当前位置: 仪器信息网 > 行业主题 > >

掺杂纳米

仪器信息网掺杂纳米专题为您整合掺杂纳米相关的最新文章,在掺杂纳米专题,您不仅可以免费浏览掺杂纳米的资讯, 同时您还可以浏览掺杂纳米的相关资料、解决方案,参与社区掺杂纳米话题讨论。

掺杂纳米相关的资讯

  • 我国发现宏量合成多孔掺杂 碳纳米材料制备新途径
    p style=" text-indent: 2em " 记者从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。 /p p style=" text-indent: 2em " 碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,更受青睐。但开发简单、廉价、可控的方法宏量制备碳纳米材料依然面临巨大挑战。 /p p style=" text-indent: 2em " 有机小分子因其广泛存在、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下有机小分子的高挥发性使得其作为原料制备碳纳米材料必须使用复杂方法和设备,如化学气相沉积和高压密闭合成。 /p p style=" text-indent: 2em " 针对上述挑战,研究人员提出一种过渡金属辅助有机分子碳化的方法,通过使用过渡金属盐辅助热解有机小分子来制备碳纳米材料。在高温热解过程中,过渡金属盐不仅能提高小分子的热稳定,还能催化其聚合优先形成相应的聚合物中间体,避免有机小分子在高温热解中挥发,从而最终形成碳纳米材料。研究表明,运用这种方法制备的碳材料具有三种微观结构:竹节状的多壁纳米管、微米尺度的片和无规则的颗粒。该研究为高效制备碳纳米材料提供了一种普适的合成路线。 /p
  • 理化所在氮掺杂非交替纳米带非线性光学材料方面获进展
    随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中,有机π-共轭材料因具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势而备受关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛应用于有机光电器件中。而该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。同时,随着共轭体系的增大,分子间聚集程度增强,溶解性及其合成难度提高,因而限制了这类材料的开发及应用。   近日,中国科学院理化技术研究所特种影像材料与技术研究中心副研究员孙继斌、湘潭大学教授陈华杰课题组、英国剑桥大学博士曾维轩等合作,采用酮胺缩合策略,构建了一类化学性能稳定、溶解性好的氮掺杂非交替纳米带分子(图1),并将该类材料应用于非线性光学领域,揭示了氮掺杂非交替纳米带分子优异的反饱和吸收性能(图2)。其中,研究引入末端三蝶烯和侧基三异丙基硅乙炔,有效抑制了分子间的聚集,显著提升了材料的溶解性,是目前已报道的分子长度最长的可溶解氮杂非交替纳米带——含13元稠环分子。此外,多重五元环的植入有效阻断了线性并苯类稠环的全局芳香性,实现了基态与激发态兼具的局域芳香性,因而提高了π-共轭系统的稳定性,使得材料(NNNR-2)的三阶非线性吸收系数达到374cmGW–1,且在同等测试条件下,显著高于经典非线性光学材料C60(153cmGW–1)。   相关研究成果以N-Doped Nonalternant Nanoribbons with Excellent Nonlinear Optical Performance为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家自然科学基金委员会、湖南省教育基金会和玛丽居里研究计划的支持。图1. 氮杂非交替纳米带分子NNNR-1和NNNR-2的(a)化学结构和(b)理论结构模拟图2. 氮杂非交替纳米带分子NNNR-1和NNNR-2的非线性光学性能
  • 天美公司参加第八届全国掺杂纳米材料发光性质学术会议
    7月22-24日,由中国物理学会发光分会、中国稀土学会发光专业委员会主办,吉林大学电子科学与工程学院、集成光电子学国家重点实验室承办的“第八届全国掺杂纳米材料发光性质学术会议”在长春举办。开幕式于7月23日上午举行,大会主席、吉林大学电子科学与工程学院宋宏伟教授主持开幕式。 天美仪拓实验室设备(上海)有限公司(以下简称天美公司)应邀作为赞助商之一,全程参加了此次会议。会议期间,天美公司对于用户提出的需求进行相关的解答,也会进一步急用户之所急,进一步的开发出符合用户需求的产品。通过为期两天的会议,天美公司与客户进行了深入的交流,更加深了彼此的相互了解。天美公司作为知名供应商,将在掺杂纳米材料,作出进一步的技术升级,服务广大客户,让广大客户得到满意的科研结果,助力其科研发展。
  • 天美(中国)科学仪器有限公司赞助参加第七届全国掺杂纳米材料发光性质学术会议
    2018年7月21日至24日,在美丽的滨城大连,天美(中国)科学仪器有限公司应邀参加并赞助了第七届全国掺杂纳米材料发光性质学术会议。此次会议由中国物理学会发光分会、中国稀土学会发光专业委员会主办,大连民族大学承办。会议旨在通过大会报道、专题研讨等活动,总结和交流近年来在掺杂纳米发光材料,能源材料及相关应用领域所取得的研究成果,凝练科学目标,共同探讨和谋划未来学科发展方向,推动我国发光科技和应用的发展,提升我国在掺杂发光材料及相关领域的国际竞争力。   会议期间,天美(中国)科学仪器公司还受邀进行了会议报告。天美分子光谱工程师刘冉进行了题为“爱丁堡光谱仪在先进发光材料检测中的应用”的报告,介绍了爱丁堡公司最新推出FLS1000光谱仪的主要特点及其在发光材料中的重要应用。本次报告,不但加深了新老用户对仪器的了解与应用,同时了也吸引了很多感兴趣的参会老师前来咨询讨论。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • Adv. Funct. Mater. 北理工张加涛课题组:首次实现了近红外掺杂荧光的高效多模防伪和保密应用 | 前沿用户报道
    供稿:白冰成果简介2021年4月,北京理工大学张加涛教授课题组在国际顶级材料学期刊 Advanced Functional Materials (DOI: 10.1002/adfm.202100286,IF=16.836) 发表了题为Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti-Counterfeiting and Encryption 的论文,利用杂质扩散平衡策略首次实现了近红外掺杂荧光的高效多模防伪和保密应用。半导体之所以能被广泛应用在光电产品世界中,凭借的就是在其晶格中植入杂质改变其电性,调控半导体纳米晶体的光、电、磁性质,实现高效率发光器件、太阳能电池、自旋电子器件等新型光电子器件的应用。Cu+作为一种通用的掺杂杂质,可以用来调控半导体纳米晶的光电性质。但是在掺杂纳米晶高温外延生长钝化层的过程中,Cu+杂质容易向外扩散,容易造成掺杂失效,阻碍了掺杂纳米晶的进一步应用。要实现半导体纳米晶的广泛应用,必须解决掺杂问题。北京理工大学张加涛教授课题组发展了一种新型的杂质扩散平衡策略,向Cu+掺杂CdSe纳米晶溶液中引入额外的Cu+,在纳米晶内外部杂质离子扩散平衡的条件下进行表面钝化层的高温外延生长。该策略成功制备出Cu 掺杂CdSe@CdS(CdSe:Cu@CdS)核壳纳米晶。只具有本征荧光的CdSe@CdS和同时具有微弱本征荧光和强近红外荧光的CdSe:Cu@CdS纳米晶分别记录了干扰信息和关键信息,且这两种信息在肉眼下无法被明显分辨;而关键信息的近红外荧光则可以通过普通商业手机摄像头和滤光片(截止边800 nm)的组合轻松获取,首次实现了近红外掺杂荧光的高效多模防伪和保密应用。图文导读通常直接在Cu+掺杂CdSe纳米晶表面外延生长钝化壳层容易造成杂质Cu+向外部扩散,导致掺杂失效,阻碍了掺杂纳米晶的进一步应用。北京理工大学张加涛课题组向溶液中引入额外的Cu+,溶液中的Cu+与纳米晶内部的杂质Cu+形成扩散平衡,该扩散平衡在高温下阻碍了纳米晶内部的Cu+向外扩散,最终在CdSe@CdS核壳纳米晶内部形成了有效的Cu+掺杂,保持了Cu+掺杂核壳纳米晶的近红外掺杂荧光。图1 杂质扩散平衡策略示意图和防伪/保密应用图2 CdSe:Cu和CdSe:Cu@CdS纳米晶的形貌、光学和结构表征图3 近红外荧光防伪和保密图案在多种商业手机中的成像效果Cu+掺杂CdSe纳米晶拥有一个较宽的掺杂荧光发射峰,该峰覆盖了可见光区和近红外光区(700 nm-1100 nm),在此范围内使用常规的荧光光谱仪无法获得连续且完整的荧光光谱数据。HORIBA Duetta 荧光光谱仪装备了CCD检测器,可以连续地获取从250 nm 到1100 nm 范围内的荧光光谱信息,为探索材料的新结构、新性能和新应用提供了有力的帮助。Duetta 荧光及吸收光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望现阶段基于可见荧光的防伪手段面临着易被破解的风险。基于不可见近红外荧光的防伪/保密应用明显地提高了破解的难度,拥有更高的信息安全性。常用的手机摄像头可以有效地捕获近红外荧光,降低了这种基于不可见近红外荧光防伪/保密应用的门槛,有望取代现有的可见荧光防伪/保密模式,实现大规模应用。文献信息Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti-Counterfeiting and Encryption文章署名作者:Bing Bai, Meng Xu, Jianzhong Li, Shuping Zhang, Chen Qiao, Jiajia Liu, Jiatao Zhang扫码查看文献张加涛教授简介张加涛教授现任北京理工大学化学与化工学院院长、北京理工大学首位徐特立特聘教授,英国皇家化学会会士、国家自然科学基金委优秀青年基金获得者、国际纯粹与应用化学联合会(IUPAC)杰出奖 获得者。以第一作者或通讯作者在 Nature、Science、Nature Nanotech、Angew. Chem. Int. Ed、Adv. Mater. 等期刊发表 SCI 论文 50 余篇,他引 2800 余次。
  • Hf 掺杂BiSbTe3 结构与热电性能研究
    Rietveld 分析的可靠性因子Rwp 在3% -5% 之间, 而且GOF 因子也在2 左右,这说明Rietveld 精修的 结果是可靠的.Rietveld 分析的可靠性因子Rwp 在3% -5% 之间, 而且GOF 因子也在2 左右,这说明Rietveld 精修的 结果是可靠的.2.2 电学性能 样品的Seebeck 系数(&alpha ) 测量结果如图2 ,从 图中可以看出,所有样品的Seebeck 系数均为负值, 具有电子导电的特征,这说明样品为n 型半导体. Hf 掺杂后,其绝对值有明显增加,特别是在300 -Hf 掺杂BiSbTe3 结构与热电性能研究 刘福生,敖伟琴,罗锐敏,冯学文,张文华,李均钦 (深圳大学材料学院,深圳市特种功能材料重点实验室,深圳518060) 摘要:以高纯町、Bi 、Sb 和Te 为原料,在1000ce 下,经10 h 氧气保护熔融状态下反应,冷却球磨 制粉,再在氮气保护下进行热压(450ce , 20 MPa) ,成功制备出一系列不同Hf 掺杂量的Hf2x ( Bi ,Sb) 2 -2xTe3 化合物.X 射线粉末衍射Rietveld 分析说明, Hf 在结构中占据6c 品位,以替代(Bi , Sb) 的形式进入品格. Hf 掺杂引起BiSbTe3 的Seebeck 系数增大,电导率降低.功率因子在375 K 时达最大值526&mu W/mK2 &bull 关键词:热电性能 给 Bi2Te3 Seebeck 系数 功率因子 中图分类号: TB 39 文献标识码:A Bi2Te 3 及其固溶体合金是研究最早,也是目前发展最为成熟的热电材料之一. 目前使用的大多数热电制冷元件均采用这类材料.研究表明Bi 2 Te 3 能分别与Bi2 Se 3 和Sb2 Te3 在整个组分范围内形成连 续固溶体,通过这种方式能使材料的热电优值得到明显提高[1J 另一种提高Bi2 Te 3 基热电性能的方式是对Bi 位原子进行掺杂,以提高声子散射,降低热导率.已有学者分别对Sn[2 J 、Pb[3 J 、Ga[4 J 和CU[5 J 等掺杂的Bi2 Te3 基化合物的性能与微结构进行研究,其热电性能有不同程度的提高. Hf 是稀土元素后的第一个元素,也是一种非常重要的热电元素,其原子量大,且其原子、离子及共价半径比稀土元素小,有利于掺杂提高声子散射,对Hf 掺杂 的Bil凶b3 结构与性能进行研究有重要意义. 1 实验方法 采用纯度为99.99 £ 3毛给( Hf) 、锦(Sb) 、铭( Bi) 及纯度为99.999 £ 3毛的暗(Te) 为原料,按Hi&mu Bi ,Sb ) 2 -2xTe3 (x =0 -- o. 05 )化学计算比进行称量,每个试样重6 g. 将配备好的试样装入石英 管并抽真空(真空度低于6 X 10 -3 Pa) 后,充入高纯氧气(约0.2 MPa) 封管,然后置入装有Si02 粉末的增塌中,得石英管竖立,置于箱式高温炉中,在1000ce下,经10 h 氧气保护熔融状态下反应,再经96 h 缓慢冷却至室温.理后的样品再经过球磨,热压烧结(450ce , 20 MPa). 样品结构分析采用Br此er - Axs D8 Advance 18kW 转靶X 线粉末衍射仪(CuK&alpha ) 进行.样品的Seebeck 系数与电导率的测量在ZEM -2 型热电性能测试仪上进行. 2 结果与讨论 2.1 X 射线粉未衍射分析 热压后样品的X 射线粉末衍射(XRD) 图谱 如图1 所示.从图中可以看出,不同掺杂量的样品 具有相同的衍射峰分布,为Bi2 Te3 型(空间群:R-3m) 结构的单相样品,未发现与Hf 有关的杂相 衍射峰,说明Hf 成功地掺入了BiSbTe 3 的结构中. 对样品的衍射图谱Rietveld 精修结果如表1 所示. Bi2 Te 3 基化合物晶体结构沿C 轴方向看,可视 为六方层状结构,同一层上具有相同的原子,按六方排列,各层按:&hellip Tel - Bi - Te2 - Bi - Tel · · · Tel - Bi - Te2 - Bi - Tel ...顺序排列,二个邻近的Tel原子层间以范德华力结合,层间距约为0.25 nm ,上下二层各3 个Tel 原子形成空的八面体空隙,可 为填充掺杂提供条件.其他层之间以共价键结合[6 J &bull Bi原子填充在由Tel 和Te2 二层原子组成的 八面体空隙中.根据该结构特征,掺杂原子在结构中的占位有两种方式:一是占据Tel 原子组成的八 面体空隙(3b 晶位) ,二是替代Bi 原子的位置(6c 晶位) .一般倾向于认为两种位置均可占有. 根据精修的晶体结构结果,若Hf 填充在3b 晶位,其与Tel 原子的间距约为0.284 nm , Hf 与Te 的原 子半径分别为0.216 nm 与0.146 nm ,且该位置的结合力为范德华力, Hf 在该位置的填充必将使晶体 结构发生明显畸变,随着Hf 掺杂量的增加, Hf2x( Bi ,Sb) 2 -2x Te3 的晶胞参数将会产生明显且急剧的 增加.但Rietveld 精修结果表明,晶胞参数随Hf 掺杂量的增加仅产生微小变化.由于Hf 与Bi、饨的 共价半径差别较小,本文认为Hf 在结构中主要替代(Bi , Sb) ,对晶胞参数的影响较小. 2.2 电学性能 样品的Seebeck 系数(&alpha ) 测量结果如图2 ,从图中可以看出,所有样品的Seebeck 系数均为负值, 具有电子导电的特征,这说明样品为n 型半导体.Hf 掺杂后,其绝对值有明显增加,特别是在300 -Rietveld 分析的可靠性因子Rwp 在3% -5% 之间,而且GOF 因子也在2 左右,这说明Rietveld 精修的结果是可靠的. 500 K 间, Seebeck 系数随温度的升高先升后降,这种变化关系与Bi2 Te3 基合金的常规变化规律一致: 在o -lOOce 范围内,随温度升高,载流子的浓度增加,但是载流子间的散射作用显著增强,并起主导 作用, &alpha 出现增大趋势 在温度大于100ce 后,进入本征激发范围,载流子浓度迅速增加,引起Seebeck 系数急剧降低.对于(Bi , Sb ) 2 Te 3 单晶,由于Te 的少量挥发,引起结构中Bi 或者Sb 占据Te 的 空位[6] ,产生空穴,因此( Bi ,Sb ) 2 Te3 单晶表现为P型半导体.对于热压合成的( Bi , Sb ) 2 Te3 多晶体, 由于在熔融制备及球磨及热压过程中的表面氧化,氧的溶入会在结构中产生施主能级[叫 而且在球 磨的形变作用下,将会产生更多的Te 空穴, Te 空穴也起施主的作用[8] ,因此热压制备的(Bi , Sb) 2 Te 3 多晶体比( Bi ,Sb ) 2 Te3 单晶有高浓度的施主,从而呈现n 型半导体的特征. Hf 是一种变价元素,可以为+2 、+3 及+4 价,在( Bi , Sb ) 2Te 3 中Hf 可能以低价形式存在,产生空穴,降低了电子浓度.可能由于氧及Te 空位浓度差异的共同影响,不同的掺杂量间不呈现规律性.电导率(&sigma ) 的测量结果如图3 所示,电导率的 变化规律与Seebeck 系数正好相反, Hf 掺杂降低了样品的电导率,电导率随着温度的升高而增加.这 也体现了电导率与Seebeck 系数之间的本质联系. 2.3功率因子 功率因子用&alpha 2&sigma ( 功率因子)衡量热电性能,其计算结果如图4. 结果表明, Hf2x ( Bi , Sb ) 2 -2x Te3 的功率因子在375 K 时有一个最大值,当x = 0.02 时,为526&mu W/mK2 ,是未掺杂BiSbTe3 功率因子(为316 &mu W/mK 2 ) 的1.66 倍.该数值略低于赵新兵等[9J 采用溶剂热方法制备的纳米Bi 2 Te 3 的功率因子(为620&mu W/mK 2 , 393 K).采用气氛熔炼加热压的方法,成功制备出纯相Hf认Bi , Sb) 2 -2x Te3 热电材料. Hf 在结构中占据6c晶位,即以替代(Bi , Sb) 的形式进入晶格.由于表面氧化及球磨效应的共同作用,Hf 掺杂的BiSbTe3为n 型半导体, Hf 掺杂引起BiSbTe3 的Seebeck系数增大,电导率略有降低.功率因子在375K 时有一个最大值为526&mu W/mK2 &bull
