还原(oxygen reduction)反应中的高效催化特性,铂基催化剂被广泛地应用于质子交换膜燃料电池当中的关键组成部分,比如阴和阳。然而,当质子交换膜燃料电池在较为严苛的环境下(比如低pH环境(<1)、高的氧浓度、高湿度等)运行时,商用的铂/碳催化剂会展现出耐用性低的问题。由于Ostwald熟化效应、铂纳米颗粒的脱离、铂纳米颗粒的团聚等问题,铂/碳催化剂的活性会显著下降。因此,开发有效方案来稳固铂基催化剂从而防止其活性在燃料电池运行时的损耗,是非常重要的。 针对上述问题,加拿大西安大略大学的孙学良教授课题组,开创性地利用退火MLD(Molecular Layer Deposition,MLD,分子层沉积)夹层结构来固定铂纳米颗粒,从而实现了铂基催化剂性能的提升,相关结果刊载于Nano Energy(https://doi.org/10.1016/j.nanoen.2019.03.033)。在孙教授团队的工作中,MLD衍生层是通过三基铝和丙三醇合成在掺氮碳纳米管(nitrogen-doped carbon nanotubes,NCNT)上的,此后通过煅烧获得多孔结构。后,通过ALD工艺,铂纳米颗粒被沉积在MLD-NCNT载体之上。多孔结构有益于稳固铂纳米颗粒、避免团聚以及从载体上脱离。相较于沉积在掺氮碳纳米管(NCNT)上的铂催化剂来说,沉积在MLD-NCNT载体上的Pt催化剂展示出了显著提升的氧化还原反应活性以及耐用性。文中利用X射线吸收光谱等手段,详细揭示了增强的机制。 图1 NCNT-MLD-Pt的制备流程示意图以及出色特性(图片来源:Nano Energy:Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance) 相较于ALD(Atomic layer deposition,ALD,原子层沉积)来说,MLD技术还比较新。MLD技术可以视为ALD技术的亚类,具有与ALD相似的气相沉积工艺,基于序列及自限制反应,在分子尺度上生长材料,目前比较多涉及的是有机聚合物或者无机-有机杂化材料。由于本质上属于ALD技术的衍生技术,因此MLD技术具备了ALD技术的主要优点:优异的三维共形性、大面积均匀性、良好的工艺重复性、膜厚或组成的控制、分子结构或官能团的裁剪,以及较低的沉积工艺温度。然而,由于MLD工艺中采用有机分子作为前驱体,有机分子前驱体的蒸汽压低、热稳定性差,因而反应活性较低。此外,MLD工艺中的有机分子前驱体存在同质官能团引起的双反应现象,会使得沉积速率变慢,甚至是发生非线性的反应生长速率。所以,利用MLD工艺沉积新材料,对于设备和工艺掌控都提出了较高的要求。 在本文当中,孙教授团队利用MLD沉积铝氧烷所用的设备是美国Arradiance公司生产的型号为Gemstar-8 的台式ALD沉积系统,此套系统直接与手套箱相联,手套箱中为氩气气氛。在本工作之前,孙教授所在课题组已经利用MLD技术合成了铝氧烷,并且将铝氧烷涂层应用于提高碳/硫阴或碱金属阳的电化学特性。制备当中,他们采用三基铝和丙三醇作为前驱体,在150 ℃的条件下将,将前驱体依次通入腔体当中。 另一方面,目前大多数无机-有机杂化物质对于空气中的湿度非常敏感,不稳定。由于Arradiance公司生产的台式ALD系列产品,非常小巧,并且非常友善周到地为用户们预留了可以与各类市场主流手套箱集成的接口,从而使得无机-有机杂化物质在制备完成后可以在惰性环境中转移至其他实验环境或是进行其他实验。 图2 Arradiance台式原子层沉积系统,设计紧凑,功能齐全,堪称“麻雀虽小五脏俱全” 图3 紧凑而友善的设计理念,使得Arradiance ALD系统可以方便地与手套箱集成,满足用户的特殊实验需求
  • 【综述】电化学催化剂的透射电子显微学研究综述
    p    span style=" color: rgb(112, 48, 160) " strong 前言 /strong /span /p p   能源问题一直是困扰人类生存发展的终极问题之一,随着时代的进步,不断革新的科学技术为解决这一问题带来了曙光。其中电催化是目前有效的手段之一,涉及诸多新能源和环境保护的研究方向,包括燃料电池、水裂解、制氢、二氧化碳资源化利用等。其中,研究电化学催化剂的微观结构,并监测电催化剂在电催化反应过程中的结构演变规律,对于设计新材料、开发新能源具有重要的意义。 /p p   电子显微镜作为研究学者的“电子眼”,不但可以直接观察固体催化剂的形貌,而且可以在原子尺度提供催化剂的精细结构、化学信息和电子信息,对新型高效催化剂的发现、反应过程中催化剂结构演变及结构和性能之间关系的研究起到了重要作用。因此,电子显微学方法作为一种重要的表征技术在催化化学的发展中扮演着至关重要的角色。在过去20年中,电子显微学在电催化领域内也得到了广泛的应用。最近中国科学院金属研究所张炳森研究员课题组对电化学催化剂的透射电子显微学研究进行了总结,并指出了存在的挑战和未来发展方向。 /p p   strong   span style=" color: rgb(112, 48, 160) " 1. 透射电子显微学方法对电化学催化剂的基本表征 /span /strong /p p   与材料研究中其它表征技术(如:X射线衍射、X射线光电子能谱、Raman光谱等)相比,透射电子显微镜具有很高的空间分辨率,可以在纳米尺度甚至是原子尺度下对催化材料结构进行研究,极大地促进了催化化学的发展。透射电镜目前已经发展为综合型分析电镜,从催化剂的微观结构,到化学组成,以及电子结构等信息都可以利用透射电镜分析获得。 /p p   strong  1.1电化学催化剂微观结构表征 /strong /p p   电化学催化剂的微观结构,如:颗粒形貌、尺寸、暴露晶面、表界面结构等,对催化剂的性能有非常重要的影响,利用高分辨电子显微术(HRTEM)可以获得这些信息。值得注意的是,在负载型金属催化剂中,很多情况中会有很小的纳米颗粒和原子团簇存在,利用高分辨透射电子显微术(相位衬度成像)观察时可能会忽略这些信息,而利用高角环形暗场-扫描透射电子显微术(HAADF-STEM,Z衬度像)可以很容易地观察到这些颗粒的存在。目前,亚埃尺度分辨的球差校正透射电子显微镜的发展,实现了更好地在原子尺度下观察催化剂表界面结构,同时也促进了单原子电催化剂的发展。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f0f6b75a-dca5-4054-932d-4946fad9e0f5.jpg" title=" 1.jpg" / /p p style=" text-align: center "    strong 图1. 纳米颗粒的HRTEM图片:(a)多面体 /strong /p p strong PtNix单晶纳米颗粒,(b,c)多晶PtNix纳米颗粒,(d)核壳结构Pt/NiO纳米线,(e)PtNi合金纳米线,(f)锯齿状的Pt纳米线。(a,c)图中右下角插图分别是对应PtNix纳米颗粒的形状模型图和原子模型图,(a-c,f)图中右上角插图为对应纳米颗粒的傅立叶变换图。 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/da1074c4-9a68-49ef-ad5c-007b7e4e4f96.jpg" title=" 2.jpg" / /p p    strong 图2.(a)Pt/[TaOPO4/VC]-NHT的TEM图片,(b)相同区域的HAADF-STEM图片 (c,d)球差校正透射电子显微镜获得的高分辨HAADF-STEM图片:(c)核壳结构PtPb/Pt纳米片和(d)MoS2负载单原子Pt(左下角插图是相应的构型模拟图)。 /strong /p p   strong  1.2电化学催化剂的化学成分及电子结构表征 /strong /p p   双金属及多元金属催化剂是电催化中常用的催化剂,其化学组成及元素的分布对于催化剂的性能也有着至关重要的影响。X射线能谱(EDS)分析不仅可以对电催化剂的化学成分进行半定量分析,同时利用面扫和线扫,也可以得到相应元素在催化剂颗粒中的分布情况。除EDS表征手段,电子能量损失谱(EELS)对催化剂中的元素组分进行定性、定量和元素分布分析等也具有独特的优势,尤其在分析B、O、N等轻元素时,与EDS分析相比,会得到更精确的信息。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/45b9bfc5-c80a-4c25-b99d-f4a411601a16.jpg" title=" 3.jpg" / /p p    br/ /p p   strong  图3.(a)PtNix纳米颗粒的HAADF-STEM图和EDS面扫图,(b)核壳结构Pt/NiO、PtNi合金、锯齿状Pt纳米线的EDS线扫曲线(插图中绿线代表对应的线扫轨迹),(c)100 ?C水热条件下得到的B/P共掺杂有序介孔碳的TEM图片和B、C、O、P元素的能量过滤TEM图片。 /strong /p p   影响电化学催化剂催化性能的另一个重要因素是催化剂中原子的电子结构。EELS除了可以进行成分分析,其另一个重要且常用的功能是分析催化剂中原子的电子结构,从而可以得到相应元素的价态、配位情况等,进而获取相关信息,例如:负载型金属催化剂中金属-载体间电子相互作用,纳米碳材料中掺杂原子的种类及电子结构等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/bcafabc9-8776-44d7-b3c5-0e6e40886088.jpg" title=" 4.jpg" / /p p    strong 图4.(a,b)Pt-CeOx样品中Ce-M45边和O-K边的电子能量损失谱,(c,d)N-掺杂石墨烯样品中N-K边和C-K边的电子能量损失谱,(e,f)三种B-掺杂类洋葱碳样品中B-K边和C-K边的电子能量损失谱。 /strong /p p   span style=" color: rgb(112, 48, 160) " strong  2. “相同位置-电子显微学”方法(IL-TEM)用于电化学测试条件下电催化剂的结构演变研究 /strong /span /p p strong   2.1 IL-TEM方法简介以及其在商业Pt/C电催化剂稳定性研究中的应用 /strong /p p   该方法通过将电催化剂分散在坐标微栅上,在透射电镜下准确记录反应前某一具体位置催化剂的微结构信息 随后将携带样品的微栅放到工作电极上,保证接触良好的前提下,将该工作电极置于反应环境中 待反应结束,将坐标微栅从反应体系中取出,并在透射电镜中根据具体的坐标定位追踪反应前记录的位置。通过反应前后、或反应中各个阶段相同位置催化剂结构对比和统计分析,揭示催化剂在反应条件下的结构演变规律,并结合性能测试结果精确阐述构效关系。IL-TEM方法最初应用于电化学反应体系,例如:德国马普Mayrhofer组和西班牙Feliu组等利用此方法研究了铂基催化剂在电化学处理过程中的微结构演变,如负载铂纳米颗粒的脱落、溶解、迁移、团聚长大以及碳载体的腐蚀等特征行为。通过对负载活性组分(纳米颗粒)以及载体(活性炭)结构演变的同时观察,并关联其性能,揭示了不同反应条件下催化剂的失活机制问题。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/571bfe7a-296b-4eef-a73c-e9eb15528350.jpg" title=" 5.jpg" / /p p    strong 图5.(a, b)IL-TEM方法在电化学三电极测试体系中的应用示意图,(c-f)利用坐标微栅在透射电镜下通过依次放大追踪相同位置催化剂的微结构信息。 /strong /p p strong   2.2 IL-TEM方法在电化学新材料体系中的应用 /strong /p p   各类新型纳米碳材料,如纳米碳球、碳纳米管、石墨烯等,具有优异的导电性、耐酸碱性以及较高的比表面积和丰富的孔结构等特点在能源转化领域得到了广泛关注。其本身通过杂原子改性作为氧还原和二氧化碳还原反应电催化剂被大量研究。除此以外,利用表面改性纳米碳作为电催化剂载体调控活性组分与碳载体间相互作用也是近几年新兴的研究热点之一,通过使用IL-TEM方法跟踪负载纳米粒子在改性碳载体表面的迁移、团聚和溶解等行为直观揭示不同表面修饰对电催化剂的稳定作用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f57af8d7-c227-4571-8e0c-ed72ae77f569.jpg" title=" 6.jpg" / /p p    strong 图6. IL-TEM方法用于氮掺杂碳纳米球负载Pt催化剂在氧还原反应(左上)、氧官能团化和氮掺杂改性碳纳米管负载Pt催化剂在甲醇电氧化反应(左下)、及化学接枝法改性石墨烯负载Pt催化剂在氧还原反应(右)中的稳定性研究。 /strong /p p strong   2.3 IL-TEM方法拓展应用于传统液相催化反应 /strong /p p   目前,IL-TEM方法已成功应用于电化学体系,直观揭示了不同反应条件中催化剂结构演变,以及碳材料载体表面性质对于负载金属电催化剂的稳定性影响及失活机制。而在环境电镜或原位透射样品杆中难以实现的传统液相催化反应体系中,IL-TEM方法也具有独特的优势。金属研究所张炳森、苏党生课题组在2016年底报道了此方法在液相催化反应(芳硝基化合物选择性加氢)中的应用,也是此方法第一次应用在传统液相催化反应体系中,通过研究反应条件下相同位置催化剂的结构演变过程,直观证明了氮物种的引入对负载的铂纳米颗粒的稳定性起重要作用,实现了铂-碳相互作用调节提升碳基负载型催化剂催化性能。该方法为精确研究液相催化反应中催化剂的构效关系,尤其是复杂液相催化反应体系,如固液、气液固等三相共存反应体系,探索复杂液相环境中催化反应活性中心的诱导产生、演变等行为规律提供了很好的手段,并更好地为新型高效催化剂的开发提供指导。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/64e15822-6ae3-433a-be3c-a0a0ff5988f2.jpg" title=" 7.jpg" / /p p   strong  图7. IL-TEM方法在液相反应体系中的应用示意图(左上) 氧官能团化以及氮掺杂改性碳纳米管负载高分散铂纳米粒子催化剂相同位置在反应前后的透射电镜对比图(左下) 氮掺杂碳纳米管负载高分散铂纳米粒子催化剂相同位置在不同反应时间的HAADF-STEM图(右图)。 /strong /p p strong    /strong span style=" color: rgb(112, 48, 160) " strong 3. 原位电化学样品杆的应用前景 /strong /span /p p   常规透射电镜表征,样品所处的环境是真空和室温,与实际电催化剂所处的液体环境差距较大,并且是对反应前后进行随机取样表征,不够直观准确且存在严重的滞后效应,因此需要开展原位表征。电化学原位透射样品台的出现为实时观察服役环境下电催化剂的微结构以及结构演变提供了有效研究手段,并通过与电化学工作站联用可以得到实时性能数据,为揭示电催化反应黑匣子提供重要参考依据。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/9dc78db6-8ef1-4d37-b32f-52ad3873eddb.jpg" title=" 8.jpg" / /p p    strong 图8.(a, b)电化学原位透射样品杆示意图,(c, d)电化学测试实时数据。 /strong /p p strong   /strong span style=" color: rgb(112, 48, 160) " strong  4. 总结与展望 /strong /span /p p   先进电子显微方法(分析型电子显微方法和高分辨电子显微方法)的发展提供了从微观尺度认识和理解电化学纳米催化剂结构特征的有效手段。该文通过大量研究工作全面系统地综述了透射电子显微术在揭示电催化剂纳米尺度形貌、原子尺度精细结构、化学组成以及电子结构等信息方面的重要作用,对新型高效电催化剂的设计研发、反应过程中的催化剂结构演变及结构性能间关系等的研究具有指导意义。“相同位置-电子显微学”方法的引入对于研究真实反应条件下催化剂的结构动态行为特征,揭示其稳定性和失活机理等方面提供了更直观准确的研究手段。同时,前沿性研究中电化学原位透射样品台的介绍,展望了将常规透射电镜对电催化剂的表征转变为在线可视化的电化学微型实验室的研究趋势 通过在电子显微镜中建立微纳米反应室,获取真实反应条件下催化剂活性位结构特征,使其成为电化学催化剂的创新工具。 /p p style=" text-align: center " --------------------------------------------------------------------- br/ /p p   Liyun Zhang,Wen Shi,Bingsen Zhang, A review of electrocatalyst characterization by transmission electron microscopy, Journal of Energy Chemistry,DOI:10.1016/j.jechem.2017.10.016 /p
  • 色谱法化学吸附仪在催化剂行业中的应用
    摘自石油化工科学研究院《色谱法多功能催化研究装置》 在以往工作的基础上,提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。根据要求,可以使用脉冲法、连续流动法、迎头法,以及程序升温脱附技术,在一套设备上逐个测定催化剂的反应速度、金属分散性或其它活性中心、表面酸碱度和质量传递性能等,以便参照催化全过程的多种原位数据,有效地改进催化剂的活性、选择性及寿命。一、序言 在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在近代,虽然有着各种能谱,光谱,磁学方法,场发射技术等应用于催化精细结构的研究,但由于各自在仪器和理论方面的限制,它们存在以下主要缺点:1、由于价格昂贵,不是所有的研究者都能得到所希望的仪器设备;2、由于催化材料的多样性,不是每种仪器都能获得所希望的数据;3、多数物理方法在“非原位“条件下所得到的数据,很难与催化行为直接关联。 近十多年来,随着色谱理论和技术的日臻成熟,并且由于它没有以上缺点和具有简便、快速、定量准确等优点,因而在催化研究中得到了广泛的应用。则是在接近于反应的条件下,研究固体催化剂的大多数表面化学性质,并在同时测定他们的催化性能,以便关联这些数据,加深对某特定过程催化作用本质的了解,并控制它的最佳催化剂的选择。为此,在综合以前工作的基础上,笔者提出了利用气相色谱技术,对催化行为进行联合研究的设计,并建立了可以作为定型化仪器的示范装置。现将该方法的基本原理和操作要点介绍如下。二、在催化研究中的应用GC技术通常按两种方式用在催化研究中,一种是将催化剂直接填充在色谱柱中,另一种是附加一个微型反应器与GC。用此可以测定物理表面积,传递参数,化学吸附和表面行为,反应速度等催化过程所需要的几乎全部数据。由于使用物理吸附法进行总表面积和孔分布的测定熟为人知,因而将不予涉及。在此,仅介绍笔者及其同事曾经进行和较感兴趣的几个方面。应用GC技术研制的程序升温化学吸附仪PCA-1000系列可进行以下催化剂性能分析:1. 催化剂活性表面积或金属分散性 催化剂的活性表面积仅占物理总表面积的一小部分。这一数据对于考虑催化反应的结构敏感性行为和计算转换数是不必可少的。通常,它也可以用在催化剂上的活性中心数目来表示。并且,通过用用脉冲色谱技术测定不可逆化学吸附,能够获得这一结果。金属和负载的金属催化剂,是研究的最多的对象。我们曾对重整过程中的各种催化剂和双金属催化剂进行研究。吸附质可以使用氢气、氧气、一氧化碳等。最优越的是化学吸附氧的氢脉冲滴定法。吸附体积的测量,按催化剂上消耗的吸附质数量来计算2. 程序升温脱附(TPD)技术 当吸附的质点被提供的热能活化,以至能够克服为了它的逸出所需越过的势垒时,便产生脱附。由于脱附速度随着温度的升高而指数地增加,同时,又因覆盖度的减小而减小,因此,正比于脱附物质浓度的信号,即脱附速度曲线呈TPD谱。 我们曾用氢气的TPD法,对国内外工业和实验室重整催化剂,发现在以Pt为主要组分,以氧化铝为载体的单、多金属催化剂上,存在着两类主要的活性中心。其低能中心是Pt的某种结构所特有的,它主要与加氢-脱氢反应活性有关;而第二或第三组元的引入,则只改变了高能中心的结构特征,它主要与异构化和环化反应有关。两类中心的相对数量和谱图的形状,决定着各基元反应的选择性;而催化剂的稳定性,则可由谱图的值估价。由此向我们提供了改进催化剂活性、选择性,以及使用寿命的方向。3. 固体材料表面酸碱性能的研究 在多相酸碱催化或双功能催化反应中,催化剂或者在体表面的酸碱度、酸碱中心类型,以及强度,对其活性、选择性、甚至寿命,都有着十分重要的作用。田部浩三曾系统的介绍了这一催化现象和对其进行实验测定的各种方法。特别是应用GC技术的气相酸碱物质的化学吸附法,在快速、准确、简便等方面,具有明显的优越性。 例如,当气体碱在酸性中心上吸附时,与强酸的结合将较在弱酸中心上更稳定,因此,随着温度的上升,吸附在后者上的碱性物质将优先的因热能激发而逸出。于是,在各种温度下逸出的吸附碱的份数,能够作为酸强度的量度;而从气相中所吸附的碱量,则作为表面酸度的量度;如果选择适当的吸附质,也有可能对表面Bronsted酸和 Lewis酸中心加以区分。4. 微型催化反应器技术 将微型催化反应器与GC相结合,提供了一个节省催化反应性能、动力学参数。特别是研究起始速度。中毒效应、催化剂失活等缓慢现象的手段。而且,它也容许方便地获得有关反应机律的情报。 笔者所给出的这种实验设计,可以按两种方式操作:一种是所谓的尾气技术,它与一般的连续流动法没有什么区别;一种是脉冲技术,它更能体现出GC法的优点。特别适合于在各种条件之下快速筛选和评价催化剂的情形。结合选择加氢催化剂的研制,我们曾有效地使用了环己烯、噻吩、异戊二烯模型化合物的微型脉冲催化反应研究法。考察了在许多催化剂上的活性、选择性,以及在某些工业催化剂上的吸附竞争性、反应机理,并计算了主要过程的反应活化能。在本文报道的装置上,还用类似方法研究了环戊二烯在各种类型催化剂上的选择加氢行为。 在非稳态脉冲条件下反应动力学的理论研究指出,只有在一级反应的情形中,或者在脉冲宽度远大于床层高度的条件之下,才能得到与连续流动法反应一致的结果。因此在进行动力学测量时,仔细的把握这一条件是十分重要的。5. 催化剂有效扩散系数的测定 质量传递作用,即扩散效应在使用多孔固体催化剂的工业过程中,对于产品的生产率有着巨大的影响。因此关于催化剂有效扩散性的测定是十分重要的。利用我们给出的装置,还可以按照另外一种途径进行这方面的研究。方法的基本点是在各种流速上,用测定非化学作用气体脉冲加宽的办法,来计算有效扩散系数。
  • 麦克仪器发布ICCS催化剂原位表征系统新品
    ICCS-催化剂原位表征系统ICCS催化剂原位表征系统是美国麦克仪器推出的新一代催化剂原位表征系统,与其它动态实验室反应器系统(如麦克仪器的微型反应器Micro-Activity Effi和Solo)不同,它在现有反应系统的基础上增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,此外还可以通过选配相应的配置进行物理吸附。用户可以使用ICCS在新鲜催化剂上进行这些重要的表征技术,且无需从反应器中取出催化剂可直接进行重复测试。对同一个样品既可进行反应研究,又可同时获得TPx和脉冲化学吸附的数据,实现了对催化剂的原位表征,为催化研究提供了新的表征工具。进行这种原位分析,可消除环境中气体或水分污染催化剂的可能,避免损坏活性催化剂和破坏反应后表征数据的相关性。ICCS催化剂原位表征系统技术ICCS常规测试流程包括:将催化剂装入ICCS的反应器系统中,接下来可选择TPx方法表征催化剂。在TPx分析中,程序升温还原(TPR)常用于负载型金属催化剂,程序升温脱附(TPD)常用于酸碱催化剂。在TPx之后通常进行脉冲化学吸附,以确定催化剂活性位点的数量。通过TPx和脉冲滴定可以获得新鲜催化剂在典型反应条件下(特别是在高压下)的信息。进行了上述表征后,用户无需额外添加或转移催化剂,可以直接继续对相同的催化剂样品进行反应研究。长时间使用后的催化剂可以采用与新鲜催化剂相同的条件进行相同的TPx和脉冲化学吸附分析。无需从反应器中取出催化剂,就可比较反应前后催化剂的关键特性,如活性位点数目。ICCS催化剂原位表征系统主要特点及优势ICCS催化剂原位表征系统可以在高温高压的反应条件下对催化剂、催化剂载体和其他材料进行原位表征,有效排除环境中的干扰。两个高精度的质量流量计可以精确、全自动地控制气体流量,保证TPx和脉冲化学吸附的精确分析。原位测试,可对同一催化剂样品进行多种表征。高精度的热导检测器(TCD)可以实时检测流经样品管前后的气体的细微浓度变化。具有直观的软件和图形界面,通过触摸屏可进行安全警报,命令,控制参数等一系列操作。控温区内不锈钢管线提供了惰性和稳定的运行环境,避免管路中的冷凝。两个内部温度控制区可以独立运行。内置可控温的冷阱,用于去除冷凝物(如氧化物还原过程中产生的水)。