当前位置: 仪器信息网 > 行业主题 > >

纯净地萃取多种药物

仪器信息网纯净地萃取多种药物专题为您整合纯净地萃取多种药物相关的最新文章,在纯净地萃取多种药物专题,您不仅可以免费浏览纯净地萃取多种药物的资讯, 同时您还可以浏览纯净地萃取多种药物的相关资料、解决方案,参与社区纯净地萃取多种药物话题讨论。

纯净地萃取多种药物相关的论坛

  • 肝脏组织中多种药物的固相萃取方法

    在动物性食品中,需要检测的不仅有农药残留污染物,还有兽药以及其他添加物。而动物性食品的主要基质干扰来自于蛋白质、多肽、氨基酸和脂肪等。样品萃取净化的主要困难来自于极性药物与强水溶性基质(蛋白质、氨基酸)的分离和弱极性药物与亲脂性基质的分离。由于兽药的化学性质差异很大,使多残留同时检测具有非常大的难度。样品预处理:肝脏组织1 g与3 mL水混合匀浆,取0.4 mL(等于100 mg肝脏组织)中加入1 mL去离子水,并在超声波水浴中振荡5 min后6000 g离心10 min。上清液A供萃取酸性及中性药物。样品离心后得到的沉淀物中加入枯草杆菌蛋白酶的Tris溶液,混合均匀后(pH 10.5),60℃水解1 h。水解完成后,将样品冷却至室温,用10%(体积分数)磷酸将样品的pH调节至6~7,并在6000 g离心10 min。所得到的上清液(B)用于萃取碱性药物。固相萃取柱:Bond E1ut Certify非极性/阳离子交换混合柱,130mg/3 mL,Varian公司。柱预处理:2 mL甲醇,2 mL磷酸缓冲溶液。样品过柱:0.4 mL上清液A过柱。柱洗涤:1 mL水,0.5 mI,磷酸缓冲溶液(pH 4.0)。柱干燥:50μL甲醇,空气。目标物洗脱:4 mL丙酮/氯仿(1:1,体积比),洗脱酸陛和中性药物(馏分A)。柱预处理:2 mL磷酸缓冲溶液(使用上述同一根萃取柱)。样品过柱:上述上清液B过柱。柱洗涤:1 mL 1 mol/L醋酸(pH 2.4),2 mL丙酮/氯仿(1:1,体积比。柱干燥:50μL甲醇,空气。目标物洗脱:2 mL 2%(体积分数)氨化乙酸乙酯,洗脱碱性药物(馏分B)。浓缩/分析:分别将丙酮/氯仿洗脱馏分及氨化乙酸乙酯洗脱馏分在氮气氛40℃浓缩至约100μL,然后进行GC分析。

  • 【求助】-猪肉中药物微波萃取!

    现在在开展猪肉中药物萃取研究,所用的仪器为上海屹饶WX-4000微波消解仪。刚开始买这台仪器时,只打算用于消化,没有打算用于有机萃取。现在想开展微波有机萃取,觉得好象不行:这台仪器罐体最多只能装15ML的溶液,最大组织秤样量也只能为0.5g(我秤了1.0g)。用5ml甲醇、5ml乙腈和2ml水作为萃取溶剂,温度和压力很不好控制,常常到达所设定的温度后,微波停止了,温度还是会上升(尽管采取程序升温,而且压力设定为2atm)。是不是这台仪器不适合用于有机萃取!有谁用这个型号的仪器,也碰到过同样的问题,交流下?给我提供下关于生物基质方面微波萃取的文章,到底微波程序是怎么样的?谢谢!

  • 关于磺胺类药物和沙星类药物的萃取遇到困难

    我最近做4种磺胺类药物(磺胺嘧啶、磺胺吡啶、磺胺甲基嘧啶、磺胺醋酰钠)和两种沙星类药物(培氟沙星、氧氟沙星)的前处理富集,样品基质暂定蜂蜜,但是做了一个月了,什么的提取不上来,试过液液分散萃取(氯仿、二氯甲烷、氯苯做萃取剂)、试过液液萃取(乙酸乙酯、二氯甲烷-乙酸乙酯、乙腈-氯仿做萃取剂)还有SPE(HLB柱子),都效果不好,六种目标物没法同时富集,最多就是一两种,而且回收率不高,头疼死了,求助啊,麻烦大家给出出主意吧,我还得靠这个毕业呢http://simg.instrument.com.cn/bbs/images/default/em09509.gif

  • 低极性药物的萃取回收率过低怎么办

    各位大侠: 我现在做的一个的低极性药物的血浆蛋白结合率,经过二十四个小时的平衡后,用液液萃取的方法进行萃取后,发现萃取回收率很低.肉眼可见药物跟蛋白一块沉淀了下来,请问有什么方法可提高此药物的萃取回收率吗?谢谢~~~

  • 【原创大赛】动物源性食品中硝基呋喃类药物检测的固相萃取方法

    【原创大赛】动物源性食品中硝基呋喃类药物检测的固相萃取方法

    动物源性食品中硝基呋喃类药物检测的固相萃取方法一、实验目的本实验利用固相萃取法作为样品的前处理方法,LC-MS/MS法作为检测手段。该方法可简化样品的前处理过程,节省有机溶剂用量。二、实验目标物呋喃唑酮(CAS:67-45-8),呋喃它酮(CAS:139-91-3),呋喃西林(CAS:59-87-0),呋喃妥因(CAS:67-20-9)。三、应用范围本方法适用于动物源性食品中硝基呋喃类药物的LC-MS/MS检测及确证。四、参考文献 推荐性国家标准《GB/T 21311-2007 动物源性食品中硝基呋喃类药物代谢物残留量检测方法 高效液相色谱-串联质谱法》。五、实验材料 C8/SAX固相萃取柱200mg/6mL。六、实验方法1、样品前处理 将样品组织搅碎、均质。精确称取约1g(精确到0.01g)样品于15mL带螺盖的离心管中,加入1mL水和8mL甲醇,涡旋混合均匀,2000r/min离心3min(15℃),弃去上清液;加入8mL乙醇,涡旋混合均匀,2000r/min离心3min(15℃),弃去上清液;加入8mL乙酸乙酯,涡旋混合均匀,2000r/min离心3min(15℃),弃去上清液。2、水解和衍生化向质控和样品同待测样品中加入5mL 0.2mol/L的盐酸水溶液、100μL衍生化试剂、以及100μL内标工作溶液(20μg/L)和的混合标准溶液(10μg/L)。盖好盖子,充分振荡混匀,然后放入空气浴摇床,在37℃,200r/min条件下衍生化16h(过夜)。3、样品提取 加入0.3M的磷酸钠水溶液500μL。用试管滴加10mol/L的氢氧化钠溶液,涡旋混合均匀,用精密pH试纸调节pH值至7.0—7.2。9500r/min 离心10min,取上清液。4、SPE柱净化(1)活化:依次以5mL甲醇和5mL纯水预处理。(2)洗脱:上清液全部过柱,流速控制在约每秒1滴。依次以5mL水和5mL 50%甲醇/水溶液淋洗柱子。淋洗液完全通过小柱后,至少抽真空5min。以4mL 4%的甲醇氨洗脱,洗脱液用15mL试管收集。(3)浓缩定容:40℃氮气吹干。残渣以0.05%甲酸/甲醇溶液(9:1,v/v)溶解。溶解液以0.22μm的水相滤膜过滤,滤液可直接用于LC-MS/MS分析。5、LC-MS/MS条件 液相色谱-质谱/质谱仪 色谱柱:C18柱:150mm×2.1mm,2.0μm,或相当者 流动相:甲醇-5mM乙酸铵七、实验结果1、添加回收结果 向样品中加入不同水平的四环素类药物,回收率结果如下:(见表1)表1 动物组织中四环素类药物添加回收结果 样品名称 化合物名称 添加水平(ng/mL) 回收率(%) 猪肉 呋喃唑酮 50 80.75 100 82.58 呋喃它酮 50 89.74 100 90.88 呋喃西林 50 92.74 100 91.28 呋喃妥因 50 95.63 100 96.94 2、 空白样品添加农药残留物色谱图 http://ng1.17img.cn/bbsfiles/images/2015/08/201508141653_560805_3310_3.jpg

