当前位置: 仪器信息网 > 行业主题 > >

粗蛋白

仪器信息网粗蛋白专题为您整合粗蛋白相关的最新文章,在粗蛋白专题,您不仅可以免费浏览粗蛋白的资讯, 同时您还可以浏览粗蛋白的相关资料、解决方案,参与社区粗蛋白话题讨论。

粗蛋白相关的资讯

  • PeproTech无动物成分蛋白大促销
    细胞治疗的福音--PeproTech多种无动物成分(Animal Free)蛋白大促销细胞治疗是将人体细胞经体外培养、诱导增殖活化后回输入人体的一种治疗肿瘤等疾病的方法,因安全、有效,并能提高生活质量而广为人们所关注和采用。细胞治疗离不开细胞培养,而培养过程中细胞因子或活性蛋白的加入不可或缺,这些细胞因子或活性蛋白目前基本上都是重组表达而来。左图显示细胞因子和活性蛋白的传统表达法。在该法的表达阶段,对于原核细胞表达,培养时需在培养基中加入蛋白胨;而真核细胞表达时,则需在培养液中加入牛血清。蛋白胨和牛血清都是动物成分,因此用传统表达法表达出来的细胞因子或活性蛋白不可避免的会混入动物成分。举个简单的例子,如果想用传统方法表达人IL-2,则最后得到的重组人IL-2中可能会有牛的IL-2或其它成分,这样的人IL-2用于临床时可能会给患者带来安全问题,治疗效果也可能会受到影响。无动物成分(Animal Free)的细胞因子和蛋白则是在传统表达法的基础上,对原核和真核细胞的培养体系进行了改进,其中不加入蛋白胨和牛血清,因此最后所得的细胞因子和蛋白中不会含有动物成分,这样也就具有了以下几个突出的优势:1. 传统蛋白可能会给患者引入疯牛病病毒或其他未知病原体,而无动物成分(Animal Free)蛋白不会。2. 传统蛋白中的动物抗原可能会引起临床使用时的异种排斥和过敏反应,而无动物成分(Animal Free)蛋白不会。3. 传统蛋白中的痕量动物激素或其它活性成分可能会给患者带来副作用,而无动物成分(Animal Free)蛋白不会。为给国内的细胞治疗,无论是免疫细胞治疗,还是干细胞治疗提供更安全的、更经济实惠的蛋白产品,PeproTech公司推出无动物成分(Animal Free)蛋白促销活动,与传统蛋白同价。抓住这次机会,以更优惠的价格获得PeproTech高端产品。 阅读原文:http://www.liankebio.com/ProductCenterShow/articleID/2014040008.html
  • RapiGest SF试剂:促进溶液中蛋白酶解的有利工具
    Ying Qing Yu与Martin Gilar 美国马萨诸塞州米尔福德沃特世公司 简介 本应用纪要中,我们介绍了沃特世专利RapiGest&trade SF试剂的物理化学性质及其应用领域。2002年,我们首次推出RapiGest SF,这一创新产品是帮助酶消解的有利工具,可促进溶液中蛋白的消解,它能够改善样品制备过程中蛋白的溶解度。 RapiGest SF提高酶解速率与完全程度的机理详见图1。温和的蛋白变性可打开蛋白结构并暴露酶切位点,以供酶切。在RapiGest SF溶液中,酶对变性的耐受性优于普通蛋白,并能保持活性。在加入酶之前高温加热RapiGest SF溶液可使球蛋白更为完全变性,之后需将酶与样品一起进行37 ° C的孵育。 图1 蛋白底物在RapiGest SF溶液中变性􀉼 之后对蛋白酶切更为敏感 超过200多家行业内杂志引用了使用RapiGest SF进行样品溶解的案例,大部分为蛋白组学的应用。最近,许多制药实验室使用RapiGest SF用于蛋白药物的确证。因为酶消化的速度的提高并在LC、MS分析前极易清除,RapiGest SF已被多个应用领域广泛接受,其中包括高级序列研究的LC/UV/MS蛋白药物的肽图分析。 讨论 什么是RapiGest SF? RapiGest SF是酸性不稳定表面活性剂,在酸性条件下极易水解。1这种独特的性质,在需要的时候,可用于从溶液中清除表面活性剂。RapiGest SF的结构及其水解副产物见图2。酸性不稳定的性质可在pH2条件下,45分钟内达到完全降解。 该表面活性剂可降解为两个产物:dodeca-2-one和3-(2,3-二羟基丙基)丙磺酸钠。前者与水不能互溶,可通过离心清除。后者在水溶液中溶解度很高,而在反相LC模式下不保留。酶消解后的水溶液可直接进行HPLC、LC/MS或MALDI-TOF MS进行分析。 消解后的清除 样品分析前无需额外去清除表面活性剂(如透析)。在分析前,酶消解后通常经过酸(如甲酸、三氟乙酸(TFA)或盐酸(HCl))的酸化,降解RapiGest SF。建议降解条件pH &le 2。 胰蛋白酶消解的兼容性 胰蛋白酶是最常见的蛋白水解酶,可用于肽图分析和蛋白组学的应用。我们研究了在添加RapiGest SF的情况下胰蛋白酶的活性作用,并与文献中最常见的变性剂的作用做了对比。本检测基于胰蛋白酶诱导N-&alpha -苯甲酰-L-精氨酸乙基乙酯(BAEE)在50 mM重碳酸胺(pH 7.9)中的室温水解。胰蛋白酶活性的变化通过UV 253 nm下测量BAEE水解率进行计算。在选择的变性溶液中,胰蛋白酶活性与对照样品进行对比(非变性剂)。结果见于表1。 表1中的数据说明低浓度下(0.1%) RapiGest SF不抑制胰蛋白酶的活性。这与结构上类似的表面活性剂SDS不同,SDS是很强的变性剂,可会使胰蛋白酶失活。尿素、乙腈或盐酸胍也是胰蛋白酶消化的变性剂。但是乙腈是强洗脱剂会干扰消解样品进行反相LC分析。正如我们所知,尿素可使蛋白共价修饰,盐酸胍也和SDS一样可以使酶失活。 本实验说明蛋白酶的活性受到蛋白溶液中所用变性剂的影响。RapiGest SF在从低到高的浓度下均不改变酶活性,因此,最佳的蛋白消解条件是无需过量酶即可达到酶解的结果。 快速蛋白消解 对蛋白酶解存在抗性的蛋白使用RapiGest SF试剂,可在数分钟内消解完全。完全消解球蛋白、马肌红蛋白只需要5分钟内即可完成。该试剂辅助的消解结果与对照见图3。由于肌红蛋白是球蛋白,众所周知,若没有表面活性剂将难以消解。在对照反应中,与胰蛋白酶孵育9小时后只有少量的蛋白可以消化。使用了RapiGest SF试剂,总体的消解的效率显著提升。 在蛋白药物肽图中的序列覆盖范围更大 RapiGest SF在蛋白组学的样品前处理中广泛使用,是有效的蛋白溶解变性剂。最近越来越多的生物制药实验室在肽图分析中采用了RapiGest SF。一些发表的论文记录了使用RapiGest SF进行蛋白药物消解的优势。4,5经报导的RapiGest SF浓度范围为0.05 -1%,取决于蛋白疏水性与浓度。 我们发现浓度范围为0.05 -1%的RapiGest SF足以使各种大小的蛋白变性,高浓度RapiGest SF适合全细胞蛋白提取的实验。 单抗(mAbs)肽图分析一直以来都因为难以消解这些大疏水蛋白而难以实现。肽图分析的目的是确认蛋白序列并发现所有存在后翻译修饰(PTMs)的蛋白。图4举例说明了RapiGest SF辅助的人单抗消解的实例。样品制备与分析的参数以UPLC® 和四级杆Tof质谱分析的参数已列表作为指导。 图4显示实验中总序列覆盖率为98%。数据分析通过BiopharmaLynx&trade v.1.2软件得到。高序列覆盖率(98%)说明单抗完全消解。LC/MS分析中没有发现错误酶切的多肽或完整未被酶切的蛋白。剩下的2%未确认的序列为少数二个氨基酸的肽或单个氨基酸(R或K),而无法在反相柱上保留。 样品制备 人单抗样品(10 &mu L, 21 mg/mL)在含有0.1% (w/v) RapiGest SF 的50 &mu L 50 mM重碳酸铵中溶解。将2 &mu L 0.1 M的二流苏糖醇(DTT)加入样品,样品在50 ° C加热30分钟,加入4 &mu L 0.1 M的碘代乙酰胺,在样品冷却至室温后样品在黑暗中静至40分钟。 样品中加入8 &mu g胰蛋白酶(胰蛋白酶浓度= 1 &mu g/&mu L),样品在37 ° C孵育过夜。消解样品与1%甲酸与10%乙腈混合(1:1,v:v)。用Milli-Q水(Millipore)稀释至5 pmol/&mu L后进行LC/MS分析。 LC 条件 LC 系统 沃特世 ACQUITY UPLC® 系统 色谱柱 ACQUITY UPLC BEH 300 C18 肽分离专用柱, 2.1 x 100mm (P/N = 186003686) 柱温 40 ° C样品进样 2 &mu L (10 pmol) 溶液A 0.1% 甲酸水溶液 溶液B 0.1% 甲酸乙腈溶液 流速 200 &mu L/min 梯度 0-2分钟:2%B 2 &ndash 92分钟:2 -35% B 92 -102分钟:35 - 50% B 102.1 -105 分钟:90% B 105.1-110分钟:2% B MS条件 MS系统 沃特世SYNAPT&trade MS (V型) 毛细管电压 3.2 kV 源温度 120 ° C 去溶剂温度 350 ° C 去溶剂气 700 L/hr MS 扫描速率 1 秒/次 锁定质量通道 100 fmol/&mu L Glu-Fib多肽(m/z 785.8426, z = 2),流速20 &mu L/min 与其他的蛋白酶合用 我们测试了RapiGest SF与多种蛋白酶的适配性,如Asp-N, Lys-C与Glu-C。在酶解前使用RapiGest SF变性蛋白获得了有效的消解结果。 蛋白去糖基化的用途 RapiGest SF也用于测试其它酶,如PNGase F,该酶用于酶切糖蛋白N-连接的糖基。2图6说明了去糖基化鸡蛋卵清蛋白。在RapiGest SF介质中PNGase F消解2小时后观察到了完全的去糖基化反应。 结论  RapiGest SF促进了蛋白酶解的速度与完全程度,能够得到蛋白药物序列覆盖率很高的肽图分析。  RapiGest SF是适用于蛋白组学、糖蛋白与生物制药应用的领域  几乎无需消解后样品处理,简单样品酸化,足以从溶液中去除RapiGest SF。多种情况下LC/MS分析前只需简单稀释。  RapiGest SF简化了样品制备方法,可提高分析通量;使用该方法提高实验室工作效率并提高数据质量。 参考文献 1. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC. Enzyme-friendly, mass spectrom- etry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal. Chem. 2003 75: 6023-6028. 2. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC, A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun.Mass Spectrom. 2004 18: 711-715. 3. Yu YQ, Gilar M, Kaska J, Gebler JC. A rapid sample preparation method for mass spectrometry characterization of N-linked glycans. Rapid Commun. Mass Spectrom. 2005 19: 2331-2336. 4. Bailey MJ, Hooker AD, Adams CS, Zhang S, James DC. A platform for high- throughtput molecular characterization of recombinant monoclonal antibodies, J. Chrom. B. 2005 826: 177-187. 5. Huang HZ, NicholsA, Liu DJ. Direct identification and quantification of aspartyl succinimide in an IgG2 mAb by RapiGest SF assisted digestion. Anal. Chem. 2009 81 (4): 1686-1692.