  • 兰州化物所开发出氮掺杂多孔石墨烯制备新方法并用于稀土分离
    近日,中国科学院兰州化学物理研究所手性分离与微纳分析课题组开发出一种多重限域的一步可控合成掺杂方法,制备出对稀土离子具有高分离选择性的氮掺杂纳孔石墨烯膜(专利申请号:CN 202010861481.0)。该研究在吸附了苯丙氨酸的氧化石墨烯膜的二维层间空间限域生长层状锌类水滑石,从而构建类水滑石/苯丙氨酸/氧化石墨烯三明治型复合材料。由于锌类水滑石层间夹层可作为密闭反应器,通过限域燃烧,可将苯丙氨酸中的氮原子掺杂到石墨烯晶格中。同时,形成的多孔锌类水滑石可作为模板,通过孔区域内限域燃烧在氧化石墨烯上蚀刻出孔径可控的纳米孔(图1)。  科研人员将获得的氮掺杂纳孔石墨烯(图2)制备成膜用于稀土元素的分离,获得了良好的分离选择性,最高膜分离因子达到3.7。理论模拟表明,氮掺杂纳孔石墨烯中的吡咯氮原子,在稀土离子的选择性分离过程中起到主要作用。该制备方法简单高效、膜分离稳定性优异。该研究不仅为杂原子掺杂纳孔石墨烯材料的制备开辟了新途径,而且为实现稀土离子的高选择性膜分离提供了新思路,具有潜在的工业应用前景。相关研究成果发表在Cell Press旗下综合类子刊iScience上,博士生谭洪鑫为论文第一作者,研究员李湛和邱洪灯为论文共同通讯作者。  此外,研究人员在自主研发的纳孔石墨烯/氧化锌纳米复合材料的基础上,利用固相合成策略,使均苯三甲酸与纳孔石墨烯表面的氧化锌纳米颗粒直接反应,原位绿色合成出纳孔石墨烯/MOF复合纳米材料,并发现该材料适合于水溶液中稀土离子的选择性固相吸附分离,该研究成果发表在Analytical Chemistry上。  研究工作得到国家重点研发计划、国家自然科学基金、中科院和甘肃省人才计划项目的支持。 图1.多重限域策略可控合成氮掺杂纳孔石墨烯示意图 图2.氮掺杂纳孔石墨烯表征图
  • 国家纳米中心携手《科学》杂志发布十大前沿纳米科技难题
    11月24日,国家纳米科学中心携手《科学》杂志向全球发布了十大前沿纳米科技难题,分别是:1.是否可以构建涵盖量子和宏观物理特性的纳米理论,进而能可靠地预测材料在纳米尺度的特性?2.纳米材料的安全性与哪些特性有关?在不同的环境中如何实现对其安全性的有效调节?3.纳米科学如何助力生物学发展?4.纳米技术将为医疗技术带来怎样的变革?5.如何借助可视化技术研究纳米材料的表面和界面?6.纳米技术如何影响不同类型催化剂的制备?7.如何实现原子精度制造的大尺寸化?8.纳米技术将如何提升算力进而助推光电器件的发展?9.纳米技术会对电子行业发展产生哪些影响,未来电子器件的能耗极限在哪里?10. 纳米技术如何助力全球可持续发展?十大前沿纳米科技难题旨在为全球纳米科技领域的科学研究提供指引,为探索纳米科技的知识边界、挖掘纳米科技潜能带来新的启迪;涵盖了从基础理论到前沿应用的纳米理论、纳米安全性、纳米催化、纳米生物、纳米医药、原子精准制造、极限测量及纳米科技对光电技术、电子器件和全球可持续发展的支撑与推动作用等十个纳米科技研究领域。 2023年4月底,国家纳米中心联合《科学》杂志开启了前沿纳米科技难题的全球征集工作。该项工作的目的是深入研究和分析目前纳米科技发展面对的关键问题,国内外纳米科技的发展现状及其在学科支撑、科技进步、社会发展和人类生活改善等方面产生的影响,进一步推动纳米科技的发展,得到了来自中国、美国、加拿大、德国、澳大利亚、新加坡、韩国等二十多个国家从事纳米科技研究的知名科学家和青年学者的积极反馈与响应。本次发布的十大前沿纳米科技问题结合当前国际前沿研究、未来科技发展和人类共同需求,对进一步激发纳米科技工作者的好奇心和自由探索的热情,引领未来纳米科技创新发展新趋势,集中力量攻克纳米科技难题,推动人类进步与社会的可持续发展具有重要意义。《科学》杂志曾于2005年和2021年两次面向全球发布“125个科学问题”,激发了全球科研工作者对未来科技发展的热烈讨论与思考。2022年,“纳米科学与工程”被国务院学位委员会和教育部列为一级学科,人才培养体系和职业教育体系更加完善。纳米科技已成为集交叉性、引领性和支撑性为一体的前沿研究领域。
  • 网爆羊肉串造假掺杂 DNA检测核实
    原标题:街头买来羊肉串,DNA验真身   有的压根没羊肉 有的掺杂猪鸭肉 图为:羊肉串让人吃得不放心 记者王永胜摄   楚天都市报讯 在武汉街头,经常可闻到羊肉串的诱人香味 而在寒冷的冬天,一些火锅店的涮羊肉销售也十分火爆。   近日,不少网友微博报料称,现在市面上卖的很多羊肉串、涮羊肉都不是真的羊肉做的,而是猫肉、老鼠肉做的。   对这种说法,多数市民并不相信:哪来这么多的猫肉、老鼠肉?   记者通过走访羊肉烧烤摊、美食城一条街以及羊肉串批发市场,并请专业机构鉴定求证发现,其实现在市面上的羊肉串、涮羊肉确实有猫腻。   网友报料   “羊肉串”是猫肉鼠肉   近日,武汉一名网友张先生报料:他在浏览微博时,发现不少网友称,街头诱人的羊肉串、火锅店里的涮羊肉,都不是真正的羊肉做的,而是猫肉、老鼠肉做的。   昨日,记者通过新浪、腾讯微博,以及百度搜索发现,网络上讨论羊肉是流浪猫、老鼠等做的帖子铺天盖地。   其中,网友“豆包kiroro小鱼钓猫”说:冬季多吃羊肉可御寒。可据说现在街上卖的羊肉串有些用的是猫肉。   网友“厦门人士”则表示:猫肉可能被制成“羊肉”,已经误入你的口中。   网友“不努力”奉劝大家:5元以下的羊肉串,尽量不要去吃,一般是猫肉、老鼠肉之类的。   此外,还有不少网友揭露,为让人们觉得吃的猫肉、老鼠肉有膻味,一些烧烤摊老板往往以很低的价格买回猫肉,放在盛有羊尿的盆里浸泡几个小时,再用嫩肉粉、各种调料腌制二三十分钟,加点羊油和羊肉香精,羊肉串就诞生了!   街头探访   烧烤摊老板闪烁其词   诱人的羊肉串,到底是不是羊肉?   近日,记者到武昌民主路户部巷、汉口吉庆街一带进行了走访。   在户部巷一家烧烤摊前,等着吃烧烤的市民排起六七米的长队。   “老板,你这个羊肉是真的吗?”记者问。“这都是刚刚串好的羊肉,当然是真的。”一名女店主称。   在另一家烧摊点前,店主则表示,他不仅卖的是真羊肉,还是产自新疆的羊肉。   不过,不少老板对记者的询问显得有些不耐烦。“你问这个干什么?”   此外,有几名老板则直白地说,一串羊肉卖一两元钱,若都是真羊肉,大家可能喝西北风去了。   冷冻市场   羊肉串仅带羊肉风味   有的烧烤摊老板说羊肉是真的,有的老板则说是假的,真相到底如何?   据了解,羊肉串大多来源于冷冻食品批发市场。昨日,记者来到一家市场调查了解到,现在的羊肉串每斤售价在19元至20元不等。批发商专门指出,这种羊肉串是有羊肉风味的。   只有羊肉风味,那有没有纯的羊肉呢?批发商表示,现在几乎不存在纯的羊肉。记者调查还发现,不少羊肉串的包装袋上的文字注明:烧烤肉串,羊肉风味。本产品精选鲁西南羊肉,配料为精选精鲜肉、白砂糖、味精等。一边号称鲁西南羊肉,一边配料却是精鲜肉,明显前后矛盾。   既然没有正宗羊肉串卖,有的都只是羊肉风味的烧烤肉串,那什么叫羊肉风味的烧烤肉串?经再三追问下,批发商这样解释:它说白了就不是羊肉,而是一种带有羊肉风味的肉。   实验求证   羊肉串掺有猪肉鸭肉   街头的羊肉串,只是一种带有羊肉风味的肉。那么,里面的肉,到底是不是老鼠肉和猫肉呢?   近日,记者从市场购买了6份羊肉样品,一号、二号来自冷冻食品批发市场 三号、四号来自美食街 五号、六号分别来自餐馆和流动烧烤摊。记者带着这些样品,找到武汉摩尔生物科技公司,并对6个样品的DNA成分进行检测。   检测发现,6份样品中,仅仅是一、二、四号样品检测出了羊肉成分,三、五、六号样品完全不是羊肉。此外,一、二、四号样品仅是含有羊肉,并不是纯羊肉。   经对一、二、四号样品的进一步检测,检测人员发现,3份样品中,除了有羊肉的成分,还有猪肉和鸭肉的成分。   一名肉制品经销商称,目前每斤羊肉的价格是20多元,而猪肉和鸭肉的价格则分别在10元和8元左右,为了省钱,一些商贩就在羊肉里掺一些别的肉。   那么三、五、六号样品完全不是羊肉,到底是什么肉?检测人员分别对它们猪肉和鸭肉的源性成分检测,结果都不是。这就奇怪了,不是羊肉,不是猪肉,也不是鸭肉,难道真的是传说中的猫肉、老鼠肉?检测人员表示,这还有待进一步的检测。   特别鸣谢:本次采访得到湖北卫视《生活帮》栏目(播出时间,每周三22:00-23:00 周六、周日11:50-13:00)大力支持。
  • 微电子所在n型垂直纳米器件方向取得重要进展
    垂直纳米环栅晶体管因其在减小标准单元面积、提升性能和改善寄生效应等方面具有天然优势,能满足功耗、性能、面积和成本等设计要求,已成为2nm及以下技术节点芯片的重点研发方向。 微电子所先导中心朱慧珑研究员团队于2019年首次成功研发出p型具有自对准栅极的叠层垂直纳米环栅晶体管(见IEEE Electron Device Letters,DOI: 10.1109/LED.2019.2954537),并对n型器件进行了研究。与p型器件制备工艺不同,n型器件在外延原位掺杂时,沟道和源漏界面处存在严重的杂质分凝与自掺杂问题。为此,团队开发出了适用于垂直器件的替代栅工艺,利用假栅做掩模通过离子注入实现源漏的掺杂,既解决了上述外延原位掺杂难题,又突破了原位掺杂的固溶度极限,更利于对晶体管内部结构的优化和不同类型晶体管之间的集成。为获得可精确控制沟道和栅极尺寸的垂直环栅器件,选择性和各向同性的原子层刻蚀方法是不可或缺的关键工艺。团队对此方法进行了深入分析和研究,提出了相应的氧化—刻蚀模型,应用于实验设计,改进和优化了横向刻蚀工艺;用该刻蚀工艺与假栅工艺结合,首次制备出了具有自对准栅的n型叠层垂直纳米环栅晶体管,器件栅长为48纳米,具有优异的短沟道控制能力和较高的电流开关比(Ion/Ioff),其中纳米线器件的亚阈值摆幅(SS)、漏致势垒降低(DIBL)和开关比为67 mV/dec、14 mV和3×105;纳米片器件的SS、DIBL和开关比为68 mV/dec、38 mV和1.3×106。相关研究成果发表于期刊Nano Letters(DOI: 10.1021/acs.nanolett.1c01033)和ACS Applied Materials & Interfaces(DOI: 10.1021/acsami.0c14018)上,先导中心博士生李晨为文章第一作者,朱慧珑研究员与张永奎高级工程师为共同通讯作者。 该研究得到中科院战略先导专项(先导预研项目“3-1纳米集成电路新器件与先导工艺”)、青年创新促进会和国家自然科学基金等项目资助。 图 (a) 替代栅结构TEM截面,(b) 垂直环栅纳米器件TEM截面的EDX元素分布图,(c)氧化-刻蚀模型,(d) n型垂直环栅纳米线器件的Id-Vg特性及TEM俯视插图,(e) n型垂直环栅纳米片器件的Id-Vg特性与TEM俯视插图
  • 清华大学环境学院李淼副教授团队开发磷掺杂单原子钴催化剂实现水中硝酸盐污染高效还原去除与能源利用
    全球活性氮增加引起的氮循环失衡使硝酸盐成为水中最普遍的污染物之一。硝酸盐污染威胁着生态安全和人类健康。通过硝酸盐还原方式合成氨,不仅有助于水中硝态氮污染物的去除,而且有助于缓解社会对氨能源的需求,减少污染,降低能耗。电化学反应过程对条件要求适中,易于运行并且高效,可将硝酸盐直接转化为氨。但通常,在硝酸盐的电化学还原过程中,在纳米及更大尺寸电极的活性位点上易于发生氮-氮偶联反应生成氮气,制约氨的高效生成。因此,开发具有高活性、低成本和高选择性优势的电极材料是该领域研究的核心之一。李淼团队针对钴(Co)金属电极活性差、易钝化导致难以实用的瓶颈,通过缺陷碳的稳定固化作用,开发了一种磷(P)掺杂的单原子钴催化剂材料(如图1所示),可有效避免偶联反应发生,使最终产物具有更高的氨选择性和还原活性。这种磷掺杂单原子钴催化剂具有更高的硝酸盐还原去除性能,以其作为催化剂的最高氨生成法拉第效率为92.0%、最高氨产率为433.3μgNH4+h−1cm−2。图1 单原子催化剂结构形貌分析结果研究团队采用自然界极少的15NO3−作为氮源,以同位素标记法进一步证明了氨生成的唯一氮来源为硝酸盐。利用1H核磁共振(NMR)仪对产生的氨进行检测,14NH4+和15NH4+的核磁谱图分别具有典型的三峰和双峰结构。研究采用多种实验分析手段对载体结构进行了分析。结果表明,磷的掺杂进一步提高了碳氮载体的缺陷程度,提供了更多的固定位点负载单原子钴,并且缺陷位点会对相邻金属钴活性位点的电子结构和性能产生影响,提高了电极导电性。图2 电极性能结果研究团队根据密度泛函理论计算,创新强化污染物净化的单原子尺度结构调控理论与方法,从分子水平上对硝酸根在模型单原子钴催化剂活性位点的转化反应机理进行了探究,分析反应路径和能量变化。结果表明,硝酸根在单原子位点上逐步发生脱氧加氢的基元反应,N*物种可以在外部提供能量时进一步偶联形成氮气,也可以自发与氢逐步反应形成铵盐。磷掺杂后形成的缺陷位点可以促进临近CoP1N3位点对硝酸盐的催化转化,硝酸盐还原过程发生8电子数转移生成铵盐。此外,研究还发现,金属活性位点临近的缺陷结构有助于进一步提高单原子催化剂活性,在理论上为设计高活性位点的催化剂提供指导并揭示硝酸反应转化和产物分布规律。图3 反应机理示意图该研究成果于7月12日以《高法拉第效率钴单原子催化剂显著促进氨生成》(Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies)为题在线发表在《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)上。论文第一作者为清华大学环境学院博士后李佳澄,论文通讯作者为清华大学环境学院李淼副教授,环境学院刘翔教授等人对实验提供了重要指导和帮助。研究项目得到国家自然科学基金面上项目和重点研发计划的资助。
  • 【视频】杂化钙钛矿材料及其纳米光学应用
