当前位置: 仪器信息网 > 行业主题 > >

不同靶材下元素分析

仪器信息网不同靶材下元素分析专题为您整合不同靶材下元素分析相关的最新文章,在不同靶材下元素分析专题,您不仅可以免费浏览不同靶材下元素分析的资讯, 同时您还可以浏览不同靶材下元素分析的相关资料、解决方案,参与社区不同靶材下元素分析话题讨论。

不同靶材下元素分析相关的资讯

  • 不同系列的Delta手持式合金分析仪都能分析哪些合金材料中常见元素?
    Delta手持式合金分析仪都 能分析哪些合金材料中常见元素?这是许多合金材料商最想了解的事情,甚至有些废旧金属回收厂商也十分关注Delta手持式合金分析仪是否能够满足其在繁杂 的废旧金属堆里识别区每一个不同的废旧金属的含量价值。那么今天,我们就将从Delta手持式合金分析仪的型号以及不同型号都主要支持哪些元素的分析做一 个简短的介绍。 Delta手持式合金分析仪型号主要有三种规格,分别是: 经典型,DCC-2000手持式合金分析仪。 标准型,DPO-2000手持式合金分析仪。 高端型,DP-2000手持式合金分析仪。 这三种型号是目前合金分析仪中最常见的型号,也是伊诺斯手持式合金分析仪系列中销量比较好的几款(与之前的Alpha系列合金分析仪、Omega系列合金分析仪以及Explore系列合金分析仪比较而言)。 经典型,DCC-2000手持式合金分析仪采 用了单光速、ALLOY软件模式,SI-PIN探测器,靶材可选配AU,4W电流,X射线管。它能支持包含:Ti钛、V钒、Cr铬、Fe铁、Co钴、Ni 镍、Cu铜、Zn锌、W钨、Hf锆、Ta钽、Re铼、Pb铅、Bi铋、Zr锆、Nb铌、Mo钼、Ag银、Sn锡、Sb锑、Pd钯、Cd镉。 标准型,DPO-2000手持式合金分析仪采 用了三光速、ALLOY puls软件模式,标准型SDD探测器,探测面积达25MM2,靶材精选Ag或Au,4W X射线管。它能支持包含:AI铝、Si硅、P磷、S硫、Mg镁、Ti钛、V钒、Cr铬、Fe铁、Co钴、Ni镍、Cu铜、Zn锌、W钨、Hf锆、Ta钽、 Re铼、Pb铅、Bi铋、Zr锆、Nb铌、Mo钼、Ag银、Sn锡、Sb锑、Pd钯、Cd镉。 高端型,DP-2000手持式合金分析仪采用了三光速、ALLOY puls软件模式,超大型SDD探测器,探测面积达30MM2,靶材精选R h或Au,数据率提高12.5%,超大型SDD极大地改善Mg、Ai、Si 、P、S测试精度。在可测元素范围上与DPO-2000手持式合金分析仪相同。 以上测试元素范围仅为例举,许多非常见的元素Delta手持式合金分析仪依然可以分析.
  • 2012年全球元素分析仪市场概况
    来自于SDi 2012年10月发布的第12版Global Assessment Report称,虽然原子光谱分析方法通常可以定量检测周期表中的任何元素,但是也有专门设计的仪器,用来测量某些特定应用领域的一个或多个感兴趣元素的分析仪器。这些专用的元素分析仪器中使用了多种技术,最常见的是燃烧氧化反应之后的各种检测技术,如荧光、红外光谱、热导率、电化学等方法。样品制备和处理方法则根据检测的目标元素进行优化。 2012年全球各类元素分析仪器市场分布   元素分析仪器中最大部分专注于钢铁、铝和其他合金等金属样品,主要测量以下元素:碳、硫、氢、氮和氧。第二大类元素分析仪为总有机碳(TOC)分析仪,该类仪器通常包括总氮选项。TOC分析仪主要用来检测饮用水和其他纯净水中的碳含量,作为衡量水质有机污染程度。汞对健康和环境的污染导致了汞分析仪的广泛应用。   还有一些蛋白质分析仪用来检测氮的含量,以转化为蛋白质的含量。这些氮-蛋白质分析仪器容易被其他氮源所&ldquo 愚弄&rdquo &rdquo ,就像2008年在中国爆发的三聚氰胺事件。元素分析仪剩下的四分之一市场是各种不常见元素分析的仪器所组成,包括砷、卤素或一些主要有机元素组合的分析。   编译:刘丰秋
  • CEM微波消解在比较医学元素分析中的应用
    01 引言比较医学的基础在于利用一种物种的信息来理解其他物种中相同过程的能力。实验室大鼠和小鼠因其解剖学和生理学特点与人类高度相似,成为了生物医学研究和比较医学研究的理想动物模型。通过元素分析来确定这些样本中的微量元素水平,也有助于评估营养状况及其对人类健康的影响。然而,大鼠和小鼠体积小,组织样本仅有几毫克重。这些微小的样本量,加上检测限严格,增加了额外的复杂性,并使样品制备在元素分析过程中充满挑战。在这项研究中,我们采用了 Discover® SP-D Clinical 自动化微波消解系统来处理动物组织。这个系统能够在所需的温度和压力下安全操作,以实现更加快速和有效的消解过程。02 材料和方法样本&bull 酸空白:3 mL HNO3 + 0.5 mL HCl&bull NIST 1577c 牛肝&bull 成年大鼠肾脏样品制备:1. 从一只成年雄性斯普拉格-道利大鼠新鲜获取整个肾脏。2. 快速冷冻肾脏并储存于 -80 °C。3. 在实验室冰箱中解冻样品。4. 使用预清洗的塑料勺状工具均质化样品。5. 称取 0.1 克样品放入带有微型搅拌棒的 10 mL 石英容器中。6. 向容器中加入 3 mL HNO3 + 0.5 mL HCl 的微量金属酸。7. 盖上容器盖,将其放入系统或自动进样器中。表1. 方法参数表2. 压力阶段,压差设定为 160 psi03 分析关注金属的选择基于标准参考材料(SRMs)的认证值,以及行业对微量金属污染物的关注。样品是在安捷伦 7850 ICP-MS 上分析的,其条件详见表3。所列条件用于分析所有元素,这些元素是使用“H2”和“He”调谐模式分析的。以下元素被用作内部标准:钪(Sc)、锗(Ge)、铑(Rh)、铟(In)、铽(Tb)、镥(Lu)和铋(Bi)。在本次分析中没有使用气体稀释技术。表3. 安捷伦 7850 ICP-MS04 结果所有消解液在用去离子水稀释至 50 克后均呈清澈、无色和无颗粒状。对微量金属酸进行了酸空白测试(表4),以确认关注金属的基线水平值。背景水平被发现低于检测限或可忽略不计。分析国立标准技术研究院(NIST)标准参考材料(表5)证明了报告值在预期范围内得到了准确恢复。通过验证标准来确认样品的完全消解和准确回收。表4. 酸空白的平均元素回收率(ppb)(n=3)表5. 认证元素的平均元素浓度(ppm)和回收率百分比值(n=3)表6. 单个成年大鼠肾脏的平均元素浓度(ppm)(n=3)05 结论成年大鼠肾脏的小型样本(约100毫克)的消解在不到 10 分钟的时间内成功完成,随后进行了分析。将回收率与 NIST 标准参考材料中报告的元素进行比较,证明了消解和分析的成功。Discover SP-D 临床自动化微波消解系统轻松处理了小样本量,通过 ICP-MS 进行分析,以实现低检测限。这两种技术的结合非常适合比较医学,因为它既允许所需的小样本量和低检测限,同时仍能在预期范围内提供成功的分析结果。
  • 专题约稿|锂电材料元素分析难点解析
    p   近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。 /p p   为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。 span style=" color: rgb(112, 48, 160) " 锂电检测系列专题内容征集进行中: /span a href=" https://www.instrument.com.cn/news/20181204/476436.shtml" target=" _blank" style=" text-decoration: underline color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) " span style=" color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) " 【征集申报链接】 /span /a /p table cellspacing=" 0" cellpadding=" 0" border=" 0" align=" center" tbody tr class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 系列序号 /span /strong /p /td td style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 锂电检测技术系列专题主题 /span /strong /p /td td style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 专题上线时间 /span /strong /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 1 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——电性能检测技术 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 2019年 span 1 /span 月 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 2 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——形貌分析技术 /span /p /td td rowspan=" 5" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 2019年 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 3 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——成分分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 4 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——晶体结构分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 5 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列—— span X /span 射线光电子能谱分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 6 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——安全性和可靠性分析仪器及设备 /span /p /td /tr /tbody /table p style=" text-align: center " span style=" font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px " 专题约稿|锂电材料元素分析难点解析 /span /p div p style=" text-align: center " span style=" color: rgb(127, 127, 127) " i ——“锂电 /i /span i span style=" color: rgb(127, 127, 127) " 检测技术系列——成分分析技术”专题征文 /span /i /p p style=" text-align: center " i span style=" color: rgb(127, 127, 127) " /span /i span style=" text-decoration: none " i span style=" text-decoration: none color: rgb(127, 127, 127) " i (作者:冯文坤,安捷伦科技原子光谱应用专家) /i /span /i /span /p /div p   在全球都在关注环境保护与可持续发展的大前提下,新能源——这个词已经为广大人民所熟悉,而较为密切相关的无疑是新能源汽车。目前新能源汽车的动力来源主要应用的是锂离子电池,锂电的性能决定了新能源汽车的续航里程和行驶安全,其中锂电材料主元素和杂质元素的含量对锂电的性能有着关键性影响。锂电产业链从原材料,到电池材料到废旧电池回收再利用等环节,都需要采用合适的检测手段来进行元素分析。正极、负极、电解液等锂离子电池相关材料中的元素检测是锂电池行业原材料控制的重要项目:Li、Co、Mn 等常量元素的含量检测是原材料控制的必测项目 杂质含量对材料品质以及电池产品性能有很大影响,需要严格控制。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1ddecaf4-d764-49cc-8f1d-baab5039976d.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 锂电材料元素分析必要性 /strong /span /p p   在锂电的主要组成部分中,正极材料是最受关注的,因为它决定了锂电的能量密度。正极材料的元素配比和杂质控制是产品生产过程中重要的质量控制环节,而负极材料和电解液的杂质含量对锂电产品的安全性能有着重要影响。电感耦合等离子体发射光谱仪(ICP-OES)由于具有更好的复杂基体耐受能力、更快的分析速度和更宽的线性动态范围,已成为了锂电生产的标配。 /p p   在 GB/T 20252-2014《钴酸锂》、GB/T 24533-2009《锂电池石墨负极材料》等锂离子电池相关标准中,规定使用 ICP-OES或等同性能分析仪器测试常量元素及微量杂质元素,并对磁性物质进行分析。在 GB/T 30835-2014《锂离子电池用复合磷酸铁锂正极材料》、GB/T24533-2009《锂电池石墨负极材料》、GB/T 30836-2014《锂离子电池用钛酸锂及碳复合负极材料》等锂离子电池相关标准中,规定依据 IEC 62321 方法、使用 AA、ICP-OES 和 ICP-MS 等仪器对材料中的 Cd、Pb、Hg、Cr 等限用物质进行检测。 /p p   锂电材料元素检测难点锂电池电解液样品的复杂基体(含高锂盐、高有机成分、F 成分)会产生电离干扰、物理干扰等,给 ICP-OES 的基体耐受性和抗干扰能力带来极大挑战。