  • 肿瘤免疫治疗的候选靶标-靶向胞内促癌蛋白
    肿瘤免疫治疗的策略之一就是使免疫系统特异性靶向肿瘤细胞而不是正常细胞。而突变相关的新抗原(neoantigen)正是这样的靶标,肿瘤细胞中体细胞突变产生的序列改变的肽段被细胞处理,被主要组织相容性复合体(major histocompatibility complex,MHC)呈递至细胞表面,进而被T细胞识别,对肿瘤细胞进行杀伤。由于新抗原只在肿瘤细胞中存在,其成为肿瘤免疫治疗的热门靶标之一【1】。但是大部分肿瘤只有有限的肿瘤突变荷载并不能够产生新抗原相关的反应,同时只有5%的新抗原能被MHC分子提呈,而能激活有效的杀伤性T细胞的新抗原更少【2】。同时,肿瘤细胞中大部分的促癌因子和蛋白都是胞内蛋白,这也限制它们作为新抗原被人白细胞抗原(human leukocyte antigen, HLA, 人MHC分子)呈递作为肿瘤治疗的靶标【1】。神经母细胞瘤(Neuroblastoma)是儿童中常见的一种恶性肿瘤,其具有很少的肿瘤突变,相反其是由于转录调控网络表观遗传学上的失调而引起的【3】。在实体瘤,尤其是肿瘤突变荷载少的实体瘤中发现特异性以及免疫原性都较好的肿瘤免疫治疗新靶标,一直以来是肿瘤免疫治疗存在的挑战。2021年11月3日,来自美国宾夕法尼亚儿童医学院的John M. Maris团队在Nature上发表题为Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs的文章。团队分析神经母细胞瘤的免疫肽组,在HLA-A*24:02上发现来自神经母细胞瘤主要促癌转录因子PHOX2B的未突变肽段QYNPIRTTF具有很好的肿瘤特异性,以该肽为中心设计的CARs能识别多种不同HLA呈递的QYNPIRTTF,且在体外和小鼠模型中具有不错的效果。高度多态性的人白细胞抗原(HLA-A,-B,-C)基因编码的MHCI分子能够将来自于细胞内蛋白质组的一段8-14个氨基酸长度肽段提呈至细胞表面,这些肽段为免疫肽组(immunopeptidome),随后T细胞识别监视这些肽-MHC复合体(pMHC),发现来自于外来病原的抗原。研究团队假设肿瘤细胞的免疫肽组中存着在一部分来自于肿瘤发生必须的促癌因子的特异性的肽,针对这些肽便可设计出以肽为中心的嵌合抗原受体(peptide-centric CARs, PC-CARs)来特异性靶向肿瘤细胞。首先,研究团队对8个神经母细胞瘤细胞来源的异种移植物和病人来源的异种移植物(cell-derived xenografts (CDX), patient-derived xenografts PDX)进行免疫肽组的检测,通过MHC的捕获,肽段洗脱以及后续LC-MS/MS质谱等一共发现了7608个肽段。筛选这些肽段和HLA的结合力,筛选到2286个强亲和力的肽段。随后分析肿瘤组织和正常组织的RNA-Seq数据,研究团队筛选到61个肽段,其来源的母基因在肿瘤组织中高表达。最后研究团队分析正常组织中MHC肽组,进一步把可能在正常组织中提呈的肽段筛选掉。最后得到13个肽段,其来自于9个特异在神经母细胞瘤中表达的基因。同时研究团队在原代神经母细胞瘤中也进行同样的免疫肽组筛选,发现56个肽段。CDX和PDX筛选的13个肽有7个在原代肿瘤细胞中也被筛选到。随后,根据pMHC结合力,HLA等位基因频率,母基因表达情况以及神经母细胞瘤生物学信息对这些肽进行排序,6条分别来自来自CHRNA3, GFRA2, HMX1, IGFBPL1, PHOX2B 和TH的肽段被选择继续研究。分析不同发育时期的转录组学数据,研究团队发现PHOX2B只在胎儿发育过程中表达而在出生前的正常组织中PHOX2B完全被沉默。PHOX2B也是神经母细胞瘤发生的主要调控因子,PHOX2B的表达也是神经母细胞瘤诊断检测的手段之一。这表明,PHOX2B是神经母细胞瘤高度特异性的肿瘤抗原且是免疫治疗的理想靶标。由于自身抗原的免疫原性较弱,研究团队决定设计基于scFv-CARs而不是TCRs来靶向PHOX2B。随后研究团队筛选sc-Fvs库,寻找能结合PHOX2B肽的特异性克隆,并通过sCRAP算法预测排除其抗原交叉反应。研究团队筛选到10LH克隆并进一步研究,scFv 10LH和PHOX2B具有很强的亲和力,KD为13 nM,kd是 7.6 × 10-4 s-1。据此,研究团队设计出识别在HLA-A*24:02上提呈的PHOX2B 9氨基酸肽QYNPIRTTF的PC-CARs。发现PHOX2B 9氨基酸肽QYNPIRTTF也可被其他类型的HLA-A提呈,而10LH PC-CARs能打破传统的HLA限制和不同种类pMHC识别结合。随后在体外细胞模型以及体内PDX模型中证明了PHOX2B特异性的PC-CAR T细胞的跨HLA肿瘤杀伤能力。图1 肿瘤抗原的发现以及PC-CARs设计工作流程本文利用多种技术手段从非突变的促癌蛋白中发现神经母细胞瘤的肿瘤特异性抗原,并靶向这些肿瘤自身肽段设计出了PC-CARs,具有较好的肿瘤杀伤能力以及跨HLA的反应活性。该方法将非免疫原性的胞内促癌蛋白纳入到选择中,极大扩大了肿瘤免疫治疗的候选靶标,有助于神经母细胞瘤以及其他肿瘤的免疫疗法的发展。同时打破传统的HLA限制,也会扩大肿瘤免疫治疗的受益人群。原文链接:https://doi.org/10.1038/s41586-021-04061-6
  • 关注蛋白组学研究与医药领域,促进中国生命科学发展
    赛默飞举行高端客户答谢座谈晚宴 中国上海,2012年12月6日 &mdash &mdash 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日在上海举行高端客户答谢座谈晚宴。借此契机,赛默飞不仅加深与国家新药筛选中心及张江药谷等战略合作伙伴的密切联系,更与在座嘉宾共同讨论人类蛋白组学及医药领域的发展趋势,探索跨时代的科学发展新思路。凭借在分析领域的领先优势,赛默飞将一如既往地支持生命科学领域的研究与发展,助力中国健康事业蓬勃发展。 赛默飞总裁Marc N. Casper先生,高级副总裁兼亚太区及新兴市场总裁Syed Jafry先生以及大中华区总裁迈世福先生等莅临晚宴,感谢客户对赛默飞的长期支持。此外,晚宴还吸引了诸多生命科学研究界的领军人物,包括中国人类蛋白质组组织(CNHUPO)理事长杨芃原教授、国家新药筛选中心主任王明伟博士,张江药谷副总经理William Keller先生等。 &ldquo 现代科学研究与发展离不开高端技术的支持。而我们正是为生命科学研究提供这样一种先进、全面的分析解决方案。&rdquo Marc N. Casper先生在开幕词中强调。&ldquo 秉承服务科学、世界领先的宗旨以及让世界更健康的理念,我们将不断加强与国家新药筛选中心和张江药谷的合作,力争为本地客户与合作伙伴带来更多优质、高效的技术与产品,与中国生命科学行业一起成长发展,携手共创未来。&rdquo 晚宴上,赛默飞向国家新药筛选中心和张江药谷颁发了&ldquo 战略合作&rdquo 纪念牌,旨在促进双方深层交流与技术合作,互利互惠,达成共赢。来自国家新药筛选中心的王明伟主任表达了与赛默飞继续加强合作的愿望,而来自张江药谷的William Keller先生高度赞扬了赛默飞所起到的积极作用。 2012年4月,赛默飞与国家新药筛选中心正式签订了战略合作协议,双方就共同推动国家化合物样品库的建设达成了一致。国家新药筛选中心是目前我国唯一的国家级新药筛选中心,与中国科学院上海药物研究所共同承建的国家化合物样品库是我国创新药物研究的重要物质和信息资源。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安等地设立了分公司,目前已有2200名员工、5家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 拒绝千篇一律,让核酸和蛋白定量检测更准确有效!-Molecular Devices
    拒绝千篇一律,让核酸和蛋白定量检测更准确有效!核酸及蛋白的定量是遗传学和分子生物学中许多复杂实验上游的基本检测方法,如DNA测序、PCR/qPCR、克隆/转染等。如何能够准确和灵敏对核酸及蛋白质进行定量检测是许多实验成败与否的重要环节。各种方法被开发出来用于定量这些生物学成分,然而最常见的检测手段仍然是紫外分光光度法。即DNA、RNA在微孔板读板机测定其溶液在260nm波长处的光吸收值。原理是核酸的嘌呤、嘧啶碱基具有共轭双健在260nm强烈光吸收值特点;而蛋白质溶液则是在280nm波长处的光吸收值,原理是利用色氨酸的芳香性质在280nm 处强烈光吸收值。与核酸定量检测不同的是计算蛋白浓度会受到多种多样的的氨基酸序列中的色氨酸残基的影响。当然通常情况下也会在其他波长处进行辅助测量,以提供样品纯度的信息和检测其他污染物。如进行核酸检测时其260nm/280nm光吸收值作为样品纯度重要考虑因素,比值在1.8-2.0之间说明杂蛋白等物质含量较低。(了解更多请咨询美谷分子仪器)但传统光吸收检测法,不足之处其最低检测线最低仅250 ng/mL,低于这个浓度的DNA溶液使用微孔板读板机的荧光法可进行更准确定量检测,如荧光法对dsDNA检测下限可达到0.5pg/ul,而蛋白检测下限可达10ng/ml,这里介绍Molecular Device公司各种微孔板读板机可为核酸及蛋白质检测提供了多种可靠方案。结合SoftMax Pro 软件强大的数据处理分析功能,可一键生成定量结果,并可根据用户需求定制格式并导出数据。
  • Abcam公司抗体、蛋白以及试剂盒产品年里7折促销!!!
    Abcam位于英国的剑桥科学园,成立于1998 年,专门生产和分销研究型抗体。我们的在线目录 (www.abcam.cn)已有差不多100,000种抗体和试剂,并不断添加,供应予全球百多个国家。Abcam 于2005年11月在伦敦证券交易所上市,在美国马萨诸塞州、日本东京及香港均设有分公司。Abcam 一直致力加强产品线,为使研究员更容易找到蛋白质研究试剂产品,在2011并购了美国的 MitoSciences 公司,加强了免疫分析方面的产品供应;同年也并购了英国的 Ascent Scientific 公司,开展了生化试剂的供应。在2012年,Abcam 并购了美国的 Epitomics 公司,成为一家有领导地位的RabMAbs? 供应商。Abcam 的目标是给世界上最好的抗体建立最大的在线目录,为各地科学家提供尖端产品,成为各国科学界的重要伙伴。我们为所有产品提供技术支持来使客户获得预期的结果。为提供高质量的抗体来指向尽可能多的靶蛋白,我们尽所能在尽可能多的应用和物种中检测每种抗体。我们相信诚信才是上策,在我们的网站上会发布有关我们每一种产品的尽可能多的信息。
  • 化学蛋白质组学揭示高铁血红素-蛋白互作谱
    大家好,本周为大家分享一篇最近发表在Journal of The American Chemical Society上的文章,A Chemical Proteomic Map of Heme−Protein Interactions1。该文章的通讯作者是美国斯克利普斯研究所的Christopher G. Parker研究员。高铁血红素(heme)是人体中许多蛋白质的辅助因子,也是血液中氧气的主要转运体。最近的研究也证实了高铁血红素可以作为一种信号分子,通过与伴侣蛋白质结合而不是通过其金属中心反应来发挥其作用。然而,目前关于血红素结合蛋白的注释还不够完整。因此,本文采用化学蛋白质组学的方法去揭示人体中与高铁血红素发生互作的蛋白质谱。化学蛋白质组学是揭示蛋白质功能和发现药物靶标的重要工具。其中,最常用的是基于活性的蛋白质分析(Activity-based protein profiling,ABPP),通过结合活性分子探针标记及串联质谱分析,实现对靶标蛋白的鉴定。如图1b,本文设计了一个“全功能”活性分子探针(HPAP),共包含3个部分:1. Hemin母核,用于与靶蛋白非共价结合;2.光活化基团-双吖丙啶,可在UV光照下生成卡宾,促使分子探针与蛋白发生共价交联;3. 炔基,可在铜催化下与含有叠氮的试剂(荧光标签,生物素)发生点击化学反应,后两者组成FF-control。具体实验流程如下图1a所示,用HPAP处理不同细胞(In Situ)或不同细胞来源的蛋白质组(In vitro),HPAP中的hemin母核可与靶蛋白发生非共价结合,经UV光照,HPAP-蛋白间形成共价交联,再利用点击化学可将HPAP-蛋白与荧光素(TAMRA)或者生物素标签相连,用于后续的荧光成像(In-gel fluorescence)或者链霉亲和素纯化、LC-MS鉴别定量(MS-based I.D. and quantitation)。 图1. (a)使用基于高铁血红素的光亲和探针(HPAP)识别血红素结合蛋白的流程示意图。(b) HPAP、hemin和FF-control的结构;(c) HEK293T裂解物中与HPAP结合的蛋白的荧光成像;(d) hemin加入对HPAP与蛋白结合的影响。作者首先使用了SDS-PAGE去评估了HPAP标记蛋白的能力。如图1c所示,随着HPAP浓度的提高,胶图上条带颜色也逐渐加深,说明HEK293T细胞裂解液中与HPAP结合的蛋白在逐渐增加。如图1d所示,在10 μM HPAP的条件下,逐渐加入hemin,可以看到胶图上条带颜色逐渐变浅,说明hemin与HPAP之间发生了竞争,HPAP模拟了hemin与蛋白的结合过程。随后,作者又使用已知的hemin结合蛋白来确认HPAP捕获目标蛋白的能力。如图2所示,这些已知蛋白被HPAP成功的标记上,但由于hemin的加入,条带的颜色在逐渐变浅(TAMRA)。Western blot的结果显示,蛋白的总量并无太大变化,但hemin的竞争结合,导致与HPAP结合的蛋白量在下降。以上实验均说明,HPAP具有较好的选择性标记能力,能够模拟hemin与靶蛋白的结合,并以共价交联的方式标记在蛋白上。 图2. 用已知的高铁血红素结合蛋白确认HPAP捕获目标蛋白的能力。验证了方法的可行性后,作者将HPAP与定量蛋白质组学结合用于绘制高铁血红素-蛋白质互作谱。考察了多种细胞系,包括:人胚胎肾细胞(HEK293T)、人慢性髓系白血病细胞(K562)以及人原代外周血单个核细胞(PBMCs)。每种细胞系设置了两种实验形式:1)特异性结合实验(Enrichment):通过将HPAP识别出蛋白与FF-Control识别出的蛋白进行对比,排除非特异结合的干扰(图1b),如果同一蛋白通过HPAP富集到的量是FF-control富集到的量4倍以上,则认为该蛋白是HPAP特异性结合蛋白。2)竞争性结合实验(Competition):观察HPAP富集的蛋白在hemin和HPAP同时存在时富集到的量的变化,变化大于3倍且具有显著性差异(p<0.05)的蛋白被认为是HPAP与hemin竞争性结合的蛋白。最终确定的高铁血红素结合蛋白应满足以上两种实验的筛选标准(图3a)。如图3b-d所示,总共鉴定出378个的高铁血红素结合蛋白,其中214个来自HEK293T, 182个来自K562, 107个来自PBMC。尽管三种细胞类型之间的结合蛋白有一些重叠,但大多数靶点蛋白只存在于一种或两种细胞类型中(图3b),这暗示血红素在不同细胞中可能发挥不同的功能。其中,19个靶点蛋白是在UniProt上已经注释为高铁血红素的结合蛋白,剩余都是未揭示的结合蛋白。这些结合蛋白按照功能可划分为:转运蛋白,转录因子,支架蛋白和酶(图3c),根据代谢通路又可进一步划分(图3d)。作者最后对几个新发现的结合蛋白进行了验证,并选择IRKA1进行进一步的作用机制研究。IRKA1在调节炎症信号通路中起着关键作用,IRAK1被IRAK4磷酸化,然后自磷酸化,产生NFkB介导的炎症反应。经实验确认(图4),hemin是IRKA1的一种变构活化配体,可增强其酶活性,促进IRAK1的自磷酸化。 图3. 基于蛋白质组学的HPAP-蛋白互作分析。 图4. Hemin对IRKA1的调节作用。总之,本文设计开发了一种基于高铁血红素的光亲和探针,它可以与化学蛋白质组工作流程结合,以识别不同蛋白质组中的高铁血红素结合蛋白。利用该方法也可拓展至其他分子配体靶标蛋白的识别。 撰稿:刘蕊洁编辑:李惠琳原文:A Chemical Proteomic Map of Heme-Protein Interactions参考文献1. Homan, R. A., Jadhav, A. M., Conway, L. P., & Parker, C. G. (2022). A Chemical Proteomic Map of Heme-Protein Interactions. Journal of the American Chemical Society, 144(33), 15013–15019.