  • 【原创大赛】动物源性食品中四环素类药物检测的固相萃取方法

    【原创大赛】动物源性食品中四环素类药物检测的固相萃取方法

    动物源性食品中四环素类药物检测的固相萃取方法(C8/SCX固相萃取柱)一、实验目的本实验利用固相萃取法作为样品的前处理方法,LC-MS/MS法作为检测手段。该方法可简化样品的前处理过程,节省有机溶剂用量。 二、实验目标物四环素(CAS:60-54-8),金霉素(CAS:57-62-5),强力霉素(CAS:564-25-0)。三、应用范围本方法适用于动物源性食品中四环素类药物的LC-MS/MS检测及确证。四、参考文献 推荐性国家标准《GB/T 21317-2007 动物源性食品中四环素类兽药残留量检测方法 液相色谱-质谱/质谱法与高效液相色谱法》。 五、实验材料 C8/SCX固相萃取柱200mg/6mL。 六、实验方法 1、样品提取 将样品混匀、均质,有结晶的样品于60℃以下水浴融化混匀、迅速冷却;在50 mL带螺盖的离心管中精确称取约6g(精确到0.01g)均质后的样品;加入25 mLEDTA-Mcllvaine缓冲溶液迅速混匀1min,冰浴超声20 min;3000 r/min离心10min,取上清液,过快速滤纸,收集滤液,待净化。 2、SPE柱纯化 (1)活化:将固相萃取真空装置与真空泵连接好,装上C8/SCX柱,依次以5mL甲醇和10 mL纯水预处理。 (2)上样和洗脱:取样品提取液中上清液10mL过柱,流速控制在约每秒1滴;依次以5mL水+5mL甲醇/水(1:19,体积比)溶液淋洗柱子;淋洗液完全通过小柱后,抽真空20min;以10 mL甲醇+乙酸乙酯(1+9)洗脱,收集洗脱液。 (3)浓缩定容:将洗脱液氮吹吹干,用2mL甲醇定容,过0.22μm有机滤膜,用于LC-MS/MS分析。 5、LC-MS/MS条件 液相色谱-质谱/质谱仪 色谱柱:C18柱:150mm×2.1mm,2.0μm,或相当者 流动相:甲醇-10mM草酸七、实验结果1、添加回收结果 向样品中加入不同水平的四环素类药物,回收率结果如下:(见表1)表1 动物组织中四环素类药物添加回收结果 样品名称 化合物名称 添加水平(ng/mL) 回收率(%) 猪肉 四环素 50 97.38 100 92.94 强力霉素 50 80.43 100 81.87 金霉素 50 95.72 100 94.63 2、 空白样品添加农药残留物色谱图http://ng1.17img.cn/bbsfiles/images/2015/08/201508141645_560791_3310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508141645_560792_3310_3.jpg

  • 腐败肝脏样品中安眠镇静药物的萃取方法

    样品预处理:腐败肝脏2 g,添加酸碱内标物(烯丙异丙巴比妥、SKF525)10 mg/L,加入2 mL 4 mol/L盐酸,50℃水解1 h,然后用l0%(体积分数)氢氧化钠将溶液调节至pH 6,离心后备用。固相萃取仪:.ASPEC XL,吉尔森公司。固相萃取柱:Bakerbond C18非极性柱,200 mg/3 mL,J.T.Baker公司。柱预处理:5 mL甲醇,5 mL去离子水,1.5 mL/min,5 mL pH 6.0磷酸缓冲溶液(0.1 mol/L),1.5 mL/min。样品过柱:将上述处理好的上清液过柱,0.5 mL/min。柱洗涤:3 mL去离子水,3 mL pH 6.0磷酸缓冲溶液。目标物洗脱:3 mL氯仿/丙酮(1:1,体积比),3 mL2%(体积分数)氨化氯仿/异丙醇(4:1,体积比),1.0 mL/min。样品浓缩:将收集的馏分浓缩至0.1 mL供GC/MS分析。最常用的有机溶剂是丙酮,因为爆炸残留物能够迅速地溶解在丙酮中。但是,同时许多其他化合物也被丙酮溶解,这些化合物不但会干扰对爆炸残留物的分析,还会对分析仪器造成污染。为了解决这个问题,Thompson等建立了一套水萃取、固相萃取净化的方法。爆炸残留物采集一水萃取一SPE净化一浓缩一LC/UV筛选一LC/MS或GC/MS确认。爆炸残留物采集 :棉球用1 mL溶剂湿润,放人10 mL空塑料注射器中并将注射器密封,以防止交叉污染,棉球应在24 h内使用。到达爆炸现场后用镊子将湿润的棉球取出,擦拭可疑残留物体表面,然后将棉球放入原来的注射器中密封送实验室检测。实验中所使用的水是经过超纯水处理装置(Maxima UltraPure Water system,Elga Ltd)的去离子水。将放置采集棉球的注射器打开,加入5.5 mL水,放置10~15 min后将液体放出并收集在试管中,挤压棉球将残留的湿润试剂挤出。再加入5.5mL水洗涤棉球,并将其收集在上述试管中供固相萃取用。如果试管中的液体含有大量颗粒,可采用离心方式除去颗粒。土壤样品的萃取:爆炸现场采集的20 g土壤样品中加人40 mL乙腈,搅拌后超声波振荡2 h,然后将其在黑暗处放置15h。将液体倒人离心试管中,在1l00r/min离心10 min。取10 mL用5%(体积分数)乙腈的去离子水稀释至200 mL。然后用Oasis HIB萃取柱按以下方法进行固相萃取(200 mL样品全部过柱)。固相萃取柱:Porapak RDX 500 mg/6 mL,Waters公司。或Oasis HLB,60 mg/3 mL,Waters公司。或SDBXC薄膜型柱7 mm直径,0.5 mm厚,含7.5 mg SDB/3 mL,3M公司。

  • 使用正己烷萃取药物时,发现正己烷有一个干扰峰

    [sub]?正己烷萃取血浆药物时,在药物的定量离子对那里刚好出现一个峰,和药物的峰完全重叠,这可能是什么原因,试过了正己烷空气吹干后,甲醇复溶,就是有峰,而且同样的步骤,血浆基质加标,发现峰的面积变成正己烷和药物的峰面积之和,正己烷是分析纯的,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url],或许除了正己烷,还可以用什么进行萃取,提高响应值,定量限需要做到 0.03ng/ml 求助各位大神了[/sub]