超小的内部管路体积,可很大程度地减少峰展宽并显著提高峰分辨率。防腐检测器灯丝,可兼容TPx和脉冲化学吸附中常用气体。交互式峰编辑软件使用户能快速方便地评估结果,编辑峰并得到报告。只需要简单的指向和点击就可调整峰边界。催化剂原位表征系统分析能力ICCS催化剂原位表征系统能够进行一系列化学吸附和程序升温反应的原位表征,可量化催化剂及载体的各项关键属性,便于研究催化剂活性、选择性、失活、中毒和再生的过程。脉冲化学吸附可获得以下信息:金属表面积金属分散度平均金属颗粒尺寸活性位点数目TPx技术应用举例:研究催化剂再生(程序升温氧化,TPO)研究吸附强度(TPD)?评估金属催化剂中助剂对金属与载体间相互作用的影响(TPR)表征物理吸附可获得材料的表面积(选项)。 图1:压力对还原温度的影响 图2:系统示意图 催化剂原位表征系统符合以下规定及标准 PED – Directive 2014/68/UE压力设备指令(PED)该设备符合欧盟和西班牙的相应压力设备标准2014/68/UE和RD 709/2015,并通过了相关设计、制造和评估的适用法规。设备出厂时将根据现行规定打上标记。EMC – Directive 2014/30/UE电磁兼容性指令(EMC)根据标准EN 61326进行EMC抗扰性测试根据标准EN 61326进行EMC排放测试LVD – Directive 2014/35/UE低压指令(LVD)根据标准EN 61010-1进行电气安全测试ATEX – Directive 2014/34/UE用于潜在爆炸性环境(ATEX)中的设备和防护系统请勿在潜在爆炸性环境中使用本设备RoHS – Directive 2011/65/UE有害物质限制 技术指标电气电压单相频率50 – 60 Hz功率单相控制模块:低要求处理器 Intel Core I3或同等配置操作系统Windows 7/8/10 (32/64 bits)内存4 GB硬盘500 GB温度系统阀箱 高可达180℃加热线高可达180℃冷阱 通过Peltier系统可控制在-15℃-70℃压力系统工作压力高可达20 bar(g)Options 配件loop环体积0.5 cc and 1.0 cc 气体流量质量流量计2进气压力30 bar流量范围MFC1 MFC2Range 1: 0 – 800 mlN/min Range: 0 – 150 mlN/minRange 2: 800 – 3000 mlN/min气体输送要求30bar压力,通风接口为1/8’’气瓶接头不包括在内,由用户提供Physical 仪器参数高445 mm (17.52 ”)宽545 mm (21.46 ”)长500 mm (19.69 ”) (不含电脑)重量40 kg (88.2 lbs.)环境要求温度10 – 35 oC operating湿度10 – 60 % without condensation其它避免阳光直射,避免靠近冷热源 创新点:1、技术创新 ICCS增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,并与Microactivity Effi的现有功能相结合,以实现催化剂的表征、测试,评估反应的影响。此外可通过选配相应的配置进行物理吸附。 2、原位表征 ICCS可实现对同一个样品进行反应研究,同时获得TPx和脉冲化学吸附的数据,无需从反应器中取出催化剂,直接进行重复测试,避免受到外部环境污染的风险,实现对催化剂的原位表征。 3、系统组件 集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 ICCS催化剂原位表征系统
  • 最强光催化剂“出手”“水变氢”效率刷新世界纪录
    在太阳光或一缕LED紫外光照拂下,玻璃烧杯中加入一点点白色粉末,无须加热也无须其他能源,烧杯里的水便可源源不绝产生氢气,且经过数百小时的实验,这种白色粉末的量并未衰减。在云南大学材料与能源学院实验室,你能见到这样的“奇观”。  在碳达峰、碳中和背景下,洁净的氢成为未来的重要能源,高效、低成本制氢,特别是光解水制氢是科学家研究的方向。1月10日,国际著名期刊《自然通讯》发表了云南大学柳清菊教授团队与英国伦敦大学学院唐军旺教授团队、华东师范大学黄荣教授团队合作的一项重要研究成果——以单原子铜锚定二氧化钛,成功制备新型光催化剂,其分解水制氢量子效率高达56%,被审稿人称为“世界纪录”。这意味着“水变氢”有了一条可实用化的新路径。  提高催化效率 才能助推光解水制氢走向实用化  氢能是一种清洁无污染的可再生能源,燃烧值很高,可达每千克140兆焦耳,其具有来源丰富、燃烧产物无二次污染等优点,有望代替石油和天然气,因而受到世界范围的广泛关注。若能得以大规模实际应用,将为“双碳”目标的顺利实现作出贡献。  “目前,制备氢的主要方法有化石燃料制氢和电解水制氢,但两种方法都需消耗传统能源。”柳清菊向科技日报记者介绍,化石燃料制氢,二氧化碳排放量大,每生产1千克氢气,将产生10千克左右的二氧化碳;而电解水制氢也存在能耗和成本问题。“在环境和能源问题日益严重的今天,开发清洁、可持续、低成本的制氢技术,推进氢能的发展显得尤为迫切和重要。”柳清菊说,采用光催化技术,利用太阳能驱动水分解制氢是一种极具发展前途的新方法。  自1972年科学家发现二氧化钛半导体具有光催化性能以来,光解水制氢一直受到学术界及产业界的关注与重视。在能量大于或等于半导体禁带宽度的光照射下,光催化材料价带中的电子吸收入射光子的能量跃迁到导带,形成“电子—空穴”对,空穴和电子迁移到材料表面,与表面吸附的水分子发生氧化还原反应,也就是电子与水发生还原反应产生氢气,空穴氧化水产生氧气。  然而,由于电子带负电,空穴带正电,使得光催化材料中光照所产生的“电子—空穴”很容易复合,导致产氢量子效率低下,严重阻碍了光解水制氢的发展。因此,如何阻止“电子—空穴”的复合,提高光催化制氢效率,成为目前国际上光催化研究领域的重大挑战之一,也是制约光催化制氢技术实用化的瓶颈难题。  这其中,光催化材料是核心。而光催化材料的活性、稳定性和成本是决定光催化技术能否实际应用的关键。  铜离子“补位” 新型光催化材料设计制备突破瓶颈  金属单原子催化剂是近年来迅速发展起来的新型催化剂。相比传统金属催化剂,金属单原子催化剂中的原子以单个的形式负载在载体上,在催化反应中可充分参与反应,实现反应活性中心的最大化,利用效率可接近100%,在理论上可以同时提高催化活性并降低成本。然而由于单原子具有极高的表面能,在合成和催化反应过程中容易团聚、稳定性差、寿命短且制备成本高,阻碍了其实际应用。  “这次起光催化作用的二氧化钛,是一种钛和氧规则排列的晶体,我们通过独特的合成工艺,在其中生成大量的钛空位。”柳清菊向记者解释,有了这些钛空位,就可以请铜离子来帮忙“补位”。  “通过对钛基有机框架材料MIL-125中钛空位的设计和可控合成,我们研制出具有大比表面积和丰富钛空位的二氧化钛纳米材料,以此为载体锚定过渡金属铜单原子,使铜与二氧化钛形成了牢固的‘铜—氧—钛’键。”柳清菊介绍,在光催化制氢反应过程中,一价阳离子铜和二价阳离子铜的可逆变化,大大促进了光生“电子—空穴”的分离和传输,大幅提高了光生电子的利用率,使产氢量子效率获得突破,达到56%。这项突破获得了欧洲科学院院士、伦敦大学学院光催化和材料化学终身教授唐军旺团队的验证。  成本、工艺更“亲民” 光解水制氢产业已初露曙光  新研制的二氧化钛基光催化材料,具有性能稳定、无毒、无二次污染等优点,且生物相容性好、制备方法简单、成本低,与传统方法相比优势明显。通常含贵金属的催化剂,催化活性高,但相应的成本也极高。“新材料中,我们用的是‘贱金属’铜,它储量大、价格低、易获得,这是成本降低的第一个方面。” 柳清菊介绍,此外,原有的催化材料中单个金属原子活性很大,很容易形成团簇,使得催化活性降低。研发团队将铜原子牢固地锚定在钛空位上,不容易团聚,创新性地解决了这个问题,稳定时间很长,在常温常湿条件下,样品放置380天之久,仍然具有与新制备样品相当的产氢性能,进一步降低了产氢成本;另外,新型光催化材料制备工艺简单,无需昂贵的设备,使光催化制氢更加“亲民”。  近年来,柳清菊团队在实验室进行了大量的基础研究,包括材料设计、合成工艺、机理研究、性能优化等,已获得稳定的高性能光解水制氢光催化材料的实验室制备工艺,正准备开展放大工艺研发,为后续产业化奠定基础。虽然传统的光催化材料成本高、量子效率低,国内光催化产氢市场尚未成熟,但随着产业链衔接及相关政策的完善,光催化制氢产业化已是曙光初露。  对柳清菊团队而言,56%的产氢量子效率也不是终点。“我们还在继续努力,使效率进一步提高,如果能够提高到70%以上,对生产应用的意义将是不言而喻的。”柳清菊说,找准了方向,效率再提升将不是梦。随着光解水效率进一步提高和成本进一步降低,氢能时代将加速到来,人类也将还地球以绿水青山。
  • 5款便携式载体催化甲烷检测报警仪产品不合格
    本次共抽查了北京、山西、安徽、山东、河南、湖北、重庆等7个省、直辖市17家企业生产的17种便携式载体催化甲烷检测报警仪产品。   本次抽查依据《便携式载体催化甲烷检测报警仪》AQ6207-2007的要求,对便携式载体催化甲烷检测报警仪产品的外观及结构、基本功能、电源及充电、显示值稳定性、基本误差、工作时间、响应时间、报警功能、绝缘电阻(常态下)、绝缘介电强度(常态下)、工作高温、工作低温等12个项目进行了检验。   抽查发现有5种产品不符合相关标准的要求,不合格项目涉及基本功能、报警功能、工作低温等。具体抽查结果如下:   便携式载体催化甲烷检测报警仪产品质量国家监督抽查产品及其企业名单 承检单位:国家煤矿防尘通风安全产品质量监督检验中心   序号 企业名称 所在地 产品名称 商标 规格型号 生产日期(批号) 抽查结果 主要不合格项目 1 煤炭科学研究总院 北京市 JCB4(B)甲烷检测报警仪   JCB4(B)/(0-4)%CH4 2010-09-07 合格   2 山西科林矿山检测技术有限责任公司 山西省 JCB4便携式甲烷检测报警仪   JCB4/(0-4)%CH4 2010-06 合格   3 淮南中立电子有限责任公司 安徽省 JCB4(B)甲烷检测报警仪   JCB4(B)/(0-4)%CH4 2010-07 合格   4 淄博瑞安特自控设备有限公司 山东省 JCB4便携式甲烷检测报警仪   JCB4/(0-4)%CH4 2010-01-12 合格   5 山东隆泰矿业设备有限公司 山东省 JCB4便携式甲烷检测报警仪   JCB4/(0-4)%CH4 2010-08-20 合格   6 邹城市兖煤赛福安全仪器有限公司 山东省 JCB4甲烷检测报警仪   JCB4/(0-4)%CH4 2010-06 合格   7 武汉兴业华德威消防安全检测有限公司 湖北省 JCB4甲烷检测报警仪   JCB4/(0-4)%CH4 2010-09 合格   8 煤炭科学研究总院重庆研究院 重庆市 AZJ-2000型便携式甲烷检测报警仪   AZJ-2000/(0-4)%CH4 2010-09 合格   9 重庆科安电子有限公司 重庆市 JCB4(B)便携式甲烷检测报警仪   JCB4(B)/(0-4)%CH4 2010-08 合格   10 重庆梅安森科技股份有限公司 重庆市 JCB-C08A型甲烷检测报警仪   JCB-C08A/(0-4)%CH4 2010-08 合格   11 重庆煤安矿山安全设备制造有限公司 重庆市 JCB4便携式甲烷检测报警仪 煤安 JCB4/(0-4)%CH4 2010-07 合格   12 重庆永安煤矿安全仪器厂 重庆市 JCB4便携式甲烷检测报警仪   JCB4/(0-4)%CH4 2009-12 合格   13 北京卓安科贸有限责任公司 北京市 JCB4型便携式甲烷检测报警仪   JCB4/(0-4)%CH4 2010-09-08 不合格 基本功能、报警功能 14 阳泉红海机电有限公司 山西省 CJC4甲烷测定器   CJC4/(0-4)%CH4 2010-09 不合格 基本功能、电源及充电、显示值稳定性、基本误差、工作时间、响应时间、报警功能、工作高温、工作低温 15 安徽三正电气集团有限公司 安徽省 JCB4(0~4%CH4)便携式甲烷检测报警仪   JCB4(0~4%CH4)/(0-4)%CH4 2010-05 不合格 工作低温 16 平顶山市海达利电器有限公司 河南省 JCB4甲烷检测报警仪   JCB4/(0-4)%CH4 2010-09-14 不合格 报警功能 17 郑州创威煤安科技有限公司 河南省 JCB-C01A便携式甲烷检测报警仪   JCB-C01A/(0-4)%CH4 2010-05-15 不合格 报警功能
  • 催化剂的时间分辨降解可以用实验室SAXS进行原位研究吗?