  • 免疫球蛋白的金属螯合色谱分离
    免疫球蛋白(Immunoglobulin,Ig)具有抗体活性,是脊椎动物在对抗原刺激的免疫应答中,由淋巴细胞产生的,能与相应的抗原发生特异性结合的或化学结构与抗体相似的一类球蛋白。它普遍存在于哺乳动物的血液、组织液、淋巴液和体外分泌液中,是主要的液体免疫物质。1890年,德国学者Behring和日本学者北里首次发现免疫球蛋白。随后人们用电泳技术证明了血液中抗体的活性存在于γ区、β2区、β区和α区。为了避免名称上的混乱,1964年WHO命名委员会统一将抗体和一些化学结构、抗原性与其有关的蛋白统称为免疫球蛋白。免疫球蛋白广泛应用于开发新型功能性食品添加剂,仔畜饲料以及生物新药和医药生化诊断、检测试剂等,已经成为研究和商业等部门重要的物质。所以免疫球蛋白的纯化也备受关注。由于免疫球蛋白对金属螯合色谱的亲和力最da,因此可采用增加上样量使其突破饱和点再用强洗脱液洗下吸附的免疫球蛋白。据报道,此法得到的免疫球蛋白的纯度可达95%,活力几乎没有损失。金属螯合色谱是一种利用金属离子与蛋白质中的某些氨基酸,如组氨酸等特有的亲和力进行分离纯化的新型色谱分离技术,它具有条件温和,分离的蛋白质活性回收率较高。同时操作较为简单,具有较高的处理能力,使用寿命也较长,适宜于生物活性蛋白的分离纯化。月旭推出的Chelating Tanrose 6FF金属螯合亲和介质,由亚氨基二乙酸(IDA)偶联到琼脂糖而成,相当于未螯合Ni离子的Ni Tanrose 6FF(IDA)。Chelating Tanrose 6FF介质的配基可提供3个配位位点同金属离子螯合,同时提供三个离子键结合部位高亲和的纯化目的蛋白,亲和力要强。可广泛应用于分离提纯蛋白质和多肽。其原理是利用蛋白质的组氨酸、半胱氨酸和色氨酸的侧链与多种过渡金属离子如Cu2+,Zn2+,Co2+,Fe3+的相互作用,从而达到分离纯化的目的。
  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 蛋白样品在跑胶前要如何处理
    一、蛋白样品制备  之前和大家介绍过细胞和组织蛋白质的提取,当我们做WB的时候,需要对提取好的蛋白样品进行处理:在蛋白样品中加入SDS loading buffer 6X(蛋白上样缓冲液)稀释至1X(如蛋白样品有120ul,则加入SDS loading buffer 6X 600ul),混匀,75-95度加热10-15分钟,使蛋白变性以充分暴露抗原位点。在加热结束后,进行离心,使蛋白样品适当降温,防止PAGE胶被融化。  PS:要测量的蛋白如果是磷酸化形式,一般加热到75度,一般情况可95度加热。市面上买到的SDS loading buffer 有2X的也有5X的,最后稀释至1X即可。  那么为什么我们加入SDS loading buffer呢?主要就是用它的不同成分在电泳中起了关键的作用。  SDS loading buffer 的主要成分及作用:A:0.1%溴酚蓝,作为指示剂,方便观察电泳进行的程度;B:10%甘油,密度大,增加样本的重量,可携带样本沉到底部;C:2%SDS,是一种阴离子表面活性剂,能打断蛋白质的氢键和疏水键,按一定比例和蛋白质分子结合成为复合物,是蛋白质带满负电荷,从而是蛋白带电荷一致,减少电荷对电泳结果的影响;D:巯基乙醇还原剂,使蛋白质的二硫键断开,使得蛋白保持线性结构。  二、蛋白上样  1. 将之前配好的胶固定在电泳装置上,加入1X电泳液  2. 拔出梳子,应该两侧同时用力,缓慢拔出,注意在拔除梳子时防止气泡进入梳孔使其变形,若上样孔有变形,可用适当粗细的针头拨正。  3.加入蛋白样品,一般10孔的梳孔,每孔可以加入20ul -40ul蛋白样品,15孔的梳孔,每孔可以加入10ul -30ul蛋白样品,是用微量注射器加样,平时我们也可以用普通的移液枪加样,尽量让枪头深入梳孔底物,防止蛋白样品飘出,一般在目的蛋白两侧加入等量的marker,如果两侧有空的梳孔,应该加入1X的loading buffer,起“压边”作用,可以使蛋白样品在一条水平线上往下跑。  4.电泳:接上电极,正负极不要弄反,红色对红色,黑色对黑色,初始电压设为90V,当样品跑至分离胶时将电压调至120V,一般在溴酚蓝跑出胶时停止电泳,也可根据目的蛋白的分子量来选择跑的时间,如分子量较大,可以延长电泳时间,使得分子量大的marker跑的分散开,容易判断分子量。  三、注意事项  1.蛋白样品上样量最好相等,不要过多。  2.不要过多重复使用电泳Buffer  3.最佳分辨区在分离胶的2/3  4.电泳后测定的分子量有10%的误差,不可完全信任。有些蛋白质由亚基(如血红蛋白)或两条以上的肽链(α-胰凝乳蛋白酶)组成的,它们在巯基乙醇和SDS的作用下解离成亚基或多条单肽链,SDS-PAGE电泳法测定的只是它们的亚基或是单条肽链的相对分子量,有的蛋白质(如电荷异常或结构异常的蛋白质,带有较大辅基的蛋白质)不能采用该发测相对分子量。  5.如果电泳中出现拖尾,染色带的背景不清晰等现象,可能是SDS不纯引起。
  • 蛋白分析利器-月旭科技助力探索蛋白质人工化学合成的奥秘
    1965年,中国科学家在世界上首次人工合成牛胰岛素,开启了生命化学研究的新时代。过去数十年历尽科研工作者的不断努力,蛋白质的人工化学合成取得了巨大进步。相较于自然界的生物合成,化学合成可创制具有各种精确控制结构及非天然结构的人造蛋白质,对于发展满足我们需求的蛋白质工具和蛋白质产品带来了新机遇。近期科研工作者们在化学合成蛋白领域又取得了新的成果,并应用了月旭科技的相关色谱柱产品,快来随小编一起饱尝科研的饕餮盛宴吧!化学合成大型镜像聚合酶并实现镜像DNA信息存储WELCH据悉,自然状态下的DNA,会经过精巧的进化来存储遗传信息。而手性倒链L-DNA具有相同的信息能力,但耐生物降解,可作为一个健壮的生物正交信息库。在一项新研究中,清华大学生命学院朱听课题组的研究人员们用化学方法合成了一个90kda的高保真镜像Pfu DNA聚合酶,它能够精确组装一个千碱基大小的镜像基因。该实验中首次使用的大型镜像蛋白质全化学合成策略及千碱基长度镜像基因的组装技术,解决了长期制约镜像生物学领域发展的大型镜像生物分子的制备难题。该研究成果以“利用高保真镜像Pfu DNA聚合酶实现生物正交的镜像DNA信息存储”(Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase)为题,于2021年7月29日发表在Nature Biotechnology杂志上。研究成果快览研究人员们用聚合酶在L-DNA中编码路易斯巴斯德1860年的一段话,这段话第一次提出了生物学的镜像世界。为突破全化学合成对蛋白质大小的限制,研究团队通过将嵌合的D-DNA/L-DNA关键分子嵌入到D-DNA存储库中,来实现手性隐写。团队将全长为775个氨基酸的Pfu DNA聚合酶分割为长度为467个氨基酸和308个氨基酸的两个片段分别合成,将其混合后共同复性,使其正确折叠为具有完整功能的90 kDa高保真镜像Pfu DNA聚合酶,为目前已报道最大的全化学合成蛋白质;研究者还利用该高保真镜像聚合酶组装出长达1.5 kb的镜像16S核糖体RNA基因,为目前已报道最长的镜像DNA。此外,他们发现保存在自然环境条件下(当地池塘水中)的微量L-DNA条形码,在1年内仍可扩增和测序;而在相同条件下的D-DNA条形码,在1天后就已经无法扩增。背后原因只有一个:它们的手性不同。在研究中,该课题组利用Ultimate® XB-C4 (4.6*250mm, 5μm)来监测反应的进行,并检测肽段产品的纯度。同时用制备柱Ultimate® XB-C4和C18 (21.2*250mm, 5μm或10*250mm, 5μm)来分离制备粗品肽段和连接产物。全化学合成富含二硫蛋白质WELCH在生物医学研究中,富含二硫的蛋白质是有用的药物或工具分子,但它们的合成由于折叠的困难而变得复杂。有鉴于此,清华大学的刘磊教授、中国科学技术大学的郑基深教授等研究人员,使用可移除的O-连接的β-N-乙酰葡萄糖胺策略,实现了正确折叠的富含二硫键蛋白质的全化学合成,该研究成果以“Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy”为题,发表于2022年1月3日的JACS杂志上。研究成果快览研究人员描述了一种可移除糖基化修饰(RGM)策略,它可以加速具有多个或甚至链间二硫键的正确折叠蛋白质的化学合成。实验过程中,利用Ultimate® XB-C4(120Å或300Å,250mm×4.6mm,5μm)监测蛋白的合成反应,并用半制备柱Ultimate® XB-C4和C18(300Å,250mm×10mm,5μm)成功制备得到目标蛋白。该策略包括在Ser/Thr位点引入简单的O-连接的β-N-乙酰氨基葡萄糖(O-GlcNAc)基团,通过稳定其折叠中间体,有效地促进了富含二硫的蛋白质的折叠。折叠后,O-GlcNAc基团可以用β-N-乙酰氨基葡萄糖酶(OGA)被有效地去除,从而获得正确折叠的蛋白质。使用这种策略,该研究组完成了正确折叠的铁调素的合成,这是一种含有四组二硫键的铁调节激素。研究人员首次实现了正确折叠的白细胞介素5(IL-5)的全合成,这是一种26kDa的同型二聚体细胞因子,负责嗜酸性粒细胞的生长和分化。“工欲善其事,必先利其器”,月旭科技专门针对多肽、蛋白类等生物样品方法开发,推出Welch生物样品分析方法开发包,助力前沿的科学研究和日常生产分析制备工作。● 适合蛋白、多肽或其他大分子的方法开发。为了能更好地与键合相发生作用,需使用大孔径(300Å或450Å)的填料。● 不同保留能力的不同选择性键合相,满足各种分子大小的蛋白质、多肽的保留和分离。参考文献1. Ting F. Zhu, et al. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nature Biotechnology,2021. Nature Biotechnology | VOL 39 | December 2021 | 1548–1555.2. Lei Liu, et al. Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy. J. Am. Chem. Soc. 2022, 144, 349−357.
  • 快来参与微话题,畅所欲言话蛋白
    8月15日至9月15日,赛默飞召集各路有过蛋白提取、纯化和鉴定等经验的蛋白&ldquo 砖家&rdquo ,参与在新浪微博上发起的#蛋白实验中的酸甜苦辣#微话题讨论。无论你是深谙蛋白纯化机密,曾在LC-MS/MS分析复杂蛋白质样品上耗时太长,还是熟知抗体纯化实验方法,都可以点击http://weibo.com/thermofishercn畅所欲言,一起吐槽实验,分享亲身经历和心得! 除了参与微话题讨论,分享故事赢奖品之外,你还可以在9月7-11日期间,莅临第八届中国蛋白质组学大会赛默飞的T06展位,了解我们的蛋白质组学研究解决方案和各类促销信息。在本次大会上,赛默飞还将举行新产品、新技术推广会和大会报告等活动,由应用专家们带来前沿技术和最新研究进展。 赛默飞为蛋白质组学研究提供包括创新的化学试剂、高效的分离产品、领先的色谱质谱技术、以及蛋白质组学数据处理软件产品的最先进和完整的解决方案,帮助科学家们大幅提高研究工作的效率,更有信心地面对蛋白质组学研究的挑战。&ldquo 赛默飞蛋白质组学解决方案&rdquo 专题页面详细地介绍了质谱技术应用、蛋白质组学研究试剂与抗体,以及仪器、设备与耗材等。 欲了解更多赛默飞蛋白组学应用,请访问:http://www.thermo.com.cn/proteomics。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 低温电镜解析蛋白结构十大进展
    结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,科学家们才能了解这个蛋白的功能。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,然后利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它存在较大的限制。科学家们将蛋白进行大块结晶通常需要多年的时间。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。  X射线晶体衍射技术(X-ray crystallography)即将成为历史,低温电子显微技术(cryo-electron microscopy, 也称作electron cryomicroscopy, cryo-EM)引发结构生物学变革。  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。  1997年时,英国医学研究委员会分子生物学实验室结构生物学家Richard Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。  1. 施一公小组在《Science》发两篇论文报道剪接体三维结构    U4/U6.U5 tri-snRNP电镜密度及三维结构示意图。  2015年8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。详细新闻报道参见:施一公研究组在《科学》发表论文报道剪接体组装过程重要复合物U4/U6.U5 tri-snRNP的三维结构。(Science, 20 Aug 2015, doi: 10.1126/science.aac7629 doi: 10.1126/science.aac8159)  2. Science:HIV重大突破!史上最详细HIV包膜三维结构出炉!    这项研究首次解析出HIV Env三聚体处于自然状态下的高分辨率结构图,其中HIV利用Env三聚体侵入宿主细胞。图片来自The Scripps Research Institute。  在一项新的研究中,TSRI的研究人员解析出负责识别和感染宿主细胞的HIV蛋白的高分辨率结构图片。相关研究结果发表在2016年3月4日那期Science期刊上,论文标题为“Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer”。  这项研究是首次解析出这种被称作包膜糖蛋白三聚体(envelope glycoprotein trimer,以下称Env三聚体)的HIV蛋白处于自然状态下的结构图。这些也包括详细地绘制这种蛋白底部的脆弱位点图,以及能够中和HIV的抗体结合位点图。(Science, 04 Mar 2016, doi: 10.1126/science.aad2450)  3. Nature:史上最详细转录因子TFIID三维结构出炉,力助揭示人类基因表达秘密  在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和西班牙国家研究委员会(CSIC)罗卡索拉诺物理化学研究所的研究人员在理解我们体内被称作转录起始前复合物(pre-initiation complex, PIC)的分子机构(molecular machinery)如何发现合适的DNA片段进行转录方面取得重大进展。他们史无前例地详细呈现一种被称作TFIID的转录因子所发挥的作用。相关研究结果于2016年3月23日在线发表在Nature期刊上,论文标题为“Structure of promoter-bound TFIID and model of human pre-initiation complex assembly”。论文通信作者是劳伦斯伯克利国家实验室生物物理学家Eva Nogales,论文第一作者是Nogales实验室生物物理学研究生Robert Louder。其他作者是Yuan He、José Ramón López-Blanco、Jie Fang和Pablo Chacón。  