  • 【原创大赛】青菜中多种农药残留的分散固相萃取/气相色谱法测定

    【原创大赛】青菜中多种农药残留的分散固相萃取/气相色谱法测定

    摘要:本文介绍了采用一种新型的样品前处理技术—分散固相萃取法对青菜中的多种农药残留进行测定的方法。该法将提取和净化在同一步骤中完成,具有试剂用量少,操作简单,快速等优点。以丙酮+正己烷为提取溶剂,配微电子捕获检测器,此法对毒死蜱、氟虫氰、菊酯类等九种农药在40分钟内实现基线分离,最小检测浓度为2μg/kg~10μg/kg,方法的线性范围为0.02mg/kg~15.00 mg/kg,相关系数为0.9953~0.9999。关键词: 分散固相萃取;气相色谱;微电子捕获检测器;青菜 青菜是人们日常生活中必不可少的食物之一,然而随着滥用农药的现象,对青菜中的农药残留进行检测是很有必要的。本文将一种新型的样品处理技术:分散固相萃取法(Matrix solid phase dispersion: MSPD)对青菜样品中的毒死蜱、氟虫氰、联苯菊酯、甲氰菊酯、三氟氯氰菊酯、氯菊酯、氟氰戊菊酯、溴氰菊酯、氰戊菊酯九种农药残留进行快速检测,对方法的稳定性、精密度、重现性和最低检测限进行了测定。1 实验部分1.1 安捷伦7890A气相色谱仪;配微电子捕获检测器;化学工作站,离心机,粉碎机、涡旋混合器;氮气吹干浓缩仪;固相萃取装置;1.2 试剂与材料丙酮、氯化钠、正已烷、无水硫酸钠(650℃下灼烧4小时后贮存于干燥器中备用)均为分析纯;定容用的正已烷为色谱纯;毒死蜱、氟虫氰、联苯菊酯、甲氰菊酯、三氟氯氰菊酯、氯菊酯、氟氰戊菊酯、溴氰菊酯、氰戊菊酯标准品(浓度均为100μg/mL)。1.3 样品提取称取约20.0g粉碎好的试样,加入60mL丙酮,涡旋混合5 min,过滤,用丙酮洗涤残渣。将滤液收集于100mL容量瓶中,并用丙酮定容。准确移取10mL提取液,置于50mL离心管中,加入约1mL饱和氯化钠溶液,混匀,用约15mL丙酮+正已烷(1+3)提取两次,每次旋涡1 min,4000r/min离心5 min,合并上层有机相,并过无水硫酸钠柱用少量正已烷洗涤柱。将合并的流出液于40℃下用氮气吹干浓缩至1mL待净化。1.4 净化将ENVI-carb (6mL,0.5g)小柱装在固相萃取装置上,在小柱中加入0.5g酸性氧化铝,先用3mL丙酮+正已烷(1+3)预淋洗小柱,将淋洗液过ENVI-carb小柱,10mL丙酮+正已烷(1+9)洗脱。将洗脱液置于40℃下用氮气吹近干,用正已烷(色谱纯)定容至1mL,待测。1.5色谱条件检测器:微电子捕获检测器;色谱柱:HP-5(30m×320μm×0.25μm)。采用程序升温:初始温度70℃,保持3 min后升至270℃,升温速度为20℃/min,保持25 min。进样口温度230℃,检测器温度300℃。载气为氮气,流量为1mL/min;尾吹为氮气,流量为30 mL/min。恒流模式,不分流进样,进样量1μL。2 结果与讨论2.1 淋洗液体积的选择表1为洗脱剂丙酮+正已烷(1+3)体积对回收率的影响。在实验过程中采用三种不同的洗脱体积进行洗脱(n=5),测定其回收率。表1 洗脱剂丙酮+正已烷(1+3)体积对回收率农药名称洗脱液体积5mL洗脱液体积10mL洗脱液体积15mL回收率%RSD%回收率%RSD%回收率%RSD%[/

  • [介绍]:固相萃取技术

    固相萃取(SPE)被日趋认为是一个非常有用的样品处理技术,专门用来进行分析前的 样品纯化和浓缩。使用固相萃取法能避免液-液萃取所代来的许多问题,比如,易于乳化, 不完全的相分离,较低的定量分析回收率,昂贵易碎的玻璃器皿和大量的有机废液。与液- 液萃取相比,固相萃取更有效,容易达到定量萃取,快速和自动化,同时也减少了溶剂用量和 工作时间。 固相萃取(SPE)通常是用于液体样品的准备和不易或不挥发样品的萃取,但是 也用于能预先提取到溶液里的固体样品。固相萃取产品对样品的萃取,浓缩和净化都非常好。 它们提供给您多种的化学性质,吸附剂类型和大小。针对您的需要及样品性质,选择适当的产 品是非常重要的。 固相萃取柱的类型及应用 硅胶的填料(60A,40um)   ODS(C18) 硅胶上键合十八烷基  反相萃取,适合于非极性到中等极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药物,染料,芳香油,脂溶性, 维生素,杀 真菌剂,锄草剂,农药,碳水化合物,对羟基甲苯酸取代酯,苯酚, 邻苯二甲酸酯,类固醇,表面活化剂,茶碱 ,水溶性维生素。 Octyl (C8) 硅胶上键合辛烷   反相萃取,适合于非极性到中等极性的化合物,比如,抗 菌素, 巴比妥酸盐,酞嗪,咖啡因,药物,染料,芳香油,脂溶性维生素,杀 真菌剂,锄草剂,农药,碳水化合物,对羟基甲基酸取代酯,苯酚,邻 苯二甲酸酯,类固醇,表面活化剂,水溶性维生素。 Ethyl (C2) 硅胶上键合乙基 相对C18和C8,因为短链,保持作用小的多,适合非极性化合物。 Phenyl 硅胶上键合苯基 相对C18和C8,反相萃取,适合于非极性到中等极性的化物, Silica 无键合硅胶  极性化合物萃取,如乙醇,醛,胺,药物,染料,锄草剂,农药,酮,含氮类化合物,有机酸,苯酚,类固醇 Cyano(CN) 硅胶上键合丙氰基烷  反相萃取,适合于中等极性的化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗菌素,染料,锄草剂,农药,苯酚,类 固醇。弱阳离子交换萃取,适合于碳水化合物和 阳离子化合物。 Amino(NH2) 硅胶上键合丙氨基   正相萃取,适合于极性化合物。弱阴离子交换萃取,适合于 碳水化合物,弱性阴离子和有机酸化合物。 Strong Anion Exchange(SAX) 硅胶上键合卤化季氨盐   强阴离子交换萃取,适合于阴离子,有机酸,核酸,核苷酸, 表面活化剂。容量:0.2毫当量/克。 Strong Cation Exchange(SCX) 硅胶上键合磺酸钠盐   强阳离子交换萃取,适合于阳离子,抗菌素,药物,有机碱,氨基酸,儿茶酚胺,锄草剂,核酸碱,核苷,表面活化剂。 容量:0.2毫 当量/克。 AL2O3填料 Alumina A(acidic) 酸性 PH ~5 极性化合物离子交换和吸附萃取,如维生素. Alumina B(basic) 碱性 PH~8.5 吸附萃取和阳离子交换。 Alumina N(neutral) 中性 PH~6.5   极性化合物吸附萃取。调节pH,阳和阴离。 子交换.适合于维生素,抗菌素,芳香油,酶,糖苷,激素 Florisil填料-硅酸镁 Florisil   极性化合物的吸附萃取,如乙醇,醛,胺,药物,染料,锄草剂,农药,PCBs,酣,含氮类化合物,有机酸,苯酚,类固醇

  • 【实战宝典】与经典液-液萃取技术相比,双水相萃取具有哪些优点?双水相萃取的应用领域有哪些?

