当前位置: 仪器信息网 > 行业主题 > >

材料性能

仪器信息网材料性能专题为您整合材料性能相关的最新文章,在材料性能专题,您不仅可以免费浏览材料性能的资讯, 同时您还可以浏览材料性能的相关资料、解决方案,参与社区材料性能话题讨论。

材料性能相关的论坛

  • 晒晒沥青材料性能试验仪

    沥青材料性能试验仪可进行沥青混合料圆柱和棱柱压缩、冻融劈裂、马歇尔稳定度、小梁低温弯拉等试验。沥青材料性能试验仪同时具有低温试验箱和低温弯拉试验装置双重功能,是交通部新的质量检测机构升级的必备装置。  材料性能试验仪基本参数:  1、步进电机驱动,升降速度为0.02~50mm/min,无级可调  2、电 源:220V×50Hz  3、容栅式数字位移传感器量程:0-25mm;分辩率:0.01mm;  量程:0-10mm;分辩率:0.001mm;  压力传感器量程:0-10KN;精度:0.05%FS;  压力传感器量程:0-100KN;精度:0.05%FS;  数采仪:电源220V×50HZhttp://www.junlincn.com/uploads/allimg/120920/3-1209201535210-L.jpg  沥青材料性能试验仪图片  4、仪器尺寸(长×宽×高):800×600×1700mm  5、升降行程: 0-100 mm  6、环境箱温度范围:室温~-20℃,精度0.5℃  7、分度值10N,有伺服装置。加载过程中基本不变  沥青材料性能试验仪是军麟仪器公司根据《公路工程沥青及沥青混合料试验规程JTJ052-2000》开发的。沥青材料性能试验仪由主机及相应夹具、数采部分、微机及数据处理软件等组成,试件装夹好后,采用微机控制可以实现整个试验过程自动化。沥青材料性能试验仪被称为国内首创的多功能沥青混合料力学性能试验设备。

  • 【资料】包装材料塑料薄膜性能的测试方法

    在塑料包装材料中,各种塑料薄膜、复合塑料薄膜具有不同的物理、机械、耐热以及卫生性能。人们根据包装的不同需要,选择合适的材料来使用。如何评价包装材料的性能呢?国内外测试方法有很多。我们应优先选择那些科学、简便、测量误差小的方法。优先选择ISO国际标准、国际先进组织标准,如ASTM、TAPPI等和我国国家标准、行业标准,如BB/T标准、QB/T标准、HB/T标准等等。 笔者在从事检验工作中,使用过一些检测方法,下面向大家简单介绍一下。 GBT 2918-1998 塑料试样状态调节和试验的标准环境规格、外观   塑料薄膜作为包装材料,它的尺寸规格要满足内装物的需要。有些薄膜的外观与货架效果紧密相连,外观有问题直接影响商品销售。而厚度又是影响机械性能、阻隔性的因素之一,需要在质量和成本上找到最优化的指标。因此这些指标就会在每个产品标准的要求中作出规定,相应的要求检测方法一般有: 1.厚度测定   GB/T6672-2001《塑料薄膜和薄片厚度测定 机械测量法》该非等效采用ISO4593:1993《塑料-薄膜和薄片-厚度测定-机械测量法》。适用于薄膜和薄片的厚度的测定,是采用机械法测量即接触法,测量结果是指材料在两个测量平面间测得的结果。测量面对试样施加的负荷应在0.5N~1.0N之间。该方法不适用于压花材料的测试。 2.长度、宽度   GB/T 6673-2001《塑料 薄膜与片材长度和宽度的测定》非等效采用国际标准ISO 4592:1992《塑料-薄膜和薄片-长度和宽度的测定》。该标准规定了卷材和片材的长度和宽度的基准测量方法。   塑料材料的尺寸受环境温度的影响较大,解卷时的操作拉力也会造成材料的尺寸变化。测量器具的精度不同,也会造成测量结果的差异。因此在测量中必须注意每个细节,以求测量的结果接近真值。   标准中规定了卷材在测量前应先将卷材以最小的拉力打开,以不超过5m的长度层层相叠不超过20层作为被测试样,并在这种状态下保持一定的时间,待尺寸稳定后在进行测量。 3.外观   塑料薄膜的外观检验一般采取在自然光下目测。外观缺陷在GB/T 2035 《塑料术语及其定义》中有所规定。缺陷的大小一般需用通用的量具,如钢板尺、游标卡尺等等进行测量。 物理机械性能 1.塑料力学性能——拉伸性能   塑料的拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验。   塑料拉伸性能试验的方法国家标准有几个,适用于不同的塑料拉伸性能试验。   GB/T 1040-1992 《塑料拉伸性能试验方法》一般适用于热塑性、热固性材料,这些材料包括填充和纤维增强的塑料材料以及塑料制品。适用于厚度大于1mm的材料。   GB/T13022-1991《塑料 薄膜拉伸性能试验方法》是等效采用国际标准ISO1184-1983《塑料 薄膜拉伸性能的测定》。适用于塑料薄膜和厚度小于1mm的片材,该方法不适用于增强薄膜、微孔片材、微孔膜的拉伸性能测试。  以上两个标准中分别规定了几种不同形状的试样,和拉伸速度,可根据不同产品情况进行选择。如伸长率较大的材料,不宜采用太宽的试样;硬质材料和半硬质材料可选择较低的速度进行拉伸试验,软质材料选用较高的速度进行拉伸试验等等。 2.撕裂性能   撕裂性能一般用来考核塑料薄膜和薄片及其它类似塑料材料抗撕裂的性能。   GB/T 16578-1996《塑料薄膜和薄片耐撕裂性能试验方法 裤形撕裂法》是等效采用国际标准ISO 6383-1:1983《塑料-薄膜和薄片-耐撕裂性能的测定 第1部分;裤形撕裂法》适用于厚度在1mm以下软质薄膜或片材。试验方法是将长方形试样在中间预先切开一定长度的切口,像一条裤子。故名裤形撕裂法。然后在恒定的撕裂速度下,使裂纹沿切口撕裂下去所需的力。使用仪器同拉伸试验仪中的非摆锤式的试验机。   QB/T1130-1991《塑料直角撕裂性能试验方法》适用于薄膜、薄片及其它类似的塑料材料。试验方法是将试样裁成带有900直角口的试样,将试样夹在拉伸试验机的夹具上,试样的受力方法与试样方向垂直。用一定速度进行拉伸,试验结果以撕裂过程中的最大力值作为直角撕裂负荷。试样如果太薄,可采用多片试样叠合起来进行试验。但是,单片和叠合试样的结果不可比较。叠合试样不适用于泡沫塑料片。   GB/T11999-1989《塑料薄膜和薄片耐撕裂性试验方法 埃莱门多夫法》是等效采用国际标准ISO 6383/2-1983《塑料薄膜和薄片耐撕裂性的测定――第二部分:埃莱门多夫法》适用于软塑料薄膜、复合薄膜、薄片,不适用于聚氯乙烯、尼龙等较硬的材料。原理是使具有规定切口的试样承受规定大小摆锤贮存的能量所产生的撕裂力,以撕裂试样所消耗的能量计算试样的耐撕裂性。 3.摩擦系数   静摩擦系数是指两接触表面在相对移动开始时的最大阻力与垂直施加于两个接触表面的法向力之比。   动摩擦系数是指两接触表面以一定速度相对移动时的阻力与垂直施加于两个接触表面的法向力之比。   试验是由水平试验台、滑块、测力系统和使水平试验台上两试验表面相对移动的驱动机构等组成。   试验通过是将两试验表面平放在一起,在一定的接触压力下,使两表面相对移动,测得试样开始相对移动时的力和匀速移动时的力。通过计算得出试样的摩擦系数。   静(动)摩擦系数=目前常用的方法标准为GB/T10006-1988《塑料薄膜和薄片摩擦系数测定法》它非等效采用国际标准ISO 8295-1986《塑料-薄膜和薄片-摩擦系数的测定》。 4.热合强度   塑料薄膜作为包装材料,常常用热合的方法将被包装物封装在内,是否达到良好的密封,热合的质量很重要,目前试验室常用的仪器设备是“热梯度仪”是一台可设定不同温度、压力、时间的热合试验设备,它可用于试验某种材料在某种条件下封合的最佳效果,封合质量可用QB/T 2358-1998 《塑料薄膜包装袋热合强度试验方法》是常用的方法标准。本标准适用于各种塑料薄膜包装袋的热合强度测定。   试验是将条形试样的两端夹在拉力试验的两个夹具上,进行拉伸,破坏试样封合部位的最大力值,就是热合的力值,结果一定以单位长度的试样所用的力值来表示,即热合强度。所用的力用N/m来表示。 *]:bP&{i9 5.剥离力   复合薄膜是用干复式或共挤式将不同单膜复合在一起,复合的好环直接影响着复合膜的强度,阻隔性及今后的使用寿命。所以在选用包装材料前测试复合层的剥离力很重要。   GB/T8808-1988《软质复合塑料材料剥离试验方法》是将预先剥开起头的被测膜的预分离层的两端夹在拉力试验机上,测试剥开材料层间时所需的力。 6.抗冲击性能   GB/T8809-1988《塑料薄膜抗摆锤冲击试验方法》适用于各种塑料薄膜抗摆锤冲击试验。试验是测量半圆形摆锤冲击在一定速度下冲击穿过塑料膜所消耗的能量。   GB/T9639-1988《塑料薄膜和薄片抗冲击性能试验方法 自由落标法》适用于塑料薄膜和厚度小于1mm的薄片。试验是在给定的自由落标冲击下,测定50%塑料薄膜和薄片试样破损时的能量。以冲击破损质量表示。