这一发现是非常重要的,这是因为它为科学家们理解和治疗一系列恶性肿瘤铺平道路。Eva Nogales说,“理解细胞中的这种调节过程是操纵它或当它变坏时修复它的唯一方式。基因表达是包括从胚胎发育到癌症在内的很多重要生物学过程的关键。一旦我们能够操纵这些基本机制,那么我们就能够要么校正应当或不应当存在的基因表达,要么阻止这种过程[即基因表达]失去控制时的恶性状态。”(Nature, 31 March 2016, doi:10.1038/nature17394)  4. Science:科学家成功解析人类剪接体关键结构   在最近发表的一篇Science研究论文中,来自德国的科学家们利用冷冻电镜技术首次在分子级分辨率水平上重现了人类剪接体中一个关键复合体——U4/U6.U5 tri-snRNP的结构。剪接体是一种由RNA和蛋白质组成的用于切掉mRNA前体中内含子的分子机器。该研究解析的U4/U6.U5 tri-snRNP是构成剪接体的一个重要组成部分,研究人员利用单颗粒冷冻电镜获得了人类U4/U6.U5 tri-snRNP的三维结构,该复合体分子量达到180万道尔顿,解析分辨率达到7埃。该研究模型揭示了Brr2 RNA解螺旋酶如何在分离的人类tri-snRNP中通过空间结构阻止未成熟的U4/U6 RNA发生解链,还展现了泛素C端水解酶样蛋白Sad1如何将Brr2固定在预激活位置。  研究人员将他们获得的结构模型与酿酒酵母tri-snRNP以及裂殖酵母剪接体的结构进行了对比,结果表明Brr2在剪接体激活过程中发生了显著的构象变化,支架蛋白Prp8也发生了结构变化以容纳剪接体的催化RNA网络。(Science, 25 Mar 2016, doi: 10.1126/science.aad2085)  5.北京大学毛有东、欧阳颀课题组与其合作者在Science发表炎症复合体冷冻电镜结构    炎症复合体三维结构  北京大学物理学院毛有东研究员、北京大学物理学院/定量生物学中心欧阳颀院士与哈佛医学院吴皓教授合作利用冷冻电子显微镜技术解析了近原子分辨率的炎症复合体的三维结构,首次阐释了其复合物在免疫信号转导过程中的单向多聚活化的分子结构机理。该研究工作以“Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization”为题于2015年10月8日在线发表在国际期刊Science。  先天免疫是人类免疫系统的重要组成部分,炎症复合体在触发先天免疫响应的过程中起到了关键信号转导的效应器作用,从而启动细胞凋亡等免疫应答和炎症反应。炎症复合体是胞浆内一组复杂的多蛋白复合体,是胱天蛋白酶活化所必需的反应平台,其复合物单体由多个结构域构成,并在上游蛋白的激活下诱导组装形成环状复合物。炎症复合体的结构对于认识先天免疫的信号转导过程、免疫调控和病原诱导活化等免疫响应机理具有关键的核心价值,因而成为国内外一流结构生物学和免疫学实验室追捧的研究对象。(Science, 23 Oct 2015, 10.1126/science.aac5789)  6. Nature:施一公团队揭示γ -分泌酶原子分辨率结构    人体γ -分泌酶3.4埃三维结构  日前,清华大学教授施一公团队与国外学者合作,构建了分辨率高达3.4埃的人体γ -分泌酶的电镜结构,并且基于结构分析了γ -分泌酶致病突变体的功能,为理解γ -分泌酶的工作机制以及阿尔茨海默氏症的发病机理提供了重要基础。相关成果8月18日在《自然》发表。  阿尔茨海默氏症是最为严峻的老年神经退行性疾病之一,但其发病机理尚待揭示。目前研究已知β -淀粉样沉淀是该病的标志性症状之一。而β -淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ -分泌酶。γ -分泌酶由四个跨膜蛋白亚基组成,其中,编码Presenilin(PS1)蛋白的基因中有200多个突变与阿尔茨海默氏症病人相关。γ -分泌酶在阿尔茨海默氏症的发病中扮演着重要角色。  研究人员通过收集更多的数据、大量的计算并升级分类方法,计算构建出3.4埃原子分辨率γ -分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ -分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同。(Nature, 10 September 2015, doi:10.1038/nature14892)  7. Nature:人类核糖体结构终于被解析!    核糖体是进行蛋白质翻译的机器,能够催化蛋白质合成。目前,许多研究已经对多种生物的核糖体结构进行了原子水平的结构解析,但获得人核糖体结构一直存在很大挑战,这一问题的解决对于人类疾病的深入了解以及治疗手段和策略的开发都有重要意义。  近日,著名国际学术期刊nature在线发表了法国科学家关于人类核糖体结构解析的最新研究进展。  在该项研究中,研究人员利用高分辨率单颗粒低温电子显微镜以及原子模型构建的方法获得了人类核糖体接近原子水平的结构。该核糖体结构的平均分辨率为3.6A,接近最稳定区域的2.9A分辨率水平。这一研究成果对人类核糖体RNA,氨基酸侧链的实体结构,特别是转运RNA结合位点以及tRNA脱离位点处的特定分子相互作用提供了深入见解,揭示了核糖体大小亚基接触面的原子细节,发现在核糖体大小亚基的旋转运动过程中,其接触面发生了强烈的重构过程。(Nature, 30 April 2015, doi:10.1038/nature14427)  8. Nature:日本科学家成功解析代谢关键因子受体结构  近日,著名国际学术期刊nature在线发表了日本科学家的最新研究进展,他们利用结构生物学方法对脂联素(adiponectin)受体,AdipoR1和AdipoR2,进行了结构解析,发现脂联素受体具有与G蛋白偶联受体不同的七次跨膜螺旋,对于靶向脂联素受体的肥胖及其相关代谢疾病治疗方法开发具有重要意义。  在该项研究中,研究人员对人类AdipoR1和AdipoR2的晶体结构进行了解析,分辨率分别达到2.9 ?和2.4 ?,他们通过解析发现脂联素受体是具有不同结构的一类新受体。脂联素受体的这种七次跨膜螺旋在构象上与G蛋白偶联受体的七次跨膜螺旋不同,在这种新的 七次跨膜螺旋中,由三个保守组氨酸残基协同一个锌离子形成了一个大的腔体。这种锌结合结构可能在adiponectin刺激的AMPK磷酸化和UCP2表达上调方面具有一定作用。(Nature, 16 April 2015, doi:10.1038/nature14301 )  9. Molecular Cell:中国科学家揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构  2015年1月22日,中科院生物物理所刘迎芳研究组与清华大学王宏伟研究组在著名期刊Molecular Cell杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 ? Resolution”的论文,揭示了流感病毒RNA聚合酶复合体的结构和功能。  生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,据此,研究人员推测这是进行RNA合成反应的区域。这一活性中心结构与正链RNA聚合酶具有相似性,研究人员也因此提出了流感病毒合成新生RNA链的机制。(Molecular Cell, 5 March 2015, doi:10.1016/j.molcel.2014.12.031)  10. Cell:科学家获得首个中介体复合物精确结构图    中介体复合物(Mediator Complex)是细胞中最大也最为复杂的分子机器之一。现在,来自斯克利普斯研究所(TSRI)的科学家们在《细胞》杂志上报告称,他们利用用电镜获得了首个中介体复合物(Mediator)的精确结构图。  Mediator是所有动植物细胞中的关键分子机器,对于绝大多数基因的转录有着至关重要的调控作用。Mediator拥有二十多个蛋白亚基,解析它的结构是基础细胞生物学的一大进步。这一成果能够为许多疾病提供宝贵的线索(从癌症到遗传性的发育疾病)。论文资深作者,TSRI副教授Francisco Asturias表示:"明确这些大分子机器的结构和作用机制,可以帮助我们理解许多关键的细胞过程。"  在这项新研究中,研究人员获得了高纯度的酵母Mediator,并通过电镜成像得到了迄今为止最为清晰的Mediator3D模型,分辨率达到约18埃。随后他们又进行了多种生化分析,例如在逐个去除蛋白亚基的同时观察电镜图像发生的改变。他们由此确定了酵母Mediator25个蛋白亚基的精确定位。  项新研究获得的结构图谱,全面修正了之前的Mediator' 粗略模型。论文第一作者Kuang-LeiTsai表示:"定位了所有的蛋白亚基之后,我们发现头部模块应该位于Mediator的顶部而不是底部。"此外,研究人员还对人类Mediator进行了深入研究。Tsai说:"大体上看,人类和酵母的Mediator总体结构颇为类似。"最后研究人员在结构数据的基础上,为人们展示了Mediator调控转录时的构象变化。(Cell, 29 May 2014, doi: 10.1016/j.cell.2014.05.015)
  • 国家蛋白质科学中心正式亮相,贝克曼助力蛋白科学研究!
    中国,上海——2014 年5月29日——国家蛋白质科学中心将于2014年年底正式投入使用。国家蛋白质科学中心配备了先进的规模化蛋白质制备系统,该系统是由我国科学家自主设计的五套大型自动化装置组成,将软件控制、硬件设备和生物应用结合在一起,实现了整个大规模蛋白表达过程的自动化。由贝克曼库尔特科学事业部提供的系统核心-Biomek系列自动化工作站,分别在高通量克隆构建,高通量原核细胞、昆虫细胞以及哺乳动物细胞的培养及蛋白表达,高通量蛋白质纯化等研究领域,为该中心的科研人员提供了强有力平台和技术支持。观看央视专题视频采访,敬请点击:http://news.cntv.cn/2014/05/25/VIDE1400996168085191.shtml 关于贝克曼库尔特生命科学事业部贝克曼库尔特生命科学事业部一直致力于改善全世界人类的健康。处于全球领先地位的贝克曼库尔特公司,为广大科研、商业实验室的生命科学研究工作者们提供先进的仪器系统、试剂和世界级的技术服务与支持,不断促进生物学科研的新技术发展。作为离心机和流式细胞仪的行业领导者,贝克曼库尔特公司长期以来一直是毛细管电泳、颗粒表征和实验室自动化的创新者,其产品主要用于最前沿的重要研究领域,包括基因组学、蛋白质组学等。欲了解更多信息,敬请访问贝克曼库尔特全球网站www.BeckmanCoulter.com和中文官方网站www.beckmancoulter.com.cn。更多详情,欢迎您联系:贝克曼库尔特商贸(中国)有限公司Tel: 021 3865 1000 / 010 6521 3000Fax: 021 5830 6850 / 010 6515 6025www.beckmancoulter.com.cn
  • 沃特世发布糖蛋白表征分析新技术
    沃特世将通过新型UPLC和UPLC-MS分析工作流程为蛋白糖基分析带来革命性转变 新型RapiFluor-MS标记试剂和样品制备方案将极大提升对蛋白N-糖进行分析和表征的速度、灵敏度以及简便性 华盛顿特区,2015年1月27日 – 沃特世(Waters?)公司(纽约证券交易所代码:WAT)今日隆重发布用于糖蛋白表征分析的开创性新技术。此技术将在WCBP 2015大会上介绍给公众,其内容包括新型GlycoWorks?RapiFluor-MS N-糖分析试剂盒、Waters?ACQUITY UPLC?、ACQUITY? UPLC FLR检测器和ACQUITY QDa?检测器,它们将帮助科学家们准确分析游离N-糖,使分析速度、灵敏度和简便性提升到更高水平,为科学家们提供前所未有的详细结构信息。 此项新型技术系列能够实现快速糖基释放和标记,可将工作流程中的样品制备时间从一天缩短至一小时以内;使表征和研发分析中的质谱检测灵敏度提升至当前方法的100至1000倍;还可为常规实验室提供简便可靠的方案支持,即使没有MS专家,也能顺利完成分析。“我们今天推出的新型技术为蛋白糖基分析带来了开创性的分析方法,它的出现意味着科学家们将能够对游离N-糖进行前所未有的监测和表征分析,”沃特世消耗品业务部门副总裁Mike Yelle说道,“这些全新的工作流程承担了过去专业且复杂的操作,实现了流程一体化,使科学家们和实验室在成功的道路上更近一步。” 大部分的生物治疗性蛋白质都是糖蛋白,且这些蛋白质上的特异性多聚糖群体是关键的品质属性,可对其功能、稳定性和治疗安全性概况产生影响。提交至监管机构的新药申报材料中必须包含其所含糖基侧链的详细结构信息,以及能够证明这些糖蛋白能够在生产过程中保持糖型谱图一致的信息。 支持糖蛋白工艺开发、监测和批量放行 对于从事生物治疗药物工艺开发、监测或批量放行研究的科学家们而言,全新的RapiFluor-MS标记技术与沃特世ACQUITY UPLC H-Class系统和QDa检测器的完美结合将开创游离N-糖谱图监测的新时代。沃特世所提供的试剂和方案在速度和灵敏度方面都具有非常突出的优势,将为用户带来更加简便的常规MS分析,ACQUITY QDa检测器可生成前所未有的详细信息,分析人员通过这些质量数数据即可轻松确认糖型。科学家们无需再依靠质谱专家和高分辨率的LC-MS仪器,即可对糖型分析进行方法开发、转换和执行过程中频频出现的问题作出确切的解答。此套工作流程可帮助生物制药组织更轻松地诊断问题、加快决策制定,更快速地将实验室中的分子变成药物推向临床领域。 对使用荧光检测技术的分析人员而言,将此款新型试剂盒与ACQUITY UPLC和ACQUITY UPLC FLR检测器联用时,样品制备时间可从一天缩短至一小时以内,同时荧光灵敏度也将得到有效提高。 支持蛋白糖基表征分析 蛋白糖基表征包括对连接到糖蛋白的所有多聚糖(无论其浓度有多低)进行鉴别,以及对这些多聚糖的分子结构进行确证。要高效地完成这项工作,需要UPLC-MS-MS仪器能够应对分析中的各项难题。 沃特世UNIFI?蛋白糖基分析应用解决方案于2013年推出,是更广泛的沃特世UNIFI生物制药平台解决方案的一部分,它配有高分辨率的UPLC/QTof-MS系统,可对生物制药研发实验室中以及受高度监管的后期开发和QC组织中的蛋白糖基侧链进行定性和监测。 现在,凭借RapiFluor-MS标记提供的高灵敏度,研究人员将获得更大的光谱和质谱响应值,这将有力促进低含量峰的准确质量数确认,提高MS/MS多聚糖碎裂性能,实现确定性更高的糖型指认。 此外,我们还推出了RapiFluor-MS葡聚糖校准曲线标准品和多聚糖性能测试标准品(基于混合IgG),用以支持系统性能的基准测试和执行基于葡聚糖单元数(GU)的蛋白游离糖基分析研究。沃特世公司率先将基于GU的葡聚糖校准曲线标准品保留时间归一化方法实现了商业化,此方法最初由来自爱尔兰国家生物工艺研究培训所(NIBRT)的Pauline Rudd教授提出。这种基于GU的方法使多聚糖的分析更加稳定,可以更轻松地在仪器之间和实验室之间实现UPLC-MS检测分析的转换。沃特世正在与Rudd教授及其在NIBRT的团队合作,开发全新的GU数据库,期望能够促进GU和GU+准确质量数多聚糖分配,这项工作将作为联合海报的主题于本年度的WCBP会议上展示。 更多信息: 有关GlycoWorksRapiFluor-MS N-多聚糖试剂盒的更多信息,请访问www.waters.com/glycans。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、RapiFluor-MS、ACQUITY、ACQUITY UPLC、UNIFI、QDa和UPLC是沃特世公司的商标。
  • 空间蛋白组学技术——肿瘤微环境研究利器
    过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像
  • 重磅!《复合蛋白饮料》行业标准发布!