    钙钛矿电池的光吸收层是一种有机-无机杂化的材料,而极化激元是黄昆原始在研究光子与声子相互作用时提出的概念实现了钙钛矿纳米结构(纳米线、纳米片、量子点)的高质量制备,为实现钙钛矿激光器的制备奠定了物质基础 将杂化钙钛矿材料和等离激元纳米金属两者结合,形成SPP纳米激光器,这是未来光通讯和信息产业中一个重要的研究方向,即将激光器小型化,小型化意味着可以更高密度、更大范围的集成,是下一代器件应用的重要趋势。  研究通过各种手段实现了金属结构的SPP模式的调控 制备了SPP模式的钙钛矿纳米线激光器,其激射阈值室温最低,并且首次实现了高于室温的激射。视频选自2020年半导体材料与器件研究与应用网络会议(报告人:中科院半导体所研究员 王智杰)
  • 蜂蜜造假花样百出:掺杂糖分 捏造蜜种
    “冠有阁”的6种蜂蜜因“果糖和葡萄糖”含量不足而被要求下架停售,我国香港消委会从55款蜂蜜样本中检出14款掺糖蜂蜜……近日曝光的蜂蜜掺假问题再度引发业界关注。记者在采访中进一步发现,由于蜂蜜市场供不应求,消费者鉴别能力低,以及市场存在监管空白等原因,蜂蜜掺假已经成为屡禁不止的老问题。勾兑蜂蜜、捏造蜜种,勾兑蜜充当“土蜂蜜”等乱象混迹于市场。而今,随着天气恶劣导致蜂蜜严重减产,原料价格飙升,蜂蜜造假的问题或将更加突出。   现象:蜂蜜掺假接连曝光   日前,北京市食品办责令11种不合格食品全市下架停售。其中6种是“冠有阁”蜂蜜,不合格原因是“果糖和葡萄糖”含量不足,也就是喝起来很甜,却没有蜂蜜特有的香醇味儿。   按照规定,蜂蜜中的果糖和葡萄糖含量应≥60%,但这6种不合格产品实测值最高35.6%,最低只有25.4%。对此专家表示,“果糖和葡萄糖”指标虽然不涉及食品安全,但却是蜂蜜的重要质量指标。果糖和葡萄糖含量过低,表明产品可能掺入了其他糖类物质,也会造成蜂蜜产品口感和营养价值的降低。   事实上,蜂蜜掺假现象长期存在,每年都有质量抽查曝光相关问题产品。日前,中国香港消委会的一项蜂蜜检测发现:55款蜂蜜样本中有14款掺杂了糖分。被检出掺杂糖分的产品中有12款竟然还声称是天然或纯正蜂蜜,当中7款甚至声称100%天然或100%纯正。   上个月,还有报道称,“市场上的蜂蜜六七成是假货”。不仅农贸市场出售有假蜂蜜,在许多大型超市也会出现假蜂蜜的身影。假蜂蜜多为糖浆勾兑而成。   趋势:今年减产严重或现更多假货   被曝光出来的蜂蜜问题已经如此之多,而今后,或许有更多蜂蜜质量问题被曝光。全国蜂产龙头企业广州宝生园公司相关负责人对记者透露,由于近年的气候不稳定,“靠天吃饭”的蜂蜜也出现了连连失收的情况。“今年一反常态的持续雨季对荔枝产量造成了严重影响,广东从化荔枝大幅减产,从化钱岗糯米糍减产近90%,几近绝收。果树歉收也严重影响了蜂农,而作为夏日主要保健饮品的荔枝蜂蜜和龙眼蜂蜜产量大幅减少,导致终端出现产品抢购热潮及零售价上涨等一连串的市场反应。今年北方大面积的洪涝灾害,更促成了蜂蜜产品价格的新一轮上涨。”   数据显示,今年蜂产品原料价格上浮不少。升幅最高的是冬蜜原料,比去年上浮幅度达到40%。荔枝蜜比去年上浮幅度达到25%。今年孕育花蕾期受冻,致使花期流蜜量不多,洋槐蜜比去年上浮幅度达到30%。   河南省养蜂业协会副会长何昕则分析,从目前情况看,今年蜂蜜产量比去年下降25%左右,这是今年蜂蜜收购价格一路上涨的主要因素。此外,蜂农老龄化严重,养蜂者逐年减少,也是造成蜂蜜价格走高的一个原因。在原料短缺加剧的背景下,蜂蜜消费却持续旺盛。中国养蜂历史悠久、养蜂数量众多、蜜源植物最丰富,紫云英、槐花、荆花、椴树、枣花、荔枝等植物都是较好的蜜源。据国家统计部门公布的数字,目前,中国养殖蜜蜂约850万群,全国每年的蜂蜜产量基本维持在约40万吨左右,占到全世界的四分之一,每年出口蜂蜜10万吨左右,主要出口到美国、欧洲、日本和韩国等。   供应与需求的此消彼长之间,巨大的供需缺口无疑会招来制假者觊觎,市面或出现更多假货。   成因:检测有难度 监管有空白   “利益的诱惑,是假蜂蜜出现的根本原因。而通过勾兑的假蜂蜜成本大概只是真蜂蜜的30%左右。”宝生园相关负责人称。 王长庚 摄   而蜂蜜造假屡禁不止,在业内人士看来,很大原因也是因为监管留下了空子。   据知情人士透露,目前对于蜂蜜的监管,暂时还无解,比如对于养蜂散户私自兜售假蜂蜜的行为,还没有明确的部门来管。其实工商部门以前对济南的蜂蜜市场都进行过检查,没有发现不合格产品。这是因为蜂蜜在流通环节的现行国家标准检测中,检测项目仅有几项,而在这几项检测项目,假蜂蜜的检测结果完全可以以假乱真。   而一家知名的内地蜂蜜企业负责人则表示,蜂蜜主要是由果糖和葡萄糖组成的。除此之外,内地的标准还允许有少量蔗糖,“国外一般强调无添加、无提取”。   根据蜂蜜的新国标《食品安全国家标准 蜂蜜GB14963-2011》的规定,蜂蜜只能是“蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物混合后,经充分酿造而成的天然甜物质”,其中,果糖和葡萄糖含量至少要达到60%,蔗糖含量不得超过10%。尽管量少,这一规定却无疑承认了加糖的合法性,形成了一种负面的效应。   ■乱象大揭秘   1.平的、贵的都可能有假   记者在某农产品商务平台上看到,山东槐花蜜和广西纯天然蜂蜜的批发价格为45元/kg,湖南衡阳的纯天然蜂蜜和贵州的有机蜂蜜批发价格为60元/kg,而广东江门的纯天然蜂蜜和山西临汾的原始森林土蜂蜜价格均为100元/kg。“加上运输费用、商品包装、中间渠道等,一瓶500克的纯蜂蜜到卖场销售,一般不太会低于30元。”一位业内人士表示。   “我在超市里看到一些便宜得根本不可能是真蜂蜜的产品,”一位蜂蜜产业资深从业者对记者说,“像那些20来块钱一罐的蜂蜜,我可以说,都已经低过了成本价,怎么可能是真的?”   据知情人透露,市场上假货确实不少,且同一品牌中也分真假,像三四十元一斤相对廉价的蜂蜜假货的可能性较多,五六十元一斤的蜂蜜品质相对就会好些。   上述负责人表示,大部分的消费者近年来消费更趋于理性,更加关注的是产品的质量,从价格引导型转向品质引导型消费,对优质优价接受度明显提高。   可是,不法分子也很快盯上高端蜂蜜,价格已不再是衡量蜂蜜真假的单一“硬指标”。前不久在香港被曝光的“麦芦卡”(新西兰独有的桃金娘科灌木)蜂蜜的身价就相当高昂。此前,在珠江新城的一家友谊商超,记者看到了至少3家新西兰公司生产的“麦芦卡”蜂蜜,售价最贵的一小瓶突破600元。据了解,这种蜂蜜在香港的售价约为每100克39.6港元至151.2港元不等,价格明显高于一般蜜种。   2.很多蜜种系捏造   另外,一些明目张胆的虚假宣传在市面欺骗消费者。一位不愿透露姓名的业内人士告诉记者,部分蜜种产量极少,根本不能支持网店和超市大量销售,市面上买到的多为假货 而有些蜜种压根就是不存在的,这些植物产花粉,但是不产蜂蜜,或者植物生长环境不在蜜蜂的采蜜活动范围 此外,还有一些蜜种事实上并不名贵,但经过稀奇古怪的产品名称包装,就摇身一变成为了高档货,其中不乏进口蜂蜜。   “选蜂蜜选常见的种类就行,比如百花蜜、洋槐蜜、荆条蜜、椴树蜜等等,枣花蜜容易有农药残留,最好别喝,别相信那些稀奇古怪的蜜种。每个人身体素质不一样,最好听下医生怎么说”,该业内人士提醒,很多消费者对蜂蜜生产的过程并不了解,造假者利用这种信息不对等,随便换个名称就把原本收购价很低的蜂蜜卖成个天价。因此,消费者买蜂蜜的时候要擦亮眼。   比如,金银花蜜,金银花的花冠又长又细,蜜蜂的嘴很短,很难深入到花蕊,只有在花倒挂时流出来的花蜜,蜜蜂才能采到 苹果花花蜜非常非常少,蜂蜜采的还喂不饱自己,蜂农很难收集到这类单品种蜂蜜 野菊花蜂蜜的产量极少,有时得天气极好的时候才采到,不可能稳定地供给商家 益母草是一种辅助蜜源,能形成蜜的量很少,不可能有纯的益母草蜜大量出售,市场上益母草蜜却因为标榜对女性健康有益很受追捧。   有些蜂蜜蜜种压根是不存在的,如桃花只有花粉,没有花蜜。天山雪莲蜂蜜也不可能成为现实中的产品,因为雪莲通常生长在高山雪峰之中,蜜蜂活动的温度要高于13℃左右,雪莲花和蜜蜂的采蜜活动压根就“不搭界”。此外,真正的玫瑰是没花有蜜的,只有一种叫野玫瑰的,这种花的花蜜也是极少的。“目前市场还流行一种叫雪莲脂蜜的,养蜂人都知道,其实就是一种俗称野豌豆的苕子的花蜜,品相还比紫云英蜜差点,换个名字就卖了个好价钱。”该业内人士称。   3.“土蜂蜜”未必真“土”   不少消费者还发现,通过网络渠道经常能购买到“土蜂蜜”,店家往往声称,“土蜂蜜”比普通蜂蜜营养价值更高、保健效果更好。   然而,专家指出,农家蜂蜜不等于“土蜂蜜”,将两者混淆等同是偷换概念的行为,“土蜂蜜”特指土蜂(即中华蜜蜂)产的蜜,而且因为中华蜜蜂的习性使然,擅长采集零散蜜源,很难产出单品种蜂蜜,往往以“百花蜜”居多 意大利蜂擅长出产单一花种的蜂蜜,市面上大部分的单一蜜种都是意蜂生产的,像槐花蜜、荆条蜜、荔枝蜜、龙眼蜜等等。蜂王浆和蜂胶也多是这种蜜蜂生产。凡是单品种蜂蜜还声称是“土蜂蜜”的,多半是用意大利蜂产的蜜来冒充“土蜂蜜”。   那么农家蜂蜜能不能买呢?“前段时间跟朋友去农村玩,看到国道边上有蜂农摆了几个蜂箱,在卖蜂蜜,说是农家土蜂蜜,绝对纯正新鲜,价格还不便宜”,广州市民周小姐说,出于好奇尝了一下蜂蜜,“看到有结晶,口感也还行,不过我的朋友提醒,怎么蜂箱里一个蜜蜂都没有呢”,她说,卖蜂蜜的蜂农解释,蜜蜂采蜜去了,所以蜂箱是空的,因为有所怀疑,周小姐最终也没有买蜂蜜。   对此,广州从化市一位多年养蜂的蜂农老齐告诉记者,蜜蜂采蜜不可能几个小时都不回巢一次,“很多路边卖蜂蜜的自己都不是养蜂的,只是收购来的而已,放个蜂箱只是招揽生意的,如果你要求看蜜蜂,多半会被吓唬蜜蜂蜇人。”他说,买蜂蜜也不是越新鲜越好,即使是新鲜摇下来的蜂蜜,立即吃的功效其实远不如放了一段时间的蜂蜜。专家提醒,蜂蜜被分离了以后,里面的蔗糖还要在酶的作用下继续分解成果糖和葡萄糖,到一个月左右,各种成分才能真正稳定下来。而且蜂蜜天然抗菌,所以不用担心放久了会有细菌。   4.造假方法网上随手可学   记者还发现,网络上流传着各种各样自制“蜂蜜”的方法,部分还图文并茂。例如有一种流传颇广的“10分钟熬出‘蜂蜜’”的方法,原料仅需白砂糖、明矾、酱油、清水。蜂蜜造假方法简单,一看就会,毫无技术门槛。而这种“蜂蜜”的成本已经直观可见。曾有人实践过这一系列实验,用白糖、明矾和水为原料,仅仅花了8元钱就制作出了一碗“蜂蜜”。   假蜂蜜的成本低廉,而在超市销售的、与用此方法调制的“蜂蜜”颜色接近的枣花蜜,最便宜的一瓶价格在31元左右(均是500g装,大约314ml),至于普通的蜂蜜,价格一般也在25元左右。   还有更狡猾的造假者。曾被曝光的慈溪怡康蜂业有限公司掺假更加隐蔽,他们在洋槐蜂蜜中至少掺油菜花蜂蜜60%,价格就下来了。公司负责人得意地说:“(这样的蜜)吃也吃不出来的,无论工商、质监也都检测不出来。”   广东省质监局一位内部人士透露,现在市场上蜂蜜的监管几乎是空白领域。“以前有蜂蜜掺假的判定方法,新的食品安全标准颁布后,删除了这个项目。之前的方法也在用,但是不能作为处罚的依据,只能作为案件的线索。监管上就要看商家的道德约束了”。   简单四招选蜂蜜   ■小贴士   1.看色泽。纯正的优质蜂蜜透光性强,颜色为白色、淡黄色至琥珀色,且均匀一致 而劣质蜂蜜颜色黑红或暗褐色、无光泽、蜜液混浊而有杂质。   2.晃气泡。如果蜂蜜发酵变质,会因含水量增多而导致表面产生大量气泡,而纯正的蜂蜜表面则无大量气泡。   3.闻香气。品质好的蜂蜜香味浓而持久,开瓶后便能嗅到,用手掌搓揉会有粘腻感,而劣质的蜂蜜往往因掺入香精而过于浓郁。   4.拉细丝。用筷子挑蜂蜜,优质的蜂蜜弹性佳,可拉成丝状,且不易拉断,而劣质的蜂蜜浓度较低,黏性小,难以拉成细丝。
  • 纳米技术让电子管死而复生
    比晶体管更快、更耐用、更抗辐射   由于晶体管的发明,电子管在上世纪60年代一蹶不振,但新的研究却可能让这项技术咸鱼翻身。   如果你曾拆开过一部老式的收音机,便会看到一些像是小灯泡的东西。它们便是电子管(又称真空管)——今天的硅晶体管的前身。电子管在上世纪60年代重蹈了恐龙的覆辙,但是研究人员如今又让它们起死回生,研制出了比晶体管更快、更耐用的纳米级电子管。这种新器件甚至能够在外层空间强烈的辐射下安全使用。   在上世纪早期研制出的电子管提供了放大电信号的第一种简便方式。就像电灯泡那样,它们由含有一个加热丝的玻璃灯泡构成。电子管利用电场对真空中的控制栅极注入电子调制信号,并在阳极获得对信号放大或反馈振荡后的不同参数信号数据。   然而由于晶体管的发明,特别是用化学方法蚀刻硅件从而大量生产晶体管技术的问世,电子管在上世纪五六十年代逐渐走向消亡。晶体管更小、更便宜并且更耐用。它们同时能够被塞进微芯片中,并根据不同的复杂输入信号被开启和闭合,从而为更小、更强大的计算机的研制铺平了道路。   但是晶体管并非在所有方面都更出色。与真空环境相比,电子在固体中运动得更为缓慢,这也就意味着晶体管通常要慢于电子管 也就是说,计算速度并没有理论上快。此外,半导体更容易受到强辐射的影响,后者能够破坏硅的原子结构,从而使电荷无法正确地运动。这对于军队和航天机构而言可是一个大问题,它们都需要自己的设备能够在辐射强烈的环境中——例如外层空间——正常地工作。   美国宇航局(NASA)埃姆斯研究中心的工程师Meyya Meyyappan表示:“你我买的电脑与NASA买的电脑是一样的,但用途却大相径庭。NASA花了很长时间使其能够经受强辐射的考验,否则那些安装在航天飞机或空间站中的电脑基本上将被摧毁进而无法运行。”   新设备是今天的晶体管与古老的电子管的一个杂合体。它既小又容易制造,同时速度快且抗辐射。参与开发“纳米电子管”的Meyyappan指出,它是通过在掺杂着磷的硅上蚀刻小腔洞制造而成。这个腔洞连接着3个电极——一个源极,一个栅极,还有一个漏极。其中源极与漏极仅仅相距150纳米,而栅极则位于顶部。电子由施加的电压从源极释放,而栅极则控制电子穿过腔洞。在5月23日发表于《应用物理学快报》上的这篇论文中,Meyyappan和同事估计,他们的纳米电子管的工作频率高达0.46兆赫——约比现今最好的硅晶体管快10倍。   这个新产品并非科学家首次尝试将电子管小型化。然而,与之前的工作不同的是,研究人员并不需要追求完全的真空——源极与漏极的距离是如此之小,以至于电子与空气中的原子发生碰撞的几率随之变得极低。Meyyappan说,这便有一个巨大的好处——它为大批量生产打开了一扇大门。   英国伦敦帝国理工学院的电子工程师Kristel Fobelets对此表示赞同。她说:“真空技术在半导体生产线上的应用将使制造成本变得非常高昂。”但她同时警告说,纳米电子管更像是对“概念的证明”,而不是一个工作装置,这是因为它的操作要求并不符合现代晶体管的要求。例如,打开这一装置需要10伏的电压,而现代晶体管的运行只需要约1伏特的电压 在这一方面,纳米电子管与现代电路并不匹配。   尽管如此,Meyyappan认为纳米电子管的潜力依然是巨大的。新的电子管固有的对辐射的免疫能力能够为军方和NASA节省许多时间和金钱,而其更快的运行速度使得它成为所谓的兆赫技术的罕有候选者。作为介于微波和红外区域之间的电磁波谱,在兆赫区域能够发现某些分子的“指纹”。例如,这项技术能够用在机场对违禁药物的安检中。   那么,电子管真能东山再起吗?Meyyappan正是这样想的。他说:“我们正在结合最好的真空技术,以及在过去50年的集成电路制造中获得的最佳经验。”
  • 北京大学碳纳米管光电器件研究取得新进展
    北京大学信息科学技术学院博士研究生杨雷静与王胜副研究员作为共同第一作者所撰写的论文Efficient photovoltage multiplication in carbon nanotubes,于2011年11月1日在《自然》子刊《自然?光子学》(Nature Photonics, 2011, 5, PP.672-676)上发表。该论文报道了碳纳米管光电器件研究的重要突破,也是电子学系彭练矛教授研究组在碳纳米管器件研究领域所取得的最新进展。   在地球资源日益匮乏的今天,太阳能作为重要的替代能源具有很多不可超越的优势。基于纳米尺度新材料的太阳能光伏器件研究是当前国际太阳能光伏领域研究的热点。碳纳米管是直接带隙材料,一直被认为可能在构建下一代太阳能电池中发挥重要影响。并且,半导体的单壁碳管具有独特的能带结构,以及很好的紫外到近红外的宽谱光吸收特性,可以充分地吸收利用太阳光。先前的研究已证明,碳管材料构建的光伏器件具有光生载流子倍增效应,利用这种效应构建的太阳能电池可能超越理论上预计的单个太阳能电池效率极限。但是大多数典型半导体碳管器件的光电压一般小于0.2V,对于实际应用而言小得难以满足需要。如何非常高效地级联碳管太阳能电池以获得高的光电压输出,就成为碳管光伏器件领域富有挑战性的工作之一。   碳管级联太阳能电池模块示意图   彭练矛研究组提出采用虚电极对接触方法,无需传统的掺杂工艺即可有效地使器件的光电压产生倍增,具体说来,在一根10μm长的碳管上级联5个电池单元,就可以获得大于1V的光电压。这项工作是在彭练矛研究组一系列前期研究的基础上实现的。2008年,研究组提出采用非对称接触电极的方法实现无需掺杂制备碳纳米管二极管,研究结果发表在《先进材料》(Advanced Materials, 2008, 20, 3258)上。 在此基础上,采用近乎同样但经过改进的工艺,又于今年实现了第一个真正意义上的碳管红外发光二极管(LED),其研究论文发表在《纳米快讯》(Nano Letters, 2011, 11, 23)上。   这项研究得到了国家重大科学研究计划和国家自然科学基金委员会的资助。
