当前位置: 仪器信息网 > 行业主题 > >

超帧技术

仪器信息网超帧技术专题为您整合超帧技术相关的最新文章,在超帧技术专题,您不仅可以免费浏览超帧技术的资讯, 同时您还可以浏览超帧技术的相关资料、解决方案,参与社区超帧技术话题讨论。

超帧技术相关的资讯

  • 小菲课堂|FLIR超帧技术——打破限制成就高质量热图像
    在我们使用红外热像仪拍摄场景的时候最理想的拍摄结果是获得既呈现高对比度,又显示细微温差的图像但这些受温度范围的影响那么该如何平衡二者之间的关系呢?今天小菲就来讲一下它的解决方案超帧技术超帧原理对于室温上下的温度,操作人员会将热像仪设定在-20°C至50°C的典型温度范围。所有温度超过此范围的物体,其最亮或最热的部位会显示为饱和颜色;温度低于此范围的物体一般噪点较多。因此,如果物体的温度是100°C,那就必须选择20°C至120°C的范围。在这种情况下,热像仪会显示这个100°C物体的高质量图像,但这幅图上的室温物体的细节对比度不如-20°C至50°C的一幅图像。因此,想要获得热图像,合乎逻辑的做法是将两幅图像整合。解决方案可以是,让热像仪以一个室温范围“拍摄”一幅图像,然后以更高的温度范围“拍摄”第二幅图像。用智能方式结合这两幅图像,所生成的优质图像将包含两幅图像的部分,这就是超帧原理。实际应用中面临的问题和选择处理极端温度时,问题会变得复杂:寒冷冬夜里站在火焰旁的人就是典型的例子。图像中最亮或最热的部分会饱和,与此同时,场景中最暗或最冷的部分在图像上会显示成黑色或噪点。当一个物体显得饱和或多噪点时,会产生两个问题:图像细节丢失,该场景部位的测温值失真。高级热成像和测温技术通常需要获取温度范围非常宽广的场景图像或图像序列。在研发用途的热成像中,饱和问题会令人非常烦扰,因为此类用途需要温差非常巨大的场景成像或高速数字视频,比如引擎监控、火箭发射或一次爆炸。这个问题在中波红外波段尤为严重,可使用超帧技术解决。积分时间=1.0毫秒温度范围=20℃ - 25℃积分时间=0.25毫秒温度范围=65℃ - 135℃积分时间=0.05毫秒温度范围=130℃ - 230℃积分时间=0.01毫秒温度范围=220℃ - 380℃图1 - 4:极端温度下的一组焊接连续镜头:积分或曝光时间越短,温度范围就越高,黑色或噪点区域也越大想要尽可能显示最细微的温差,可以通过改变曝光值或热成像系统中所谓的积分时间来控制。我们把积分时间这个术语定义为热像仪内部热成像探测器生成一个单帧的曝光时间。以较长的曝光时间来操作热像仪能够提高灵敏度,但与此同时,这也限制了热像仪的测温范围:高温物体如此明亮,以至于它们超出了热像仪的规定测温范围。如果一个场景或一组连续镜头包含需要同时测量的极端温差,热像仪的曝光时间应大大缩短。但由于超出了规定的测温范围,这种缩短本身会造成场景较冷区域温差测量的能力下降,导致这些区域在屏幕上显示为黑色或噪点,如图1至4所示。有没有一个曝光时间能够安全涵盖一个场景的温度变化,并精确测量该场景的所有冷热物体?没有,但有另一个选项。FLIR超帧技术的优势FLIR超帧技术指的是,在一个快速的连续时间内,以逐渐加快的曝光时间拍摄一组4幅具有代表性的场景图像(子帧),然后重复这个循环。每次循环的子帧被合并为一个超帧,如我们所知,这个超帧结合了曝光时间不同的4个子帧的特性,这一过程称为叠加。采用这种方式,叠加算法生成的超帧图像对比度高,温度范围广。算法的原理很简单:如果一个子帧的某个像素饱和了,算法就会从下一个子帧选择相应的像素。如果该像素符合要求,算法就停止运作,否则它会挑选下一个子帧中合适的像素,以此类推。所有像素值都转换为最终的超帧图像的温度或辐射单位。图1:曝光时间为2毫秒的图像曝光时间为2毫秒的图像,场景的每个部分都有良好的对比度,但飞机的排气系统除外,这个部位温度太高,以至于这部分的图像发生饱和。图2:曝光时间为30微秒的图像相反地,曝光时间为30微秒的图像没有任何饱和,清晰地展现了排气系统,但其余的场景温度过低,以至于无法清楚看到系统本底噪声以上的部位。图 3:FLIR超帧技术生成对比度高、温度范围广的图像用正确的算法结合这两幅图像,能够生成对比度高、温度范围广的图像。图1、2、3用两幅曝光时间为2毫秒和30微秒的对比空中霸王双螺旋桨飞机的热图像,生动展现了FLIR超帧技术的优势。这些图像是采用高性能中波红外(MWIR)热像仪系统FLIR SC7000热像仪以每秒170帧、640x512像素的全帧尺寸拍摄。这两幅图像间隔时间短暂(约40毫秒),意味着场景并未发生大变化(螺旋桨的运动几乎无法察觉)。综上所述,FLIR超帧技术的原理是,以循环的方式逐帧改变热像仪的曝光时间或积分时间,将生成的子帧组合成温度范围大为扩展的单一超帧,从而拍摄出具有极端温差的场景。采用超帧技术需要一些技术先决条件,幸运的是FLIR SC系列等高速与定格研发类红外热像仪和FLIR专业图像处理软件都搭载一体化FLIR超帧功能。FLIR超帧技术大大提高了热成像系统的有效场景亮度,同时维持了热对比度,即便是在低温条件下。
  • 中科院超快诊断技术重点实验室揭牌成立
    9月22日,中国科学院超快诊断技术重点实验室成立揭牌仪式暨实验室第一届学术委员会第一次会议在西安光机所举行。中科院高技术局副局长董永初、西安光机所所长赵卫、所党委书记武文斌、副所长高立民以及中国科学院院士侯洵、许祖彦等有关方面领导及我国在超快诊断技术领域部分知名专家出席了会议。西安光机所机关有关部门领导及实验室部分科研人员参加了揭牌仪式。 中国科学院高技术局董永初副局长、西安光机所赵卫所长共同为院重点实验室成立揭牌 中国科学院高技术局董永初副局长为院重点实验室学术委员会主任侯洵院士颁发聘书 中国科学院高技术局董永初副局长为重点实验室主任孙传东研究员颁发聘书   在实验室成立仪式上,中国科学院高技术局项目管理中心戴书荣副主任首先介绍了中科院超快诊断技术重点实验室的研究方向和组建过程等有关情况,她希望该实验室在保持超快诊断技术学科特色的基础上,进一步提升创新能力建设,积极推进我国超快诊断技术研究的进展,力争把实验室建设成为一个不断出人才、出成果的有特色的实验室。随后,中科院高技术局综合技术处于英杰处长宣读了关于聘任孙传东研究员为院超快诊断重点实验室主任、侯洵院士为实验室学术委员会主任的任命文件,西安光机所党委书记武文斌宣读了实验室第一届学术委员会组成人员名单。在全场人员的热烈掌声中,中科院高技术局董永初副局长和西安光机所赵卫所长共同为院超快诊断技术重点实验室成立揭牌。 院重点实验室学术委员会主任侯洵院士主持学术委员会第一次会议 中国科学院高技术局董永初副局长在会上讲话 西安光机所赵卫所长在会上讲话   随后,在侯洵院士的主持下举行了中科院超快诊断技术重点实验室第一届第一次学术委员会会议。与会的专家和领导听取和审议了《中国科学院超快诊断技术重点实验室2009年度工作报告》、《中国科学院超快诊断技术重点实验室学委会章程》,同时就实验室开放基金指南与自主部署项目等有关方面的问题进行了认真的讨论。西安光机所所长赵卫在会议发言中对各位领导和专家长期以来对西安光机所超快诊断技术研究工作所给予的关心和支持表示衷心的感谢,并表示超快诊断技术作为中科院和西光所的一个特色学科,所内将会继续加大力度积极推进实验室的建设与发展。中科院高技术局副局长董永初在讲话中强调要把人才队伍建设、吸引和培养高素质学科带头人作为实验室重要的建设目标和内容,同时在学科建设中要注重发挥特色、突出重点,力争使实验室在该学科领域实现国内领先、国际知名的创新发展目标。   与会的专家和领导在经过认真的研究和充分的讨论后一致认为:中国科学院超快诊断技术重点实验室建设目标明确,发展规划可行,学科及研究方向设置符合实验室定位,各项研究工作进展正常、发展态势良好 自主课题和开放基金部署符合学科发展,注重与国家任务衔接 科研队伍结构合理,重视青年科技骨干培养和技术支撑人员配置 科研条件及设施优良,具有国内先进的超快光电器件研制、系统集成与测试的实验平台 组织结构设置合理,运行管理规范,并且针对实验室今后的学科发展、高水平人才队伍建设、科技合作交流等方面的问题还提出了一些建设性的意见和建议。(瞬态室提供) 中国科学院超快诊断技术重点实验室第一届学术委员会
  • 光电子学和超快诊断技术专家牛憨笨院士逝世
    讣 告     我国杰出的光电子学和超快诊断技术专家,中国工程院院士,中国共产党的优秀党员,原深圳大学光电子学研究所所长,光电工程学院名誉院长牛憨笨先生,因病医治无效,于2016年7月4日15时30分在深圳逝世,享年76岁。  牛憨笨院士是我国电子光学理论和变像管诊断技术研究领域的杰出代表之一,在变像管超快诊断领域取得了骄人的成就,为我国地下核试验、激光核聚变、光化学、光生物学、凝聚态物理、激光技术等研究领域提供了多种超快图像信息获取手段。他设计并负责研制成功了我国第一个获得重大应用的静电聚焦、静电偏转通用变像管,创建了动态电子光学理论,负责研制成功的九种变像管和七种变像管相机,打破了西方对我国的禁运,并使我国超快诊断技术跻身世界前列,为国防建设及核聚变新能源研究做出了重要贡献。  牛憨笨院士把毕生精力献给了他所钟爱的光电子学事业。他的逝世是国家科技界的重大损失,对此我们表示沉痛的悼念和深切的缅怀!  牛憨笨院士的遗体告别仪式定于2016年7月8日(星期五)上午10:00,在深圳沙湾殡仪馆大礼堂举行。  谨此讣告。  牛憨笨院士治丧领导小组  2016年7月4日牛憨笨院士治丧领导小组联系方式:  电话:0755-2673 2931  手机: 13590338161 黄薇  15820442954 杨强  E-mail:longway@szu.edu.cn  yq641020@163.com
  • 全力打造国内首台超声谐振谱仪——访三亚声演技术顾问汤立国
    2024年7月9日,由中国材料研究学会主办、欧洲材料研究学会联合主办、广东工业大学协办的中国材料大会2024暨第二届世界材料大会在广州白云国际会议中心盛大开幕。本届大会是在加快推进高水平科技自立自强大背景下举办的新材料领域跨学科、跨领域、跨行业的学术交流大会,是中国新材料界学术水平高、涉及领域广、前沿动态新的品牌大会。借此盛会,仪器信息网采访了三亚声演科技有限公司(以下简称“三亚声演”) 技术顾问/厦门大学 教授汤立国。采访中,汤老师详细介绍了公司的主要产品——超声谐振谱仪的功能、应用领域及相较于同类产品的优势,并分享了超声谐振谱技术未来的发展趋势,及基于此技术公司的发展规划等。仪器信息网:本次是贵公司第几次参加中国材料大会?参会感受如何?汤立国:这是我们公司第一次参加中国材料大会仪器展。通过这次大会确实可以了解到行业里面的很多需求,对今后仪器的推广有非常大的作用。仪器信息网:本次贵公司带来了哪些解决方案或新品?主要针对哪些市场?解决了用户的哪些痛点?汤立国:这次带来的主要产品是超声谐振谱仪,目前是国内首款超声谐振谱仪。我们公司是全球第三家能提供超声谐振谱仪的公司,其中一家是美国的洛斯阿拉莫斯国家实验室,另外一家是日本的KK公司。我们公司生产的这款产品与这两家公司相比,产品的软件功能更为全面。这款仪器的主要功能:一是可以定征压电材料所有弹性常数和压电常数,而且在定征过程中只需要单块样品,也是目前全球唯一一款可以对压电晶体所有弹性常数和压电常数进行表征的超声谐振谱仪。除了对压电晶体的材料常数进行表征,这套系统还可以对合金、陶瓷以及其他人工晶体的所有弹性常数进行表征。与传统的材料参数表方法相比,这套系统一方面它只需要单块样品,另外对于各向异性强烈的材料,定征的效率和精度更高,并且可以对压电材料、弹性材料的材料常数随温度的变化特性进行定征。仪器信息网:贵司相关产品的主要热点应用领域有哪些?采取了哪些产品研发计划或市场计划?汤立国:在压电行业和合金行业,在进行材料常数定征时,如定征压电晶体的所有弹性常数和压电常数时,传统方法是采用超声脉冲回波法、电谐振法定征,需要多块尺寸差异显著的样品,由于需要采用多块样品,会导致定征的结果易出现不自洽。我们公司的超声谐振谱仪的优点就在于只需要单块样品就可以实现所有弹性常数和压电常数的表征,因此定征结果更加可靠,而且定征过程更加便捷。除了用于压电材料的定征,在合金行业(如高熵合金)或在功能陶瓷行业,对所有的弹性常数进行表征时,同样这款仪器只需要单块样品,就可以对所有的弹性常数进行高精度的定征。因此这款设备可以为国内压电行业、合金行业或功能陶瓷行业,从材料的制备到应用,都可以起到一个促进作用。仪器信息网:谈谈相关技术或产品未来的发展趋势?未来贵司将有哪些新产品和新技术发展计划?汤立国:超声谐振谱技术,虽然在几十年前就存在了,但是该技术在发展过程中,随着材料行业的发展,就出现了两个比较大的需求:一个是要在高温环境下,对材料参数进行表征,尤其是一些高温的压电晶体,甚至需要在1000℃的高温条件下,对所有的弹性常数、压电常数进行表征;另外还有在极端的环境下,如在航空航天中需要合金或压电材料在低温的情况下,对所有的材料参数进行表征。总之,在高温、低温这两种环境下,对功能材料的材料参数进行表征,是超声谐振谱仪发展的趋势。为了适应这个趋势的发展,目前我们公司开发了一款利用高温的超声换能器,这台设备结合高温超声换能器及高低温箱,可以对晶体或者合金在200℃的高温环境下所有的参数进行表征。目前我们公司还正在跟一些高低温箱的厂家进行深度合作,今年年底的目标是这套系统在500℃甚至更高的温度下实现材料参数的表征。明年打算开发一个低温系统,就是把这套仪器设备和低温的环境相结合,实现压电晶体、功能陶瓷等在-180℃甚至更低的环境下材料参数的表征。仪器信息网:贵司在过去一年中,业绩表现如何?接下来有哪些战略规划或市场规划?汤立国:目前这套系统是刚刚开发完成,还没有进行商业化的推广。下一步的主要任务是在国内的相关行业中,进行这款仪器设备的推广。因为目前这款仪器是国内首款的超声谐振谱仪,相信通过对这套仪器的推广,可以促进国内压电行业、合金行业、功能陶瓷行业的材料表征,为相关的科研人员提供一种全新的国产的表征仪器。