    近年来我国消费者对食品安全的关注度持续提升,国务院及有关部门陆续颁布了一系列涉及食品、乳品的法律法规及标准,形成了完善的法规标准体系,对于规范蛋白饮料企业生产经营、保障产品质量安全、维护消费者利益发挥着重要作用。日前,国家工业和信息化部发布2023第38号公告,由中国饮料工业协会牵头起草的《复合蛋白饮料》(QB/T 4222-2023)行业标准获得批准,将于2024年7月1日正式实施。复合蛋白饮料是指以乳或乳制品,和不同的植物蛋白为主要原料,经加工或发酵制成的饮料。行业标准《复合蛋白饮料》(QB/T 4222-2023)由中国饮料工业协会组织国内多家复合蛋白饮料生产企业修订完成。在该标准修订过程中,进行了深入的行业调研、专家审定等相关工作。该标准规定了复合蛋白饮料的原辅料、感官、理化、食品安全等要求,描述了相应的试验方法,规定了检验规则、标签、包装、运输和贮存的内容,在修订时充分考虑了目前蛋白饮料产品在原辅料等方面的创新需求,兼顾了产品质量分级的市场需求。与2011版相比,该标准对复合蛋白饮料的定义、蛋白质贡献率进行了修改完善,提高了蛋白质含量,并且根据产品质量分级,新增了浓型复合蛋白饮料、特浓型复合蛋白饮料,为复合蛋白饮料产品质量升级奠定了基础,满足了消费者对不同蛋白质含量的消费选择。同时对复合蛋白饮料产品的标签标示进行了完善,更有利于向消费者明示产品信息。复合蛋白饮料是我国蛋白饮料的主要品类之一,近年来,随着人们健康意识的不断加强,复合蛋白饮料迎来新的发展机遇。根据行业对主要生产企业的统计,复合蛋白饮料年产量达到60万吨以上。行业标准《复合蛋白饮料》(QB/T 4222-2023)的实施将在饮料健康产品的丰富度方面起到促进作用。2021年国家“十四五”规划和2035年远景规划中明确“碳达峰、碳中和”为国家整体规划布局的重要组成部分,鼓励“绿色、健康、可持续发展”,《国民营养计划》明确“植物蛋白”为主要的营养基料,植物基产品发展前景广阔。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(二)
    本篇继上一篇“实用建议:“如何合理设计稳定的冻干蛋白配方(一)”继续为大家分享蛋白样品冻干的理想赋形剂有哪些、基于成功蛋白冻干配方会导致Final失败的一些细节问题等。 》》》对于蛋白样品,理想的赋形剂有哪些?从冻干对蛋白的所有危险以及我们需要在各个环节考虑的所有因素来看,快速开发一个稳定的蛋白配方看起来似乎是不可能的。幸运的是,如果我们能够采用合理的方法对配方进行很好的设计,大多数的配方问题是可以得到快速解决。这里,我们主要是对初始配方成分的选择提供基础。在一些情况下,初始的配方很有可能就是走向市场的Final产品。给定的组分,进行不同微小的修改,已经被成功地用于蛋白药物。需要强调的是对于冻干配方,在能够提供良好稳定性和结构的情况下,成分越简单越好。所加入的赋形剂都须要有数据证明对配方起有益的作用。01给定蛋白质维持稳定性的具体条件对于一些通用型的稳定剂,可以有效地保护绝大多数的蛋白质,在选择这些稳定剂之前,我们有必要通过优化影响蛋白物理和化学稳定性的具体因素来选择合适的稳定剂。影响蛋白物理和化学稳定性的具体因素:1. 避免极端的pH值可以显著降低蛋白脱氨基的几率。而且,通过优化溶液的pH值,可以显著提高蛋白在冻干过程中抵抗去折叠的能力。2. 还应该研究其他能提高蛋白质稳定性的特异性配体(通过增加去折叠的自由能)。肝素和其他聚阴离子对生长因子的稳定性影响就是一个很好的例子。3. 其它需要考虑的重要因素是离子强度对蛋白的去折叠和聚合的影响。须意识到,在预冻过程中,由于冰的形成将溶液浓缩,离子强度可增加50倍。因此负责原料药纯化和做药物配方前研究的人员已经对这些问题有了深刻的认识,配方科学家应该在着手设计冻干配方之前与他们进行沟通。即使在针对蛋白质稳定性优化的特定的溶液条件下,但是如果样品需要幸免于冻干的损害并长期保存,有必要加入一些其它的保护剂。首先,我们考虑一些已经用在冻干蛋白配方中的成分,但它们不能提供蛋白的稳定性,而且可能会促进蛋白在储存期间的破坏。我们将提供一个简单、有效的思路,并且讨论选择这些成分的原理。02不能提供蛋白稳定性的赋形剂部分多聚物作为赋形剂的优缺点在冻干工艺的快速开发过程中,为了获得一个强壮的蛋糕结构,一些多聚物,如葡聚糖,羟乙基淀粉,因具有较高的塌陷温度,导致Final产品的Tg也会比较高,常常是受欢迎的赋形剂。不好的是,这些多聚物在冻干过程中不能抑制蛋白结构的去折叠,因此在后续的储存中不能提供稳定性。无法抑制冻干诱导变性的原因大概是聚合物过大而无法与蛋白质氢键合,无法代替脱水过程中损失的水,或者是因为聚合物与蛋白质形成了分离的无定形相。尽管当这些多聚物单独使用时不是一种很好的稳定剂,但是经证实,如果其结合双糖稳定剂可以具有较好好的作用。冻干过程中的有效稳定剂对大量的化合物进行测定,显示在冻干过程在较有效的稳定剂是双糖,但是避免使用还原性糖。还原性糖在冻干过程中可以有效抑制蛋白结构的去折叠,但是在干燥样品的储存过程中,可以通过美拉德反应(糖的羰基和蛋白质上的游离氨基)降解蛋白,结果形成含有降解蛋白的棕色糖浆,而不是含活性蛋白的白色蛋糕状结构。通常,我们减缓这个过程的方法是将样品储存在零度以下,这就失去了产品冻干的意义,这些还原性的糖包括:葡萄糖,乳糖,麦芽糖,麦芽糊精等。在早期的研究中,晶体类的填充剂如甘露醇,甘氨酸在冻干过程中不能提供蛋白很好的稳定性,但是,一些配方使用了这两种物质的混合物,并且成功地推向了市场。在这些案例中,甘露醇和甘氨酸适当的比例可以导致一大部分的化合物保持无定形状态。这部分无定形状态的化合物足以抑制冻干过程中蛋白的去折叠并且提供长期储存的稳定性。但是建议谨慎选择这种方法,因为达到合适的工艺条件再加上合适的赋形剂比例,既耗时又很难办到的。03赋形剂的合理选择如何合理的选择赋形剂?案例分享举个具体的案例说明,假设:1. 蛋白药物的浓度定在2mg/ml;2. 主要的降解途径是冻干后或复水后蛋白的聚合以及储存期间蛋白的脱氨基;3. 优化具体的条件(如用柠檬酸盐缓冲液控制pH为6)只能将冻干和复水后聚合程度降到10%,尽管样品在低于Tg温度的20℃下进行储存脱氨基速度仍然不能接受。加入晶体类的膨胀剂,如甘露醇,保持样品强壮的结构及良好的外观。在这种情况下,主要缺少的成分是非还原性双糖,其在干燥样品中会与蛋白形成无定形的结构,作为主要的稳定剂,主要选择蔗糖或海藻糖。它们在预冻阶段能够很有效地保护蛋白并且能够很好的抑制复水过程中蛋白结构的去折叠。预冻阶段的保护取决于初始糖的总浓度,有时,超过5%(w/t)的浓度可以尽可能大程度地保持蛋白的稳定性。相反,在干燥阶段,蛋白的保护取决于Final糖和蛋白的质量比。一般来说,糖和蛋白的重量比至少为1:1时,可以提供较好的稳定性,当达到5:1时,可以达到很佳的稳定性。保持蛋白的浓度不变,选取一定范围的糖浓度进行筛选和检测,通过干燥样品中天然结构保留率以及复水后蛋白聚合降低的程度来确定最合适的浓度。一般来说,合适的糖浓度,可以在冻干过程中提供蛋白很好的稳定性,并且如果Final样品的Tg高于储存温度,在后期的储存期间也可以提供蛋白较好的稳定性。例如,假定最高的储存温度为30℃,那么Final产品的Tg >50℃应该是稳定的,但前提是Final样品的含水量需要达到允许的水平,因为水分的存在会降低样品的Tg。可以使用DSC检测每种样品的Tg值。蔗糖/海藻糖如何选择?蔗糖和海藻糖,作为两种常用的稳定剂,均有其优势和劣势,可根据不同的情况进行选择:● 在任何水分含量的样品中,海藻糖均会有较高的Tg,因此较为容易冻干。另外Tg >50℃的条件可以允许样品有较高的残留水分。然而,技术工程师应该能够针对这两种双糖设计经济有效的工艺。如果样品中蛋白浓度较高,可以提高Tg,这样就会弱化海藻糖的作用;● 与蔗糖相比,海藻糖更能抵抗酸解,双糖水解后会产生还原性的单糖,这是需要避免的。通常情况下,如果pH不是很低,如pH4左右或更低,这个应该不是很大的问题;● 蔗糖在冻干过程中抑制蛋白去折叠方面看似比海藻糖更有优势,当蛋白在预冻阶段非常不稳定(需要较高的糖浓度)和/或蛋白浓度较高时,这种优势更明显。海藻糖的相对不稳定性是由于在预冻和干燥过程中其更易于与蛋白之间产生相分离。对于给定的配方,这是否会有问题不能被预测,因此,每种制剂配方都需要检查其保护蛋白的能力。表面活性剂的作用在这里,我们案例中的配方可能就比较完整了,就像许多蛋白质的情况一样。然而,我们假设,即使蔗糖完全抑制可检测的蛋白质去折叠,正如用红外光谱对干燥固体的结构分析所评估那样,在复水后,仍然有1%的聚合蛋白。因为在原始的样品中是没有任何聚合的,假设在冻干过程中,一小部分蛋白发生了去折叠,在复水后,部分这些分子又重新折叠,但是部分聚合在一起。这个实际上看起来是个很普遍的问题,就像在冻干之前一些处理造成的聚合。幸运的是,通过在配方中加入一些非离子型表面活性剂,如聚山梨醇酯(吐温)通常可以抑制蛋白的聚合。要求的浓度通常比较低(<0.5% w/v),通过将表面活性剂滴定到包含所有其它组分的冻干制剂中,可以识别出理想浓度。应避免加入过量,因为表面活性剂在室温下是液体的状态,如果浓度较高,会降低配方的玻璃态转变温度。然而,通常在优化蛋白质稳定性所需的非常低的浓度下,不会有问题。表面活性剂看作是画龙点睛,通常在冻干产品配方中加入表面活性剂是有利的,可以抑制处理过程中界面引起的去折叠和聚集(如起泡夹带或瓶-液界面引起的)。最重要的是表面活性剂在冻干/复水过程中抑制聚合的能力,目前还不太清楚表面活性剂的保护在哪一步起作用的。有资料证明,表面活性剂在冻融及复水过程中可减少蛋白聚合并且在预冻阶段有助于抑制蛋白的去折叠,对干燥固体中聚集物特定红外波段的检查表明,表面活性剂可以抑制冻干过程中产生的聚集。在复水过程中,曲折叠分子的聚合能通过表面活性剂得到抑制,猜测是通过分子之间的相互作用和/或作为一种润湿剂,加速冻干产品的溶解。如果显示表面活性剂在复水过程中是有益的,则可以通过在稀释剂中加入表面活性剂来达到这种效果。 》》》还有哪些意想不到的危险可能会导致失败?尽管根据上述给出的建议,对于给定蛋白,我们可以设计出成功的配方,但是,还有其他一些问题可能会导致Final失败,特别是在长期储存期间。● 赋形剂中经常会有一些污染物,这些会导致蛋白快速的化学降解,糖类和甘露醇中会含有过渡金属元素,表面活性剂可能被过氧化物污染,所有的这些可以促进蛋白的氧化;● 在储存过程中,水分从胶塞转移到产品,引起水分参与的降解,直接损坏蛋白,并且降低蛋白的Tg,加速蛋白的降解,特别是当储存温度高于Tg 时;● 即使在高温(如40℃)下的储存稳定性研究中,一切都表现出理想的状态,但有一个常见的,但很少报道的事件可能是灾难性的,这个问题可以用下面的故事来说明。产品在实验室中在40℃下储存可以保持几个月的稳定性,在冬季,产品在运输过程中也保持良好的稳定性,没有来自消费者的问题报告,然而,有时在夏季,运输后,在室温下储存仅2周后发现产品过度降解,用差示扫描量热仪DSC对一开始的干燥粉末进行了检查,给出了合理的解释,结果发现,制剂中的甘露醇没有全部结晶,而是形成了Tg约为45℃的亚稳玻璃态,当在夏季运输过程中,超过了这个温度时,甘露醇变发生结晶,最先与甘露醇结合的水被转移到了剩余的无定形相中,蛋白相的水含量增加,降低了它的玻璃化转变温度,因此,加速了蛋白质的降解。这个问题可以使用DSC设计合理的退火方案使甘露醇再预冻阶段全部结晶来避免,另外也可以通过调整甘露醇的浓度,降低残留水分含量,使甘露醇即使在45℃的条件下也不会结晶。 》》》对于给定的蛋白药物,这些信息足够吗?对于大多数的蛋白,上面给出的建议一般会设计出成功的配方,但是,每种蛋白都有其独特的物理化学特性和稳定性要求。因此,针对每种不同的蛋白,配方也需要自定义设计。结合蛋白本身的特性知识以及选择合理的赋形剂可以快速设计出稳定的冻干蛋白配方。最后,在快速冻干工艺中保持干物质的物理性质和在干燥后获得天然的蛋白质之间需要折衷,研究表明:当蔗糖结合葡聚糖一起使用时,由于蔗糖的作用,蛋白质的天然结构可以保留在干燥的固体中;葡聚糖的存在提高了制剂的Tg,并提供了一种无定形的填充剂,快速干燥的同时保留了所需的蛋糕性质;其他的一些聚合物有可能提供与葡聚糖相同的优势,如羟乙基淀粉也具有较高的Tg,通常比葡聚糖更容易接受用于肠胃外给药。期望可以合理地利用这些多聚物作为Tg的调节剂,使得制剂更稳定,更容易快速冻干。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。德祥始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 沃特世公司:走在蛋白折叠和大分子复合物的研究前沿