同时,锂电池材料复杂基体给软件扣除干扰的能力带来极大挑战。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 锂电材料元素检测难点 /strong /span /p p    strong 1.源于高含量Li元素的严重电离干扰造成结果不准确 /strong /p p   在锂电材料检测过程中,对于高锂的样品(如:碳酸锂、镍钴锰酸锂)的杂质元素检测,往往会发现Na、K元素结果偏高,其它杂质元素结果偏低,且数据常有不稳定的现象。这是由于大量存在的锂离子会使 Na 和 K的分析受到易电离元素 (EIE) 的干扰。为了尽量减小或消除 EIE 干扰,常用 ICP-OES 的径向观测模式进行分析,但是这种方案的灵敏度较低,无法满足电池级碳酸锂的分析要求,经常会出现“未检出”的情况。“未检出”就意味着杂质含量阴性吗?并非如此,还可能仪器灵敏度不够,这需要用“回收率测试”等方法验证。针对这些问题,我们推荐采用垂直炬管轴向观测+CCI冷锥+基体匹配的方案。采用轴向观测,保证足够的灵敏度 而CCI冷锥设计,将低温区电离干扰的等离子部分成功剥离,有效消除了大部分电离干扰。在加标浓度为0.05mg/L时,碳酸锂中14种杂质元素的回收率在95~105%之间,连续测试2.5小时,各元素RSD& lt 2%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/acaebc97-0c0d-44dc-abd8-01cc4ab9faf2.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 碳酸锂中各元素测试结果及回收率结果 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/3c84c593-962d-4906-8eb6-b2971c011dcc.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 碳酸锂中各元素长期测试稳定性数据 /span /p p    strong 2.锂电材料复杂基质造成的结构背景干扰 /strong /p p   六氟磷酸锂电解液基体非常复杂,含有大量有机物,并常利用有机溶剂稀释后进样分析。在复杂基体下,在被测元素波长附近,常会产生复杂的结构背景信号,对微量被测元素形成严重干扰。此外,样品基质含有大量含F物质,可能对常规玻璃雾化系统造成腐蚀。 /p p   金属杂质元素需要控制在1ppm以内,而复杂的结构背景从而导致检出限变差,无法满足六氟磷酸锂电解液中金属杂质元素的检测要求。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/a205d8ff-0237-4aa5-9cc4-65d8c8cd144b.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 20% 乙醇水和以 20% 乙醇水配制的 As 标准溶液的叠加谱图 /span /p p   对于样品中含F物质,我们推荐使用专门的HF进样系统。六氟磷酸锂电解液中含有一定量的碳酸酯成分,为保证测试溶液的稳定性,我们推荐采用 15%–20% (w/w) 乙醇水溶液按重量比将电解液样品稀释 10–20 倍后上机检测。 /p p   对于复杂背景信号对微量杂质检测带来的严重的结构背景干扰问题,常规方法(如干扰系数校正法)无法解决。我们推荐利用FACT 快速自动谱线拟合技术,可利用数学拟合方法进行自动建模,元素信号从有机物背景干扰中剥离出来(如下图),有效降低了微量元素检测的检出限,检测准确度大大改善。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/b004f610-9f10-4f37-a3e9-2313ef6a72fb.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 采用 FACT 技术扣除背景后的谱图 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/3c806663-a385-41a8-9bef-804316d6a557.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 六氟磷酸锂中12 种杂质元素的方法检测限 (MDL) /span /p p   在锂电池产业链中,除了元素分析,还需要围绕产品质量、原材料质控、或锂电池各种性能指标的研发工作进行一系列的理化测试,包括:电池鼓胀气体成分分析 (GC、微型 GC)、电解液、添加剂成分分析 (GC、GC/MS)、石墨类负极材料有机物含量测试 (GC/MS)、电解液未知成分分析 (GC/Q-TOF、LC/Q-TOF)、SO42-、Cl- 等阴离子及 Si 等非金属元素分析 (UV-Vis)、电解液等原材料鉴别 (FTIR)等。安捷伦科技在锂离子电池材料检测领域积累了大量经验和数据。希望安捷伦锂电行业解决方案给锂电材料检测工作者带来帮助。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/24328cae-12b6-4328-afd7-40bec13e3300.jpg" title=" 7.jpg" alt=" 7.jpg" / /p
  • 全能元素分析仪检测铸铁材质中的多种元素
    全能元素分析仪检测铸铁材质中的多种元素 2017年3月份,鼎盛管业有限公司在南京麒麟科学仪器集团引进了一套全能元素分析仪。该公司主要做灰铁250,主要检测原材料中的碳、硫、锰、磷、硅等元素。南京麒麟技术员现场免费培训技术指导,全能元素分析仪测碳采用气体容量法(液体吸收),测硫采用碘液滴定法;其他多元素采用机外溶样,光电比色法来分析,现场检测数据精度客户非常满意,准确度和精密度都得到了客户的认可。南京麒麟集团在客户现场检测 该公司是一家专业生产机械及行业设备的企业,主要做电机壳为主,全能元素分析仪采用冷光源专利技术、进口光电元件,自校零点和满度;硫滴定加液采用专利无电极控制专利技术,采用专利防崩塞技术,有效降低故障率;可记忆贮存99条曲线(可根据用户需要任意增加),采用回归方法,建立曲线方程,该公司使用全能元素分析仪后,产品合格率提高了3%,经济效益提高了4%。该公司愿与麒麟携手合作,共创辉煌。南京麒麟集团在客户现场检测 全能元素分析仪是本公司独家拥有的一款多元素联测分析仪,由本公司专利技术的bs1000a型电脑精密元素分析仪(国家重点新产品)和cs3000型电脑碳硫分析仪组合而成,可检测普碳钢、低合金钢、高合金钢、生铸铁、球铁、合金铸铁等多种材料中的c、s以及si、mn、p、cr、ni、mo、cu、ti等多种元素。可以满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析的需要。南京麒麟科学仪器集团有限公司检测中心2017年4月13日
  • 奥林巴斯XRF元素分析仪助力工业检测更方便
    随着国内经济的发展,轻工业和重工业领域为了满足生活需要不断进行产业革新。为了匹配生产,产业检测领域出现了不少检测设备,其中奥林巴斯XRF元素分析仪便是在产业线生产检测中使用较为广泛的一个。  奥林巴斯XRF元素分析仪助力国内元素分析仪的发展,具备全天候持续对产品进行质量检测的能力,采用创新的Axon技术,装备新型的四核处理器和超低噪音处理器,提高X射线频率,在提高检测速度的同时也提高检测的准确度,降低容错率。  奥林巴斯XRF元素分析仪以X射线荧光技术为基础,X射线荧光可以对生产线上的产品进行材料分析,尤其是合金材料,可以快速分析其中的元素成分,非常适合应用于流水生产线。它工作的核心是针对化学元素进行分析,适用于各种生产合金的企业和产品中含有金属元素的生产企业。  奥林巴斯XRF元素分析仪应用的领域十分广泛,常见的一种便是阀门材质检测。生活中的阀门随处可见,水龙头、燃气阀门、汽车排气阀门等等,为了耐高温和防止变形,阀门通常是采用金属材质。奥林巴斯XRF元素分析仪可以对这些合金材料进行元素分析,确定合金材料成分,检测材料的化学成分是否合规,从生产线保障产品质量,保护使用者的安全。  还有一种则应用于水泥行业,水泥在生活中使用的地方比较多,特别是建筑领域都会用到水泥,因此把控水泥质量至关重要。奥林巴斯XRF元素分析仪可以对水泥生产过程中的各种金属元素含量和氧化物的成分进行分析,这也是检验水泥质量的一项重要指标。奥林巴斯XRF元素分析仪也可以应用于水泥窑协同处置,进行工业固体分废弃物中有毒或有害的重金属分析,防止有毒或有害金属进入土壤,污染环境。  综合来说,奥林巴斯XRF元素分析仪具有三大特点,分别是高分辨率、高准确率、高效率。高分辨率体现在对生产线产品金属元素的区分度方面,不仅能够分辨重金属元素,还能够分辨轻金属元素。高准确率主要体现在Vanta系列XRF元素分析仪运用核心技术装备了承载力更强的电子元件,能够适应通量更大的产品生产线,提供更加稳定的短时快速质量检测。  以上就是关于“奥林巴斯XRF元素分析仪让工业检测更方便”的相关介绍,如需了解更多关于XRF元素分析仪的特点,可联系赢洲科技(上海)有限公司。
  • 一站式3D打印用原材料表征方案:从粒度分析到元素分析
    增材制造常被称作3D打印,是一种从无到有逐层构建三维结构或组件的制造工艺。其原理是以计算机三维设计模型为蓝本,通过软件分层离散和数控成形系统,将三维实体变为若干个二维平面,利用激光束、热熔喷嘴等方式将粉末、塑料等特殊材料进行逐层堆积黏结,最终叠加成形,制造出实体产品。目前增材制造应用行业日益增多,包括航空航天,汽车制造,消费电子,生物医疗,工业设备等。增材制造工艺包括:粉床熔融成型,立体光刻工艺,熔融沉积成型,喷胶粘粉工艺等。相比于传统的减材制造方式,增材制造工艺具有低成本、高效益等优势,越来越受到各行业的青睐。但要成功地进行增材制造,前提是必须对组件的原材料(如金属粉末和聚合物粉末)进行表征筛选。为什么材料表征很重要?使用增材制造工艺生产的组件在性能上高度依赖于其基本的微结构,而微结构又取决于原材料(金属、聚合物)的性能和所使用的工艺条件。在工艺条件固定的情况下,最大的不确定性就来自于材料;材料性能不一致会导致组件成品的性能不一致。因此,要生产出质量一致的增材制造组件,制造商必须了解并优化材料的特性,例如金属粉末、聚合物粉末或其他材料(如陶瓷和聚合物树脂)。材料的哪些特性很重要?这取决于所采用的增材制造工艺和使用的材料类型。例如,在喷胶粘粉工艺和粉床熔融成型等金属粉床工艺中,材料的粒度和粒形是其关键特性,因为它们会影响粉末的流动和填充度。而在这些工艺中,材料的化学成分同样重要,尤其是金属粉末;粉末材料需满足指定的合金成分,这会直接影响成品的性能。晶体结构是金属粉末的另一个重要特性。因为在某些增材制造过程中,快速加热 - 冷却循环会引起物相变化并产生残余应力,进而影响组件的疲劳寿命等机械性能。另外,对于增材制造使用的聚合物材料,聚合结构(支化度、结晶度)可能会影响材料的液态和固态性能,包括粘度、模量以及热性能等。增材制造原材料表征方案在粉床熔融过程中,金属粉末层分布于制造平台上,被激光或电子束等选择性地熔化或熔融。熔化后平台将被降低,此过程将持续重复,直到制造完成。未熔融粉末将被去除,根据其状态重复使用或回收。因此,粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动行为和堆积密度。从新合金或聚合物开发到粉末回收,制造商必须在供应链的各个阶段对粉末性能进行表征。其中,激光衍射、自动图像分析、X 射线荧光和 X 射线衍射是用于表征增材制造粉末的四种常用关键分析技术。粒度分布及大小在粉床式增材制造工艺中,粒度分布会影响粉床的填充度和流动性,进而影响生产质量和最终组件的性能。为了测定增材制造使用的金属、陶瓷和聚合体粉末的粒度分布,全球粉末生产商、组件制造商以及机器制造商通常使用激光衍射技术来鉴定和优化粉末性能。使用激光粒度衍射仪Mastersizer 3000 系统或在生产线上使用在线Insitec 粒度测量系统,可在实验室环境中提供完整的高分辨率粒度分布结果。激光粒度仪Mastersizer 3000颗粒形状粒度和粒形直接影响粉床的致密度和粉末流动性。形状平滑规则的颗粒比表面粗糙、形状不规则的颗粒更容易流动和填充。增材制造商为保证所用颗粒具有规则形状,可使用 Morphologi 4 自动成像系统对金属、陶瓷和聚合物粉末的粒度和粒形进行分类和鉴定。该系统可将颗粒的长度、宽度等大小测量结果与圆度、凸曲度(粗糙度)等形状特征评估结果相结合,帮助制造商完成上述工作。Morphologi 4快速自动化粒度和粒形分析仪元素组成元素组成对于合金材料尤其重要,合金元素含量的微小变化都会影响其化学和物理性能,包括强度、硬度、疲劳寿命和耐化学性。为了检测这些变化以及污染物或夹杂物,并确定这些金属合金和陶瓷的元素成分,可使用 X 射线荧光 (XRF) 系统,比如 Zetium 和 Epsilon 等系统。而且,与其他技术相比,XRF 还能显著节省时间和成本。X射线荧光光谱仪Zetium台式能谱仪一体机Epsilon1微结构诸如物相成分、残余应力、晶粒大小和晶粒取向分布(织构)等微结构特性,也会影响成品组件的化学和机械性能。 为了分析这些微结构特性并控制成品组件的性能,制造商通常使用台式 X 射线衍射 (XRD) 系统分析金属的物相,比如 Aeris 系统。 如需获取有关材料在各种条件下的织构、晶粒尺寸和残余应力的更多信息,则可以使用多用途衍射仪,比如 Empyrean 衍射仪。 XRD 还广泛用于研究聚合物和陶瓷的结构和结晶度。 如要确定聚合物粉末的分子量和分子结构,则大多会使用凝胶渗透色谱 (GPC) 系统,比如 Omnisec 系统。台式X射线衍射仪Aeris马尔文帕纳科增材制造表征解决方案可用于: 确保始终如一的粉末供应防止产品质量波动 为采用不同撒布器或耙式设计的机器确定合适粉末 优化雾化条件以实现所需的粉末特性 预测并优化粉末堆积密度和流动特性 确保粉末具有正确的元素组成和相结构 确定制造组件的残余应力、应变和织构作者:马尔文帕纳科
  • 网络讲座预告——如何采用高分辨率ICP光谱仪分析地质、磁性材料的稀土元素