    链接:[font='Times New Roman','serif']https://bbs.instrument.com.cn/topic/7893767[/font]问题描述:相比于经典液[font='Times New Roman','serif']-[/font]液萃取技术,双水相萃取具有哪些优点?双水相萃取主要应用于哪些方面?解答:随着蛋白质、基因、细胞等生物工程研究工作的广泛开展,大量生化产品不断涌现,但由于大部分生化产品原液具有低浓度、生物活性等特点,对分离条件以及环境要求极其严苛,经典的液[font='Times New Roman','serif']-[/font]液萃取技术已无法满足该分离要求,一种新型分离技术[font='Times New Roman','serif']—[/font]双水相萃取技术应运而生。作为一种新型萃取技术,双水相萃取具有如下优点:[font='Times New Roman','serif']a [/font]两相间的界面张力小,利于两相间的物质传递,平衡速度快。[font='Times New Roman','serif']b [/font]萃取条件温和,萃取体系不含有机溶剂,可保持生物物质的生物活性。[font='Times New Roman','serif']c [/font]大量干扰组分可与细胞壁碎片、组织碎片等固体物质一并去除,分离过程简单。[font='Times New Roman','serif']d [/font]萃取过程中使用的聚合物或无机盐绿色环保,对人体无害。[font='Times New Roman','serif']e [/font]可通过改变聚合物浓度和种类、无机盐浓度和种类、体系温度和[font='Times New Roman','serif']pH[/font]等多种手段来提高萃取选择性与回收率。[font='Times New Roman','serif']f [/font]设备简单,易于连续化操作,可直接与后续纯化技术连接。基于以上优点,双水相萃取技术已广泛应用于生物工程、药物分离以及环境分析等领域。在生物工程领域,主要用于生物活性物质的分离纯化,如蛋白质、酶、核酸、抗生素、病毒等;在药物分离领域,主要用于天然产物中有效成分的提取分离,如中草药材中黄芩苷、黄芩素、黄酮、皂苷等的提取;在环境分析领域,主要用于金属离子、酚类物质等的分离。以上内容来自仪器信息网《样品前处理实战宝典》

  • 兰州化物所分子印迹聚合物应用于中药活性成分固相萃取获进展

    分子印迹聚合物(MIPs)优良的性能以及对目标物的特异性吸附使其在人工抗体模拟、催化、药物释放、固相萃取、色谱法、传感器和吸附测定等领域应用广泛。中药豨莶的主要活性化合物是奇壬醇。由于传统分离材料的选择性较差,使得在中药中直接提取奇壬醇的过程繁琐且效率低。 中国科学院兰州化学物理研究所中科院西北特色植物资源化学重点实验室师彦平研究员带领的药物化学成分小组通过非共价印迹法合成了一种新的分子印迹聚合物,并建立固相萃取法,成功应用于中药豨莶草提取物中二萜类化合物奇壬醇的萃取。所制得的分子印迹聚合物对目标分析物具有良好的选择性和吸附性能,回收率可达80.9%。 该方法是植物活性成分选择性萃取和清洁的有效方法,可直接应用于中药豨莶草复杂体系中奇壬醇的萃取。 该研究得到了国家自然科学基金的支持。研究结果发表在近期出版的Talanta (89 (2012) 505–512)上。 Talanta发表论文摘要http://www.cas.cn/ky/kyjz/201207/W020120705326724726503.jpg奇壬醇-分子印迹聚合物的图式表征

  • 【原创大赛】不同液-液萃取条件萃取“瘦肉精”效果的对比

    不同液-液萃取条件萃取“瘦肉精”效果的对比 摘要:为了实现对痕量“瘦肉精”进行检测,以尿液样本为例,通过液-液萃取法不同条件下的对比,选出最佳的萃取条件。实验显示,以无水硫酸钠为过饱和脱水剂,在强碱性条件下对样本萃取所得五种“瘦肉精”的综合回收率较理想。前言有统计数据显示,在检测中,样品制备需要花费约60%的时间。同样,大部分的误差也来自于样品制备。如果样品制备操作不当,使用任何先进的仪器也不可能得到准确的检测结果。目前,传统样品前处理技术主要有:索氏提取、液-液萃取、柱层析。本文主要采取液-液萃取法进行“瘦肉精”类药物的提取,通过改变一定条件,对比其最终检测的效果。“瘦肉精”泛指能降低脂肪、提高瘦肉率的一类药物,通常属于β-受体激动剂(β-agonists),又叫β-激动剂或β-兴奋剂,全称β-肾上腺素能兴奋剂(β-Adrenergic Agonist),是一类化学结构和生理功能类似肾上腺素和去甲肾上腺素的苯乙醇胺类衍生物,能与动物体内大多数组织细胞膜上的β-肾上腺素能受体结合,也因此而得名。克伦特罗(又称克喘素、双氯醇胺或苯甲醇胺)、莱克多巴胺、沙丁胺醇(又称舒喘宁)、西马特罗(又称息喘宁)、特布他林是五种最常见的β-兴奋剂,基本信息如下表:

  • 固相萃取+GC/MS=茶叶中多种农药残留检测解决方案

    近日,某环保组织发布茶叶农药调查报告,质疑国内9大品牌茶叶企业的产品含农药残留,引发公众“还能不能喝茶”的争议。茶叶中农药残留分析过程主要包括样品前处理和检测技术两部分,因茶叶本身的基质特性复杂,样品前处理成为茶叶农药残留分析的关键,如何实现多残留分析,如何有效地去除杂质,同时又保证高回收率,是整个前处理过程的难点。 迪马科技在参考《GB/T 23204-2008 茶叶中519种农药及相关化学品残留量的测定气相色谱-质谱法》和《GB/T 23205-2008 茶叶中448种农药及相关化学品残留量的测定液相色谱-串联质谱法》国标基础上,开发出茶叶中多种农药残留专用固相萃取柱,可有效去除茶叶中的有机酸,碳水化合物,色素,茶多酚等多种杂质,实现优异的净化效果,对茶叶中有机磷类,有机氯类,菊酯类,氨基甲酸酯类等多种农药残留具有较高的回收率和重现性结果。 以下为迪马科技茶叶中多种农药残留检测解决方案,试样经乙腈提取后,采用ProElut TPC茶叶专用固相萃取柱进行净化,GC-MS法检测。方法准确可靠,可实现茶叶中多种农药残留的测定。茶叶中多种农药残留检测1 适用范围适用于茶叶中农药残留检测。2 样品准备(1)称取5 g样品于离心管中,向离心管中加入20 mL乙腈,15000 r/min均质 1 min,6000 rpm下离心5 min;(2)将上清液转移至旋蒸瓶中,残渣用15 mL乙腈按照步骤(1)提取一次。(3)合并两次上清液,40 ℃下减压蒸至低于1 mL,待净化。3 SPE柱净化——ProElut TPC(Cat.#: 65354)(1)活 化:10 mL乙腈-甲苯*活化;(2)上 样:将待净化液加入小柱,再用6 mL乙腈-甲苯*分三次洗涤旋蒸瓶并加入柱中,收集流出液;(3)洗 脱:向柱中加入25 mL乙腈-甲苯*,收集流出液,合并步骤(2)、(3)流出液;(4)重新溶解:将洗脱液40 ℃下减压蒸至约0.5 mL,正己烷进行溶剂交换,定容至1 mL,用外标法定量(或者加入40μL内标液,定容至1mL用内标法定量)。*乙腈-甲苯溶液:乙腈:甲苯=3:1(体积比)4 GC-MS分析条件色谱柱:DM-5MS 30 m×0.25 mm×0.25 μm(Cat.#: 8221)进样口温度:290 ℃升温程序:初始温度40 ℃,保持0.5 min,以30 ℃/min升温至130 ℃,再以5 ℃/min升温至250℃,再以10 ℃/min升温至300℃,保持5 min载气:氦气,流速:1.2 mL/min进样方式:不分流进样进样量:1 μL离子源温度:230 ℃接口温度:280 ℃溶剂延迟:5 min电子轰击电离源(EI):选择离子监测模式(SIM),分组监测见表1