    使用沃特世公司SYNAPT High Definition质谱系统, 利兹大学就所获得的结果发表文章 沃特世(Waters® )公司(股票代码NYSE: WAT) 2007年12月3日宣布利兹大学爱斯布理Astbury结构分子生物学中心使用最近购买的沃特世公司SYNAPT High Definition MS™ (HDMS) 质谱系统,在Journal of the American Society of Mass Spectrometry (JASMS) 美国质谱协会杂志上发表了蛋白研究的成果。 Ashcroft实验室正在使用SYNAPT® HDMS质谱系统研究生物分子功能。在2007年12月刊的一篇文章中,利兹的研究人员描述了对几种蛋白,如细胞色素C和贝塔-2-微球蛋白,的成功分离和分析,Ashcroft希望该成就可以通向对某些生物过程的完全了解,如淀粉纤维形成,细菌纤毛集结以及病毒衣壳的装配,这些过程都与衰老症有关。 蛋白质被人体小心地折叠,经三维长链分子装配而成。当正确地被折叠时,蛋白调节正常身体功能。当某些蛋白被折叠成特殊形状而变成错误折叠时,引起一系列反应,可导致自身聚集和淀粉纤维形成,因此一些高发疾病可能发生,包括老年痴呆症,疯牛病和帕金森氏综合症。在利兹大学,Alison Ashcroft艾利森艾斯克劳福特博士和她的同事Sheena Radford诗娜拉德福德教授就是研究这样一种蛋白,贝塔-2-微球蛋白,试图探索它是如何形成纤维,在透析病人的关节聚集,并与透析相关的淀粉样变性病有关。对这些过程在分子水平的完全了解将有助于治疗方法的设计。 新型质谱为生物学研究带来新领域 作为工具,常规质谱是区分不同质量蛋白质的优秀方法。然而,一个特定蛋白的不同构象或不同的折叠形式具有同一质量数,使用常规的方法是无法区分开来的。这就是沃特世公司SYNAPT HDMS质谱系统和镶嵌其中的离子淌度技术帮助利兹大学的方式。 “一个蛋白可以折叠成紧密的三维结构,或者在某些条件下,蛋白可以打开成伸展的结构。即使这些三维结构拥有相同的质量和质荷比(m/z),SYNAPT HDMS的离子淌度功能可以分离这些蛋白,并告诉您多少蛋白在折叠的形式而多少在非折叠的形式。而且,由于两种蛋白构象的横截面积不同,因为能够基于形状分离,SYNAPT HDMS质谱系统使我们能够区分各种不同的蛋白形状。 ”结果确实令人惊奇。”Alison Ashcroft艾利森艾斯克劳福特博士说,她是生物分子质谱研究员,质谱室主任。 来自沃特世公司的SYNAPT 质谱系统为实验室带来研究聚集过程的新的洞察力。“它为我们的研究提供新一维的空间。我们现在可以对原始状态的蛋白质定量,也可对非折叠或部分折叠的蛋白进行定量。我们也可以监测某种特定的蛋白构象在聚集过程被消耗。这为生物分子在分子水平如何工作提供了重要的新层面。”艾斯克劳福特博士补充道。 沃特世公司于2006年6月在美国西雅图美国质谱年会上推出SYNAPT HDMS质谱系统。它是第一台商业化的,在质量之外,基于尺寸,形状和电荷数分析离子的质谱。 一个管理万亿字节科学数据的决策 在生物技术和生物科学院(BBSRC) 和维尔康姆信托的资助下,艾斯克劳福特实验室拥有五台不同形式的质谱仪器,而管理其产生的数据是一个巨大的挑战。为了更有效地管理数据文件,该实验室选择沃特世公司NuGenesis Scientific Data Management System (SDMS)科学数据管理系统。 “每天在DVD上备份数据已经不需要了。科学数据管理系统SDMS 每天一次从五台质谱仪上将数据自动备份,我们的研究生和博士后可以直接从他们办公室的计算机上看到数据。存档文件对我们很重要,因为政府资助部门要求我们自建成之日起存储五或十年的数据。研究生花四年的时间拿到博士学位,所以他们需要四年或更长时间查看数据,特别是如果在拿到博士学位后要写文章” 艾斯克劳福特博士评论道。 “非分析化学背景的人们认为一台质谱就是一个复杂的称重机器。通常他们没有意识到使用这台仪器可以看到蛋白功能和行为。但是当他们发现了之后,会感到无比惊奇。”艾斯克劳福特博士说。 艾斯克劳福特博士在美国质谱协会杂志的文章全文参考: Monitoring co-populated conformational states during protein folding events using ESI-IMS-MS, D. P. Smith, K. Giles, R. H. Bateman, S. E. Radford,A. E Ashcroft, J. Am. Soc. Mass Spectrom., 2007 Dec 18 (12): 2180 – 90, DOI:10.1016/j.jasms.2007.09.017 文章再版要求请寄至A. E. Ashcroft 博士, Astbury Centre for Structural Molecular Biology, Astbury Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT UK,或发电子邮件email: a.e.ashcroft@leeds.ac.uk 关于利兹大学生物科学系,请浏览(http://www.fbs.leeds.ac.uk/) 利兹大学的生物科学系是英国最大的生命科学研究团体之一,拥有将近一百五十名学者和四百多名博士后和研究生。该系目前活跃的研究基金约六千万英镑,资助者包括慈善,研究院,欧盟和企业。该系拥有杰出的研究成果,在上一期政府研究评价检查(HEFCE)中,所有主要评估项目均获得第五级。 关于利兹大学爱斯布理Astbury中心, 请浏览(http://www.astbury.leeds.ac.uk/) 爱斯布理Astbury结构分子生物学中心是利兹大学一个跨学科研究中心。成立该中心的目的是在结构分子生物学的各个领域从事国际水平的研究课题。Astbury中心汇集了五十多位来自利兹大学各学科的学者,拥有共同的学术兴趣。该中心以 W.T.Astbury 的名字命名,他是生物物理学家,在利兹大学长期从事科学研究(1928-1961),工作期间在该领域成立了多个基金会。 艾利森艾斯克劳福特博士,(http://www.astbury.leeds.ac.uk/facil/mass.htm) 是生物分子质谱研究员,利兹大学,生物科学系,爱斯布理Astbury结构分子生物学中心质谱室主任。她的研究着重于开发和使用质谱方法探索生物分子功能。 诗娜拉德福德教授,(http://bmbsgi10.leeds.ac.uk/),是利兹大学,生物科学系,爱斯布理Astbury结构分子生物学中心结构分子生物学教授。她的研究着重于蛋白质折叠,非折叠和聚集机理。 生物技术和生物科学研究院(BBSRC) (www.bbsrc.ac.uk)是英国生命科学资助机构。 政府投资的生物技术和生物科学研究院BBSRC 每年在很大范围的研究领域投资三亿八千万英镑,为英国国民的生活质量做出突出贡献。 维尔康姆信托(www.wellcome.ac.uk)是英国最大的慈善机构。它资助英国国内和国际创新生物医学研究,每年投资额在五亿英镑左右。 (Waters, SYNAPT, High Definition MS, High Definition Mass Spectrometry, NuGenesis 和 HDMS 是沃特世公司商标。)
  • 福斯应用 | 40秒快检牛奶中的A2β -酪蛋白
    牛奶中蛋白质主要有乳清蛋白和酪蛋白两大类。酪蛋白中又分β-酪蛋白、keppa-酪蛋白和alpha-酪蛋白,其中β-酪蛋白约占蛋白总量的30%,是氨基酸的重要来源,同时在体内传递重要的矿物质(如钙、磷等),促进其消化吸收。A2β-酪蛋白是现代奶牛β-酪蛋白的天然原型。最初,所有家养的牛生产的牛奶中只含有A2β-酪蛋白,后来因自然基因突变,出现了A1蛋白的变体。研究表明,A2β-酪蛋白与母乳中的β-酪蛋白更接近,更有利于促进婴幼儿的生长发育。福斯MilkoScan™ FT3快速检测牛奶中A2β-酪蛋白A2β-酪蛋白的常规测定方法比较繁琐、耗时长、单样成本高。现在,MilkoScan™ FT3乳品分析仪通过建立A2β-酪蛋白的定标模块,可以直接检测A2β-酪蛋白。快速了解MilkoScan™ FT3FTIR技术40秒快检,结果准确可靠应用A2β-酪蛋白定标模块无需样品制备,直接上机检测掺假筛查MilkoScan™ FT3检测巴氏杀菌奶中的A2β-酪蛋白,定标样品和验证样品分布如下:FT1检测巴氏杀菌奶中的A2β-酪蛋白,定标样品和验证样品分布如下:
  • BLT小课堂 | 蛋白芯片技术原理及应用
    概念蛋白质芯片技术是在DNA芯片技术基础上发展的一项蛋白质组学技术。其原理是将大量不同的蛋白质分子(如酶、抗原、抗体、受体、配体、细胞因子等)通过微阵列的形式有序排列在固相载体表面,利用蛋白质与蛋白质或者蛋白质与其他分子之间的特异性结合,获得与之特异性结合的待测蛋白(如血清、血浆、淋巴、间质液、尿液、渗出液、细胞溶解液、分泌液等)的相关信息,便于我们分析未知蛋白的组分、序列,体内表达水平、生物学功能、与其他分子的相互调控关系、药物筛选、药物靶位的选择等。蛋白质芯片技术的出现,为我们提供了一种比传统的凝胶电泳、Western blot和Elisa更为方便和快速研究蛋白质的方法。该方法具有高通量,微型化和快速平行分析等优点,不仅对基础分子生物学的研究产生重要影响,也在临床诊断、疗效分析、药物筛选及新药研发等领域有着广泛应用。特点①蛋白芯片具有高特异性、重复性、准确性。这是由抗原抗体之间、蛋白与配体之间的特异性结合决定的。②蛋白芯片具有高通量和操作自动化的特点,在一次实验中可对上千种目标蛋白同时进行检测,效率极高。③可发现低丰度、小分子量蛋白质,并能测定疏水蛋白质,特别是膜蛋白质。④蛋白芯片具有高灵敏性,只需0.5-5μL样品,或2000个细胞即可检测。蛋白芯片技术在分子生物学及生物化学基础研究中的应用01 在蛋白质水平上检测基因的表达由于基因转录产物mRNA数量并不能准确反映基因的翻译产物蛋白质的质与量,因此在蛋白质水平上检测基因的表达对于了解基因的功能非常重要。蛋白质芯片技术产生前,蛋白质双向电泳技术是蛋白质组规模上进行蛋白质表达研究的唯一方法,但这种技术操作繁琐而且难以快速检测样品中成百上千种蛋白质的表达变化。蛋白质芯片的特异性、灵敏性和高通量等特点,在检测基因表达终产物蛋白质谱的构成及变化中发挥着不可替代的作用。02 高通量筛选抗原/抗体相互作用目前蛋白质芯片检测利用最广泛的生物分子相互作用是抗原抗体的特异性识别和结合,单克隆抗体是蛋白质芯片检测中使用最广泛的生物分子。运用蛋白质芯片可以研究不同抗原/抗体的特异性作用,而且对于检测样品中极微量的抗原/抗体分子作用非常有利。03 蛋白质/蛋白质相互作用分析酵母双杂交系统是近年来基因组规模上研究蛋白质相互作用的主要方法,但存在体内操作、假阳性、假阴性和外源蛋白质折叠、修饰等局限。蛋白质芯片技术不依靠任何生物有机体而在体外直接检测目标蛋白质,实验条件可随意控制,同时实验步骤自动化程度高,一次分析的蛋白质数量巨大,因而成为目前除酵母双杂交系统外进行大规模研究蛋白质相互作用的主要方法。04 酶/底物作用分析耶鲁大学的Snyder小组用蛋白芯片对酵母基因组编码的119种蛋白激酶的底物专一性进行了研究。实验中将蛋白激酶表达为谷胱甘肽转移酶(GST)融合蛋白,针对17种不同的底物,平行测定了119种GST2蛋白激酶融合蛋白的底物专一性,发现了许多新的酶活性,大量蛋白激酶可以对酪氨酸进行磷酸化,而这些激酶在催化区域附近有共同的氨基酸残基。也证明了蛋白质芯片可作为高通量筛选酶-底物作用的良好平台。蛋白芯片的检测目前蛋白芯片的检测主要有两种方式。一种是以质谱技术为基础的直接检测法,采用表面增强激光解析离子化-飞行时间质谱技术,用激光解析电离的方法将保留在芯片上的蛋白质解离出来。具体过程为:芯片经室温干燥后,加能量吸附因子如芥子酸,使其与蛋白质结合成混合晶体,以促进蛋白质在飞行时间质谱检测中的解析和离子化,利用激光脉冲辐射使芯池中的分析物解析成荷电粒子,根据不同质荷比离子在仪器场中的飞行时间长短不一,通过飞行时间质谱来精确地测定出蛋白质的质量,并由此绘制出一张质谱来,以分析蛋白质的分子量和相对含量。另一种为蛋白质标记法,样品中的蛋白质预先用荧光染料或同位素等标记,结合到芯片上的蛋白质就会发出特定的信号,用CCD照相技术及荧光扫描系统等对激发的荧光信号进行检测。与飞行时间质谱相比,该方法定量更加准确,操作也更加简便。与DNA芯片一样,蛋白质芯片同样蕴含着丰富的信息量,必须利用专门的计算机软件进行图像分析、结果定量和解释。其中应用最广的是荧光染料标记法,原理较为简单、使用安全、灵敏度高,且有很好的分辨率。可直接用广州博鹭腾 GelView 6000Plus进行拍摄。图1.GelView 6000Plus智能图像工作站GelView 6000Plus 配备600万像素科学级制冷CCD相机,制冷温度为环境温度下 55℃,极低的暗电流,很大程度降低背景干扰。而且独有的红外感应开关,自动控制样品台的开启与关闭,同时也减少了实验时对仪器的污染。
  • 中国工程院院士陈坚:替代蛋白产业的春天已经到来
    通过车间生产方式制造肉、蛋、奶,变革了食物蛋白制造模式,实现高质量供给,替代蛋白的兴起和发展大大缓解了传统蛋白生产方式存在的问题。在5月18日举办的首届全国微生物蛋白技术创新及产业发展大会上,中国工程院院士、江南大学教授陈坚认为,作为替代蛋白的一种,微生物蛋白有助于提升人类健康水平、改进地球生态质量。随着技术进步,替代蛋白产业发展的春天已经到来。  食物蛋白是人类重要的营养物质,现有的蛋白供应主要依赖于种植业和养殖业。随着人口增长和经济发展,到2050年食品蛋白需求将增长30%至50%,传统食品蛋白供给在数量、质量和可持续方面正面临着严峻考验,如何提高蛋白生产和转化效率,构建可持续的高品质蛋白供给模式迫在眉睫。  践行“大食物观”向微生物要蛋白  替代蛋白包括动物细胞蛋白、植物蛋白、微生物蛋白、藻类蛋白和昆虫蛋白等多种类。陈坚介绍,微生物蛋白是利用可再生物质原料等为底物,通过在发酵罐中培养微生物的方式制造蛋白,与传统畜禽养殖生产方式相比,产生的温室气体更少,占用耕地面积更小,在资源消耗和环境影响等方面更加高效环保。  微生物蛋白合成效率是传统养殖方式获取蛋白效率的上千倍。据介绍,以1000平方米面积为例,种植大豆每年可以生产1.1吨蛋白,满足40人的需求;而通过二氧化碳发酵微生物技术每年能够生产15吨蛋白,满足520人的需求,生产效率大幅提升。  据波士顿咨询公司测算,到2035年,替代蛋白市场规模有望达到2900亿美元,微生物发酵蛋白市场份额将达到22%。  陈坚表示,替代蛋白发展的战略意义远超单纯的食品创新。目前,我国蛋白供给还存在动物蛋白缺口较大、优质蛋白自给率不足等问题,需继续开发优质蛋白资源,提高食物蛋白自给率。  随着人们生活质量的不断提升,消费者对优质蛋白、肉等食品的需求逐步增加,生产替代蛋白是解决肉类资源紧缺的有效途径之一。陈坚认为,发展微生物蛋白产业是落实“大食物观”碳减排和解决优质食品蛋白供给问题的重要途径,是新质生产力的典型代表。  据介绍,针对当前食品加工粗放、营养缺乏人群针对性、膳食结构不合理等问题,微生物蛋白在营养、口感等方面具有一定优势。如酵母蛋白含有人体全部必需的氨基酸,属于全价蛋白,营养丰富,能够满足人体营养需求,没有豆腥味,而且无致敏成分,适用人群广泛。  科技创新 构建多元化蛋白供给体系  利用更少的资源产出更多的蛋白,微生物蛋白具有生产效率高且二氧化碳排放少的优势。陈坚介绍,目前,全球已有超过80家公司从事微生物菌体蛋白的生产。作为重要的替代蛋白,微生物蛋白的高效制造和规模化应用是构建多元化蛋白供给体系,实现可持续蛋白供给的重要途径。  陈坚认为,微生物蛋白一方面可以作为主要蛋白生产原料,从成本、可持续、生产效率等方面解决肉、蛋、奶产业链中的关键蛋白供给难题;另一方面,还可以作为功能蛋白生产配料,作为细胞工厂通过精密发酵获取高附加值的蛋白,从而在口味、口感、营养等方面提升产品品质。  作为食品领域的前沿技术,市场需求是推动替代蛋白发展的动力。据了解,当前“人造肉”在风味、口感、品质等方面仍与真实肉存在较大差异。植物肉缺乏真实肉中的纤维结构,肉质疏松是导致其口感和品质较差的主要原因。而微生物蛋白的发展为人造肉外观、风味、口感、品质等特性的提升提供了新方法。   例如,植物肉中存在醇、醛等挥发性物质,导致其具有一定的豆腥味。使用醇、醛脱氢酶将醇、醛等挥发性物质分解,可以显著提高植物肉的风味。一些特定的人群对植物蛋白肉过敏,筛选特异性的蛋白酶能够将植物肉中特定的过敏原降解,使其分解成为氨基酸和短肽,在去除过敏原的同时保留其营养成分。  “目前,我们正在建立微生物蛋白菌种库,筛选出一批原料廉价、生长速度快、蛋白含量高的菌种,加快生产多种不同类型的蛋白,满足不同应用场景的需求。”陈坚建议,行业发展应该以满足居民多元化消费需求为导向,通过科技创新,优化蛋白品种和品质,满足人民日益增长的美好生活需要。