  • 中科院专家组对超快诊断技术院重点实验室进行评估
    近日,中国科学院专家组对中国科学院超快诊断技术重点实验室进行了现场评估。专家组听取了实验室的工作报告和学术报告,现场考察了实验室,实地了解了实验室的学科建设、科研进展、仪器设备、科研团队建设等情况,查阅了实验室的实验记录、设备运行记录和有关规章制度,并与科研人员进行了交流,对有关问题进行了质询并给予了客观、公正的评价。   中国科学院超快诊断技术重点实验室自2008年12月正式运行以来,面向国家战略需求,围绕超快光电器件及系统、超快过程及激光参数诊断和高速目标特征信息光电获取与处理,开展应用基础研究、技术前沿研究和关键技术攻关,在高时空分辨分幅成像、超快扫描成像诊断和强激光驱动器激光参数诊断、单光子计数成像探测技术等方面取得了一批创新成果 并在超快诊断新方法、新技术与新器件等方面进行了前瞻性部署。   实验室定位准确,研究方向符合院和依托单位的总体规划与布局,发展目标合理,管理运行规范,重视安全保密 依据学科发展与研究工作特点,积极开展了国内外合作交流,注重仪器设备的开放共享 学术委员会发挥了积极作用,依托单位支持有力,总体发展态势良好。   专家组还对实验室存在的问题提出了意见和建议,希望实验室在下一阶段进一步加强高层次人才培养和引进以及进一步加强基础前沿部署和发展战略研究。此次现场评估,对于实验室得全面健康发展,具有重要指导意义和作用。
  • 我国结构超滑技术处于国际领先水平,相关微纳加工设备自主可控——访深圳清力技术有限公司潘旭捷
    仪器信息网讯 8月29日,全国半导体设备和材料标准化技术委员会微光刻分技术委员会第四届微光刻分委会年会暨第十三届微光刻技术交流会在青岛成功召开。会议期间,仪器信息网特别采访了深圳清力技术有限公司实验平台负责人、深圳超滑技术实验平台主任潘旭捷。据介绍,深圳超滑技术实验平台是由深圳市政府、深圳坪山区政府以及深圳清华大学研究院共同支持成立,总投资1.5亿,拥有200余台半导体制备和表征设备。实验平台一方面支撑结构超滑技术的研究,另一方面也对外开放,目前已经具备了6英寸MEMS芯片流片能力,同时也支持 MEMS器件、先进封装、微纳米光学、光电子、生物芯片等一系列些微纳米器件的工艺开发和打样,目前平台合作伙伴有100余家,合作项目200余项。深圳超滑技术实验平台研究领域是结构超滑技术,研究覆盖基础物理机理、材料研究、相关微纳米级加工和表征技术,以及相关的应用及产业化。潘旭捷表示,当前结构超滑研究的关键技术主要在于材料制备和器件制备,需要协同光刻、刻蚀等一系列微加工技术来共同完成。结构超滑技术是我国原创的一项根技术,借助结构超滑技术有望助力各个材料或者设备厂商突破国外卡脖子问题。目前国内在结构超滑领域取得了不少新的突破,包括大面积的材料制备,结构超滑器件的制备等,均处于国际领先的阶段。深圳清力技术有限公司团队在结构超滑材料及器件制备的特色设备上做到自主研发,同时大部分通用微加工设备也属于国内完全可控。对于科技前沿研发需要用到的部分设备例如电子束光刻系统等,仍处于国外卡脖子的状态,亟待国内厂商攻关突破。以下是现场采访视频:
  • 《相控阵超声法检测混凝土结合面缺陷技术规程》团标发布
    近日,中国工程建设标准化协会发布公告,根据中国工程建设标准化协会《关于印发的通知(建标协字〔2018〕015号)的要求,由上海市建筑科学研究院有限公司等单位编制的《相控阵超声法检测混凝土结合面缺陷技术规程》,经协会混凝土结构专业委员会组织审查,现批准发布,编号为T/CECS1056-2022,自2022年8月1日起施行。标准详细信息标准状态现行标准编号T/CECS 1056—2022中文标题 相控阵超声法检测混凝土结合面缺陷技术规程英文标题国际标准分类号91.010.01 建筑工业综合中国标准分类号 国民经济分类E4710 住宅房屋建筑发布日期2022年03月31日实施日期2022年08月01日起草人李向民 高润东 张富文 王卓琳 孙彬 姚利君 许海岩 薄卫彪 龙莉波 张东波 田坤 陈霞 陈宁 宋杰 孙静 许清风 黄科锋 马海英 赵勇 王建 刘华波 薛雨春 武猛 刘辉 李新华 李华良 郑乔文起草单位上海市建筑科学研究院有限公司、中国建筑科学研究院有限公司、中国二十冶集团有限公司、上海建科预应力工程技术有限公司、标龙建设集团有限公司、山东建科特种建筑工程技术中心有限公司、上海建工二建集团有限公司、上海建科工程咨询有限公司、上海中森建筑与工程设计顾问有限公司、上海劳瑞仪器设备有限公司、博势商贸(上海)有限公司、上海星欣科技发展有限公司、上海建科工程项目管理有限公司范围主要技术内容主要内容包括:总则、术语、检测仪器、现场检测、检测报告等。是否包含专利信息否标准文本不公开
  • 超8000次观看|第五届先进体外诊断技术网络会议圆满落幕
    仪器信息网讯 体外诊断(In-Vitro Diagnosis,IVD)是指在人体外,通过对人体血液、体液、组织等样品进行检测获取人体生物学信息的诊断方式。体外诊断产品及技术广泛应用于临床各阶段,贯穿于初步诊断、治疗方案选择、有效性评价、确诊治愈等疾病诊疗全过程,提供了超过70%的临床诊断信息,因此被比喻为“医生的眼睛”。近年来,各种新技术、新方法、新应用的兴起和融合,进一步促进了体外诊断仪器、试剂开发应用的更新换代。2022年8月23日-26日仪器信息网举办的第五届先进体外诊断技术网络会议圆满落幕,为期四天共有42位检验医学界的大咖和学术界、产业界的专家分享了精彩的报告,大会共吸引逾2000位业内相关人员报名参会。本届大会受到指导单位中国分析测试协会标记免疫分析专业委员会、中国生物物理学会肠道菌群分会和天津预防医学会毒理学分会大力支持。报告题目专家单位肿瘤精准诊断会场(08月23日上午)致辞颜光涛中国分析测试协会标记免疫专业委员会 主任委员代谢组学在肺癌诊断中的应用研究任丽天津医科大学肿瘤医院检验科主任基于MALDI蛋白成像的肿瘤标志物的研究任娟布鲁克(北京)科技有限公司 应用工程师体外诊断技术是肿瘤早筛的终极解决方案吗张凯中国医学科学院肿瘤医院 防癌科副主任肿瘤标志物的临床应用和质量保证高艳红解放军总医院第一医学中心检验科副主任/副教授肿瘤标志物的精准检测助力高质量临床诊断徐国宾北京大学肿瘤医院检验科主任分子诊断会场(08月23日下午)数字PCR的临床应用进展刘向祎首都医科大学附属北京同仁医院 检验科主任/教授自动化技术在临床分子生物学实验室的应用伊洁北京协和医院分子生物学组组长/副研究员赛沛GeneXpert Infinity系统在结核病实验室的应用及展望吴小翠上海市肺科医院检验科分子组组长神经系统感染性疾病实验诊断张国军首都医科大学附属北京天坛医院 实验诊断中心主任核酸检测全过程的质量管理谢小兵湖南中医药大学第一附属医院医学检验与病理中心主任分子诊断不同方法学的临床应用及发展趋势姜艳芳吉林大学第一医院基因诊断中心主任/教授新冠病毒检测会场(08月24日上午)新型冠状病毒核酸快检现状及思考马亮中日友好医院检验科副主任/副研究员临床实验室新冠核酸检测质量保证及检测能力提升方案贾兴旺北京电力医院检验科主任赛默飞病原微生物检测整体解决方案介绍武耸荔赛默飞世尔科技产品经理疫去安来“检”何存——后疫情时代基层检验已有资源再利用李耀妮宝鸡市中心医院检验科副主任后疫情时代检验医学的发展卢志明山东省立医院山东临检中心检验科主任/教授临床质谱会场(08月24日下午)质谱技术在内分泌代谢病临床诊疗中的应用王辉北京大学人民医院检验科主任/教授LC-MS/MS临床应用优势、挑战及未来发展探讨禹松林中国医学科学院北京协和医院 检验科质谱平台主管Waters Xevo TQ XS IVD的优势及其在临床检测与研究中的应用刘文婧Waters应用工程师基于质谱技术的血清肿瘤标志物研究新思路李士军大连医科大学附属第一医院检验科主任/教授赋能精准,未来可期,临床质谱发展现状与展望李水军上海市徐汇区中心医院中心实验室主任临床医生看质谱-质谱技术及快速报告对临床诊治的价值谷丽首都医科大学附属朝阳医院感染科主任心脑血管疾病会场(08月25日上午)心肌标志物在肿瘤心脏病学中的应用李智勇徐州医科大学附属医院核医学科主任血管相关实验室指标的临床应用梁红萍山西省人民医院检验科主任生物标志物在脑病的研究和应用田君喜迈克生物股份有限公司免疫技术首席科学家一例急性脓毒血症患者细胞因子变化分析与思考杨晓莉解放军总医院第三医学中心检验科主任IVD原材料、仪器及零部件开发会场(08月25日下午)质控品及相关原材料苏少博中国科学院深圳先进技术研究院 教授/高级工程师诺信EFD生命科学行业应用解决方案吴嵩岳诺信(中国)有限公司高级应用专家高通量液相悬浮芯片技术剖析与进展刘伟中翰盛泰生物技术股份有限公司 院长/高级工程师拓展诊断深度和广度:超亮荧光藻胆蛋白原理与应用张浩安捷伦科技(中国)有限公司高级应用工程师分子诊断自动化移液和核酸自动化提取零部件开发刘俊凯深圳市美德瑞生物科技有限公司 总经理IVD关键原材料——纳米磁珠彭颖静苏州海狸生物医学工程有限公司 市场部经理体外诊断用生物活性原料的研发和应用分析刘万建青岛硕景生物科技有限公司总经理/高级工程师大人群队列生物标记物早期发现及验证-暨高水平公共卫生学院院长交流会(08月26日)致辞房中则天津医科大学公共卫生学院副院长/教授中国人群结直肠癌分子流行病学研究缪小平武汉大学公共卫生学院院长/教授基于人群健康效应的大气颗粒污染物精准防控探讨林华亮中山大学公共卫生学院院长助理/教授环境暴露与少数民族代谢性疾病关联性初探:基于西南少数民族人群队列研究洪峰贵州医科大学公共卫生学院院长/教授孕期糖尿病与子代心血管疾病发病风险:基于出生队列的健康医疗大数据研究余勇夫复旦大学公共卫生学院院长助理/青年研究员基于人群-实验室-临床结合的策略研究环境镉暴露长期损害子代发育的胎盘病因机制王华安徽医科大学公卫学院常务副院长/教授植物化学物暴露测量体系建立与生物学效应的验证马乐西安交通大学公共卫生学院副院长/教授儿童肥胖与心血管健康席波山东大学公共卫生学院副院长/教授从群体遗传到公众健康的思考与探索王超龙华中科技大学公共卫生学院副院长/教授妊娠糖尿病的代谢生物标记物发现房中则天津医科大学公共卫生学院副院长/教授大会掠影一(肿瘤精准诊断会场中的问答界面)大会掠影二(分子诊断会场中的问答界面)大会掠影三(临床质谱会场中的问答界面)
  • 科学家研发出用于快速和超灵敏病毒诊断的数字等离子体纳米气泡检测新技术
    病毒引起的传染病给人类的生命安全和身体健康带来了巨大威胁,目前来说对疾病的快速和灵敏诊断仍然是一个迫切且未满足的需求。数字免疫分析技术由于其单分子检测和绝对定量的能力,在近些年来取得了显著进步,但复杂的操作步骤限制了其应用。  近日,美国研究团队在《Nature Communications》杂志上发表题为“Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics”的文章,研发出用于快速和超灵敏病毒诊断的数字等离子体纳米气泡检测新技术。  等离子体纳米气泡是指短脉冲激光激发纳米颗粒产生的蒸汽气泡,放大其固有吸收,可通过二次探测激光进行检测。等离子体纳米气泡的寿命为纳秒,对纳米颗粒的物理性质(如大小、形状、浓度和聚集状态)十分敏感。该研究利用等离子体纳米气泡这些特性设计了一个光射流装置,使纳米颗粒的悬浮液在微毛细管中流动,使用两束激光同步激活纳米颗粒并检测等离子体纳米气泡。由于等离子体纳米气泡是瞬态事件,且激光脉冲之间没有串扰,创建了约16pL的微尺度“虚拟检测区”,并以无间隔的方式对“开”和“关”信号进行计数,以此对检测目标进行定量分析。研究表明将此方法应用于检测呼吸道合胞病毒(RSV)时,具有较好的特异性和灵敏度(1拷贝/µL)。  该研究提出的数字等离子体纳米气泡检测方法具有一步操作、单纳米颗粒检测、在室温下能够直接检测完整病毒、无需复杂液体处理等优点,是一种快速、超灵敏的诊断技术。  论文链接:  https://www.nature.com/articles/s41467-022-29025-w
  • 科学家研发出用于快速和超灵敏病毒诊断的单纳米颗粒检测技术
    病毒引起的传染病给人类的生命安全和身体健康带来了巨大威胁,目前来说对疾病的快速和灵敏诊断仍然是一个迫切且未满足的需求。数字免疫分析技术由于其单分子检测和绝对定量的能力,在近些年来取得了显著进步,但复杂的操作步骤限制了其应用。  近日,美国研究团队在《Nature Communications》杂志上发表题为“Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics”的文章,研发出用于快速和超灵敏病毒诊断的数字等离子体纳米气泡检测新技术。  等离子体纳米气泡是指短脉冲激光激发纳米颗粒产生的蒸汽气泡,放大其固有吸收,可通过二次探测激光进行检测。等离子体纳米气泡的寿命为纳秒,对纳米颗粒的物理性质(如大小、形状、浓度和聚集状态)十分敏感。该研究利用等离子体纳米气泡这些特性设计了一个光射流装置,使纳米颗粒的悬浮液在微毛细管中流动,使用两束激光同步激活纳米颗粒并检测等离子体纳米气泡。由于等离子体纳米气泡是瞬态事件,且激光脉冲之间没有串扰,创建了约16pL的微尺度“虚拟检测区”,并以无间隔的方式对“开”和“关”信号进行计数,以此对检测目标进行定量分析。研究表明将此方法应用于检测呼吸道合胞病毒(RSV)时,具有较好的特异性和灵敏度(1拷贝/µL)。  该研究提出的数字等离子体纳米气泡检测方法具有一步操作、单纳米颗粒检测、在室温下能够直接检测完整病毒、无需复杂液体处理等优点,是一种快速、超灵敏的诊断技术。  论文链接:https://www.nature.com/articles/s41467-022-29025-w  注:此研究成果摘自《Nature Communications》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 知识课堂2| 全聚焦法改善相控阵超声成像!