  • 【分享】纺织材料性能和试验术语

    纺织材料性能和试验术语,共3部分[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=107806]纺织材料性能和试验术语1[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=107807]纺织材料性能和试验术语2[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=107808]纺织材料性能和试验术语3[/url]

  • 【求助】寻求材料性能测试仪器

    寻求操作简单,价格便宜的材料性能测试仪器,主要用于聚丙烯、ABS等塑料制品的抗压、抗冲击和耐热性能及拉伸强度、弹性模量和耐热性测试,望各位高手推荐,感激不尽!

  • 材料低温物理性能测试

    材料低温物理性能测试

    1. 简介测试物理性能参数:弹性模量、热膨胀、热导率、电阻率、热辐射系数。材料类型:固体金属材料、固体非金属材料、复合材料、粉体颗粒状材料、粘结剂材料。制冷形式:低温制冷机系统。温度范围:4K~室温。气氛环境:真空、惰性气体、大气环境。2. 技术路线低温物理性能测试中包括多个物理性能参数的测试,每个物理性能参数测试都有相应的测试方法和测试设备,并需要在一定的低温环境下进行测试。如果每个物理性能参数都配置单独的测试系统进行测试,势必会造成很多配套装置的重复建设。因此,低温物理性能测试的技术路线是尽可能在一个公共低温环境下进行尽可能多的物理性能参数的测试,将多个物理性能测试装置集成在一个低温环境试验装置内,降低测试系统整体造价、提高测试系统使用率,整个低温物理性能测试技术路线如图2-1所示。 http://ng1.17img.cn/bbsfiles/images/2017/02/201702091642_01_3384_3.png图2-1 低温物理性能测试的技术路线3. 测试方法3.1. 弹性模量测试方法材料低温弹性模量采用动态法,即连续激励自由共振法,测试过程如图3-1所示。用两根细线悬挂着一个棒状试样,激励换能器输送一个声波振动给悬挂点,而信号从另一个悬挂点处进行检测。 http://ng1.17img.cn/bbsfiles/images/2017/02/201702091646_01_3384_3.png 图3 1 悬丝法测量示意图随着输入信号频率的变化,某一频率下的信号明显的增大,由此共振振动被检测出来。悬挂法已经被用来测量材料弹性模量随温度从低温到高温的变化情况,国外相应的测试标准有ASTM C1198-09、ASTM E1875-08和ASTM E1876-09;国内相应的测试标准有GB/T 14453-1993和GB/T 22315-2008。该方法能准确反映材料在微小形变时的物理性能,测得值精确稳定,对脆性材料如石墨、陶瓷、玻璃、塑料、复合材料等也能测定,该方法测定的温度范围极广,从低温~3000℃范围内均可。 http://ng1.17img.cn/bbsfiles/images/2017/02/201702091643_01_3384_3.png图3-2 悬挂法高温动态弹性模量测试系统结构示意图悬挂法低温条件下测试系统典型的结构示意图如图3-2所示。试样用两根悬丝水平悬挂放置在低温环境内,悬丝一端固定在试样的共振节点处,悬丝的另一端穿过加低温腔体分别固定在换能器的激振级和拾振级上。当被测试样温度达到测量温度后,首先音频讯号发生器发出交变电讯号,通过换能器将电能转变为机械振动,由悬丝传递给试样,激发试样振动。试样的机械振动再通过另一悬丝传递给接收换能器,还原成电讯号,经放大器放大后,由示波器或数采系统将振动图形显示或采集出来。调节讯号发生器的频率,当讯号频率与试样的固有频率一致时,试样便处于共振状态,在接收端便可测得最大的振幅。此时的讯号频率即可认为是试样在此温度下的固有频率,由此可以计算获得被测试样在此温度下的动态弹性模量。3.2. 热膨胀测试方法低温热膨胀系数测量采用非接触位移光学投影测量技术,可以实现低温和高温甚至超高温(2500℃以上)条件下的线性位移和变形测量,其测试原理如图3-3所示。 http://ng1.17img.cn/bbsfiles/images/2017/02/201702091647_01_3384_3.png图3-3 光学投影法热膨胀测试原理图光学低温热膨胀测试采用得是试样束缚式结构,规避了试样无约束结构存在的试样位置移动问题,使得测试结果更可靠更准确。光学投影系统中的光源配备的是高强度氮化镓绿色LED,绿色光束均匀且安全并只含有极少杂波,即使在高温物体发光的背景中也能产生极高的解析度。绿色LED点光源经过光学系统形成平行光束,有效的防止了目标物位置改变而造成镜头放大倍率地波动,并可确保测量精度。光学探测器采用了高速CCD可以获得极高的采样速度,目标物观测器采用了CMOS影像传感器,可提供逼真样品影像和小巧外形,位移测量精度可以达到1微米。为了保证光学探测系统工作稳定性,需配备恒温冷却循环系统,使得试样的起始温度和光学探测系统的工作温度总是保持恒定,有效提高测量精度和测试数据的规范性。3.3. 电阻率测试方法低温电阻率测量主要对象为各种固体导体材料,材料加工成规则块状或棒状并放置在低温环境腔体内,根据欧姆定律采用四线制法测试不同温度下的电阻率。3.4. 热导率测试方法低温下的材料热导率测量可能会涉及到众多不同热导率材料和不同类型材料,如高导热高密度金属材料、低导热中密度非金属材料、超低热导率低密度绝热材料、各种粉体材料以及各种粘结剂材料。低温下的热导率测量要求热导率测量能覆盖从绝热材料小于0.02W/mK至金属材料大于400W/mK的热导率范围。低温热导率测试方法众多,但能覆盖如此宽泛热导率测试范围的方法目前只有瞬态平面热源法,瞬态平面热源法热导率测试装置如图 3 4所示。 http://ng1.17img.cn/bbsfiles/images/2017/02/201702091649_01_3384_3.png图3-4 瞬态平面热源法热导率测量装置瞬态平面热源法热导率测量原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。探头的温度和电阻关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映样品的导热性能。探头采用导电金属镍经刻蚀处理后形成的连续双螺旋结构的薄片,外层为双层的聚酰亚胺(Kapton)保护层,厚度只有0.025mm,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于中间进行测试。电流通过镍时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数和热扩散率,两者的比值得到体积比热。瞬态平面热源法已具有国际标准测试方法,即ISO 22007-2:2008 Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (Hot Disk) method。在低温导热率测量中选择瞬态平面热源法还考虑了以下几方面因素:(1)在采用瞬态平面热源法测试过程中,只需简单将探头固定在两块被测试样之间,在试样和探头温度恒定后进行测量,测试过程迅速。这样使得与试样直接发生关系的相关装置非常简单,便于对被测试样加载各种环境条件,非常有助于进行低温和真空环境的材料热导率测试。 (2)瞬态平面热源法的热导率测试范围宽泛,基本可以覆盖绝大多数材料的热导率测试。有此采用一台这种测试仪器就可以实现金属和非金属的热导率测试,特别是低温和深低温环境下多涉及隔热材料和金属结构材料,以往至少需要两套大型测试设备才能分别实现隔热材料和金属材料的热导率测试,现在可以通过一套设备完美的解决热导率测试问题。(3)瞬态平面热源法热导率测试核心装置比较小,所需试样尺寸也不大,这就为多试样同时测量提供了可能。(4)瞬态平面热源法作为一种绝对测量方法,在理论上可以达到很高的测量精度。在试样尺寸满足测试方法规定的边界条件基础上,热导率的测量范围可以没有限制。因此,对于均质材料,采用HOTDISK瞬态平面热源法不失为一种操作简便和测量精度高的有效方法,在温度不高的范围内(200℃以下),这种方法可以作为一种标准方法来使用,并与其它热导率测试方法一起形成有效的补充和相互比对,甚至可以用于校准其它测试方法。3.5. 热辐射测试方法低温热辐射系数测试主要用于