  • 肿瘤免疫微环境中的金属蛋白酶|附相关会议
    金属蛋白酶(MP)是一个在其活性中心具有金属离子的大型蛋白酶家族。根据结构域的不同,金属蛋白酶可分为多种亚型,主要包括基质金属蛋白酶(MMPs)、解整合素金属蛋白酶(ADAMs)以及具有血栓反应蛋白基序的ADAMs(ADAMTS)。它们具有蛋白质水解、细胞粘附和细胞外基质重塑等多种功能。相关会议推荐点击可免费报名金属蛋白酶在多种类型的癌症中表达,并通过调节信号转导和肿瘤微环境参与涉及肿瘤发生、发展、侵袭和转移的许多病理过程。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。MP的结构和表达基质金属蛋白酶(MMP)在脊椎动物中,MMP家族由28个成员组成,至少23个在人体组织中表达,其中14个在脉管系统中表达。基质金属蛋白酶通常根据其底物和其结构域的组织结构分为胶原酶(MMP1、MMP8、MMP13)、明胶酶(MMP2、MMP9)、溶血素(MMP3、MMP10、MMP11)、基质溶素(MMP7、MMP26)、膜型MMPs(MT MMPs)或其他MMPs。MMP家族有一个共同的核心结构。典型的MMPs由大约80个氨基酸的前肽、170个氨基酸的金属蛋白酶催化结构域、可变长度的连接肽或铰链区和约200个氨基酸的血红素蛋白结构域组成。不同类型的MMP具有不同于典型MMP的特定结构特征。例如,MT MMPs缺乏前结构域,而MMP7、MMP26和MMP23缺乏Hpx结构域和连接肽。此外,MMP2和MMP9包含纤连蛋白的三个重复。MMPs中的这些不同结构域、模块和基序参与与其他分子的相互作用,从而影响或决定MMP活性、底物特异性、细胞和组织定位。MMPs已在多种人类癌症中检测到,MMPs的高表达通常与大多数癌症的生存率降低有关,包括结直肠癌、肺癌、乳腺癌、卵巢癌和胃癌。其中MMP2和MMP9,能够降解基底膜中的IV型胶原,是研究最广泛的金属蛋白酶,与各种癌症患者的疾病进展和生存率降低相关。解整合素金属蛋白酶(ADAM)ADAMs是锚定在细胞表面膜上的I型跨膜蛋白,迄今已发现30多种。与MMPs类似,ADAMs包括前结构域和锌结合金属蛋白酶结构域。ADAM还包括一个在细胞表面蛋白中独特的去整合素结构域。ADAM的金属蛋白酶结构域高度保守,大多数ADAM都有一个富含半胱氨酸的结构域和跨膜区域相邻的EGF样结构域,然后是一个长度和序列在不同ADAM家族成员之间变化很大的胞内区。由于这些结构域的存在,ADAM可以结合底物并影响细胞粘附和迁移的变化,以及细胞表面分子的蛋白水解释放。它们的主要底物是完整的跨膜蛋白,如生长因子、粘附分子和细胞因子的前体形式。癌细胞通常表达高水平的ADAM,ADAM17是所有ADAM蛋白中研究最广泛的。一项评估ADAM17作为卵巢癌潜在血液生物标志物的研究表明,与对照组相比,培养的卵巢癌细胞系的培养基上清液以及卵巢癌患者的血清和腹水中的ADAM17水平明显更高。具有血栓反应蛋白基序的ADAM(ADAMTS)ADAM不同,ADAMTS是一种分泌型金属蛋白酶,其特征在于辅助结构域包含血栓反应蛋白1型重复序列(TSR)和间隔区,并且缺少跨膜区、胞内域和(EGF)样结构域,人ADAMTS家族包括19种蛋白。ADAMTS蛋白酶参与前胶原和von Willebrand因子的成熟,以及与形态发生、血管生成和癌症相关的ECM蛋白水解。研究表明,不同的ADAMTS具有不同的生物学功能,并且个体ADAMTS可以在不同的癌症中或根据临床环境发挥不同的作用。与MMPs和ADAMs相比,ADAMTS在TME中的参与研究较少,因此迫切需要系统地研究其在癌症中的功能。涉及癌细胞免疫相关MP的信号通路信号转导途径由多个分子组成,它们相互识别和相互作用,并传递信号以调节许多重要的生物学过程,如肿瘤细胞增殖、转移和免疫调节。三种信号通路尤其与免疫调节中的MP密切相关。肿瘤坏死因子信号肿瘤坏死因子-α(TNF-α)是一种重要的促炎细胞因子,参与免疫系统的维持和稳态,以及炎症和宿主防御。可溶性TNF-α通过蛋白水解酶ADAM17,也称为TNF-a转换酶(TACE),从跨膜TNF-α(tmTNF-α)裂解,该酶可通过激活TNF-α来协调免疫和炎症反应。鉴于ADAM17对TNF信号通路的受体和配体的作用,ADAM17被认为以多种方式影响TNF-α信号传导。例如,可溶性TNF-α产生的减少将导致tmTNF-α的积累,其将与TNFR2结合并导致不同的生物学结果。转化生长因子–β转化生长因子-β(TGF-β)作为肿瘤行为的关键调节因子,在肿瘤侵袭和转移、免疫调节和治疗抵抗中发挥重要作用。TGF-β也是TME免疫抑制的核心,根据具体情况对免疫系统具有多效性功能。MMP9和MMP2是已知的两种金属蛋白酶,可切割未激活的TGF-β前体并产生不同的TGF-β蛋白水解切割产物,从而导致TGF-β活化。此外,与CD44结合的MMP9降解纤连蛋白导致活性TGF-β的释放。癌细胞中MMP9的水平不仅可能影响TGF-β的蛋白水解,还可能影响TGFβ和TGF信号通路下游物质的表达。对乳腺癌中MMP9与TGF信号通路之间关系的研究表明,乳腺癌细胞中MMP9的过表达不仅显著上调了SMAD2、SMAD3和SMAD4的表达,还增强了SMAD2的磷酸化。Notch信号通路Notch信号涉及肿瘤生物学的多个方面,其在免疫应答的发展和调节中的作用比较复杂,包括塑造免疫系统和TME的组成部分,例如抗原呈递细胞、T细胞亚群和癌细胞之间的复杂串扰。特别是,Notch在不同免疫细胞的发育和维持中发挥着关键作用。配体与Notch受体结合后,下游信号由包括ADAM家族成员在内的一些蛋白酶介导。首先,受体/配体相互作用暴露了蛋白水解切割位点S2,其被ADAM金属蛋白酶切割。γ-分泌酶介导的S3处的后续裂解发生在跨膜区,导致Notch胞内结构域(NICD)的释放,该结构域转移到细胞核中,并将MAML与RBPJ结合,触发靶基因如Myc、P21和HES1的转录。已知ADAM10和ADAM17参与裂解S2,而ADAM17导致配体非依赖性Notch激活,ADAM10导致配体依赖性激活。MP对肿瘤微环境的调节TME是指肿瘤细胞周围的微环境,包括血管、免疫细胞、成纤维细胞、骨髓源性抑制细胞、各种信号分子和ECM。TME在调节癌症的免疫反应中起着关键作用。MP对ECM的影响ECM是TME基质的非细胞成分,ECM的重塑在癌症的发展和体内稳态以及免疫细胞募集和组织转移中起着重要作用。癌症进展过程中ECM的广泛重塑导致其密度和组成发生变化,具体而言,蛋白酶诱导的ECM成分的分解对于肿瘤细胞跨越组织屏障至关重要。MMPs和ADAMs是参与ECM降解的主要酶,参与ECM降解的MMPs可大致分为膜锚定MMPs和可溶性MMPs。ECM降解主要通过MT1 MMP激活的可溶性MMP(如MMP2、MMP9和MMP13)实现。ECM有三个主要成分:纤维、蛋白聚糖和多糖。MMPs通过与这些基质结合以促进各种ECM蛋白的周转,在组织重塑中发挥重要作用。MMPs降解ECM的具体机制尚不清楚,需要进一步研究。MP与免疫细胞之间的关系MP在促进免疫细胞活性和调节免疫细胞迁移方面发挥重要作用。MP和免疫细胞之间的关系如下图所示。ADAM10和ADAM17在静止的CD4+Th细胞表面表达,对调节CD4+Th的发育和功能很重要。ADAM10/17在T细胞共刺激受体以及共抑制受体的脱落中发挥关键作用。例如,CD154(CD40L)是一种II型膜共刺激受体,在T细胞和APC之间的相互作用后,CD154表达在几个小时内迅速上调,随后在ADAM10和ADAM17裂解后从T细胞表面释放。此外,ADAM10和ADAM17还作用于共刺激受体CD137,以及抑制性受体LAG-3、TIM-3,sLAG-3和sTIM-3的可溶性形式都是在ADAM10和ADAM17蛋白水解裂解后形成的。B细胞是体液免疫的关键细胞成分,位于脾脏中边缘区B细胞(MZB)表达高水平的CD80/86共刺激分子,导致T细胞活化。Notch2信号传导是MZB细胞发育所必需的,在MZB的发育过程中,Notch2异二聚体与基质细胞和APC上的DLL1等配体结合,这启动了一种未知的金属蛋白酶水解受体,导致Notch胞内结构域的释放,该结构域转移到细胞核并触发下游靶基因的表达。这种未知的金属蛋白酶可能是ADAM10。NK细胞表达IgG Fc受体FcγRIII(CD16),CD16分子可被ADAM17从活化的NK细胞表面裂解,ADAM17的抑制会削弱CD16和CD62L的胞外脱落,从而显著增加细胞内TNF-α和IFN-γ的水平。此外,MMPs和ADAMS可以从肿瘤细胞表面切割活化受体NKG2D的配体。这些裂解蛋白的可溶性形式与NKG2D结合,并诱导该受体的内吞和降解,导致肿瘤逃避监控。总的来说,ADAM17裂解的多种底物与NK细胞的不同作用有关。肿瘤相关巨噬细胞(TAM)有助于癌症的发生和恶性进展,高水平的TAM与预后不良和总体生存率降低有关。在多种癌症中,发现TAM通过分泌MMPs促进肿瘤血管生成和侵袭,并调节免疫反应。MMP的调节与TAM分泌的趋化因子密切相关。与MPs相关的免疫调节细胞因子多种来源于肿瘤细胞的细胞因子,包括TGF-β、EGF、HGF和TNF-α,介导许多MP的表达。其中最重要的是MMP9,其在血清和与肿瘤相关的组织中升高,并参与ECM的降解,以促进癌症中免疫细胞的迁移。此外,这些细胞因子必须被MP切割以参与肿瘤免疫过程。例如,被ADAM17切割的TmTNF-α产生活性sTNF-α。IL-12在T细胞发育和扩增中也起着关键作用,未激活的IL-12前体需要在被MMP14切割之后在TME中转变为活性状态。金属蛋白酶和血管生成迄今为止,已经报道了几种类型的肿瘤血管生成,包括萌芽血管生成和血管生成拟态(VM)。萌芽血管生成是通过血管基底膜中各种水解酶(如MP和组织纤溶酶)的上调实现的,这导致基底膜和ECM的降解和重塑。例如,在胰腺神经内分泌肿瘤中,MMP9分泌增加会从基质中释放出隔离的VEGF,从而将血管静止转变为活跃的血管生成。在肺癌细胞中,MMP2活性的抑制减少了其与整合素AVB3的相互作用,并抑制了下游PI3K/AKT信号介导的VEGF的表达,导致血管生成减少。VM是侵袭性肿瘤形成新血管的新模型,为肿瘤生长提供血液供应。研究表明,实体瘤的初始缺氧环境与VM密不可分,缺氧与MMPs的表达和活性密切相关。低氧诱导因子-1α(HIF-1α)已被证明直接调节MMP14、MMP9和MMP2的表达。靶向MP的免疫治疗鉴于MP在癌症免疫调节中的作用,人们开始探索靶向MP的免疫治疗,临床试验中出现了多种广谱MP抑制剂。然而,由于药物的非特异性靶向和MP在免疫调节中的复杂作用,MP抑制剂迄今未能改善癌症患者的生存和预后。最近,有报道称MP抑制剂可用于联合治疗,以提高免疫治疗的疗效。SB-3CT作为一种MMP2/9抑制剂,被认为可以提高抗PD-1和抗CTLA-4治疗黑色素瘤和肺癌小鼠模型的疗效。SB-3CT治疗不仅通过减少多种致癌途径导致PD-L1表达减少,而且与抗PD-1治疗相结合,显著改善了免疫细胞浸润和T细胞的细胞毒性。此外,SB-3CT与抗CTLA-4的组合增强了PD-L1表达的下调,并增加了肿瘤中活化的肿瘤浸润CD8+T细胞的丰度。Andecaliximab(GS-5745)是一种选择性抑制MMP9的单克隆抗体,GS-5745通过与MMP9前体结合并阻止MMP9活化来抑制MMP9,而与活性MMP9的结合则抑制其活性。Fab 3369作用于MMP14,阻断细胞表面表达的内源性MMP14,并抑制三阴性乳腺癌(TNBC)中ECM的降解。此外,有多种抗体可有效抑制ADAM17,包括A12、A9和MED13622。还有一些小分子抑制剂在临床开发中,在临床试验中显示出积极的效果。小结MP在TME中的免疫调节中发挥重要作用,包括ECM重塑、信号通路转导、细胞因子脱落和释放以及促进血管生成。与MP相关的新兴技术和药物在癌症诊断和治疗中得到了越来越多的探索。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。基于MP的探索和新技术具有巨大潜力,它们可能会为未来的癌症诊断和治疗提供有效的策略。参考文献:1.Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol.2022 13: 1064033.