    引言随着可提供全聚焦方式(TFM)功能的检测设备陆续进入到市场中,无损检测(NDT)行业也在经历着一个技术进步突飞猛进的重要时期。全聚焦方式(TFM)的出现标志着相控阵超声检测(PAUT)技术又向前迈出了重要的一步。然而,一些相控阵超声检测(PAUT)的从业人员可能仍然对全聚焦方式(TFM)及其与全矩阵捕获(FMC)的关系,以及常规相控阵超声检测(PAUT)和全矩阵捕获/全聚焦方式(FMC/TFM)处理之间的差异,感到困惑。这篇文章可使那些熟悉相控阵超声检测(PAUT)成像的检测人员对全聚焦方式(TFM)成像有个基本的了解。常规相控阵超声检测(PAUT)和全聚焦方式(TFM)的基本区别在相控阵超声检测(PAUT)和全聚焦方式(TFM)检测中,都使用一个多晶片探头,在被测样件中发射脉冲超声波,并记录回波随着时间而变化的轨迹(波形)。然后,这些波形被合成处理,以生成被测样件中反射体的图像。超声波图像可被视为由众多子图像(被称为帧)堆栈在一起而生成的图像。例如:相控阵超声检测(PAUT)中的扇形扫描是由一系列以不同角度采集到的A扫描(波幅对应时间)堆栈而成。在扇形扫描的定义中,单个A扫描的作用相当于帧。相控阵超声检测(PAUT)策略就是以尽可能快的方式处理这些帧,并实时显示和刷新总体图像。常规相控阵超声检测(PAUT)和全聚焦方式(TFM)之间的基本差别在于信号采集和帧处理的策略不同。常规相控阵超声检测(PAUT)成像为了演示在相控阵超声检测(PAUT)中采集帧的过程,这里我们使用一个S扫描作为示例。S扫描由众多单个的帧组成,这些帧对应于在工件中以不同角度采集到的A扫描。在采集过程中,一组晶片(被称为孔径)同时发射脉冲,并记录下声波的轨迹。延迟被应用到每个晶片,以使超声声束以所需的角度偏转,并在工件中期望的深度处聚焦。这样,每个帧就是由折射角度和聚焦深度而定义。因此,要采集的帧的总数量就是构成总体图像的不同角度的数量。相控阵超声检测(PAUT)的优点是只需要完成有限的采集量。向被测材料中发射的声束是不同单个发射器的声学波幅“物理求和”的结果,而接收声束则是由前端电子设备通过快速求和算法而获得的合成声束。因此,可以非常迅速地显示通过相控阵超声检测(PAUT)方法获得的图像。相控阵超声检测(PAUT)的缺点是所有帧都在一个恒定的深度上聚焦。位于聚焦区域之外的反射体会显得模糊不清,而且会比位于聚焦区域内的同等大小的反射体看起来更大些。全聚焦方式(TFM)技术可以解决这种显示分辨率的问题。全聚焦方式(TFM)的基本概念是在多个不同深度的聚焦线上显示波幅,换句话说就是不只在单一的深度线上聚焦,而是具有“随处聚焦”的特点,因此可以为聚焦区域内的任何位置生成高度清晰的图像。如果使用相控阵超声检测(PAUT)采集策略(获得每帧图像需要一次采集)生成全聚焦方式(TFM)图像,则所需的时间就会显著增加。生成一个全聚焦方式(TFM)图像所需的像素数量比生成一个S扫描所需的不同角度的数量高得多。例如:通过以100个不同角度进行扫查而获得的一个S扫描需要100次采集,而由100 × 100像素构建的全聚焦方式(TFM)图像则需要10000次采集。为了避免这个采集数量过多的问题,我们可以使用另一种采集策略,这种策略是在后处理过程中计算出帧。这种采集策略需要一组对应于每个像素位置的聚焦法则,以及被称为全矩阵捕获(FMC)的一组原始基础波形。这样一来,基础波形会得到适当的延迟和求和处理,以在发射和接收过程中以合成方式生成超声声束,并在每个像素位置聚焦。因此,所生成的图像具有“随处聚焦”的特点。全矩阵捕获(FMC)可以获取探头所有成对(发射-接收)单个晶片所生成的所有波形。一般来说,要使用探头的整个孔径,因为对于某种特定的探头来说,这样可以获得最佳聚焦结果。在这种情况下,获得全矩阵捕获(FMC)数据所需的采集数量等同于探头晶片的数量。全矩阵捕获(FMC)收集到有关探头每个晶片之间声束传播的所有信息,包括被测材料表面的反射以及由缺陷引起的散射等信息。任何类型的相控阵超声检测(PAUT)图像都可以使用全矩阵捕获(FMC)数据重建,其中包括:扇形扫描、平面波成像(PWI)、动态深度聚焦(DDF)等。虽然全矩阵捕获(FMC)生成图像所需的采集数量与相控阵超声检测(PAUT)大致相同,但是要存储单个全矩阵捕获(FMC)数据集,却需要很大的存储容量、很宽的传输带宽,以及很强的处理能力。取决于所用设备的电子器件,获得全矩阵捕获/全聚焦方式(FMC/TFM)结果的速度可能会比相控阵超声检测(PAUT)更慢。以实验案例说明相控阵超声检测(PAUT)和全聚焦方式(TFM)图像的差异为了说明相控阵超声检测(PAUT)和全聚焦方式(TFM)成像之间的差别,我们在此介绍一个使用线性相控阵(PA)探头对钢块中垂直分布的几个相同的横通孔(SDH)进行扫查的设置。下面是OmniScan X3探伤仪使用相同的检测配置获得的相控阵超声检测(PAUT)S扫描(a)和全聚焦方式(TFM)图像(b)。在S扫描中,每帧图像都使用独特的20毫米聚焦深度获得(红色虚线代表聚焦深度)。处于聚焦区域内的几个横通孔(SDH)以相似的波幅和大小出现在图像中。与较短的聚焦深度相比,使用这种聚焦深度,可以获得更大的具有优质图像分辨率的区域,这也是图中几个横通孔都清晰可见的原因。位于聚焦深度以外较远的横通孔的图像会出现失真现象,且其波幅会大幅降低。因此要使所有横通孔获得更为一致的定量效果,需要使用不同的聚焦深度生成多个图像。在全聚焦方式(TFM)图像(b)中,超声声束在每个像素上聚焦。如您所见,图像中的每个横通孔(SDH)都很清晰鲜明,因此只需一个图像就可以准确地定量分布在更大深度范围内的横通孔。不过,我们可以观察到,位于电子聚焦能力所及的边限处的横通孔有横向失真的现象。这种失真情况是相控阵成像固有的问题,因此也会出现在全聚焦方式(TFM)图像中。探头正在进行全矩阵捕获(FMC)扫查比较相控阵超声检测(PAUT)扫描图与全聚焦方式(TFM)图像。全聚焦方式/全矩阵捕获(TFM/FMC)采集优势特性的总结全聚焦方式(TFM)和相控阵超声检测(PAUT)之间的主要区别在于构成图像的帧的性质和数量不同。在相控阵超声检测(PAUT)中,帧是一些1维信号或A扫描。后处理工作只包含前端电子设备对信号的实时求和操作,而且在处理的同时,会采集并呈现帧(图像)。与相控阵超声检测(PAUT)不同,全聚焦方式(TFM)的帧是来自每个像素坐标位置的聚焦声束的0维度数据点。因此,要处理的全聚焦方式(TFM)的帧的数量远多于相控阵超声检测(PAUT)的帧的数量。全聚焦方式(TFM)成像需要通过全矩阵捕获(FMC)方式采集数据,以在后处理过程中以合成方式生成聚焦声束。全聚焦方式(TFM)的主要优点是整个图像都以最佳分辨率显示,而相控阵超声检测(PAUT)图像仅在声束的聚焦区域中具有较高的分辨率。在使用全聚焦方式(TFM)进行检测时唯一值得注意的局限性是相控阵成像技术所带来的电子聚焦能力。
  • 微型激光测振仪在超声领域的应用
    微型激光测振仪在超声领域的应用最近几年,超声技术在各个领域的应用越来越多,比如利用超声波原理进行医学治疗的设备也在临床实践中被广泛应用。医学超声设备主要是基于高频振动波(超声波)传入人体组织,并在局部产生热效应、机械效应和空化效应,引起目标组织的改变,从而达到治疗的目的。昊量光电全新推出的微型激光测振仪是一种非接触式的振动测量仪器,能够精确测试医学超声设备的超声振动特性和模态,在产品的研发、质检和性能优化过程中起到了至关重要的作用。激光测振仪在医学超声领域的应用具有如下优势:1、激光聚焦光斑小、空间分辨率高,能够快速定位并测量超声手术刀、洁牙器等小尺寸超声器件;2、采用非接触式的测量方法,高效便捷,可以快速检测产线上的超声设备性能,确保产品一致性,甚至可以检测超声设备在工作状态下的超声波输出特性,更加真实地反映设备的实际使用性能;3、超声检测带宽大,最高可检测5MHz左右的高频超声,同时能满足20pm以下的微弱振动分辨率要求,检测精度极高;4、集成式光学自研芯片,无需额外控制器,体积小巧使得安装测试变得更加便捷,提高测量精准性!一、 超声换能器测振超声换能器是一种将电磁能转化为机械能(声能)的装置,通常由压电陶瓷或其它磁致伸缩材料制成,常见的超声波清洗器、超声雾化器、B超探头等都是超声换能器的应用实例。针对超声领域应用需求,昊量光电全新推出了一套完整的台架式超声振动测量仪。作为这款测量仪核心部件的激光传感器,利用了集成光学技术将原有复杂光学元器件集成于微小芯片中,结合具有自主知识产权的调频连续波(FMCW)相干光检测原理,以小型集成化的设计模式,实现了传统复杂大型设备的测量能力。测试:20kHz 频率功率换能器,工作距离:375px振动图谱:在换能器在各个位置的测量结果。当换能器频率在 Mhz 附近时,幅度测量对测量精度的要求大大提高。结果显示,昊量测振传感器能很好的分辨振幅的实时波形,得到 nm 级的测量精度。二、 超声手术刀超声手术刀是一种通过激发20 kHz~60 kHz 超声振动的金属探头(刀头),对生物组织进行切割、消融、止血、破碎或去除的外科手术仪器。超声手术刀的工作性能一般与刀头的超声输出功率、频率直接相关,因此对刀头的超声特性探测至关重要。超声手术刀的刀头尺寸一般为5-10 mm,这种小尺寸结构很难采用接触式传感器测量其超声特性,而激光测振仪则可以轻松将激光聚焦到刀头位置,精确测量超声振幅与频率。三、 超声洁牙器 超声洁牙器主要工作原理是:将高频振荡信号作用于超声换能器,利用逆压电效应(或磁致伸缩效应)产生超声振动并传递至工作尖,工作尖受到激励产生共振,利用工作尖的超声波共振可以将牙齿表面的菌斑、结石或牙周表面的细菌等清除。依据我国医药行业标准(YY 0460-2009)和国际电工委员会标准(IEC 61205:1993),超声洁牙器工作尖的超声输出特性是重要的检测指标。常规超声洁牙器工作尖振动频率主要设计范围在18 kHz~60 kHz,其中以42 kHz工作频率最为常见。同时工作尖尺寸往往较小(<1mm),无法采用传统的接触式振动传感器进行检测。因此,对于超声洁牙器振动性能的检测,通常采用激光测振仪完成,其非接触式的检测方式便于开展产线上产品的逐个检测,是产品良率和一致性的有力保障。某品牌的洁牙器尖端测振四、 超声焊接 超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。焊头将接收到的振动能量传到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料化。超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。五.技术参数介绍昊量光电全新推出的微型超声测振仪光学元件集成化可以实现更加复杂的设计和更多的功能。集成光学芯片可以在一个单一的光学基底上包含数十到数百个光学元件,包括激光器、调制器、光电探测器和滤波器等。相对于传统基于分立器件的多普勒测振仪,MV-H以其低功耗、高性能、小型化的优势,为客户带来了低成本、便于集成的解决方案,也为激光振动传感器的广泛应用奠定了基础。1.产品参数指标2.软件功能完善3.丰富的配件可选上海昊量光电作为这款微型超声测振传感器在中国大陆地区蕞大的代理商,为您提供专业的选型以及技术服务。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 臻准生物获惠远资本超亿元A轮独家投资,致力于“微腔芯片式”数字PCR技术研发
    近日,数字PCR创新型企业臻准生物科技(上海)有限公司(以下简称“臻准生物”)完成超亿元人民币的A轮融资,由医疗行业专业投资机构惠远资本独家投资。惠远资本将通过导入丰富的产业资源,赋能企业加速数字PCR在生命科学和临床领域的普及和推广。本轮融资将用于微腔芯片式数字PCR产品的临床注册、市场推广、规模化生产以及多款试剂盒产品的研发。数字PCR技术被誉为“第三代PCR技术”,相比于传统的实时荧光PCR,数字PCR能够实现核酸拷贝数的绝对定量,检测灵敏度可高达0.01%,具有广泛的应用前景。历经十余年发展,在多种技术路径中,“微腔芯片式”以其优异的均一性、稳定性、高效性,逐步成为数字PCR的主流技术路线,也是诸多国际巨头纷纷选择的技术方向。臻准生物成立于2016年,总部位于上海,并在全国多地设有研发、生产中心,在国内致力于微腔芯片式数字PCR技术的开发。公司团队来自知名跨国企业和科研机构,在微纳加工、精密仪器、生物试剂、临床应用和软件算法等核心技术环节具备丰富的研发及产业化经验,突破了微腔芯片制造及表面处理工艺的技术难点,并成功实现低成本大规模生产。公司搭建了五大自主知识产权的核心技术平台,涵盖微纳生物芯片、自动化医疗装备、显微生物荧光成像、AI图像算法、IVD诊断试剂,为生产研发提供坚实的技术基础。作为唯一掌握多元化数字PCR产品解决方案的国产企业,臻准生物已在科研、IVD、生物制药、检验检疫等行业与上百家单位达成合作。公司根据不同应用场景下的客户需求,开发了多规格仪器、芯片及试剂盒产品。公司推出的国内首套微腔芯片式数字PCR系统已获NMPA医疗器械注册证,率先上市的高通量6色荧光数字PCR系统弥补了全球同类产品在多重荧光检测能力上的不足。惠远资本创始合伙人张珊珊表示:“我们团队跟踪数字PCR赛道已数年,坚定看好微腔芯片式技术路径在数字PCR领域的发展潜力和性能优势。我们欣喜地看到臻准生物的产品性能在与进口产品相媲美的同时又大幅度降低了成本,产品矩阵紧贴市场需求,极具竞争力。通过本次股权投资,我们将借助产业资方在医疗领域的优质资源,深度赋能臻准生物,对接数千家医院渠道,提供规模化生产能力,共同研发临床端急需的检测产品,进一步扩大公司在行业中的领先优势,拓展更多业务领域的可能性。”臻准生物董事长郭枫表示:“臻准生物建立了一支高效专业的核心团队,坚持长期主义,踏踏实实研发真正满足市场需求、匹配临床需求的产品。惠远资本是专业投资机构,有着丰富的产业资源,资金及产业资源双重助力必将加速我们成为全球领先的数字PCR企业。本次合作后,我们将进一步加速产品生产和试剂研发进度,完成临床、科研及工业市场布局,打造数字PCR生态、普及数字PCR技术、充分实现数字PCR技术的社会价值。臻准生物将继续怀抱‘让检测更简单’的企业愿景,打造世界级体外诊断平台,守护人类健康、助力生命探索!”关于臻准生物臻准生物科技(上海)有限公司2016年成立,致力于生命科技和体外诊断产品的研发生产和销售服务。公司已推出具有自主知识产权的数字PCR产品,能够对核酸分子进行绝对定量,灵敏度极高,在肿瘤基因液体活检、无创产前检测、病原微生物检测、基因治疗、基因编辑等领域具有广泛的应用前景。公司围绕该产品,开展各项技术合作、产品开发、标准建立、样本检测等服务。关于惠远资本惠远资本成立于2019年,是一家由市场化专业团队控股和运作,并与国资战略股东共同发起设立的专注于生物医药和医疗器械领域价值投资的专业医疗投资机构,系统布局细分赛道中具有突破性和创新性技术的优质标的,与多家产业机构建立深入合作关系,坚持以“产业赋能+资本助力”为投资策略,旨在为投资者带来长期稳健的投资回报。
  • 基于16 × 4阵元的CMUT面阵,实现高效率、高质量三维超声反射成像