  • 【资料】-超临界萃取的技术原理、特点和应用

    一、超临界萃取的技术原理    超临界CO2流体萃取(SFE)分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 二、超临界萃取的特点    1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来;    2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性;    3、萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本; 4、CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好; 5、CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本;    6、压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。 三、超临界CO2萃取技术的应用    超临界CO2萃取的特点决定了其应用范围十分广阔。如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。具体应用可以分为以下几个方面:    1、从药用植物中萃取生物活性分子,生物碱萃取和分离;    2、来自不同微生物的类脂脂类,或用于类脂脂类回收,或从配糖和蛋白质中去除类脂脂类;    3、从多种植物中萃取抗癌物质,特别是从红豆杉树皮和枝叶中获得紫杉醇防治癌症;    4、维生素,主要是维生素E的萃取;    5、对各种活性物质(天然的或合成的)进行提纯,除去不需要分子(比如从蔬菜提取物中除掉杀虫剂)或“渣物”以获得提纯产品;    6、对各种天然抗菌或抗氧化萃取物的加工,如罗勒、串红、百里香、蒜、洋葱、春黄菊、辣椒粉、甘草和茴香子等。 来源:中国色谱网[em61]

  • 用乙酸乙酯液液萃取血浆中药物回收率不够

    要提取的药物是强碱弱酸盐,在水中有一定的溶解性,弱酸水解为分子时,脂溶性才好,我用乙酸乙酯重复提取时,回收率不稳定,还达不到70%,试过往血里加高浓度和低浓度甲酸,但是血样会出现絮状物,用乙酸乙酯提取,更是啥都测不到,对血来说,用什么萃取剂才合适呢,又或者怎样能使血样带一点点酸,又不成絮状影响回收率

  • 发酵下游 萃取技术

    第一节 溶剂萃取一、基本概念¨ 溶剂萃取:广义上指用溶剂将物质从固体或另一种互不相溶的溶剂中提取出来的方法。前者称为液-固萃取(浸取),后者称为液-液萃取。狭义的溶剂萃取是指液-液萃取。¨ 料液:溶剂萃取中,被提取的溶液。F¨ 溶质:欲提取的物质.¨ 萃取剂:用以进行萃取的溶剂。S¨ 萃取:料液中的溶质向萃取剂转移的过程。¨ 萃取液:萃取平衡后,含有溶质的萃取剂溶液。¨ 萃余液:被萃取出溶质以后的料液。R¨ 分配系数:在一定温度、一定压力下,某一溶质在互不相溶的两种溶剂间分配时,达到平衡后,在两相中的浓度之比为一常数,这个常数称为分配系数。¨ 萃取率:萃取相中溶质总量占原始料液中溶质总量的百分比。用于表示一种萃取剂对某种溶质的萃取能力。。¨ 分离因素:在同一萃取体系内两种溶质在同样条件下分配系数的比值。 分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。 二、萃取剂¨ 常用萃取剂: 甲醇、乙醇、正丁醇、丙酮、乙酸乙酯、乙醚、氯仿、苯、甲苯、石油醚(按亲脂性递增)¨ 萃取剂选择的原则:1)对所需成分溶解度大,其它成分溶解度小。根据相似相溶原理进行选择。2)萃取剂与料液的互溶度愈小愈好     3)毒性小。低毒性(乙醇、丙酮、正丁醇、乙酸乙酯)、中等毒性(甲苯、甲醇)、强毒性(苯、氯仿)4)经济、安全、腐蚀性低、沸点不高、挥发性小、便于回收 三、工业萃取的步骤和分类四、乳化和破乳化¨ 乳化:发酵液经预处理和过滤后,虽能除去大部分非水溶性的杂质和部分水溶性杂质,但残留的杂质(如蛋白质等)具有表面活性,在进行溶剂萃取时,有机相和水相难以分层。¨ 破乳方法1)加入表面活性剂:1231、PPB、亚油酸钠2)加入电解质:如氯化钠、硫酸铵3)吸附法:通过多孔性介质4)高压电破乳:5)加热6)稀释法:加入连续相五、影响萃取的主要因素¨ 乳化作用¨ pH值:影响弱酸或弱碱药物的分配系数和药物的稳定性。¨ 温度和时间:药物的稳定性、分配系数¨ 盐析作用:盐析剂与水分子结合,游离水分子减少,药物在水相中溶解度降低,易转入有机相;降低有机溶剂在水中的溶解度;萃余相比重增大,利于分相¨ 溶剂的种类和用量及萃取方式 总结: 溶剂萃取法比离子交换法选择性好、比沉淀法分离程度高、比蒸馏法能耗低,便于连续操作,现已广泛用于抗生素、有机酸、维生素、激素等产物的提取上,但是普通的有机溶剂萃取法由于以下原因难于应用于蛋白质分离(1 )许多蛋白质都有极强的亲水性,不溶于有机溶剂;(2 )蛋白质在有机溶剂相中易变性失活。作业:¨ 总结多级错流萃取和多级逆流萃取的异同。¨ 名词解释:萃取剂、萃取液、萃余液、分配系数、分离因素、乳化¨ 溶剂萃取包括哪些步骤?¨ 常用的萃取剂有哪些?如何进行选择?

  • 【原创大赛】动物源性食品中磺胺类药物检测的固相萃取方法 (Silibase™ ALN)

    【原创大赛】动物源性食品中磺胺类药物检测的固相萃取方法  (Silibase™ ALN)

    动物源性食品中磺胺类药物检测的固相萃取方法(Silibase™ ALN)一、实验目的本实验利用固相萃取法作为样品的前处理方法,LC-MS/MS法作为检测手段。该方法可简化样品的前处理过程,节省有机溶剂用量。 二、实验目标物磺胺噻唑(CAS:72-14-0),磺胺甲基嘧啶(CAS:127-79-7),磺胺醋酰(CAS:144-80-9),磺胺吡啶(CAS:144-83-2),磺胺甲基异恶唑(CAS:127-69-5)。三、应用范围本方法适用于动物源性食品中磺胺类药物的LC-MS/MS检测及确证。四、参考文献 推荐性国家标准《GB/T 21316-2007 动物源性食品中磺胺类药物残留量的测定 液相色谱-质谱/质谱法》。 五、实验材料 Biocomma®Silibase™ ALN固相萃取柱500mg/3mL。 六、实验方法 1、样品提取 将称取5g 试样,精确到0.01g。置于50mL涡旋具盖离心管中,加入5mL水,于涡旋混合器上快速混合1min,使试样完全溶解。准确加入15mL乙酸乙酯,在振荡器上振荡10min,以3000r/min 离心10min,准确吸取上层乙酸乙酯12mL转入15mL的离心管中,置于浓缩吹氮仪在45℃吹扫蒸干,加入5mL水溶解,待净化。 2、SPE净化 将提取液过中性氧化铝柱,待溶液完全流出后,用2×3mL水洗柱,然后再用5mL乙腈+水淋洗柱,弃去全部淋出液。用真空泵减压抽干10min,最后用6mL乙酸乙酯洗脱,收集洗脱液10mL离心管中,于45℃用氮气吹干液吹干,用乙腈+水(20+80)定容至1mL,供LC-MS/MS 上机测定。 3、LC-MS/MS条件 液相色谱-质谱/质谱仪 色谱柱:C18柱:150mm×2.1mm,2.0μm,或相当者 流动相:乙腈-0.1%甲酸七、实验结果1、添加回收结果 向样品中加入不同水平的四环素类药物,回收率结果如下:(见表1)表1 动物组织中四环素类药物添加回收结果 样品名称 化合物名称 添加水平(ng/mL) 回收率(%) 猪肉 磺胺噻唑 50 84.76 100 89.44 磺胺甲基嘧啶 50 81.30 100 91.08 磺胺醋酰 50 92.92 100 94.37 磺胺吡啶 50 81.74 100 88.09 磺胺甲基异恶唑 50 81.81 100 88.22 2、 空白样品添加农药残留物色谱图http://ng1.17img.cn/bbsfiles/images/2015/08/201508141631_560757_3310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508141631_560758_3310_3.jpg