    为了应对气候变化,可再生能源的使用被认为是行业以及私人要实施的最优先行动之一。现今所谓干净能源的使用受到若干因素的限制,其中间歇性的性质,即电力在不同时间范围内波动,是一个特别具有挑战性的问题。此外,锂电池的广泛使用使其效率受限,从而阻碍了向零排放电力来源的过渡。另外,燃料电池利用化学反应将能源转化电能,从而规避了发电、运输和储存的时间依赖性问题。质子交换膜燃料电池 (PEMFC) 被认为是用于运输和其他移动应用的有前景的可再生能源 。图1. 质子交换膜燃料电池示意图。阳极(2H2 - 4h + + 4e -)和阴极(O2 + 4H+ + 4e - - 2H2O)发生了两个化学反应,从而产生电流。概述碳载铂电催化剂的降解过程 为了催化氧还原和氢氧化反应,碳载铂或铂合金纳米颗粒是目前应用最广泛的质子交换膜燃料电池电催化剂。然而,铂的高成本和稀缺性阻碍了其大规模的商业化。为了使这种类型的燃料电池在实际应用中具有竞争力,目前大量的研究集中在了解降解机制,最终目标是提高催化活性和稳定性。加速应力测试(ASTs)通常用于减少实验的测试时间。根据外加电位,可以区分出两种降解路径。1、当操作电位在≈6到≈1 V之间时,电化学Ostwald熟化过程有利于形成较大的Pt纳米粒子,而牺牲较小的Pt纳米粒子。2、当阴极电位大于5v时,碳载体的腐蚀会导致Pt纳米粒子的分离并最终形成聚集。 因此,纳米尺度的粒径分布研究成为了解电催化剂材料降解研究的重要部分。为此,小角X射线散射(SAXS)是一种强大的技术,可以提供关于催化剂形貌(纳米颗粒的形状、大小和粒径分布)等有价值的信息。催化剂降解循环中粒径分布的时间分辨演化可以通过对大量样品进行的非原位测量或通过更合适的原位操作进行推断。原位SAXS测试通常在同步辐射X射线光源进行,因为它们的强光源和碳载体的直接背景扣除。对于实验室光源进行的测试,背景通常是在无铂碳电极上进行非原位测量,其降解过程与研究对象的降解过程相同。通常,这需要二次单独实验,如果测量条件不相同,则在归一化过程中会产生额外的误差。数据采集的发展提供了用实验室X射线光源采集高质量催化剂降解原位SAXS数据的可能性 最近,来自哥本哈根大学和尼泊尔大学的一组研究人员提出了一种工作电极的新设计,可以在电池的无催化剂部分上记录操作背景数据,该部分进行了与催化剂膜相同的电化学处理。他们的概念验证研究表明,作为单个实验的一部分,在实验室X射线源上进行的原位SAXS测量可以进行适当的背景扣除。 使用加速应力测试前后(即使用新设计的工作电极)收集的背景数据获得的概率密度函数,与非原位测量的原始无电解样品上记录的数据进行比较(见下图)。第一个显著观察结果是电化学测试后采集的背景扫描归一化(图2b)比电化学测试前采集的背景扫描归一化(图2a)与原始样本更匹配。 此外,当将粒径分布作为AST步骤的函数进行分析时,使用包含两种不同粒径分布的模型,就会出现如图2 (b)所示的两种明显的转变:1、小颗粒的粒径尺寸不断增大,而大颗粒的粒径尺寸保持不变2、小颗粒的概率密度随大颗粒概率密度的增大而减小。 因此,原位SAXS测量结果表明,在ASTs作用下,Pt/C燃料电池的降解过程包括Pt的连续溶解,和Oswald熟 化,而不是粒子聚集的过程。图2. 概率密度随粒子直径变化的函数,从SAXS测量中获得,记录在AST周期的不同时刻。(a) AST周期前采集的归一化背景扫描数据。(b) AST周期后采集的归一化背景扫描数据。每张图的插图描述的是AST周期之前(并对其各自的背景扫描进行归一化)的样品与原始的非原位样品(不使用电解质测量)之间的比较。由Johanna Schröder和Jacob j.k Kirkensgaard提供。 这一概念验证研究证明了利用实验室X射线光源和改性电化学电池获得催化剂降解采集高质量SAXS数据的可能性。背景扣除的进展为实验室实验打开了机会的大门,与同步辐射相比,实验室测量为优化实验和重复性研究提供了更大的灵活性。同时,在实验室环境中获得的SAXS初步数据可用于设计更有效的同步辐射实验。
  • 仪器表征,科学家制备表征新型高效催化剂!
    【科学背景】单原子催化剂(SACs)由于其高效的原子利用率和可调节的化学微环境,在电催化、热催化、光催化以及仿生酶催化等领域展示了卓越的活性和选择性。然而,由于潜在活性位点结构在材料表面上的分布不均,精确控制或识别其配位位点成为了一个挑战。X射线吸收精细结构(XAFS)表征和密度泛函理论(DFT)计算通常被用来探索SACs中活性位点的结构,但这些方法往往无法提供关于单个原子详细信息和三维结构,存在着实验与理论研究之间的差距。为了解决这一问题,清华大学王铁峰教授团队利用一锅法成功合成了Pt(0)单原子嵌入在基于苯-1,4-二甲酸(BDC)的MOFs中。具体地,作者选择了包括UiO-66–X(Zr)、MOF-5–X(Zn)、MIL-101–X(Fe)、NiBDC–X和CuBDC–X在内的MOFs作为载体,并重点研究了Pt1@UiO-66–X(-X&thinsp =-Br、-NH2、-I和-H)系统。作者发现,不同功能基团对Pt加氢活性和烧结抗性具有显著影响,表现出不同的催化活性和稳定性。特别是,Pt1@UiO-66-Br表现出优异的催化性能,其在硝基苯加氢和苯乙烯加氢反应中分别显示出高达37倍和68倍的TOF增益,相较于Pt1@UiO-66-I。此外,作者通过DFT计算揭示了Pt1@UiO-66–Br在300°C钙化时比Pt1@UiO-66–NH2更稳定的原因,这归因于其不同的H2化学吸附中间态配置。【科学亮点】(1)实验首次采用一锅法将Pt(0)单原子稳定地固定在基于苯-1,4-二甲酸(BDC)的金属-有机框架(MOFs)上,包括UiO-66-X(Zr)、MOF-5-X(Zn)、MIL-101-X(Fe)、NiBDC-X和CuBDC-X。(2)实验通过研究不同功能基团(-X&thinsp =&thinsp –Br、–NH2、–I和–H)对Pt1@UiO-66 MOFs中Pt单原子催化活性的影响,得出以下结果:&bull Pt1@UiO-66-Br展现出显著的加氢活性,其转化频率(TOF)比Pt1@UiO-66-I高出37倍(对硝基苯加氢)和68倍(对苯乙烯加氢)。&bull 结果显示,不同配位配体通过调节Pt中心的电子状态和中间体在Pt位点上的吸附行为,影响其催化性能。&bull 在H2气氛中的烧结抗性测试中,Pt1@UiO-66–Br在300°C的钙化条件下表现出比Pt1@UiO-66–NH2更高的稳定性,这一差异与不同的H2化学吸附亚稳态配置有关。【科学图文】图1:Pt1@UiO-66–X的合成与可视化。图2. Pt1@UiO-66–X的光谱表征与合成机理研究。图3. Pt1@IRMOF-3和Pt1@Fe-MIL-101–NH2的表征。图 4:Pt1@UiO-66–X的催化性能。图5. Pt1@UiO-66–X的电子性质。图6. Pt1@UiO-66–NH2和Pt1@UiO-66–Br的热稳定性。【科学结论】本文通过一锅法成功合成了一类新型的单原子催化剂(SACs),其中零价Pt原子被稳定地嵌入到UiO-66–X(–X&thinsp =&thinsp –H、-NH2、-Br和-I)的金属-有机框架中。这一成就不仅在催化领域展示了如何通过有机功能基团调控金属活性位点的方法,也在材料科学中探索了MOFs作为催化剂载体的潜力。首先,作者展示了通过有机配位基团对Pt中心的电子结构和活性具有显著影响。Pt1@UiO-66–Br表现出显著的加氢催化活性,远超过其他配体类型的Pt1@UiO-66。这不仅加深了对Pt在不同环境中电子态的理解,还为设计高效催化剂提供了新思路。其次,作者发现配位配体对单原子Pt在高温下的稳定性具有重要影响。UiO-66–Br和UiO-66-I中的Pt原子能在300°C下保持原子分散状态,而在UiO-66和UiO-66–NH2中则容易发生聚集。这一发现揭示了在设计稳定和持久的单原子催化剂时,配位环境的选择至关重要。最后,作者展望了将此合成策略推广到其他金属和MOFs的可能性,以拓展单原子催化剂在更广泛催化转化中的应用。通过结合实验和理论方法,作者期待未来能深入探索和优化这些设计的催化剂,为解决能源和环境挑战提供新的有效解决方案。原文详情:Liu, S., Wang, Y., Lyu, K.F. et al. A one-pot strategy for anchoring single Pt atoms in MOFs with diverse coordination environments. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00585-7
  • 卡博莱特· 盖罗回访中石化催化剂(北京)有限公司
    前言乙烯工业是石油化工业的龙头,国内现有的乙烯装置全部采用催化加氢除乙炔工艺来制备聚合级乙烯。碳二加氢催化剂技术是整个乙烯技术中的关键技术之一。卡博莱特盖罗来到中石化催化剂(北京)有限公司对高温箱式炉RHF1400进行安装并回访生产运行一部,探访卡博莱特盖罗马弗炉在石化催化剂行业的应用。 中国石化催化剂有限公司作为中国石油化工股份有限公司的全资子公司,是全球知名的炼油化工催化剂生产商、供应商、服务商。中国石化催化剂(北京)有限公司是中国石化催化剂有限公司的分公司,坐落在美丽的燕山石化,始建于1993年6月,企业已通过GB/T 19001、GB/T 24001、GB/T 28001和Q/SHS0001.1管理体系的认证。公司于2015年5月获得中关村高新技术企业认定。中石化催化剂(北京)有限公司现有4套主要生产装置。主要产品为:银催化剂、碳二碳三选择性加氢催化剂、聚烯烃助剂、芳烃溶剂。 中国石化催化剂(北京)有限公司生产运行一部于2008年和2012年分别购买了两台卡博莱特的高温箱式炉RHF1400,十年间使用状况良好,设备稳定,并于2018年底再次采购了一台卡博莱特盖罗的高温箱式炉RHF1400,6月17日销售经理叶上游先生与高级维修工程师袁石峰先生来到中石化催化剂(北京)有限公司生产运行一部,对新购买的RHF1400进行安装和培训使用。据了解,生产运行一部主要是生产碳二选择性加氢催化剂的部门,马弗炉是用于催化剂的产品检验。碳二选择加氢催化剂的载体性质非常广,马弗炉烧完之后主要检测四项指标,吸水率,强度,密度和比表面积。崔工对卡博莱特盖罗的产品质量及售后服务安装都给予了高度评价。卡博莱特盖罗的马弗炉控温精度比较高,比其他一些品牌精度高一些,样品烧结的差别比较明显。 2008年及2012年采购的卡博莱特盖罗高温箱式炉RHF1400 生产运行一部的崔工(右)与卡博莱特盖罗销售经理叶上游先生(左)合影 合成各种聚合物的乙烯单体,通常是由烃类蒸汽裂解制得。在裂解气中除了乙烯单体以外常常含有少量的乙炔等杂质,为了提高聚合物的性能,通常需要对裂解气进行精制,以使乙炔含量降至10ppm以下,最好小于5ppm。工业上一般采用催化选择性加氢的方法将乙烯原料中的乙炔除去。近年来,由于乙烯需求量的增加,大多数厂家通过改扩建装置来提高乙烯产量,导致碳二加氢单元的负荷增加,因此对乙炔加氢催化剂性能也提出了更高的要求。拥有自主知识产权的碳二选择加氢催化剂的开发并在工业装置上的成功应用,可大大减轻国内乙烯装置对国外技术的依赖,对保证我国能源与经济安全、提高乙烯工业的竞争地位有重要意义。CarboliteGero(卡博莱特盖罗)是弗尔德集团建立的专业马弗炉品牌,拥有了全系列炉类产品,加热温度从室温至3000°C,容积从3L至14000L,应用领域覆盖实验室至工业,包括各类气氛炉类产品。CarboliteGero有着灵活的方案,能为用户提供个性化的解决方案,如:航空航天领域、工程领域、材料科学、热处理、医药、生物及实验室检测等领域。卡博莱特盖罗以满足用户需求为中心,提供设备选型指导,有专业领域的工程师为全球的用户提供现场安装和调试服务。RHF系列高温箱式炉采用硅碳棒加热,有4种炉腔尺寸,每种都有3种不同最高工作温度可选(1400°C, 1500°C和1600°C)。坚固的结构和高品质加热元件保证加热速率(通常40分钟内升到1400°C)和长久的使用寿命。RHF系列高温箱式炉特点:◆ 最高工作温度1400°C,1500°C或1600°C◆ Carbolite Gero301控制器,单段程序控温,计时器功能◆ 炉腔体积3,8,15或35L◆ 阻尼式上开门(仅3L,8L型号)◆ 硅碳棒加热元件使用寿命长,能够承受间歇操作产生的应力◆ RHF系列3L和8L采用一体成型的炉底板,15L和35L采用碳化◆ 硅炉底板◆ 低蓄热量的保温材料,升温和降温迅速