    主题:如何采用高分辨率ICP光谱仪分析地质、磁性材料的稀土元素北京时间:2014年6月24日 晚12:00 主讲人:Dr. Alice Stankova(HORIBA科学仪器事业部应用科学家)简介: 稀土元素由于其独特的性能,已成为地质、高纯稀土、磁性材料等应用领域中不可或缺的材料,而ICP-OES可以分析其中稀土元素的含量。因为稀土元素光谱干扰比较严重,研究者需要一台高分辨的ICP-OES,这样才能获取准确的测量结果。 本次研讨会将会给大家演示在不同领域中如何使用ICP-OES获取准确的结果,如分析地质中稀土元素、高纯稀土中痕量稀土元素、以及钕铁硼磁性材料中元素等。报名链接:https://event.on24.com/eventRegistration/EventLobbyServlet?target=registration.jsp&eventid=797176&sessionid=1&key=A2F53BF9C694875923B0A5B2C9820FA9&sourcepage=register
  • 玩具中铬元素形态分析简述
    在自然界中,铬主要以三价铬(Cr(III))和六价铬(Cr(VI))的形式存在。有研究表明,Cr(III是人体必需的微量元素 而Cr(VI)则具有很大毒性。Cr(VI)化合物具有免疫毒性、神经毒性、生殖毒性、肾脏毒性及致癌性等,其致癌性目前已被国际癌症研究机构(IARC)及美国政府工业卫生学家协会(ACGIH)确认。   近年来,限制玩具中有害物质含量,一直是全球关注的一个焦点话题。欧盟于2009 年6 月18 日通过的欧盟玩具安全新指令(2009/48/EC),将玩具中可迁移重金属元素由原来的8种增加到了17 种,还提出了元素价态分析的要求,包括Cr(III)、Cr(VI)和有机锡。新玩具指令将玩具材料分成三类:I类是干燥易碎的固体材料,例如粉笔 II类是粘手的材料或者液体,例如指画涂料和彩笔墨水 III类是可刮下来的材料,例如油漆涂层。新玩具指令对I/II/III类玩具材料中的可迁移Cr(VI)的限值分别是0.02,0.005和0.2 mg/kg。欧盟在2013年6月正式发布了EN71-3:2013,作为玩具指令2009/48/EC的协调标准。按照EN71-3:2013的规定,测定可迁移元素的前处理方法的稀释倍数为50倍。除以稀释倍数后,Cr(VI)在迁移液(migration solution)中的浓度仅为0.4,0.1和4&mu g/L。   现有的Cr(VI)检测方法,主要有分光光度法(UV/VIS)、离子色谱(高效液相色谱)柱后衍生法(IC(HPLC)-UV/VIS)、以及高效液相色谱-电感耦合等离子体质谱仪法(HPLC-ICPMS)。UV/VIS法使用最为广泛,被大量的国际、国内标准方法所采用(例如国标《GBT 17593.3-2006 纺织品 重金属的测定 第3部分:六价铬 分光光度法》)。UV/VIS法的检测原理是利用六价铬具有强氧化性,在酸性环境下可以氧化二苯基碳酰二肼并且络合成有颜色的络合物,在540nm处测定它的光吸收,从而通过朗伯比尔定律定量分析。但UV/VIS检出限一般10 &mu g/L左右,难以满足玩具样品的要求。IC(HPLC)-UV/VIS法与UV/VIS的检测原理大同小异,只是多了IC(HPLC)的分离降低了干扰,并且把二苯卡巴肼衍生过程自动化了,检出限虽比单独的UV有所改善但仍难以满足玩具样品的要求。UV/VIS与IC(LC)-UV/VIS这两种方法都是测定衍生产物分子的光吸收,因此有颜色的样品干扰会比较大 衍生的条件(例如温度、酸度等等)需要严格控制,对衍生过程有影响的基体也会造成干扰(例如一些高价态的过渡金属离子,能氧化二苯卡巴肼,容易造成假阳性)。   HPLC-ICPMS是近年来迅速发展起来的分析技术,也是EN71-3:2013推荐用于检测玩具样品中可迁移Cr(VI)的分析方法。   当HPLC-ICPMS用于分析EN71-3的铬形态分析时,六价铬在PH大于6.8时以阴离子CrO42-的形式存在,可以和TBAOH形成离子对 三价铬大多采用EDTA络合,形成螯合物阴离子[Cr(III)-EDTA ] 1-,也可以和TBAOH形成离子对 两种离子对在C8上的保留时间不同,三价铬的离子对先出来,六价铬的离子对后出来 ICP-MS检测Cr52离子,形成色谱图。   该方法需要先把迁移液的pH值调节到7.1左右,再加入含有EDTA的流动相在50 ℃温浴2小时。这个步骤耗费了大量的时间和人力,而且容易带入污染和误差,导致不同操作者、不同实验室之间的结果重复性差。由于有的玩具样品经过迁移后,迁移液含有高浓度的Al/Zn/Cu/Fe/Ca等金属离子,这些离子不但会与三价铬竞争EDTA的络合,而且它们与EDTA形成的络合离子又会干扰Cr(VI)的分析,造成保留时间漂移、分离度差、回收率不理想等情况。同时,迁移液中含有高浓度的氯离子,会改变Cr(VI)的保留时间,并且形成Cl35O17和Cl35O16H1的多原子离子对Cr52产生质谱干扰。为了降低样品基体的干扰,目前的方法大多采用流动相把迁移液稀释10的做法,Cr(VI)也被稀释了10倍,这样会造成方法检测限急剧升高,甚至高于I/II类玩具的限值。
  • 岛津EPMA微量元素分析在无铅焊锡材料中的应用
    EPMA无铅焊锡材料 随着微型电子电器的发展以及根据国家信息产业部《电子信息产品生产污染防治管理办法》的规定,无铅焊锡(lead-free solder)已逐渐成为电子电器行业中的主流焊料。相较普通焊锡,无铅焊锡具有以下三大优势: 1. 溶化后出渣量比普通焊锡少,且具有优良的抗氧化性能;2. 溶化后粘度低,流动性好,可焊性高,适用于波峰焊接工艺;3. 由于氧化夹杂极少,可以更大限度地减少拉尖、桥联现象,焊接质量可靠,焊点光亮饱满。 无铅焊锡中杂质元素含量及分布的控制决定了焊料的质量及最终的上锡效果,因此工厂需要借助电子探针(EPMA)的元素含量和图像分析功能对无铅焊锡中的杂质含量和微观分布进行检测。图1. 岛津场发射电子探针EPMA-8050G 岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现: 1 优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。 (加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA) 2 大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。 岛津研发部门使用EPMA-8050G仪器在低加速电压(7kV)条件下对电子元件和印刷电路板连接处的焊料层进行了背散射(BSE)和元素面分布分析,图2 展示了微米尺度(刻度尺5μm)上杂质元素以点状Ag颗粒沉积为主,少量Cu颗粒沉积,确定了杂质元素的种类。 图2. 焊料层背散射和元素面分布图像分析(刻度尺5μm) 扩大放大倍数(刻度尺500nm)对富集Ag颗粒区域进行背散射和元素面分布分析,图3展示清晰区分Ag颗粒所需的横向空间分辨率大致为100nm甚至更小。 图3. 焊料层背散射和元素面分布图像分析(刻度尺500nm) 使用高加速电压(25kV)条件对相同视域进行分析,图4 展示Ag颗粒在高加速电压条件下具有更广的分布范围(C、D点区域均有Ag颗粒分布),结合岛津的电子传播路径显示程序(Electron penetration display program)分析,图5 展示高加速电压条件下X射线出射深度更大,根据以上信息可模拟推断出Ag杂质颗粒在焊料层纵向上的分布(图6)。 图4. 不同加速电压(7kV和25kV)条件下背散射和Ag元素分布图像 图5. 不同加速电压条件下电子束作用范围(红色)和X射线出射深度(绿色) 图6. 推断的Ag颗粒在焊料层内的纵向分布 更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。 本文内容非商业广告,仅供专业人士参考。
  • 有机元素分析仪选型方案 | 德国元素助力财政贴息设备更新改造贷款
    近日,国家出台对高校科学研究所需重大仪器设备购置与更新、配套设施建设的鼓励政策,旨在进一步加快高校科技创新体系建设,大力提升创新能力。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪,应用范围从最初的有机化学品,到后来的土壤、沉积物、石化油品,再到现在碳材料、石墨烯、煤炭、降解材料等,针对客户的不同应用,提供定制化的精准解决方案,为科研工作提供强有力的支持。应用领域:有机化学品、化工材料、生态环境、农业分析元素:碳(C), 氢(H), 氮(N), 硫(S), 氧(O), 氯(Cl)德国元素Elementar有机元素分析仪UNICUBE 有机元素分析仪 — 卓越普适型元素分析仪vario EL cube 有机元素分析仪 — 高性能元素分析仪vario MACRO cube 有机元素分析仪 — 大进样量元素分析仪rapid OXY cube 有机元素分析仪 — 专业氧元素分析仪trace SN cube 有机元素分析仪 — 痕量硫氮分析仪以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 金属材料元素分析仪器的基本使用
    金属材料元素分析仪器的基本使用 金属材料元素分析仪器可检测普碳钢、低合金钢、高合金钢、生铸铁、钢、铁、有色金属、金属材料、球铁、合金铸铁等多种材料中的Si、Mn、P、Cr、Ni、Mo、Cu、Ti等多种元素。每个元素可储存99条工作曲线,品牌电脑微机控制,全中文菜单式操作。可以满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析的需要。 金属材料元素分析仪器产品专利号:ZL2008 2 0041074.X 一、仪器的联接与通电 用电源线将主机电源插座与市电连接,并将仪器可靠接地,(否则易受干扰,引起数据波动);检查排液胶管安装是否牢固(不要将放液胶管的出口端没入废液中,以免放液不畅),并向比色杯中注入蒸馏水(参比液),打开仪器电源开关,打开电脑电源,运行QL-1000A应用程序,波长初始化调整。 二、零点输入和满度调整 仪器在日常使用中,需进行调整零点及满度的工作,一般零点不需经常调整,每次开机后调整一次即可。 零点输入:将灵敏度档位切换到档位0,稍等片刻,零点的值将等于满度值,然后将档位切换到档位1。 满度调整:按调满按扭,自动调满。 金属材料元素分析仪器的详细请参考http://www.jqilin.com 南京麒麟分析仪器有限公司技术部
  • 青花瓷微区元素分布的扫描分析
    X射线荧光分析(XRF)作为一种重要的元素分析方法已经在环境科学、地球科学、生命科学、文化遗产的科技研究等学科中发挥了重要的作用。由于微分析技术在这些学科中例如分析单颗粒大气污染物、生物单细胞等成分分析方面具有独特的优势,其应用一直都受到科学研究工作者的重视。常见的微分析技术主要是扫描电子微探针(EPMA)、扫描质子微探针(&mu PIXE)和同步辐射X射线荧光分析(SRXRF)等,一般最简单产生微束的方法就是通过微小的狭缝来限制束流以产生微束,但是这种方法会造成用于激发分析样品的元素X射线强度减小,并且能量利用率极低。下图为常规的X射线光源采用狭缝和使用X光透镜两种方式产生直径为50&mu m微束光斑分析直径同样为50&mu m大气单颗粒物的X射线荧光分析谱,从图中很明显看出常规的X射线光源通过采用狭缝的方式产生微束来分析样品的可能性是很小的。但由于同步辐射装置所提供的X射线能量高、亮度大,采用狭缝的方法产生微束可以使用在同步辐射X射线荧光分析上,如北京同步辐射X射线荧光分析系统就是采用狭缝的方式来产生微束来满足环境科学、生命科学等对微分析技术的需求。比较复杂的聚焦方法是利用光学聚焦系统,设备比较复杂,成本比较高,其应用有很大的限制性。   自20世纪80年代以来,随着X光透镜技术的发展,X光透镜具有聚焦性能好、成本低、设备比较简单、能量利用率高,并且可以以成像的方式显示样品中元素分布等优点,于是便和X射线荧光分析系统有机地结合在一起。目前比较常见的有两种结合方式,一种是X光透镜和同步辐射X射线荧光分析系统相结合,另一种是X光透镜和常规的X射线荧光分析谱仪相结合,这两种结合主要都是利用X光透镜的优点,使X射线荧光分析系统具有束斑小(束斑的直径可以达到10~50&mu m)、光强度可以达到~107光子/秒、所需要的样品量少、分析速度快、散射本底小、探测极限低、可以分析厚靶样品中几十个&mu g· g-1的微量元素等优点。下图为使用X光透镜的微束X射线荧光分析美国国家标准局研制的玻璃有证标准参考物质(SRM NIST610)各元素的探测极限。由于微束XRF具有比常规的X射线荧光分析更多的优点,因而使其应用范围越来越广泛。如工业上汽油中含硫量的测量 大气中单颗粒物的成分测量 参与植物新陈代谢过程中某些元素如Mn,Ca,Zn,Rb等在不同年龄的松针中从顶部到根部的分布 古陶瓷和青铜器中焊接物等微区的成分分析等。由于同步辐射X荧光分析需要大型加速器提供同步辐射光源,设备比较昂贵,机时比较有限。而使用X光透镜的微束X射线荧光分析系统与此相比设备比较简单,成本低、使用比较方便,因此研究使用X光透镜的微束X射线荧光分析在环境科学、地球科学、生命科学、文物保护等方面具有重要的意义。   微束X射线荧光分析在文物样品分析中有广泛的应用前景。   古陶瓷是由古代的土壤和岩石经过加工烧制而成,其化学成分主要是由Na2O、MgO、Al2O3、SiO2、K2O、CaO等组成,其中SiO2和Al2O3的含量之和在80%以上,因此古陶瓷样品主要是由Si和Al等氧化物组成的轻基体。在实验中既要准确的测量出Na和Mg,又要测量出Rb、Sr、Y、Zr等重元素氧化物的含量,其实验条件的选择是非常关键的。对于Na、Mg、Al和Si等元素需要在真空中或氦气的气氛下探测器才能探测到其被激发的特征X射线。由于文物样品的特殊性,一般采用在探测器和被测样品之间形成氦气的光路来测量或者直接在大气中测量。本工作是在大气中直接分析被测样品,同时也就意味者Na、Mg、Al、Si等元素的特征X射线没有被探测器探测到。   实验工作是在两种条件下测量:第一种条件是在电压35kV,电流10mA,测量时间为300s,探测器与样品之间的距离为25mm 第二种条件是电压为40kV,电流10mA,测量时间120s,探测器前加1mm的准直器来降低散射造成的本底,探测器与样品之间的距离为42mm。测量国家有证标准参考物质GBW07406(GSS-6)的谱如下图所示。从谱图上看,在探测器加准直器更能降低散射本底,提高探测极限。   青花瓷是中国古陶瓷中具有很高艺术价值的瓷器,但对青花瓷的产地、年代、钴料的来源、制造工艺及其真伪辨别等问题一直缺乏系统的研究。由于微束分析的一系列的优点,用微束X射线荧光分析扫描分析了一块明代青花瓷残片中青花部位的元素分布,样品的照片见下图。   实验装置如下图,采用旋转阳极靶和会聚X光透镜组成激发样品的微束X射线源,SiPINX射线探测器收集样品中激发出的元素特征X射线,采谱活时间为5min,每隔50&mu m测量一个点,扫描面积为1mm× 35mm AXIL程序进行峰的拟合和本底的扣除。   对比青花部位和白釉部位的MXRF谱图可知,青花部位与白釉部位有差异的元素为主要为K、Ca、Fe、Co、Ni 以这五种元素的峰面积为变量,Matlab程序做图得到青花瓷五种元素的分布图。从几种元素的微区分布图对比青花瓷图片,可以看出Mn和Co的分布基本上和青花瓷釉色的深浅相一致的,Fe元素的分布基本上与青花瓷釉色的变化没有明显关系。相关性分析表明,Mn和Co有非常好的相关性,而Ni与Mn和Co没有相关性。   本文摘编自程琳、金莹著《现代核分析技术与中国古陶瓷》一书。