  • 【分享】金属材料的性能

    金属材料的性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。 塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示。伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。

  • 【资料】塑料力学性能检测用材料试验机的分析及选型

    塑料力学性能检测用材料试验机的分析及选型随着社会的进步,科学技术的发展,各种新型材料层出不穷,尤其是高分子材料在近几年有了飞速的发展。塑料作为其分枝,各种性能有了显着的提高,在某些领域已经有了取代木材、金属材料的趋势。为了使塑料材料及其制品能够安全可靠的使用,对其进行性能检验是非常有必要的,其中力学性能检验是最重要的检验之一。常见万能材料试验机的特点 1、常规电子万能材料试验机 该类试验机是当今万能材料试验机的主流产品,它以伺服电机作为动力源,丝杠、丝母作为执行元件,实现试验机移动横梁的速度控制,它操作简单,对试验员的要求不高,试验行程可按需要任意定制,虽然控制方式较为单一,只有速度一种控制方式,但其控制精度和控制范围很高很宽。以瑞格尔公司试验机为例,其速度调整范围可达0.001mm/min~1000mm/min,无级调速,控制精度可达0.5%,小吨位机型很容易实现。如做摩擦系数时,满值负载只有5N。它具有极大的配置灵活性,可按需要增配不同吨位的传感器、夹具、附件实现一机多用,完成拉、压、弯、剪、剥离、撕裂、摩擦系数、扭转等的功能。纵观塑料力学性能检验的相关标准,对试验机的控制方式的要求几乎都为速度控制,因此无论从控制方式还是速度范围、试验行程及试验机的吨位看,该类机型都是塑料力学性能检验的首选。 2、三闭环电子万能材料试验机 该类试验机具有常规电子万能类试验机的速度范围宽,试验行程大,配置灵活的特点,又具有电液伺服类试验机力、位移、变形控制的优点。因而是性能较好的一种试验机,但由于做力控制与变形控制时机器稳定性与主机的刚性、试样的刚性有密切的关系。一般塑料用试验机吨位较小,因此主机刚性较低,且试样本身的刚性也不会太大,所以该类试验机很少有10KN以下的机型,而10KN以下机型却是塑料类最常用的。前面说了该类机型的稳定性与试样有关,若试样单一,试验方法也较为单一,还可选用,否则就需要随时调整试验机的控制参数(亦即常规的P、I、D参数),这对非自动控制专业的试验员来说,几乎是很难想象的事。因此从整体看,除对控制方式有特定的要求,还不易选择做塑料材料的试验。 3、简易电拉 由于塑料拉伸强度是塑料力学性能检验的一个非常重要的指标,在前些年,塑料种类还不是很多,应用也不是非常广的时期,塑料的力学性能检验项目还较为单一,相应的标准也不是很完善。这时期一种结构非常简单,用途非常单一,性能指标非常欠缺,但价格很低廉的单一用途以电机作为动力源的拉伸试验机俗称电拉被广为使用。顾名思义它只能用来做单一的拉伸试验,并且所能处理的数据非常有限,控制测量精度也相对较低,现在虽然在某些场合依然有所使用,但因其功能比较单一,已经逐渐为市场所淘汰。 4、电液伺服万能材料试验机 该类试验机是目前性能比较好的一种试验机,由于它采用电液伺服控制技术,可实现力、位移、变形闭环控制,具有良好的控制性能。目前在金属、建筑材料等需要恒应力、恒应变及需要进行蠕变试验场合使用较多,但由于受油源流量的限制,他的试验速度较低。为了增大系统刚度,确保闭环控制的稳定运行,该类试验机的行程较小,且操作复杂,扩展配置较为困难,10KN以下机型很少,因此不太适合塑料橡胶类材料的试验。 5、手动液压万能材料试验机 该类试验机是试验机家族的“始祖”,它有着悠久的历史,使用简单,价格低廉,吨位较大。顾名思义,手动液压表明了它为开环控制,性能不好,操作过程完全依赖于操作者的操作水平。另外,由于它的机械结构及液压加载原理决定了它的加载速度,试验行程较小。目前该类试验机的最小机型为50KN,因此它的小载荷测量精度很低,扩展配置能力很差,一般只在进行结构部件试验或简单的材料性能试验时使用,如连接部件的拔脱,钢筋的拉伸强度等场合。 [color=#DC143C]这个好像应该发到物性测试 材料试验机 ?[/color]

  • 塑料力学性能检测用材料试验机的分析及选型(分享)

    塑料力学性能检测用材料试验机的分析及选型随着社会的进步,科学技术的发展,各种新型材料层出不穷,尤其是高分子材料在近几年有了飞速的发展。塑料作为其分枝,各种性能有了显著的提高,在某些领域已经有了取代木材、金属材料的趋势。为了使塑料材料及其制品能够安全可靠的使用,对其进行性能检验是非常有必要的,其中力学性能检验是最重要的检验之一。 常见万能材料试验机的特点1、 常规电子万能材料试验机该类试验机是当今万能材料试验机的主流产品,它以伺服电机作为动力源,丝杠、丝母作为执行元件,实现试验机移动横梁的速度控制,它操作简单,对试验员的要求不高,试验行程可按需要任意定制,虽然控制方式较为单一,只有速度一种控制方式,但其控制精度和控制范围很高很宽。以瑞格尔公司试验机为例,其速度调整范围可达0.001mm/min~1000mm/min,无级调速,控制精度可达0.5%,小吨位机型很容易实现。如做摩擦系数时,满值负载只有5N。它具有极大的配置灵活性,可按需要增配不同吨位的传感器、夹具、附件实现一机多用,完成拉、压、弯、剪、剥离、撕裂、摩擦系数、扭转等的功能。纵观塑料力学性能检验的相关标准,对试验机的控制方式的要求几乎都为速度控制,因此无论从控制方式还是速度范围、试验行程及试验机的吨位看,该类机型都是塑料力学性能检验的首选。2、 三闭环电子万能材料试验机该类试验机具有常规电子万能类试验机的速度范围宽,试验行程大,配置灵活的特点,又具有电液伺服类试验机力、位移、变形控制的优点。因而是性能较好的一种试验机,但由于做力控制与变形控制时机器稳定性与主机的刚性、试样的刚性有密切的关系。一般塑料用试验机吨位较小,因此主机刚性较低,且试样本身的刚性也不会太大,所以该类试验机很少有10KN以下的机型,而10KN以下机型却是塑料类最常用的。前面说了该类机型的稳定性与试样有关,若试样单一,试验方法也较为单一,还可选用,否则就需要随时调整试验机的控制参数(亦即常规的P、I、D参数),这对非自动控制专业的试验员来说,几乎是很难想象的事。因此从整体看,除对控制方式有特定的要求,还不易选择做塑料材料的试验。3、 简易电拉由于塑料拉伸强度是塑料力学性能检验的一个非常重要的指标,在前些年,塑料种类还不是很多,应用也不是非常广的时期,塑料的力学性能检验项目还较为单一,相应的标准也不是很完善。这时期一种结构非常简单,用途非常单一,性能指标非常欠缺,但价格很低廉的单一用途以电机作为动力源的拉伸试验机俗称电拉被广为使用。顾名思义它只能用来做单一的拉伸试验,并且所能处理的数据非常有限,控制测量精度也相对较低,现在虽然在某些场合依然有所使用,但因其功能比较单一,已经逐渐为市场所淘汰。4、 电液伺服万能材料试验机该类试验机是目前性能比较好的一种试验机,由于它采用电液伺服控制技术,可实现力、位移、变形闭环控制,具有良好的控制性能。目前在金属、建筑材料等需要恒应力、恒应变及需要进行蠕变试验场合使用较多,但由于受油源流量的限制,他的试验速度较低。为了增大系统刚度,确保闭环控制的稳定运行,该类试验机的行程较小,且操作复杂,扩展配置较为困难,10KN以下机型很少,因此不太适合塑料橡胶类材料的试验。5、 手动液压万能材料试验机该类试验机是试验机家族的“始祖”,它有着悠久的历史,使用简单,价格低廉,吨位较大。顾名思义,手动液压表明了它为开环控制,性能不好,操作过程完全依赖于操作者的操作水平。另外,由于它的机械结构及液压加载原理决定了它的加载速度,试验行程较小。目前该类试验机的最小机型为50KN,因此它的小载荷测量精度很低,扩展配置能力很差,一般只在进行结构部件试验或简单的材料性能试验时使用,如连接部件的拔脱,钢筋的拉伸强度等场合。