  • 一维无机纳米材料构建爆炸物传感器的理想纳米单元
    p   2月17日,Wiley集团出版社所属的材料类期刊Advanced Functional Materials 在线发表了由中国科学院新疆理化技术研究所微传感实验室研究员窦新存团队独立撰写的题为Emerging and Future Possible Strategies for Enhancing 1D Inorganic Nanomaterials-Based Electrical Sensors towards Explosives Vapors Detection 的综述文章。 /p p   爆炸物检测作为反恐防爆的重要措施正日益彰显出广阔的应用前景。爆炸物蒸气检测技术具有非接触、采样简单、可靠性高、性能优异、多功能集成、可以批量生产等优点,使爆炸物探测器实现小型化、低成本和高精度成为可能。一维无机纳米材料具有大的比表面积、量子限域效应、高的反应活性、突出的电学、光学与化学性质及各向异性等优点,并且其结构、性质调整可控。因此,一维无机纳米材料是构建爆炸物传感器的理想纳米单元。然而爆炸物检测领域面临着诸多挑战,例如生产工艺成本高、能耗大,材料组装和排布形成器件难度大,器件稳定性、重复性差等,灵敏度不够高,难以识别种类繁多的爆炸物等。 /p p   新疆理化所科研人员首先全面系统地总结和评述了2010年以来发表的基于一维无机纳米材料的爆炸物蒸气检测工作,并根据在增强电学传感器性能过程中使用的不同策略,将这些工作分为有序排布的阵列、表面修饰、光电增强、柔性设计、肖特基结以及传感器阵列构建几个方面。科研人员还提出了可应用在增强爆炸物检测的电学传感器性能上的策略和方法,包括垂直的阵列结构、一步构建的有序结构、“锁钥”设计、自驱动传感以及可转移和穿戴的传感器设计等。该综述文章通过总结典型的基于电学传感器的爆炸物蒸气检测工作,提炼出了先进可行的实验方法,并且在面对实验室工作与实际检测之间的差距时,提出了一些解决现有问题的可行性方案,同时提出了非制式爆炸物检测被忽视的问题,为未来基于电学传感器的爆炸物检测工作提供了新的研究思路和理论依据。 /p p   该实验室自2012年以来,长期从事微传感方面的研究,尤其致力于开拓爆炸物检测的新理论、新方法、新材料方面,取得了一系列重要成果,截至目前,已在Advanced Functional Materials, Advanced Optical Materials, Small, Nanoscale,Journal of Materials Chemistry,Journal of Physical Chemistry C 等国际期刊上发表10余篇学术论文,提出了肖特基结构建、过渡金属掺杂、缺陷态控制、晶面调控、光电催化检测等用于爆炸物检测的新思路。此次发表的专题综述文章同时对微传感实验室在该方面的科研成果进行了总结,例如利用插层调控肖特基结的势垒高度和吸附能来增强硅纳米线阵列/石墨烯的检测性能(Adv. Funct. Mater. 2015, 25, 4039),引入光照增强气敏检测的性能(Nanoscale 2013, 5, 10693)。 /p p   该工作得到国家自然科学基金、中科院“百人计划”、创新基金等项目的资助。 /p p br/ /p
  • Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率
    Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率分子掺杂工艺: 研究人员引入了一种使用二甲基胺基掺杂剂的分子掺杂工艺,该工艺能够创建一个与p-钙钛矿/ITO接触良好且能够完全钝化晶界的结构。这种创新工艺提高了钙钛矿太阳能电池的功率转换效率(PCE),实现了经认证的25.39%的PCE,这是对钙钛矿太阳能电池现有标准的改进。分子挤压技术: 该工艺采用了一种独特的“分子挤压”方法,在甲苯淬灭结晶过程中将分子从前驱体溶液排出到晶界和薄膜底部。这种独特的技术导致了钙钛矿薄膜的p-掺杂,有助于提高器件的效率。长寿命和高效率: 器件在逆向扫描时实现了25.86%的效率,并表现出卓越的稳定性,即使经过1000小时的光老化,仍能保持96.6%的初始效率。这表明钙钛矿太阳能电池在性能和可靠性方面取得了显著的进步。在不断发展的光伏领域中,更有效、可持续地利用太阳能的追求是一项不懈的努力。科学家已经探索了许多途径来提高太阳能电池的效率,其中钙钛矿太阳能电池因其性能潜力和经济制造能力的结合而一直脱颖而出。今天,我们将聚焦于一支南方科技大学何祝兵团队率领杰出的研究团队所取得的重大突破,他们实现了钙钛矿太阳能电池效率的深度提高,这标志着我们共同追求更可持续和能效的未来的重要一步。这项开创性的研究提出了一种与传统方法有着根本不同的新型分子掺杂工艺,使用了一种二甲基氨基基团的掺杂剂。这种掺杂剂巧妙地用于形成和谐的p-钙钛矿/ITO接触,并精确地去除晶界缺陷,推动了钙钛矿太阳能电池功率转换效率(PCE)的大幅提升。研究团队创造出了一个惊人的世界纪录,即25.39%的认证PCE,为该行业设定了新的标准和潜力。为了达到这个非凡的成就,研究人员提出了一种被称为“分子挤压”的巧妙技术。这种创新策略迫使前体溶液中的分子在甲苯淬火晶化过程中重新分布到晶界和薄膜底部。因此,这导致了钙钛矿薄膜的p型掺杂,这是实现设备效率显著提高的关键。这种独特的工艺因此标志着一种基础性的突破,从根本上改变了可再生能源范式。然而,这项研究的胜利不仅仅局限于效率领域。该团队的冠军设备不仅在反向扫描中展示了25.86%的PCE,超越了以往的阈值,而且表现出了卓越的稳定性,在经过1000小时的光老化后仍保持了96.6%的初始效率。这项成就解决了钙钛矿太阳能电池技术中的一个主要挑战——效率和稳定性之间的平衡,并为未来旨在优化这两个重要方面的研究提供了有价值的基础。在这项开创性研究的核心是Enlitech的QE-R精密测量设备的精确利用。这种先进的设备为团队提供了准确的读数,使他们能够仔细评估他们的新方法的结果。选择Enlitech的QE-R设备,这种以精度和可靠性闻名的设备,强调了顶级资源在实现突破性成果中的重要性。此外,研究人员深入探究了p-钙钛矿/ITO界面的复杂能带对齐。通过应用紫外光电子能谱(UPS),他们阐明了促进空穴提取的带弯曲现象,这是实现高性能太阳能电池的关键过程。实验揭示了二甲基氨基基团掺杂剂以及与铅离子形成的分子复合物修改ITO基板的功函数,从而获得了有利于高效空穴提取的能带对齐。除了提高效率和稳定性外,研究团队还解决了钙钛矿太阳能电池中常见的滞后效应挑战。通过采用分子挤压技术和精确的掺杂工程,他们显著降低了滞后效应,从而使设备性能更加可靠和可重复。这一突破为实际应用和商业化钙钛矿太阳能电池提供了巨大的潜力,因为它解决了阻碍其广泛应用的主要障碍之一。此外,研究团队对电荷载流子动力学的详尽研究揭示了他们的钙钛矿太阳能电池性能异常出色的机制。通过各种分析技术,包括电荷密度差和Bader电荷分析,他们揭示了钙钛矿薄膜内电荷的重新分布,这归功于有效的分子掺杂策略。这种重新分布导致了提高空穴提取效率和提高整体设备性能的效果。总之,这项开创性的研究代表了钙钛矿太阳能电池领域的重大进展,实现了25.39%的创纪录效率和卓越的稳定性。分子掺杂工艺结合创新的分子挤压技术为实现对设备性能和稳定性的前所未有的控制铺平了道路。Enlitech的QE-R精密测量设备的利用对于准确评估制造的设备的光电性质起到了至关重要的作用。这一非凡成就将我们更接近实现钙钛矿太阳能电池的全部潜力,推动我们迈向由清洁、可再生能源驱动的未来。分离ITO表面的Pb 4f(a),I 3d (b)和P 2p (c)的XPS光谱来自ITO/DMAcPA/钙钛矿(蓝色)和ITO/钙钛矿(DMAcPA)(红色)样品两种钙钛矿薄膜埋底面XPS图 S26.Pb 4f(a)、I 3d (b)和调查(c)的XPS光谱,在底部检测到原始(红色)和DMAcPA掺杂(蓝色)钙钛矿薄膜的表面,与正文中报导了制造过程。 Pb结合能的红移在钙钛矿的埋藏底面检测到(图。S26a)也可以表示O–Pb与键削弱了主流Pb-I共价键的结合能和这里解释了Pb的红移。 S26b),它可以是归因于P-O-H–I的氢键,这已经得到了很好的讨论和通过上述H NMR信号的下场化学位移进行检查(图3A)。
  • 安徽工业大学PNAS:宏量制备石墨烯纳米带及其功能材料
    近日,安徽工业大学化学与化工学院闫岩、刘明凯教授与南京大学及新加坡国立大学合作,开发出了一种宏量制备石墨烯纳米带且高效实现其层间功能化的策略。相关成果以“Rapid Production of Kilogram-Scale Graphene Nanoribbons with Tunable Interlayer Spacing for an Array of Renewable Energy”为题发表在《美国国家科学院院刊》上,论文的共同通讯作者是安徽工业大学化学与化工学院的闫岩教授、刘明凯教授,以及南京大学金钟教授和新加坡国立大学的林志群教授。安徽工业大学是第一完成单位。《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America,通常简称为PNAS)是美国国家科学院的官方科学周刊杂志,创刊于1915年,收录的文献覆盖生物学、物理学、化学、材料学、数学和社会科学等领域。与《自然》和《科学》杂志一样,《美国国家科学院院刊》是世界上基础科学领域最负盛名的学术杂志之一,在SCI综合科学类期刊中排名第三。这是安徽工业大学首次以第一完成单位在该刊上发表文章。石墨烯纳米带是一种以带状形态存在的石墨烯材料,具有高电导率、高热导率、低噪声等特点。这些优良品质使得石墨烯纳米带成为集成电路互连材料的一种理想选择,用以替代传统金属材料。同时,由于其具有独特的宽度依赖带隙和两侧充足的孤对电子,石墨烯纳米带在高性能电子器件和纳米催化领域也得到了科研工作者的密切关注。然而,虽然已有报导多种制备石墨烯纳米带的方法,包括小分子有机合成、聚合物包埋切割、碳纳米径向切割、特定基体上外延生长等,但洁净石墨烯纳米带的宏量制备仍然面临巨大挑战。此外,如何扩展石墨烯纳米带的层间距并使其功能化也是石墨烯纳米带研究亟需解决的问题。基于此,安徽工业大学闫岩教授、刘明凯教授提出了一种“冷冻-卷曲-压缩”的策略,通过将大片层(平均宽度~20微米)的氧化石墨烯与二氧化硅溶胶超声混合,并在低温低压下进行脱水干燥和化学刻蚀,制备出了高纯度、高径向比的石墨烯纳米带材料(图1)。这种策略采用自上而下的方式,以单层的氧化石墨烯为原料,通过改变其拓扑结构,实现了高纯度石墨烯纳米带的宏量制备。该策略比小分子合成、径向剪切碳纳米管等方法更直接、更简洁,得到的石墨烯纳米带的纯度也更高。【图文导读】图1 石墨烯纳米带制备过程示意图场发射扫描电镜照片证明了这种石墨烯纳米带具有典型的准一维结构。如图2所示,这种材料具有高的长径比,表面是类石墨烯层状褶皱结构,其丰富的边缘结构为石墨烯纳米带的功能化提供了可供调控的空间。透射电镜图片证明这种材料具有薄层结构和透明性。拉曼数据中,碳材料特征峰D峰和G峰比例的降低,证明从氧化石墨烯到石墨烯纳米带,部分共轭结构得到了有效修复,这种石墨烯纳米带也显示出高达72900 S/m的电子传导速率。除了宏量制备,如何控制层与层之间的距离,是制备高性能石墨烯纳米带功能材料的另一项重大挑战。多相催化团队在“冷冻-卷曲-压缩”策略中,通过改变二氧化硅的尺寸和使用量,调控界面“π-π”相互作用和石墨烯纳米带的层间距,实现了在3.63-9.04 Å范围内层间距离的自由调节。图2 石墨烯纳米带宏量制备、结构表征与性能测试  此外,通过在层间进行客体分子/纳米材料修饰,可以实现对石墨烯纳米带材料的功能化设计,从而显著拓展石墨烯纳米带的应用范围。研究人员借助“冷冻-卷曲-压缩”的策略,将杂原子前驱体(六福磷酸铵)、单原子前驱体(乙酰丙酮钴)与石墨烯/二氧化硅进行混合,或以球形二硫化钼(零维),聚苯胺纤维(一维)或二硫化硒纳米片(二维)代替二氧化硅,并经过高温处理或化学处理,分别可以得到了氮/磷/氟共掺杂的石墨烯纳米带、钴单原子修饰的石墨烯纳米带、层间修饰二硫化钼的石墨烯纳米带、层间负载聚苯胺的石墨烯纳米带以及层间修饰二硫化硒的石墨烯纳米带材料,实现了对石墨烯纳米带材料的功能化设计。如图3所示。图3 不同尺度客体分子/纳米材料在石墨烯纳米带层间对其修饰并实现功能化设计这些新型的石墨烯纳米带基功能材料在新能源器件中表现出优异的储能和催化性能。例如,氮/磷/氟共掺杂的石墨烯纳米带材料作为非金属催化剂,在电催化氧还原反应中表现出接近商业化铂碳的催化活性。钴单原子修饰的石墨烯纳米带材料在电催化产氢反应中的塔菲尔斜率仅为48 mV/dec,展现出与商业化铂碳(44 mV/dec)接近的反应动力学。石墨烯纳米带包裹二硫化钼得到的复合材料,在电化学储锂方面表现出良好的活性。在0.1 A/g电流密度下展现出1210 mAh/g的比容量。同时展现出良好的循环稳定性,经过500次循环,容量仅衰减18.7%。石墨烯纳米带包裹聚苯胺纤维得到的复合材料,在超级电容器领域表现出良好的比容量(734 F/g)和倍率性能。石墨烯纳米带包裹二硫化硒得到的复合带状材料,作为钠离子电池正极材料,表现出486 mAh/g的电化学储钠性能。这些功能材料的开发,显著提升了石墨烯纳米带及其功能材料的应用场景(图4)。图4石墨烯纳米带基功能材料在新能源领域中的应用,包括电化学产氢、锂/钠离子电池等领域综上所述,通过设计“冷冻-卷曲-压缩”的策略,闫岩教授、刘明凯教授充分展示了如何通过界面工程宏量制备石墨烯纳米带材料,并通过改变支撑材料二氧化硅的尺寸和用量,实现了对石墨烯纳米带层间距的有效调节。进一步,通过在石墨烯纳米带的层间引入功能化非金属原子、金属单原子、不同维度纳米材料,实现了对石墨烯纳米带的功能化设计,并在一系列新能源器件中得到了应用拓展。
  • 一文知晓:纳米孔测序技术