  • 元素形态分析及其必要性
    1.元素形态   元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态又分为物理形态和化学形态,其中物理形态是指元素在样品中的物理状态如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。不同元素的主要常见形态如表1所示: 表1 不同元素的主要常见形态 元素名称 元素形态 As 三价无机砷(As(III)),五价无机砷(As(V)),一甲基砷(MMA(V)), 二甲基砷(DMA(V)),砷甜菜碱(AsB), 砷胆碱(AsC),砷糖(AsS)等 Hg 无机汞(Hg(II)), 一甲基汞(MeHg(I)),二甲基汞((Me)2Hg) Cr 三价铬(Cr(III)), 六价铬(Cr(VI)) Se 四价硒(Se(IV)),六价硒(Se(VI)),硒代胱氨酸(SeCys),硒代蛋氨酸(SeMet),硒多糖,硒多肽,硒蛋白等 Pb 二价铅(Pb(II)), 三甲基铅(TriML), 四乙基铅(TetrEL)等 Sn 二丁基锡(DBT), 三丁基锡(TBT)等   元素的不同存在形态决定了其在环境和生命过程中表现出不同的行为 不同的元素形态由于具有不同的物理化学性质和生物活性,在环境和生命科学领域发挥着不同的作用。元素总量或者浓度的相关信息已经不能满足环境和生命科学研究的需要,有时候甚至会给出一些错误的信息。   甲基汞的毒性要远高于无机汞,并且具有极强的生物亲和力,同时无机汞易于在生物体内富集并转化为甲基汞。人们首次认识到甲基汞的危害是在1955年,在日本的Minamata,因孕妇食用遭受甲基汞污染的鱼类,造成22名新生儿严重的脑损伤。在1971-1972年,伊拉克发生了大面积的甲基汞中毒事件,其原因在于当地人食用了经过甲基汞处理过的小麦做成的面粉。   Cr(III)是维持生物体内葡萄糖平衡以及脂肪蛋白质代谢的必需元素之一,而Cr(VI)却对生物体具有很大的毒性和致癌作用,原因在于其更强的氧化性和化学活性及迁移性 砷是一种有毒元素,但是不同形态砷的毒性却差别比较大,一般无机态砷毒性比较大,三价砷的毒性要大于五价砷 而有机态的砷中,甲基砷的毒性要强于其他的有机态砷,砷甜菜碱、砷胆碱和砷糖等则基本上没有毒性 对汞、锡和铅等重金属元素来说,有机态的化合物的毒性要远远高于无机态。作为人体必须的元素,铁仅仅是在二价时才能被生物体吸收和利用,食品中的总铁并不能代表可吸收利用的有效铁 硒是人体必需的元素,但是吸收过量时会导致硒中毒,不同形态硒的生物可利用性和毒性也差别较大 铝的毒性也和其形态密切相关,自由态的铝离子、水化羟基化合物Al(OH)2+和Al(OH)2+等是致毒形态,多核羟基铝也具有一定的毒性,而铝的氟配合物以及有机态配合物则基本无毒。   根据传统分析方法所提供的元素总量的信息已经不能对某一元素的毒性、生物效应以及对环境的影响做出科学的评价,为此,分析工作者必须提供元素的不同存在形态的相关信息。元素形态具有多样性、易变性、迁移性等不同于常规分析对象的特点,因此其分析方法也成为一个崭新的研究领域,即“元素形态分析”。   2.元素形态分析   元素形态分析是分析科学领域中一个极其重要的研究方向,IUPAC将其定义为定量测定样品中一个或多个化学形态的过程。Lobinski将其定义为确定某一元素在样品中不同化学形态分布的过程 Caroli指出,形态分析为识别和定量检测对人体健康和环境有危害的不同形态的无机分析物 Hieftje则将获得相关目标分析物原子的氧化态、键合特征、电荷态及原子缔合体的过程定义为形态分析 Welz则认为所谓元素形态分析是指测定特定条件下不同化合物的氧化态或可溶态的过程。曾有人根据Tessier连续萃取法将土壤中元素形态分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态和残渣态等五种,但这并不是严格意义上的形态分析,这一萃取过程并不能提供涉及分子结构和电荷状态的元素形态的详细信息。   在20世纪70年代末至80年代初,Van Loon和Suzuki分别在权威期刊Anal. Chem.和Anal. Biochem.上发表了元素形态分析领域的开创性的工作,将广大的分析工作者的研究重点转移至元素形态分析技术的开发上来。经过二十多年的发展,元素形态分析已经成为分析科学领域的一个重要分支,随着这一技术的不断发展,已经为环境科学、生命科学、临床医学、营养学、毒理学、农业科学等领域提供了越来越多的有用信息。   3.元素形态分析的技术特点   元素形态分析技术主要由样品采集、样品制备、分离/富集、定性/定量、分析报告等五部分组成。在整个形态分析过程中,样品制备过程是形态分析的关键环节,需要注意保持待测元素形态,同时避免污染,这使得样品制备过程较常规总量分析更加复杂和困难。因此,对操作人员提出了更高的要求,同时延长了前处理时间。此外,由于元素的某一形态,仅仅是元素总量的一部分,甚至是极少的一部分,因此对分析方法的灵敏度提出了更高的要求,只有高灵敏的检测技术才能满足元素形态分析的要求。此外,用于元素形态分析的标准物质和标准参考物还需要倚赖进口,在一定程度上影响了形态分析技术的推广。   4.元素形态分析方法   由于一种元素存在几种甚至是几十种元素形态,因此分析方法已不同于传统的总量分析。在前处理方法上需要保持元素的现有形态,因此也不能沿用传统的酸消解方法 在测定方法上,形态分析也远不同于传统的总量分析,对方法的检出能力和稳定性提出了更高的要求。   早期的形态分析方法一般采用差减法进行测定,通过控制某些测量条件,实现总量和某些元素形态的测量,然后通过差减的方法得到其它元素形态的含量信息。如通过测量总砷和三价砷,二者相减即可得到五价砷的浓度 如通过四价硒和总硒的测量,即可测得六价硒的含量。差减法相对比较简单,整个分析过程对实验条件的要求不高,但是该方法仅仅适用于元素形态较少的条件,且操作较为繁琐。   元素形态分析的通用方法是先对元素的各种形态/组态进行有效分离,然后再进行检测。近年来,人们在追求元素形态分析方法的高灵敏度、高选择性的同时,也一直在致力于提高分析过程的效率,缩短分析过程的时间,力图实现整个分析过程的自动化。传统的元素形态分析方法将元素形态的分离与测定分别进行,使得操作过程变得比较繁琐,同时在操作过程中可能会造成样品的损失以及元素形态的变化,对最终的测定结果产生比较大的影响。联用技术将高效的分离技术与高灵敏的检测技术有机结合,元素形态经过分离后通过在线“接口”直接进入检测器进行检测,这样灵敏度、准确度和分析过程的效率都得到很大提高。  5.HPLC-ICPMS联用   自1983年第一台商品仪器问世以来,ICP-MS经过近20多年的发展,已经成为各行业用于元素分析和同位素分析最有力工具,具有极低的检出限(10-15~10-12量级)和极宽的线性范围(8~9个数量级)以及极强的多元素快速检测能力。由于检测的是质量/电荷比(m/z),不存在光谱分析中的光谱干扰问题,但存在同量异位素、多原子分子离子以及多电荷离子的干扰问题,如40Ar35Cl干扰75As、40Ar40Ar干扰80Se、36Ar18O干扰54Fe的测定。   HPLC-ICP-MS联用技术已经成为分析化学中最热门的研究领域之一,已经被认为是目前最有效和最有发展前景的形态分析技术,已经得到了较为广泛的应用。但是ICP-MS对色谱分离中所普遍使用的高盐组分和高含量有机组分,如甲醇、乙腈等承受能力有限,大大限制了其在与色谱联用中的应用。此外,ICP-MS昂贵的价格、对操作人员的较高要求以及极高的运行和维护成本限制了ICP-MS在元素形态分析领域的广泛应用。中国经济相对不发达的现状,决定了HPLC-ICP-MS不可能在中国进行普及和推广。   6.HPLC-VG-AFS联用   原子荧光光谱仪是具有中国特色的分析仪器,它具有分析灵敏度高、线性范围宽、仪器结构简单、成本低廉、易于维护、光谱干扰及化学干扰少等独特优点。对于As、Hg、Se、Pb等元素的特征谱线均处于原子荧光最佳的检测波长范围,在采用了高效的蒸气发生进样技术后,具有其他分析手段无可比拟的检出能力,可以获得与电感耦合等离子体质谱(ICP-MS)相当的检出限和灵敏度。VG-AFS与色谱的联用技术的研究已经开展30多年,但由于缺乏理想的商品化仪器,一直没有太大的发展。随着近年来国内原子荧光技术的不断发展和完善,在各项性能上都得到了很大提高,已经具备了与色谱联用的条件。如果将原子荧光的高效检出能力与色谱的高效分离技术完美结合,就可以实现As、Hg、Se等元素的形态分析。   原子荧光采用的蒸气发生进样技术能够使待测组分与基体有效分离,因此具有极强的耐高盐组分和有机组分的能力,能够和任意的色谱分离条件相匹配。此外原子荧光还具有成本低廉和操作简单等优点,使得HPLC-VG-AFS联用技术应用于元素形态分析具有极大的发展前景,易于在各个行业推广和使用。   7.元素形态分析的必要性   砷作为常见的有毒有害元素,一直倍受人们关注。砷摄入过多可引起急性中毒,长期低剂量暴露可引起慢性砷中毒,诱发各种皮肤病并可导致肝肾功能受损,甚至导致癌症。砷的毒性与砷的赋存形态密切相关,不同形态的砷毒性相差甚远。在主要的砷化物中,亚砷酸盐和砷酸盐毒性大,而MMA和DMA毒性小, AsB和AsC则被认为没有毒性。亚砷酸盐、砷酸盐、MMA、DMA、AsB、AsC和AsS对实验小鼠的半数致死量(LD50)分别为14、20、700~1800、700~2600、10000、6500、8000mg/kg。GB 2762-2005《食品中污染物限量》中规定贝类及虾蟹类水产品(鲜重)的无机砷限量标准为0.5mg/Kg, 干重的限量标准为1 mg/Kg,。GB/T5009.11-2003提供了食品中总砷和无机砷的测量方法,为有毒的无机砷检测提供了技术手段。   近年来, 国内质检机构一直依据GB/T5009.11-2003来检测食品中的无机砷。继广西检出大量紫菜中无机砷超标以来, 国家工商局又报道了44.9%的紫菜、海带中无机砷超标,甚至引发了紫菜、海带能否安全食用的讨论。紫菜属海生植物型食品,其中砷主要是以AsS的形式存在,几乎不含无机砷。2004年在香港媒体上报道多次的鱼罐头事件,香港消费者委员会测试了市面上的48款吞拿鱼、沙甸鱼等鱼类罐头,发现当中的17种砷含量超标,引起规模超过5亿元的内地鱼罐头产业近年来一直不景气。   实际情况是,国内绝大多数海产品并未超标,只是目前的检测方法存在问题。我们以海带、紫菜类植物性海产品为例,加以详细说明。植物性海产品中,砷主要以砷糖(AsS)的形式存在,此外还含有少量的二甲基砷酸(DMA)。如果依照GB5009.11-2003的样品前处理方法,采用6mol/L的盐酸进行提取,则植物性海产品中的AsS会部分分解,转化为DMA,如图1所示。标准中所采用的原子荧光检测方法,是以蒸气发生化学反应作为基础的,其检测过程如下:   (1) 样品中的五价砷在进样前,首先被还原剂还原成三价无机砷   (2) 然后在进样后和KBH4反应,生成AsH3和H2   (3) AsH3经过气液分离后,在氩气和氢气的携带下,进入原子化器   (4) AsH3最终在Ar-H火焰中解离,生成砷原子。   (5) 砷原子受到特征谱线的辐照,其外层电子受到激发,跃迁至较高能级,在其返回至基态时,发出共振荧光   (6) 共振荧光被检测器所接收,经过前置放大后,转化为电信号,输出至控制软件中,进行定量计算。   由于DMA也会和KBH4反应,生成气态的As(CH3)2H, 而As(CH3)2H也会在Ar-H火焰中解离,生成砷原子,所以GB5009.11-2003的样品前处理方法造成的AsS分解所产生的DMA以及样品中原有的DMA均会被以无机砷的形式检出,得到“假阳性”的分析结果。因此,检出的大规模海带、紫菜中无机砷超标的结果是错误的,究其原因,主要在于其前处理方法使得以无毒有机砷存在的AsS被当成无机砷被检出。   对于GB5009.11-2003的标准方法,存在两个问题:   (1)样品前处理问题   6mol/L的盐酸使得紫菜、海带类样品中的AsS部分分解,其方法值得商榷。   (2) 检测方法的问题   由于采用蒸气发生-原子荧光检测方法,样品中的有机砷,如DMA和MMA也会生成氢化物,被误认为是无机砷被检出。因此,该方法对无机砷检测而言,不是特异性检测方法,部分有机砷形态也会同时干扰测量,造成结果偏高的现象。   因此,针对上述两个问题,只能采用高效液相色谱-原子荧光联用的方式加以解决,将所测量的砷形态经过色谱分离后,再检测,就不会存在上述问题。   北京金索坤公司生产的形态分析原子荧光光谱仪,是金索坤公司多年技术研究成果,专门针对元素形态分析需求设计的高端产品,内置了在线消解装置,配备了液相泵,并采用索坤的连续进样技术和液相泵无缝对接,实现对柱后流出液实时监测,连续采集数据,大大提高了形态分析原子荧光光谱仪的准确度。   不仅是形态分析原子荧光光谱仪,北京金索坤公司的SK系列原子荧光光谱仪还有预留联用接口,可与任何型号的液相色谱仪无缝对接,进行形态分析,更是以其卓越的稳定性和可以检测多种元素深受广大用户的青睐,索坤公司成功研制出新一代的原子荧光,其在保持了传统原子荧光设备的技术优点外,更具备了三大主要特点:   ▲超高重复性指标   ▲多达18种的测试元素   ▲简便快捷的操作   实现以上三大特点,归功于2大核心技术彻底由理论化为生产,两大核心技术:   2010年11月通告的发明专利《连续流动进样氢化物发生系统》(专利号:ZL.200610113008.4)   《小火焰法原子化技术在无色散原子荧光上的应用》(专利号:03134241.8)   索坤公司经过了无数次的试验和研发改进,以及配套的十多个实用新型专利,才得以将原子荧光技术-中国为数不多的具有自主知识产权的分析仪器-更新换代,且填补了国际空白,为国家的仪器发展事业增砖添瓦!   应用了换代技术的产品性能,重复性将比现在的优越一倍,具体的数据正在提交权威机构检测中。索坤公司的新世代原子荧光光谱仪,分为三大产品系列:   ▲企业系列---为企业量身定做,超高性价比:   SK-830 │SK-2003A │SK-2003AZ   ▲质检系列---更多的可检测元素及强大功能:   SK-盛析│SK-锐析│SK-2002B│SK-2003│SK-2003AZ   ▲科研系列---全面的重金属检测及形态分析:   SK-博析│ SK-典越
