当前位置: 仪器信息网 > 行业主题 > >

超快激光器

仪器信息网超快激光器专题为您整合超快激光器相关的最新文章,在超快激光器专题,您不仅可以免费浏览超快激光器的资讯, 同时您还可以浏览超快激光器的相关资料、解决方案,参与社区超快激光器话题讨论。

超快激光器相关的资讯

  • 先进超快(飞秒、皮秒)激光器
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 先进超快(飞秒、皮秒)激光器 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中科院物理研究所 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 方少波 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" Renee_zlj@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 激光器被广泛运用于工业、农业、精密测量和探测、通讯与 /span span style=" font-family:宋体" a href=" https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86& tn=44039180_cpr& fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target=" _blank" span style=" color:windowtext text-underline:none" 信息处理 /span /a /span span style=" font-family:宋体" 、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒钛宝石激光振荡器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" TW /span span style=" font-family:宋体" 级飞秒超强激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 高重复频率飞秒激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光纤飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态皮秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 低噪声光学频率梳 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 窄线宽及可调谐激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步及延时控制器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 周期量级激光及其CEP锁定 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 用户定制激光器 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 部分产品和指标达到国际领先或国内首次的程度,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步飞秒激光器(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒PW超强激光(世界纪录) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 若干全固态飞秒激光(国际首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 紫外波段皮秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 红外波段飞秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒激光装置(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒光学频率梳(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光振荡器(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒镁橄榄石激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒Cr:YAG激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒激光压缩器(国内最短脉宽) /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title=" 3.png" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超快:国内最短激光脉冲,3.8fs/可见光波段 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超强:1.16PW峰值功率,当时的世界纪录 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒:160as/XUV极紫外波段,国内首次实现 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光梳:稳定度~10-18 /秒,国际同类最高结果之一 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室, a href=" http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target=" _blank" title=" 激光脉冲" span style=" color:windowtext text-underline:none" 激光脉冲 /span /a 已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟…… /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 已经申请相关发明专利23项。包括—— /span /p p style=" text-indent:28px line-height:24px" a title=" 高对比度飞秒激光脉冲产生装置" span style=" font-family:宋体 color:windowtext text-underline:none" 高对比度飞秒激光脉冲产生装置 /span /a span style=" font-family:宋体" (申请号CN201210037173.1) /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 一种全固态皮秒激光再生放大器(申请号CN201210360026.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 飞秒锁模激光器" span style=" font-family: 宋体 color:windowtext text-underline:none" 飞秒锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201410251367.0) /span /p p style=" text-indent:28px line-height:24px" a title=" 基于全固态飞秒激光器的天文光学频率梳装置" span style=" font-family:宋体 color:windowtext text-underline:none" 基于全固态飞秒激光器的天文光学频率梳装置 /span /a span style=" font-family:宋体" (申请号CN201410004852.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 全固态陶瓷锁模激光器" span style=" font-family:宋体 color:windowtext text-underline:none" 全固态陶瓷锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201310349408.5)等 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 曾获得国家自然科学二等奖 /span /p /td /tr /tbody /table p br/ /p
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
  • 新型超小激光器只有一个病毒大小
    据物理学家组织网11月6日(北京时间)报道,美国西北大学的一个研究小组开发出一种只有一个病毒大小的超小型激光器。这种激光器具有体积小、室温下即可工作的特点,能够很容易地集成到硅基光子器件、全光电路和纳米生物传感器上,具有极为广阔的应用前景。相关论文发表在近日出版的《纳米快报》杂志上。   光子和电子元件的尺寸对超快数据处理和超高密度信息存储至关重要,因此,小型化是此类设备未来发展所必须攻克的一个难关。负责这项研究的纳米技术专家,西北大学温伯格学院艺术与科学学院以及麦考密克工程和应用科学学院材料学教授泰瑞奥多姆说,纳米尺度上的相干光源不仅能够用来对小尺度的物理化学现象进行探索和分析,同时也能够帮助科学家打破光的衍射极限。   奥多姆称,能够制造出这种纳米激光器,都要归功于一种3D蝴蝶结式的纳米金属空腔结构。这种激光腔的几何结构能够产生表面等离子激元,这是一种在金属介质界面上激发并耦合电荷密度起伏的电磁振荡,具有近场增强、表面受限、短波长等特性,在纳米光子学的研究中扮演着重要角色。当产生表面等离子激元后,由于金属表面电子的集体震荡,因而能够最大限度的突破阈值限制,让所有光子都以激光形式进行发射,不浪费任何光子。这种蝴蝶结状结构的使用与先前类似的设备相比有两个明显的好处:第一,由于其电磁特性和纳米尺寸的体积,这种结构清晰可辨认。第二,由于其离散结构,损失可以减到最少。   此外,研究人员还发现,当这些结构排列成为一个阵列时,3D蝴蝶结谐振器能够根据晶格的参数发射出带有特定角度的光。
  • 首块激光器和光栅集成的硅芯片问世
    据美国物理学家组织网8月10日(北京时间)报道,新加坡数据存储研究所的魏永强(音译)和同事首次构建出一种由一个激光器和一个光栅集成的新型硅芯片,其中的光栅能让光变得更强并确保激光器输出1500纳米左右波长的光,而通讯设备标准的操作波长正是1500纳米。   光纤在传输数据时需要让不同波长的激光束同时通过,但这些不同波长的光波容易相互串扰,因此需要对激光器进行精确谐调,让其发出特定波长的光以避免这种串扰。使用光栅可以解决这个问题。   科学家们之前使用传统方法试图将一个激光器和一个光栅集成于一块硅芯片中,但都没有获得成功。激光器一般由几层半导体薄层构成,而光栅则由硅蚀刻而成,所有的材料都必须精确地对齐。传统的方法是,将激光器和光栅种植于一块独立的半导体芯片上,整个过程大约需要50多步,而且要求硅晶表面的粗糙度非常低,小于0.3纳米。   在新硅芯片中,激光器置于一面镜子和一个弯曲的光栅之间。光栅就像一块具有选择能力的镜子,仅仅将某一特定波长的光反射回激光器中,这样就制造出了一个光共振腔,使激光活动只针对特定波长,因此提供了通讯领域要求的精确性。   魏永强对这款新芯片进行测试后发现,其性能优异,发出光的功率为2.3毫瓦,而且只发出特定波长的光。   魏永强表示:“从实际应用角度来考虑,我们需要将多光源激光器集成在一块芯片上,因此将多个激光器和光栅整合在一块硅芯片上将是我们下一步面临的挑战。我们计划通过利用能处理更广谱波长的同样的光栅结构来按比例扩展最新的单波长激光器。新设备标志着我们很快就能对集成在单硅芯片上的通讯设备进行商业化生产。”
  • 亚赫兹激光器与超窄线宽测量技术
    成果名称 亚赫兹激光器与超窄线宽测量技术 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 超窄线宽激光是光通信、光传感、高精度光谱学等应用中的一个关键技术,也是一些基本物理参数测量的重要工具,而超窄激光线宽测量是实现超窄线宽激光器所必需的辅助技术。 在&ldquo 仪器创制与关键技术研发&rdquo 基金第三期项目中,北京大学信息学院李正斌教授申请的&ldquo 亚赫兹激光器与超窄线宽测量技术研制&rdquo 项目提出并研究了一种获得窄线宽激光器的新机制,即光路分形结构机制。课题组前期的实验发现,在单环有源光纤谐振腔中引入光路分形结构能够获得类似多谐振环耦合的特性,与相同长度的光纤谐振腔相比,其输出激光线宽明显变窄。基于这一发现,课题组在第三期基金的经费资助下,开展了深入的研制工作。其工作主要包括:(1)以理论与实验相结合为手段,以光纤结构为对象,探索利用光路分形结构设计和实现单纵模输出、高频率稳定、线宽赫兹(Hz)以下量级的超窄线宽激光器的原理和方法,并获得原理样机;(2)利用互拍以及光域鉴频的技术设计并搭建超窄线宽激光器的测试平台,实现赫兹(Hz)以下量级超激光线宽的测量。 应用前景: 目前,该项目主要工作已经顺利完成,项目成功通过验收。其研究成果为获得超窄线宽激光器提供新途径,也为光通信、光传感等研究和应用提供了新的手段,相关技术处于成果转化阶段。
  • 超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。   新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。   这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。   太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。   研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。   另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。   研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 美利用超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。   新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。   这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。   太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。   研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。   另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。   研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 正业科技:超快激光技术,为FPC精密加工增添新动力!