    在基因测序领域,谁控制仪器,谁就会赢得天下,从ABI的3730测序仪到后来的illumina的测序仪,都可以证明这点,这个行业目前是由上游技术驱动的,对技术的依赖度很强。测序公司、诊断公司都加大对测序技术领域的投资,以期能在未来基因测序爆发时期,获得可观的市场份额。根据安永的最近一份报告显示,未来5年内,基因测序的仪器市场规模同基因测序服务基本相当。   罗氏、illumina公司都加大对新技术的投资。2012年,Roche公司宣布基因测序仪454从测序市场退出时,就加紧在纳米测序技术领域的布局,先后投资了Genia Technologies公司和Stratos Genomics公司。illumina公司也早就盯上了纳米孔测序技术,是牛津Nanopore公司的主要股东之一。然而令illumina公司恼火的是,2013年10月,牛津Nanopore公司回购了illumina公司持有的13.5%股份,从而保持该公司更加独立运营,此次回购价值共超过5640万美元。   纳米孔测序原理   在A,T,G,C四种不同的脱氧核苷酸通过纳米孔进入的时候,其所引起的电流变化也是不一样的,随即可通过电流来检测DNA序列。双链DNA直径为2nm,单链DNA直径为1nm,所以采用的纳米孔尺寸有着近乎苛刻的要求。纳米孔:分为生物纳米孔和固体纳米孔,生物纳米孔:a溶血素(一般嵌入在双层脂膜当中),最窄直径尺寸为1.5nm,可允许单链DNA分子通过。但是生物纳米孔对稳定性、电流、噪声等方面有很高的要求。固态纳米孔:由硅及其衍生物制造,通过电子束和离子束在硅或其他材料薄膜上钻出纳米尺度的孔洞。固态纳米孔在稳定性、电流噪声、工艺集成方面有着显著的优势,但是目前有技术瓶颈,以及造价高昂。   固态纳米孔工艺   固态纳米孔的制作与半导体工艺的结合使得DNA测序芯片的大规模生产成为可能. 2001年,Li等人使用聚焦离子束在 Si3N4 薄膜上制作出了直径61 nm 的孔,随后又采用 Ar将孔径缩小到了1.8nm。2003年, Storm等人用高能电子束在SiO2薄膜上制作出了直径2 nm的孔. 如今, 人们已经可以在很多材料上制作出亚 10 纳米尺度的固态纳米孔,例如,SiNx,SiO2,SiC,Al2O3等. 此外, 石墨烯因其本身超薄的结构和特殊的电子特性也作为薄膜材料的一种新选择,它的超薄的单原子层结构十分适合隧道电流的测量。   纳米电极制作   纳米电极的制作在测序用纳米孔制造工艺中也是一项重要的挑战。前文提到, 纳米电极的形状、与纳米孔重合度的好坏直接影响到电流信号的好坏, 因此要在纳米尺度制作出形状规则、 电学特性良好的电极并不容易。   目前研究者们所做的工作都是在实验室中对单个纳米孔进行研究, 而无法将其运用到商业中. 到目前为止, 还没有办法能够快速制作出直径大小均一且都在5 nm以下的纳米孔阵列, 在DNA测序芯片向商业化转变的道路上, 这是必须解决的一个问题. 但是, 相信随着半导体制造工艺和纳米电子学的不断发展, 人们一定会制作出高质量的纳米孔芯片。   产品:Minion   由英国公司Oxford Nanopore开发设计MinION测序仪则拥有很长的读长,而且只有普通U盘大小,由一个传感器芯片,专用集成电路和一个完整的单分子感应测试所需的流控系统构成,可随身携带,理论上可实现想测就测。日前该测序仪已投入市场使用,或许未来它将基因测序仪变得如同手机一样普通、便捷、廉价。该技术被MIT Technology Review杂志评为&ldquo 2012年10大年度科技突破之一&rdquo 。但是其错误率很高,据称有35%的错误率,平均10个碱基,就有3.5个测序错误。这也意味着基因突变检测成为纳米孔测序的禁区,也成为纳米孔测序的致命弱点,并让其长读长的优势黯淡无光。   面临挑战   虽然纳米孔测序的优点十分明显,与前几代技术相比在成本、速度方面有着很大优势,但是目前还处在起步阶段,从测序原理到制造工艺都存在有许多问题,许多技术也都只停留在理论阶段。其面临的挑战主要是如下几个部分:   电流检测系统:电流识别最短距离为3nm,而且目前的材料几乎很难寻找到孔径这么小的材料。   纳米膜系统:限制目前的纳米孔大小,目前有关纳米孔制作方面仍有很大的阻力   数据分析系统:即使很多人获取这些数据,但是对于数据的运行和分析仍旧存在很大障碍。   主要纳米孔技术公司   Base4, UK   Fullgen, Argentina   Genia, USA, California   INanoBio, USA, Arizona   Ionera, Germany   Izon Science, New Zealand   Nabsys, USA, Providence   Nanion, Germany   Nanopore, USA, New Mexico   Noblegen Biosciences, USA, Massachusetts   Oxford Nanopore Technologies, UK   Quantapore, USA, California   Quantum Biosystems, Japan   中国从事相关技术研究学者   龙亿涛   华东理工大学,上海市曙光学者,&ldquo 东方学者&rdquo 特聘教授,研究方向纳米光谱电化学,纳米通道单分子分析,仿生界面等。   赵清   北京大学凝聚态所副教授,主要从事ZnO、AlN纳米线的制备、掺杂,表征,电学,光学,场致电子发射性能方面的研究。   注:部分内容来自生物通和贺建奎博客
  • NanoFrazor——纳米加工最新技术攻略
    科学技术不断发展的时代,功能结构的微纳米化不仅可以带来能源与原材料的节省,同时可以实现多功能的高度集成和生产成本的大大降低。微纳米加工技术主要分为直接加工技术和图形转移技术。直接加工技术有激光加工,聚焦离子束(FIB)刻蚀,Local Anodic Oxidation局部阳氧化(基于AFM),Dip Pen NanoLithography浸蘸笔纳米加工刻蚀等; 图形转移技术主要分为三个部分:薄膜沉积,图形成像(必不可少),图形转移。作为微纳加工工艺的核心,图形生成工艺可分为三种类型:(1) 平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,主要包括光刻技术(掩模,直写),电子束曝光(EBL);(2) 探针图形化工艺是利用高精度探针对样品或涂层进行逐点扫描成像技术,具有精度高,部分实现直写,3D加工等,代表技术有:热式扫描探针技术(NanoFrazor);(3) 模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术(NIL),还包括模压和模铸技术。 虽然目前微纳加工技术众多,但能够实现纳米(100nm以下)分辨率的结构加工仅有: 聚焦离子束刻蚀(FIB),纳米压印技术(NIL) 和 电子束曝光(EBL)。聚焦离子束刻蚀(FIB) 采用聚焦后的离子束撞击材料表面并实现去除基体材料的目的,可实现3D纳米结构直写,适用材料广泛,但加工精度不高;纳米压印NIL采用具有纳米微结构的模板将其上的图形转移到其他材质上,效率高,但模板本身需要其他工艺制备,一般采用EBL,模板价格昂贵,无法修改图形,适用于大批量生产;电子束曝光利用聚焦电子束将胶体改性,经过显影高可实现10 nm精度的加工,是传统高精度加工的典范,但其价格昂贵,操作繁杂,临近效应使得两个结构无法贴近。 瑞士Swisslitho公司的 3D纳米结构高速直写机NanoFrazor采用IBM苏黎世研究中心研发多年的热探针扫描刻写技术及新型的直写胶技术,创新地将基于热探针的纳米结构刻 写和基于冷探针形貌读取相结合,实现高精度3D 纳米结构的直写和实时的形貌探测功能。该技术创新获得R&D杂志2015年R&D top 100大奖。NanoFrazor凭借其10 nm的加工精度和0.1 nm精度的形貌探测能力,成为纳米加工领域的新技术。NanoFrazor技术特点:背热式扫描探针: Swisslitho采用特殊工艺,以Si材料制备背热式直写探针,其探针针直径小于5nm(图1)。通过改变针背部区域的掺杂量,实现电压控制下的局域加热,而探针其他位置不受影响。加热区温度高达1000℃,针温度可300-600℃。探针侧臂设计有热传感器用于形貌探测,形貌探测精度高达0.1 nm。性能的直写胶PPA: IBM苏黎世实验室开发的用于纳米加工的PPA直写胶(resist), 其特点在于当温度高于150℃,PPA会受热瞬间分解为有机分子单体,随着保护气排出。当加热的探针靠近PPA到一定范围,针附近的PPA会瞬间分解成气体分子,留下针形状的孔洞,而孔洞周围部分由于PPA热导率低而不受影响。有效避免了普通高分子材料的熔融堆积效应影响分辨率和针寿命。 多个探针的孔洞组合,形成高精度图形,通过控制下针的深度,可以实现3D纳米结构的加工。NanoFrazor书写的纳米结构欣赏:3D高速直写的结构和吉尼斯纪录制备在PPA胶和Si基底上的周期性结构 NanoFrazor无临近效应,非常容易制备临近的纳米结构,如蝴蝶结天线和周期性结构NanoFrazor能够实现纳米线,二维材料涂胶后无标记物的定位和形貌观察,并实施特定方向的形状,器件,电等设计 实现功能结构微纳米化的基础是先进的微纳米加工技术,微纳米加工中的更多技术细节的改善和优化是科研领域及仪器设备厂商不断追求的技术方向,NanoFrazor也在不断尝试更、更便捷,成为性价比更高的、更具实力的3D直写设备。相关产品:3D纳米结构高速直写机
  • Nature子刊等高水平文章必备神器——纳米光谱与成像系统
    neaSCOPE是德国neaspec公司推出的全新一代散射式近场光学显微镜(简称s-SNOM)。neaSCOPE基于散射式核心设计技术,不依赖于入射激光的波长,很大程度上提高了光学分辨率,能够在可见、红外和太赫兹光谱范围内,提供优于10 nm空间分辨率的光谱和近场光学图像。neaSCOPE同时支持s-SNOM功能与纳米红外(nano-FTIR)、针尖增强拉曼(TERS)、超快光谱(Ultrafast)和太赫兹光谱(THz)进行联用,实现高分辨光谱和成像。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的优选科研设备,在等离子激元、二维材料声子极化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。本文将概述neaSCOPE在不同领域发表的高水平文献。 neaSCOPE纳米光谱与成像系统一、高效有机光伏材料nature materials 对于有机光伏材料来说,在纳米尺度上的供受体结构域的形貌控制是提高其激子的扩散和解离、以及载流子的传输和复合损耗抑制效率的关键所在。本文展示了一种基于多个不同长度尺度的三元供受体形貌生成的双原纤维网络。这种结构形貌是通过辅助共轭聚合物结晶器和非富勒烯受体丝组装结合使用得到的。本研究的关键点在于使用neaSCOPE纳米光谱与成像系统对双原纤维网络PM6/L8-BO有强烈红外信号对比度的1648/1532 cm-1波段进行纳米级的红外成像。在此之上,通过对横跨图像的线方向进行数据的采集与分析,文章估算出其材料的供体与受体原纤维的直径分别为22.1 nm和 22.6 nm。并就此得出结论:其供受体结构域这种较低的混合体积导致材料拥有了较低的配对重组率和较高的填充因子。 综上所述,通过利用这种双原纤维网络的形貌结构,该研究将损耗最小化,能力输出最大化,使得在单结有机光伏材料中获得20%的能量转换效率成为了一种可能。 Zhu et al., nature materials 21, 656 (2022)二、催化剂的分子特性J. Am. Chem. Soc. 明确地鉴别催化剂中毒的类别需要具有纳米级空间分辨率和提供吸附物的吸附位点和其吸附几何形状的详细的化学结构和表面官能团的准确信息。时至今日,不通过牺牲化学特性就在纳米级尺度上研究金属/金属氧化物界面的催化剂硫中毒还是一项非常困难的工作。本研究利用纳米傅里叶红外光谱和扫描式近场光学显微镜(nano-FTIR & s-SNOM)在纳米尺度上鉴定了基于Pd(纳米盘)/Al2O3(薄膜)平面模型催化剂表面上的硫基催化剂中毒的化学性质、吸附位点和吸附几何形状。在此之上,本研究揭示了对于单个Pd纳米粒子来说,即使只是所用的硫酸盐种类有纳米颗粒之间的不同,也会使硫中毒有所不同甚至产生巨大的变化。 nano-FTIR & s-SNOM提供关键的分子级视角对于开发具有更长寿命的高性能多相催化剂至关重要。 J. Am. Chem. Soc. 2022, 144, 8848&minus 8860三、固态电池Nature Communications 固态电池因其各种各样的优势(比如更高的安全性和能量密度),拥有显著影响能源存储行业的潜力。不过,电极/电解质界面的物理化学性质和过程仍然是其需要面对的挑战。因此,对此类界面的原位表征以及对催化工程方案的科学性理解的揭示变得十分需要。在本研究中,作者利用了各种尺度的原位显微镜(光学、原子力和红外近场)以及纳米傅里叶红外光谱nano-FTIR对电化学操作生成的石墨烯/固体聚合物电解质界面进行了无损表征。作者发现固体聚合物电解质固有的纳米结构和化学异质性在镀锂和脱锂的过程中引发了一系列额外的纳米级界面异质性;这其中包括锂离子电导率、电解质分解和界面形成的异质性。 He et al.. Nature Communications 13. 1398 (2022)四、纳米系统的光电特性Applied Surface Science 碳纳米管(CNTs), 石墨烯纳米带, 以及过渡金属二硫属化物(TMDCs)等纳米尺度系统的光电特性是由它们的介电函数决定的。这个复杂的与频率相关的函数受激子共振、电荷转移效应、掺杂、样品的应力和应变以及其表面粗糙度影响。对于此介电函数的了解使科学家能够探知材料的透射和吸收特性。在本研究中,研究者使用扫描式近场光学显微镜s-SNOM相关的技术提取了局部区域介电变化的数据。并在此之上,将s-SNOM测量的结果与空间分辨光致发光(PL)光谱和开尔文探针力显微镜(KPFM)测量的结果相关联。 将s-SNOM与局域光致发光结果相关联是识别和表征层间激子的有力工具。这种新颖的方法也开始在低维系统(碳纳米管和石墨烯纳米带)上得以应用。 Applied Surface Science 574 (2022) 151672
  • 江汉大学研发新纳米线可大幅提高红外探测仪器灵敏度
    p   江汉大学曹元成教授团队与英国兰开斯特大学半导体中心首席研究员庄乾东博士团队合作研发新材料,可大幅提高红外探测灵敏度。4月10日,英国自然网站在线发表了他们撰写《基于柔性石墨基板铟砷纳米线红外光探测器》,该文将全文刊登在本月晚些时候出版的《自然》子刊《科学报道》。 /p p   曹元成介绍,铟砷纳米线作为高光电转换效率材料,是科学家们研究的主要对象,尤其是基于碳的铟砷一维纳米线,是高集成度光电子集成电路的研究热点。然而,上述材料在制备过程中,晶体结构容易产生缺陷,导致这类材料对光的响应效率低下或者无响应,特别是在中长红外波段方面尤其明显。 /p p   曹元成团队在砷化铟中掺入锑元素,合成一种新的锑掺杂砷化铟纳米线,大幅降低了铟砷纳米线的结构缺陷,同时通过锑元素的自我催化功能,显著提升新物质对红外光子的响应性。曹元成说,这种纳米线对光的响应波长,达到了5.1微米,从而涵盖整个中红外光谱,是目前最长的红外波响应纳米线,可应用于室温下高效工作的中波红外、长波红外光电探测器、红外发射器、高灵敏度光电晶体管等等,是制造各种光电子设备的理想材料。 /p p   据了解,上述研究应用于实践,比如导弹红外探测和夜视仪,可以在目前的基础上,提高50%探测灵敏度,让现有的大部分防红外伪装失效,民用方面则更加广泛。 /p
  • 妙手偶得的碳纳米管物理分离法
    一位小朋友摸到静电球的球壳,头发立刻像刺猬般根根直竖,这是科技馆里很常见的场景。如果一个碳纳米管束被人为附加上足够的电荷,又会是怎样一幅景象呢?   当碳纳米管束带的电荷达到一定程度时,在电子显微镜下,它会形成一种独特、新奇的像树一样的放射状格局。不仅如此,这些呈树枝状分离的碳纳米管还具有较小的直径(3纳米),有的甚至是单根的碳纳米管。这是国家纳米科学中心研究员孙连峰与中国科学院物理所解思深院士等人合作研究的最新成果。这项工作得到了国家自然科学基金和中国科学院“百人计划”等的资助。相关成果发表在最新一期的《纳米快报》上。   遭遇瓶颈的化学分离方法   单壁碳纳米管是一种具有战略意义的新兴材料,它在复合材料、平板显示器、真空电子器材、生物探测器、抗电磁干扰材料等方面有广泛的应用。   目前,科研人员已经能够根据需要大量制备单壁碳纳米管。“但是,由于单壁碳纳米管结构独特,性质奇异,管与管之间存在比较大的相互吸引力,科学家所制备的碳纳米管往往相互纠缠,形成碳纳米管束。”孙连峰说,“如果不能有效地分离出单根碳纳米管,就意味着无法对单根碳纳米管器件的制备及其物理特性展开相关研究。因此,如何将碳纳米管分离是需要研究解决的重要问题。”   电泳分离法和层离法是现在最常用的碳纳米管束分离方法。孙连峰指出,这些现在常用的分离方法大多是化学方法。这些方法往往涉及到多种化学试剂(如表面活性剂)的使用,并且需要经过多步物理、化学过程才能完成。这些化学方法虽然可以有效地分离出单根碳纳米管,但由于存在掺杂效应,可能改变了碳纳米管本身的固有性质,而且得到的单壁管长度也大都不理想。   比如说,电泳分离法就首先要使用表面活性剂对碳纳米管束进行处理,然后使用超声波冲击,最后在电泳池里分离。“这就产生了许多问题,碳纳米管有可能吸附表面活性剂分子从而改变自身的物理特性,从而使原来呈现的金属性或者是半导体性发生改变 另外,超生波的冲击还可能会破坏碳纳米管的结构,即便最后能够获得结构完整的管,一般来说长度也只有200纳米左右。”孙连峰说,“这给后续研究造成了诸多不便。因此,探索全新的、避免化学修饰的分离方法,是单壁碳纳米管以及器件研究的一个重要问题。”   意外发现的物理分离方法   “发现静电对碳纳米管束的分离作用纯属偶然。”孙连峰笑道,“一开始我们并没有计划要用电流来分离碳纳米管束,只是进行另一个实验的时候,意外发现了当碳纳米管束带有大量电荷的时候会产生‘爆炸’现象。”   这种碳纳米管束意外分离的现象当然引起了他们的关注,为了寻找“爆炸”的原因,他们进行了大量实验。   孙连峰解释说:“这种分离方法实际上利用的是最基本的同种电荷相互排斥的原理,让一束单壁碳纳米管带上同种电荷,当电荷之间的排斥力大于管之间的相互吸引力时,‘爆炸’就发生了。”   孙连峰把这种全新的碳纳米管物理分离方法命名为库仑爆炸法。相互分离的碳纳米管形成的那种独特、新奇的放射状格局,非常类似于科技馆里小朋友触摸静电球后怒发冲冠的样子,于是它被称为“纳米树”(nanotree)。纳米树的树枝大小和长度不一,有的树枝可能就是单根的单壁碳纳米管,长度则可以达到5微米以上。   为了确认库仑爆炸法并没有破坏分离后的碳纳米管的结构,孙连峰研究组进行了大量的验证工作。   通过原子力显微镜(AFM)、拉曼光谱(Raman)等实验证明,库仑爆炸法并不会破坏碳纳米管本身的结构。   另外,孙连峰研究组还利用碳纳米管均匀带电模型,对发生库仑爆炸所需的理论电压进行了计算,结果与实验数值十分接近。   不过,孙连峰对库仑爆炸法还是表示了谨慎的乐观。他指出,由于用于分离的碳纳米管束形状和结构不一,库仑爆炸法的可控性还不是很理想。   接下来,孙连峰准备在库仑爆炸法分离出来的纳米树上,测试单壁碳纳米管的物理特性,以及分离后单壁碳纳米管加上电极后会有什么有趣的事情发生。   “虽然每个纳米树的形状可能都不一样,但如果只是选取一个三端或者是四端结构的话,实际上我们已经制备出了多端器件的雏形,希望我们接下来的工作能够将多端器件研究向前推进一大步。”孙连峰说。