  • 德国元素 | 新能源汽车行业电极材料分析解决方案
    德国元素Elementar | 新能源汽车行业电极材料分析解决方案对于新能源领域的发展来说,电池是关键的环节,也是近年来产业链中投资火热的领域之一。动力电池性能指标主要有储能密度、循环寿命、充电速度、抗高低温和安全性五个维度,其中储能密度和安全性是两大刚需,凭借这两点磷酸铁锂电池和三元锂动力电池跻身主流市场,分别应用于电动客车和电动乘用车市场。 三元锂动力电池是锂电池的一种,是指采用镍钴锰酸锂做正极材料的锂电池。而另一种锂离子电池阳极材料是磷酸铁锂,化学式为LiFePO4,主要用于各种锂离子电池。随着电池行业的快速发展,相关公司针对于现有的三元锂电体系,提出了无钴电池材料的研发方向,由于钴的价格比较昂贵,可以通过增加镍的含量,来增加能量密度和降低成本。 硅材料是目前已知的拥有最高理论比容量的负极材料,作为锂电池负极,在提高动力电池性能上有着巨大的潜力,并且工业上大规模应用的时间窗口已经来临。但是,硅负极材料具有较高的体积膨胀,纯硅作为锂离子电池负极材料时极易粉化、脱落,从而与电解液不断形成新的SEI膜,其电化学性能较差。因此硅碳复合材料是作为锂离子电池负极材料的理想选择。而对于以上的锂电池材料来说,碳硫元素含量的测量至关重要。因为这两种元素含量的范围会对锂电材料的充放电速率,电池容量以及电化学性能有很大影响。这里选择了来自于德国元素的inductar CS cube对于这三种材料进行测量:inductar CS cube 红外碳硫仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,电极材料的碳硫分析。特点:
  • 德国元素耗材之星 | 全系列锡舟
    德国元素耗材之星-全系列锡舟锡舟是有机元素分析仪测试碳(C)、氢(H)、氮(N)、硫(S)等元素分析必用的样品包裹舟,其不仅可以易折叠,可以轻松包裹样品之外,还有引燃样品之功效。锡舟在高温、富氧条件下可瞬间释放大量热量,瞬间提高样品燃烧温度,所以锡舟是有机元素分析仪样品处理的最佳方式。有机元素分析仪的使用者经常会处理各种各样的样品,不同的样品根据性质及含量的不同,其取样量也有很大区别。单一规格的锡舟无法满足所有应用需求,这该如何处理呢?这也是让一些使用者头疼的地方。德国元素elementar致力于提供专业的有机元素分析仪,除了仪器的专业性之外,我们在耗材方面也是为客户提供便捷的样品处理方式。小型锡舟(4*4*11):可处理10毫克以内的样品,如化学品、石墨、碳材料等中型锡舟(6*6*12):可处理10毫克以上的样品,如化学品、材料、煤炭等大型锡舟(8*8*15):可处理几十至一百毫克的样品,如材料、煤炭、土壤等锡杯(35*35):可处理几十至几百毫克的样品及轻飘型样品,如纤维、土壤、固废等* 以上样品量建议与样品本身的性质有关,仅供参考以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 传承不息,焕新升级 | 德国元素OEA有机元素分析仪选型方案
    近日,国务院出台《推动大规模设备更新和消费品以旧换新行动方案》,是加快构建新发展格局、推动高质量发展的重要举措,鼓励对仪器设备的淘汰落后与更新升级,旨在大力促进先进设备生产应用,推动先进产能比重持续提升,实现当前与长远的双赢。薪火传承,创新致远德国元素Elementar助力仪器设备更新迭代加快产品更新换代是推动高质量发展的重要举措,可以体验到更先进的仪器分析技术,提高分析的准确性和效率。德国元素Elementar凭借在元素分析领域超过120余年的经验传承,在原先老仪器的坚实基础上不断优化升级,推陈出新,打造全系列高效、稳定、精准和便捷的元素分析仪,已成为专业元素分析的代名词,蜚声国际,为化工、农业、能源、环境、鉴定、材料等领域的客户提供卓越及客户友好的元素分析解决方案。作为引领元素分析的技术主导者,德国元素Elementar 历经120余年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪,应用范围从最初的有机化学品,到后来的土壤、沉积物、石化油品,再到现在碳材料、石墨烯、煤炭、降解材料等,针对客户的不同应用,提供定制化的精准解决方案,为科研工作提供强有力的支持。应用领域:有机化学品、化工材料、生态环境、农业分析元素:碳(C), 氢(H), 氮(N), 硫(S), 氧(O), 氯(Cl)德国元素Elementar有机元素分析仪UNICUBE 有机元素分析仪 — 卓越普适型元素分析仪vario EL cube 有机元素分析仪 — 高性能元素分析仪vario MACRO cube 有机元素分析仪 — 大进样量元素分析仪rapid OXY cube 有机元素分析仪 — 专业氧元素分析仪trace SN cube 有机元素分析仪 — 痕量硫氮分析仪
  • 德国元素Elementar,120余年元素分析的传承和创新
    “这120多年来,德国元素从未停止过追寻元素的脚步,我们创造卓越的驱动力是渴望根本了解构成纷繁世界的基本元素。今天我们服务的用户,科学、环境、农业、材料等各行业日新月异,更重视保存地球资源与人类健康有机发展。德国元素始终安于专业一隅,孜孜进取,与用户在一起,秉承责任与专注,实现可持续发展与创新。”——何元,德国元素中国总经理1897年,我们作为Heraeus分析仪器产品线,致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。自此,我们不断地深耕元素分析领域,于1964年和1973年,分别推出了杜马斯燃烧法定氮仪和高温燃烧法TOC总有机碳分析仪。第一台杜马斯氮/蛋白质分析仪(左);第一台高温燃烧法TOC总有机碳分析仪(右)历经120余年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪,针对客户的不同应用,提供定制化的精准解决方案:1)传统的CHONS有机元素分析仪-测定元素组成,面向化学制药、农业、石油化工、能源实验室;↓2)杜马斯定氮仪-面向食品饲料农业和能源行业;↓3)TOC总有机碳分析仪-测定环境、制药等应用中的TOC总有机碳;↓4)无机材料的红外碳硫仪、氧氮氢分析仪和移动式火花直读光谱仪-分析金属陶瓷等材料的元素;↓5)IRMS稳定同位素比质谱仪-在地质、食品溯源等有广泛的应用。↓对于一个以创新作为客户服务主要责任的企业来说,德国元素120余年的发展史就是一部元素分析领域的创新史。公司每年都有技术创新,连续获得德国创新100奖。管理大师德鲁克说:为顾客创造价值是企业存在的唯一理由,客户决定企业的存亡。德国元素能成为一家发展了120余年的百年企业,恰因其一刻未离开过用户。董事长Dr. Sieper就此曾接受过媒体采访,他说他希望德国元素是一家对用户“厚道”的公司:“可能有这样的供应商,为仪器只提供3-4年的支持。当仪器宕机时,他会劝客户重新买一台,甚至向客户承诺更大的折扣。德国元素为客户提供更好的方案。我们的产品能够保证实现‘超长寿命,可靠,高性能’(包括灵敏度、线性范围等),我们的团队为客户提供24小时*7天的服务。所以,德国元素的优质服务不仅是技术过硬,而是要让客户得到‘总拥有成本更低’的产品,为客户带去更高的投资回报率”。以浓厚兴趣与责任为经,以奉献与专一为纬,120余年坚持做一件事-元素分析,百年企业德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 元素测定、薄膜分析、样品制备,巧用GDS实现多方位分析【GDS微课堂-8】
    运营一个公司需要不同部门的合作,打好一场胜仗,需要不同的兵种配合。在分析仪器世界里,如果将仪器巧妙组合,让它们充分发挥各自特长,也会事半功倍。因为各种仪器的侧重点不同,单一技术只能得到表面某一方面的信息,但不同仪器亲密合作,就可以对样品进行多方位、多角度、多层次的检测,终得到全面准确、甚至超出预期的科研结果。那你知道GDS都有哪些小伙伴吗?他们怎么相互合作呢?今天我们请了三位小伙伴,来认识一下他们吧!01拉曼光谱仪GDS可以获取不同深度处元素的含量分布信息,结合拉曼光谱仪能够进一步得到物质的化学结构信息。接下来,让我们一起看下两者是如何配合的。GDS和小曼今天收到了一份委托,需要测定不同实验条件下产物是什么,以及怎样分布。实验条件如下:采用阳溅射法在含氟乙二醇溶液中制备了具有纳米孔结构的氧化铁薄膜。在不同的温度(350℃、400℃、450℃)下进行退火。GDS和小曼分别对三份实验产物进行了检测,结果如下:GDS我测定了不同深度处实验产物的元素浓度变化,以350℃退火温度下的实验结果为例,可以明显看出:随着溅射时间的增加,不同深度处(X轴)Fe元素的浓度不断变化,其他元素亦是。综合400℃和450℃退火温度下的实验结果,元素浓度(谱峰强度)相近,可见实验产物较为类似。但产物是什么?还需让小曼揭晓。GDS分析图拉曼光谱仪将不同退火温度下强拉曼峰与拉曼谱图库做对比,我发现:350℃退火温度下主要产物是磁铁矿,400℃和450℃退火温度下是赤铁矿,与上图GDS的结果吻合。拉曼光谱图综合上述结果,我们获取了Fe、C等元素随深度改变的浓度变化信息,并在此基础上,进一步测得不同退火温度下产物分别为磁铁矿和赤铁矿。02椭圆偏振光谱仪由上文我们知道GDS能够得到薄膜在不同厚度的元素含量分布,此外,GDS还能从元素深度的变化来获取镀层的结构、均一性、厚度等信息。结合椭偏仪擅长解析薄膜厚度和其光学常数的优势,两者合作就能够准确获得镀层的结构,并对镀层光学特性有更全面的了解。椭圆偏振光谱仪Hi,我是椭小偏,做表面分析的同学应该对我很熟悉吧!我和GDS是老朋友了,我们经常协作完成测试。近我们对薄膜太阳能电池进行了分析,下面一起看下实验结果。GDS先来说说我的发现,下图我们可以看到电池镀层不同深度处各元素的含量变化,并且我发现Mo基底表面还有两层镀层:层主要含Cu、Se、Sn,而第二层含S、Zn,由此我得到了镀层的元素分布信息。椭圆偏振光谱仪我测试的是一款Cu2ZnSnS4太阳能光伏电池。下图张是电池的光学常数折射率n和消光系数k随波长的变化曲线;第二张图是我模拟出的镀层模型,由图可知:底层为Mo基底;中间是Cu2ZnSnS4层,厚度1472nm;上层厚度为227nm且镀层内存在孔隙,从上往下孔隙率从95%下降到6.8%。Cu2ZnSnS4太阳能电池的折射率n和消光系数k随波长的变化各镀层的厚度和表层孔隙率模型综合上面两种太阳能电池的实验结果,可知GDS能够测得镀层元素分布,椭偏仪可测得光学常数和镀层结构,两者合作为我们进一步解析材料提供了更为丰富的信息。03能谱仪(EDS)能谱仪(EDS)主要是利用不同元素X射线光子特征能量不同,来获取材料的元素种类以及含量等信息,如材料表面微区成分的定性和定量分析、固体材料的表面涂层分析等等,常和SEM扫描电镜、GDS等合作,来获取更为全面的镀层信息。EDS能谱仪大家好,我能够分析材料元素组成和含量等信息,但我获取的是镀层表面信息,无法探测较深的镀层,SEM姐姐推荐我来找GDS帮忙。GDS没问题,快将测定样品告诉我,我来帮你把表层剥蚀掉,你再分析~让我们来见证一下当GDS遇到EDS后产生的花火吧:GDS测试结果从上图的GDS结果可以看出,0~5.8μm为纯锌层,5.8~7.8μm为含有锌、铁和铝的合金层。为了方便能谱仪对合金层进行测试,GDS剥蚀掉了表面的纯锌层,露出铁铝合金层,以便EDS进一步剖析该层元素分布,结果图如下:EDS在GDS剥蚀后测试的结果从测试结果可以看出,在合金层中,Al、Fe、Zn元素的浓度比例分别为3.64%、71.32%和25.05%。铁铝合金层电镜图由上述实验结果可知,GDS能够帮助EDS和SEM剥蚀表面,制作可供分析的合格样品,全面立体地展示出样品结构信息和元素分布,并得到元素随深度变化的分布曲线,为进一步解析镀层提供了更为全面的信息。今天的测试结果到这里就结束了,至此我们知道GDS跟拉曼光谱仪、椭圆偏振光谱仪、EDS能谱仪合作,能够对物质进行全面表征,综合获得材料的化学结构、元素分布、光学常数等信息,这也为深入剖析材料提供了可供参考的方式。通过上面的几个例子,大家是不是对GDS与其他分析技术的合作有了更直观的认识呢?如果还有别的联用方式,也欢迎大家跟我们分享~至此,GDS微课堂全部结束啦!在这个系列里,我带大家了解了GDS的基本原理、基本功能、常用概念、应用范围,并详细讲解了GDS在钢铁、锂电池、太阳能电池以及LED行业中的应用,后,还和大家分享了GDS与其它表面分析技术是如何协作的。不知道同学们掌握的如何了?可以点击往期回顾,再复习一遍。不仅限于GDS,之后我们还将带来一系列其他光谱技术,请一直关注我们哟!往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念
  • 多元素分析仪针对钢材的化学成分检测优势