    时代在发展技术在进步20世纪60年代第一台红宝石激光器诞生制造业进入“光”时代从纳秒、皮秒到飞秒人们对激光技术的探索未曾止步 时间换算:1秒=109纳秒=1012皮秒=1015飞秒时间越短,激光作用在材料表面的时间越短,对材料表面的影响越小,加工效果也更好,因此超快激光技术已成为制造业精密加工领域的热点话题。 在精密加工领域,传统纳秒激光加工设备仍占据了大部分市场。但是就加工效果而言,飞秒及皮秒激光加工更具优势与前景,可飞秒激光器由于自身的可靠性低、价格昂贵等原因,从科研到工业应用,还需一段时间。与纳秒激光相比较,皮秒激光加工具有更短的脉冲宽度、更高的峰值功率,能够达到更好更精细的加工效果,实现真正冷加工,基本无炭化,逐步成为主流选择。 ▲正业激光切割效果图(皮秒VS纳秒) 正业皮秒激光切割机 正业科技研发生产的皮秒激光切割机应用超快激光技术,适用于覆盖膜(CVL)、柔性板(FPC)、软硬结合板(RF)和薄多层板的切割成形。 01切割实例 02独特优势 1、真正冷加工,基本无炭化:激光脉宽小于10ps,炭化范围极小,基本看不到炭化现象。 2、切割效果更精细:采用小单脉冲能量,高频加工,精雕细作,加工面更加精细光滑,综合加工精度高达±20μm。 3、双台面,零上下料时间,效率高,速度更快:皮秒的重复频率非常高,可达兆赫兹,大幅度提升加工效率。 4、加工前预览功能:避免切板报废。 正业激光 正业科技在PCB行业历经22载,始终认为技术创新才是企业的立足之本,是企业长久生存和可持续发展的不竭动力,不断攻克激光技术难题,探索超快激光技术奥秘。 目前,正业科技承担的激光类国家重点计划项目有典型硬脆构件的超快激光精密智造技术及装备、激光高性能连接技术与装备和激光高精度快速复合制造工艺与装备。 未来,正业科技将不断增强核心竞争力,积极拓展激光技术应用产业链,满足市场及广大客户需求,通过做强“激光”助力制造业转型升级发展。
  • 欧盟拟制造史上最强激光器
    据英国《新科学家》杂志4月25日报道,欧盟通过了一项研究计划——极光基础设施(ELI),支持科学家建造三台可合起来使用的激光器,其中每台激光器都会让现有激光器相形见绌。这三台激光器有望于2015年问世,该计划的成功将会为建造更强的激光器(其能将“虚拟”粒子从时空空白处中拉出)奠定基础。   这三台新激光器将于2015年分别建在捷克、匈牙利和罗马尼亚。每台激光器将发出强度高达10拍瓦(petawatt,1拍瓦=1015瓦)的脉冲,其强度是现有激光脉冲的几百倍。   这种激光脉冲的持续时长仅为1.5×10-14秒,比光通过发丝直径的长度距离所需时间的十分之一还少。因为这种脉冲如此短暂,它们所包含的能量少于美国国家点火装置(NIF)的激光脉冲(其持续时长为2.0×10-8)所拥有的能量。但在这稍纵即逝的瞬间,ELI脉冲产生的能量却是NIF的20倍。   《激光世界》杂志报道称,每台激光器的造价约为4亿美元,由于设计细节各有不同,因而可用于进行不同的高能物理实验,包括使用激光脉冲给粒子加速、研究原子核以及产生更短暂的脉冲来研究原子内部极快事件的动力学原理等。   如果一切进展顺利,第四台激光器将“应运而生”。该项目协调人、法国超快光学研究所所长杰拉德莫瑞希望,第四台激光系统最终能达到的强度能使“虚拟”粒子出现在现实中。
  • 英国国家物理实验室开发超稳定激光器和光学时钟
    据英国国家物理实验室(NPL)网站报道,NPL、英国空间署(UKSA)和欧洲空间局(ESA)正为未来的太空任务开发超稳定激光器和光学时钟,以改进未来的导航和计时。NPL的立方腔专利设计使光学腔的频率稳定性对振动高度不敏感,具有独特的鲁棒性,可将商业激光系统的谱线宽度从几个MHz降低到1 Hz以下。这提供了超稳定的激光器,既可作为独立的频率参考,也可作为光学原子钟的子组件。这种光学原子钟和超稳定激光技术在未来科学(基础物理学和宇宙学)、地球观测(相对论大地测量学)和导航(未来全球导航卫星系统)计划等方面具有较大应用前景。在NASA/ESA的下一代重力任务中,NPL的立方体空腔可用来测量地球重力场作为地球表面位置的函数。在极地地区,这种技术可比以前的GRACE和GOCE任务更精确地监测冰川变化。在未来NASA/ESA 2030激光干涉仪空间天线(LISA)任务中,可作为空间引力波测量的参考。注:本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 激光雷达、飞秒激光器等超3.2亿中标项目公布
    p   近一个月内,来自高校、科研院所、医疗系统方面近20多家单位发布了激光、光学领域的招标需求,中科煜宸、相干、西南技物所等公司成功中标,中标总金额超3.2亿元。本文根据中国政府采购网公布的信息整理了部分内容,涉及激光成像仪、激光雷达、激光增材制造系统、飞秒激光器、光纤激光器等相关项目。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 中标项目 /strong /span /p p style=" text-align: center " strong 干式激光成像仪 /strong /p p   项目编号:HYEZ2J2018007 /p p   项目名称:干式激光成像仪采购 /p p   总成交金额:6.97 万元(人民币) /p p   采购单位名称:北海市华侨医院 /p p   中标单位名称:江西伟晨医疗设备有限公司 /p p style=" text-align: center " strong 密封式同轴送粉激光增材制造系统 /strong /p p   项目编号:HBT-15170140-173892 /p p   项目名称:武汉理工大学密封式同轴送粉激光增材制造系统采购项目 /p p   总成交金额:208.85 万元 /p p   采购单位名称:武汉理工大学 /p p   中标单位名称:南京中科煜宸激光技术有限公司 /p p style=" text-align: center " strong 原子吸收分光光度计及涡度相关系统 /strong /p p   项目编号:CEIECZB03-17ZL144 /p p   项目名称:中国农业大学原子吸收分光光度计及涡度相关系统采购项目 /p p   中标金额:54.43万元 /p p   中标供应商名称、地址及成交金额: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/25ce729c-a45e-4fbb-a265-ef3a8fa5909a.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 大连工业大学信息学院光电实验室建设 /strong /p p   项目编号:LNZC20171001868 /p p   项目名称:大连工业大学信息学院光电实验室建设采购项目 /p p   中标金额:54.18万元 /p p   中标单位:大连万慧科技有限公司 /p p   主要成交标的: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/873035c3-9e56-4a2c-a688-b42945e1365a.jpg" title=" 2.jpg" /    br/ /p center /center p style=" text-align: center " strong 激光治疗系统 /strong /p p   项目编号:Q5300000000617001570 /p p   项目名称:昆明医科大学附属医院购置激光治疗系统采购项目 /p p   中标金额:129万元 /p p   中标供应商名称:贵州邦建医疗科技设备有限公司 /p p   主要成交标的: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/0f8ffbb7-027e-4163-97f0-b6dd9e5142f1.