  • 【资料】材料物理性能参数

    材料物理性能参数physical property parameter of material  表征材料在力、热、光、电等物理作用下所反映的各种特性。常用的材料物理性能参数有内耗、热膨胀系数、热导率、比热容、电阻率和弹性模量等。  内耗  材料本身的机械振动能量在机械振动时逐渐消耗的现象。其基本度量是振动一个周期所消耗的能量与原来振动能量之比。测量内耗的常用方法有低频扭摆法和高频共振法。内耗测量多用于研究合金中相的析出和溶解。  热膨胀系数  材料受热温度上升 1℃时尺寸的变化量与原尺寸之比。常用的有线膨胀系数和体膨胀系数两种。热膨胀系数的测量方法主要有:①机械记录法;②光学记录法 ③干涉仪法;④X射线法。材料热膨胀系数的测定除用于机械设计外,还可用于研究合金中的相变。  热导率  单位时间内垂直地流过材料单位截面积的热量与沿热流方向上温度梯度的负值之比。热导率的测量,一般可按热流状态分为稳态法和非稳态法两类。热导率对于热机,例如锅炉、冷冻机等用的材料是一个重要的参数。  比热容  使单位质量的材料温度升高 1℃时所需要的热量。比热容可分为定压比热容cp和定容比热容cV。对固体而言,cp和cV的差别很小。固体比热容的测量方法常用的有比较法、下落铜卡计法和下落冰卡计法等。比热容可用于研究合金的相变和析出过程。  电阻率  具有单位截面积的材料在单位长度上的电阻。它与电导率互为倒数,通常用单电桥或双电桥测出电阻值来进行计算。电阻率除用于仪器、仪表、电炉设计等外,其分析方法还可用于研究合金在时效初期的变化、固溶体的溶解度、相的析出和再结晶等问题。  弹性模量  又称杨氏模量,为材料在弹性变形范围内的正应力与相应的正应变之比(见拉伸试验)。弹性模量的测量有静态法(拉伸或压缩)和动态法(振动)两种。它是机械零部件设计中的重要参数之一。

  • 【讨论】密封材料的性能与测试术语

    密封材料的性能与测试术语---万能材料试验机1、 外观质量:用目测或简单工具能判别的产品外表特征和状态。 2、 密度:单位体积材料的质量。 3、 挤出性:反映密封材料挤注的施工性能。以密封材料在单位时间内挤注的体积(容量)表示。 4、 适用期:单组分密封材料在容器打开之后或多组分密封材料混合之后,到稠度增加至不适宜施工和修整的时间。 5、 施工度:嵌缝材料施工的难易程度。以金属落锥沉入量(1/10mm)表示。 6、 表干时间:密封材料表面失去粘性的时间。 7、 挥发性:密封材料受热挥发的重量损失程度。 8、 渗出性:密封材料与规定物质接触后,保持材料组分不渗出的能力。 9、 渗出指数:经渗出性测定后,渗出幅度与渗出滤纸张数之和。 10、 低温贮存稳定性:乳液类密封材料在低温下存放不产生沉淀、结块、凝聚的性能。 11、 初期耐水性:乳液类密封材料表干后耐水浸泡的性能。 12、 下垂度:密封材料在一定温度下的流动程度。 13、 低温柔性:密封材料在低温条件下的柔韧性能。 14、 拉伸粘结性:反映密封材料在给定基材上的粘结性能。以拉伸强度(Mpa)和断裂伸长率(%)表示。 15、 拉伸强度:密封材料在拉伸至断裂过程中承受的最大应力。 16、 断裂伸长率:密封材料在拉断时的伸长率。其值用伸长增量与原长之比的百分表示。 17、 定伸粘结性:密封材料在给定拉伸伸长率的情况下,与基材的粘结性能。 18、 剥离粘结性:反映密封材料在剥离条件下,与给定基材的粘结性能。以最大剥离强度(N/mm)和破坏状况表示。 19、 恢复率:密封材料在释去所施加引起变形的外力后,恢复原来形状和尺寸的能力。 20、 拉伸-压缩循环性:反映密封材料在使用过程中,因温度变化引起接缝位移而经受周期性拉压循环后,保持密封的能力。测定时,将经水—热—低温处理后的试件反复拉压至规定次数,以试件的破坏状况表示。并以处理温度和拉压位移量划分耐久性等级。21、 硬度:弹性封材料抵抗外力压入的能力。 22、 污染性:密封材料与水泥等碱性物质反映而变色,使基材污染的现象。 23、 体积收缩率:密封材料因物理或化学变化产生的体积缩小程度。 24、 使用寿命:密封材料发挥其有效功能的期限。 25、 贮存期:密封材料贮存于规定条件下保持有效性能的期限。 26、 耐候性:密封材料抵抗日光、温度、风雨等气候条件的能力。 27、 油灰附着力:油灰与玻璃、窗框的初始粘结强度。 28、 油灰结膜时间:油灰在紫外线照射下,表面固化的时间。 29、 油灰龟裂试验: 测定油分迁移时,油灰收缩开裂程度的试验。 30、 油灰操作性:测定油分迁移时,油灰表面修平操作的难易程度。 31、 压缩永久变形:橡胶密封垫在压缩方向产生的不可复原的变形程度。 32、 压缩强度:泡沫密封垫压缩变形至规定值时所承受的压缩应力值。 33、 压缩力:泡沫密封垫在标准接缝中所承受的压缩力以及接缝位移时压缩力的变化值。 34、 固化:密封材料从液态或粘稠态转变成弹性体或弹塑体状态的不可逆过程。 35、 硫化:橡胶类密封材料通过化学结构的改变,使其具有弹性的过程。 36、 硬化:密封材料通过物理化学过程而变硬的现象。 37、 干燥:通过蒸发、吸收使分散介质减少,以改变密封材料物理状态的过程。 38、 试样:从一定批量的产品中抽取出来并代表该产品批的某一部分或个体的定量样品,用于制品试件。 39、 试件:由试样按一定形状和尺寸制备而成,用于性能测定。 40、 基材:表面填嵌密封材料的基层材料。 41、 粘结破坏:密封材料与粘结基材界面发生的破裂现象。 42、 内聚性:密封材料承受拉力产生应变时,其内部分子之间保持集聚状态的性能。 43、 内聚破坏:密封材料内部发生的破裂。 44、 相容性:密封材料与基材的接触面相互不产生有害的物理化学反应的性能。 45、 触变性:密封材料在外力作用下,流动性暂时增加,除去外力后,具有缓慢可逆的性能。 46、 固含量:密封材料中非挥发性物质的质量百分数。 47、 表面处理:对基材表面进行的化学或物理处理,使密封材料牢固的粘接于基材表面。 48、 裂纹:密封材料浅层的细微缝隙。 49、 龟裂:密封材料表面产生的网状裂纹。 50、 裂缝:由密封材料表面深入内部的缝隙。 51、 结皮:密封材料表面形成的硬化层。 52、 离析:密封材料内部某些组分的分离析出现象.