    多元素分析仪针对钢材的化学成分检测优势 钢材中除了主要化学成分铁(Fe)以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、钛(Ti)、钒(V)等元素,这些元素虽然含量少,但对钢材性能有很大影响: 南京麒麟科学仪器集团有限公司专业研发的QL-S3000C型电脑红外全能联测多元素分析仪针对钢铁材料检测,由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。 电脑红外全能联测多元素分析仪钢材的化学成分检测及其对钢材性能的影响1.碳。碳是决定钢材性能的最重要元素。碳对钢材性能的影响如图6-3所示:当钢中含碳量在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。随着含碳量的增加,钢材的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。一般工程所用碳素钢均为低碳钢,即含碳量小于0.25%;工程所用低合金钢,其含碳量小于0.52%。多元素分析仪针对钢材的化学成分检测优势2.硅。硅是作为脱氧剂而存在于钢中,是钢中的有益元素。硅含量较低(小于1.0%)时,能提高钢材的强度,而对塑性和韧性无明显影响。3.锰。锰是炼钢时用来脱氧去硫而存在于钢中的,是钢中的有益元素。锰具有很强的脱氧去硫能力,能消除或减轻氧、硫所引起的热脆性,大大改善钢材的热加工性能,同时能提高钢材的强度和硬度。锰是我国低合金结构钢中的主要合金元素。4.磷。磷是钢中很有害的元素。随着磷含量的增加,钢材的强度、屈强比、硬度均提高,而塑性和韧性显著降低。特别是温度愈低,对塑性和韧性的影响愈大,显著加大钢材的冷脆性。 磷也使钢材的可焊性显著降低。但磷可提高钢材的耐磨性和耐蚀性,故在低合金钢中可配合其他元素作为合金元素使用。5.硫。硫是钢中很有害的元素。硫的存在会加大钢材的热脆性,降低钢材的各种机械性能,也使钢材的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。6.钛。钛是强脱氧剂。钛能显著提高强度,改善韧性、可焊性,但稍降低塑性。钛是常用的微量合金元素。7.钒。钒是弱脱氧剂。钒加入钢中可减弱碳和氮的不利影响,有效地提高强度,但有时也会增加焊接淬硬倾向,钒也是常用的微量合金元素。 南京麒麟科学仪器集团有限公司检测中心2016.06.22更多资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com
  • 油气、煤炭中碳、氮、硫元素分析解决方案 | 德国元素Elementar
    在石油化工生产过程中,硫是造成金属设备腐蚀、催化剂中毒、发动机磨损的主要危害源之一。另一方面,石油中控制一定的硫含量或加入一定的硫化物,还可以改善油品的性质,起到提高油品质量的作用。而氮化物是造成油品颜色变暗、产生大量沉渣、储存稳定性变差的主要原因。石化及煤炭工业均在生产过程中会产生大量的废水,其废水的性质复杂多变,其中废水中的有机物特别高。监测废水中有机物的污染情况,除了环保的要求外,也可为生产工艺的优化提供有力依据。有机元素分析解决方案碳氢比可以用来评估石油及其馏分的燃烧性能,较高的碳氢比意味着更多的氢原子,会导致更完全的燃烧和更高的燃烧热值,在炼制过程中,通过调整不同馏分的碳氢比,可以获得更高效的燃料。氮、硫元素分析解决方案在石油化工生产过程中,硫是造成金属设备腐蚀、催化剂中毒、发动机磨损的主要危害源之一。另一方面,石油中控制一定的硫含量或加入一定的硫化物,还可以改善油品的性质,起到提高油品质量的作用。而氮化物是造成油品颜色变暗、产生大量沉渣、储存稳定性变差的主要原因。对油品中的硫、氮元素进行精准测定至关重要。氧元素分析解决方案在油品中氧含量是一个很重要的控制指标,氧含量测定值的高低将直接影响油品的质量。德国元素专有的氧元素分析仪专为油品及溶剂中的氧含量测定而设计。无机材料红外碳硫仪解决方案催化重整是炼油和石油化工工业中最重要的加工工艺之一, 也是催化作用在工业上最重要的应用之一,由于中间产物烯烃的聚合和环化生成的稠环化合物,会逐渐积累在催化剂表面,导致催化剂表面焦炭的生成,使催化剂失去活性。所以在重整催化剂的再生过程中,再生前后的碳含量是再生效果好坏以及再生手段选择的一个重要判据。inductar® CS cube 红外碳硫仪的产品特点:使用先进的高频感应炉,最高工作温度可达2000度以上无需使用动力气,节省做样成本最大限度减少灰尘和碎屑,无需繁琐的清洁步骤89位全自动进样器,实现24/7无人值守采用固态技术获得长寿命感应炉球夹管路连接设计确保轻松,免工具的维护直观和功能丰富的软件简化用户实验室生活稳定同位素比质谱仪解决方案油气主要由有机质经过高温高压作用形成,不同类型的油气来源有所不同,其稳定同位素比值也存在差异。因此,稳定同位素技术可以研究油气的来源和演化过程,帮助人们更好地探明油气资源和评价油气田勘探开发前景。例如,碳同位素比值可以用于区分不同类型的烃类物质,如原油、煤、天然气等,从而判断油气的来源和成因。
  • 全自动碳硫分析仪、元素分析仪的概述
    全自动碳硫分析仪、元素分析仪的概述 南京第四分析仪器有限公司成立于1976年,是国内金属分析仪器的首创厂家。专业生产高频红外碳硫分析仪红外碳硫分析仪 红外分析仪 碳硫分析仪 金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪 铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪 炉前快速碳硅分析仪 碳硅当量仪 铁水分析仪等,分析仪器的种类很多,欢迎来电垂询,电话:025-57332233 57330555 传真:025-57552266 QR-5型全自动电脑碳硫分析仪采用中国国标法测定(碳采用气体容量法、硫采用碘量法)原理设置而成,品牌电脑控制,配备电子天平实现了不定量称样测定,Windows界面下的全中文菜单式操作,并可贮存8条工作曲线,使用进口传感器,确保数据精密采集。检测结果可自动或手动打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标 。 QR-5型全自动电脑碳硫分析仪主要技术参数 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒 测量精度: 符合GB223.69-2008,GB223.68-1997标准 QR-5型全自动电脑碳硫分析仪主要特点 采用气体容量法定碳,碘量法定硫。碳、硫测定均为全自动; 利用微机系统进行智能程序控制,精密数据采集; Windows界面下的中文菜单操作; 碳硫元素同时可保存八条标样曲线,测试结果长时间大容量保存,并具有自动、手动两种打印方式,且可任意查询分析数据; 配套电子天平,实现不定量称样。 全自动碳硫分析仪、元素分析仪的概述 南京第四分析仪器有限公司成立于1976年,是国内金属分析仪器的首创厂家。专业生产高频红外碳硫分析仪红外碳硫分析仪 红外分析仪 碳硫分析仪 金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪 铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪 炉前快速碳硅分析仪 碳硅当量仪 铁水分析仪等,分析仪器的种类很多,欢迎来电垂询,电话:025-57332233 57330555 传真:025-57552266 QR-5型全自动电脑碳硫分析仪采用中国国标法测定(碳采用气体容量法、硫采用碘量法)原理设置而成,品牌电脑控制,配备电子天平实现了不定量称样测定,Windows界面下的全中文菜单式操作,并可贮存8条工作曲线,使用进口传感器,确保数据精密采集。检测结果可自动或手动打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标 。 QR-5型全自动电脑碳硫分析仪主要技术参数 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒 测量精度: 符合GB223.69-2008,GB223.68-1997标准 QR-5型全自动电脑碳硫分析仪主要特点 采用气体容量法定碳,碘量法定硫。碳、硫测定均为全自动; 利用微机系统进行智能程序控制,精密数据采集; Windows界面下的中文菜单操作; 碳硫元素同时可保存八条标样曲线,测试结果长时间大容量保存,并具有自动、手动两种打印方式,且可任意查询分析数据; 配套电子天平,实现不定量称样。
  • 深度好文:ICP-MS元素分析的民生应用
    p   人类赖以生存的空气、水、土壤、食品等因工业和生活发展而受到污染,相关的食品、环境、疾病相关的问题也不断曝出。如含有无机元素汞的形态物甲基汞是一种剧毒神经毒素,60多年前在日本发生的骇人听闻的“水俣事件”就是由甲基汞中毒造成的。在美国和我国部分省份等地也不断发现甲基汞含量超标的水域。及时发现水体中甲基汞等重金属污染对维护人类健康非常重要。能否快速、准确地判断摄入的水、食品和药品的安全是分析应用行业关注的问题。 /p p   无机元素分析在与人类生存与健康相关的领域以及生活的其他方面发挥着不可或缺的作用。石墨炉原子吸收光谱、火焰原子吸收光谱、氢化物发生原子吸收光谱、电感耦合等离子体发射光谱法、电感耦合等离子体质谱(ICP-MS)等方法都是无机元素分析的主要工具。随着分析技术的发展与成熟,ICP-MS因其在检出限、线性范围、平均检测成本方面有更大优势而逐渐成为无机分析实验室的首选。日前,在安捷伦科技与清华大学分析测试中心联合举办的“无机质谱创新技术专家研讨会”上,来自国内各界的专家和学者,在学术交流和技术探索方面分享了他们的心得。 /p p    strong 在复杂基质中寻求高灵敏度和低检出限 /strong /p p   基质干扰是元素分析应用中的一大难题,涉及食品、环境、生物样本等复杂基体样本相关的研究与应用常会碰到基质干扰带来的数据结果影响。有效去除基质干扰是近些年分析技术发展的方向之一。光谱技术伴随着应用需求不断进步,随着四极杆和串联四极杆与ICP联用技术的出现与发展,光谱技术在复杂基质中抗干扰的能力得到大大增强。 /p p   清华大学分析中心在研究分析仪器硬件创新的同时,也将聚焦点投向了仪器应用的新方法。分析中心研究员邢志介绍,中心的元素分析实验室主要关注金属元素及非金属元素相关的科学研究与应用研究,分析工作包括通过总金属元素溯源判断雾霾成因和来源,通过检测镉元素快速识别“镉大米”,以及通过铬元素分析快速建立应对“毒胶囊”的应用方法等。“我们不仅做元素总量检测,还包括元素价态和形态分析,以此来综合判断环境和食品的安全性。”邢志认为,如何把元素分析的灵敏度进一步提高并得到很好的应用是分析化学面临的挑战之一。“质谱技术越来越成熟,ICP-MS以及ICP-串联质谱的出现给元素分析带来了更准确的结果。” 他举了一个研究中的例子,对生命科学研究中生物样本磷元素的测定,传统光谱技术很难精确定量,而采用ICP-串联质谱技术则能够达到10-9高灵敏度定量。安捷伦ICP--MS 8800已经在该实验室运转了数年,由于其在分析复杂基质时优越的抗干扰能力,已成为该实验室在复杂基质元素分析应用中的首选。 /p p   无机元素分析是北京市疾控中心的一项重要工作,该中心实验室在光谱技术的应用方面不断开发新方法。“与疾病相关的风险控制与预防是我们的首要职责,我们为疾控系统开发与人体健康相关的标准方法。”中心实验室副主任刘丽萍说。原子吸收光谱、原子荧光光谱及ICP-MS是该实验室进行新方法开发应用的重要工具。2006年颁布的《生活饮用水卫生标准》(GB5749-2006)中的无机元素分析标准方法就是由该实验室主持建立的。刘丽萍介绍说:“在该方法中我们新增了一些重金属元素及修订了部分无机元素的分析方法。砷的形态分析、甲基汞的标准方法当时都在安捷伦的液相色谱和ICP-MS平台上进行方法开发。”该实验室在分析复杂基质或关键的样品时,总会优先使用安捷伦ICP-MS,“这是因为它在抗基质干扰能力,之前的使用经验告诉我们即使在复杂基质样本中,它也能给我们带来稳定可靠的数据结果。” /p p   对于食品中元素分析,目前已经有一系列成熟的相应仪器和分析方法。中国计量科学研究院化学所副研究员韦超认为,虽然可选的方法很多,但在基质成分复杂、待测物形态多样时,干扰物消除和待测物准确定量仍然具有一定难度。韦超所在中国计量科学研究院化学所食品安全室是以食品安全计量标准方法开发、标准物质研发为主的实验室。食品中的元素分析是其标准物质及标准方法涉及的一个重要方面。该实验室配备有多台ICP-MS及安捷伦ICP-MS 8900。元素形态的检测要求仪器能够具有高灵敏度从而提供更低的检出限,对于磷、硫元素,如果使用单四级杆其检出限一般在ppb级。而串联质谱可将其检出限降低至0.1甚至0.01ppb的水平,使得低于0.1ppb的元素和形态都能得到很好的检出效果。“安捷伦ICP-串联四极杆的二级筛选以及mass-shift反应是当前ICP-MS的重要创新。”韦超说,这对提高标准物质的质量非常有帮助,从而将改善检测机构、食品企业等实验室的能力验证、盲样考核等实验进程。 /p p    strong 面对更低浓度挑战,准确还原物质真实组成 /strong /p p   ICP-MS的抗基质干扰能力不仅应用在食品和环境领域,生物基体中的元素分析也需要能够消除机制干扰的高灵敏度分析平台。中科院生态研究中心致力于环境生态研究,在化学污染物和生命必需元素在环境中的行为、环境污染控制、饮用水质净化等诸多方面提供先进的方法和技术。近些年,该中心也逐渐在把重心从纯粹的环境研究转移到人体和环境相关的动态分析。该中心研究员胡立刚介绍,中心实验室越来越多的研究任务涉及生物样品,如蛋白质。研究人员开始更多地通过内暴露环境的外来元素分析来测定重金属污染毒性级人体健康状况。人体内暴露环境中的原来元素往往仅在痕量级水平,在生物组织中准确测定低浓度元素是传统方法无法实现的挑战,而针对复杂基质中痕量物质分析的串联质谱就能够有效地化解这一问题。该中心研究员胡立刚说,“最新的ICP-MS具有串联质谱和可选择的碰撞模式,这对实验室分析中的消除机制干扰和准确定量低浓度元素很有帮助。”该实验室在采用ICP-MS测定基体内的金属(S、Fe)蛋白时,能够达到ppb级的检出限。 /p p   稀土是我国重要战略资源,有“工业维生素”之美誉。虽然其稀土看似与日常生活距离很远,而事实上稀土与大众生活息息相关。如高铁轨道中就需要添加稀土以增强其机械性能和改善物理性能。稀土是材料行业中磁性材料、发光材料、钢铁冶炼的重要原料。稀土元素在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用。国家钨与稀土产品质量监督检验中心是国内稀土元素分析的权威机构,据了解,该中心每年要做5000个以上的稀土样本。该中心检测部副部长徐娜介绍,高纯稀土中的杂质含量很低,如果想准确测出高纯稀土中某一杂质含量,可能需要繁琐复杂的分离纯化过程。“此前我们一直在寻找一台能够帮助我们去除基质干扰还原稀土杂质浓度的光谱分析仪器。”徐娜表示,“此前采用单杆ICP-MS或其他分析方式测定氧化铝中的钆(Gd)、铽(Tb)竟会得到几百甚至上万个ppb,而这样的结果并不是产品本身的含量,而是基体干扰带来的。同样的样品在安捷伦ICP-MS 8800 的碰撞反应模式和选择质量数控制技术下,得到钆(Gd)、铽(Tb)等元素的浓度结果为ppb级,这才是可信的结果。