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 193nm 激光剥蚀进样系统等 /strong /p p   项目名称:中国海洋大学 /p p   项目名称:193nm激光剥蚀进样系统、多接收质谱仪、高纯锗伽马能谱仪、稳定同位素比质谱仪项目 /p p   采购单位名称:中国海洋大学 /p p   中标金额:1367.93612 万元 /p p   中标供应商名称、联系地址及中标金额: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/daa113be-02fd-4999-ae5c-05022aea1165.jpg" title=" 4.jpg" /    br/ /p center /center p style=" text-align: center " strong 激光雷达项目 /strong /p p   项目编号:JXBJ2017-J28802 /p p   项目名称:南昌大学空间科学与技术研究院激光雷达采购项目 /p p   采购单位:南昌大学 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/eaaf8200-e815-4296-aba6-c8c364d7ec20.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong 308准分子光治疗系统和激光光子工作站 /strong /p p   项目编号:[350823]SHHY[GK]2017015-1 /p p   项目名称:上杭县皮肤病防治院关于308准分子光治疗系统和激光光子工作站采购项目 /p p   中标金额:169.9万元 /p p   中标供应商:厦门海辰天泽仪器有限公司 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/5f3b697b-e5bd-4a2f-a5a2-5a4f9971c740.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 复杂曲面三维激光扫描系统 /strong /p p   项目编号:LNZC20171201441 /p p   项目名称:大连交通大学复杂曲面三维激光扫描系统采购项目 /p p   中标金额:58.9万元 /p p   中标单位:北京金鹰腾飞科技有限公司 /p p   成交产品的规格、型号、单价等: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/ef6ee20b-870c-456e-a33b-0acb1241b3a4.jpg" title=" 7.jpg" / /p p style=" text-align: center " strong 双光子激光共聚焦显微镜采购项目 /strong /p p   项目编号:中大招(货)[2017]993号 /p p   采购单位名称:中山大学 /p p   中标金额:489.803430万元 /p p   中标供应商名称:广州市诚屹进出口有限公司 /p p   中标标的名称、规格型号、数量、单价、服务要求: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/7c940325-292e-43f8-9ee1-f901a38dc68d.jpg" title=" 8.jpg" /    br/ /p center /center p style=" text-align: center " strong 超短强激光微纳制造实验室项目 /strong /p p   飞秒激光放大器 /p p   项目号:17A51870611-BZ1700401866AH /p p   项目名称:重庆邮电大学超短强激光微纳制造实验室项目飞秒激光放大器采购 /p p   中标总金额:145.9万元 /p p   中标供应商:相干(北京)商业有限公司 /p p   成交产品的规格、型号、单价等: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/c46688d9-2e94-41a4-82ae-89b46c49c880.jpg" title=" 9.jpg" / /p p style=" text-align: center " strong 便携式高分辨测风激光雷达 /strong /p p   项目编号:OITC-G170321151 /p p   项目名称:中国科学院大气物理研究所便携式高分辨测风激光雷达采购项目 /p p   中标总金额:280.0 万元(人民币) /p p   中标供应商名称:西南技术物理研究所 /p p   中标标的名称、规格型号、数量: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/d0c3d441-6015-45d7-ae63-7bef489181d6.jpg" title=" 10.jpg" / /p p style=" text-align: center " strong 激光共聚焦拉曼光谱仪、数字综合试验箱 /strong /p p   项目编号:ZX2017-12-13 /p p   项目名称:西安工业大学激光共聚焦拉曼光谱仪、数字综合试验箱等采购项目 /p p   中标金额:115.30万元 /p p   中标单位:西安共进光电技术有限责任公司 /p p   中标标的名称、规格型号、数量: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/1f8a05da-c6b9-4b1b-bcf3-85f56097a554.jpg" title=" 11.jpg" / /p center /center p style=" text-align: center " strong 激光共聚焦拉曼光谱仪 /strong /p p   项目编号:OITC-G17031833 /p p   项目名称:中国科学院苏州纳米技术与纳米仿生研究所激光共聚焦拉曼光谱仪采购项目 /p p   采购单位名称:中国科学院苏州纳米技术与纳米仿生研究所 /p p   总中标金额:155.7781万元 /p p   中标供应商:雷尼绍(上海)贸易有限公司 /p p   中标供应商名称、联系地址及中标金额: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/5295f90b-a6fc-4eb6-8cde-52eb73be0f2a.jpg" title=" 12.jpg" / /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 还有一个招标大单,注意关注哦! /strong /span /p p   招标项目华东师范大学高重复频率宽波段可调谐窄带宽激光器 /p p   项目编号:0811-184DSITC0089 /p p   项目名称:高重复频率宽波段可调谐窄带宽激光器(第二次) /p p   采购单位:华东师范大学 /p p   预算金额:230.0 万元(人民币) /p p   采购内容: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/fa7045eb-d935-46c0-8ee6-90aff2739943.jpg" title=" 2018-02-07_091003.jpg" / /p p   购买标书时间:2018年01月26日-02月02日 /p p   投标截止时间:2018年02月28日 /p p   联系方式:冯东海 ,021-62231151 /p
  • 《自然》:世界最小纳米激光器在美问世