  • ACS Nano:原子层沉积技术助力复杂纳米结构的合成和精准调控取得新进展
    MoS2(二硫化钼),由于其优异的带隙结构(直接带隙为1.8 eV),高表面体积比和的场效应晶体管(FET,field effect transistor)性能,已成为具代表性的二维过渡金属硫族化合物(TMDC, transition-metal dichalcogenide)。使用纳米晶(Nano-Crystal,NC)修饰MoS2,即可以保持每个组成部分的立特性,同时又提供了复合材料产生的协同特性,大的扩展了MoS2材料的应用领域。控制纳米晶(NC)在 MoS2基底上的形貌,包括浓度,尺寸大小和表面体积比,对电子器件的整体性能影响是至关重要的。原子层沉积技术(ALD,Atomic layer deposition)是基于自限制的表面化学反应,对缺乏表面活化学反应基团的二维材料可实现选择性表面纳米晶修饰,其中NC大小可以通过循环次数来控制。美国斯坦福大学化学工程学院的Stacey F. Bent教授,通过使用台式三维原子层沉积系统-ALD发现了一种合成ZnO修饰MoS2基杂化纳米结构(纳米片或纳米线)的新方法。ZnO纳米晶的特性,包括浓度、大小和表面体积比,可以通过控制ZnO循环次数以及ALD磺化处理得到的MoS2衬底的性能来进行系统的合成和调控。通过材料化学成分(XPS以及 Raman),显微镜观察(TEM, SEM)和同步加速器X射线技术(GIWAXS) 分析ZnO与ALD沉积次数的相互关系,并结合量子化学计算的结果,作者阐明了ZnO在MoS2衬底上的生长机理及其与MoS2衬底性能的关系。MoS2纳米片的缺陷密度和晶粒尺寸可以由MoO3的硫化温度进行控制,ZnO纳米晶会选择性地在MoS2表面的缺陷位置处成核,且尺寸随着ALD循环次数的增加而增大。ALD循环次数越高,ZnO纳米晶的聚结作用越强,使得ZnO在MoS2衬底表面的覆盖和自身尺寸大幅增长。此外,复合结构的几何形貌可以通过改变MoS2衬底的取向进行调控,即采用MoS2的垂直纳米线(NWs,nanowires)作为ALD ZnO NCs的衬底,可以大幅改善复合结构的表面体积比。该类材料有望用于一些新拓展的领域,尤其是依赖过渡金属卤化物和NCs相互耦合结构的,如基于p−n异质结的传感器或光电器件。该工作发表在2020年的国际知名期刊ACS Nano (2020, 14, 1757−1769)上。图1. (a)ZnO@MoS2复合纳米结构示意图;(b)800°C-MoS2表面的HR-STEM图像;(c)两步合成二硫化钼的工艺,即在三个不同的退火温度下(600,800,和1000°C)下使用H2S硫化ALD 合成的MoO3;(d)600 °C-, 800 °C-, 和1000 °C-MoS2的Raman光谱图,(e)Zn 2p XPS谱图(循环次数为50次),(f)相对原子比 Zn/(Zn + Mo),(g)TEM图像,(h)表面覆盖度,(i)MoS2表面ZnO颗粒的数密度及(g)GIWAXS(grazing incidence wide-angle X-ray scattering,掠入射小角X射线散射) 图样(不同沉积次数下);(k)800 °C-MoS2 纳米线的SEM,TEM和HR-TEM图像;(l)DEZ(diethylzinc,二乙基锌)反应的量子化学计算结果,在MoS2的边缘位和基面上进行DFT分析,黄色和绿色原子分别表示S和Mo。 上述工作中作者团队采用的原子层沉积设备来自于美国ARRADIANCE公司的GEMStar系列台式三维原子层沉积系统-ALD(如图2所示),其在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅实现在8英寸基体上膜厚的不均匀性小于99%,而且更适合对超高长径比的孔径3D结构等实现均匀薄膜覆盖,对高达1500:1长径比的微纳深孔内部也可实现均匀沉积。GEMStar系列ALD系统广泛应用于高深宽比结构沉积,半导体微纳结构制备,微纳粉末包覆等,服务于锂离子电池,超电容器,超电容器,LED等研究领域。图2. 美国ARRADIANCE公司生产的GEM-tar系列台式三维原子层沉积系统 参考文献:[1]. Il-Kwon, et al., Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS2 by Atomic Layer Deposition., ACS nano., 2020,14(2), 1757-1769.
  • 赵宇亮/陈春英/谷战军研究团队——人造纳米材料的毒性研究
    近几十年来,纳米材料或纳米产品在能源、航空航天、农业、工业、生物医药等诸多领域得到了蓬勃发展和广泛应用。然而近些年报道的纳米材料对人类健康和环境安全造成的潜在负面影响引起了各界的担忧,这催生了“纳米毒理学”领域的诞生。该领域主要研究纳米材料或纳米产品在生命周期内对生物的不良健康影响,并进行安全性评估和风险管理,最终实现纳米材料的安全生产、使用和废弃。大量的基础毒理学研究和国际纳米技术标准表明纳米材料的物理化学性质包括化学组分、尺寸、形状、表面化学、结晶度、溶解度、氧化还原电位等会广泛地影响纳米材料与生物体在器官/组织、细胞和分子层次上的相互作用。因此,深入了解纳米材料的理化性质在介导不同水平纳米–生物相互作用中所扮演的角色具有重要意义,这不仅利于实现进行可靠的纳米毒性评估,也有助于设计更加安全的纳米产品。为此,赵宇亮/陈春英/谷战军团队在Particuology上发表综述文章,深入探讨了人造纳米材料的关键物理化学性质对诱发潜在生物毒性的影响。该文章首先概述了纳米材料如何在器官/组织、细胞和分子水平上与生物体发生相互作用,并在此基础上深入讨论了尺寸、形状、化学性质、表面化学,以及上述理化性质所介导的纳米材料的团聚/聚集、生物冠形成和降解等行为对其毒理学特征的影响。另外,该文章还介绍了研究纳米–生物相互作用的主要分析方法、不同地区和/或国家目前对含纳米材料产品的监管和立法框架,提出了纳米毒理学领域面临的挑战和可能的解决方案,以期为纳米材料的安全性评价提供参考。图1. 纳米材料的毒性相关特性及研究纳米–生物相互作用的分析方法器官、细胞、分子层面上的纳米-生物相互作用根据所处的生命周期阶段的不同,人造纳米材料对人类的主要暴露方式包括肺部吸入、口服摄取、皮肤接触和静脉注射等。大多数经肺、胃肠和皮肤暴露的纳米产品会被滞留在暴露器官中并可能在被机体逐渐清除之前诱发毒性;只有少数局部暴露的纳米材料可能被吸收到血液和/或淋巴循环。由于缓慢的剂量率、独特的吸收途径和特殊生物冠的生成/演变,非静脉注射的纳米材料在体内分布更广泛、更均匀。相比之下,静脉注射纳米材料则更快地从血流中清除,并主要聚集在富含单核-吞噬系统(MPS)的器官,如肝脏和脾脏。此外,无论暴露途径如何,进入体循环的纳米材料可能通过血脑屏障、血睾丸屏障和胎盘屏障,并对这些器官造成影响。基于纳米材料的性质,其代谢和排泄方式多种多样,主要发生在肝脏和肾脏。综上,根据纳米材料的毒物动力学过程,可以推断肺、肠、肝、脾和肾是纳米材料的主要毒性靶点。 图2. 器官、细胞和分子水平上的纳米生物相互作用。(a) 毒物动力学(即纳米材料在体内的吸收、分布、代谢和排泄) (b) 纳米材料的潜在毒性机制在细胞、亚细胞和分子水平上,纳米材料可能粘附、切割、嵌入细胞膜而造成膜损伤,或被细胞内化而进入细胞。包括网格蛋白依赖、小窝蛋白依赖、非网格蛋白和非小窝蛋白依赖的内吞、微胞饮和吞噬在内的多种胞吞途径是纳米材料进入细胞的主要方式。不同的内化途径将进一步影响其在细胞内的定位、命运和下游的细胞毒性。纳米材料通过多种毒性机制发挥细胞毒性,本质上可归因于其对细胞组分和结构的氧化损伤和物理损伤。一方面,纳米材料可以通过促进活性氧(ROS)的生成、消耗细胞内抗氧化系统和/或干扰线粒体的功能而引起氧化应激,造成脂质、蛋白质和核酸分子的氧化损伤。另一方面,纳米材料可能会改变生物大分子的构像和功能,通过直接的生物物理相互作用干扰或破坏细胞。二者可能引起的下游事件包括:细胞膜渗漏、线粒体功能障碍、溶酶体膜通透性(LMP)、内质网应激、刺激或阻断涉及细胞增殖和死亡、细胞骨架破坏、基因毒性等信号通路,最终导致炎症反应、细胞周期阻滞和细胞死亡(凋亡、坏死、自噬、铁死亡和焦亡等)。影响纳米材料毒性的关键特性 本节作者重点讨论了经合组织成立人造纳米材料工作组提出的11种典型纳米材料(包括纳米氧化铈、纳米氧化锌、纳米二氧化钛、金纳米材料、银纳米材料、富勒烯、多壁碳纳米管、单壁碳纳米管、纳米粘土、二氧化硅、树状聚合物)的关键理化性质以及其所介导的团聚/聚集、形成生物冠和降解行为对不同水平纳米–生物相互作用的影响。化学组成纳米材料核心的化学本质决定了纳米材料的溶解性、催化活性、氧化还原能力、电离特性、与生物大分子的亲和性,从而决定了纳米材料的毒性及其机理。除了核心纳米材料的化学性质,表面涂层/接枝和元素掺杂等材料设计也会影响纳米材料的毒理学特征。元素掺杂通过改变纳米材料的催化性能和溶解特性而影响其毒性。另外,纳米材料制备过程中的金属和杂质残留、内毒素污染等也是其生物毒性的潜在来源。粒径经肺、胃肠、皮肤暴露的纳米材料,其吸收行为表现出不同的尺寸依赖性。体循环中的纳米材料因其尺寸不同可能发生:快速经肾脏清除、被肝脾吞噬而积聚、经胆汁排泄或实现相对长的血液循环而遍布全身,可见其分布和排泄行为也受尺寸的影响。在细胞水平,尺寸是影响纳米材料内吞途径的重要因素。另外,尺寸直接影响纳米材料造成氧化应激和物理破坏的能力。形状纳米材料可以制成多种形状,如纳米球、纳米管、纳米棒、纳米线、纳米立方体、纳米片等。不同形状的纳米材料可能表现出不同的毒代动力学行为、细胞摄取和毒性效应。这可能与形状影响纳米材料晶面暴露、催化性能、生物冠形成等有关。表面特性由于纳米生物相互作用通常发生在纳米–生物界面上,故而纳米材料的表面性质(特别是表面电荷、表面疏水性和表面原子/基团)对其吸收、分布、排泄、细胞摄取及毒性潜力等至关重要。这些表面特性通过综合影响纳米材料在生物介质中的分散性、所形成的生物冠、与细胞表面配体的亲和力、核心纳米材料的ROS生成能力和有毒离子释放程度等方面而发挥作用。影响纳米材料毒性的生物转化行为纳米材料由于其超高的表面能而极不稳定,倾向于发生系列转变以降低其表面活性。形成团聚体、表面吸附生物分子而形成生物冠、发生降解是其常见的降低表面能的方式。聚集状态本质上,团聚对纳米材料的毒物动力学、细胞摄取和毒性的影响可归因于纳米材料表观尺寸的增强。在人体暴露前形成聚集体可极大地减小经肺、肠、皮肤的吸收而降低系统暴露风险和毒性。然而,纳米材料一旦进入或在机体中形成聚集体,似乎具有很高的毒性潜力。在细胞水平,团聚状态可以改变原始纳米材料的细胞内化途径和摄取程度而产生复杂的影响。总之,团聚状态对最终纳米毒性的影响仍存在争议,需进一步讨论。生物冠的形成及演化生物冠的形成及演化高度依赖于初级纳米材料的理化性质(如尺寸、表面化学、形状等)及其周围生物环境。它会改变原始纳米材料的合成特性并赋予其全新的生物特性。生物冠在介导纳米生物的吸收、血液循环、分布、代谢、细胞摄取和毒性机制等多种相互作用中发挥着主导作用。在大多数情况下,纳米材料表面生物冠的形成可缓解其非特异性的毒害作用,这可能与生物冠抑制细胞摄取、减少ROS生成、降低团聚率、减轻有毒表面活性剂诱导的细胞毒性,减缓纳米材料溶解及释放有毒金属离子等有关;然而生物冠可能具有激活免疫而诱发炎症、改变基因表达、诱发内质网应激、细胞凋亡等负面影响。生物降解纳米材料暴露可能会经历恶劣的胃肠道环境、肝细胞微粒体酶、MPS系统的酸性富含氧化性物质和离子的溶酶体环境,这都将挑战纳米材料的完整性并促进其降解。根据降解程度和速率、完整纳米材料和降解产物的毒性潜力,生物降解对纳米材料的毒理学特征具有深远的影响。例如,银纳米材料降解释放银离子已经被认为是其毒性作用的重要机制之一。而二硫化钼纳米片降解产生的钼酸盐可以参与肝细胞的钼酶合成并提高其活性。吸入不可降解的碳纳米管会长时间聚集在肺部而诱发肉芽肿、肺泡炎和纤维化反应。纳米毒理学研究的分析方法 本小节作者首先从分子层面探讨了用于原位分析蛋白冠结构、组成、形成动力学的先进技术,接着在细胞层面介绍了用于可视化纳米材料摄取、转位、毒性作用的高分辨显微镜成像和质谱成像技术、以及基于流式的单细胞技术和多组学技术;最后,在器官层面概述了纳米材料的体内定量方法和活体成像技术用以研究纳米材料的吸收、分布、代谢、排泄。图3. 针对不同水平纳米-生物相互作用的分析方法纳米产品的监管 现阶段,世界各国对含纳米材料产品的监管由现有的一般和特定行业的监管和立法体系覆盖。例如,不同领域纳米产品在欧盟的流通均须遵守the Registration, Evaluation, Authorization, and Restriction of Chemicals regulations和the Classification, Labelling and Packaging Regulation regulations。此外,欧洲食品安全局、欧洲医药局、健康和消费者保护联合研究中心以及欧洲工作安全与健康机构等细分机构还出台了针对本领域纳米产品的监管办法和指导。另外,各国普遍认为纳米材料的风险评估应在个案基础之上,可能的风险与特定的纳米材料和特定的用途有关。比如,美国的食品药品监督管理局(FDA)以特定纳米产品作为重心,通过上市前审查和/或上市后监管系对其进行监管。FDA针对纳米材料的详细监管参见“FDA’s Approach to Regulation of Nanotechnology Products”。美国的环境保护署还出台了一系列法规包括Toxic Substances Control Act, Federal Insecticide, Fungicide and Rodenticide Act, CleanAir Act, and Clean Water Act等对纳米材料整个生命周期进行监管。虽然目前纳米材料与普通化学品有着相似的监管和立法框架,但几乎所有的监管机构都对纳米材料安全性评价的几乎每个阶段都给予了特别的关注,并推出了指南或标准化。还有一些倡导者呼吁建立专门针对纳米材料的立法和监管框架。相信随着纳米材料风险评估的发展,对纳米材料的监管和立法将进一步完善。总结与展望 尽管纳米毒理学领域取得了巨大的进展,但纳米材料的安全性评价仍面临着严峻的挑战。第一,确定纳米材料毒性与其理化特性之间的因果关系非常困难。为此,通过精细的材料设计和制造提供一个可在单变量水平控制的覆盖广泛毒理学相关性质的纳米材料库尤为紧迫。第二,有相当一部分的毒理学研究忽略了诱导纳米毒性的现实情况。在这方面,有必要避免内毒素污染、未纯化或分离的有毒催化剂/表面活性剂和剂量过大而造成的毒性。第三,针对纳米材料在生物环境中的动态转化,特别是非静脉注射给药的纳米材料所形成的生物冠,对其毒性的影响仍然十分匮乏。第四,基于多组学技术的系统毒理学手段对微小的生物分子改变的解读具有挑战性,很难获得纳米材料毒性机制的整体图像。幸运的是,上述问题已经引起了广泛的关注,并有望通过精细的实验设计、先进的原位分析技术和生物信息学方法的发展来解决。这些努力将在纳米材料理化性质和纳米生物相互作用之间的因果关系方面带来重大突破,从而促进人造纳米材料的风险评估和管理,以及更好地设计生物兼容的新型纳米产品。