    与传统工艺制作的压电块体型超声换能器相比,电容式微机械超声换能器(CMUT)具有阻抗匹配特性良好、带宽大、体积小等优势,在医学超声成像和无损检测方面得到了广泛应用。三维超声反射成像通常需要利用CMUT线阵的机械移动实现对被测物的多维度扫描,但这一方法往往难以实现较小距离的移动,并且存在一定的误差。利用CMUT面阵对被测物进行扫描可以同时获取多维度的超声反射信号,从而减少测试工作量,并且能够准确获取被测物的三维信息。然而,目前国内关于利用CMUT面阵进行非接触式三维超声反射成像的研究鲜有报道。据麦姆斯咨询报道,为了解决上述挑战,来自中北大学的研究人员提出了利用基于16 × 4阵元的CMUT面阵进行B模式及二次谐波三维成像测试的方法,以得到伪影水平更低、重建偏差更小的超声反射图像。相关研究成果以“基于16 × 4阵元CMUT面阵的三维超声反射成像”为题发表在《微纳电子技术》期刊上。CMUT面阵的制备及工作原理研究人员分别利用绝缘体上硅(SOI)和二氧化硅(SiO₂)晶圆制备了CMUT振动薄膜和真空腔,并且在真空环境中通过晶圆键合形成CMUT面阵。图1 CMUT剖面图及阵元图图2 基于16 × 4阵元的CMUT面阵实物图CMUT的工作原理是通过在上、下电极之间施加直流偏压,从而产生感应静电力将顶部薄膜拉向底部电极。当CMUT处于发射模式时,将交流电压信号叠加在直流偏压上会激励薄膜振动,实现电能和机械能的转换,产生超声信号;当CMUT处于接收模式时,在上、下电极之间施加直流偏压,在超声波的作用下,薄膜会产生振动,从而使得电容值发生改变,通过检测这一变化即可实现超声信号的接收。图3 CMUT工作原理仿真及实验平台搭建该研究利用基于Matlab的k-Wave光声仿真工具箱对基于16 × 4阵元的CMUT面阵进行超声反射成像仿真。整个仿真区域介质为硅油,被测物为一块长和宽均为3 cm、厚1 cm的铝块,铝块与CMUT的距离为3 cm,CMUT阵元间的距离为1 mm。此外,采用单个阵元发射、所有阵元接收,即一发多收的扫描方式对铝块进行扫描。图4 基于16 × 4阵元的CMUT面阵及被测铝块仿真模型随后,研究人员在仿真的基础上搭建了基于16 × 4阵元的CMUT面阵的超声反射成像测试系统。采用面阵上第二条线阵的单个阵元发射、所有阵元接收的方式进行实验测试。实验使用信号发生器和功率放大器驱动CMUT面阵发射超声波,并且利用示波器观察超声反射信号波形。图5 基于16 × 4阵元的CMUT面阵超声反射成像测试系统示意图及超声反射成像实测图仿真及实验结果研究人员采用B模式及二次谐波两种成像算法分别对被测铝块的超声反射信号进行处理,以获取其三维图像及对应的二维切面。结果显示,基于16 × 4阵元的CMUT面阵的反射成像系统能够确定铝块的位置。此外,基于B模式成像算法和二次谐波成像算法所获取的成像结果中,铝块与CMUT面阵的距离重建偏差分别为3.63%及1.47%。图6 被测铝块二维反射成像结果图7 被测铝块三维反射成像结果综上所述,该研究搭建了基于16 × 4阵元的CMUT面阵的三维超声反射成像系统,以获得误差小、信噪比高的超声反射图像。采用单个阵元发射、所有阵元接收的收发方式对铝块进行了相关测试与仿真,利用B模式及二次谐波成像算法对超声回波信号进行处理,获取了被测物的二维切面及三维图像。仿真和实验结果均可以较清晰地确定铝块的位置,与实际情况相符。为了对比两种算法的成像效果,研究人员计算了铝块与CMUT面阵的距离重建偏差。计算结果显示,B模式及二次谐波成像算法的仿真距离重建偏差分别为0.63%和0.4%,实验重建偏差分别为3.63%和1.47%,二次谐波图像的距离重建偏差均小于B模式图像的距离重建偏差。总之,该研究证明了所提出的基于16 × 4阵元的CMUT面阵的三维超声反射系统可实现对被测物的三维成像。论文信息:DOI:10.13250/j.cnki.wndz.2023.03.010
  • 杨朝勇团队成果:非侵入式微流控芯片技术助力无创产前诊断
    p   近日,上海交通大学医学院分子医学研究院、厦门大学化学化工学院杨朝勇教授研究团队在国际著名的微流控技术杂志《芯片实验室》(Lab on a chip)在线发表了题为“Frequency-Enhanced Transferrin receptor Antibody-Labelled Microfluidic Chip (FETAL-Chip) enables efficient enrichment of circulating nucleated red blood cells for non-invasive prenatal diagnosis”的研究论文。使用非侵入式芯片实验室技术,在妊娠早期,利用2毫升外周血即可帮助孕妇检测到胎儿遗传信息,实现遗传异常的诊断。 /p p style=" text-align: center " img width=" 402" height=" 277" title=" a.jpg" style=" width: 397px height: 274px " src=" https://img1.17img.cn/17img/images/201808/insimg/bbf6e65a-4b40-423e-adcb-efcddaad81b2.jpg" / /p p   目前产前诊断测试的金标准包括羊膜穿刺术或从胎盘细胞中取样(绒毛膜取样),两者都有可能诱发流产风险 而基于胎儿游离DNA的无创产前检测技术目前局限于21、18、13三体的筛查,并存在较高的假阳性现象。亟需发展一种检测更大范围遗传异常的可靠工具,为家庭和医疗保健供应商提供更多的遗传相关信息。孕妇外周血中存在的胎儿细胞是在母体和胎儿进行营养物质交换的过程中,从滋养层脱落或者脐带血中进入到母体外周血循环的少量胎儿细胞。这些循环胎儿细胞具有胎儿全部的基因组信息,特异性标志物及胎-胎之间不存在干扰等优势。被认为是最具有潜力的产前诊断研究对象。循环胎儿细胞应用于无创产前诊断最大的瓶颈是极其稀少的含量以及相当复杂的背景干扰。通常1 mL外周血中含有10?个红细胞,10?个白细胞,而可能只含有1~10个胎儿细胞,在如此庞大复杂的正常细胞背景干扰下,很难实现高灵敏、高特异的胎儿细胞捕获以及胎儿基因的分析。 /p p style=" text-align: center " img title=" b.jpg" src=" https://img1.17img.cn/17img/images/201808/insimg/ae136be5-3a7c-47b8-b51e-a7ae38b386bf.jpg" / /p p   杨朝勇教授所带领的研究团队针对这一挑战性课题,发展了基于流体力学分离与免疫识别的胎儿细胞捕获芯片(FETAL-Chip)。该芯片内构建了成千上万个表面修饰有抗体的微柱阵列,阵列排布方式根据确定性侧向位移分离原理设计,使得通道到芯片中的胎儿细胞能够不断与微阵列表面的抗体进行碰撞,实现选择性“增频”效应,有效提高捕获效率。该设计有效结合了胎儿细胞在物理性质及表面标志物与背景细胞的差异,实现了胎儿细胞的高效富集。通过对不同孕周的孕妇外周血样本进行测试,该团队验证了FETAL-Chip能够在孕早期就实现对胎儿细胞的有效分离,并通过特异性Y染色体基因分析的方法,确认了胎儿细胞的来源。该方法耗血量少(2毫升)、检测时间早、基因覆盖率高、遗传筛查范围广,有望发展成为新一代的无创产前诊断技术。 /p p style=" text-align: center " img width=" 384" height=" 272" title=" c.jpg" style=" width: 385px height: 259px " src=" https://img1.17img.cn/17img/images/201808/insimg/444fd3ff-28e4-4607-8fd3-c1b3b16ffbeb.jpg" / /p p   近年来,杨朝勇研究员所带领的研究团队长期从事生物分析化学与化学生物学研究,在体外诊断、微流控技术、液体活检、单细胞分析等方向取得了一系列创新性成果。 /p p /p
  • 每秒4万亿帧 我科学家用超快摄像机捕获光的运动
    p   西安交通大学电信学部陈烽教授团队与香港城市大学王立代博士团队合作,提出一种全新“压缩超快时间光谱成像术”(简称超快压缩成像),在帧率、帧数和精细光谱成像等方面突破了现有超快成像技术的局限,成功捕获到光子的运动。相关成果近日发表在《物理评论快报》上。 /p p   西安交大科研人员提出的这种新型的超快成像技术是探知各种未知瞬态过程的一项关键核心技术,如化学反应过程中原子的运动、超短激光脉冲作用材料时发生的瞬态非线性过程等。超快压缩成像通过对飞秒激光进行数字编码,并在时间和光谱维度上进行压缩和解压缩,从而能够同时实现高速度、高帧数以及高光谱分辨率。超快压缩成像的超高帧率可以达到3.85THz(1THz=1012Hz),和亚纳米级超高光谱分辨率。研究人员通过这种超快压缩成像技术实时记录了飞秒激光脉冲的传播、反射以及自聚焦等持续时间达到33皮秒的超快物理过程。 /p p   超快压缩成像的基本原理是飞秒激光时间—光谱相互耦合原理,它的实现主要是通过3个关键步骤,首先是利用飞秒激光丰富的频率成分,通过色散将不同的波长在时域上拉伸,形成一个叫做“啁啾脉冲”的高速时间序列。第二步是这个拉伸的时间序列与测量的瞬态过程进行相互作用。这样,不同的波长成分就可以记录超快过程不同的时间信息。进而对这一时间序列进行二维的空间编码,并利用色散将不同的光谱信息压缩在一个二维平面上并采用CCD采集,最终利用算法将一幅二维的CCD图像重建成具有空间和时间维度的多幅超快图像。 /p p   该成果使得长时间、宽光谱地记录飞秒影像成为可能,将推动更多涉及超快过程的极端物理、化学、材料和生物学的研究。 /p p   此外,《自然》(Nature)以研究亮点(Research Highlights)形式对该研究成果进行了专题报道,文章标题为《4万亿帧每秒的速度去捕捉光的运动》。同时,美国物理学会官网《APS物理》(APS Physics)也做了焦点专题报道,文章标题为《聚焦:4万亿帧频的电影》。西安交通大学与香港城市大学联合培养博士生陆宇为本文第一作者,西安交通大学陈烽教授和香港城市大学王立代博士为本文共同通讯作者。西安交通大学是本文第一作者单位。 /p p   《自然》报道链接: /p p   https://www.nature.com/articles/d41586-019-01625-5 /p p   美国物理学会官网《APS 物理》报道链接: /p p   https://physics.aps.org/articles/v12/55 /p p   《物理评论快报》原文链接:             /p p   https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.193904 /p p & nbsp /p
  • 上海光机所在单次超快动力学诊断方面取得研究进展
    近日,中国科学院上海光机所高功率激光物理联合实验室在单次超快动力学诊断方面取得研究进展,相关研究成果以“Single-shot spatiotemporal plasma density diagnosis using an arbitrary time-wavelength-encoded biprism interferometer”为题发表于Optics and Lasers in Engineering。   超快动力学现象在光化学、自旋电子学、等离子体物理、激光加工等领域广泛的存在,超快动力学诊断技术是可视化超快动力学现象演化过程的重要工具,可以用于定量研究超快演化过程的机制,揭示超快演化过程的原理,在超快演化过程调控中可以实现定量反馈的作用。然而,目前的单次超快动力学诊断技术很难同时兼顾高时空分辨率、高序列深度、时间窗口独立可调、无需参考臂等优点。   在这项工作中,研究人员提出了时间波长编码的双棱镜干涉仪(TWEBI),其原理是通过级联不同相位匹配角的非线性晶体产生波长编码的探针光,利用二维衍射光学元件(DOE)和窄带通干涉滤光片(IBPF)实现波长空间复用,利用即插即用的双棱镜干涉仪实现阴影记录模式和相位测量模式的按需切换。实验在神光II飞秒数拍瓦的光参量啁啾脉冲放大的前端上进行的,在实验中TWEBI装置实现了4 的空间分辨率、200 fs的时间分辨率、序列深度为12、有效帧率可达5 Tfps、时间窗口可以从亚皮秒到1.86 ns任意可调。用TWEBI装置对激光诱导空气成丝的动力学过程进行阴影记录和密度测量,相关实验结果证明了该方法的可行性。本项工作为诊断复杂的瞬态动力学提供了一个潜在的解决方案,这将有助于我们进一步理解、调控、应用这些超快现象。   相关工作得到了国家自然科学基金、中国科学院基金、上海市科学技术委员会基金、科技部基金的支持。图1 (a)TWEBI实验装置;(b)探针光光谱图;(c)探针光时域振幅和相位图;(d)成像系统空间分辨率图图2 (a)激光诱导空气成丝阴影图;(b)子光斑中心波长图;(c)激光诱导成丝相位和振幅图;(d)重建的等离子体密度分布图
  • 【新品】钢研纳克推出棒材相控阵超声检测系统
    应用背景超声检测是目前应用最为广泛的无损检测技术,近年来随着电子技术的飞速发展,超声相控阵检测技术成为一个研究热点。与传统的常规超声波探伤设备相比,相控阵检测设备无需探头围绕管棒材进行高速旋转,大大简化探伤设备的机械结构;超声相控阵检测速度快,检测精度高 利用电子扫查和电子聚焦偏转,大大提高了缺陷的检出率和系统的分辨力,实现对棒材表面和内部全截面 壁的整体可靠检测。系统检测对象(1)棒材规格:Φ6~25/Φ20~80/Φ60~180 mm(检测范围可根据需求定制)。(2)长度:6~9m(根据需求定制)。(3)材质:碳钢、合金钢、轴承钢、弹簧钢、冷镦钢等。(4)检测标准和灵敏度:GB/T 4162、ISO 18563等相关标准。(5)凹面环阵探头:每个探头晶片数量128。(6)静态检测能力:Φ0.4/0.8/1.2mm平底孔深度(½, ¼D ),信噪比 12dB(7)动态检测能力:- Φ0.4/0.8/1.2/2.0mm平底孔(根据用户需求和材料确定)。- Φ0.2 ~ 0.5mm × 10mm横孔(100%棒材截面覆盖,无盲区);- 表面纵向刻槽10 × 0.1 × 0.1mm (L × W × H)。(8)盲区端部盲区:<30mm。近表面盲区:无。(9)误/漏报率:0%。(10)检测速度:可根据客户要求设计。扫查类型(1)线扫查:将同一聚焦法则顺次应用于不同单元组。(2)扇扫查:将不同聚焦法则顺次应用于同一晶元组,从而形成一个带有一定空间范围的扇型扫查区域。(3)深度聚焦扫查:不同于以往在单一聚焦深度上进行信号采集, DDF (Dynamic Depth Focusing动态深度聚焦) 通过一整套自动计算法则,同时将接收到的不同深度的声场信号进行拟合,并将所有拟合后的聚焦声场信息进行叠加。系统组成设备主要由传输辊道、压持装置、检测主机、自动控制系统和水循环系统组成。压持装置均为下压式,其下部有V型辊轮,上部为压轮,压轮起落由气缸驱动。压轮的下压和抬起动作由光电开关控制,自动识别棒材端部并执行压下和抬起动作,检测主机可实现侧拉出,便于快速换规格。图1:系统概述图2:设备照片设备特点(1)相控阵检测图形化显示,可同时拥有 A、B、C、S 扫描,缺陷显示直观明确。(2)相控阵电子旋转扫查代替机械运动扫查,结构简单检测稳定可靠。(3)相控阵检测易实现声束的偏转、聚焦和扫查,可配置多种检测模式及聚焦法则,检测灵敏度高。(4)模块式结构多路配置检测速度快,生产效率高的超声探伤系统。(5) 操作便捷、维护简单方便。图3:检测界面目前超声相控阵检测技术适合复杂结构件以及能实时成像等优点,已经适用于航空航天、汽车、石化、核电、轴承、压力容器等工业无损检测领域,如:管材、棒材、板材、车轮、盘环件等。附:钢研纳克无损检测业务介绍(1)无损检测钢研纳克无损检测事业部是经过CNAS认可的第三方实验室,具备特种设备综合检验机构资质和NADCAP资质等。能够提供各类无损检测服务,技术方法涵盖超声、射线、磁粉、渗透、涡流、漏磁等。目前拥有COMET 420KV射线机、工业CT/DR、GE/PAC水浸C扫、PVA超声显微镜、M2M超声相控阵仪器、10000A固定式磁粉探伤机、全自动荧光渗透线等高端无损检测设备,可为客户提供大厚度、高精度检测和内部结构分析。(2)无损校准钢研纳克是经过CNAS认可的第三方校准实验室,是目前国内拥有资质最全、能力范围最广的国家级无损检测校准机构之一,无损校准覆盖所有相关仪器、探头和试块,特别对相控阵仪器、TOFD仪器、在线自动化无损检测仪器等校准领域处于国内领先水平。作为国家冶金工业钢材无损检测中心挂靠单位,钢研纳克还承担对国内企业自动无损检测设备综合性能的测试、评价和认可业务。(3)自动/无损检测设备为冶金、石化、铁道、机械等行业的近200家企业上马建造了无缝钢管、焊管、钢棒、钢板、火车车轮等自动化超声、涡流、漏磁和磁粉探伤检测线或设备近500套。此外,还销售以涡流探伤仪、超声波探伤仪和电磁超声探伤仪为主的各类无损检测仪器1000余台。