    研究人员最近展示了一种有史以来最小的激光器,其包含一个直径仅为44纳米的纳米粒子。该器件因能产生一种称为表面等离子的辐射而被命名为“spaser”。这项新技术可允许光子局限在非常小的空间内,一些物理学家据此认为,就像晶体管之于现今的电子产品,spaser也许将成为未来光学计算机的基础。 美国诺福克大学材料研究中心物理学教授米哈伊尔诺基诺夫表示,现今最好的消费电子产品可在大约10吉赫兹的速度上运行,但未来的光学器件的运行速度可达到几百太赫兹范围。一般来说,光学器件难以实现小型化,是因为光子无法限定在比其一半波长更小的区域内。但以表面等离子形式与光作用的器件就能将光限定在非常紧密的位点上。 诺基诺夫说,目前科学家们正在基于等离子的新一代纳米电子设备的理论研究上努力探索。与以前的其他等离子器件不同的是,spaser能有效地产生和放大这些光波。诺基诺夫及同事在近期的《自然》杂志上发表了此项研究成果。 spaser包含一个直径仅为44纳米的单纳米粒子,激光器的其他不同部分的功能则与常规激光器无异。在普通激光器中,光子通过可放大光线的增益介质在两个镜面间反弹。而spaser中的光则围绕一个等离子形式的纳米粒子核中的金球表面进行反弹。 此中的挑战是确保这种能量不会快速从金属表面消散。诺基诺夫及其团队通过在金球上喷涂嵌有染料的硅层来实现这一要求。硅层可作为增益媒介。来自spaser的光可作为等离子体保持在限定区域,亦可作为可见光范围的光子离开粒子表面。像一个激光器一样,spaser必须“泵”入必要的能量,研究人员利用光脉冲轰击粒子来达到这个目的。 常规激光器的大小取决于其使用的光波长,反射面间的距离不能小于光波长的一半,在可见光范围大约为200纳米。spaser则是利用等离子体解决了此局限。诺基诺夫说,spaser也许将能做到一个纳米大小,但任何小于这一尺寸的纳米粒子,其功能就会丧失。 美国乔治亚州大学物理学教授马克斯托克曼称,和目前最快的晶体管相比,spaser虽具有同等的纳米尺度,但其速度要快上1000倍,这为制造速度超快的放大器、逻辑元件和微处理器提供了可能。 诺基诺夫则表示,spaser不仅能在光子计算机领域找到用武之地,也能在现今使用常规激光器的领域得到应用。更为现实的应用领域就是磁性数据存储业。现今用于硬盘的磁性数据存储介质已达到其物理极限,扩展其存储能力的方法之一就是在其记录过程中用非常小的光点对介质进行加热,而这必须使用纳米激光器才能做到。
  • 首届超快激光应用发展大会在东莞松山湖材料实验室开幕
    激光享有“最快的刀”、“最准的尺”、“最亮的光”等美誉,是20世纪最伟大的发明之一。超快激光作为激光领域重要的研究方向,一直是国际科技关注的研究重点,也是推动基础科学实现重大突破、驱动战略性新兴产业发展的动力源泉。10月26日,超快激光应用发展大会在东莞松山湖材料实验室新园区开幕。大会邀请近500名行业知名院士专家、企业代表,以技术交流、产业论坛、需求对接、项目路演等形式,共同探讨超快激光技术发展趋势、技术应用及前沿进展,展示我国超快激光领域优秀成果案例,加强超快激光政产学研用深度合作,推动超快激光产业高质量发展,助力制造强国、质量强国建设。本次活动由中国光学工程学会主办,东莞松山湖高新区管委会、中国光学工程学会激光技术及应用专业委员会、中国科学院物理研究所、松山湖材料实验室承办。英国皇家工程院院士、中国科学院宁波材料技术与工程研究所激光极端制造研究中心主任李琳,中国科学院院士、松山湖材料实验室主任汪卫华,中国光学工程学会秘书长赵雪燕,东莞市委副书记、松山湖党工委书记刘炜,中国科学院西安分院院长赵卫,华南师范大学党委常委、副校长杨中民等领导嘉宾出席活动。国内首台先进阿秒激光设施筹建中,助推未来新质生产力加速生成超快激光兼具超短时间和高峰值功率特点,随着我国制造强国、质量强国战略的贯彻实施,超快激光已成为微加工领域的重要手段,正加速推动中国制造制造业实现转型升级。“今年的诺贝尔物理学奖颁给了阿秒激光领域的科学家,充分体现超快激光科学技术领域的重要位置。”开幕式上,大会主席、中国科学院院士王立军在视频致辞中表示,以皮秒、阿秒为代表的超快激光器,在新一代信息技术、增材制造、航空航天、海洋环境以及新能源汽车、新材料、生物医药等领域拥有广泛应用前景。在此背景下,首届超快激光应用发展大会迎运而生。王立军表示,希望与会嘉宾以此次大会为契机,聚焦超快激光技术发展,深化交流对接,推进务实合作。东莞作为海内外闻名的制造业城市,拥有超21万家工业企业、1.3万家规上工业企业、79家上市企业和3家千亿企业组成的先进制造体系,初步形成了激光与增材制造材料、激光器、整机装备、公共服务平台等协调发展的激光产业链,在超快激光的应用上有着非常广阔的前景。东莞市委副书记、松山湖党工委书记刘炜表示,松山湖科学城作为大湾区综合性国家科学中心先行启动区,是引领东莞高质量发展的核心引擎,当前集聚了中国散裂中子源等国家大科学装置、松山湖材料实验室等30家科研平台及新型研发机构、大湾区大学(筹)等6所高校以及华为、生益科技等一批龙头企业,初步构建起全链条、全过程、全要素的创新生态体系。“期待与各位科技大咖、产业专家一起,深入探讨超快激光的发展之路,推动更多科技成果、优质项目在东莞、在松山湖科学城落地。”“可以说,超快超强激光是拓展人类认知的重要工具之一,在某些方面甚至是独一无二、不可替代的研究手段。”中国科学院院士、松山湖材料实验室主任汪卫华表示,作为当前国际科技最重要的前沿方向之一,超快科学为解决室温超导材料制造、超高速计算,以及信息传输等关乎国家重大需求所涉及的底层共性科学问题提供了强大助力,也是未来形成新质生产力的关键。汪卫华表示,松山湖材料实验室将联合中国科学院物理所、西安光机所共建国内第一台先进阿秒激光设施,其中8条束线建设任务将落地东莞。目前松山湖材料实验室已组建了阿秒科学中心,引入了首席科学家魏志义,集聚了一大批国内外优秀的研究员和工程师,希望将来实验室能建成一个超快物质科学的研究中心,依托周边中国散裂中子源等大装置,在能源材料、信息材料等领域做出国际一流的成绩。超快激光产业链领军人物汇聚,数十场报告共论激光技术与产业新趋势近年来,随着全球加工行业精细化程度的不断提升以及我国制造业转型升级,超快激光凭借其精度高、热效应低等优势,在3C产业、增材制造、精准医疗、微纳加工、超快检测等领域拥有广阔的应用前景。大会报告环节,英国皇家工程院院士、中国科学院宁波材料技术与工程研究所激光极端制造研究中心主任李琳,中国科学院物理研究所研究员、松山湖材料实验室首席科学家魏志义,深圳技术大学教授唐定远,北京大学物理学院副院长、核物理与核技术国家重点实验室副主任颜学庆,中国科学院上海光学精密机械研究所研究员胡丽丽等业内专家,分别从飞秒激光纵波红外远场超衍射极限纳米加工探讨、超快激光科学研究对高新技术产业应用和大科学设施建设的推动、激光等离子体加速器应用与展望,应用于超快激光系统的玻璃及光纤材料研究等不同领域做主题报告,对超快激光发展与应用的若干热点课题进行了分享交流。本次大会作为业内重量级交流活动,吸引了来自全国近百所知名科研院所及高校的专家学者、近30家业内知名企业代表参加,超快激光产业链领军人物汇聚,覆盖激光产业政产学研金服用全领域。“目前国际激光加工产业应用中国做的是最好的,全球市场占比约30%,其中大湾区集聚了很多头部的激光上下游企业,为支撑我国激光制造和应用起到了很大的作用。”李琳院士是国际激光加工领域知名专家,除在大会上做主题报告外,他特别关注超快激光应用层面的新技术、新原理,以及包括激光器在内的工具层面的发展。“这次来参会很多还都是物理领域的科学家及工艺工程师,从激光光源以及激光关键器件、激光加工,激光测量以及其他科学研究,都有很多讨论。”李琳表示,此次500多人的参会规模也说明我国在这个研究领域非常活跃。另一方面,李琳对筹建中的先进阿秒激光大科学装置也非常期待。“这个装置未来对超快光学、超快物理、超快化学、超快工程学都会有很重要的促进作用,能够让全国各个大专院校,科研院所及企业申请使用这一国际上最先进的科学装置,我们也期待它早日建成,为科学进步起到推进作用。”“这次大会我实际是来学习取经,希望能在超快激光赛道上走得更远。”参会企业广东大族粤铭激光集团股份有限公司,是东莞本土成长起来的知名激光企业,该公司董事、总经理卓劲松表示,公司非常重视新技术研发,坚持每年以不低于销售收入10%的研发经费投入到产品研发中。他希望东莞的政府、企业、学校科研院所可以联动呼应,打造高端制造业的产业基础、人才支撑、学术氛围,互相联合进行产学研一体输出,更快推动超快激光产业大步向前。接下来两天时间内,大会还将围绕超快激光技术与产业两大专题,先后开展超20场专题研讨或主题报告,共同探讨新形势下的前瞻思想、创新成果,以及资本、技术、市场如何促进激光产业发展等关注热点。与此同时,大会多措并举共助成果转化落地,邀请各级产业链头部企业、重点科研团队、高校研究所等,集中展示优秀科技成果、应用案例,现场还将进行多场技术交流、项目路演、人才招聘、对接洽谈等活动。