  • 吉林大学材料学院能源化学研究综述:MOFs衍生的过渡金属单原子电催化剂用于高效氧还原反应
    电化学储存与转换系统主要包括金属离子电池、双离子电池、超级电容器、金属-空气电池和燃料电池等。后两种是清洁、安全、可靠的能源装置,具有环境友好、能量密度高、原料来源丰富、工作时间长等优点。氧还原反应(ORR)作为燃料电池的阴极反应,具有缓慢的反应动力学。因此,需要电催化剂来增强反应过程。近年来,过渡金属单原子电催化剂(TM-SACs)因其优异的催化活性(FeCoMnCuNi)、低成本和优异的稳定性而蓬勃发展。由于单原子在制备过程中容易团聚,因此载体材料的选择对于TM-SACs的形成尤为重要。载体也会影响催化反应中的电子输运和物质输运过程。MOFs具有结构可调、改性方法多样等优点,在TM-SACs的制备方面具有很大的潜力。图1. 基于MOFs的TM-SACs的制备策略和表征方法02成果展示金属有机骨架材料(Metal-organic frameworks, MOFs)由于其独特的结构和组成,在燃料电池和金属-空气电池的氧还原反应中得到了广泛的应用。近年来,以MOFs为前驱体或模板制备过渡金属单原子电催化剂(TM-SACs)的研究取得了很大进展。近期,吉林大学材料科学与工程学院郑伟涛团队对MOFs衍生的TM-SACs的制备方法和表征手段进行概述,并在此基础上归纳了TM-SACs的结构与性能的关系 (图1)。该综述旨在阐明大量的最新研究进展,来指导高活性、高负载量、高稳定性的TM-SACs的实现。第一作者为吉林大学材料科学与工程学院硕士生宋可心,通讯作者为张伟教授和郑伟涛教授。03图文导读1.ORR反应机制与优化原则ORR的反应过程如图2所示。由于反应条件的不同,导致酸性和碱性条件下的反应机制存在一定的差异。研究表明,酸性条件下较差的ORR性能主要是由于反应过程中吡啶-N质子化为吡啶-N-H结构,所以可以通过以下方式改善酸性条件下的ORR性能:1)防止质子和吡啶-N在酸性环境中快速结合;2) 增加本征活性和活性位点的数量。然而,在碱性条件下,大多数研究证明吡啶-N在催化过程中起着积极的作用。因此,增加吡啶-N的含量和增加金属活性中心数量是改善碱性条件下ORR性能的重要手段。此外,O2分子在活性位点上的吸附方式主要分为以下三种:Griffiths模式、Pauling模式和Yeager模式。不同的吸附模式也对催化机制产生一定的影响。图2.(a)酸性条件下ORR反应示意图。(b)碱性条件下ORR反应示意图。(c)O2在金属活性位点的三种吸附模式示意图2. 单原子催化剂的表征手段由于SACs的金属的尺寸很小,对表征技术提出了更高的要求。电镜技术和谱学技术的有效结合可以实现SACs的定性和定量分析。球差电镜利用其超高的空间分辨率可以直接观察到单原子的存在。结合EELS和EDS可以准确地确定材料的元素分布,有利于结构分析和物相识别。谱学技术,如(原位)X射线精细结构分析、穆斯堡尔光谱、红外光谱、原位拉曼光谱和原位漫反射红外傅里叶变换光谱(DRIFTS),有助于准确表征SACs并探究催化机理。这些表征技术从不同角度证实了SACs的存在,形成了完整的SACs表征体系。表征技术如图所示:图3.(a)FeSAC@FeSAC-N-C的不同放大倍数的像差校正STEM图像和EDS图像。(b)Co-pyridinic N-C的不同放大倍率的像差校正STEM图像和EELS光谱。(c) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像。(d) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像图4.(a)不同电位下Au L3边和Cu K边的XANES光谱和EXAFS拟合分析.(b)不同电位下的Pt1-N/C的XANES光谱和EXAFS拟合分析3. 基于MOFs制备TM-SACs的五大策略由于MOFs独特的空间结构,是制备TM-SACs的良好前驱体。在这一部分中,详细总结了使用MOFs制备TM-SACs的五种策略,并探讨了TM-SACs的结构特征和性能之间的相关性。所有这些策略都集中于如何保护过渡金属原子在热解过程中不发生团聚。由于MOFs后处理的方式不同,保护机制也存在一些差异。根据保护机制的不同,本部分将其分为以下五种策略:1) 表面限域策略:由于MOFs提供高度分散的金属位点,是制备TM-SACs的理想前驱体或模板。通过使用牺牲金属(SMs)的“空间栅栏”效应,可以调整过渡金属之间的距离,从而有效地避免高温下过渡金属原子的聚集。因为SMs的熔点相对较低,它们在热解过程中挥发。根据过渡金属的掺杂数量,主要可分为以下几类:1)单金属掺杂;2) 双/多金属掺杂。图5.(a)Fe掺杂ZIF-8衍生催化剂的合成过程示意图和不同粒径的Fe掺杂ZIF-8的SEM图像。(b)ZIF-8前驱体中Fe掺杂量对催化剂结构和活性影响示意图。(c)NC吸附铁离子的模型催化剂示意图及反应路径图。(d)通过调节Zn/Co的摩尔比制备Co-SAC/N-C的示意图。(e)负压热解法制备三维石墨烯骨架上的SACs示意图2) 空腔限域策略:利用MOFs独特的空腔结构优势,对金属前驱体进行封装。这种封装效应可以最大程度地减少热解过程中金属前驱体的聚集。对于ZIF结构,ZIF-8是一个具有菱形十二面体结构的三维空间纳米笼,由锌离子和二甲基咪唑配体组装而成。其具有孔径为3.4Å、空腔直径为11Å的空腔结构,金属前驱体可封装在里面来实现金属前驱体的空间隔离。高温碳化后,ZIF-8变成氮掺杂碳骨架,为金属位点的负载提供了载体。常见的金属前驱体可分为以下几类:1)金属无机化合物,如金属盐和金属氢氧化物;2) 金属有机化合物,如乙酰丙酮化合物和二茂铁;3) 金属大环化合物,如酞菁、卟啉和菲咯啉。图6.(a)Mn-SAS/CN催化剂的制备示意图和原位XANES光谱。(b)基于Kirkendall效应制备的(Fe,Co)/N-C催化剂示意图。(c)基于ZIF-8前驱体制备C-Cu(OH)2@ZIF-8-10%-1000的原理图。(d)Fe-ISA/CN催化剂制备示意图。(e)微孔限制和配体交换法制备Co(mIm)-NC催化剂示意图3) 外层保护策略:对MOFs的外层采取一些保护措施,以避免在热解过程中结构坍塌和金属原子的聚集。未热解MOFs表面的金属离子呈现高度分散的单原子态。但是在热解后由于单个原子的高比表面能,会发生团聚,这大大降低了金属活性位点的利用效率。此外,高温热解后,MOFs的孔结构坍塌,不利于催化剂传质过程和更多活性位点的暴露。因此,应采取措施对MOFs的外层进行保护,以促进高密度TM-SACs的形成,并保持热解后结构的稳定性。常用的保护策略主要分为以下两类:1)有机化合物(如表面活性剂、酶和聚合物)的保护策略;2) 主客体策略。图7. (a)原位约束热解法制备核壳结构的Co-N-C@surfactants催化剂示意图。CoN2+2活性位点构型和反应自由能演化图。(b)酚醛树脂辅助策略制备核壳结构1.0-ZIF-67@AF催化剂示意图。(c) CoNi-SAs/NC催化剂制备示意图。(d)配体交换策略制备C-AFC© ZIF-8催化剂示意图。(e) Fe-SAs/NPS-HC催化剂制备示意图4)相扩散策略:湿化学合成法通常用于制备以MOFs为前驱体的TM-SACs,即金属前驱体的合成在溶剂中完成。此外,由于单原子与其载体之间的弱相互作用,单原子在随后的制备和催化反应过程中不可避免地会团聚。如果使用MOFs衍生的碳载体作为前驱体,金属原子在高温下的扩散特性将被捕获并在碳载体上还原。这种强烈的相互作用可以提高催化剂的高温稳定性,也为TM-SACs的制备提供了一条新的途径。相扩散策略主要分为以下两种方法:1)球磨法(固相扩散法);2) 气相扩散法。图8.(a)固相合成法制备Fe掺杂ZIF-8的原理图。(b) M15-FeNC-NH3催化剂制备示意图。(c) Fe-N/C催化剂制备的示意图及ORR性能曲线。(d)气相扩散法制备Cu-SAs /N-C催化剂示意图。(e)金属氧化物热扩散法制备Cu ISA/NC催化剂原理图和Cu-N3-C、Cu-N3-V自由能演化图5)双模板策略:模板策略可以通过模板本身的空间约束效应来控制合成材料的形态、结构和几何尺寸。MOFs是合成TM-SACs的最佳前驱体或模板。外来模板的引入可以对MOFs的形态和尺寸进行一定的限制。三维骨架上的金属原子可以得到很好的保护,有效地避免了热解过程中单个原子的团聚。根据热解后是否需要额外繁琐的步骤去除外来模板,这种双模板策略主要分为以下两类:1)一步模板法:PS和盐模板法;2) 多步骤模板法:介孔SiO2、SiOX和有序介孔硅。图 9.(a)利用KCl模板制备了SCoNC催化剂的制备图和不同放大率的HAADF-STEM图像。(b)PS模板法制备具有分级多孔结构的FeN4/HOPC催化剂的制备示意图。(c)PS模板法制备Fe/Ni-NX-OC催化剂示意图04小结MOFs材料的优异特性为高负载量、高稳定性、高催化活性的单原子催化剂的制备提供了丰富的平台。目前还有许多需要解决的问题,主要包括以下几个方面:1)充分发挥MOF材料的结构多样性的优势,探索一些新的策略来制备TM-SACs。目前主要以ZIF结构为主来制备TM-SACs,可以充分挖掘其他结构的MOF材料来进行制备。2)TM-SACs的单原子活性位点通常以TM-N4为主,这种配位结构被认为具有良好的ORR活性。对活性中心的配位结构进行调整,可以使得它们的活性得到进一步提高。目前已有的调整方式主要包括构建双原子活性中心、引入非金属(S,P,B)、纳米粒子与单原子协同催化、构建客体基团等。3)提高过渡金属单原子的负载量。催化剂的活性与催化位点数目和本征活性息息相关。对于TM-SACs,在合成过程中最大程度地避免单原子的聚集,提高过渡金属的利用效率,将MOF前驱体中的金属位点最大程度地转变为TM-NX结构。 4)实现TM-SACs的大规模制备和通用策略制备。金属浓度过高会导致单原子催化剂在制备过程中极易发生团聚, 并且由于不同种类的金属的配位环境和物理化学性质不同,难以实现制备策略的通用化。因此,开发一种新的策略去实现TM-SACs的大规模制备和通用化制备显得尤为重要。5)利用先进的表征手段和原位技术,在原子水平上对催化剂的结构进行剖析,从而探究结构与性能的关系。这些技术为MOF材料为目标明确的TM-SACs的设计提供了指导。6)结合理论计算去探究TM-SACs的氧还原反应动力学和最佳反应路径,确定催化剂的真实活性位点和反应过程的决速步。这为催化剂的结构设计提供了理论支撑,从而更好地提高TM-SACs的性能。
  • 南方科大郑智平/杨烽/张新瑜Adv. Sci.:原位环境电镜揭密液态金属与单原子催化剂动态演化