  • 【原创】萃取与洗涤

    一、基本原理萃取是利用物质在两种不互溶(或微溶)溶剂中溶解度或分配比的不同来达到分离。提取或纯化目的的操作。萃取是有机化学实验中用来提取或纯化有机化合物的常用方法之一。应用萃取可以从固体或液体混合物中提取出所需物质,也可以用来洗去混合物中少量杂杂质。通常称前者为“抽取 ”或萃取,后者为“洗涤”。二、仪器的选择液体萃取最通常的仪器是分液漏斗,一般选择容积较被萃取液大1-2倍的分液漏斗.三、萃取溶剂萃取溶剂的选择,应根据被萃取化合物的溶解度而定,同时要易于和溶质分开,所以最好用低沸点溶剂。一般难溶于水的物质用石油醚等萃取;较易溶者,用苯或乙醚萃取;易溶于水的物质用乙酸乙酯等萃取。 每次使用萃取溶剂的体积一般是被萃取液体的1/5~1/3,两者的总体积不应超过分液漏斗总体积的2/3四、操作方法在活塞上涂好润滑脂,塞后旋转数圈,使润滑脂均匀分布,再用小像皮圈套住活塞尾部的小槽,防止活塞滑脱。关好活塞,装入待萃取物和萃取溶剂。塞好塞子,旋紧。先用右手食指末节将漏斗上端玻塞顶住,再用大拇指及食指和中指握住漏斗,用左手的食指和中指蜷握在活塞的柄上,上下轻轻振摇分液漏斗,使两相之间充分接触,以提高萃取效率。每振摇几次后,就要将漏斗尾部向上倾斜(朝无人处)打开活塞放气,以解除漏斗中的压力。如此重复至放气时只有很小压力后,再剧烈振摇2~3min,静置,待两相完全分开后,打开上面的玻塞,再将活塞缓缓旋开,下层液体自活塞放出,有时在两相间可能出现一些絮状物也应同时放去。然后将上层液体从分液漏斗上口倒出,却不可也从活塞放出,以免被残留在漏斗颈上的另一种液体所沾污。乳化现象解决的方法:(1)较长时间静置;(2)若是因碱性而产生乳化,可加入少量酸破坏或采用过滤方法除去;(3)若是由于两种溶剂(水与有机溶剂)能部分互溶而发生乳化,可加入少量电解质(如氯化钠等),利用盐析作用加以破坏。另外,加入食盐,可增加水相的比重,有利于两相比重相差很小时的分离;(4)加热以破坏乳状液,或滴加几滴乙醇、磺化蓖麻油等以降低表面张力。注意:使用低沸点易燃溶剂进行萃取操作时,应熄灭附近的明火。五、化学萃取化学萃取(利用萃取剂与被萃取物起化学反应)也是常用的分离方法之一,主要用于洗涤或分离混合物,操作方法和前面的分配萃取相同。例如,利用碱性萃取剂从有机相中萃取出有机酸,用稀酸可以从混合物中萃取出有机碱性物质或用于除去碱性杂质,用浓硫酸从饱和烃中除去不饱和烃,从卤代烷中除去醇及醚等。六、液-固萃取自固体中萃取化合物,通常是用长期浸出法或采用脂肪提取器,前者是靠溶剂长期的浸润溶解而将固体物质中的需要成分浸出来,效率低,溶剂量大脂肪提取器是利用溶剂回流和虹吸原理,是固体物质每一次都能被纯的溶剂所萃取,因而效率较高,为增加液体浸溶的面积,萃取前应先将物质研细,用滤纸套包好置于提取器中,提取器下端接盛有萃取剂的烧瓶,上端接冷凝管,当溶剂沸腾时,冷凝下来的溶剂滴入提取器中,待液面超过虹吸管上端后,即虹吸流回烧瓶,因而萃取出溶于溶剂的部分物质。就样利用溶剂回流和虹吸作用,是固体中的可溶物质富集到烧瓶中,提取液浓缩后,将所得固体进一步提纯。