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。   飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。   在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。   该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 上海光机所在孤子锁模光纤激光器研究方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与激光技术新体系融合创新中心在孤子锁模光纤激光器研究方面取得进展。研究团队报道了锁模光纤激光器中色散波辐射的物理机制及其时域表征。相关研究成果以“Characterization and Manipulation of Temporal Structures of Dispersive Waves in a Soliton Fiber Laser”为题发表于IEEE光学期刊《光波技术杂志》(Journal of Lightwave Technology)。孤子激光器中的色散波在频域上以凯利边带(Kelly sideband)的形式与孤子一同产生,由S. M. Kelly在1992年首次发现并解释,由孤子脉冲在锁模激光器内的周期性放大和衰减所产生,体现在孤子光谱上为一系列关于中心波长对称分布的光谱边带,是与孤子稳定性密切相关的光波成分。在锁模激光器中,凯利边带的产生是限制孤子脉冲能量的重要因素,往往需要通过一些技术方法加以压制;同时,色散波也可以成为孤子之间长距离相互作用的媒介,影响孤子序列的稳定性。之前绝大多数对于孤子激光器中色散波的实验研究集中在对于其频域特性(即凯利边带)的研究,而对色散波时域结构的研究却十分缺乏,不同激光器参数条件对色散波时域结构的影响尚无完整的理论与实验研究。针对这一问题,研究团队建立了孤子光纤激光器中色散波时域结构的动力学模型,用以分析两个重要因素:一是腔内群速度延迟导致的相位匹配关系变化,二是腔内的增益滤波效应;从而推导出了具有双边指数衰减形式的色散波包络形态。在实验上,团队搭建了单向环形锁模光纤激光器,并通过调节腔内色散(改变腔长 30~110 m)以及腔损耗(0~7 dB),在一定程度上实现了对色散波时频波形的调控与测量。实验结果与理论模型的预测一致。此外,团队也研究了色散波和孤子的响应时间延迟,色散波结构的对称性等色散波特征。这项研究可加深对孤子光纤激光器动力学过程的理解,也为超快光纤激光、光孤子信息处理等应用技术发展提供了一定的参考。相关工作得到了张江实验室建设与运行项目、2021年度博士后创新人才支持计划、中国博后科学基金、上海市2021年度“科技创新行动计划”原创探索项目、国家青年高层次人才项目的支持。图1 色散波产生原理图2 腔色散对色散波衰减速率影响图3 腔损耗对色散波衰减速率影响
  • 全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
    全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE 高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
  • 活力激光获千万级A轮融资,专注研发千瓦级半导体激光器系列产品
    近日活力激光科技有限公司(以下简称“活力激光”)宣布完成数千万人民币A轮融资,由亦庄资本独家投资。本轮资金将主要用于研发和生产千瓦级半导体激光器(1千瓦至1万瓦)系列产品,在激光焊接和激光表面处理领域进行推广应用。  活力激光成立于2019年12月,主要专注于高功率半导体激光器的研发、生产和销售,整体技术及生产能力覆盖各种功率、波长和封装形式的半导体激光器,核心产品包括固体激光器泵浦源、千瓦级半导体激光器、以及应用于医疗美容等领域的小功率半导体激光器。公司在深圳宝安设有一处工厂,面积达3500平方米,其中无尘车间2000平米。  目前,活力激光团队规模超70人,核心成员曾任职于JDSU等头部激光器公司。公司创始人兼CEO蔡万绍拥有二十余年半导体激光器研发与生产经验,先后任职于JDSU/Lumentum、Oclaro、西安炬光等公司。  据Emergent Research相关报告数据,2021年全球半导体激光器市场规模为81.9亿美元(约551.9亿人民币),预计2022-2030年间年复合增长率为6.7%。值得一提的是,半导体激光器在医疗保健领域的应用价值高,目前已广泛用于医疗诊断、美容手术和治疗,这一方向也将成为半导体激光器市场增长的重要驱动力,而随着技术的突破,半导体激光器在工业加工领域的直接应用也将被打开,想象空间极大。  全球激光器市场核心玩家包括起步较早的通快、朗美通、恩耐、相干、业纳等国外公司,也有起步较晚但发展较快的锐科、英诺、炬光、长光华芯等国内公司。在成熟的光纤激光器领域,市场竞争相当激烈,从各大上市光纤激光器公司的财报中,可明显看到竞争激烈导致的价格下跌。  蔡万绍告诉36氪,为了避开同质化竞争激烈的细分市场,活力激光以产品创新作为突破口,采用国产芯片,率先在国内开发出878.6nm锁波长窄光谱的半导体激光器,以及1440nm二维点阵激光器,在固体激光器泵浦和激光嫩肤美容领域,打破了国外玩家的垄断,实现国产替代,目前该产品已逐渐放量增长。  “未来3-5年是激光芯片国产替代的重要时间窗口,也是半导体激光器创新发展的关键机遇。”蔡万绍提到,活力激光已经和国内多家激光芯片供应商展开合作,定制开发波长多样化的半导体激光器,包括1550nm(照明应用)、1470nm(医美应用)、780/766nm(碱金属气体激光器泵浦)、405nm/450nm/650nm(加工及照明应用)、以及常见的976nm和808nm激光波长,并同步研发千瓦级半导体激光器,覆盖1千瓦至1万瓦功率,取得了巨大进展。  相对来说,固体激光器的优势应用领域是非金属材料及合金材料的精细加工,光纤激光器的优势应用领域是钢铁材料的大功率激光切割,而半导体激光器凭借高功率、低能耗、高性价比、体积小、重量轻、波长多样性等优势,将在铁、铜、铝等金属材料的激光焊接和激光表面处理领域得到举足轻重的应用。  在蔡万绍看来,如果充分利用半导体激光器的优势展开产品研发布局,有望让半导体激光器在工业加工、医疗美容、照明显示、激光雷达等领域的总体应用量,提升至与光纤激光器、固体激光器同等的水平,逐步构建出三种激光器三分天下的格局。“我们的中期目标是成为国内领先的半导体激光器供应商。”他说。  目前,活力激光客户已覆盖多家激光器、机器视觉、医疗美容等领域上市公司,并在公司成立以来,保持了100%以上的年营收增长率,预计2023年收入将突破亿元关口。
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。   一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。   强强联合   项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。   但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。   为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。   但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。   而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。   上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。   1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。   “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。   从“敢想”到“敢做”   据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。   位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。   针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。   据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。   在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。   据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • Science:X射线激光器给生物分子拍部纳米电影