安捷伦的ICP串联质谱能够有效去基质干扰,还原产品最真实的杂质情况,这是做矿物研究非常重要的技术特点,也是以稀土为原料的工业生产企业最为渴求的。” /p p    strong 常量、微量和痕量元素同时分析,5分钟 = 2天 /strong /p p   ICP-MS使中药材和保健品检测效率更上一层楼中药材和保健食品是生活中除了食品和环境之外,大众关注的另一个重要方面。上海市食品药品检验所专门针对中药材和保健食品开设了分析平台。对于样品中的元素分析,天然药物和保健食品业务所主管夏晶说:“中药中的元素分析涉及到常量、微量和痕量,检测范围要求很宽。而同时分析不同浓度级别的多种元素,若采用常规技术则只能得到很低的分析效率。”在该实验室引进了安捷伦ICP-串联质谱技术,在一次中药分析中就可以得到不同含量级别几十种元素的准确含量。中国药典规定了黄芪中包括铅、砷、汞、铬、铜在内的有害元素的检测。据夏晶介绍,按照含原子吸收、分光光度法等在内的常规技术,测定这五种重金属元素需要两天的时间。而采用安捷伦ICP-MS仅仅5分钟就能得到满意结果。“这种效率的提升对于我们这样样品量很大的实验室来说,的确带来不小的进程改善。” /p p   --------------------------- /p p   在ICP-MS技术发展中,安捷伦科技从用户角度出发,以解决贴近大众生活的分析难题为切入点,从仪器技术和应用方法方面给不同领域的分析实验室提供支持。Agilent 8800 三重四极杆 ICP-MS是世界首款ICP-串联质谱,给元素分析实验室提供了实现更高分析要求的可能。8900延续8800的 MS/MS 模式,对抗基质干扰带来了前所未有的改变,即使样品成分极为复杂多变,也均可得到一致、可靠的分析结果。根据样品的复杂程度,ICP-MS经常要与液相等分离设备联用,这就要求ICP-MS具有一定程度的耐盐性。安捷伦8900 ICP-QQQ将耐盐性提升至25%,即使与液相联用也能保持稳定的仪性能。 /p p   安捷伦致力于为分析行业提供技术平台和完整解决方案,用科技力量改善人们的生活质量。更好地服务于用户、服务于与人类生活相关的分析应用是安捷伦分析技术发展的目的之一。安捷伦愿与行业专家、分析工作者及社会大众一起共同营造美好生活。 /p p    strong 关于安捷伦科技公司 /strong /p p   安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者。 拥有 50 多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2016 财年,安捷伦的净收入为 42 亿美元,全球员工数约为 13,000 人。 /p p /p
  • 用元素分析感受立夏
    立夏昼初长,绿野换新光今日立夏,天地俱生,万物以荣。夏,在《尔雅》中被解释为“长赢”。“赢”,是“盈满”“盈余”的意思,万物至此皆长大,故名立夏,代表着春天的结束,标志着夏季的到来。阳气鼎盛的农历三月,给了世间一切野蛮生长的力量。此时人间正是良辰,炎夏尚未到来,春亦未走远。至此,万物开始蓬勃生长,日渐繁茂,一派欣欣向荣的景象,有白云初晴,幽鸟相逐,树影婆娑,槐荫匝地。作为元素分析专家,让我们用元素分析仪,来感受春夏交接时,这一抹浓重的绿意。于是我们趁着立夏当天,随机摘取了一些德国元素上海应用实验室周围的绿叶(从左往右分别是柚子树叶,樟树叶和梧桐树叶),同时也摘取了一些樟树枯叶作为对比。将样品用锡纸包裹后,利用我们经典的vario EL cube-高性能有机元素分析仪,对这些样品进行简便,快捷的测试。德国元素 vario EL cube 高性能元素分析仪,是元素分析的黄金标准,集成了德国元素多项独特技术:专利的“零空白“球阀进样技术,可将进样引入的干扰降至最低;独特的加氧管设计,直接在样品表面实现密集式注氧,即使难燃性样品,也可确保完全分解;专利的”吸附-解析“分离技术,不仅可实现高柱容量气体分离,也可同时获得完美的尖锐峰形;多项技术的结合,实现无需方法分类及摸索,通用型方法简化您的样品分析烦恼。三种不同树木,绿色树叶的测试结果:同一种树木,不同状态(绿色,金黄和干枯)树叶的测试结果:结果可以看出,同一种树木,不同状态的叶子,其碳含量是有一个递增的变化。(随机测试,结果仅供参考。)德国元素elementar,秉承责任与专注,实现可持续发展与创新。运用我们的元素分析仪,去探索塑造整个世界的每一个元素。德国元素elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • 安捷伦: ICP-MS让元素分析“如虎添翼”
    p style=" text-align: justify text-indent: 2em " 自1983年第一台商品化 a href=" https://www.instrument.com.cn/zc/293.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 电感耦合等离子体质谱仪(ICP-MS) /strong /span /a 问世以来, ICP-MS技术迅速发展成为一种应用广泛且受到高度评价的分析技术。随着相关应用领域对该技术需求的不断拓展和应用基础研究的不断深化,以及ICP-MS仪器的不断改进和完善,该技术已进入了成熟阶段。在学术交叉和应用方面,ICP-MS渗透到环境、物理、化学、生物、医学、食品、环境、材料、核科学等诸多领域,很多成熟的方法已经发展成为标准化的方法。近年来,ICP-MS在贵金属、类金属和非金属元素分析,联用技术与形态分析,单颗粒和单细胞分析等方面取得了重要的进展,同时也在免疫分析、疾病诊断、药物筛选、纳米分析等方面得到越来越多的应用。 /p p style=" text-align: justify "   国际上ICP-MS的主要生产商有安捷伦、赛默飞、珀金埃尔默、岛津、耶拿等,同时国产仪器厂商也在积极研制ICP-MS产品,厂商分别有聚光科技、谱育科技、天瑞仪器、东西分析、钢研纳克、博晖创新、毅新博创、北京衡昇等。为帮助用户更好地学习、了解ICP-MS技术及应用的最新进展内容,仪器信息网特别策划了 a href=" https://www.instrument.com.cn/zt/icpms" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong “精进不休:ICP-MS新技术新应用” /strong /span /a 专题,并邀请到ICP-MS市场上的主流生产商们,请他们谈谈对ICP-MS技术发展及最新应用进展的看法。 /p p style=" text-align: justify "   近日,仪器信息网采访了安捷伦科技(中国)有限公司实验室解决方案市场总监郑欣、无机分析应用经理宋娟娥、大中华区光谱产品市场经理冯旭,与他们就ICP-MS技术与应用发展、未来市场趋势等进行了深入的交流。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/bbed1ec1-fa04-4a90-a618-0d8558971f4b.jpg" title=" zhengxin.jpg" alt=" zhengxin.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " 安捷伦科技(中国)有限公司实验室解决方案市场总监郑欣 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 472px " src=" https://img1.17img.cn/17img/images/201907/uepic/519af90f-ba89-4d72-a1ea-81f23b3fb47e.jpg" title=" songjuane_meitu_1.jpg" alt=" songjuane_meitu_1.jpg" width=" 600" height=" 472" border=" 0" vspace=" 0" / /p p style=" text-align: center " 安捷伦科技(中国)有限公司无机分析应用经理宋娟娥 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 安捷伦ICP-MS技术发展史——不断创新 /strong /span /p p style=" text-align: justify "   说到安捷伦ICP-MS技术的发展历程,可以追溯到1963年。当年,惠普公司(安捷伦前身)与日本横河(Yokogawa)电气达成合作,创建了他们的第一家联合企业横河惠普,并于1987年推出首台由计算机控制的ICP-MS仪器。该仪器结合了惠普公司的专利技术与日本横河在测量分析领域的领导地位,推向市场的过程中受到用户的普遍欢迎。 /p p style=" text-align: justify "   1994年,横河惠普乘胜追击,推出首台台式的ICP-MS 产品HP 4500,在业内率先采用屏蔽炬、帕尔帖控温雾室、双曲面四极杆等全新技术。1998年推出Plasma-Chrom色谱联用技术,推动了色谱与ICP-MS联用技术的发展 2000年,从惠普独立后的安捷伦推出了7500系列ICP-MS,仪器搭载了具有9个数量级范围的检测器,并首先提出碰撞/反应池在单氦模式下消除质谱固有干扰 2009年推出的7700系列配有安捷伦专利的耐高盐进样系统,并从碰撞池消除干扰能力、灵敏度以及软硬件的操作与数据处理方面全面提升仪器性能 2012年,安捷伦推出业内首款三重四极杆ICP-MS/MS产品8800,进一步消除复杂样品中未知元素带来的干扰,为用户高端研究和复杂分析难题带来变革& #8230 & #8230 。 /p p style=" text-align: justify "   目前安捷伦主要的ICP-MS产品有单四极杆型的7800、7900系列,以及三重四极型的8900等。宋娟娥介绍到,安捷伦一直以来对耐高盐技术进行着升级和改善,早期推出的 7700系列具有独特的耐高盐进样系统(HMI),使其耐盐能力由传统的0.1-0.2%显著提高至2-3%,因此更适合食品、废水、土壤消解物等复杂样品的分析。同时,凭借全新设计的离子透镜,7700系列ICP-MS提高了整个质量范围的灵敏度,降低了背景噪音。后来推出的7900系列采用了超耐高盐进样系统 (UHMI),其高盐基质耐受能力比传统 ICP-MS 限量高 100 倍,使实验室可以测量含有高达25%总溶解固体的样品,该技术克服了局限ICP-MS发展的瓶颈,拓展了其在高基体领域的应用。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 335px " src=" https://img1.17img.cn/17img/images/201907/uepic/589b77a6-0d98-49eb-9543-7040688fb7a3.jpg" title=" HMI.jpg" alt=" HMI.jpg" width=" 300" height=" 335" border=" 0" vspace=" 0" / /p p style=" text-align: center "   高盐进样系统(HMI) /p p style=" text-align: justify "   碰撞反应池(CRC)技术的突破可以有效消除一些特定的质谱干扰,使低浓度元素的分析取得重大改进。因此,各主流厂商ICP-MS都拥有其专利技术的碰撞反应池系统,但各家的碰撞反应技术各不相同,这也成为ICP-MS仪器最有区别的一部分。安捷伦采用的八极杆反应池系统(ORS),引进了单氦碰撞模式,利用惰性气体碰撞消除多原子离子的干扰是基于物理方法消除的,而并非与反应气体的特殊反应。由于所有的多原子干扰离子体积都大于受其干扰的被测物,因而与He池气体碰撞的机会大于体积相对较小的待测离子。多原子离子因而会失去更多的能量,在正的歧视电压下不能进入质量分析器:该过程称为动能歧视(KED)。KED成功消除干扰的需要具备两个条件:第一,进入池内离子的能量范围必须足够窄-----安捷伦通过采用屏蔽炬技术实现,它严格限制了离子能量范围小于1 eV 第二,在碰撞池中,多原子离子必须经历足够多次的碰撞,以便在碰撞池出口处与目标元素离子分开。“因为八极杆比六极杆和四极杆系统具有更高的池内压力和更好的聚焦效率,其碰撞频率大大增加,同时其良好的聚焦效果确保了待测离子的灵敏度受到的影响最小”。宋娟娥说到。 /p p style=" text-align: justify "   关于ICP-MS的检测器部分,宋娟娥表示:“安捷伦的ICP-MS采用离轴检测器技术,该专利技术可提供低背景、宽线性范围等优势,该技术也应用在安捷伦的单四极杆及三重四极杆质谱中”。 /p p style=" text-align: justify "    strong span style=" color: rgb(0, 112, 192) " 巩固优势领域 合作为核心 /span /strong /p p style=" text-align: justify "   在新材料的生产、合成过程中,各类重要元素,特别是金属离子或金属化合物的加入或使用至关重要,因而半导体/高纯材料领域的各种元素分析成为令人关注的课题。 /p p style=" text-align: justify "   从安捷伦ICP-MS技术的发展历程中可以看出,安捷伦深耕在半导体行业已三十余年,从1994年推出4500系列开始,每个时期安捷伦都为半导体行业推出其专用的ICP-MS型号,包括HP4500-300、7500s、7500cs、7700s,这些型号采用了屏蔽炬和冷等离子体的技术,非常适用于半导体工业的超痕量杂质分析,因此也得到广泛的应用。在高纯材料领域,与高分辨ICP-MS依靠物理原理进行分辨不同,安捷伦的三重四极杆ICP-MS可以靶向针对该领域用户的痛点,通过物理和化学的原理进行分辨。“元素杂质含量是影响集成电路良率的关键因素,也是半导体行业核心的质控指标,而近些年发展起来的纳米颗粒污染,也成为该行业需要扩展的重要质控项目。而安捷伦在纳米颗粒的技术积累和解决方案以及配套的ICP-MS产品很好的满足了该需求。目前对于半导体行业的一些高端用户来说,纳米颗粒杂质检测已经成为他们日常质量控制工作的一部分”。宋娟娥说到。 /p p style=" text-align: justify "   宋娟娥还提到,在半导体元素分析领域30多年的技术积淀,为安捷伦在奠定了该市场的领导地位。