  • 开发“用得起”的超声成像技术
    英国纽卡斯尔大学的Jeff Neasham(左)和Dave Graham研制的超声设备造价仅为30至40英镑。 图片来源:纽卡斯尔大学   英国工程师最近开发出了一种物美价廉的超声波成像技术,这一技术将在全球范围内更广泛地应用于产前诊断以及其他领域。   这种低成本胎儿扫描仪由位于英格兰东北部纽卡斯尔大学的工程师研制。该仪器可以与任何计算机相连以显示胎儿的影像。   这是一款手持USB设备,大小近似于电脑鼠标,其工作环境与目前使用的超声扫描仪相当。工作原理是使用高频脉冲在计算机屏幕上构建胎儿图像。   不过,与大多数医院使用的造价在2万至10万英镑之间的超声技术不同的是,这款由Jeff Neasham和助理研究员Dave Graham研制的超声设备造价仅为30至40英镑。   因此,这款设备可以为那些在世界最贫困的国家工作的医疗队提供最基本的产前诊断信息,而有了这些信息就可以挽救数十万妇女和儿童的生命。   这款扫描仪通过了英国国家医疗保障体系医用物理学专家的全面测试。   虽然这款设备的输出功率仅为目前医院传统超声系统的1/10~1/100,但借助专业软件,它可以生成简单的有效图像。尽管这些图像可能达不到那些造价高昂的设备扫描所得到的清晰效果,但它可以为医务人员带来巨大的便利。   纽卡斯尔大学电气与电子工程学院声纳专家Neasham说:“在英国,对于这种有可能挽救生命的常规检查,我们已习以为常。但对全球许多其他地区的妇女来说,她们甚至都不能通过影像获知胎儿在子宫中的位置或发育情况等最基本的信息。”   “我们希望凭借超低的成本以及能在近十年来生产的任何计算机上运行,这款设备最终能使所有妇女都获得基本的产前超声诊断。”他补充说。   Neasham的初衷是制造出能负担得起的方便易用型设备,使其能够应用于发展中国家,以及英国本土的一些仍认为超声波成本过高的地区。   他说:“成本是关键。我们的目标是生产出价格相当于大多数社区助产士使用的手持多普勒设备(胎儿心脏监护仪)的产品。在价格为2万英镑的扫描仪被普遍视为低价时,完成这一目标实属不易。”   Neasham是一位水下声纳技术专家,他研制出了水下声纳成像系统和水下通讯与跟踪系统。他利用其在声纳信号处理方面的经验,在设计中将零部件和硬件成本压缩至极低的水平。工作原理是使用传感器手动在皮肤上进行扫描,与此同时计算机软件生成对焦图像。   “正是我为人父的经验促使我开始这一项目。在我和妻子通过屏幕看到孩子时,我们意识到我们可以通过这种方式看到孩子是多么地幸福,于是我妻子建议可以利用我从事声纳研究的经验使这一应用更加经济实惠。”这位两个孩子的父亲解释说。   这款扫描仪由英国工程与自然科学研究理事会提供资助。扫描仪只需通过USB端口与计算机相连。   Neasham说在很多情况下这款设备可以作为医院现役高性能扫描设备的补充,但不能作为替代产品。   他说:“显然,这款扫描仪很可能应用于产科之外像胆结石或其他通过超声成像易于诊断的病症。我们已经获得了广泛关注并正在与很多商业伙伴就如何继续推进这项研发成果进行磋商。”   据联合国统计显示,每年有超过25万妇女死于怀孕及分娩并发症,其中99%的死亡发生在发展中国家。研究人员指出,其中大部分的死亡是可以避免的,而缺少医疗设备是最重要的死因之一。
  • 超亿元B轮融资!指真生物加速流式荧光产品商业化应用
    2022年7月15日,指真生物宣布完成超亿元B轮融资,达晨财智领投,道远资本、惠合资本、凯普生物、安必平以及老股东启明创投跟投,探针资本继续担任本轮独家财务顾问。本轮融资将用于加速公司产品市场开拓、新技术新产品开发等。作为一家为临床诊断和生命科学研究提供流式荧光多联检产品的国家级高新技术企业,指真生物曾获评2021年德勤“明日之星”企业,一直坚持“创新改变世界,关爱生命健康”的使命,近年来推出一系列创新的流式荧光产品,保持着强大的研发能力和产品迭代能力;为确保产品品质及服务能力,公司持续投入人力物力,构建了完善的供应链体系和面向全国的客户服务体系,北京、无锡两地近万平米生产和品质保证中心,确保产品质量可靠,产能充足。掌握核心技术,开启普及流式应用“国产化”新征程流式荧光检测是新一代高通量多联检平台型技术,已经成为体外诊断和生命科学研究领域热门的新兴赛道,其核心由多色流式检测与液相芯片捕获组合构成,该技术应用于免疫/蛋白检测,具有高通量、高灵敏度、多联检、检测成本低等特点。作为国内流式荧光检测技术研发先行者,指真生物不仅掌握了多重磁性编码微球的制备技术;同时,在仪器端,也是国内具备高功率流式激光器、高灵敏多色荧光检测系统等核心器部件自制能力的流式仪器整机生产商。目前,指真生物打造了面向临床诊断和生命科学应用的系列化流式荧光检测产品和解决方案,开启普及“国产化”流式新征程。聚焦客户需求,打造自动化、智能化流式荧光产品解决方案自动化和智能化一直是客户使用流式荧光检测产品的核心需求,包括国外品牌在内的众多流式产品供应商,多年来始终未能很好的解决。针对蛋白/抗体检测、细胞分析等不同应用场景,指真生物依托自主研发的多重磁性编码微球系统、细胞/磁球自动提取处理技术、细胞亚群多色标记及聚类分析技术,形成了多场景系列化的流式产品自动化、智能化解决方案。 指真生物HCC智慧流式应用平台HCC智慧流式应用平台:指真生物为流式传统客户量身研发的可定制流程的智能化流式检测解决方案。其中,HyPoster流式样本前处理仪,用户可定制处理流程,兼容细胞裂解提取与蛋白/抗体捕获功能,实现细胞与血清样本的批量在线处理;CytoFocus自动流式荧光检测仪,双激光8色,极高的荧光灵敏度,批量样本高速自动上样;CytoCluster流式AI分析软件,集成高维数据提取、细胞聚类、蛋白定标等批量自动分析功能。 指真生物HighFlux系列全自动流式平台HighFlux系列全自动流式荧光检测系统:指真生物为临床检验用户打造的桌面式全自动高通量流式荧光免疫检测系统,一机多能,灵活组合,结合指真细胞因子多因子、多项肿瘤标志物、性激素、自免抗体谱等检测项目,实现极致多联检应用;同时,为满足临床和体检用户日益增长的大样本量检测需求,HighFlux系列具备多台联机能力,轻松实现数千指标/小时的检测能力。指真生物全自动流式荧光检测流水线突出研发优势,拓宽应用场景从“铺天盖地”走向“顶天立地”对于流式荧光技术在精细化细胞分析、超多重蛋白检测甚至单分子免疫检测中的应用潜力,多年来,指真生物也在不断探索和尝试。 指真生物MultiCyte多色科研版流式细胞仪谈及未来,指真生物董事长兼CEO马永波表示:“目前,公司的流式产品已经全面进入市场,服务于临床和科研客户,接下来,在持续做好为客户提供优质服务和产品的同时,指真生物将会更多的看向未知世界,充分发掘流式荧光技术在单细胞研究、蛋白筛选以及临床新指标发现方面的应用潜力和解决方案,不断为客户提供更先进的流式产品和服务。”对于本轮融资,马永波进一步表示:“本轮融资的达成,将加速推进公司的商业化进程,同时,充足的资金支持使我们能够引进更多人才,加大研发投入,保证创新产品的快速转化。感谢本轮投资人对指真生物的关注和支持,我们将持续研发创新,为流式产品的国产化替代贡献指真力量。”本轮领投方达晨财智医疗行业投资总监王宪政博士表示:“国产化高端生命科学仪器和创新IVD产品是达晨财智重点投资布局领域,流式诊断平台近年正加速从高端科研仪器向临床应用转化,以其多指标、高效率、超灵敏等特点在感染、免疫、肿瘤等临床科室应用潜力巨大。指真生物在流式“国产化”领域潜心研发多年,攻破多项“卡脖子”技术,实现了核心部件的自主可控,在产品智能化、全自动、稳定性上均大幅提升,为中国临床市场打造了高性价比的国产流式诊断平台。指真生物已具备IVD仪器、试剂的规模化量产能力和临床推广能力,随着新产品的不断上市,有望加速流式荧光诊断在临床各科室的渗透和普及。”本轮投资方道远资本董事长章达峰表示:“流式荧光作为一种平台型技术,具有很强的延展性。指真生物基于此平台开发了流式细胞仪、高端血球仪、液相芯片等涵盖细胞、分子检测的设备和试剂。公司产品的应用领域广泛,特别是随着细胞治疗行业的高速发展,流式产品无论在临床医学,还是科研领域都发挥着越来越强大的作用,且不可替代。指真团队的创新力和执行力令人印象深刻,期待公司更多产品上市,为国内患者带来高效便捷的创新诊疗手段。”关于达晨财智达晨财智是中国最具影响力的创投机构之一。凭借优异的业绩表现,达晨财智在中国创投委、清科集团、投中集团、融资中国等权威机构评选中连续多年名列前茅,连续21年荣获清科“中国最佳创业投资机构50强”,2012、2015年度排名第一,近10年稳居本土创投前三。目前达晨财智管理基金规模超过360亿元,投资逾660家企业,成功退出248家,其中128家企业上市,累计96家企业在新三板挂牌,包括了爱尔眼科、康希诺、凯普生物、热景生物、兰卫医学、圣诺生物、亿纬锂能、明源云、华友钴业、和而泰、吉比特、蓝色光标、圣农发展、天味食品、叮咚买菜等众多明星上市企业。关于道远资本道远资本是一家专注于医疗健康领域领先的私募股权投资机构,致力于用资本的力量和产业资源帮助优秀医疗健康企业快速成长,为社会提供更好的医疗产品和服务,增进人类健康。目前道远资本共管理12支人民币基金,3支美元基金,旗下基金共投资77个优秀项目,IPO项目14家(包括获得证监会科创板注册的批文的项目1家),其中包括锦欣生殖(01951.HK)、维亚生物(01873.HK)、赛诺医疗(688108.SH)、安必平(688393.SH)、三叶草生物(02197.HK)等。2022年截至日前有1家企业通过港交所上市聆讯,另有3家企业正在IPO流程中,预计未来两年道远资本还会有超过10家投资企业在国内外主要证交所上市。关于惠合资本无锡惠开正合投资管理有限公司(以下简称“惠合资本”)成立于2018年,是无锡惠山区及惠山经开区着力打造的私募股权及创业投资专业化平台。惠合资本努力发挥股权投资在科技创新和经济转型升级中的重要作用,深化金融体系创新,拓宽服务企业的渠道与方式,从资本、资源、战略等方面全方位为被投企业赋能。截至目前,公司旗下管理基金20支,管理规模达到130亿元,重点关注智能制造、生物医药、新能源、新一代信息技术等行业领域,累计投资蓝沛科技、海柔创新、泛生子、高峰医疗、阿特斯、海达光伏等42家企业,总投资金额47.68亿元,荣获江苏省创业投资示范企业、融资中国“2021年政府引导基金TOP50”等荣誉,推动惠山布局未来产业中具有核心技术优势的创新企业和产业链前端项目,助力区域产业格局的迭代革新。关于探针资本探针资本成立于2017年,是一家专注医疗健康与生命科技的精品投行,旗下业务包括财务顾问、直接投资、产业咨询和创新孵化。创始团队来自业内一线私募股权投资机构、财务顾问机构、管理咨询公司和医疗垂直媒体。自成立以来,探针资本每年均完成两位数的私募融资与并购交易,累计交易金额超百亿元人民币。在企业增值服务方面,探针资本团队拥有成熟的产业经验。2020年探针新医疗基金成立,截至目前已投资十余家业内头部公司。
  • 深圳先进院高分辨率超声成像研究获系列进展
    p   近期,中国科学院深圳先进技术研究院劳特伯医学成像研究中心郑海荣团队在高分辨率超声成像研究中取得一系列进展。 /p p   高分辨率超声主要采用大于15MHz的超声频率进行成像,可获得几十微米量级的成像分辨率。在临床中主要应用于浅表、内窥和眼科等方面的疾病检测。高频超声换能器是成像系统的关键部件,主要基于压电材料进行设计加工。但传统压电材料介电常数较小(夹持介电常数小于1500),造成压电阵元尺寸小的高频换能器的电阻抗会大幅度提升,进而导致换能器成像性能不佳。郑海荣团队邱维宝课题组利用新开发的一种高介电常数、高压电性能的改性PMN-PT陶瓷(夹持介电常数为3500)设计制备了性能优异的40MHz高频超声换能器(阵元尺寸可为0.4mm× 0.4mm),使得制备的高频超声换能器的电阻抗大幅度降低,更容易与电子系统的阻抗相匹配,实现较高的成像灵敏度(-13dB)。此外,该研究中设计制备的超声换能器具有较高的成像带宽(80%)和信噪比,并在高分辨率医学成像领域中展现出应用潜力。相关研究成果已被IEEE Trans Ultrason Ferroelectr Freq Control接收。 /p p   邱维宝课题组在高分辨率超声成像方法和电子系统方面也取得了研究进展。高频超声获得高分辨率医学图像存在衰减系数增大导致成像穿透深度降低的问题。据此,课题组提出了基于编码超声的高频超声成像方法,在激励换能器时,采用带有一定编码的超声信号进行激励,回波接收时通过算法解码恢复出高分辨率图像,使得在成像中既可以维持图像的分辨率,也可以提升超声成像的穿透深度。该技术在浅表和内窥等成像中具有应用潜力。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   在进行高分辨率超声成像时,电子系统需要具有较高的数据采样率,以获取超声回波的原始数据信息,因此需要大幅度提高模数转换器(ADC)的采样频率。然而,传统超声成像系统的ADC采样频率通常为60MHz或者更低,不能满足大于30MHz的高频成像需要。据此,邱维宝课题组提出了一种延迟激励方法,通过将激励波束的时序进行规律性调整,在多次发送后获取多个数据图像,通过延迟复合处理,即可以获得高采样率的图像。该方法有望使临床用的超声设备,在不改动主要电子器件模数转换器的前提下,实现高分辨率超声成像的功能。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   高分辨率超声成像技术在内窥镜领域具有重要的应用潜力,邱维宝课题组在推进血管内超声成像技术的同时,也在尝试新型内窥成像技术。胶囊内窥镜(capsule endoscopy)是一种胶囊形状的内窥镜,它是用来检查人体肠胃的医疗仪器。胶囊内窥镜体积仅有普通胶囊大小,消除了传统检查耐受性差的缺点,能够拍摄食道、胃、小肠、大肠等,从而完成对人体整个消化道的检查。然而目前该技术是采用光学成像方法,仅能观测组织表层的病变信息,不能获得深层次的组织情况。由于超声成像技术的穿透性较好,因此课题组拟尝试进行超声胶囊内窥镜的设计验证,提出了基于高分辨率超声的内窥成像控制方案,采用40MHz的超声频率获得了小于60微米的肠道组织成像分辨率。相关研究成果发表于IEEE Trans Med Imaging。 /p p   以上研究得到了国家自然科学基金、中科院前沿科学重点研究计划、广东省杰出青年基金、深圳市孔雀计划等项目的资助,以及美国南加州大学、宾夕法尼亚州立大学,英国格拉斯哥大学,东北大学等高校的支持与合作。 /p p   论文题目:High Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic with Ultrahigh Clamped Dielectric Permittivity /p p style=" text-align: center " img title=" 01.png" src=" http://img1.17img.cn/17img/images/201712/insimg/76653693-b0cd-480d-ab1c-d835a6a2f035.jpg" / /p p style=" text-align: center " strong 图1.(a)高频超声换能器技术参数对比 (b)高频超声换能器结构示意图和实物图 (c)成像性能测试图 /strong /p p style=" text-align: center " img title=" 02.png" src=" http://img1.17img.cn/17img/images/201712/insimg/c0246a6c-4345-4ee5-b1a2-fe74a5030a04.jpg" / /p p style=" text-align: center " strong 图2.(a-c)编码成像原理示意图 (d)编码成像技术可以大幅度提高血管内超声成像的穿透深度 /strong /p p style=" text-align: center " img title=" 03.png" src=" http://img1.17img.cn/17img/images/201712/insimg/86bdbf66-cabb-484d-92d3-d2dc22d62b25.jpg" / /p p style=" text-align: center " strong 图3.左:延迟激励成像原理示意图 右:眼睛组织超声成像图 /strong /p p style=" text-align: center " img title=" 04.png" src=" http://img1.17img.cn/17img/images/201712/insimg/90b38fc1-6ef0-4192-83b1-723cacb12d4c.jpg" / /p p style=" text-align: center " strong 图4.(a-b)胶囊超声内窥镜设想方案示意图 (b)高分辨率肠道组织超声成像图 /strong /p p & nbsp /p