    威斯康星大学Milwaukee分校的研究团队,用X射线激光器以慢动作的形式展示了一个光敏性生物分子的快速动态。&ldquo 人们能够在这一技术的基础上,以原子水平的空间分辨率和超快的时间分辨率制作纳米世界的电影,&rdquo 领导这项研究的Marius Schmidt教授说。   研究人员将PYP蛋白(photoactive yellow protein)作为模式系统,PYP是一种蓝光感受蛋白,在特定细菌的光合作用中起作用。PYP蛋白捕获蓝光光子之后,会经过一系列中间结构获得光子的能量,然后再回到初始状态。PYP光循环的绝大多数步骤已经被人们研究过了,是验证新方法的理想模型。   为了获得PYP的动态快照,研究人员制造了微小的PYP晶体,这些晶体的直径大多小于0.01毫米。他们在LCLS(目前最强的X射线激光器)系统中喷射这些微晶体,并用精确同步的蓝光脉冲启动它们的光循环。LCLS生成了极短极密集的X射线快照,捕捉到了PYP在光循环不同阶段的形态改变,分辨率达到了前所未有的0.16纳米。随后研究人员将自己获得的快照组成视频,展示了慢动作的PYP光循环。   这项研究再现了PYP光循环的所有已知过程,验证了这个新技术的可靠性,同时还揭示了PYP光循环的更多细节。这一技术的时间分辨率非常高,能揭示不到1皮秒的分子活动,这是以前无法想像的。   &ldquo 这是一个真正的突破,&rdquo 文章的共同作者Henry Chapman教授说。&ldquo 我们现在可以在原子水平上对动态过程进行时间分辨研究。&rdquo   与其他方法相比,X射线激光器在研究超快分子动态时有着更多的优势。该技术能生成世界上最明亮的X射线,提供飞秒级别的时间分辨率。X射线激光器成像时使用新鲜样本,样本中不会积累辐射伤害,而且特别适合研究非常小的晶体。实际上,一些很难结晶的生物分子只能用X射线激光器进行研究。另外,晶体小也有助于分子的同步,使人们能更灵敏的检测到分子发生的改变。换而言之,X射线激光器能够揭示其他方法无法企及的分子动态。
  • 量子级联激光器促进生命科学研究
    中红外QCL成像有助于光谱学家分析组织切片和进行药物分析,它还能进行呼气分析实现早期疾病诊断,并支持实时无创血糖监测。”昕虹光电为山西大学研究组呼气氨气检测项目,提供了来自瑞士Alpes Lasers的QCL光源以及配套的专用激光发射头、温控+电流驱动器。我们的应用科学家在QCL应用于医疗呼气检测方面,有丰富的学术研究经验。若您有相关需求,欢迎与我们联系!原文标题:Quantum Cascade Lasers Boost Life Science Research作者:PANAGIOTIS GEORGIADIS, OLIVIER LANDRY, ALEX KENIC, and MILTIADIS VASILEIADIS (Alpes Lasers)来源:Photonics.com编译:昕甬智测实验室1971 年 10 月,Rudolf F. Kazarinov和Robert A. Suris 提出了“在具有超晶格的半导体中放大电磁波的可能性”[1]。科学界花了20多年的时间来构建利用这一原理的器件。1994年,贝尔实验室的Jérôme Faist及其同事发表了基于子带间跃迁(量子阱之间导带中的激发态)的激光源工作原型和相关研究结果[2]。Faist后来与同事在瑞士共同创立了Alpes Lasers。图一 量子级联激光器 (QCL) 的典型光束轮廓(来源:Alpes Lasers)自量子级联激光(QCL)光源商业化以来,已经过去了20 多年。使用热电冷却在室温下运行的QCL现在已无处不在。这些激光器开创了中远红外光谱的新时代。近年来,QCL在稳定性、功率、光谱范围、可调性和整体性能方面取得了许多进步,其成本也逐渐被工业界所接受。此外,带间级联激光器(ICL)是另一种中红外激光器,与QCL一样,ICL中的每个注入载流子都会产生多个光子。ICL 的工作原理是基于II型异质结和级联带间跃迁(电子带之间的转移),不同于QCL的子带间跃迁。ICL在较短波长上是QCL的有效补充,通常在3.5 µm波长范围内,ICL的性能优于QCL。中远红外光谱的发展为光谱学领域创造了各种各样的应用场景,一些利用相干中红外光源的新应用得以在医学和工业中开展,并获得许多研究成果。就像1970年代初期傅里叶变换红外(FTIR)光谱设备取代色散光谱仪一样,QCL可以预见地正在逐渐取代笨重的FTIR设备。在QCL的相关研究中受益匪浅的几个关键领域,包括生命科学中的生物学、病理学和毒理学,以及医疗保健和制药行业。随着其激光功率的增加(允许穿透更厚的样品)、稳定性和紧凑性(允许它们部署在临床环境中),基于QCL的光谱分析,正迅速成为医学研究的先进技术。中远红外激光用于生命科学和医学领域的几个例子,像是薄组织切片的中红外成像、基于激光光谱学的液体或气体样品分析、生物标志物监测、病原体检测、药物开发分析等应用。QCL 使各种各样的医疗应用得到了改进,从样本的实验室分析到改变游戏规则的常规医疗程序,例如无创血糖监测。尽管取得了很大进展,目前生物医学界尚未充分发挥QCL技术的潜力。医学影像红外成像已经为医学领域带来重大进步。多光谱和高光谱成像技术已被证明对生物分子研究和组织病理学非常有效,并且在测试时间和准确性方面,使用成像来促进医疗干预变得越来越重要。 目前,我们已经有了成熟的无创红外成像技术,利用红外光谱分析组织和细胞。这些技术当中的一部分使用背反射光(主动)构建图像,其他的方法依赖检测组织由于其温度而发射的红外辐射(被动),由红外探测器感测热发射并产生组织中发射分布的热图。此外,在红外中使用标记成像(labeled imaging)[3]已经被视为一种成熟的常规技术存在[4]。电磁频谱中红外波段的使用在临床诊断中的应用范围广泛,从高分辨率和深度分辨的组织可视化,到温度变化(热成像)评估。此外,中红外光谱体外映射在组织和细胞分类的应用取得了显着进展——例如,用于识别癌细胞[5]。然而,在使用中红外光子学进行此类分析,尤其是无标记细胞和组织分类方面,还存在巨大的潜力[6]。大多数商用中红外成像设备通常受限于有限的波长能力(使用单模激光源),或是低功率导致较低的信噪比(如FTIR显微镜)。每种设备通常都是为特定的医学成像应用量身定制的,因此只针对某特定光谱范围做开发。相较之下,来自维也纳工业大学的Andreas Schwaighofer及团队在2017的一篇论文《Quantum cascade lasers (QCLs) in biomedical spectroscopy》证明QCL具有明显的优势:QCL可以针对特定目的进行定制,或者同时满足多种需求。最近的研究计划旨在通过进一步扩展QCL的能力,以开发功能更全面的中红外成像设备。研发人员希望同时达到FTIR设备的光谱可调性和基于多激光器外腔(External-Cavity)配置的更强信号激光源,在外腔配置中,组合使用了多达六个宽增益激光器。这些器件在可调谐性、精度和功率方面为中红外激光源提供了前所未有的能力。呼气分析分析呼出空气的科学,也称为呼吸组学(breathomics)或呼气组学(exhalomics),正在迅速成为医生和研究人员的主流应用。中红外激光特别适合这一新兴领域,因为人呼吸中存在的大多数挥发性有机分子在中红外光谱中具有明显的吸收指纹。针对呼气中的挥发性有机化合物(VOCs)以及特定气体(例如甲烷、丙酮、CO2 和其他受关注的化合物),可以使用激光光谱分析技术对其进行浓度检测。这些物质是生物标志物,可以向医生传达有关个人健康的大量信息。例如:VOC成分可以揭示炎症,丙酮水平可以提供关于一个人的代谢活动的信息(常用于肥胖研究和监测代谢紊乱),高水平的一氧化氮可能表明哮喘,而一氧化碳水平可以作为一种氧化应激或呼吸系统疾病的生物标志物。在过去的10年中,几个研究小组一直在探索呼吸组学,某些医疗初创公司正在利用QCL和 ICL分布式反馈(DFB)激光源,对人或动物呼吸进行气体传感。新的激光源例如QCL阵列和光束合并的DFB QCL等技术,将使多组分的呼吸分析成为可能,为医生提供更强大的诊疗工具。图二 基于QCL的呼气检测仪器液体生物标志物分析尽管QCL光谱通常与气体传感有关,但QCL也是分析液体的重要工具。由于拥有更高的激光功率,QCL允许分析更厚的样品和更复杂的基质,使其适用于生命科学中的许多应用。此类应用之一是基于激光的血液分析,它最近受到了很多媒体的关注,特别是在实时无创监测血糖水平方面。这种开创性的方法使用中红外激光源,可以实时经过皮肤透过光谱来监测葡萄糖。这种方法可以减轻糖尿病患者因使用针头定期检查血糖水平而带来的压力。