  • 福建物构所等调控局域电子结构实现稀土掺杂双钙钛矿高效近红外发
    近年来,无铅金属卤化物双钙钛矿Cs2Na(Ag)InCl6材料因组份易调控、合成简便及毒性低等特性,而备受关注,在照明显示、光电探测及光伏等领域表现出广阔的应用潜力。目前,该材料的研究主要局限在可见光波段,近红外(NIR)波段存在发光效率低的瓶颈,制约进一步的应用开发。   针对此问题,中国科学院福建物质结构研究所和闽都创新实验室研究员陈学元课题组,通过在Cs2NaInCl6中引入稀土离子Yb3+和Er3+作为近红外发光中心,实现高效近红外发光(图1)。   Cs2NaInCl6:Yb3+的最佳量子产率为39.4%,相比Cs2AgInCl6:Yb3+ 材料提升了142.2倍。科研团队通过第一性原理计算和Bader电荷分析,对比研究了Cs2NaInCl6:Yb3+和Cs2AgInCl6:Yb3+两种材料的局域电子结构(图2)。Bader电荷分析是一种通过将材料的总电荷分解到原子电荷,得到原子周围电子数,进而计算出原子化合价的方法。该方法应用于材料的电荷特性分析,判断材料内电荷传输过程。研究表明,Cs2NaInCl6:Yb3+中Na+离子的强离子性使其几乎完全电离,导致相邻的[YbCl6]八面体电荷显著局域化,促进了Cl--Yb3+的荷移跃迁。而Cs2AgInCl6:Yb3+中的Ag+由于强共价性形成Ag-Cl共价键,使相邻的[YbCl6]八面体中Cl-的电子波函数向Ag+离域,导致Cl-与Yb3+波函数交叠减小,从而抑制了Cl--Yb3+荷移跃迁过程。   该研究利用温度依赖的稳态和瞬态荧光光谱等手段,观察到Cs2NaInCl6:Yb3+中Yb3+的激发峰相对于基质自限激子的激发峰存在明显偏移(图3)。在低温下,Cs2NaInCl6:Yb3+通过紫外激发,在近紫外-可见光区观察到两个发射峰,波数差约为9766 cm-1,对应于荷移跃迁带(CTB)→ 2F7/2和2F5/2跃迁。以上证据证实了在Cs2NaInCl6:Yb3+中的高效近红外发射来源于其独特的Cl--Yb3+荷移跃迁敏化过程。   科研团队通过共掺其他近红外发光离子如Er3+,实现了Cl--Yb3+荷移跃迁敏化的Er3+离子1540 nm处的近红外发射(图4)。相比于Cs2NaInCl6:Yb3+/Er3+中常规的自限激子敏化,其发射强度增强了1510.2倍,最佳量子产率为7.9%。   该研究为实现高效的稀土掺杂近红外发光无铅金属卤化物双钙钛矿开辟了新途径,有望应用于近红外光通讯、发光二极管和夜视成像等领域。相关研究成果发表在《先进科学》(Advanced Science)上。研究工作得到中科院创新团队国际合作伙伴计划和国家自然科学基金等的支持。图1.Cs2NaInCl6:Ln3+ (Ln = Yb和Er)双钙钛矿高效近红外发光及发光机理示意图。图2.(a)Cs2AgInCl6:Yb3+的Bader电荷分析,(b)电子局域密度和(c)结构示意图;(d) Cs2NaInCl6:Yb3+的Bader电荷分析,(e)电子局域密度和(f)结构示意图。图3.温度依赖的Cs2NaInCl6基质的(a)激发光谱和(b)发射光谱;温度依赖的Cs2NaInCl6:Yb3+的(c)激发光谱和(d)发射光谱;(e)10 K下,Cs2NaInCl6:Yb3+的发射光谱;(f)在Cs2NaInCl6材料中,Yb3+离子的电子跃迁示意图。图4.不同浓度Yb3+和Er3+掺杂的Cs2NaInCl6 的(a)激发谱和(b)发射谱;Cs2NaInCl6:6.9%Yb3+/Er3+在不同Er3+掺杂浓度下,(c)Yb3+和Er3+的积分发射强度,以及(d)994 nm和(e)1540 nm发射处的荧光寿命;(f)Cs2NaInCl6:Yb3+/Er3+中的能量传递示意图。
  • “纳米前沿”重点专项2021申报指南:拟支持23个项目 安排经费4.5亿元
    5月10日,科学技术部发布国家重点研发计划“纳米前沿”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。“纳米前沿”重点专项2021 年度项目申报指南本重点专项总体目标是:围绕物质在纳米尺度(1~100 纳米)上呈现出的新奇物理、化学和生物特性,开展单纳米尺度效应和机理、新型纳米材料和器件制备方法、纳米尺度表征新技术等方面的基础前沿探索和关键技术研究,催生更多新思想、新理论、 新方法和新技术等重大原创成果。同时,开展纳米科技与信息、能源、生物、医药、环境等领域的交叉研究,提升纳米科技对经济社会发展重点领域的支撑作用。2021年度指南围绕单纳米尺度等前沿科学探索、纳米尺度制备核心技术研究、纳米科技交叉融合创新等3个重点任务进行部署,拟支持23个项目,拟安排国拨经费概算4.5亿元。同时,拟支持10个青年科学家项目,拟安排国拨经费概算5000万元,每个项目500万元。本专项 2021 年度项目申报指南如下。1. 单纳米尺度等前沿科学探索1.1 纳米性能标准的计量溯源原理与方法面向纳米技术在能源环境、信息、生物医药等领域的应用,开展性能检测和质控特性标准研究,建立计量装置,探索纳米尺度能量转换效率、表面吸附、生物结合能力等功能特性的准确测量机制和溯源途径或溯源过程,研制功能特性纳米标准物质,制定规范标准。建立基于晶格常数的量值传递、纳米材料光电转换、纳米表面增强效应等普适性计量溯源方法3~5种;完成载药释放、发光效率等功能特性国家标准物质/标准样品10项以上;研究制定ISO/IEC国际标准15项以上。1.2 纳米尺度生物活性单分子与系综多模态表征新方法针对生物能量代谢及催化反应过程中的生物活性分子,发展能综合测量生物分子多模态物性的表征方法,在纳米尺度下开展生物活性分子的高灵敏电学(10fA)和单个电子转移测量,揭示其电子自旋分布、电子传递供体-受体-通路特性,以及在能量代谢、生物识别与解离等过程和生理功能中的物理化学机制;获取在单分子条件下生物活性分子的多模态本征指纹信息及系综条件下的平均信息,构筑指纹信息并提供相应的量化分析标准,实现对单个关键结构单元差异的分辨,生物力学操控及动态测量的空间分辨率达到0.1nm。1.3 非均匀纳米材料结构与力学行为的原位分析方法非均匀纳米材料通过微纳尺度与宏观构件尺度上的结构和成分的合理耦合实现材料高性能。通过从宏观构建与微观区域多尺度研究非均匀纳米材料微纳结构演化过程及建立结构-力学性能的关联规律,揭示整体与局域结构对宏观力学性能与变形机制的影响规律。原位研究材料在多场使役条件下组织与性能的耦合响应机制。实现对典型跨尺度非均匀纳米材料的结构演变与力学行为(包括10~1773K条件下)的原位测量;实现非均匀纳米材料的整体和局域结构与力学行为的原位表征与测量;为非均匀纳米材料的强韧化提供若干实现途径及理论基础,并 开展验证。1.4 太赫兹与中远红外波段极化激元二维原子晶体及其感放存微纳器件面向智能感知领域探测及其信号放大、存储一体化功能器件,聚焦太赫兹与中远红外波段的高效极化激元二维原子晶体及其新特性新结构,研究建立时空高分辨太赫兹与中远红外原位多模态物理特性表征技术,表征谱段 1~30THz、空间分辨率在亚10纳米尺度、时间分辨率在30飞秒以内,兼容光谱、光场、光电响应及形貌等成像;实现在亚10纳米尺度下观察极化激元和载流子自旋演化动力学机制;研制基于单纳米尺度二维原子晶体及其结构极化激元效应的太赫兹波及中远红外光探测及其信号放大、存储一体化微纳器件,在室温工作、谱段1~30THz、相频可选择。1.5 手性纳米结构的可控构筑、性能传递及功能调控发展新型刺激响应性手性纳米结构体系,研究手性纳米材料对多重刺激的响应调控、规律与机制。研究定向合成技术,实现手性纳米结构的独特光化学作用和光力学效应,发展分子构象和功能光调控的新方法。获得2~3类吸收、反射和发射的光学各向异性系数(g-factor)超过1.5的手性纳米结构;开发2~3类具有多重响应性能的手性纳米材料;构建具有生物调控功能的手性纳米结构;探索手性纳米材料的应用。 1.6 纳米限域超流的化学反应和信息传输开展纳米限域超流体的有序组装反应机理研究,发展高产率、高选择性和低能耗的化学反应技术,理解生物信息传输的原理。获得接近生物水通道中水分子输运的通量(109 molecules/s)和生物钾离子通道中钾离子输运的通量(108 ions/s),实现纳米 限域空间中分子和离子的高速输运;建立限域通道的尺寸、化学结 构、界面浸润性以及通道内的反应物分子流体流速等参数与速率、产率和立体选择性等性能的关系,构建接近100%反应产率、100%选择性和低能耗(40℃以下)的反应体系。2. 纳米尺度制备核心技术研究2.1 高迁移率超薄半导体材料与高性能器件集成围绕新型沟道材料的规模化制备、硅基兼容与器件性能提升的问题,研制200oC下电学性质稳定的超薄高迁移率沟道材料及高k栅介质的晶圆(直径大于两英寸)。研制短沟道场效应晶体管,沟道厚度小于3nm时,室温场效应迁移率高于125cm2/(Vs);沟道长度小于12nm时,在0.7V驱动电压下的开态电流密度大于1mA/μm,开关比超过106。实现工作频率1.5GHz以上的环振电路演示。验证器件在柔性逻辑电路等领域的优势。2.2 围栅硅纳米结构器件与三维垂直集成技术针对3纳米及以下节点大规模集成电路制造问题,研究围栅(环绕栅)硅纳米结构(如纳米线/片)器件与三维垂直集成新工艺,探索构建不同功能典型电路的技术路径,研制至少四层硅纳米结构堆叠沟道的环绕栅器件,单层沟道厚度小于10nm;在N/PMOS器件上实现三种以上阈值调控(区间大于200mV);N/P型源漏上的接触电阻率小于1×10-9Ωcm2;在0.7V驱动电压下的驱动电流密度大于400µA/µm,亚阈值摆幅小于70 mV/dec,电流开关比高于107;实现双层器件高密度三维垂直集成,同等设计规则条件下,新工艺的16K SRAM阵列面积相比传统电路缩小30%以上。2.3 晶圆级二维半导体集成电路针对二维材料器件的大规模集成电路制造和设计问题, 研究二维材料的低缺陷均匀生长方法、N/P型精准掺杂与界面调控、高性能互补MOS器件设计及工艺集成方法、器件物理精确解析模型。研制直径大于8英寸、薄膜厚度均一性大于99.9%的晶圆级高质量二维材料,获得高性能互补MOS器件, 室温下N/P型晶体管器件平均场迁移率大于50cm2/(Vs)、 电流开关比大于105;研制基于二维半导体材料的逻辑、模拟和射频电路的整套集成工艺,实现千门级逻辑电路功能展示; 建立器件模型和工艺库,获得大规模集成电路的SPICE电路 仿真结果。2.4 亚5纳米分辨率并行电子束集成电路芯片高通量检测装备关键技术面向亚10纳米节点集成芯片高通量检测装备的需求,研制快速响应的并行电子束源模组及其电子光学系统,研究多电子束信号串扰机制、形貌表征和电特性多维度检测方法、高通量数据采集与成像系统,研究上述功能协同驱动实现并行电子束同步检测的集成原理和技术。实现12束电子束同步并行检测和空间分辨小于5nm、景深不小于1mm的成像技术;电子发射端曲率半径小于5nm;单电子束的束流强度不小于200pA、亮度不小于5×108Am-2Sr-1V-1、能谱半高宽不大于1eV;12束电子 束流强度均匀性高于95%;研制出并行电子束集成芯片检测装备原型样机。2.5 纳尺度电畴调控的高灵敏光电感知器件及系统面向光电感知应用对高灵敏、快速响应探测器的需求,研究极化电畴调控的高速高灵敏光电探测器件原理,研究纳尺度电畴对器件势垒结构及其空间电荷区特征参数的调控机制,揭示其对器件光生载流子拆分、传输及收集的规律,研制采用极化材料与半导体异质结构的光电探测器件,研发集成技术。纳尺度电畴实现不同势垒类型调控,器件空间电荷区尺度调控范围2~120nm; 光电探测器件响应度0.5A/W, 响应时间1ns1012cmHz1/2W-1,响应波长400~1550nm;集成列阵规模≥128×128;实现探测和识别演示。2.6 二硫化钨半导体晶圆和可集成光源器件针对光子信息技术可集成光源性能难以满足需求的问题,聚焦高质量、高发光效率单层二硫化钨晶圆的研究,研制满足半导体器件制作用的单层二硫化钨晶圆(直径大于4英寸),载流子迁移率200cm2/(Vs),并拓展到其合金及其它过渡金属硫族化合物晶圆制备;研制室温工作二硫化钨的发光二极管,出光效率达到≥5%,同时发展二硫化钨掺杂及其合金材料制备工艺等,进而实现波长可调谐发光二极管,波长调谐范围100nm,驱动电压2V;实现连续光激发下受激辐射,发射谱线半高宽1nm、阈值0.5W/cm2,集成多层垂直器件;探索研发二维电泵浦激光器。2.7 大尺寸石墨烯单晶与高速光通信器件针对下一代高速光通信技术中的关键支撑材料和器件集成需求,开展面向硅基集成的石墨烯单晶精准合成及规模化制备技术,建立大尺寸石墨烯材料向硅衬底的洁净无损规模化转移方法, 研制与硅基光波导技术结合的片上集成石墨烯高速光通信器件。 石墨烯单晶尺寸达6英寸,平整度优于0.5nm,石墨烯层数为≥95%单层;石墨烯单晶转移至硅衬底的完整度≥99%,石墨烯室温载流子迁移率高于15000cm2/(Vs);石墨烯集成光通信器件数据速度≥30Gbit/s。3. 纳米科技交叉融合创新3.1 纳米材料跨越生物屏障机制与效应调控方法为夯实纳米生物学理论基础,建立3~5类高生物相容纳米材料跨越多种生物屏障体内外过程的高灵敏、高特异、多尺度、高通量的原位动态研究方法;纳米颗粒跨越不同种类生物屏障的活体动态成像,实现活体组织深度1.5cm,分辨率0.2mm,帧数率100帧/秒;单细胞三维成像空间分辨率50nm、灵敏度fg/细胞。重点研究纳米材料和体内流体微环境表界面生物大分子形成的纳米蛋白冠和环境冠等对肠道微生物屏障、生殖屏障及对子代生长发育的影响及其分子机制;整合大数据和计算分析方法,系统揭示2~3类纳米材料跨越复杂生物屏障的基本过程;阐明纳米材料在不同生物屏障微环境的生物转化途径与作用机制。3.2 抗病毒高分子纳米药物针对重大疾病(如病毒引起的肿瘤、突发传染病等)靶向治疗药物的发展需求,研究高分子组装体和生物纳米材料构建纳米药物的普适性规律,发展基于高分子的高效功能定向新方法,利用这些纳米材料设计并合成新型药物(例如病毒中和抗体),研究揭示不同构象、组成、价态的纳米药物与靶标的作用规律和分子机制,完成3~5种体内靶向纳米药物偶联物和高效抗病毒中和抗体,针对新型病毒引起的传染病对真病毒半抑制浓度达到pM级, 其中至少1种获得临床批件进入临床试验。3.3 纳米体系或工程化细胞对重大疾病基因治疗药物递送发展副作用低而递送、转染、治疗效率高且构效关系明确的基因药物递送材料的制备新技术、新方法。创建仿生纳米体系或工程化细胞的制备技术,制定质控标准,开展其肿瘤治疗的临床前研究和临床研究。构建1~2 种针对肿瘤基因治疗具有特异性的、 靶向性的递送载体和新剂型,完成临床前研究;构建1~2种仿生纳米药物递送体系或1~2种工程化细胞,建立规模化制备工艺和质控标准,完成临床前研究,其中1~2种体系获得临床批件进入临床试验。3.4 微纳米智能系统的组装原理及其临床研究发展微纳米智能系统及其组件原位定向合成、可控组装、体内自主靶向及病灶智能识别技术;研发具有诊疗一体化功能、高组织穿透性以及智能型分子组装体系,应用于体内活检、肿瘤及栓塞疾病治疗,实现可控定点药物释放新功能;发展智能型微纳米机器人的体内过程分析及安全性评价方法。完成3~4种生物相容的新型微纳米自组装体系的构建,揭示对肿瘤微环境的响应机制。至少有1种微纳米智能系统完成临床前药效评价及其安全性 评价。3.5 诊疗、器官修复、体外防护用的纳米杂化纤维基于人体组织与材料相互作用机制,通过有机-无机杂化、高通量成形和仿生命体多场耦合调控等,研究功能一体化仿生设计,获得具有增强诊疗、组织修复、体外防护等功能的纤维聚集体复合材料。研制含水光导诊疗纤维,模量10-2~10MPa,衰减达0.1dBcm-1;研制肌肉/肌腱修复用可编织高强仿生杂化纤维,含水率0~70%,强度达50MPa,杨氏模量达200MPa,伸长率10~200%,磨损强度和扭转强度均不低于100万次;开发类人体软-硬组织一体化三维纳米支架,孔径20~100µm可调,杨氏模量200kPa至2GPa可调,强度5MPa,实现诱导成骨再生。