  • 常见万能材料试验机的性能特点分析

    伴随着社会的进步,国力的增强,各类新材料层出不穷,原有材料的性能也有了进一步的提高,使用面也在不断的扩大,因而对材料的检验也提出了更高的要求。众所周知,在上世纪80年代之前,材料试验机的使用仅局限于金属等少数领域,而如今,材料试验机的使用范围已不再只限于金属等领域了,它已经扩展到了所有的行业。材料试验机由过去的手动液压试验机一统天下,发展到今天,多种控制模式并存,性能特点各异,百花齐放的时代。在这琳琅满目的试验机中,如何选择一款适合自己特点的试验机是大多数用户所关心的事。由于目前绝大多数的材料试验都是静力学性能试验,为此,下面就针对目前市场上的常见万能试验机的性能特点做一个简单的对比分析,提出一个选型原则,供大家参考。 一、常见万能材料试验机的种类目前市场上常见的万能材料试验机主要有两大系列,四种类型:1、 液压系列: 手动液压万能材料试验机电液伺服液压万能材料试验机2、 电子万能系列: 常规电子万能材料试验机高性能电子万能材料试验机它们的性能各异,优缺点并存,各有各的用户群体。二、性能特点1、液压系列1) 手动液压万能材料试验机手动液压万能材料试验机主要采用简易高压油源作为动力源,手动调整阀作为控制元件,并进行人工手动实现加载,因而,它属于开环控制系统。由于受油源流量及主机结构的限制,它的油缸活塞行程较小,常见的一般在300mm左右,它的试验速度一般也较小。受价格因素的影响,测力传感器一般采用压力传感器(大吨位基本采用压力传感器)。因而,精度较低,量程较小,一般精度为1级或2级,量程一般为4%-100%F.S。受油缸摩擦力的影响,吨位一般很难做到很小,国内最小为5T。但由于它所特有的低价及大吨位的特点,目前,在成品检验、单一材料指标的测试中还在大量使用。2)电液伺服类万能材料试验机它主要采用了精密高压油源作为动力源,使用伺服阀或比例阀作为控制元件进行闭环自动控制,因而控制性能较高,一般可实现载荷、应变、位移三种控制模式。同手动液压万能材料试验机一样,受油源流量的限制,他的试验速度较低。由于采用闭环自动控制,系统刚度成了整个系统正常工作的关键。众所周知,液体的刚度是比较低的,为了尽可能的减少液体对整机刚度的影响,一般电液伺服试验机的行程都不大,同样受整机刚度的影响,电液伺服类试验机的吨位都不可能做的很小,基本上都在一吨以上。但由于它有多种控制模式,因而具有使用灵活,性能较高的特点。2、 电子万能系列1) 常规电子万能类材料试验机常规电子万能主要采用伺服电机作为动力源,丝杠、丝母作为执行部件,实现试验机移动横梁的速度控制,它的试验速度范围可进行调整,以RGM-200为例,它的试验速度可达0.001mm/min-1000mm/min,速比可达100万倍之多,试验行程可按需要而定,最大可达几米。这是液压类试验机无论如何也实现不了的。随着电子技术的发展及伺服电机性能的提高,电子万能所采用的电机从早期的直流伺服电机到现在的更多的采用交流伺服电机,从早期的功率元件选用可控硅进行移相触发控制到今天的采用多种功率模块实现脉宽调制控制,电子万能的性能有了质的飞跃,人们心目中的电子万能故障率高,性能较差的情况已经不复存在了。由于常规电子万能采用速度控制,因而对系统刚度的要求不高,这样就为小吨位试验机的实现创造了有利的条件。从目前国际、国内的情况看,一吨以下试验机基本上都为常规的电子万能类试验机。它的用途最广,性价比最高。2)高性能电子万能类试验机高性能电子万能类试验机与常规的电子万能试验机一样,它也采用伺服电机作为动力源,丝杠、丝母作为执行部件,它与常规电子万能试验机所不同的是它的控制方式可为载荷控制,也可为应变控制或位移控制。除了具有常规电子万能的速度宽,行程大的特点外,还具有电液伺服类试验机的全部优点,因而它是目前性能最好的万能材料试验机。