  • 超临界萃取新技术在中药提取分离中的应用

    一、 中药产业化形势及应用新技术的意义 中药为我国传统医药,用中药防病治病在我国具有悠久的历史。由于化学药品的毒副作用逐渐被人们所认识及合成一个新药又需巨大的投资,西医西药对威胁人类健康的常见病、疑难病的治疗药物还远远不能满足临床的需要,因此,全世界范围内掀起了中医中药热。面对科学技术,特别是医药工业的迅猛发展,国际间医药学术交流活动的日益频繁以及药品市场竞争越来越激烈,实现中药现代化,与国际接轨,已成为中医药工作者的共识。改革开放到党的十五大,我国明确了中药发展的战略方向和思路,提出"科教兴业"的战略主体目标,中药的发展迈进了一大步。中药生产中的大桶煮提、大锅蒸熬及匾、勺、缸类生产器具当家的状况大为改善,进而出现不锈钢多功能提取罐、外循环蒸发、多效蒸发器,流化干燥器等设备,中成药的剂型也有较大的发展,由丸、散、膏、丹剂为主发展成为具有颗粒剂、片剂、胶囊剂、口服液及少量粉针等剂型。中药产值比1979年翻了五番,约占医药工业产值的30%以上。然而,我国现阶段创制的中成药还难以在国外注册、合法销售与使用。从目前全世界天然药物的贸易额来看,中国仅占1%左右,与天然药物主产国的地位极不相称。其原因主要是产业现代工程技术水平不高,制备工艺和剂型现代化方面还很落后;生产过程的许多方面缺乏科学的、严格的工艺操作参数,不仅导致了消耗高、效率低,而且还出现有效成分损失、疗效不稳定、剂量大服用不方便、产品外观颜色差、内在质量不稳定;同时还出现缺少系统的量化指标,大多数产品缺乏疗效基本一致的内在质量标准;许多复方制剂还难以搞清楚其作用的物质基础。"丸、散、膏、丹,神仙难辨"的状况尚未根本改变。要改变这种现状,让西方医药界接受中药,增强中药在国际市场上的竞争地位,主要途径是,以中药理论为指导,采用先进的技术,实现中药现代化。中药产品现代化的重点可简单地用8个字来描述,即"有效、量小、安全、可控"。实际上,它涉及范围十分广泛,要解决的问题比较复杂,但首先最关键的问题就是要提取分离工艺、制剂工艺现代化,质量控制标准化、规范化。为此,许多医药专家多次提出要采用超临界流体技术、分子蒸馏技术、膜分离技术、冷冻干燥技术、微波辐射诱导萃取技术、缓控释制剂技术、各种先进的色谱、光谱分析等先进技术,进行中药研究开发及产业化。在国家有关部门的主持下,1998年3月底,来自全国及香港20多个单位的60多位专家学者聚集厦门大学,探讨了中药现代化问题,特别是中药复杂体系中重大科学基础问题,超临界流体技术、分子蒸馏技术、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]等同时也被提出来。 超临界CO2萃取技术、分子蒸馏技术、超重力场技术是目前国际上较新的三大提取分离技术、采用这些技术对中药进行提取分离纯化,对实现中药现代化具有重要意义。 中国作为全球中药材大国,随着我国入世的临近,更应在推动中药现代化、成果产业化进程中发挥重要作用,使中国的资源优势转化为经济优势,并使我国中药现代化的重大举措得以实现。二、 超临界CO2流体萃取新技术在中药提取分离中的应用 超临界流体(Supercritical Fluid,简称SF或SCF)是指超临界温度(Tc)和临界压力(Pc)状态下的高密度流体。超临界流体具有气体和液体的双重特性,其粘度与气体相似,但扩散系数比液体大得多,其密度和液体相近。超临界流体对物质进行溶解和分离的过程就叫超临界流体萃取(Supercritical Fluid Extraction,简称SFE)。其基本原理为:CO2的临界温度(Tc)和临界压力(Pc)分别为31.05℃和7.38MPa,当处于这个临界点以上时,此时的CO2同时具有气体和液体双重特性。它既近似于气体,粘度与气体相近;又近似于液体,密度与液体相近,但其扩散系数却比液体大得多。是一个优良的溶剂,能通过分子间的相互作用和扩散作用将许多物质溶解。同时,在稍高于临界点的区域内,压力稍有变化,即引起其密度的很大变化,从而引起溶解度的较大变化。因此,超临界CO2可以从基体中将物质溶解出来,形成超临界CO2负载相,然后降低载气的压力或升高温度,超临界CO2的溶解度降低,这些物质就沉淀出来(解析)与CO2分离,从而达到提取分离的目的。不同的物质由于在CO2中的溶解度不同或同一物质在不同的压力和温度下溶解状况不同,使这种提取分离过程具有较高的选择性。1、 超临界CO2流体萃取技术在中药现代化中应用的优越性 用超临界CO2萃取技术进行中药研究开发及产业化,和中药传统方法相比,具有许多独特的优点。 1.1 萃取能力强,提取率高。用超临界CO2提取中药有效成分,在最佳工艺条件下,能将要提取的成分几乎完全提取,从而大大提高产品收率和资源的利用率。同时,随着超临界CO2萃取技术的不断进步,全氟聚醚碳酸铵(PFPE)的应用,把超临界CO2萃取扩展到水溶液体系,使得难以提取的强极性化合物如蛋白质等的超临界CO2提取已成为可能。 1.2 萃取能力的大小取决于流体的密度,最终取决于温度和压力,改变其中之一或同时改变,都可改变溶解度,可以有选择地进行中药中多种物质的分离,从而可减小杂质使中药有效成分高度富集。便于减小剂量和质量控制,产品外观大为改善。 1.3 超临界CO2临界温度低,操作温度低,能较完好地保存中药有效成分不被破坏,不发生次生化。因此,特别适合那些对热敏感性强、容易氧化分解破坏的成分的提取。 1.4 提取时间快、生产周期短。超临界CO2提取(动态)循环一开始,分离便开始进行。一般提取10分钟便有成分分离析出,2-4小时左右便可完全提取。同时,它不需浓缩步骤,即使加入夹带剂,也可通过分离功能除去或只是简单浓缩。 1.5 超临界CO2提取,操作参数容易控制,因此,有效成分及产品质量稳定。 1.6 超临界CO2还可直接从单方或复方中药中提取不同部位或直接提取浸膏进行药理筛选,开发新药,大大提高新药筛选速度。同时,可以提取许多传统法提不出来的物质,且较易从中药中发现新成分,从而发现新的药理药性,开发新药。 1.7 超临界CO2还具有抗氧化、灭菌作用,有利于保证和提高产品质量。 1.8 超临界流体萃取应用于分析或与GC、IR、MS、LC等联用成为一种高效的分析手段。将其用于中药质量分析,能客观地反映中药中有效成分的真实含量。 1.9 经药理、临床证明,超临界CO2提取中药,不仅工艺上优越,质量稳定且标准容易控制,其药理、临床效果能够保证或更好。 1.10 超临界CO2萃取工艺,流程简单,操作方便,节省劳动力和大量有机溶剂,减小三废污染,这无疑为中药现代化提供了一种高新的提取、分离、制备及浓缩新方法。2、 超临界CO2流体萃取技术在中药提取分离及中药现代化中的应用方式及前景 从"八五"期间国家"八五"攻关项目"超临界CO2萃取技术在中草药生产中的应用研究与开发"到"九五"期间承担多项中国重点项目(有关SFE技术研究开发中药新药)以来,包括萃取分离研究和药理毒理研究及新药的开发研究,取得了重要的科技成果:①证明了超临界CO2萃取技术可应用于中药领域;②总结了SFE在中药中应用的规律性;③提出较为适合中药萃取的超临界设备结构类型;④总结了超临界CO2萃取中药的优越性,证明了用超临界CO2萃取中药,不仅工艺上优越,而且还能保持中药本身的药理活性;⑤研究开发出一批具有较好前景的品种,有的已工业化,走向市场。根据研究开发实践,认为超临界流体萃取技术应用于中药提取分离及中药现代化,具有较大的潜力和可观前景。SFE应用于中药,结合几个典型的研究开发实例,可将其分为如下几个方面。 2.1 SFE与中药有效成分或中间原料的提取 这一方面主要是指那些已具备质量标准的单体或有效部位的提取,往往本身就是产品,只要达到标准,便可进入市场。这是SFE技术应用于该领域中的较为容易进行的一个方面。 2.1.1超临界流体萃取法从黄花中提取青蒿素(Artemisinin)的新工艺。青蒿素来自菊科植物黄花蒿(Artemisia annua)的一种倍半萜内酯类成分,是我国唯一得到国际承认的抗疟新药。然而本应属于中国的东西,中国仅占国际市场份额的0.5%。传统的汽油法存在收率低、成本高、存在易燃易爆等危险,用SFE工艺,从0.1升、5升设备小试到25升、50升设备中试放大,一直到200升设备的工业化生产证明,超临界CO2萃取工艺可用于青蒿素的生产,青蒿素产品符合中国药品标准。超临界CO2萃取工艺比传统法(如汽油法)优越,产品收率提高1.9倍,生产周期缩短约100小时,成本降低447/Kg,可节省大量的有机溶剂汽油,避免易燃易爆的危险,减少三废污染,大大简化生产工艺。该新工艺已取得发明专利证书。在最近召开的中国青蒿素成果产业化发展战略研讨会上,已初步决定推广这种新工艺,以达到占国际市场份额的3-5%的目标。 2.1.2 贯叶连翘提取物的超临界CO2萃取 贯叶连翘提取物是目前国际流行的十大植物提取物之一,主要用于治疗忧郁症。提取物是用贯叶连翘药材经水煮或醇提、浓缩、干燥而得。采用超临界CO2萃取工艺,达到出口标准,