此外,中红外集成光子学进一步改进了现有的小型化、可穿戴设备,能够执行连续测量,为医生提供可用于个性化治疗的数据。中红外激光在血液分析中的一项新用途是检测神经退行性疾病,例如阿尔茨海默氏症和帕金森氏症。通过专注于可在中红外光谱中检测到的一些特定生物标志物[8],医生可以使用 QCL光谱分析技术,远在可识别的症状出现之前,提前8年预测疾病的未来发作。起始于疾病早期的药物治疗会更有效,因此这些信息很有价值,甚至可能促进疾病的预防。尿液是另一种可以分析生物标志物的液体生物样本(图三)。因为样本易于获取且相关检测的实验室技术丰富,尿液分析被广泛使用,最重要的是,尿液中存在的细胞成分、蛋白质和各种分泌物反映了一个人的代谢和病理生理状态(图四)。医生要求进行尿液分析的原因有很多,包括进行常规医学评估、评估特定症状、诊断医疗状况(例如尿路感染和未控制的糖尿病)以及监测疾病进展和对治疗的反应(例如肾脏疾病和糖尿病)。图三 QuantaRed Technologies基于QCL的尿液分析仪,具有两个由Alpes Lasers开发的组合DFB QCL。该分析仪是在NUTRISHIELD项目中开发的,获得了欧盟地平线2020研究和创新计划的资助(来源:QuantaRed Technologies GmbH)图四 Alpes Lasers开发的DFB QCL合路器。该组件已成功集成到尿液分析仪和基于光子学的检测模块中,用于分析水质,特别是用于检测细菌。该模块是在WaterSpy项目中开发,获得了欧盟地平线2020研究和创新计划的资助(来源:Alpes Lasers)使用QCL的分析设备能够根据中红外光谱分析结果直接量化尿液中的主要成分,如尿素和肌酐。QCL技术还可以检测酮类、葡萄糖和蛋白质。这些生物标志物的浓度升高可以作为各种疾病和病症的早期指标(图五)。图五 多激光系统中光束组合器的各种元件,包括高热负荷外壳中的 QCL(L和R)、反射镜 (M)、窗口 (W)、二向色分束器 (P) 和调节螺钉(x) 和 (y)(来源:Alpes Lasers)结语随着QCL领域的高速发展,包括多激光器外腔、超宽谱可调设备,或者在不久的将来,新开发的QCL频率梳的应用,可以期待的是,QCL将为生命科学领域带来更大规模的进展。参考文献1. R.F. Kazarinov and R.A. Suris (1971). Possible amplification of electromagnetic waves in asemiconductor with a superlattice. Sov Phys — Semicond, Vol. 5. pp. 707-709.2. J. Faist et al. (1994). Quantum cascade laser. Science, Vol. 264, Issue 5158, pp. 553-556.3. D.M. Gilmore et al. (2013). Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol, Vol. 20, Issue 7, pp. 2357-2363.4. Quest Medical Imaging (2021). Applications of the Quest Spectrum fluorescence imaging system, www.quest-mi.com/promising-applications.5. S. Pahlow et al. (2020). Application of vibrational spectroscopy and imaging to point-of-care medicine: a review. Appl Spectrosc, Vol. 72, pp. 52-84.6. S. Mittal and R. Bhargava (2019). A comparison of mid-infrared spectral regions on accuracy of tissue classification. Analyst, Vol. 144, Issue 8, pp. 2635-2642, www.doi.org/10.1039/c8an01782d.7. A. Schwaighofer et al. (2017). Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, Vol. 46, Issue 7, pp. 5903-5924.8. A. Nabers et al. (2018). Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med, Vol. 10, Issue 5, p. e8763, www.doi.org/10.15252/emmm.201708763.昕甬智测实验室隶属于宁波海尔欣光电科技有限公司,专注于中远红外激光光谱检测技术(QCL/ICL+TDLAS),致力推动激光光谱技术的产业化应用,以激光之精,见世界之美。
  • 滨松发布滨松波长可调谐量子级联激光器(QCL)模块L14890-09新品
    滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。本产品不可以销往美国。如果该产品在美国地区,跟客户的设备出现任何不适配的问题,滨松不承担任何责任。详细参数产品型号L14890-09脉冲输出功率(最大值)900 mW光脉冲重复频率(典型值)180 kHz准直透镜Included尺寸(W × H × D)82 mm × 88 mm × 112 mm重量1.2 kg中心波数(典型值)1075 cm-1波数扫描宽度(典型值)200 cm-1产品特点● 内置MEMS光栅● 实现宽波长范围高速扫描● 内置准直透镜● DAU结构基础上的宽带QCL外形尺寸(单位:mm)创新点:滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。波长调谐范围在7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。QCL模块L14890-09也获得了2018日本文部科学省纳米技术平台事业部授予的“最佳成果奖”。 利用了滨松独特的量子结构设计技术,这个QCL小模块内的QCL芯片采用了一种反交叉双重高能态结构(AnticrossDAUTM)。而在QCL芯片的发射截面上,则制成了多层增透膜,它可以保证从截面发出的激光,在到达光栅前零损耗。芯片产生的宽带光再通过MEMS衍射光栅的倾斜来选频,实现了特定波长的完全反射和谐振。模块在工作的时候,电控MEMS衍射光栅可高速摆动以改变其倾角,进而周期性地改变衍射角度、即改变谐振光的波长,最终使模块实现中红外激光的波长扫描。相对于已有的利用电机使镜面机械式运动来改变波长的QCL模块,电控MEMS衍射光栅可以达到更快的波长调谐,且衍射器件的微型化也使得模块更加的紧凑(8.2× 8.8× 11.2 cm),易于装配。 滨松波长可调谐量子级联激光器(QCL)模块L14890-09
  • 美造出最小和最高效的无阈值激光器
    美国加州大学圣地亚哥分校的研究人员制造出迄今最小的室温纳米激光器以及一台效率很高的无阈值激光器,能让所有光子都以激光形式进行发射,不浪费任何光子。   所有激光器都需要源于外部特定数量的抽运功率来发射相干光束或激光。产生激光还必须满足阈值条件,也就是相干输出要大于产生的自发辐射。然而,激光器越小,达到发射激光的阈值所需的抽运功率越大。为了解决这一问题,科学家们为新激光器设计了一种新方法,使用共轴纳米腔内的量子电动力效应来减轻阈值限制。该激光腔包含有一个被一圈金属镀层所包裹的金属棒,通过修改该激光腔的几何形状,科学家们制造出了这种无阈值激光器。   新设计也使他们制造出了迄今最小的室温激光器。新的室温纳米尺度的共轴激光器比两年前《自然—光子学》杂志介绍的最小激光器小一个数量级,整个设备的直径仅为半微米。   这两台激光器需要的操作功率都非常低,这是一个重要的突破,这些小尺寸且超低功率的纳米激光器可成为未来微型计算机芯片上的光学电路的重要元件。这些高效的激光器可被用于增强未来光子通讯使用的计算芯片的能力,光子通讯领域需要使用激光器在芯片上遥远的点之间建立通讯链接。这种激光器需要的抽运功率更少,也意味着传送信息需要的光子数量也更少。   参与该研究的雅可布工程学院的Mercedeh Khajavikhan认为,这种无阈值激光器还能被缩小,这使其能从更小的纳米设备捕获激光,因此能被用于制造和分析比目前激光器发出的光波波长更小的超材料。超材料的应用范围从能看见单个病毒或DNA分子的超级镜头到能让物体周围的光弯曲使它“隐身”的隐形设备。(黄健)