    南方科技大学杨烽团队与郑智平讲席教授/张新瑜团队展开合作,利用环境球差透射电子显微镜(ETEM)耦合原位谱学的方法,在高温反应环境中,从原子层次上揭示了过渡金属单原子和多孔碳载体的起源和动态演化过程,阐明了液态金属作为重要中间物种,在形成单原子催化剂和刻蚀多孔碳结构中起到的关键作用。从原子尺度研究催化剂在反应环境中的表/界面结构及其动态演变对合理设计催化剂和揭示反应机理具有重要意义。在金属催化剂合成过程中原位揭示金属物种的演化过程、认识金属在载体表面的行为是催化剂结构精确控制的关键。高温热解是一种常用来制备金属单原子催化剂的方法。然而,在高温(500-1000 ℃)以及含碳环境中,相比于贵金属(Pt、Rh、Ag等),非贵金属过渡金属(Fe、Co、Ni)纳米颗粒表现出更加复杂的动态行为,如:熔融、碳扩散、团聚、结构演化等,从而对理解和揭示这一类单原子催化剂制备过程中的结构控制机理带来挑战。另一方面,在高温(500-1000 ℃)过程中原子层次的原位表征也存在较大困难。原位环境球差透射电子显微镜(ETEM)可以从原子尺度研究工况条件下催化剂的结构和演化等过程,尤其是适合于组成、结构不均一体系的局域表征;耦合原位电子能量损失谱(EELS),还可以提供物种价态变化等信息;此外,具有原子分辨的原位球差暗场电镜也非常适合于热场环境中金属单原子的研究。作者利用原位ETEM,在200-1000℃追踪了金属有机框架化合物前驱体(Co/Zn-ZIF)热解产生Co单原子的过程。研究发现热解过程中Co金属物种表现为团聚、分散、再团聚、升华的动态过程(图1)。耦合原位EELS监测了该过程中元素的化学演变(图2),发现升温至500℃时金属Zn已经升华消失;框架中的C逐渐转化为石墨化碳;在700 ℃,碳载体中原子级均匀分散的Co与C相互作用,形成类似Co 2 C的配位结构。而这种Co-C相互作用相对较弱,在更高温度850℃重新团聚成金属Co纳米颗粒(图3)。ETEM研究表明在850℃金属Co纳米颗粒熔化,并在载体中流动、扩散,刻蚀出多孔/缺陷碳结构,同时与碳载体发生反应生成碳化物(CoC x )(如下式);Co (l) + C (ZIF) → CoC x + C 1−x (defect∕porous structure)在这一液态金属扩散过程中,伴随着金属Co原子被刻蚀后的C-N缺陷位点锚定,形成单原子结构(图3)。原位HAADF-STEM和非原位XAFS表征进一步证实了上述过程,研究发现单原子Co在多孔CN x 载体上具有良好的稳定性,而剩余的CoC x 颗粒在高温1000 ℃逐渐升华(图4)。这类单原子Co催化剂在乙基苯选择性氧化模型反应中展示出优异的催化性能和稳定循环性。该工作近期在线发表在 Advanced Science ,并被选入Hot Topic: Carbon, Graphite, and Graphene。论文第一作者是南方科技大学研究助理张璐瑶,共同第一作者是博士研究生李岩岩、博士后张蕾;通讯作者是南方科技大学的郑智平讲席教授、杨烽助理教授、张新瑜研究助理教授。原位电镜数据在南方科技大学皮米中心收集,XAFS数据在北京同步辐射光源收集。该工作得到了国家自然科学基金、北京分子科学国家研究中心、科技部重点研发计划、广东省和深圳市项目的资助。图1. 原位ETEM表征Co/Zn-ZIF在200-1000 ℃的热解过程和金属物种行为。图2. 室温-1000 ℃原位EELS表征前驱体热解形成金属单原子过程中的化学变化图3. 原位ETEM表征熔融Co纳米颗粒扩散和刻蚀碳载体形成多孔结构,单原子锚定示意图图4. 1000 ℃原位HAADF-STEM表征金属团簇升华与单原子的稳定性。WILEY论文信息:Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon DissolutionLuyao Zhang#, Yanyan Li#, Lei Zhang#, Kun Wang, Yingbo Li, Lei Wang, Xinyu Zhang*, Feng Yang*, Zhiping Zheng*Advanced Science
  • 清华大学环境学院李淼副教授团队开发磷掺杂单原子钴催化剂实现水中硝酸盐污染高效还原去除与能源利用
    全球活性氮增加引起的氮循环失衡使硝酸盐成为水中最普遍的污染物之一。硝酸盐污染威胁着生态安全和人类健康。通过硝酸盐还原方式合成氨,不仅有助于水中硝态氮污染物的去除,而且有助于缓解社会对氨能源的需求,减少污染,降低能耗。电化学反应过程对条件要求适中,易于运行并且高效,可将硝酸盐直接转化为氨。但通常,在硝酸盐的电化学还原过程中,在纳米及更大尺寸电极的活性位点上易于发生氮-氮偶联反应生成氮气,制约氨的高效生成。因此,开发具有高活性、低成本和高选择性优势的电极材料是该领域研究的核心之一。李淼团队针对钴(Co)金属电极活性差、易钝化导致难以实用的瓶颈,通过缺陷碳的稳定固化作用,开发了一种磷(P)掺杂的单原子钴催化剂材料(如图1所示),可有效避免偶联反应发生,使最终产物具有更高的氨选择性和还原活性。这种磷掺杂单原子钴催化剂具有更高的硝酸盐还原去除性能,以其作为催化剂的最高氨生成法拉第效率为92.0%、最高氨产率为433.3μgNH4+h−1cm−2。图1 单原子催化剂结构形貌分析结果研究团队采用自然界极少的15NO3−作为氮源,以同位素标记法进一步证明了氨生成的唯一氮来源为硝酸盐。利用1H核磁共振(NMR)仪对产生的氨进行检测,14NH4+和15NH4+的核磁谱图分别具有典型的三峰和双峰结构。研究采用多种实验分析手段对载体结构进行了分析。结果表明,磷的掺杂进一步提高了碳氮载体的缺陷程度,提供了更多的固定位点负载单原子钴,并且缺陷位点会对相邻金属钴活性位点的电子结构和性能产生影响,提高了电极导电性。图2 电极性能结果研究团队根据密度泛函理论计算,创新强化污染物净化的单原子尺度结构调控理论与方法,从分子水平上对硝酸根在模型单原子钴催化剂活性位点的转化反应机理进行了探究,分析反应路径和能量变化。结果表明,硝酸根在单原子位点上逐步发生脱氧加氢的基元反应,N*物种可以在外部提供能量时进一步偶联形成氮气,也可以自发与氢逐步反应形成铵盐。磷掺杂后形成的缺陷位点可以促进临近CoP1N3位点对硝酸盐的催化转化,硝酸盐还原过程发生8电子数转移生成铵盐。此外,研究还发现,金属活性位点临近的缺陷结构有助于进一步提高单原子催化剂活性,在理论上为设计高活性位点的催化剂提供指导并揭示硝酸反应转化和产物分布规律。图3 反应机理示意图该研究成果于7月12日以《高法拉第效率钴单原子催化剂显著促进氨生成》(Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies)为题在线发表在《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)上。论文第一作者为清华大学环境学院博士后李佳澄,论文通讯作者为清华大学环境学院李淼副教授,环境学院刘翔教授等人对实验提供了重要指导和帮助。研究项目得到国家自然科学基金面上项目和重点研发计划的资助。
  • 岛津XPS助力湖南大学电催化与电合成实验室高影响因子文章发表:Ir单原子催化剂超低电位甲醇氧化
    Angewandte chemie影响因子:16.6设计Ir-C4单原子催化剂,实现了超低电位( 1.23V),以生产氢气和其他增值化学品,同样需要克服高过电位。近期,团队通过在高温聚合物电解质膜电解槽(HT-PEME)中将热催化与电催化相结合,开发了集成式热催化-电催化耦合反应体系,通过将醇类热化学脱氢与电化学氢泵相结合成功实现了热电耦合催化乙醇脱氢制备乙醛(PNAS., 2023, e2300625120)、热电耦合催化甲醇脱氢制备高纯氢气和CO(JACS., 2024, 146, 14, 9657-9664)以及低电位甲醇。相关研究表明,在HT-PEME中将热催化与电催化相耦合能够有效增强催化反应的速率和选择性,热电耦合能够相互协同促进。由于反应体系复杂,缺乏直接表征手段,目前缺乏直接证据证明热催化与电催化的相互协同。基于这一挑战,项目团队设计了Ir-C4单原子催化剂,实现了超低电位(图2. 热-电耦合催化甲醇氧化反应制氢体系的具体催化路径在HT-PEME中,施加电位之后甲醇在Ir-C单原子催化剂上由电促进热催化反应生成H2和CO,之后H2和CO在Ir-C单原子发生氧化反应,阴极发生氢析出反应生成H2。图3 Ir-C相关催化剂的EXAFS表征图4. Ir-C单原子催化剂、Ir颗粒催化剂XPS谱学测试通过EXAFS、XPS分析测试表明,Ir-C催化剂中的Ir主要是以单原子的形式存在,无Ir纳米颗粒。同时由于Ir原子与C载体之间的强相互作用,使Ir原子的电子结构发生了很大的变化,从而出现缺电子性质(Ir+)。特殊的几何结构和电子结构可能赋予Ir-C SACs具有优异的甲醇反应性。图5.Ir-C SACs和参比样品的甲醇氧化性能测试及在线产物分析如图5所示,当电解槽加热到80/100℃时,MOR的起始电压已低至0.4 V,随着温度的升高,MOR的起始电压逐渐降低。在160℃时,起始电压低于0.1 V,与理论平衡电位非常接近。研究结果表明,由于热和电化学耦合催化,甲醇可以被Ir单原子催化剂在超低电位( 0.1 V)下氧化。然而,同样条件下的Pt/C和Ir-C NP,其起始电位仍然很高,分别为0.3 V和0.4V。Ir-C SACs相比Pt位点和Ir颗粒位点的优异性能,证明了在热电化学耦合作用下IrC4位点独特的低电位甲醇氧化能力,表明其有巨大的Pt基催化剂替代能力。Ir(0.3)-C SACs在0.4 V(200℃)下的质量活度达到1.8 A mg-1Ir,比Ir-C NP和Pt/C分别高出约52倍和40倍。阴极HER对Ir(0.3)-C SACs(比Ir-C NP高3.3倍)的产氢率为0.2 ml min-1。质量比产氢速率最高达到18.3 mol H2h&minus 1gIr-1,与Ir-C NP和Pt/C相比,分别高出54倍和31倍。上述结果表明,得益于热学和电化学的耦合催化,Ir-C SACs的MOR和相应的产H2速率都表现出了显著的活性。阳极可以检测到CO、CO2、CH4和少量的H2证实热化学过程CH3OH → CO + 2H2,此外,超高的HOR和COOR活性证明了电化学氧化过程。本文的研究为热电耦合催化反应过程中热场-电场相互协同作用提供了直接证据,突破了以往关于MOR在Ir SACs上无活性的结论。该工作为设计高效催化反应和新型催化剂提供了指导。相关工作得到了岛津-KRATOS公司相关设备的大力支持。文献题目《Ultra-low-Potential Methanol Oxidation on Single-Ir-Atom Catalyst》使用仪器岛津AXIS SUPRA作者Liyuan Gong, Xiaorong Zhu, Ta Thi Thuy Nga, Qie Liu, Yujie Wu, Pupu Yang, Yangyang Zhou, Zhaohui Xiao, Chung-Li Dong, Xianzhu Fu, Li Tao*, Shuangyin Wang*State Key Laboratory of Chem/Bio-Sensingand Chemometrics, College of Chemistry and ChemicalEngineering, Hunan University, Changsha, Hunan 410082, P.R. China 全文链接https://onlinelibrary.wiley.com/doi/10.1002/anie.202404713
  • Solvias手性膦配体及催化剂
    手性制药是医药行业的前沿l域,在手性药物获得的诸多方法中,z理想的是催化不对称合成,它具有手性增殖、高对映选择性,易于实现工业化的优点,选择y种好的手性催化剂及配体可使手性增殖10万倍。 百灵威精心为您挑选Solvias系列产品,在不对称氢化,消旋体拆分,生物催化,偶联反应中应用广泛,并且供货稳定,可提供公斤j大包装定制以及高通量筛选(HTS)设计合理的实验(DOE),加速您的实验进程,满足科研和生产的不同需求。 ■ Solvias 系列产品 百灵威与美g有名工厂STREM合作,引进113种具有*权的Solvias手性膦配体及催化剂系列产品,在高校有机合成实验室、医药研发中心及药物研究所中有着广泛的应用。 产品优势 您的收获 创新性好,90%以上配体为*产品 更多选择,创新研发,优化反应条件及工艺 选择性高(ee90%以上),收率z高可达99% 纯化更简单,成本更低,项目进程更快 产品纯度高,底物适用广 应用在多种基团功能化 ■ 特色系列介绍 Josiphos 配体产品(二茂铁基双膦配体,七大优势配体类别之y),通过实验验证: 活性高、用量更少 应用在多种催化反应、适用底物广 对映选择性高、纯化更简单 Josiphos 配体 96-3650 Solvias Josiphos Ligand Kit References: 1. Chimia 53, 1999, 275. 5. Angew. Chem. Int. Ed., 39, 2000, 1992. 2. Solvias AG, unpublished. 6. Chimia 51, 1997, 300. 3. J. Am. Chem. Soc., 116, 1994, 4062. 7. EP 744401, 1995. 4. Org. Lett. 2, 2000, 1677 8. Adv. Synth. Catal. 343, 2000, 68. J. Am. Chem. Soc.,122, 2000, 5650. 