  • 热界面材料热性能测试方法调研

    热界面材料热性能测试方法调研

    随着IT行业的发展,特别是这些年手机行业的飞速发展,出现了一些新型热界面材料,对热界面材料热性能的测试和可靠性考核提出了更高的要求。由于热界面材料的类型较多,热界面材料的热性能测试和考核方法确实比较杂乱,最近也一直有朋友和客户咨询这方面的问题。为了梳理清楚热界面材料热性能测试和可靠性考核方法,更便于提供有效的测试评价手段,我们在热界面材料热性能测试和可靠性考核方面做了一些工作,这里我们将逐步介绍这些研究工作的内容以供大家参考和讨论。1. 前言 热界面材料TIM(Thermal Interface Materials)作为一类用于两种材料间的填充物,是热传递的重要桥梁。这类材料是一种具有较高的导热系数,容易形变,能有效降低界面间热阻的材料。 目前市场常用的热界面材料主要包括以下几种类型: (1)导热脂:导热脂是目前应用最广泛的一种导热介质,它是一种脂状物并具有一定的黏稠度,没有明显的颗粒感。 (2)导热胶:导热胶的特点是具有一定的黏合力,可以制成各种脂状和片状形式并具有一定的柔韧性,可以很好的贴合功率器件与散热器件或填充器件之间的间隙并不易发生边缘流溢,从而达到最好的导热及散热目的。 (3)相变导热材料:相变导热材料一般为低熔点金属复合材料薄片,在一定温度区间内会发生固液相变,并在装卡压力作用下流进并填充发热体和散热器之间的不规则间隙内,挤走空气,形成良好的导热界面。 (4)石墨(石墨烯)垫片:石墨(石墨烯)垫片采用特殊的制作工艺,具有极佳的导热导电和耐温性能,特别适合于不需要绝缘的高温散热场合。 衡量热界面材料的重要技术指标是导热性能,而导热性能的两个主要参数是导热系数和热阻。对于一定厚度的热界面材料,导热系数与热阻是一种互为倒数乘以厚度的关系。从理论上来说,知道热界面材料的实际厚度后,只要测量出导热系数和热阻这两个参数中的任意一个,就可以计算出另一个参数。但由于热界面材料的种类繁多,再加上热界面材料使用过程中实际厚度较小和具有加载压力的因素,使得导热系数和热阻的这个简单关系中相关量变得复杂和难以准确测量,由此使得热界面材料导热系数和热阻的测试评价方法十分混乱。 针对目前热界面材料热性能多种测试方法并存的现状,本文对目前市场上国外厂家的热界面材料产品进行了统计和分析,并对热界面材料热性能的主要测试方法和可靠性试验方法进行了汇总,展现了国外热界面材料厂商如何选择相应的测试方法,以期对今后热界面材料导热性能测试评价技术的研究提供参考和借鉴。 本文重点选取了美国莱尔德公司的热界面材料进行统计和分析,这主要是因为莱尔德公司相对于其他热界面材料厂商在官网上提供了最为详细的技术资料。2. 导热脂类热界面材料 导热脂类热界面材料是目前应用最为广泛的一种热界面材料,莱尔德公司导热脂产品的相关技术资料是众多厂家中最为全面的,尽管有些资料不是非常完整,但也是所能看到的唯一一家所提供的技术报告非常详细的公司,这为我们进行统计和分析提供了便利。2.1. 莱尔德公司导热脂类热界面材料的热性能指标 从莱尔德公司的官网上可以看到有五种牌号的导热脂热界面材料,根据官网所提供的各个牌号的公开技术资料,可以得到这五种牌号导热脂的导热系数和热阻数据以及相应的测试方法,如表 2.1所示。表 2.1 莱尔德公司导热脂热界面材料导热性能指标和测试方法http://ng1.17img.cn/bbsfiles/images/2017/10/2015051119574021_01_3384_3.jpg2.2. 测试方法分析 通过以上各种牌号导热脂的技术指标和各种老化考核试验结果,可以获得以下信息: (1)莱尔德公司对其所有导热脂产品的导热系数测试都采用的瞬态平面热源法(HOTDISK法)。HOTDISK方法对于这类脂状的热界面材料确实是非常简便和准确的方法,只需在恒定温度环境下将导热脂完全包裹住HOTDISK探头就可以进行测量,通过这种方法可以非常准确评价不同导热脂导热性能以指导工艺和生产,而且这种方法是一种绝对法,不需要其他方法进行校准。 (2)莱尔德公司对导热脂热阻的测量还是采用经典的ASTM D5470方法,这主要是为了测量导热脂在不同加载压力下的热阻,毕竟在不同压力下导热脂的热阻值不同。 (3)在使用HOTDISK测试方法之前,莱尔德公司是采用ASTM D5470方法测量导热系数,即在线测量出不同加载压力时导热脂的厚度值,然后再除以表 2‑1中对应的所测量得到的热阻值,就可以得到不同加载压力下的导热系数。由此可见,对于导热脂这种脂类材料,莱尔德公司现在已经摒弃了ASTM D5470这种导热脂导热系数测试方法,没有给出原因,也没有看到两种导热系数测试方法的对比测试分析。但据我们的经验和分析,这主要是因为ASTM D5470这种方法是一种相对法,测量误差要比HOTDISK方法的测试误差大很多,造成误差大的原因是在压力加载情况下导热脂的厚度很难精确测量。 (4)莱尔德公司所有的热阻测量都没有提到测试温度,有可能按照ASTM D5470中的规定温度进行热阻测量。3. 导热胶类热界面材料3.1. 莱尔德公司导热胶类热界面材料的热性能指标 导热胶类热界面材料也是目前应用非常广泛的一种热界面材料,而且导热胶的形式很多以满足不同需要,莱尔德公司将这类热界面材料归类为热填隙料(Thermal Gap Fillers)。从莱尔德公司官网上可以得到近18个系列牌号导热胶的导热系数和热阻数据以及相应的测试方法标注,如表 3.1所示。表 3.1 莱尔德公司导热胶(填充料)类热界面材料导热性能指标和相应测试方法http://ng1.17img.cn/bbsfiles/images/2017/10/2015051120034447_01_3384_3.jpg3.2. 测试方法分析 莱尔德公司的导热胶(热填隙料)类材料有脂状和片状两种形式,按照上述导热脂导热系数的测试技术逻辑,所有脂状导热胶的导热系数都应该采用HOTDISK方法进行测量。但从表 3‑1中可以看出,莱尔德公司在导热胶导热系数测试方法的选择上似乎非常混乱,采用HOTDISK方法既测量脂状导热胶也测量片状导热胶。同样,采用D5470A方法也是如此,看不出一个明显的测试方法选择原则。 例如,对于TputtyTM 504这种典型脂状热填隙料,导热系数测试采用的是D5470A方法,而对于相同脂状热填隙料TputtyTM 403则采用的是HOTDISK方法。 例如对于Tflex™ HR200这类片状热填隙料,导热系数测量采用的是HOTDISK方法,而对于具有类似硬度的片状热填隙料Tflex™ HR400则采用的是D5470A方法。 根据HOTDISK测试方法和测试能力,HOTDISK对脂状和片状热填隙料的导热系数都可以进行测量。根据实际测试经验,我们从具体测试的便利性方面分析,认为莱尔德公司在测试方法的选择上可能有一个前提条件,这个前提条件就是粘度和清洗的便利性。在HOTDISK导热系数测试中,HOTDISK薄膜探头要与被测热填隙料接触,如果热填隙料太粘或不易清理则容易损坏HOTDISK薄膜探头。但对于D5470A方法则不存在这种现象,在D5470A方法测试中与被测热填隙料接触的是金属块。4. 相变类热界面材料4.1. 莱尔德公司相变材料热性能指标 从莱尔德公司官网上可以得到近7个系列牌号相变材料的导热系数、热阻数据以及相应的测试方法标注,如表 4.1所示。表 4.1 莱尔德公司导热胶(填充料)类热界面材料导热性能指标和相应测试方法http://ng1.17img.cn/bbsfiles/images/2017/10/2015051120095158_01_0_3.jpg[align=cente

  • 【分享】材料力学性能试验的定义和分类

    测定材料在一定环境条件下受力或能量作用时所表现出的特性的试验,又称材料力学性能试验。试验的内容主要是测量材料的强度、硬度、刚性、塑性和韧性等。材料机械性能的测定与机械产品的设计计算、材料选择、工艺评价和材质的检验等有密切的关系。测出的机械性能数据不仅取决于材料本身,还与试验的条件有关。例如,取样的部位和方向、试样的形状和尺寸,试验时的加力特点,包括加载速度、环境介质的成分和温度等,都会影响试验的结果。为了保证试验结果的相对可比性,通常都制订出统一的标准试验方法,对试验条件一一作出规定,以便试验时遵守。  机械性能试验可分为静力试验和动力试验两大类。静力试验包括拉伸试验、压缩试验、弯曲试验、剪切试验、扭转试验、硬度试验、蠕变试验、高温持久强度试验、应力松弛试验、断裂韧性试验(见断裂力学分析)等。动力试验包括冲击试验、疲劳试验(见疲劳强度)等。  机械性能试验在各种特定的试验机上进行。试验机按传动方式分机械式和油压式两类,可手动操作或自动操纵。有的试验机还带有计算机装置,按编好的程序自动进行试验操作和控制,并可用图像和数字显示出结果,提高试验的精度,使用方便。 [em09502][em09511]

  • 热物理性能测试中的参考材料

    热物理性能测试中的参考材料

    [color=#cc0000]摘要:本文介绍了材料热物理性能的标准测试方法和参考材料的定义,特别介绍了参考材料的三种分类:验证过的参考材料、传递标准和参考材料。本文还详细列出了目前国际上能购买到的各种热物理性能测试用的验证过的参考材料清单。[/color][color=#cc0000]关键词:热物理性能,参考材料,标准参考材料,导热系数,热膨胀系数,热扩散系数,热膨胀系数[/color][align=center][img=,539,205]https://ng1.17img.cn/bbsfiles/images/2019/04/201904172229453658_7579_3384_3.jpg!w539x205.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1. 热物理性能参考材料的定义[/color][/b] 材料热物理性能测量的标准,主要是基于它的权威性,尤其是以比较的方式应用时更是如此,测试标准通常表现为两种相互关联方式: (1)标准测试方法(STM),一份由”专家”在国际、国家或其他权威机构主持下编写的具有共识性的技术文件,包含根据发布时可用的”最新”技术进行测量以确定给定精度所需特性的详细要求。后者意味着由于技术的改进而定期修改。 (2)参考材料(SM),一种耐用且高度稳定的材料或人工制品,具有在工作温度范围内不受外部变量影响的公认的均匀特性,用于验证上述STM并量化精度和偏差、验证新技术,校准比较方法,成为实验室间研究的参考点,并在竞争绩效索赔问题中充当裁判。 有三种被一致接受的参考材料: ■ 验证过的参考材料(Certified Reference Material:CRM或Standard Reference Material:SRM),从经过充分表征过的原料中获得,并具有基于广泛测试的合格值,使用绝对(主要)测试技术,包括所有参数的直接测量,由国家测量实验室(NML)或同等组织承担或主持,具有尽可能高的准确度。 ■ 传递标准(Transfer standard:TS),具有独特属性值的样品,由国家测量实验室(NML)或同等组织使用已知精度的绝对(主要)测量方法获得。 ■ 参考材料(Reference material:RM),一种已知、可重复成分和形式的商业化材料,根据几个组织使用标准测试方法进行了广泛评估,具有公认的属性值。[b][color=#cc0000]2. 认证过的热物理性能参考材料名录[/color][/b] 以下将列出目前国际上能购买到的认证过的热物理性能参考材料名录。[color=#cc0000]2.1. 美国标准技术研究所(NIST)[/color] 验证过的热物理性能参考材料(CRM-带证书)名录如下表所示:[align=center][img=,690,847]https://ng1.17img.cn/bbsfiles/images/2019/04/201904172234337268_7133_3384_3.png!w690x847.jpg[/img][/align][color=#cc0000]2.2. 日本国家计量研究所(NMIJ)[/color] 验证过的热物理性能参考材料(CRM-带证书)名录如下表所示:[align=center][img=,690,754]https://ng1.17img.cn/bbsfiles/images/2019/04/201904172233569383_6429_3384_3.png!w690x754.jpg[/img][/align][color=#cc0000]2.3. 欧盟参考材料和测量研究所(IRMM)[/color]验证过的热物理性能参考材料(CRM-带证书)名录如下表所示:[align=center][img=,690,595]https://ng1.17img.cn/bbsfiles/images/2019/04/201904172234546008_4574_3384_3.png!w690x595.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 定形相变复合材料热性能标准测试方法及其改进