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 布鲁克推出多重蛋白MALDI成像和空间蛋白组学新产品
    摘要* 布鲁克使用 AmberGen 的 HiPLEX-IHC 肽编码抗体探针,结合全覆盖脂质组学、糖组学和代谢组学成像技术,为 timsTOF fleX 推出新型 MALDI HiPLEX-IHC 组织成像解决方案。* 新的 Canopy CellScape™ 单细胞、高度定量的空间蛋白质组学 ChipCytometry™ 平台具有全自动迭代染色功能,使用开源抗体对 TME 和转移研究的整个组织切片进行几乎无限的免疫肿瘤标记分析。* 对于癌细胞系和生物活检样本的蛋白质组学研究,在 timsTOF 4D 平台上采用 dia-PASEF® 可以鉴定高达 13,000 种蛋白质(控制1% FDR);采用库检索方式,在 35 分钟内可鉴定和定量 8000 多种蛋白质;使用新的 TIMScore 算法磷酸化肽段鉴定增加了 25% 以上。* 新型 timsTOF SCP 平台支持无偏单细胞蛋白质组学研究,是空间生物学癌症研究中 sc-RNA-seq 的重要补充。* 独特的高通量 timsTOF Pro 2 平台可以使液体活检生物标记物研究能够通过各种无偏的深层血浆蛋白质组学和 PTM 方法进行。2022年4月11日美国路易斯安那州新奥尔良——在2022年AACR年会上,布鲁克(纳斯达克股票代码:BRKR)推出并展示了针对空间多组学、单细胞蛋白质组学以及细胞系、组织和血浆蛋白质组学癌症的独特而新颖的研究。继最近对AmberGen公司的战略投资之后,布鲁克宣布建立合作伙伴关系,将Ambergen Miralys™ 肽标签抗体试剂盒应用于布鲁克timsTOF fleX新型MALDI HiPLEX-IHC工作流程,用于组织中的靶向蛋白质表达谱分析。通过将用于蛋白质识别的系列肽标签报告特征抗体探针与布鲁克灵活的MALDI成像工作流程相结合,研究人员可以在标准载玻片的组织切片中生成靶蛋白的高度多重图像。布鲁克timsTOF fleX平台将MALDI HiPLEX-IHC蛋白质图像与来自同一组织切片的小分子全谱成像(脂质、聚糖、代谢物、外源性物质)相结合,这是一种新颖独特的多组学分析能力,可用于新鲜冷冻或福尔马林固定石蜡包埋(FFPE)切片的癌细胞系、组织和肿瘤微环境(TME)成像研究。布鲁克生命科学质谱成像业务总监Michael L. Easterling博士评论说:“空间蛋白表达图谱可以阐明免疫肿瘤学以及TME和癌转移研究中的过程。基于AmberGen肽标签抗体组合的MALDI HiPLEX-IHC工作流程提供了靶向蛋白质定位,并增加了在同一组织切片上绘制重要脂质、聚糖和代谢物分子图像的能力。此外,布鲁克还展示了新的CellScape™ 高精度靶向空间蛋白质组学仪器,该仪器最近由Canopy生物科学部门推出。Canopy生物科学的CellScape是新一代的Chipcytometry™ 仪器,它能够以单细胞和亚细胞分辨率对多种样本类型中的蛋白质生物标记物进行高倍数空间成像和量化。CellScape进一步提高了空间分辨率,提供高达 8 倍的通量和无人值守自动化。CellScape在定量生物学方面是独特的,它具有 8 个量级的极高动态范围(HDR)成像,可以定量同一样本中的低表达和高表达蛋白质,解决了高复合物成像固有的一个关键挑战。在癌症生物学中的应用非常丰富,包括肿瘤微环境(TME)中各种肿瘤和免疫细胞类型的空间表型。Canopy还推出了用于芯片细胞仪平台的空间免疫分析试剂盒。空间免疫谱 试剂盒是一种用于FFPE组织的定量、多重检测,旨在为芯片细胞研究人员(例如免疫肿瘤学)提供即用型预验证抗体试剂。这些试剂盒使研究人员能够跳过检测开发,直接进行转化和临床研究检测。
  • 高表达抗体蛋白下游工艺技术进展
    p   摘 要:随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 /p p   关键词:抗体 下游工艺 纯化 技术进展 /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center " span style=" font-size: 14px "   表1 单抗特性及纯化策略 /span /p p style=" text-align: center " img title=" 11111.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e2693d21-e711-4b42-bb9c-53b5b7848f82.jpg" / /p p style=" text-align: center " img title=" 2222.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/5035b8d3-81f1-4e6b-96d7-3e12b347a344.jpg" / /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0 病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "   img width=" 450" height=" 374" title=" 1.jpg" style=" width: 435px height: 258px " src=" http://img1.17img.cn/17img/images/201808/insimg/401b7d6a-ad5b-4c9a-9eee-2376ebef51fa.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px " 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /span /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center " img width=" 599" height=" 164" title=" 2.jpg" style=" width: 580px height: 159px " src=" http://img1.17img.cn/17img/images/201808/insimg/ce7191a4-3940-4315-8122-856bbbadbc24.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /span /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center "    img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/4aa1c980-c9be-44e9-82b5-899ba9f7eec9.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " 表3 两步层析纯化工艺对污染物的去除效果[15] /span /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/07a79270-4b7d-4fe5-bc9a-125837562297.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  图2 传统纯化工艺与STREAMLINE [17] /span /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/333de887-f92b-405d-9094-9ec89635f74d.jpg" / /p p style=" text-align: center " span style=" font-size: 14px "   图3 STREAMLINE的基本工作原理和操作过程[18] /span /p p style=" text-align: center "   span style=" font-size: 14px "  (箭头示液体过柱时的流向) /span /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE 技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p p /p
  • 高表达抗体蛋白下游工艺技术进展
    p   随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 br/ /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 br/ /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1eb75a7d-0f0f-4f60-8224-a3984ccff0e3.jpg" title=" 表1.png" alt=" 表1.png" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/f8ff0f67-6f0b-4295-ab81-05543e5efbd8.jpg" title=" 表2.png" alt=" 表2.png" / br/ strong 表1 单抗特性及纯化策略 /strong /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/a804fe1c-9660-4ab2-8cc4-177870630ce5.jpg" title=" 图1.png" alt=" 图1.png" style=" text-align: center " / /p p style=" text-align: center " strong 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /strong /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/3ef7b3a2-9f79-4e74-8a71-6a6cbcbea5ec.jpg" title=" 图2.png" alt=" 图2.png" / /p p style=" text-align: center " strong 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /strong /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/282961ea-e704-47d1-aabd-f044e108f59c.jpg" title=" 图3.png" alt=" 图3.png" / /p p style=" text-align: center " strong 表3 两步层析纯化工艺对污染物的去除效果[15] /strong /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/dba748ae-d64e-479c-8fb1-ea738ef437da.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center " strong 图2 传统纯化工艺与STREAMLINE [17] /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/0f71d1a8-a218-43f5-8c1f-917bd4f432a5.jpg" title=" 图5.png" alt=" 图5.png" / /p p style=" text-align: center " strong 图3 STREAMLINE的基本工作原理和操作过程[18](箭头示液体过柱时的流向) /strong /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p
  • 德国元素:成功助力科学攻坚,提升玉米蛋白含量
    如今,玉米已成为世界上最高产的农作物之一,全球年产12亿吨,中国年产2.7亿吨。其中,70%的玉米都是用作饲料,玉米产量高,有效能量多,是最常用且用量最大的一种饲料,故有“饲料之王”的美称。随着人们生活质量的提高,对肉蛋奶的需求不断增加,玉米的消费量也日益增加,致使近年来玉米进口量也不断提升。由于普通玉米籽粒蛋白含量较低,大部分杂交种籽粒蛋白含量不到8%,因此饲料中需要补充大豆蛋白,然而大豆严重依赖进口,这些成为了我国畜禽养殖业的“卡脖子”问题。如果普通玉米蛋白含量每提高一个百分点,相当于中国可以少进口近800万吨大豆!因此,提高玉米蛋白含量不仅是保障国家粮食安全的重大战略需求,也是保障我国畜禽养殖业和饲料加工业健康发展的重要途径之一。中国科学院分子植物科学卓越创新中心研究团队于2012年开始进行玉米高蛋白供体材料的寻找、蛋白含量测定、遗传分析以及群体构建。此外,研究团队在三亚南繁基地进行了大规模田间试验,将野生玉米高蛋白基因Thp9-T杂交导入我国推广面积最大的玉米生产栽培品种郑单958中,可以显著提高杂交种籽粒蛋白含量,表明该基因在培育高蛋白玉米中具有重要的应用潜能。同时,在减少氮肥施用条件下,可以有效保持玉米的生物量以及植株和籽粒中氮含量水平,这对于在低氮条件下促进玉米高产、稳产具有重要意义。德国元素elementar rapid N exceed 杜马斯定氮仪为巫永睿研究组的玉米蛋白研究提供了精准的蛋白质含量测定。“德国元素elementar的杜马斯定氮仪准确的测定了我们研究材料的蛋白表型,对于我们克隆野生玉米高蛋白基因至关重要。”——中国科学院分子植物科学卓越创新中心巫永睿课题组德国元素elementar在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出世界第一台杜马斯定氮仪后,公司响应食品、农产品、饲料等样品的分析需要更大样品量的需求,于1989年,进一步推出了全球首款克级样品量的杜马斯定氮仪。逐步推动了杜马斯定氮法在法规中的应用。如今,国际上(如美国、加拿大、德国等)已经将杜马斯定氮法应用在食品、饮料、宠物食品、饲料和肥料等领域。1964年,德国元素elementar第一台杜马斯氮/蛋白质分析仪德国元素elementar杜马斯定氮仪rapid N exceed® 杜马斯定氮仪经济型氮/蛋白质测定解决方案rapid N exceed® 快速氮/蛋白质分析仪,对重量高达1克的样品,仍能准确测定氮或蛋白质的含量。新型EAS REGAINER催化剂可确保在不消耗还原金属的情况下结合燃烧后过量的氧气。EAS REDUCTOR管(还原管)的寿命可处理高达2000个样品。rapid MAX N exceed 杜马斯定氮仪高通量、高灵活性氮/蛋白质测定解决方案rapid MAX N exceed 利用不锈钢坩埚进样,可容纳高达重量为5g或体积为5ml的样品,同时具备自动除灰功能。且可以选择氦气或氩气作为载气。直立的坩埚设计可确保任何液体样品的最佳燃烧,如:牛奶、啤酒、软饮、果汁、酱油等,与独特的二级燃烧技术相结合,可为您提供可靠的、无基质效应的测试结果。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • GE给您完全的蛋白印迹方案
    GEWestern Blot实验相关产品秋季开学特惠 活动日期: 2012年即日起至10月31日 GE从蛋白制备、电泳、转印及杂交到显色、成像,为您带来完全的蛋白印迹方案。 详情请见www.reagent.com.cn 细胞组织裂解 -- 样本研磨试剂盒 蛋白抽提 -- 蛋白抽提缓冲液试剂 蛋白稳定化 -- 混合蛋白酶抑制剂及核酶 混合物 蛋白分级化 -- 蛋白分级试剂盒 蛋白定量 -- 蛋白定量试剂盒 垂直电泳 -- SE250/SE260 电泳试剂 蛋白Marker -- 彩虹分子量标准 蛋白Marker -- Amersham ECL DualVue 免疫 印迹标准
  • 中国科学院上海药物研究所:研究揭示糖蛋白激素作用机制
    9月22日,中国科学院上海药物研究所研究员徐华强/蒋轶团队,联合浙江大学研究员张岩团队,在Nature上发表了题为Structures of full-length glycoprotein hormone receptor signaling complexes的研究论文,首次解析了糖蛋白激素GPCR,即全长黄体生成素/绒毛膜促性腺激素受体(luteinizing hormone/choriogonadotropin receptor, LHCGR)处于失活状态和多种激活状态下的四个结构。该工作揭示出绒毛膜促性腺激素(CG)识别LHCGR的分子机制,以及1期临床实验的小分子化合物Org43553与受体LHCGR相互作用细节模式;鉴定了糖蛋白激素选择性结合LHCGR和促卵泡激素(follicle-stimulating hormone,FSH)受体的关键氨基酸残基;提出了激素配体激活受体的“Push and Pull”模型。上述工作对理解糖蛋白激素识别和激活GPCR的机制,为临床开发替代激素治疗的小分子药物具有理论和现实意义。  激素是人体的化学信使,控制着各个器官的生理功能,而下丘脑和脑下垂体是内分泌激素的控制中心。传统内分泌系统由三大分支组成,即下丘脑-垂体-性腺轴(HPG)、下丘脑-垂体-甲状腺轴(HPT)和下丘脑-垂体-肾上腺轴(HPA)。其中,三种促性腺激素,包括促黄体生成素(luteinizing hormone,LH),促卵泡激素(follicle-stimulating hormone,FSH)和绒毛膜促性腺激素(chorionic gonadotropin,CG)是糖蛋白激素,调控HPG轴的关键生理功能,包括人体的性别发育,精子发生和卵子成熟,以及促进第二性特征的发育及维持。另一类糖蛋白激素促甲状腺激素(thyroid-stimulating hormone,TSH)是HPT轴调节的关键糖蛋白激素,主要通过调控机体甲状腺素的水平从而调节人体代谢。上述激素均为临床重要的治疗药物,其中FSH和LH用于辅助生殖及体外受精,以及治疗女性不孕症和男性促性腺功能减退症等;CG用来诱导女性排卵,增加男性精子数量等。TSH与131I联合应用于甲状腺癌术后患者,抑制和消融残余癌组织等。尽管糖蛋白激素的临床应用取得成功,但糖蛋白激素激活人体细胞中受体的机制仍然未知。  四种糖蛋白激素的整体三维结构高度相似,均由一条保守的α链和激素特异性的β链组成。糖蛋白激素受体为A类G蛋白偶联受体(G protein-coupled receptor, GPCR),其中,LH和CG共同作用于促黄体生成素/绒促性素受体(LHCGR),FSH作用于卵泡刺激素受体(FSHR),TSH作用于促甲状腺激素受体(TSHR)来发挥生理功能。与大多数A类GPCR不同,糖蛋白激素受体有约由340-420个氨基酸构成的巨大N端胞外区结构域(ECD),该结构域由富含亮氨酸的重复序列构成,并且存在复杂的糖基化修饰,然而,由于糖蛋白激素受体结构的特殊性,体外获得全长的该类蛋白十分困难。目前尚无全长糖蛋白激素及其受体复合物的结构被报道,限制了人们对于该类受体的激素选择性,以及对受体激活机制的理解。此外,结构信息的缺乏也制约了靶向该类受体的小分子治疗药物的研发。  该研究中,科研人员采用单颗粒冷冻电镜技术,首次解析了3个近原子分辨率的全长LHCGR处于激活状态下的结构(图1),包括结合内源性激素CG的LHCGR(野生型)受体结构(4.3埃)、结合内源性激素CG的LHCGR(含持续性激活突变S277I)受体结构(3.8埃)以及结合内源性激素CG和小分子化合物Org43553的LHCGR(含持续性激活突变S277I)受体结构(3.2埃)。该研究首次揭示了全长LHCGR的结构,以及CG与LHCGR相互作用的细节;解析了失活状态下全长LHCGR的电镜结构,分辨率为3.8埃。通过对比激活LHCGR结构,研究发现受体的ECD发生了约45度的偏转。通过进一步结构分析和功能试验验证,研究提出了LHCGR受体“Push and Pull”的受体激活模型(图2)。这也是首个全长单独GPCR的电镜结构。此外,研究还解析了处于1期临床试验中的小分子化合物Org43553与LHCGR相互作用的分子细节,揭示了Org43553的结合口袋,为临床开发针对LHCGR,FSHR和TSHR的选择性小分子药物替代激素治疗提供了结构模板。  综上,该研究解析了首个糖蛋白激素受体——LHCGR的全长结构,揭示出LHCGR与其内源性激素配体CG的相互作用模式,解决了LHCGR和FSHR对于三种激素LH,CG,FSH的选择性问题;率先提出LHCGR的“Push and Pull”激活模型,并证实该激活模型在糖蛋白GPCR中的普遍性;阐明了小分子化合物Org43553识别LHCGR的分子基础,为靶向糖蛋白激素受体的小分子药物开发奠定了结构基础。  研究工作得到国家重点研发计划、上海市市级科技重大专项、中科院战略性先导科技专项、国家自然科学基金委员会及浙江省自然基金委员会等的资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制