  • 淫羊藿等药用植物中有机氯农药残留的固相萃取

    样品萃取:称取均匀粉碎的样品约0.5g,加入1 mL水,1 mL丙酮,在快速混匀器上混匀1 min,超声波萃取2min,离心,吸取上清液于10 mL试管中,重复提取两次,合并上清液,40℃浓缩至少于1 mL。固相萃取净化:ASPEC XL全自动固相萃取仪,C18非极性柱。柱预处理:3 mL 40%(体积分数)甲醇。样品过柱:1 mL上述浓缩样品过柱,收集过柱液体。目标物洗脱:2 mL40%(体积分数)甲醇,2 mL丙酮/正己烷(1:9,体积比),收集过柱液体。浓缩定容:合并收集液体,4℃浓缩至近干,正己烷定容至1mL。GC-ECD分析:HP 5.0弹性石英毛细管柱,高纯氮气为载气,流速1.5mL/min,高纯氮气40 mL/min尾吹,进样口温度250,检测器温度300℃,不分流方式,进样量1μL,外标法定量。柱升温程序:初始温度100℃,以20℃/min升至160℃后,保持2 min,以10℃/min升至250℃,保持6 min。该方法对添加六六六及滴滴涕异构体的淫羊藿进行萃取,3次平均回收率在92.16%~100.59%,RSD0.5%~3.7%。该方法被用于淫羊藿等6种药用植物的实际检测,杞中拟除虫菊酯类农药残留的基质固相分散萃取。取干燥枸杞,粉碎,过60目筛。称取0.50 g于研钵中,加入1.00 g弗罗里石睾土,研磨30 min。层析柱白下而上依次填入少量脱脂棉、2.00 g无水硫酸钠、枸杞一弗罗里硅土混合物、3.00 g无水硫酸钠,轻轻敲实。用30 mL 20%醋酸乙酯一石油醚混合溶剂淋洗层析柱,收集淋洗液,浓缩至近干,用正己烷定容到1mL,过0.45μm滤膜,待气相色谱测定。对添加甲氰菊酯、三氟氯氰菊酯、氯氰菊酯、氰戊菊酯、溴氰菊酯的样品进行萃取,回收率达80%以上。来源:中国标准物质网

  • 【经验交流】-固相膜萃取水样中的有机氯农药

    水样中的有机氯农药包括:4种滴滴涕、4种六六六、艾氏剂、狄氏剂、异狄氏剂、六氯苯和七氯。固相膜萃取装置:C18固相萃取膜、溶剂过滤器、真空泵;1.水样需要过0.45微米的玻璃纤维滤膜除杂质。pH应该在2-12之间。2.萃取膜的清洗,用20mL乙酸乙酯和10mL丙酮。3.膜的活化:用20mL甲醇和20mL纯净水。在此过程中,不能让膜接触空气,若接触到空气,需要再清洗一次。4.活化后待膜未干直接倒入水样,萃取的流量对结果的影响不是很大。结束后,再抽真空一段时间,尽量把膜中的水都抽干。5.洗脱,用6mL丙酮先将膜浸泡约30秒,然后抽干,再用15-20mL正己烷洗脱,将上述两种洗脱液合并,然后除水,浓缩。注意:a.上述的洗脱溶剂是适合于本方法所做的目标物,如果是其他的目标物,需要重新选择合适的溶剂。b.在对上述的有机氯农药的萃取中,艾氏剂通常会被水中的杂质峰覆盖,因此在定性时应该注意。以上是个人在试验中的经验,希望大家交流![em61] [em09]

  • 多种固相萃取头联用测风味物质有人试过吗

    想请教大家一个问题,目前市面上有各种涂层的顶空萃取头,但是没有看到过有人用多种萃取头来进行风味物质萃取。我想采用多种萃取头来萃取几种酸奶中的风味物质,定量采用内标法做相对定量,假设某种物质用这几种萃取头都可以检测到,我就以测得最大浓度值的那个作为这种物质的终浓度。但是这样的话,假设我在1号酸奶中利用多种萃取头一共检测到了100种风味物质,这些物质的浓度是否还具有可比性呢?毕竟可能A物质采取的是复合萃取头测出来的浓度值,B物质采取的是PDMS萃取头测出来的浓度值,也就是说A物质和B物质不是在同一种条件下检测出来的,如果A和B都是采取的用同一种萃取头检测出来的浓度值的话,那样才具有可比性,您看我这个思路是否合理呢?

  • 一些固相萃取柱的类型及应用

    固相萃取柱的类型及应用类型   填料 应用 硅胶的填料(60A,40um)ODS(C18) 硅胶上键合十八烷基  反相萃取,适合于非极性到中等极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药物,染料,芳香油,脂溶性维生素,杀 真菌剂,锄草剂,农药,碳水化合物,对羟基甲苯酸取代酯,苯酚, 邻苯二甲酸酯,类固醇,表面活化剂,茶碱,水溶性维生素。 Octyl (C8) 硅胶上键合辛烷   反相萃取,适合于非极性到中等极性的化合物,比如,抗 菌素, 巴比妥酸盐,酞嗪,咖啡因,药物,染料,芳香油,脂溶性维生素,杀 真菌剂,锄草剂,农药,碳水化合物,对羟基甲酸取代酯,苯酚,邻 苯二甲酸酯,类固醇,表面活化剂,水溶性维生素。 Ethyl (C2) 硅胶上键合乙基 相对C18和C8,因为短链,保持作用小的多,适合非极性化合物。 Phenyl 硅胶上键合苯基 相对C18和C8,反相萃取,适合于非极性到中等极性的化合 物, Silica 无键合硅胶  极性化合物萃取,如乙醇,醛,胺,药物,染料,锄草剂,农 药,酮,含氮类化合物,有机酸,苯酚,类固醇 Cyano(CN) 硅胶上键合丙氰基烷  反相萃取,适合于中等极性的化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗菌素,染料,锄草剂,农药,苯酚,类 固醇。弱阳离子交换萃取,适合于碳水化合物和阳离子化合物。 Amino(NH2) 硅胶上键合丙氨基   正相萃取,适合于极性化合物。弱阴离子交换萃取,适合于 碳水化合物,弱性阴离子和有机酸化合物。 Strong Anion Exchange(SAX) 硅胶上键合卤化季氨盐   强阴离子交换萃取,适合于阴离子,有机酸,核酸,核苷酸, 表面活化剂。容量:0.2毫当量/克。 Strong Cation Exchange(SCX) 硅胶上键合磺酸钠盐   强阳离子交换萃取,适合于阳离子,抗菌素,药物,有机碱,氨基酸,儿茶酚胺,锄草剂,核酸碱,核苷,表面活化剂。 容量:0.2毫 当量/克。 AL2O3填料 Alumina A(acidic) 酸性 PH ~5 极性化合物离子交换和吸附萃取,如维生素. Alumina B(basic) 碱性 PH~8.5 吸附萃取和阳离子交换。 Alumina N(neutral) 中性 PH~6.5   极性化合物吸附萃取。调节pH,阳和阴离。子交换.适合于维生素,抗菌素,芳香油,酶,糖苷,激素 Florisil填料-硅酸镁 Florisil 极性化合物的吸附萃取,如乙醇,醛,胺,药物,染料,锄草 剂,农药,PCBs,酣,含氮类化合物,有机酸,苯酚,类固醇 用于NIDA-5所要求的五种毒 品代谢物分析EVIDEXII(Drugs of Abuse) 辛烷和阳离子交换树脂  Amphetamina/Methamphetamine、 PCP、Benzoylecgonine、 Codeine/Morphine、 THC- COOH(Marijuana)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制