    定形相变复合材料热性能标准测试方法及其改进

    [table][tr][td][color=#cc0000]摘要:本文针对测试定形相变材料热性能的 ASTM C1784 动态热流计法(DHFM),从另外一个角度介绍了这种测试方法的具体实施过程,使得 ASTM C1784 更容易被理解、掌握和推广应用。同时,本文分析了 DHFM 方法在工程应用中存在的问题,并提出了具体技术改进措施,以便进一步研究工作的开展和真正解决各种大尺寸相变复合材料热性能的准确、可靠和快速测试问题,以便建立更具有工程应用实际意义的新标准测试方法。[/color][/td][/tr][/table][align=center][img=,690,389]http://ng1.17img.cn/bbsfiles/images/2017/12/201712172114_9883_3384_3.png!w690x389.jpg[/img][/align][color=#cc0000]1. 引言[/color] 相变材料(PCM)利用其熔融潜热以达到热存储或对环境或系统进行温度调控目的,在建筑结构中越来越多的发现PCM的应用可以降低建筑能耗和调节室内温度。其基本原理是白天 PCM 吸收部分建筑热载荷并产生熔化,而在较低温度的夜间PCM冻结释放出热量,由此来稳定控制建筑物室内空间内温度。 数值研究和现场试验表明,随着PCM 在建筑物围护结构中的应用,负荷峰值小时得以减少,峰值需求时间得到移动,可节省高达25%的制冷能源消耗,并明显提高生活舒适度。 过去的三十多年中,建筑法规越来越强调节能和能效,这导致建筑中普遍使用各种隔热技术。另一方面,PCM 技术在建筑领域中几乎没有什么实质性应用主要是因为它的初始成本要高于隔热技术,以及性能方面的问题,如易燃性和相变性能老化严重等。在过去的几年中,随着PCM材料研究、封装技术、相稳定方法和阻燃剂等方面的发展已经解决了阻碍PCM 应用的大部分问题。最近的研究表明,对于现存的隔热材料改造项目,更换或添加常规隔热材料可能并不总是改善建筑围护结构热能性能最划算的解决方案。 由于 PCM 性能和成本竞争力的提高,近年来市场上推出了多种集成 PCM 的建筑产品,如 PCM 墙体、PCM 增强隔热材料等。这些 PCM 集成部件的动态特性或相变特性,主要包括相变温度区间、潜热性能、过冷和滞后性能以及隔热性能,这些性能的准确测试对预测PCM 产品在整个系统尺度范围内的蓄热和节能潜力至关重要。在早期应用中,具有纯的和均匀的PCM 集成入建筑部件中,如大型PCM壁芯、PCM 壁管。因此,利用单纯 PCM 的动态特性对 PCM 集成产品进行能量或热性能分析已成为一种普遍做法。传统上采用差分扫描量热仪(DSC)测量 PCM 产品中的纯 PCM 成分的动态特性,然而 DSC 方法适用于典型毫米尺度和毫克质量量级的样品,DSC 法还要求样品在成分上要相对均匀。 目前最先进的 PCM 产品与早期 PCM 应用完全不同,目前的 PCM 多是以毫米尺度包裹在结构件内部,例如 PCM 增强石膏板、形状稳定(Shape Stabilized)的定形 PCM 板和 PCM 纤维增强隔热材料等。这些 PCM 集成部件的动态热性能取决于几个关键指标,如构件内 PCM 的质量分数、构件的热容量和导热系数,以及存在的添加剂(火阻燃剂、导电抑制剂、粘合剂)。此外 PCM 本身的动态特性可能会因为周围材料和外来材料的引入而产生变化,因此PCM 集成构件的动态特性与纯 PCM 的动态特性相比有显著差异。 先进的 PCM 产品在尺寸和质量上都会变得更大更重,而且在组合中往往非常不均匀而无法作为 DSC 测试中样品。此外,大量的研究表明采用 DSC 测试系统所进行的单纯 PCM热性能测试在可靠性和测试结果方面大多存在严重问题,需按照特定的操作规程执行才能得到准确结果,由此通过DSC 得到的数据用于蓄热和节能模型计算时普遍造成性能评价的不精确性。 数值计算和实验研究表明,在建筑围护结构中加入 PCM 会显著提高建筑能耗性能,但需要对 PCM的动态特性进行准确测量才能完成整个建筑的能耗模拟。此外,准确的动态测试数据对于优化建筑物内PCM 的分布和位置、最大限度实现节能至关重要。 针对大尺寸 PCM 集成部件和产品的动态热性能的准确可靠测试,实际上面临着严峻的挑战。过去仅有的成熟的热性能测试评价方法一般是利用DSC 进行测试,有时采用 T-history 法测量有限数量的材料。不幸的是DSC 方法需要较小且相对均质的测试样品,在许多PCM 增强结构产品中这一要求不切实际,因为这些材料不是均质材料,在PCM 基混合物或复合材料情况下小样品不具有代表性。 为了解决大尺寸 PCM 集成部件和产品动态热性能的准确可靠测试问题,近些年来研究了一种实验室级别的测试方法,这是一种基于传统稳态热流计法隔热性能测试技术(HFM)的动态测试技术,称之为动态热流计法(DHFM)。HFM 已经被广泛用于材料的稳态导热系数测量,DHFM 方法则是将HFM法进行了升级,这些升级通过对现有 HFM 设备的最小化改造和廉价硬件升级来实现对 PCM 复合材料热性能的准确测量。基于 DHFM 技术,美国 ASTM 在2013年制定了一个新的测试标准:ASTM C1784-13“采用热流计装置测量相变材料及其产品储热特性的标准测试方法”,并在2014年颁布的修订版。尽管DHFM 方法在工程实践中还存在一些不足,但至少使得在科学和工程领域对相变复合材料和相变材料增强产品获得了一个可靠和准确的测量工具,解决了一个标准测试方法有无问题。 上海依阳实业有限公司是从事材料的热物理性能测试技术研究和测试仪器生产的专业性机构,对传统稳态热流计法(HFM)测试技术有过深入的研究和深刻的理解,同时也生产这种测试仪器。通过对相变材料热性能测试方法(DHFM)的研究,证明了这种方法确实是一种现阶段比较有效的实验室级别的测试技术,对标准尺寸的相变复合材料样品的热性能可以做出准确的测量,但也在工程实践中发现了大量存在的具体问题。 本文针对测试定形相变材料热性能的 ASTMC1784 动态热流计法(DHFM),从另外一个角度介绍了这种测试方法的具体实施过程,使得 ASTMC1784 更容易被理解、掌握和推广应用。同时,本文分析了 DHFM 方法在工程应用中存在的问题,并提出了具体技术改进措施,以便进一步研究工作的开展和真正解决各种大尺寸相变复合材料热性能的准确、可靠和快速测试问题,以便建立更具有工程应用实际意义的新标准测试方法。[b][color=#ff0000]由于本文篇幅较大并涉及大量公式,不便在帖子上进行编辑,全文内容已做为附件呈上,请多原谅。附件全文为适合手机浏览的PDF格式文件。[/color][/b]