9. J. Organomet. Chem. 621, 2001, 34. Solvias 产品列表: ■ 手性膦配体 15-0038 395116-70-8 15-0042 352655-61-9 15-0043 910134-30-4 15-0044 192138-05-9 15-0045 167709-31-1 15-0074 552829-96-6 15-0108 505092-86-4 15-0109 1044553-58-3 15-0112 145214-57-915-0113 145214-59-1 15-0117 1133149-41-3 15-0156 133545-24-1 15-0157 133545-25-2 15-0158 256390-47-3 15-0159 256235-61-7 15-0162 868851-47-2 15-0164 868851-50-7 15-0178 133545-16-1 15-0179 133545-17-2 15-0483 321921-71-5 ■ 二茂铁类膦配体 26-0240 494227-35-9 26-0244 494227-36-0 26-0245 847997-73-3 26-0246 793718-16-8 26-0248 494227-37-1 26-0252 210842-74-3 26-0253 831226-39-2 26-0650 246231-79-8 26-0955 914089-00-2 26-0956 1016985-24-2 26-0960 292638-88-1 26-0965 166172-63-0 26-0975 158923-11-6 26-1000 167416-28-6 26-1001 158923-07-0 26-1101 162291-01-2 26-1120 494227-32-6 26-1130 494227-30-4 26-1150 360048-63-1 26-1153 851308-47-9 26-1310 388079-60-5 26-1315 388079-58-1 26-1320 494227-31-5 26-1555 494227-33-7 ■ 手性金属催化剂 44-0442 849921-25-1 44-0443 212133-11-4 45-0172 511543-00-3 45-0173 507224-99-9 45-0174 45-0176 45-0177 45-0178 99143-48-3 45-0415 45-0750 908128-78-9 45-0752 908128-76-7 45-0766 45-0770 46-0270 359803-53-5 46-0272 614753-51-4 46-0290 172418-32-5 77-5009 880262-14-6 77-5010 583844-38-6 77-5019 880262-16-8 77-5020 405235-55-4 ■ 套包装 96-3650 Solvias Josiphos Ligand Kit 96-3651 Solvias Walphos Ligand Kit 96-3652 Solvias MandyPhosTM Ligand Kit 96-3655 Solvias (R)-MeO-BIPHEP Ligand Kit 96-3656 Solvias (S)-MeO-BIPHEP Ligand Kit 96-6651 Solvias cataCXium® Ligand Kit for C-X coupling reactions 更多产品信息请点击查询
  • 飞纳电镜在催化剂观察中的应用
    飞纳电镜近期通过福州大学的验收。福州大学石油化工学院主要研究清洁燃料生产催化剂和工艺研究、多级孔道催化材料的制备以及负载型催化剂纳微结构调变方法和应用。为了保护环境,人们对车用燃料的质量要求越来越高,燃料中芳烃含量的高低不仅直接影响其燃烧性能,而且对大气质量会产生不同程度的影响,因此利用性能优良的催化剂改善燃料质量具有十分重要的意义。 福州大学石油化工学院主要研究催化剂在石油化工中的应用,其中催化剂表面形貌、表面微区成分及分散状态会对催化剂性能及活性产生很大的影响。 配备有能谱的扫描电镜是一种重要的表面分析手段,能够观察催化剂表面形貌和检测催化剂表面微区成分,对催化剂的研发具有十分重要的意义。飞纳台式扫描电镜能谱一体机 ProX 既能观察样品表面形貌,还可以利用能谱对催化剂表面成分和元素分布进行分析。 从催化剂的微观观点上看,催化剂表面形貌和组成对催化行为具有重要的影响,飞纳电镜配置二次电子和背散射电子探头,能够充分发掘样品表面信息。催化剂中活性成分的分散状态与催化剂活性及使用寿命有着密切的关系,采用能谱分析可以对催化剂表面进行元素分析,从而判断活性成分的分布。同时,利用飞纳台式电镜也可以用于分析催化剂活性下降或失活的原因。 扫描电镜下的催化剂晶体颗粒扫描电镜下的球形催化剂颗粒 用户认真学习电镜操作利用飞纳电镜的形貌和成分分析,可以直观地获得催化剂的形态和活性成分分布信息,再结合宏观分析结果,可以大致预测催化剂的活性及性能,筛选掉性能较差的样品,大大节约研究和后期测试时间。
  • 文献解读丨通过M–N键长和配位调节提高质子交换膜燃料电池非贵金属M–N–C催化剂的稳定性
    质子交换膜燃料电池(PEMFC)被认为是一种有前途的可持续电化学能量转换装置,尤其是在交通应用中。目前,只有铂族金属(PGM)才能有效催化阴极上动力学缓慢的氧还原反应(ORR),但其高昂的成本和Pt的稀缺严重阻碍了PEMFC的大规模应用。因此,开发不含PGM的催化剂来部分或完全取代PGM催化剂是非常可取的。具有M-Nx/C活性位点的金属-氮-碳(M-N-C,M=Fe、Co、Mn等)催化剂,特别是Fe-N-C催化剂,在半电池和PEMFC测试中都表现出出色的初始ORR活性,可与商业Pt/C催化剂相媲美。然而,在M-N-C催化剂能够实际应用于PEMFC之前,必须克服许多艰巨的障碍,其中稳定性是最严峻的挑战。总的来说,由于对膜电极组件(MEA)的降解机制和复杂的多场(质/电/热)耦合环境了解不足,提供有效的解决方案来提高PEMFC中M-N-C催化剂的稳定性仍然极具挑战性。因此,开发具有显著增强稳定性的高性能M-N-C催化剂对于PEMFC的商业应用来说十分紧迫。方法与结果PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂的制备流程如图1所示。最简单的不饱和一元羧酸丙烯酸(AA)作为单体聚合成PAA,并与Fe3+螯合形成交联水凝胶。马来酸(MA)是一种二羧酸单体,用于与AA共聚合,以增加共聚物P(AA-MA)的羧酸含量。通过在共聚过程中调节AA/MA的摩尔比(5/1,3/1,1/1),可以轻易地调控共聚物中羧基的浓度和相应的与金属离子的结合常数。通过亲水性羧基和金属离子之间的螯合作用形成的交联水凝胶,可以通过随后在800°C下用氮前体进行高温处理,使所得的M–Nx/C位点原子分布在分级3D结构中。所得催化剂分别表示为PAA-Fe-N和P(AA-MA)-Fe-N。MA-Fe-N催化剂也被合成作为对照样品。图1 PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂制备示意图为了分析催化剂表面上C和N的价态,使用岛津的X射线光电子能谱仪(XPS)对其进行了分析表征。高分辨率C1s光谱中C-N键的形成表明N已经成功地掺杂在C骨架中。与PAA-Fe-N相比,P(AA-MA)(5-1)-Fe-N样品C-N键的位置发生了正向的位移,表明P(AA-MA)(5-1)-Fe-N样品具有更强的Fe-N相互作用。高分辨率N1s光谱表明,P(AA-MA)(5-1)-Fe-N样品具有比PAA-Fe-N更高的表面N含量(8.99 at%)和吡啶N/石墨N比例。P(AA-MA)(5-1)-Fe-N样品的表面Fe含量是PAA-Fe-N的3.5倍(0.44 vs 0.13 at%),ICP-MS分析也证实了这一趋势。可以推断,在引入MA后,P(AA-MA)(5-1)-Fe-N具有更高的Fe–Nx/C活性位点密度。57Fe Mö ssbauer(穆斯堡尔谱仪)被用来进一步探究样品中的Fe–N结构(图2c)。结果表明,具有可观QS值的D3位点(≈15%)说明PAA-Fe-N拥有比P(AA-MA)(5-1)-Fe-N更短的Fe-N键。采用X射线吸收光谱法(XAS)检测了样品的局部Fe-N配位结构。测量了P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的X射线近边结构(XANES)的Fe K边。结果表明,P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂中的Fe都可以实现原子级分散,并且单个Fe原子与N(O)元素配位,而不是以Fe-Fe键的形式存在。P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的Fe-N(O)键的平均键长分别为2.035 and 2.006 &angst ,与57Fe Mö ssbauer(穆斯堡尔谱仪)结果一致。根据文献,PAA-Fe-N样品中可能存在一些Fe-N2或Fe-N3物种(尽管Fe-N的拟合配位数仍然接近4),导致Fe-N(O)键长减少。相反,P(AA-MA)(5-1)-Fe-N中Fe-N位点的配位结构应以Fe-N4为主。图2 高分辨率C1s(a)和N1s(b)XPS光谱;以及(c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N样品的室温57Fe Mö ssbauer图谱;(d)P(AA-MA)(5-1)-Fe-N、PAA-Fe-N和Fe箔样品的k3加权FT-EXAFS光谱电化学测试表明(图3a-3c),与PAA-Fe-N以及其他催化剂相比,P(AA-MA)(5-1)-Fe-N具有更好的性能和稳定性。将Fe置换为Co或者Mn等金属后,该催化剂依然具有良好的性能,证实该策略具有有效性和普适性。通过物理和结构研究了催化剂在60℃下半电池性能退化的详细机制。AST测试后的催化剂的XRD图谱和TEM图像表明测试后具有与初始时相似的衍射峰和片状结构。图3e和3f为测试前后相应的FTEXAFS光谱。对于P(AA-MA)(5-1)-Fe-N,AST测试后没有明显的Fe-Fe键形成,证实了Fe-N键的稳定性以及随后催化剂Fe去金属化的耐受性。相反,循环5000次后,PAA-Fe-N中Fe-Fe键急剧增加。该结果明确确定,在60℃的稳定性测试过程中,PAA-Fe-N催化剂中确实发生了Fe-Nx/C位点的去金属化,并且部分分离的Fe原子可能迁移并形成微量的Fe2O3团簇,这些团簇在XRD中无法识别。利用岛津的X射线光电子能谱仪(XPS),证实在AST测试后,PAA-Fe-N中的表面Fe含量从0.13%增加到8.48%,而P(AA-MA)(5-1)-Fe-N表面Fe含量明显更少(从0.44%到2.89%)。更糟糕的是,Fe-Nx/C位点的破坏会促进Fenton反应的进行,进一步加速临近Fe-N的分解,结果与之前报道的电子能量损失谱(EELS)结果一致。请注意,其他降解机制,如碳腐蚀,可能同时发生在PAA-Fe-N上,因为AST后C含量从83.62%显著降低到58.07%。图3 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在25°C(a)和60°C(b)的O2饱和0.5 m H2SO4溶液中进行5000循环AST前后的ORR极化曲线,催化剂负载量:0.6 mg非PGM cm&minus 2,圆盘转速:900 rpm。c)先前报道的M–N–C催化剂在O2饱和0.5 M H2SO4中从0.6–1.0 V的AST的不同循环次数后的E1/2损失。d)P(AA-MA)-Co-N和PAA-Co-N催化剂在AST前后的ORR极化曲线。e、 f)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N(AST前后)、Fe箔和Fe2O3样品的k3加权FT-EXAFS光谱。燃料电池性能测试(图4)结果表明,P(AA-MA)(5-1)-Fe-N催化剂表现出极高的活性和稳定性,在0.55 V下电流密度37 h几乎保持不变。