开展2~3个产品的临床应用。3.6 用于电磁治疗的医用磁性微纳器件及技术面向若干难治性疾病,研制可体内驻留达完整疗程的、由磁性纳米颗粒组装构建的磁性微纳器件;研究磁场遥控微纳器件产生磁极化、磁热、磁力等电磁效应及与纳米尺度相关的新现象、新机制,以及对体内特定部位神经系统的调控规律;在动物或人体水平开展神经电磁调控对难治性疾病的治疗研究。开发2~3种在体内驻留时间不少于4个月的磁性微纳器件,及1套电磁治疗设备,针对不少于3种疾病(骨质疏松、骨关节炎、周围神经损伤等)验证治疗有效性和适用性;至少1种磁性微纳器件电磁治疗新技术获批临床试验,在2 家以上三甲医院开展研究。3.7 纳米结构光学功能设计及其高灵敏增强光谱应用针对光波长与分子之间尺寸失配导致光与物质相互作用微弱,难以获取有效信号的问题,设计和构筑新型纳米光学材料和结构实现将光波长压缩超过50倍,实现单分子水平光谱探测。建立具有光学功能的纳米材料和结构的理性设计方法;实现2~3类具有高局域光场增强的纳米结构(光强度增加105倍),频率范围直接覆盖分子振动指纹区(675~2000cm-1);利用增强结构实现高光场局域结构与发光材料之间的强耦合;实现2~3种单分子 层有机物和无机半导体的增强光谱测量;实现含C-O、CH-O等化学键的2~3种催化反应中间体的化学成分检测,以及2~3种亚纳米级生物分子检测。3.8 大视野纳米数字显微芯片成像技术针对生物纳米尺度大视野高分辨成像的重要需求,研究超大规模纳米像素数字显微芯片的大规模集成工艺制程设计与成像串扰抑制方法;开展小体积、长时程、多模态大视野纳米数字显微芯片成像系统设计和研制;开展循环肿瘤细胞/肿瘤干细胞/微小残留灶等各种生物组织的探测与识别。单个纳米数字显微芯片的像素数目≥10 亿,显微芯片量子效率≥30%,响应波段为400~700nm,实现≥100mm2视野中全部活细胞动态监测,成像分 辨率优于500nm,帧频≥1帧/秒。3.9 收集水波能的纳米发电基础与应用水波和微风蕴藏着丰富而清洁的可再生能源。研究纳米固体之间、液体与纳米固体之间在分子与原子级的摩擦起电物理机制,开发用于收集水波能量的高性能纳米发电机的新材料和新结构,研制高输出功率和高效率的水波能摩擦纳米发电机网络;构筑海洋环境中基于水波能的自驱动应用系统,面向不同的应用需求,实现在水波激励下达到50W/m3以上的输出功率密度,构建海上可移动自供电系统。3.10 纳米铁—微生物处理有机废水的协同机制与智能化关键技术研究纳米铁界面的质子梯度效应、电子—质子协同传输与调控机制,揭示微生物利用纳米铁电子的分子机制;构建纳米铁—微生物协同技术工艺体系;开展纳米铁—微生物协同处理低可生化性与低碳氮比有机废水的技术实际应用验证。完成纳米铁规模化的生产工艺,研制出废水可生化性/碳氮比快速测定及智能化调控设备,验证纳米铁—微生物协同处理典型有机废水(处理量大于50吨/日)的技术有效性。4. 青年科学家项目4.1 手性软光子材料的纳米构筑、多元操控与光学应用针对纳米光子技术主动式、柔性化、功能集成化的需求,研究手性软光子材料在多元外束缚条件下的纳米尺度分子场效应、 特征光电效应及动态调控机制,探索提升纳米组装结构的稳定性、光谱动态域和工作波段范围的技术路径,发展多维度、超宽带、 高效率、自适应的纳米光学新思路、新技术。4.2 超低功耗场控自旋电子器件面向未来信息技术对超低功耗逻辑器件的需求,开展基于纳米尺度新材料与高效耦合界面的场效应控制自旋逻辑器件研究。探索自旋—轨道与自旋—电偶耦合的界面特性和基于场效应控制的自旋态传递机理,以及在无外加磁场情况下的多级器件输入输出级联技术途径。研制非易失性逻辑器件、布尔逻辑门电路,开展验证实验。4.3 纳米尺度铪基铁电材料与器件面向大数据时代对存储器高速、高密度和低功耗的需求,开展新型铪基铁电机理、存储单元与三维集成技术的研究。探索纳米尺度铪基铁电材料的极化机制与翻转动力学过程,研究掺杂浓度、工艺条件、薄膜厚度对极化的调控规律,构建高速、低功耗的存储器件结构,研究铁电存储器的三维集成技术。4.4 高性能金属空气电池相关的纳米器件发展高性能金属空气电池中正极氧还原/析出过程的关键功能纳米材料设计方法,筛选出5种以上下一代金属空气电池非贵金属纳米材料并探索宏量制备技术,研究金属空气电池关键功能纳米材料的结构与氧还原反应路径的关系,提出可以调控4电子转移或2电子转移的方法,开展在电池器件应用的验证研究。4.5 用于水中抗生素及抗性基因污染治理的纳米材料与技术针对我国水环境抗生素及抗性基因污染治理的重大需求,发展基于纳米材料与技术的抗生素及抗性基因废水深度处理技术与工艺。面向我国产量大及使用量大的几类典型抗生素的生产企业或使用场所,探索源头排放控制技术,验证技术实际应用能力。附件:“纳米前沿”重点专项2021年度项目申报指南.pdf形式审查条件要求.pdf指南编制专家名单.pdf
  • 【视频回放】第四届“纳米材料表征与检测技术”主题网络研讨会
    2021年8月25-26日,由仪器信息网主办的第四届“纳米材料表征与检测技术”主题网络研讨会成功举办,会议吸引领域内近千位听众报名参会。本次会议开设“纳米材料与能源”、“纳米材料与半导体”、“纳米材料与医药”、“纳米材料表征与测试”4个分会场,共邀请到20位纳米材料领域科研、应用嘉宾围绕会议主题作线上报告。部分嘉宾的报告视频可回放,目前,可回放视频已经全部上线,对应回放链接整理如下,欢迎点击学习。8月25日上午 —— 纳米材料与能源报告题目报告嘉宾回放链接高镍层状化合物锂电正极材料的制备与构效关系褚卫国 国家纳米科学中心 实验室主任/研究员不回放光电材料与器件中载流子输运性质的表征与调控陈琪 中科院苏州纳米技术与纳米仿生研究所 研究员不回放固态电解质层成膜机理的显微学分析谷猛 南方科技大学 研究员不回放电沉积制备高性能电解水催化剂及原位拉曼表征严振华 南开大学 讲师回放链接8月25日下午——纳米材料与半导体半导体纳米材料原子尺度结构性能关系的定量透射电子显微学研究李露颖 华中科技大学 教授回放链接宽禁带半导体原子尺度缺陷的加工、模拟与光谱表征徐宗伟 天津大学 副教授回放链接无铅卤化物钙钛矿材料的掺杂调控发光性质研究周伟昌 湖南师范大学 副教授回放链接Wadsley相氧化钒的制备与光电性质谢伟广 暨南大学 教授不回放8月26日上午 —— 纳米材料与医药报告题目报告嘉宾回放链接磁性纳米药物赋能生物磁效应及潜在医学应用孙剑飞东南大学生物科学与医学工程学院 研究员不回放单颗粒/单细胞电感耦合等离子体技术(SP/SC-ICP-MS)在纳米医学中的应用梁少霞珀金埃尔默 原子光谱技术支持回放链接纳米钻石载药、成像和靶向抗肿瘤效应研究李英奇山西大学化学化工学院 教授回放链接口服纳米载体的形状效应戚建平复旦大学药学院 副教授回放链接脂质纳米药物的构建及特性调控及其生物学效应的研究曹志婷中国药科大学 特聘副研究员不回放8月26日下午——纳米材料表征与测试基于单分子荧光显微技术的纳米材料活性测量方法及应用张玉微广州大学化学化工学院 教授不回放基于单分子荧光显微技术的纳米材料活性测量方法及应用刘阳 布鲁克纳米表面量测部 售后应用科学家回放链接多铁/铁电材料原子尺度局域结构的电子显微学研究邓世清北京科技大学数理学院 副教授回放链接基于量子精密测量技术的微观谱学和磁成像仪器及其应用代映秋国仪量子 高级应用工程师回放链接过渡金属硫属化合物纳米结构的可控制备及其表征郝国林湘潭大学物理与光电工程学院 副教授回放链接纳米界面吸附与原位检测陈岚国家纳米科学中心 副研究员回放链接双束电镜-二次离子质谱联用技术在材料研究中的应用何琳上海交通大学 副主任/副研究员不回放
  • Nature子刊!国仪量子EPR助力纳米自旋传感器研究
    成果简报基于量子特性,电子自旋传感器具有高灵敏度,可以广泛应用于探测各种物理化学性质,如电场、磁场、分子或蛋白质动力学以及核或其他粒子等。这些独特的优势和潜在应用场景,使基于自旋的传感器成为当前热点的研究方向。Sc3C2@C80具有由碳笼保护的高度稳定的电子自旋,适用于多孔材料内的气体吸附检测。Py-COF是一种最近出现的具有独特吸附性能的多孔有机框架材料,它使用具有甲酰基和氨基的自缩合构建块制备,其理论孔径为1.38 nm。因此,一种金属富勒烯Sc3C2@C80单元(尺寸约0.8 nm)可以进入Py-COF的一个纳米孔。中国科学院化学研究所王太山研究员开发了一种基于金属富勒烯的纳米自旋传感器,用于探测多孔有机框架内的气体吸附情况。将顺磁性金属富勒烯,Sc3C2@C80嵌入基于芘基的共价有机框架(Py-COF)的纳米孔中。使用EPR技术(国仪量子EPR200-Plus)记录嵌入Sc3C2@C80自旋探针的Py-COF内吸附的N2、CO、CH4、CO2、C3H6和C3H8。研究表明,嵌入Sc3C2@C80的EPR信号有规律地随Py-COF的气体吸附性能有关。研究结果以“Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks”为题,发表在Nature Communications上。利用 Sc3C2@C80 的分子自旋探测 Py-COF 的气体吸附性能在研究中,作者使用一种具有顺磁性金属富勒烯,Sc3C2@C80(尺寸约0.8 nm)作为自旋探针嵌入到基于芘基的COF(Py-COF)的一个纳米孔,检测Py-COF内的气体吸附。然后,通过记录嵌入的Sc3C2@C80 EPR信号,研究了Py-COF对N2、CO、CH4、CO2、C3H6和C3H8气体的吸附性能。研究表明,Sc3C2@C80的EPR信号有规律地随Py-COF的气体吸附性能有关。并且与传统的吸附等温线测量不同,这种可植入的纳米自旋传感器可以通过原位实时监测来探测气体的吸附和解吸。所提出的纳米自旋传感器还用于探测金属-有机框架(MOF-177)的气体吸附性能,证明了其多功能性。气体吸附性能与EPR信号的关系气压对EPR信号的影响EPR信号线宽分析用Sc3C2@C80的分子自旋法探讨MOF-177的气体吸附过程摘要Nature Communications:嵌入式纳米自旋传感器用于原位探测多孔有机框架内气体吸附Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks. Nature Communications (2023)自旋传感器因其高灵敏度而备受关注。在此,我们开发了一种基于金属富勒烯的纳米自旋传感器,用于探测多孔有机框架内的气体吸附情况。为此,我们选择了顺磁性金属富勒烯Sc3C2@C80,并将其嵌入芘基共价有机框架(Py-COF)的纳米孔中。使用电子顺磁共振波谱(EPR)技术检测了Sc3C2@C80在Py-COF中吸附N2、CO、CH4、CO2、C3H6和C3H8后的信号。结果表明,嵌入Sc3C2@C80后EPR信号有规律变化,这与Py-COF的气体吸附性能有关。与传统的吸附等温线测量方法不同,这种植入式纳米自旋传感器可以对气体的吸附和解吸进行原位实时监测。所提出的纳米自旋传感器还被用于探测金属有机框架(MOF-177)的气体吸附性能、证明了它的多功能性。因此,该纳米自旋传感器适用于量子传感和精密测量。国仪量子EPR用户奖励政策细则1.IF 提及国仪量子仪器型号的方法:要求在实验方法中提及仪器品牌型号:国仪量子EPR200-Plus,国仪量子EPR200M等,英文参考如下:Electron paramagnetic resonance spectroscopy spectra were measured on Chinainstru&Quantumtech (Hefei) EPR200-Plus with continues-wave X band frequency.奖励实施流程:1.用户申请:需为测试申请者及文章作者,直接联系CIQTEK应用中心应用专家、登录CIQTEK官方网址http://www.ciqtek.com、拨打CIQTEK官方服务热线400-0606-976;2.资格审核:身份审核、对相应文章发表情况、提及仪器情况及影响因子进行审核(提供相应证明:发表论文的接收函及论文原文,或已发表论文的网上版本链接);3.审核通过后由公司统一发放奖励,发放形式协商确定。奖励申请说明:1.奖励后我司内部备注,每篇文章原则上只奖励一次;2.作品获得奖励后,即默认为作者授权主办方可以使用作者名及成果名称进行宣传推广活动,包括但不限于媒体宣传、现场展示、网络推广等;3.本政策有效期自2023年6月30日至2023年12月31日(如有变化会另行通知);4.本奖励政策最终解释权归国仪量子(合肥)技术有限公司所有。国仪量子电子顺磁共振波谱仪近年来,国家大力支持国产高端科学仪器发展,推进高水平科技成果自立自强,国产高端科学仪器迎来了长足进步。国仪量子电子顺磁共振波谱仪为直接检测顺磁性物质提供了一种非破坏性的分析方法。可研究磁性分子、过渡金属离子、稀土离子、离子团簇、掺杂材料、缺陷材料、自由基、金属蛋白等含有未成对电子物质的组成、结构以及动力学等信息,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。在物理、化学、生物、材料、工业等领域具有广泛的应用。国仪量子EPR系列
  • 苏州纳米所孙钱团队在硅衬底GaN基纵向功率器件方面取得新进展
    氮化镓(GaN)器件具有更高耐压,更快的开关频率,更小导通电阻等诸多优异的特性,在功率电子器件领域有着广泛的应用前景:从低功率段的消费电子领域,到中功率段的汽车电子领域,以及高功率段的工业电子领域。相比于横向器件,GaN纵向功率器件能提供更高的功率密度、更好的动态特性、更佳的热管理及更高的晶圆利用率,近些年已取得了重要的进展。而大尺寸、低成本的硅衬底GaN纵向功率器件更是吸引了国内外众多科研团队的目光。中科院苏州纳米所孙钱研究团队在读博士研究生郭小路及其他团队成员的合作攻关下,经过近三年时间的不懈努力,先后在高质量异质外延材料生长及掺杂精确调控、器件关态电子输运机制及高压击穿机制、高性能离子注入保护环的终端开发等核心技术上取得突破,该系列研究工作先后发表于电子器件领域国际专业学术期刊IEEE Electron Device Letters, vol. 42, no. 4, pp. 473-476, Apr 2021. Applied Physics Letters, vol. 118, no. 24, 2021, Art. no. 243501. IEEE Transactions on Electron Devices, vol. 68, no. 11, pp. 5682-5686, 2021。团队成功研制出的高性能硅衬底GaN基垂直肖特基二极管,具有优异的正向导通性能(Ron=1.0 mΩcm2),开关比高达1011,理想因子低至1.06,正向输出电流1660A/cm2。器件的关态耐压达603V,器件的Baliga优值(衡量器件正反向电学性能的综合指标)为0.26GW/cm2。器件在175oC的高温及380V反向偏压下,开关性能仍未发生失效,综合实现了耐高温、耐高压等优异特性。硅衬底GaN基纵向功率二极管器件性能目前处于国际前列。上述系列工作的主要作者为中科院苏州纳米所在读博士研究生郭小路,团队特别研究助理钟耀宗博士和已毕业博士生何俊蕾等为相关工作作出了重要贡献,通讯作者为孙钱研究员和周宇副研究员。上述工作得到了国家自然科学重点基金项目、国家重点研发计划课题、中国科学院重点前沿科学研究计划、江苏省重点研发计划项目等资助。图1. GaN 水平器件与垂直器件的特点比较图2. GaN基纵向功率二极管的关态击穿电压与开态导通电阻(Ron,sp)的评价体系。国内外相关研究团队的自支撑衬底和硅衬底GaN基肖特基势垒二极管(SBD),结势垒肖特基二极管(JBS),凹槽MOS型肖特基二极管(TMBS)器件性能的比较。图3.(a)硅基GaN纵向功率二极管的外延结构(b)外延材料的CLmapping(c)器件的结构示意图(d)制备器件的离子注入保护环。图4.(a)线性坐标下与(b)对数坐标下有、无离子注入保护环(GR)终端的硅基GaN纵向SBD的正向IV曲线(c)不同温度下硅基GaN纵向SBD的开态导通电阻(d)离子注入保护环个数对反向击穿耐压的影响。(e)有、无离子注入保护环对硅基GaN纵向SBD温度特性的影响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制