  • 海尔欣发布DFB-2000 半导体激光器屏显驱动新品
    DFB-2000是海尔欣推出的新一代DFB激光器驱动控制器,整合了全新设计的触摸屏UI界面,激光电流源,以及温度控制功能,极大的方便了用户的操作、使用及测量。海尔欣自主研发的电路,具有极低的电流噪声与极低的温度漂移,最适合精密光学测量。驱动器包含散热单元,TEC温度控制电路和低噪声电流驱动,支持外部任意波形的模拟信号调制,并将状态监控实时显示于驱动器触摸屏上。与QC750-TouchTM量子级联激光驱动器类似,考虑到激光器芯片的昂贵成本,海尔欣特殊设计的最大电流软钳制功能,可有效规避异常情况下大电流对激光管造成的损伤。除此以外,DFB-2000同时具备多种安全保护机制,zui大限度保证激光器的安全。该产品可被广泛使用在基于实验室和现场部署的多种近红外光谱测量系统,集成度高,稳定可靠。产品特色• 一体化集成电流源及温控驱动,功能完备• 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命• 多种输出保护机制,确保芯片安全,如可调电流钳制、输出缓启动、过压欠压保护、 超温保护、继电器短路输出保护等• 最大电流软钳制功能,避免误操作大电流损坏激光管• 全液晶触控UI界面,便于用户操作使用及数据观测• 全自主研发,集成度高,性价比高参数指标电流源驱动性能 输出电流范围 10 ~ 250mA 漂移24hr(@25℃) 5V 模拟调制带宽 DC - 100kHz 缓启动时间 3 ~ 4s 电流噪声密度 (10kHz~100kHz@250mA) TEC最大控制电流 ±2A TEC最大控制电压 5V 最大热功率耗散 12W 设置温度范围 10 ~ 50℃ 控温范围 10 ~ 50℃ 控温稳定度 0.01℃(环境温度25℃恒温) 0.05℃(室温环境) 温度传感器类型 适用10 kΩ或20kΩ热敏电阻模拟外调制 输入阻抗 10 kΩ 调制系数 100mA/V ±1% 3dB带宽 DC -100kHz 调制电压范围 ±2.5V通用参数 供电电源 5V DC,15W (含电源适配器) 工作环境温度 10 ~ 40℃ 储存环境温度 -10 ~ 85℃ 输出接口 RS232通讯(含模块通讯线缆) 人机界面(含触控笔) 全液晶触摸屏显示与控制,报警,日志记录功能 尺寸(长*宽*高) 16.2×11.56×5.37 cm3 重量 <1.5kg结构尺寸(单位:mm)接口定义序号名称备注1. 液晶显示屏 显示界面,详见用户手册3. 旋转编码器微调电流、温度、快速开机等,详见用户手册232 通讯接口6. 电源接口供电输入8. 触控笔 方便进行屏幕操作 表1 壳体面板说明(部分)1. TEC+14. TEC-2. Thermistor13. Case3. NC12. NC4. NC11. LD Cathode5. Thermistor10. LD Anode6. NC9. NC7. NC8. NC注:可根据客户实际需要更改引脚定义。 表2 DFB发射模块接口说明(部分)界面视图(部分)图1 主界面1)激光器电流:显示了实际的激光器电流值。2)TEC温度:显示了实际的TEC温度值。3)激光器电流和TEC温度左边的选择按钮:一旦选中相应的选项可以用旋转按钮进行微调。4)激光器开关:控制激光器电流源开启/关闭。开启状态时开关为橙色,关闭状态时为灰色。图2 设备连接创新点:• 一体化集成电流源及温控驱动,功能完备 • 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命 • 多种输出保护机制,确保芯片安全,如可调电流钳制、输出缓启动、过压欠压保护、 超温保护、继电器短路输出保护等 • 最大电流软钳制功能,避免误操作大电流损坏激光管 • 全液晶触控UI界面,便于用户操作使用及数据观测 • 全自主研发,集成度高,性价比高 DFB-2000 半导体激光器屏显驱动
  • 国家科技支撑计划工业激光器项目通过验收
    国家“十一五”科技支撑计划项目“工业激光器及其成套设备关键技术研究与应用示范”6月10日通过了科技部验收。这一项目的成功实施,彻底改变了我国高端激光装备依赖进口、核心技术和知识产权受制于国外的局面。   由中科院院士姚建铨等组成的验收专家组认为,此项目攻克了气体流动与交换、光腔结构、射频激励、光子暗化、侧边耦合、声光调制等关键技术。开发的高功率轴快流CO2激光器、射频板条CO2激光器及系列光纤激光器,填补了国内空白,部分指标达到国际一流水平,提升了我国激光产业的核心竞争力和国际地位。开发的大幅面数控激光切割机、激光拼焊设备和系列激光精密微细加工机等8种激光加工装备,提升了我国高端激光加工装备的制造能力。
  • 阿秒激光器可为单个电子活动“摄像”
    据美国《大众科学》网站8月16日(北京时间)报道,一国际科研团队研制出一种新的阿秒级(1阿秒=10-18秒)激光器,当单个电子参与化学反应时,这种激光器或可为其“摄像”,这是迄今为止最高清、最快速的数据收集活动。一旦取得成功,新激光系统将对从基础化学到复杂的药物研究、化学工程学等领域产生巨大影响。相关研究发表在《自然光子学》杂志上。   该科研团队由澳大利亚、美国、欧洲的科学家组成。科学家们表示,拍摄下电子的“一举一动”并非易事,因为电子的运行速度非常快,在1.51阿秒内就能环绕一个氢原子核旋转一周。为了捕捉到正在活动的电子,人们需要一种能在阿秒层面上发送脉冲的激光器。   此前已有科学家研制出并演示了阿秒激光脉冲,但那些脉冲非常微弱,无法真正测量电子的动态,真正有用的阿秒激光器需要兼具高速度和强脉冲密度。新激光系统满足了这两个需求,并且只需简单的环境设置就可完成任务。   为了获得超强的激光脉冲,人们需要将不同频率的光波精确地混合在一起,使它们能互相加强。知易行难,因为很难让两种不同的激光束精确地同步。为了克服这个问题,科学家们构建了一套环境装置,让单束激光通过一个射束分离器,产生两束不同频率的激光。因具有相同来源,这两束激光能够实现同步。   科学家们还采用了其他辅助手段,让激光脉冲达到了阿秒规模的测量所必需的激光脉冲密度和持续时间。借此,人们能以前所未有的方式观察单个电子的活动。
  • “Cleanlaze激光器在拉曼光谱分析中的应用”获美国专利
    近日必达泰克公司(B&W Tek)的“新型激光器(Cleanlaze™ 系列)在拉曼光谱分析中的应用”,成功地获得了美国专利 (专利号: US 7,245,369 B2), 为拉曼专用激光器的应用提供了新的选择。 新型激光器(Cleanlaze™ 系列)是一种窄带、稳频、低功耗、小体积、结构紧凑的激光激发光源(特别是在近红外波长范围内)。过去这种激发光源依赖于外腔型激光器,其成本和复杂程度往往令使用者望而生畏。B&W Tek在与有关厂商的多年合作过程中,成功发展了数种高性能、高性价比的稳频半导体激光器,并将其应用在拉曼光谱分析中,成功地获得了美国专利。该系列主要有785nm、830nm、980nm及其他客户所需波长。根据不同拉曼光谱分析的需求,我们提供了单模(0.02nm FWHM)及窄带多模(0.25nm FWHM)等不同规格。多模激光器最大可通过光纤输出大于1.2w的功率。单模目前已经可以达到输出100mw的要求。 基于这款Cleanlaze™ 系列激光产品,B&W Tek为广大客户提供了3种仪器系统。 一. 完整的拉曼光谱仪系统MiniRam™ 、MiniRam™ II和i-Raman™ ,其中包括了Cleanlaze™ 系列激光产品 二. 供实验室使用的台式Cleanlaze™ 系列激光激发光源 三. OEM Cleanlaze™ 系列激光模块,其包括TE 致冷控温,电路驱动以及激光光纤输出。 (以上产品均有USB激光输出功率控制模块选配。) 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得多项美国专利,并且还有十几项专利正在审核中。如需要具体信息,可与上海办公室联系,必达泰克光电科技(上海)有限公司,电话021-64515208。我们将竭诚为您服务!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制