图4 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在H2–O2(a)和H2–空气(b)条件下的燃料电池性能,阴极负载:3.0 mg cm&minus 2;c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在PEMFC中0.55 V恒定电压下的稳定性测试期间的电流密度保持率;d)在H2–空气燃料电池中测试的各种M–N–C催化剂前20小时的电流密度保持率密度泛函理论(DFT)计算被用于进一步探究催化剂稳定性差异巨大的根源。研究了铁原子在载体上的吸附能(Ead)和Ead与整体粘性能量(Ecoh)之间的差异。计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差异。图5 a)吸附能(Ead)和b)在没有(红色)和(蓝色)溶剂化校正的情况下计算的Fe–Nx/C系统的吸附能和内聚能(Ecoh)之间的差(负值越大意味着载体中嵌入的Fe原子对金属浸出或聚集更稳定);c)Fe–N2/C、d)Fe–N3/C和e)Fe–N4/C的结构和差分电荷密度等值面(青色和黄色等值面对应于&minus 0.02和+0.02 e&angst 的电荷密度轮廓。棕色、灰色、浅灰色和白色小球分别代表Fe、C、N和H原子)总之,通过调节金属离子和催化剂前体中聚合物之间的相互作用,开发了一种提高M-N-C催化剂稳定性的通用有效策略,从而可以微调M-N键长和最终催化剂中的配位。57Fe Mö ssbauer光谱和XAS证明,与具有15%低配位Fe-N2/N3部分的PAA-Fe-N相比,具有独有的Fe-N4/C位点和更长的Fe-N键的共聚P(AA-MA)(5-1)-Fe-N催化剂性能明显更好。性能最好的P(AA-MA)(5-1)-Fe-N催化剂在半电池和H2—空气燃料电池中都表现出极高的活性和稳定性,在AST 60℃后E1/2损失仅为6 mV,在0.55 V下电流密度37 h几乎保持不变,是迄今为止报道的同类催化剂中整体性能最好的。DFT计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差,这说明了其优异的结构稳定性和对脱金属的耐受性的原因。文献题目《lmproving the Stability of Non-Noble-Metal M-N-C Catalysts for Proton-Exchange-Membrane Fuel Cellsthrough M-N Bond Length and Coordination Regulation》使用仪器岛津X射线光电子能谱仪(XPS)作者苗正培等 华中科技大学Zhengpei Miao, Xiaoming Wang, Zhonglong Zhao, Wenbin Zuo, Shaoqing Chen,Zhigiang Li, Yanghua He, Jiashun Liang, Feng Ma, HsingLin Wang Gang Lu,Yunhui Huang, Gang Wu, and Oing Li
  • 将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化
    1. 文章信息标题:Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/ AgCl@SiO2DOI: 10.1039/d2sc01140a2. 文章链接https://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC01140A3. 期刊信息期刊名:Chemical ScienceISSN:2041-65202020年影响因子:9.825分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:化学4. 作者信息:翟建新(首要作者),周宝文(首要通讯作者);吴海虹(第二通讯);何鸣元(第三通讯作者)韩布兴(第四通讯作者)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,300-800范围)、NP2000、CEL-SPS1000、CEL-TPV2000文章简介:设计一种能够在温和条件下利用甲烷的光催化剂具有重要意义,我们制备了一种Ag/AgCl@SiO2 光催化剂,其可以高选择性将甲烷光氧化为一氧化碳,一氧化碳产量为2.3 为μmol/h,选择性为73%。基于半原位红外光谱学、电子顺磁共振等一系列表征研究,二氧化硅的引入可以增加光生载流子的寿命,并且揭示了甲烷通过原位形成的单线态氧转化为COOH*中间体从而氧化为CO的中间过程。同时Ag/AgCl@SiO2催化剂也能在环境条件下使用真实的阳光进行甲烷的转化。 我们一致认为本文的创新之处有以下几点:1. 首次将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化2. 通过一系列表征表明二氧化硅的引入可以增加载流子的寿命3. 在真实太阳光下也能发生图1 催化机理图
  • 新型催化剂实现炔烃加氢制烯烃
    近日,中国科学院大连化学物理研究所研究员陈萍、郭建平团队与厦门大学副教授吴安安团队合作,在催化炔烃选择加氢反应研究中取得新进展。合作团队利用金属配位氢化物,发展出一类新型碱土金属钯基三元氢化物催化剂,并应用于炔烃选择性加氢反应中,实现高选择性催化炔烃加氢制烯烃。相关研究成果发表于《美国化学会志》。  炔烃是一类重要的化工产物,炔烃选择性氢化制烯烃是石油化工以及精细化工中的重要过程。目前研究较多的催化剂主要是金属合金、负载型单原子催化剂等。合作团队提出一种不同的催化剂设计策略,利用碱(土)金属稳定金属氢化物制备出三元配位氢化物催化剂,用于炔烃选择加氢反应,通过催化剂中的阴离子和碱土金属阳离子协同作用调控炔烃、烯烃及反应中间体的吸附与加氢能垒,实现炔烃高选择性氢化制烯烃。  郭建平表示,新型催化剂在活性中心组成、结构、反应动力学性质、催化作用机制等方面显著不同于常规多相炔烃选择加氢催化剂。该研究丰富了炔烃选择性加氢催化剂体系,并基于金属配位氢化物材料组成与结构的多样性,为寻找更加高效的炔烃选择性加氢催化剂提供了更多可能。  相关论文信息:https://doi.org/10.1021/jacs.1c09489
  • 著名催化剂专家魏可镁院士逝世
    中国共产党的优秀党员、中国工程院院士、福建省人民政府顾问、原福州大学校长、化肥催化剂国家工程研究中心主任、我国著名的催化剂专家魏可镁先生,因劳累过度,突发脑梗塞、心脏骤停,经抢救无效,于2014年10月23日凌晨1时30分不幸逝世,享年75岁。   魏可镁院士,1939年8月出生,福建福清人。1965年毕业于福州大学化学系,师从著名科学家卢嘉锡教授。1997年当选中国工程院院士,曾任第九届、第十届全国人民代表大会代表,中共福建省第七届委员会委员,先后荣获&ldquo 全国首届杰出专业技术人才奖章&rdquo 、 &ldquo 全国先进工作者&rdquo 、&ldquo 全国优秀科技工作者&rdquo 、&ldquo 全国侨界十杰&rdquo 等荣誉称号。   魏可镁院士是我国著名的催化剂专家,主要从事化肥催化剂、汽车尾气催化剂和净化器的研发。他先后研发成功并产业化四个系列十二个化肥催化剂,在全国上百家合成氨厂推广应用并取得巨大经济和社会效益 完成了FD汽车尾气催化净化器的研发,并已达到欧Ⅴ排放限值,成为外企在国内的主要竞争对手,并已实现年产销量15万套,为我国净化器产业的国产化打下坚实的基础。魏可镁院士曾先后获得国家发明奖3项,国家科技进步奖2项,省部级奖6项,为我国化学化工科学技术的发展和应用做出了杰出贡献。   魏可镁院士教书育人四十余载,培养了大批优秀人才,为党的教育事业、科技事业呕心沥血,奉献了毕生精力。他严谨求实的治学态度,勇于创新的科学精神,不求索取、只知奉献的催化剂品格,是我国科技教育界的光辉典范。以魏可镁院士为代表的勇于拼搏的奉献精神被列入福州大学的&ldquo 三种精神&rdquo 之一,将激励和泽及一代又一代的学子。   魏可镁院士的逝世,是我国化学化工科学与教育界、福州大学的重大损失。敬爱的魏可镁院士永远活在我们心中!
  • 化物所宽光谱响应光催化剂分解水研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室中科院院士李灿和&ldquo 百人计划&rdquo 学者章福祥研究员负责的宽光谱响应半导体光催化分解水研究取得新进展:通过对宽光谱捕光材料Ta3N5 (Eg: 2.1 eV,吸收带边可至600 nm)与高效氧化助催化剂CoOx之间的界面进行MgO纳米层修饰,不仅改善了CoOx与其界面接触和分散状态,而且还对半导体Ta3N5表面起到钝化保护作用,使光催化体系在可见光长波段500&minus 600 nm激发条件下的分解水放氧量子效率(AQE),由文献最高值5.2%提升至目前的11.3%。相关研究结果在线发表在《德国应用化学》期刊上。   太阳能光催化分解水制氢是实现太阳能光-化学转化的重要反应,被认为是化学领域的一个&ldquo 圣杯&rdquo 式的反应。光催化水分解反应主要涉及质子还原和水氧化两个半反应,其中水氧化是涉及多电子转移、热力学爬坡的反应,被认为是实现上述太阳能光化学转化的速控步。太阳能光催化转化涉及如何实现太阳能宽光谱利用、如何实现高效的光生电荷分离以及表面的催化转化等关键科学问题,然而随着半导体催化剂吸收带边的红移,其驱动光生电荷分离以及水分解(还原、氧化)的能力就随之变弱。因此,太阳光的充分利用与光生电荷的高效分离常常不易兼得,要实现宽光谱响应的光催化剂高效水氧化过程是一个非常具有挑战性的难题。   助催化剂可有效促进光生电荷分离和催化转化,李灿研究团队在国际上明确提出了双助催化剂策略(Acc. Chem. Res. 2013, 46, 2355)。最近几年,为了攻克宽光谱响应光催化剂上水氧化这一科学难题,他们发展了高温负载廉价助催化剂CoOx的策略,在LaTiO2N (Eg: 2.1 eV)上取得了比传统贵金属IrO2和RuO2助催化剂更高的放氧性能(J. Am. Chem. Soc. 2012, 134, 8348-8351.),随后又成功地将这种CoOx负载策略拓展到了新开发的宽光谱响应的氮掺杂氧化物Sr5Ta4O15-xNx 和MgTa2O6&minus xNx材料体系上(J. Mater. Chem. 2013, 12, 5651 Chem. Commun. 2014, 50, 14415)。   该研究进一步利用MgO纳米层调变宽光谱响应半导体Ta3N5与助催化剂CoOx之间的界面性质,通过改变半导体材料表面的亲疏水性,改善了助催化剂的纳米分散以及界面间电荷的转移,取得了目前宽光谱响应光催化剂上分解水放氧反应的最高量子效率,为发展高效的光催化体系提供了新策略。   该研究工作获得基金委重大基金、科技部&ldquo 973&rdquo 项目以及中科院&ldquo 百人计划&rdquo 人才项目资助。 宽光谱响应光催化剂分解水研究取得新进展
  • 北化院BHL催化剂完成首次工业应用试验
    近日,北京化工研究院自主研发的新型BHL催化剂在中科炼化道达尔ADL环管聚乙烯工艺装置成功完成首次工业应用试验,综合性能全面超越进口同类催化剂。道达尔ADL工艺对催化剂性能要求高,此前均使用进口专利商催化剂。北化院针对道达尔ADL工艺,历时多年开发新型高性能钛系催化剂——BHL催化剂。试验过程中,中科炼化和北化院团队紧密合作,催化剂切换顺畅,生产过程平稳,以创纪录的16.5小时将各项产品参数调整合格。相对于进口催化剂,BHL催化剂活性提高10%~20%,氢调性能平稳,共聚性能提升10%以上,制得的聚合物颗粒形态良好、细粉更少,树脂产品达到优级标准。BHL催化剂工业应用试验的成功,标志着北化院研发的催化剂技术在国内淤浆聚乙烯工艺领域实现全覆盖。下一步,北化院将与中科炼化进一步深化产销研用合作,提升树脂产品质量,开发新型树脂产品,助力中科炼化降本增效,实现高质量发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制