  • 超快超分辨成像问题在列:2023年度15个重大科学问题、工程技术难题和产业技术问题
    为进一步加强科技前瞻研判,引领原创性科研攻关,打造学术创新高地,推进科技自立自强,按照《中国科协办公厅关于征集2023重大科学问题、工程技术难题和产业技术问题的通知》 (科协办函创字[2023]8号)文件要求,中国光学工程学会面向国内外科技组织和科技工作者,共征集58个全球共同关注的前沿科学问题、工程技术难题和产业技术问题。经过专家委员会函评和终审评议,共评选出15个前沿科学问题、工程技术难题和产业技术问题。本次评选出的5个前沿科学问题中,第一个就是超分辨率成像技术,该技术在近几年得到了快速的发展,目前已经有多项科研转化成果成功产业化。5个前沿科学问题1、如何突破时-空极限实现超快超分辨成像?How to break through the spatio-temporal limit to achieve ultrafast and super-resolution imaging?2014年诺贝尔奖授予了将光学显微带入纳米尺度的超分辨荧光成像技术,但其依赖于荧光标记,且时间分辨率较低。压缩超快成像技术兼具飞秒时间分辨率和极高数据压缩比,但以牺牲空间分辨率来观测超快动态过程。发展超快超分辨成像技术,在无标记宽场成像下实现时-空分辨率的协同突破,将极大推动人类对各类超快微观现象的认知,助力“追光捕快、察微显纳”的新成像体系建设。2、人们能以多高的自由度塑造光?How arbitrarily can light be shaped?自从认识光现象起,人们便尝试不断改变光的“造型”。从早期的透镜聚焦光能,到现代显微技术中的复杂结构光、激光雷达形貌测量中的点阵投影等,还有精细激光加工中超长焦深的贝塞尔光束、具有弯曲空间传播轨迹的艾利光束等。对光的塑造能力越高、对其利用程度也越高。为此,应从原理上探索塑造光的极限,即人们能以多高的自由度塑造光?3、光学系统的体积极限是多小?What is the volume limit of an optical system?光学元件的性能在很大程度上受到可用光学材料和结构设计的限制。基于超表面的平面光学器件以及各类新型微纳元件有望将核心光学元件缩小到几百微米级别,相比传统复杂光学系统体积显著减小了六个数量级。但如何确定具有特定功能的光学系统的体积理论极限还有待研究,从而进一步实现微型化、微型化与集成化,将在AR/VR、遥感探测及未来纳米科技等领域产生巨大影响。4、光电子芯片的集成度极限是什么?What is the limit of photonic integration? 面向未来十年或更长远时间,光电子芯片集成度的增长会遇到瓶颈,相应的容量要扩展到Pb/s量级会遇到许多根本性的限制。本科学问题涉及芯片容量、尺寸、功耗三个方面的理论和技术的极限,需要在超宽带透明光电材料、高集成度器件中的光场调控、高效率低功耗调谐机理等方面研究变革性的新原理和新技术。5、如何使光计算完备?How to make optical computing complete?采用光学方法来实现运算处理和数据传输是后摩尔时代算力、功耗问题极具潜力的解决途径之一。光子具有光速传播、抗电磁干扰等特性,以及具有天然的多维复用和并行计算优势,十分契合人工智能等应用领域大数据处理的需求。但目前光子计算面临着很多挑战,例如光子芯片的集成度仍有待提高;计算精度仍低于电子芯片,器件架构未优化,上述挑战亟需研究5个工程技术难题1、如何实现EW超强激光?How to create EW ultra-intense laser?依托我国神光装置,攻克甚多束超短脉冲激光高效优质相干合成、超高信噪比管控、等离子体压缩等核心难题,突破EW超强激光高增益、高品质、高负载三大受限条件,国际上率先实现EW级峰值功率激光输出,率先进入超相对论物理等前沿基础研究领域,辐射带动平均功率万瓦级超短激光技术发展和应用。2、如何构建超大型空间光学装置?How to construct the ultra-large space optical instrument?超大型空间光学装置是当前世界宇航企业重点发展的综合性大系统工程方向。在轨组装和维护则是构建超大型空间光学装置的重要技术途径,即将系统的各个组成模块发射入轨,再利用空间操控工具对各个模块进行在轨组合和装配。该技术的实现将引领弹性可重构光学遥感系统的跨越式发展,并为未来空间飞行器维护与服务奠定技术基础。3、如何实现高功能密度感存算一体光电集成芯片?How to realize that photoelectric integrate chip with high functional density sensing and memory integration?能够执行探查、识别、飞行、定向打击等任务的微型机器人对功耗、尺寸、功能要求十分苛刻。现有设备集成化程度低,处理数据量大,成像体制单一,无法实现一体化探查。为解决这些问题,可采用感存算一体化仿生架构,突破光电融合集成、智能感知处理等关键技术,挖掘低频有效信息,降低能耗压力,实现高功能密度、极小型化、极低功耗的一体化光电集成芯片。4、如何实现在原子、电子本征尺度上的微观动力学实时、实空间成像?How to achieve real-time and real-space imaging of microscopic dynamics on the intrinsic scale of atoms and electrons?原子、电子是自然界许多现象的核心,其结构及运动状态决定了所构成物质的宏观特性。原子、电子的运动发生在飞秒至阿秒的超快时间尺度以及皮米的超小空间尺度上,因此,需要同时具备“皮米空间分辨率”与“阿秒时间分辨率”的阿秒电子成像技术以实现对原子-亚原子微观世界中超快动力学过程的探测与控制,揭示材料中各种功能的微观起源。5、如何实现高时空分辨率的全球重力梯度测量?How to retrieval high time and spatial resolution global gravity gradient?地球重力场是地球的基本物理场之一,反映了地球表层及内部物质的空间分布、运动和变化,同时也决定着大地水准面的起伏和变化。利用高精度冷原子重力梯度仪对全球的重力梯度进行高时空分辨率的测量,可以更好地监测揭示海洋环流活动规律,全球陆地水储量变化,冰盖和大型冰川系统的质量平衡,为人类未来的生存和发展制定科学的应对策略。5个产业技术问题1、如何打造成熟的硅基光电异质集成工艺平台,支撑新一代信息技术发展的需求?How to build the accessible platform for optoelectronic heterogeneous integration based on silicon photonics, to facilitate the development of next-generation information technology?随着AI、下一代数据中心、激光雷达、卫星通信等战略应用迅速发展,单一集成光子材料已不能满足产业需求。以III-V半导体、薄膜铌酸锂为代表的硅基光电异质集成可融合多种光电功能材料的优势,将成为高端光子芯片在上述应用领域的重要解决途径。鉴于光电异质集成国际竞争态势,我国迫切需要提升高端异质集成光子芯片的研发及产业化能力,支撑产业发展。2、如何突破激光时空特性测试计量短板难题?How to break through the difficult problem of measuring the spatial and time domain parameters of lasers?2022年,激光产业销售收入大于800亿。然而,支撑我国激光产业发展的激光参数测试仪95%依赖进口,年高达3亿元。特别是激光时域和空域参数测试计量缺失,全部依赖德国、美国、加拿大等仪器。典型的包括:测量皮秒、飞秒和阿秒的自相关仪、FROG和SPIDER等;千瓦级功率激光光束质量测试仪等。测试仪器短板,风险大,是急需攻关的问题。3、中高端传感器如何实现自主可控?How to achieve self- production and controllability of medium and high-end sensors?传感器是物理与数字世界纽带,万物互联基石,对国力有重要影响。目前我国低端传感器产能过剩,中高端传感器自主可控率低。小到手机摄像头、大到汽车发动机,中高端传感器严重限制了我国产品市场竞争力。传感器专业点多面广,对材料、集成电路等基础工业水平要求高。如何实现中高端传感器自主可控是一个关键产业技术难题。4、如何谱写智能网联汽车的“中国方案”?How to compose the "Chinese Approach" for intelligent connected vehicles?智能化、网联化已成为各国汽车产业博弈未来的战略制高点,李克强院士提出了智能网联汽车的中国方案—“车路云一体化融合系统控制”的技术路线。在路侧通过将激光雷达、毫米波雷达和摄像头融合在一体,具备全天候全息环境感知能力,并有传输延迟低、覆盖范围广、数据精度高、易维护安装的特点,可以解决交通拥堵、交通事故两大核心痛点,进一步提升我国交通信息化、智能化。5、如何突破反谐振空芯光纤降损及大规模工业化制备难题?How to break through the loss-reducing and massive industrial manufacture of anti-resonant hollow-core fiber?作为近半世纪光通信行业基础媒介的实芯光纤正面临容量与时延两项限制。反谐振空芯光纤在理论损耗、带宽、非线性和介质光速等方面全面优于实芯光纤,将对光纤、光器件、光网络系统形成颠覆性变革,有望构建下一个50年的光通信生态。其理论损耗极限、将损耗降至可商用水平并实现大规模工业制备,是亟待突破的技术和产业问题。
  • 超微型“砧台”可用于“锻造”分子
    p   电 铁匠用砧台来锻造金属,美国科学家搭建出一个超微型“砧台”,能够在上面“锻造”分子,造成化学键断裂和电子转移。据介绍,这是首次仅通过机械压缩触发化学反应,可望带来更高效、精确和环保的化工合成技术。 /p p   化学反应的本质是化学键的形成和断裂,通常需要热、光或电触发,用纯机械手段来触发是个较新的研究领域。此前人们曾通过拉伸分子触发化学反应,但压缩方式尚未取得成功。 /p p   美国能源部SLAC国家加速器实验室和斯坦福大学研究人员在新一期英国《自然》杂志上发表报告说,他们利用金刚石产生巨大压强,再用结构牢固的碳硼烷分子作为“砧台”,把压强传递给比较“松软”的分子,使后者的化学键断裂。 /p p   实验中,研究人员让两块金刚石相互靠近,使其对放在中间的样本产生高达500吉帕斯卡的压强,约是地心压强的1.5倍。 /p p   被“锻造”的对象是铜硫团簇,实验显示,碳硼烷“砧台”能把金刚石装置产生的压强传递给铜硫团簇,致其变形。压缩过程中不仅发生化学键断裂,还使电子从硫原子移动到铜原子,产生纯铜晶体。 /p p   研究人员说,这项成果有助于研究压强对材料性质的影响,进而开发新型材料。如果能用机械压缩的方式简化一些重要的化学反应,也将为化工合成开辟新路,如降低合成氮肥的成本等。 /p p br/ /p
  • 超声技术——灭杀新冠病毒新思路
    冠状病毒组成结构2021年2月18日, 麻省理工学院tomasz wierzbicki研究团队在国际固体力学权威期刊“journal of the mechanics and physics of solids”(《固体力学与固体物理学杂志》)上发表文章,文章表示新型冠状病毒可能容易受到医学诊断成像中使用的超声波振动频率的影响。即在人体安全适用的超声波频率范围内,超声波振动能够破坏冠状病毒结构甚至杀死病毒。[1]新型冠状病毒主要由核心rna、衣壳以及衣壳上的刺突蛋白组成,其中刺突蛋白对于病毒识别入侵宿主细胞具有关键作用。由于病毒是寄生生物,无法独立生存,因此寻找一种可以有效破坏冠状病毒衣壳及其刺突蛋白结构的方法,对于治疗以及预防冠状病毒感染具有很大的意义。研究内容与结果wierzbicki团队通过计算机模拟构建冠状病毒模型,并模拟其在一系列超声波频率振动的机械反应。结果发现在100 mhz(冠状病毒衣壳自然振动频率)的振动频率下,病毒产生共振效应,病毒衣壳和刺突蛋白发生向内弯曲,类似于一个球在从地面反弹时会出现的凹痕现象,并于几毫秒内发生破裂。并且随着研究人员增加超声波振动的幅度和强度,在 25mhz 和 50mhz 的频率之间时,弯曲和破裂的速度加快,这种效应在空气及与人体体液密度相等的水模拟环境中都可以看到。最重要的是这次模拟实验证明了存在着在人体医学成像适用范围内(1mhz-30mhz)利用超声波治疗人体新冠感染的可能性。 wierzbicki补充说:该试验已成功表明,在超声波激发下,新冠病毒的外壳和刺突蛋白会发生共振,振动的幅度会非常大,产生的张力可能会破坏病毒的某些部分,对外壳造成可见的损伤,并可能对内部的核糖核酸造成不可见的损伤。 研究缺陷与展望目前,他们正计划与西班牙微生物学家合作探索,使用原子力显微镜,来观察超声波振动对猪体内一种冠状病毒的影响。如果实验成功,可以预见该试验研究结果会为超声波治疗和预防新冠病毒感染带来一个崭新的方向。像超声破碎肾结石一样,未来我们不仅可以利用超声技术应用于冠状病毒的临床治疗,甚至还可以将超声波发生器内置于手机等便携式设备,随身预防保护人类免受病毒侵害。该研究成果的推论固然让人感到兴奋,但目前该研究方向仅仅只是踏出了一小步,局限于物理模型阶段。依旧有很多的问题等待着科学家们的研究和验证,比如如何精准地使用超声波在复杂的人体内有效破坏病毒将是日后解决的关键性问题之一,而距离超声波应用于灭杀治疗冠状病毒未来将有很长一段路等待去探索。超声波除了具有应用于灭杀病毒的可能性,目前其在病毒的医疗诊断治疗领域或是各种微生物实验研究中也有着相当广泛的应用。比如当前新冠病毒的监测诊断领域中必要的超声成像技术,其可以为临床医生及时提供患者的各种重要生命体征,在急性重症肺炎的诊断、治疗以及疗效评估上具有不可替代的地位。 正常肺超声m型图像(沙滩样征) 肺炎患者m型超声图像(平流层征)超声其他领域应用 以病毒、细胞、真菌等为代表的微生物学领域,超声波技术具有广泛的应用场景:利用超声波细胞粉碎机(scientz-iid),从重组大肠杆菌中破碎提取包涵体并纯化得到h1n1流感病毒抗原(ha抗原),用于对血液中抗体(抗-ha)的检测,从而筛选出可用于治疗流感病毒感染的免疫血浆[2];利用超声波细胞粉碎机(scientz-iid)破碎重组大肠杆菌得到表达的目标蛋白酶(hnmt1,可以催化蛋白发生豆蔻酰化),进而研究该酶所催化的豆蔻酰化修饰对于小rna病毒蛋白衣壳装配的影响[3];利用超声波细胞粉碎机(scientz-iid)分解重组工程表达菌株,从中得到肠道病毒的重组蛋白抗原,用于多克隆抗体的制备[4]。 新芝部分超声波系列产品: 超声波技术作为一项通用技术,在医学成像、细胞工程、微生物研究、病毒研究等领域具备广阔的应用前景。新芝生物成立三十多年来,专注于超声技术的研发与应用,开发了包括超声波细胞粉碎机、非接触式超声波细胞粉碎机、超声波提取仪、超声波清洗机、超声波除垢设备等系列产品。新芝生物超声波系列产品遍布全球知名生命科学研究实验室,为科研工作者提供专业、周到的服务!参考文献:[1]tomasz wierzbicki, wei li, yuming liu, juner zhu. effect of receptors on the resonant and transient harmonic vibrations of coronavirus. journal of the mechanics and physics of solids, 2021 150: 104369 doi: 10.1016/j.jmps.2021.104369[2]江小工,修冰水,王国华,张向颖,陈坤,宋晓国,杨君,朱翠霞,周友,魏堤,房涛,张贺秋.接种甲型h1n1流感疫苗献血者血清中血凝素igg抗体的检测[j].中国输血杂志,2010,23(03):168-170.[3]王苗苗,董虎,卢渊录,郭慧琛,孙世琪,闻晓波.n-豆蔻酰基转移酶在大肠埃希氏菌中的表达、纯化及活性检测[j].动物医学进展,2021,42(06):1-7.[4]任富利,周辉,孟胜利,王泽鋆,申硕.兔抗肠道病毒71型截短vp1抗体的制备及鉴定[j].微生物学免疫学进展,2016,44(03):14-18.▼end