  • 【分享】各种木质装饰材料的性能特点比

    各种木质装饰材料的性能特点比 ---------------------------------------------------------------------  防火装饰板:以专用纸基浸渍于改性的三聚氰胺树脂、酚醛树脂,经高温高压制成。化学性能稳,花色品种多,有光亮、哑光、喷砂及仿皮革、仿石材、织物布纹等,可用胶类粘贴于木墙面、木墙裙、木隔栅、木屏风、木造型等木质基层的表面,以及餐桌、茶几、酒吧柜和各种家具的表面。一般规格:2.4*1.2米、2.1*0.95 米等,厚度1--2毫米,亦有薄型材。   宝丽板、富丽板:宝丽板是以三夹板为基材,贴以特种花纹面,涂复不饱和树脂后表面再压合一层塑料薄膜保护层。表面硬度中等,耐热耐烫性优于油漆面,对酸碱、油脂、酒精等有一定抗御能力、表面易于清洗。富丽板表面哑光,有多种仿天然名贵木材的图案花纹,但耐热、耐烫、耐擦洗性能差,多用于墙面、墙裙、柱面和一些不需要擦洗的家具表面。   模压饰面板:木材与合成树脂高温高压成型。特点是板面平滑光洁,经久耐用,具有防火、防虫、防霉、耐热、耐晒、耐寒、耐酸碱等优点。色彩鲜亮柔和,装饰效果高雅,质感好,不变形,不脱色。可锯、钻孔、粘贴,安装施工方便。用作护墙板、天花板窗台板、家具饰面板。   刨花板:利用机械刨花或加部分碎木,经干燥、拌胶、热压等工序制成。优点是板面平,结构均匀密实,无节疤和木纹,不易变形翘曲,加工方便,但握钉力较差。适用于天棚、墙面、隔断及家具制作。   中密度纤维板:用木板加工废料和伐区剩余物,破碎浸泡,研磨成木浆,经热压成型、干燥处理而成。因木材纤维被分开并混乱地分布在板面上,使板材内部密度均匀,强度较高,无节疤、无木纹,不易变形、翘曲,加工方便,并可在表面雕刻,贴面、油漆、染色。   拼装木地板:用水曲柳、柞木、核桃木、柚木等经干燥处理后,加工出的条状小木板。特点是:坚硬、耐朽、不易变形开裂,有光泽,纹理美,色泽柔和。经拼装后可组成美观大方的图案,而且弹性、质感好,具有温暖清雅的装饰效果。拼接方法有平面对缝地板条和企口拼接地板条等几种方法。常用规格:30*150*10毫米, 30*120*10毫米,50*150*10毫米,50*300*12(18)毫米,50*300*20(23)毫米。   木线条:用硬杂木,进口洋杂木、白木、白元木、水曲柳木、山樟木、核桃木、柚木等质硬、木质较细、耐磨、耐腐、不劈裂、切面光滑、加工性良好、上色好、粘结性好、钉着力强的木材,干燥处理后,经机械或手工加工而成,也有用厚胶合板现场制作,或用中密度纤板类压制而成的(特点不变形)。木线条应用广,品种多,外形、规格多样,常用于不同材料面、不同造型面、不同层次面的交接处的封口、封边及各种材料(主要是木材)的收边等。截面尺寸最小的有6*13毫米,最大的有25*100毫米、40*50毫米不等,常用长度为2--5米。   藤材:材质自然纯朴,柔韧而富有弹性,可弯曲,编织,给人经盈、通透、雅致、大方、宁静、舒适感,但软而易弯,刚性不足,太潮湿,会变形,长期潮湿还会发霉。用藤材编扎的家具,轻便、素雅、座面硬度适中,具有一定弹性,材料的异热性高于皮毛又远低于金属,是四季咸宜,坐靠舒适,久坐不疲的优良坐具;藤材的柔韧性使其塑型容易,可并采用多种加工工艺制成各具特色的装修装饰与陈设用品,如椅、床、屏、橱、箱、架、几、凳、篮及小摆设等。

  • 容器原材料板的金属工艺性能弯曲试验

    容器原材料用钢板(Q345R、Q370R、15CrMo、14Cr1Mo等),广泛应用于石油、化工、电站、锅炉等行业,用于制作反应器、换热器、分离器、球罐、液化汽罐、锅炉汽包等设备及构件。容器原材料板的供货状态为:“正火”或“正火+回火”状态。在容器制造前需经对材料进行复验,包括化学分析、力学性能、无损探伤等,力学性能中的弯曲试验为冷弯试验,原理是将一定形状和尺寸的试样放置于材料试验机的弯曲装置上进行加载力,试样围绕有一定直径的弯心弯至规定的角度后卸载试验力,检验板材弯曲的塑性变形能力,是否出现裂纹状态等。试验一般在室温下10~35℃进行,因此称为冷弯试验。冷弯试验所执行的标准为GB/T232-2001《金属材料弯曲试验方法》

  • 金属材料试验机检测材料性能

    金属材料试验机检测材料性能 任何材料机械部件或工具,在运用过程中,常常会受到不同外力的作用。如起重机上的钢索,遭到悬吊物拉力的作用;柴油机上的连杆,在传送动力时,不只遭到拉力的作用,并且还遭到冲击力的感化;轴类零件要遭到弯矩、扭力的感化等等。这就请求金属材料必需具有一种接受机器荷而不超越答应变形或不毁坏的才能。这种才能便是材料的力学功能。金属体现来的诸如弹性、强度、硬度、塑性和韧性等特性便是用来权衡金属材料材料在外力感化下体现着力学功能的目标。强度强度是指金属材料在静载荷感化下抵御变形和断裂的才能。强度目标普通用单元面积所接受的载荷即力示意,标记为σ,单元为MPa。工程中常用的强度目标有屈从强度和抗拉强度。屈从强度是指金属材料在外力感化下,孕育发生屈从征象时的应力,或开端呈现塑性变形时的最低应力值,用σs示意。抗拉强度是指金属材料在拉力的感化下,被拉断前所能接受的最大应力值,用σb示意。关于大部分机器零件,事情时不容许孕育发生塑性变形,以是屈从强度是零件强度计划的根据;关于因断裂而生效的零件,而用抗拉强度作为其强度计划的根据。塑性塑性是指金属材料在外力感化下孕育发生塑性变形而不时裂的才能。工程中常用的塑性目标有伸长率和断面紧缩率。伸长率指试样拉断后的伸长量与本来长度之比的百分率,用标记δ示意。断面紧缩率指试样拉断后,断面减少的面积与本来截面积之比,用y示意。伸长率和断面紧缩率越大,其塑性越好;反之,塑性越差。

  • 【分享】陶瓷材料的力学性能

    概况陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。金属:金属键高分子:共价键(主价键)+范德瓦尔键(次价键)陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。硬度高,弹性模量高,塑性韧性差,强度可靠性差。常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。

  • 粉体材料的主要性能指标

    粒度是粉体材料的主要性能指标,如水泥的水化反应、涂料的附着力和遮盖率、锂电池材料的容量、药物的分解速度、过滤器的过滤效率、磁性材料的磁导率和矫顽力、杀虫剂效力与残留、大气和环境污染等等,都与颗粒大小有关。粒度测试已经成为粉体材料产生、应用、研究的一项重要的基础性工作。

  • 粒度是粉体材料的主要性能指标

    粒度是粉体材料的主要性能指标,如水泥的水化反应、涂料的附着力和遮盖率、锂电池材料的容量、药物的分解速度、过滤器的过滤效率、磁性材料的磁导率和矫顽力、杀虫剂效力与残留、大气和环境污染等等,都与颗粒大小有关。粒度测试已经成为粉体材料产生、应用、研究的一项重要的基础性工作。

  • 【无卤专题讨论】无卤对材料性能的影响

    继续我们关于“无卤”的专题讨论。关于无卤的知识,在本版已经有了非常多的讨论,但大多是涉及法规标准的内容。记得以前在讨论无铅时,讨论了很多关于无铅制程对于产品对行业的影响,那么现在无卤也是一样。做无卤,对于材料的影响到底有多大?众所周知的是做无卤,那么卤素阻燃剂就不能使用,广大厂商需要寻找阻燃效率高且环保的替代物,要不然塑料材料的阻燃性能就会大受影响,甚至达不到UL-94的阻燃标准。那这就意味着,在做无卤管控之后,必须对塑料材料重新进行阻燃测试等等一些安规项目的测试。那么卤素其他的用途呢?对于其他材料性能的影响体现在那些方面呢?比如油墨油漆,比如溶剂清洗剂表面处理剂等。希望大家踊跃发言,特别是希望相关材料行业的朋友可以分享你们的知识以及疑惑。讨论完后我会大家的不通观点总结整理出来方便学习

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制