  • 亚赫兹激光器与超窄线宽测量技术
    成果名称 亚赫兹激光器与超窄线宽测量技术 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 超窄线宽激光是光通信、光传感、高精度光谱学等应用中的一个关键技术,也是一些基本物理参数测量的重要工具,而超窄激光线宽测量是实现超窄线宽激光器所必需的辅助技术。 在&ldquo 仪器创制与关键技术研发&rdquo 基金第三期项目中,北京大学信息学院李正斌教授申请的&ldquo 亚赫兹激光器与超窄线宽测量技术研制&rdquo 项目提出并研究了一种获得窄线宽激光器的新机制,即光路分形结构机制。课题组前期的实验发现,在单环有源光纤谐振腔中引入光路分形结构能够获得类似多谐振环耦合的特性,与相同长度的光纤谐振腔相比,其输出激光线宽明显变窄。基于这一发现,课题组在第三期基金的经费资助下,开展了深入的研制工作。其工作主要包括:(1)以理论与实验相结合为手段,以光纤结构为对象,探索利用光路分形结构设计和实现单纵模输出、高频率稳定、线宽赫兹(Hz)以下量级的超窄线宽激光器的原理和方法,并获得原理样机;(2)利用互拍以及光域鉴频的技术设计并搭建超窄线宽激光器的测试平台,实现赫兹(Hz)以下量级超激光线宽的测量。 应用前景: 目前,该项目主要工作已经顺利完成,项目成功通过验收。其研究成果为获得超窄线宽激光器提供新途径,也为光通信、光传感等研究和应用提供了新的手段,相关技术处于成果转化阶段。
  • 2017体外诊断数据报告:融资超50亿 分子诊断最受关注
    p   2017年初,体外诊断检测仪器正式写入国家发改委发布的《战略性新兴产业重点产品和服务指导目录(2016版)》,2017年体外诊断国家级政策高达42条。近年来政策面为何对体外诊断行业重视度大幅提升?2017年体外诊断行业融资金额超50.3亿人民币,资本为何如此青睐体外诊断行业?体外诊断行业近年来的发展情况如何?为了解体外诊断行业的发展状况,本文从多维度对体外诊断行业进行了全面梳理。 /p p    span style=" color: rgb(0, 112, 192) " strong 本报告将从以下几个方面阐述此问题: /strong /span /p p   (1)政策面、宏观经济、社会发展对体外诊断行业发展的趋势性推动作用如何? /p p   (2)体外诊断行业的产业分布、技术突破、市场规模如何? /p p   (3)资本在体外诊断行业的布局情况如何? /p p   这些问题将会在报告中一一回答。以下是部分报告内容。 /p p strong span style=" color: rgb(0, 112, 192) "   174条国家级政策全方位推进行业发展 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " img src=" http://img1.17img.cn/17img/images/201802/noimg/cccd67bf-5043-4f2f-812b-d8feec6e78d0.jpg" title=" 001.png" / /span /strong   自2008年后的四年内,体外诊断国家级政策发布量在低位徘徊,说明当时国家对该领域的重视度不足 进入2012年后,相关政策发布量大幅增加并保持较高活跃度,2017年体外诊断国家级政策更是达到了峰值,为42条,说明政策面对体外诊断领域的重视度快速上升。 /p p   2010年10月10日,国务院发布《关于加快培育和发展战略性新兴产业的决定》,将生物产业纳入七大战略性新兴产业之一,并指出要大力发展用于重大疾病防治的生物技术药物、新型疫苗和诊断试剂、化学药物、现代中药等创新药物大品种,提升生物医药产业水平。21日,科技部发布《国家863 计划生物和医药技术领域体外诊断技术产品开发重大项目申请指南》,设立了“体外诊断技术产品开发”重大项目,指出要突破一批体外诊断仪器设备与试剂的重大关键技术,研制出一批具有自主知识产权的创新产品和具有国际竞争力的优质产品。 /p p   2017年1月,国家发改委颁布《战略性新兴产业重点产品和服务指导目录(2016版)》,将体外诊断检测仪器正式写入其中,具体包括“括高精度、高通量(快速)、全自动的生化、电解质、血气、尿液、体液、粪便、阴道分泌物、血红蛋白、糖化血红蛋白、特定蛋白、血细胞、微生物、代谢、营养、血凝等检测分析仪器(含干式)及其疾病诊断和筛查信息系统”等。 /p p strong span style=" color: rgb(0, 112, 192) "   重点政策一览 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " img src=" http://img1.17img.cn/17img/images/201802/noimg/5425c817-c261-4b56-aa6d-11b5a0ebb476.jpg" title=" 002.png" / /span /strong strong span style=" color: rgb(0, 112, 192) "   体外诊断服务需求量持续增加 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " img src=" http://img1.17img.cn/17img/images/201802/noimg/71ade4f3-f813-4219-b71f-c579c7c81a5b.jpg" title=" 003.png" / /span /strong   从居民人均卫生费的增速看,人均卫生费用增长率远高于国内生产总值增长率与居民消费价格指数增长率,由此表明,国民经济结构中,医疗消费方面的比重逐年加大。 /p p img src=" http://img1.17img.cn/17img/images/201802/noimg/b6f45be3-575a-4d2f-b3ea-11c9414408ac.jpg" title=" 004.png" /   我国人口老龄化问题日趋严重,65岁及以上人口占人口总数比例由2008年的8.3%,增长到2016年的10.8%。老龄阶段是慢性病高发的阶段,而众多慢性病的诊断均需要体外诊断产品,这客观上增加了对体外诊断产品的需求。 /p p span style=" color: rgb(0, 112, 192) " strong   2244累计专利申请数,体外诊断行业技术持续突破 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/2366ec4d-747e-4b1b-9077-3ca70936be6c.jpg" title=" 005.png" / /strong /span   自2008年以来,我国体外诊断领域专利申请量呈现出较快增长的态势。截止2017年体外诊断累计专利申请数超过2244件。技术的不断突破为体外诊断行业发展奠定了基础。 /p p   span style=" color: rgb(0, 112, 192) " strong  2%公司消亡率,行业步入成熟阶段 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/7346d5d1-691a-48af-940d-3c0e8d44cd2e.jpg" title=" 006.png" / /strong /span   2000年至2008年间,体外诊断公司成立数量较少,且公司消亡率较高,行业处于发展早期。 /p p   2009年至2014年间,体外诊断公司成立数量呈现爆发式增长,且公司存活率大幅提高,体外诊断行业进入高速发展时期。 /p p   2015年后,体外诊断公司成立数量逐年下滑,且公司存活率进一步提高,因行业进入成熟时期,商业模式成熟,同时行业巨头的出现使得新企业的进入门槛提高。 /p p span style=" color: rgb(0, 112, 192) " strong   融资事件数下滑,融资金额大幅增长 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/3515923e-e7cd-4ed6-885b-1b3fb4b38bd3.jpg" title=" 007.png" / /strong /span /p p   2017年,体外诊断行业融资事件60起,较2016年下降37%,融资金额50.3亿人民币,较2016年增长44%。 /p p   自2014年来,体外诊断行业融资规模开始大幅增长,而2014年至2016年间单笔融资金额逐渐减小,这是新兴项目不断入场的结果 2017年单笔融资均额大幅上升,这是早期项目成熟的结果。 /p p span style=" color: rgb(0, 112, 192) " strong   融资向成熟方向移动 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/62d74242-5ef4-48ff-a559-ee79ada5ab64.jpg" title=" 008.png" / /strong /span   从历年融资轮次结构上看,2017年体外诊断行业融资轮次相较于过去几年更为均衡,且融资向成熟阶段移动。 /p p span style=" color: rgb(0, 112, 192) " strong   分子诊断公司最受青睐 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/feb6dd7a-925f-4b9b-96b6-8a95ebeafd73.jpg" title=" 009.png" / /strong /span /p p   2017年体外诊断行业获投公司中,以分子诊断公司、免疫诊断公司、POCT公司、生化诊断公司为主,其中,分子诊断公司数占获投公司比例达到了83%。 /p p span style=" color: rgb(0, 112, 192) " strong   经济发达地区融资活跃 /strong /span /p p style=" text-align: left " span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/8febf4dc-5e30-49c5-bd94-fba8e7374ded.jpg" title=" 010.png" / /strong /span   从融资发生地区看,以北京、上海、广东、江苏、浙江较高,2017年五地融资事件数占融资事件总数比例达到了87.5%。 /p p span style=" color: rgb(0, 112, 192) " strong   体外诊断IPO热情上涨 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/d041271b-671f-4f6d-b52a-b9d9355b24ef.jpg" title=" 011.png" / /strong /span   体外诊断行业企业上市始于1993年,截止2017年末上市公司数量累计为33家,且当年上市数达到6家,占体外诊断行业上市公司总数的18%。 /p p span style=" color: rgb(0, 112, 192) " strong   体外诊断新三板挂牌大幅降温 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/fb4a0996-bed9-45bc-8a3e-6b46743baf4e.jpg" title=" 012.png" / /strong /span   2012年至2014年间,体外诊断企业新三板挂牌数量较少,但随着2015年股权交易市场回暖,新三板政策利好不断推动,2015年至2016两年间体外诊断企业新三板挂牌数量大幅上升,2017年新三板挂牌门槛提高,体外诊断企业新三板挂牌数量下滑至14家。 /p p   span style=" color: rgb(0, 112, 192) " strong  12起并购活动,交易金额达82.3亿人民币 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong img src=" http://img1.17img.cn/17img/images/201802/noimg/6990ab01-d4c2-424d-a048-fd523f759865.jpg" title=" 013.png" / /strong /span   2017年体外诊断领域共计发生12起并购事件,交易金额达82.3亿元,其中,75%的并购事件交易金额超亿元。值得注意的是,金宇车城斥资13.2亿进军体外诊断领域。 /p
  • 超声无损检测新技术及其在工业领域的应用
    随着社会的发展,超声无损检测技术已经发展了近百年历史。在多种无损检测技术当中,该检测技术具有明显的优势作用,如检测精度以及深度较大、检测成本较低并且在检测过程中不会对设备造成二次伤害。因此,超声无损检测技术在工业领域被广泛应用。近年来,由于工业上对于设备的性能及质量安全提出了更高的要求,超声无损检测技术也在不断地优化和创新。在即将召开的首届无损检测技术进展与应用网络会议,特别邀请了多位专家进行超声检测新技术相关的分享,部分报告预告如下:北京工业大学 刘增华教授《超声导波阵列成像检测技术》(点击报名)刘增华,北京工业大学教授,博士生导师。《无损检测》《北京工业大学学报》编委,《内燃机学报》编委会特邀编委,中国无损检测学会超声检测专业委员会副主任委员,中国仪器仪表学会设备结构健康监测与预警分会理事、副秘书长,全国设备结构健康监测标准化工作组委员兼副秘书长在国内外学术会议及期刊上发表和录用学术论文160余篇,其中SCI、EI收录100余篇;获批国家发明专利30余项,软件著作权10余项。传感器阵列技术日益广泛应用于超声导波监(检)测方法中,可实现结构的大范围、全面和快速检测,已成为超声无损检测和结构健康监测领域的研究热点和难点之一。刘增华教授将在报告中重点介绍全波场成像检测技术、密集阵列成像检测技术、稀疏阵列成像检测技术、智能阵列成像检测技术等。北京航空航天大学 周正干教授《先进超声检测技术及其应用》(点击报名)周正干,北京航空航天大学机械工程及自动化学院教授,兼任中国机械工程学会无损检测分会副理事长、中国金属学会无损检测分会理事、中国声学学会检测声学分会理事、《无损检测》杂志编委等。从事先进超声无损检测技术及系统等方面的研究工作,开展《测试技术基础》和《现代无损检测技术》等课程的教学工作。作为课题负责人主持国家自然科学基金项目9项、工信部两机专项子课题2项、民机专项子课题2项、总装预研项目4项。曾获航天工业总公司科技进步二等奖1次,在国内外公开发表学术论文200余篇。近年来,随着我国重大科技专项的开展,新材料、新工艺及新结构的开发和应用在先进制造领域不断出现,对超声检测技术提出了新的需求。周正干教授将结合目前国内高科技领域复合材料及钛合金的应用技术特点,介绍超声检测仿真技术、空气耦合超声检测技术、多轴联动超声检测技术及其应用案例。天津大学 刘洋教授《超声导波智能成像技术及应用》(点击报名)刘洋,天津大学精仪学院教授,中国仪器仪表学会地学仪器分会理事、中国声学学会检测分会副主任。主要研究方向为复杂结构声场理论、超声传感器及超高分辨率超声成像技术。美国宾夕法尼亚州立大学工程科学与力学博士。曾任美国斯伦贝谢道尔研究所资深研究员,怀俄明大学副教授、超声实验室主任。主持多项超声传感器、超高分辨率超声成像项目,部分成果已完成产业转化;目前已在国际权威期刊和会刊上发表论文50余篇,申请获批专利20余项;多次担任声学检测相关国际学术会议主席,长期担任20余个国际期刊审稿人。超声导波成像技术在无损检测、结构健康监测及油气勘探中具有广泛而重要得应用。刘洋教授将以墨西哥湾漏油这一重大社会事件为引子,介绍本课题组近年来在超声传感器与多尺度超声成像方面的研究进展。北京科技大学 黎敏教授《高品质钢内部质量高精度检测与三维全息表征》(点击报名)黎敏,北京科技大学钢铁协同创新中心,教授,博导。主要开展先进检测技术、工业大数据分析等研究工作。独立负责7项国家自然科学基金等国家和省部级课题,参与鞍钢、首钢、核动力研究院等10余项科研项目,共发表论文50余篇,专著2本,专利8项,转件著作权3项,获省部级科技奖励2项,2013年入选北京市青年英才计划。报告内容包括利用高频超声显微技术对高品质钢内部质量进行三维扫描检测,并通过超声信号特征提取、深度聚类、点云重构等现代信号处理方法,对高品质钢内部的夹杂、缩孔和裂纹等微观缺陷及凝固组织实现高通量表征等。广东工业大学 袁懋诞副教授《材料力学性能的超声无损评价研究及应用进展》(点击报名)袁懋诞,广东工业大学机电工程学院副教授,硕士生导师。主要从事超声无损检测、超声导波技术、残余应力测量等方面研究。主持国家自然科学基金青年科学基金1项、主持国家重点研发计划子任务1项、主持企业横向项目6项,作为核心成员入选广东省“珠江人才计划”创新创业团队和佛山“蓝海人才计划”创新创业团队,作为技术骨干参与国家自然科学基金面上项目2项、企业横向项目4项。发表论文30余篇,申请发明专利10余项。材料的力学性能是保证结构稳定和服役安全的重要指标。超声检测技术由于其无损、高穿透、设备便携等优势被越来越广泛应用于残余应力、弹性常数、强度等力学性能表征。袁懋诞副教授将重点介绍研究团队近年来在超声力学性能无损评价方面的研究进展,主要包括超声兰姆波应力测量、增材制件弹性常数测量、涂层界面结合强度定量表征等三方面内容。首届无损检测技术进展与应用网络会议为了推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2022年10月13-14日组织召开首届无损检测技术进展与应用网络会议。会议开设射线检测技术、超声检测技术、自动及智能检测技术、无损检测新技术四大专场,邀请无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开报告,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学、钢研纳克三、参会指南:1、点击会议官方页面(https://www.instrument.com.cn/webinar/meetings/NDT)进行报名。2、报名开放时间为即日起至2022年10月14日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)
  • 我国学者与海外合作者突破光学超构表面偏振复用极限
    图 引入光学响应噪声调控,突破超构表面偏振复用极限在国家自然科学基金项目(批准号:12234010、61975078、11974177)等资助下,南京大学彭茹雯教授、王牧教授研究组联合美国东北大学刘咏民教授研究组,创新性地引入光学响应噪声调控,成功突破光学超构表面偏振复用极限,为发展高容量光学显示、信息加密、数据存储提供了新范式。该成果以“利用噪声工程突破光学超构表面偏振复用极限(Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise)”为题,于2023年1月20日在《科学》(Science)杂志刊发。偏振是光的基本性质,在信号传输、传感探测等方面起着重要的作用,被广泛应用于光子学和信息技术的多个领域。比如光的偏振可应用于大容量的复用技术,将信息通过多个独立通道传递到预定目标。随着光学器件的小型化,人们发现在诸如光学超构表面的二维平面系统中,二阶琼斯矩阵能够完整刻画偏振光与其相互作用,从而该体系最多只有3个独立偏振通道,造成偏振复用存在内禀极限。近年来尽管基于机器学习和迭代优化等逆向设计方案很好地优化了偏振复用技术,但是,3个独立偏振通道的物理极限始终存在。打破该物理上限对于发展高容量的光学显示、信息加密、数据存储等应用至关重要。最近,南京大学彭茹雯和王牧研究组与美国东北大学刘咏民研究组合作,创新性地在超构表面系统中,引入光学响应关联噪声来产生新的偏振通道,引入非关联噪声来减弱或消除信号串扰,从而突破超构表面偏振复用的物理极限,理论演绎并实验证实利用单一超构表面成功获得高达11个独立偏振通道,该超构表面在不同偏振的单色可见光照射下可观测到11种独立的全息图像(图)。该研究结果为目前光学超构表面偏振复用的最高独立通道数,并且通过改变阈值条件,该物理上限还可以进一步提升。基于该理论策略,研究团队又进一步证实这种新型的偏振复用技术能够与其它复用技术(比如空间复用,角动量复用等)相融合。作为示例,研究团队将偏振复用与空间位置复用结合,利用单一超构表面(大小仅为0.33mm × 0.33mm)在可见光波段产生出36重独立的全息图像,形成光学全息键盘图案。众所周知,噪声在科学和工程领域通常是有害无益却又不可避免的。但是,该项工作通过创新性地人为引入光学响应噪声调控,成功突破了光学超构表面偏振复用极限,为发展高容量光学显示、信息加密、数据存储等提供了新的范式,结合其它复用技术(比如空间复用、角动量复用、波长复用等)可以进一步提高多功能复用容量,可望应用于光通信和互联、光计算、光传感与探测、AR/VR技术等众多领域。
  • 国内首套超精密主动减振器面世:应用于高端电镜、量测/检测设备等
    7月10日,华中科技大学与光谷“明星”企业——武汉格蓝若智能技术股份有限公司签署成果转化合作协议,由后者出资8000万元,对华中科技大学陈学东院士团队超精密主动减振技术进行产业转化。据悉,陈学东院士团队20年磨一剑,创新性地研发了准零刚度、频变阻尼、协同控制等超精密主动减振核心技术,突破了降频率与保承载、减共振与抑高频、减振动与稳位姿三大技术矛盾,解决了高性能主动减振关键核心技术难题。先后荣获国家技术发明二等奖2次、国家科技进步二等奖1次。超精密主动减振器是高端制造装备、精密仪器设备的核心功能部件,是保证这些装备高精度超稳定运行的关键。产品应用于半导体高端制造设备、高精密机械加工车床、量测/检测设备、高端电子显微镜、科学仪器/设施、机载光电系统等领域。该产品不仅可以高效隔离外部振动,还通过实时采集振动信息,基于先进的控制策略生成多维振动控制信号,精准抑制各种内外部扰动导致的台体振动,实现被减振部件接近“绝对静止”的状态。与国外长期从事主动减振技术研发的企业相比,国内企业在该领域的技术积累较少,特别是超精密主动减振技术长期落后于国外企业。格蓝若和陈学东院士团队,一举突破了超精密主动减振器关键技术壁垒,打破国外垄断,实现国产自主可控。专门承载此技术成果的武汉格蓝若精密技术有限公司于6月25日正式挂牌成立,基于前期合作研发成果,公司推出超精密型、抗冲击型、适用真空型等20余款超精密主动减振器,减振支撑形式包括空气弹簧、金属弹簧、磁浮弹簧、复合弹簧等,可以满足从公斤级到数十吨级设备的高性能减振需求。在当日的活动上,格蓝若作为湖北省人形机器人整机技术攻关“链主”,还展示了人形机器人样机产品,该人形机器人主要面向劳动作业型场景,身高180cm,体重100kg,自由度31+2,移动速度>5km/h,负重能力>40kg,最大关节扭矩380Nm,具备高通用性、高机动性、高负载能力、具身智能等特点。
  • 超快光谱探测技术:捕捉"最短"瞬间
    10月3日,2023年诺贝尔物理学奖授予皮埃尔阿戈斯蒂尼、费伦茨克劳斯和安妮吕利耶三位科学家,以表彰他们在阿秒光脉冲方面作出的贡献。1阿秒到底有多短呢?举一个例子,我们都知道光速是最快的速度,然而一束光从房间的一端发射到对面的墙壁,时间却“达到”了惊人的100亿阿秒。1阿秒等于10的负18次方秒,是人类目前所掌握的最快的时间尺度。它就像一把尺子,尺子刻度越细,测量的精度就越精细。更重要的是,这为超快光谱探测技术提供了新的时间分辨率——依靠更快的速度,人类可以观测定格到更加清晰细小的微观世界。什么是超快光谱探测技术?超快光谱探测技术是怎么定格到微小世界的?未来又有哪些应用前景?今天,让我们共同关注。超快光谱探测技术应用原理示意图从“骏马在奔驰中是否四脚离地”说起关于人类第一次利用光学成像技术解决问题,要从“骏马在奔驰中是否四脚离地”说起。人们喜欢看骏马疾驰时的样子,然而,由于骏马奔跑时的速度实在太快,人类用肉眼很难捕捉到清晰的画面。关于马在奔跑过程中,是否会有四条腿同时离开地面的争论也一直都存在。直至1878年6月11日,英国摄影师艾德沃德迈布里奇开创了一种全新的拍摄方式。他在骏马的奔跑轨迹上连续设置了12组相连的相机装置,同时将地雷触发线连到相机快门上。当马蹄触及地面上的触发线时,相机快门就会被连续触发,从而获得一系列连续的照片。这种方法将马蹄的运动在多张照片中分解展现出来。最后,照片呈现的结果显示,马在奔跑时确实会四脚离地。这个创举改变了人类观察世界的方式,也引领了科学界对时间分辨能力的追问:如果未来拍摄比马移动更快的物体要怎么办?人类一直在追求捕捉物体运动更快的画面。后来,随着对自然界瞬态过程的不断探索,人类陆续达到毫秒量级、微秒量级、纳秒量级、皮秒量级和飞秒量级的时间分辨率。1999年,诺贝尔化学奖颁发给了致力于时间分辨率上的超快光谱探测技术的科学家。超快光谱探测技术将人类自然科学的研究带入了一个更快的世界。时至今日,超快光谱探测技术已经成为研究物质微观粒子动力学最重要的技术。所谓超快光谱探测技术,是指利用脉冲激光器对样品进行激光刺激,并用激光对刺激后的样品进行探测,以研究样品在极短时间内的光物理、光化学和光生物反应的一种方法。通俗地来比喻,超快光谱探测技术类似超快摄像机一样,让人们能够通过一帧一帧的“慢动作”观察处于化学反应过程中原子与分子的转变状态。目前,超快光谱探测技术主要依赖于飞秒激光,其优点在于能够瞬间获得样品状态,具有快速、高灵敏度、高分辨率的特点。通常情况下,激光的波长为可见光范围内的波长,使用时需要特别注意光能量对样品的影响。现如今,正在积极发展的新一代基于泵浦-探测技术的超快光谱探测技术,具备前所未有的时间分辨率,可以将超快成像的观测范围压缩到飞秒甚至阿秒的尺度。这意味着能在短短一秒钟内拍摄远超亿计的照片。在这极短的时间尺度下,即使光的速度也几乎“凝固”不动,仅能传播不到百万分之一米的距离。在这个基础上,一些瞬时的现象,往常难以被常规技术手段观测到的奥秘,如化学键的形成、量子隧穿、强关联物理等,将在这些高时间分辨率的成像中得以清晰呈现。超快光谱探测技术的出现,将极大地拓展我们对事物运行机制的认知。通过这种技术,我们有望揭示出许多过去被掩盖的现象和过程,这可能会催生出更多新的科学发现,甚至可能开创出全新的领域,为人类社会带来更多的创新和进步。揭示微观世界的奥秘一只小小的蜂鸟每秒可以拍打翅膀80次,然而对于人类来说,只能感觉到嗡嗡的声音和模糊的翅膀动作……对于人类的感官来说,快速的运动会变得模糊。任何测量都必须比目标系统发生明显变化的时间更快,才能得到测量的结果。借助超快光谱探测技术成像,我们得以捕捉到那些转瞬即逝的现象的具体形貌。在拍摄电影和广告中,很多特殊镜头的拍摄都会用到超快光谱高速摄影机,它能用特殊的视角展现出极为丰富的镜头效果,给大家带来更为丰富的视觉冲击。在拍摄荷叶时,我们可以捕捉到荷叶表面的细微纹理,进而分析荷叶超疏水现象背后的奥秘。可以说,超快光谱探测技术涉及人类生活的方方面面,已经被广泛应用于航天、工业和生物医学等诸多领域。在航天领域,超快光谱高速相机可以精确地捕捉航天器点火升空瞬间的所有细节,有助于查找和分析航天器设计中的潜在问题和疏漏。在工业领域,采用超快光谱高速相机观察产品受到冲击时内部的状态,可用来分析产品被破坏时物质的结构。在军事领域中,采用超快光谱高速相机来捕获炸药爆炸、子弹出膛、火箭发射等过程,以及应用于弹道分析、撞击分析、武器机械运动分析等。与此同时,随着物质微观体系的不断发展,人们对微观物质特征和物质本质认识的要求也越来越高。在人类探索和控制物质相关变化的瞬态过程中,超快光谱探测技术为人们探索发现新现象、新物质和阐述相关物理机制提供了重要参考。例如,在分子生物学研究中,可以利用超快光谱探测技术研究DNA、RNA等生物大分子在光激发后的反应过程和动力学过程,用来揭示这些生物大分子的结构和生理机能,对生物医学领域的基因工程等研究具有重要意义。而最新的研究表明,超快光谱探测技术正被看作是量子力学诞生以来,能够在相应时间尺度内探索微观量子性质的“武器”,在研究超导材料的机理及实验依据、非平衡物理及新奇量子态的诱导、量子态的外场调控等方面同样具有重要作用,被科学家们称为与“量子”的经典组合。此外,也有不少新材料在超快光谱探测技术的促进下产生。例如,在钙钛矿太阳能电池等光伏器件中,利用光伏效应收集光能并将其转化为可供日常生活使用的电能。借助超快光谱探测技术记录的光电特性演化过程,可为太阳能电池及光伏器件的设计制备提供指导,大幅改善光电转换效率、提高材料使用寿命。近年来,据《自然》杂志等期刊报道,钙钛矿太阳能电池的效率已超过26%,有望成为继多晶硅之后的新一代太阳能电池核心能源材料。半导体磁性材料、超导体、绝缘体、复杂材料、太阳能电池……人类的好奇心永无止境,相信随着超快光谱探测技术的时间分辨率越来越高,未来将会有越来越多关于微观世界的奥秘被一一发现。向着更快更清晰的未来前进对于超快光谱探测技术当前的研究进展,科研人员表示,该技术会更加注重快速、高效和精准:一方面,时间更快,即在超快的基础上提出更小的时间尺度,以便了解更多分子、原子里的电子的动力学过程;另一方面,空间分辨率更高,以便可以看到事物更小、更加清楚的动态过程。除此之外,也有国内外的科研人员在尝试把超快光谱拓展到不同的波长。例如从X光到太赫兹波甚至微波,以持续推动超快光谱前沿技术的应用拓展。而随着人工智能技术的不断完善,未来人工智能或将与超快光谱探测技术相结合。通过机器学习等方法,科研人员可以更加准确地分析和理解超快光谱数据,从而更好地探索材料和分子之间的微小变化,进一步挖掘出有价值的信息。“虽然超快光谱探测技术当前在科学研究中得到大家的青睐,但未来在其成为一种通用技术的道路上还有许多局限性。”也有不少科研人员指出了超快光谱探测技术现今存在的制约因素,如:采集数据的时间较长,需要专业人员分析数据,激光探测设备成本较高,等等。当前,皮秒甚至飞秒激光探测器费用可高达百万元以上,加上搭建激光探测器、光路和探测仪器等费用,一套仪器设备的投入耗资巨大,这些问题在一定程度上限制了当前超快光谱探测技术更大规模地应用于市场。综上所述,即使有发展局限,但不可否认,超快光谱探测技术已经成为分析化学、生物医学、材料科学等领域中的重要研究手段之一。随着对超快光谱探测技术认识的深入,其应用领域将会进一步扩大和深化。从拍摄骏马奔跑时四腿离地、定格昆虫扇动翅膀的瞬间,到看清子弹出膛的慢动作,再到观测电路中的电流变化,随着超快光谱探测技术的发展,人类定格世界的快门越来越快,看到了越来越清楚的微观世界。我们期待,借助该技术,人类未来能看到并揭示大千世界中更多令人心生好奇、心生向往的美妙瞬间!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制