此外,为更好的经营中国半导体行业的业务以及更好地为半导体行业的用户服务,安捷伦在中国设立半导体技术支持团队包括专职的产品工程师,应用工程师以及售后服务工程师等体系,同时还提供半导体定制化应用方案。。 /p p style=" text-align: justify "   关于ICP-MS在制药领域的应用,郑欣说,“化学药分析时需使用有机溶剂进行前处理,而仪器对有机溶剂的耐受性有限 另外,该领域的特点是对法规的依赖性很强”。基于此,安捷伦ICP-MS的仪器硬件经过多年在半导体行业的考验,其仪器耐受性方面具有一定的优势。此外,美国药典、欧洲药典以及中国药典中都收录了ICP-MS方法,因此安捷伦在研发时就将药典方案配套嵌入系统中,并与其气相、液相色谱系统等进行联用,同时可定制操作软件。不仅如此,安捷伦还针对药典开发的方法设立了专门的应用课程,真正为用户提供更多的便利。 /p p style=" text-align: justify "   谈到金属组学相关的研究,宋娟娥表示,该领域的研究一般分为基础研究和临床研究,而安捷伦很早就介入了该领域,她举例说:“2007年安捷伦与辛辛那提大学联合成立金属组学研究中心,也与西班牙奥维耶多大学、斯坦福大学等合作进行金属蛋白、金属酶作用途径和代谢组学、元素成像等相关的研究。”宋娟娥表示,三重四极杆ICP-MS的出现,使其更多地被用于痕量硫磷的蛋白绝对定量、硫同位素比值分析等,就该方向安捷伦也与许多高校及科研院所合作,比如北京大学、四川大学和东北大学等。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong ICP-MS市场:提效降速 高质量发展 /strong /span /p p style=" text-align: justify "   就未来ICP-MS技术的发展趋势,宋娟娥表示,ICP-MS产品技术已发展到成熟阶段。未来的发展将集中在三个方向:从用户角度来看,对有机溶剂的耐受以及复杂基质分析的需求将不断增加 就技术角度而言,未来仪器操作将会结合人工智能和大数据,使得操作更加简单便捷 站在应用的角度,ICP-MS串联质谱的出现目前在某些行业正在制定标准,未来需要不同行业的用户开发更多的应用方法,继续发挥其潜能和优势。宋娟娥认为:“相较于常见的无机质谱技术,ICP-MS联用分析技术拥有很多优势及发展潜力,该技术未来将会成为主要的发展方向”。 /p p style=" text-align: justify "   此外,就各有优缺点的原子吸收光谱法(AAS)与ICP-MS方法,郑欣表示,未来ICP-MS取代AAS的趋势还将取决于市场需求与检测方法的要求。 /p p style=" text-align: justify "   关于ICP-MS在临床应用领域未来的发展,郑欣表示,虽然现在并没有必须使用ICP-MS方法检测的项目,但代谢相关的研究,比如通过金属元素在体内分布的含量表征生命的行为特征,将是未来的主要发展方向。目前,质谱仪可在医院检验科发挥着分析测试检验的作用,但它对操作者要求较高且并未做到真正意义上的临床诊断。因此,质谱仪器除要对本身性能进行提升外,与其配套的试剂盒、操作软件等更需进行改善,以适配临床应用的需求。郑欣说到:“从市场角度来看,整个临床质谱的市场是动态的,ICP-MS在该领域刚起步,因此我们保持观望等待机会、选择方向”。 /p p style=" text-align: justify "   就ICP-MS的两大话题行业,食品安全及环境领域的市场发展,“食品、环境行业经过了一波非常快速的增长,用户采购和使用的“主力军”从政府到企业再转到外包第三方,这过程中ICP-MS也经历了大量技术和标准的提升与完善,相信未来这两个行业还将是ICP-MS的热点需求市场”。郑欣如是说道。 /p p style=" text-align: justify "   关于制药领域,郑欣表示,中国药典以前主要集中在中药重金属的ICP-MS检测,但根据美国药典、欧洲药典的发展来看,未来将会更多地涉及临床药物、药包材以及辅料的金属元素检测。“药典每五年更新一版,2020版中将首次把化学药的元素杂质检测列入药典,以前关于重金属的检测多是比色法,未来我们非常看好ICP-MS为制药行业提供的解决方案”。 /p p style=" text-align: justify "   ICP-MS技术经过近四十年的发展取得了一些重大的突破,其技术本身已经较为成熟。未来仪器将以自动化、智能化,提高效率为发展方向,满足各领域对分析的要求。此外,中国市场ICP-MS的应用发展整体上与全球的情况较为一致,从欧美国家的应用情况可以看出中国ICP-MS的应用发展趋势,如食品、环境、制药等热点市场将继续保持对ICP-MS的需求,地质、半导体、生物医学、石油石化、科学研究等前沿领域ICP-MS也将发挥其联用优势,助力更灵敏、更准确的分析。 /p p style=" text-align: justify "   采访的最后,郑欣表示,中国分析仪器行业经过了20年的高速发展,未来整个市场的发展将由其体量决定,将呈现降速但高质的发展趋势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/a1f9d911-d5d0-4e50-81e8-80e455a34682.jpg" title=" 合影.jpg" alt=" 合影.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center "   合影 /p p br/ /p
  • 高效自信!微波消解助力石油产品元素分析
    Petroleum Industry为什么要关注石油工业?作为国家重要支柱产业之一,石油被誉为工业的血液。石油产品的质量与国防、交通运输、农业、电力、航天等领域息息相关,它为农业、能源、交通、机械、电子、纺织、轻工、建筑、建材等工农业和人民日常生活提供配套服务,在国民经济中占据着举足轻重的地位。近期随着国际形势的变化以及疫情的阴影笼罩,特别是俄乌冲突导致的国际能源价格上涨,导致国民经济受到巨大挑战,使得大家对于支柱产业的关注度大大提高。为什么需要对石油产品进行元素分析?原油:石油中微量元素的含量、存在形式、产地以及元素不同比例地关系都可作为不同油源、不同产地原油分类的参考。了解石油中元素含量不仅有利于提高原油和成品油的质量,还可为炼油过程中脱除金属提供有利依据。石油中的碱金属盐和碱土金属盐在设备内壁结垢后可能会导致设备腐蚀,从而影响成品油的组成。另外,石油产品中的微量元素会导致在二次加工过程中,催化剂中毒失活,还会对石油加工、储运过程及环境保护均产生不利的影响。燃料油:国家强制的燃料油产品标准明确对铅、锰、铁含量有限量要求。例如在早期,四乙基铅作为汽油添加剂,可提高汽油的辛烷值并改善其抗爆震性能。但四乙基铅的广泛使用会造成严重的环境污染并危害人体健康,因此对汽油中铅的分析测定越来越受到人们关注。润滑油:润滑油被广泛应用于汽车,农业设备,重型马达等大多数机器设备。润滑油中的微量金属分析通常用于诊断发动机磨损情况。它是一种预防性的维护手段,用来增加发动机设备的可靠性并减少潜在的维修费用。微波消解前处理技术在油品分析中的应用样品前处理环节是进行油品元素分析的前提和关键。在无机处理方法中,微波消解法因其快速、完全消解、元素挥发小、环境污染小等优点,受到人们的重视,并在石油产品分析中得到大力推广和应用。目前国内外油品分析的标准中均提到了使用微波消解前处理方式:SN 3188-2012 原油中铅、砷、汞元素的测定 原子荧光光谱法;SN 4759-2017 进口食品级润滑油(脂)中锑、砷、镉、铅、汞、硒元素的测定方法(ICP-MS)法;ASTM D7876原子光谱法(ICP-AES, AAS)测定石油(润滑剂、润滑脂、添加剂、润滑油、汽油和柴油 煤、粉煤灰、煤灰、焦炭和油页岩) 中的金属元素;EPA3052 测定硅质和有机基质(石油污染的土壤、污泥)中的多元素。安东帕应用案例分享燃料、润滑油或蜡等精炼产品由于其高反应性和高能量含量,在进行前处理的时候具有挑战性,它们的主要脂肪成分可在 200 °C 左右进行消化。 而“黑色”产品,如船用燃料、燃料油等重质油,含有更多的缩合“多环”芳族化合物,因此需要更高的温度。样品:重质燃料油(F61001、F61105、F61401)使用安东帕Multiwave 5000系列微波消解仪和 20SVT转子,将 500 mg 样品以及10 mL浓 HNO3 添加至消解管内。消解程序消解结果图结果分析消解完成后,各消解管的溶液呈澄清透明状态,上机分析后的结果如【表1】。我们将各个元素的检测结果分别与标准值进行比较,其数值都处于标准值范围内。配备20SVT50型号转子的Multiwave 5000系列微波消解仪是高难样品消解的强大配置!它可以快速可靠地消解要求苛刻的重质燃料油。也适用于矿物油产品,如润滑剂或石蜡等。安东帕除了对石油样品进行微波消解从而进行后续痕量分析之外,还提供一系列用于测量原油密度、黏度、闪点、流变特性以及折光率等参数的解决方案。这些仪器被广泛用于原油采收、精炼和运输过程等环节。特别是原油精炼过程对原油成分变化相当敏感,必须不断监测,以便能够及时应对任何变化并探测到可能的副产品。安东帕原油分析解决方案助您通过可靠精确的测量来控制和优化生产。
  • 德国元素 x 全国土壤分析技术研讨会
    为了助力第三次全国土壤普查,推动新技术新方法在土壤学、环境科学及生态学研究中的探索与应用,促进土壤行业的发展与创新,德国元素Elementar参加了2023年5月24-27日在重庆市举办的“第三届全国土壤分析技术研讨会”,提供了土壤与肥料中碳、氮、硫及总有机碳分析解决方案,展示了经典的有机元素分析仪、总有机碳分析仪、杜马斯定氮仪、红外碳硫仪以及稳定同位素比质谱仪等多款土壤、肥料、植物分析方案。德国元素的老客户-中国农业科学院农业资源与农业区划研究所的汪主任在大会报告中也分享了“三普土壤碳氮检测技术”,为各位土壤研究者与老师分享了可参考的分析方法。德国元素作为有机元素分析的“百年品牌”,在碳、氮、硫等元素的分析方面具有非常丰富的经验。相比于传统的化学法,元素分析仪及杜马斯定氮仪采用经典的高温催化燃烧法,无需复杂的样品制备,仅干燥研磨后直接称量包裹,即可进行仪器自动化分析,整个过程简便、快速,几分钟即可获得精准结果。针对土壤、植物、肥料中总碳、总氮、全硫、有机碳等分析,德国元素可提供多种测试方案,解决您不同的测试需求。具体如下:有机元素分析仪解决方案杜马斯定氮仪解决方案TOC总有机碳分析仪解决方案无机材料红外碳硫仪解决方案稳定同位素比质谱仪解决方案德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • 食品中元素形态分析方法与标准简述
    元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态分为物理形态和化学形态,物理形态是指元素在样品中的物理状态,如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。   元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。比如铬,三价铬是人体耐糖因子的组成部分,很多糖尿病和人体缺乏三价铬有关,而六价铬则是比较强的致癌物。不同形态砷之间的毒性差异也很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于某些元素,只了解某元素在食品中的总量还是不够的,我们在了解总量的同时,更希望了解某元素在食品中的形态组成。   测量元素的形态,可以通过以下一些方法来实现:   分光光度法:在显色时对元素的形态有特定要求,可以利用这一特性,进行形态分析。比较典型的例子是水中六价铬的测量。这一方法通常干扰大、灵敏度不是很高,在简单基质有一定应用的范围。   原子荧光法(AFS):由于产生氢化物对元素的形态有一定的要求,可以利用这一特点进行形态分析。比如说有机砷几乎不会和硼氢化物生成氢化砷,氢化物-原子荧光法不能直接检测有机砷,而无机砷则能和硼氢化物进行反应而被探测到。利用这一特点可以测量某些元素的不同形态。该方法的特点是灵敏度很高。不足之处是特异性强,只能分析有限几种元素中某些形态,应用不广。   色谱法:采用色谱柱分离不同形态,然后用分光光度或电导等检测器测量。比如离子色谱法就是比较常用的方法。这一方法由于有预分离处理,干扰比分光光度法小,灵敏度也好一些。   预分离法:对试样先根据元素不同形态的特点,进行预分离,如有机萃取、离子吸附和交换等手段,将某特定形态和其它形态分离后收集,再采用一些光谱的分析方法测量。这种方法灵敏度比较高,但前处理比较复杂,也容易受到干扰。   色谱-光谱(质谱)联用法:该方法采用在线色谱分离,分离后各组分直接进入光谱仪器测量。结合了色谱和光谱技术的优点,具有分离效果好、灵敏度高、应用广泛等优点。缺点是设备较为昂贵,从色谱到光谱的接口技术需要解决,前处理方法也有待加强研究。不同的色谱和光谱联用技术都有文献报道,主要集中在色谱和等离子体质谱仪(ICP-MS)的联用上。目前常见的有以下几种联用方法。   1、液相色谱-ICP-MS联用   液相色谱(HPLC)-ICP-MS联用技术适用于食品样品中难挥发的化合物的分析。由于液相色谱的流速和ICP-MS 进样速度一致,所以联接非常简单方便,其联用接口非常简单。另外,由于液相色谱的特点,具有进样量小、分析速度快、分离效果好等优点。因此,HPLC与ICP&mdash MS联用技术在各类食品中砷、硒、锡、汞等元素形态分析领域得到了越来越多的应用,相关的研究也最多。在使用该技术时,要注意液相流动相的成分是否符合ICP-MS的进样溶液要求。如果有机相比例过高,则需要辅助氧化技术。   2、离子色谱-ICP-MS联用   离子色谱法(IC)作为一种有效的分离和检测技术,已经在金属和非金属离子的测定中得到了较多应用,已成为成为解决复杂机体中超痕量离子形态分析的有效工具,也是ICP&mdash MS相关联用技术研究的热点之一,在食品分析领域有着越来越多的应用。其联用方法和液相色谱一样,也很简单。目前相关文献集中在铬、砷、锑、溴、碘等形态的检测研究上。同样的,使用该技术时,要注意离子色谱流动相和ICP-MS进样要求的匹配性,流动相的可溶性固体含量不能太高。   3、气相色谱-ICP-MS   气相色谱(GC)适用于易挥发或中等挥发的有机金属化合物的分离,而且分离之前的衍生化步骤不仅使分离与分析过程复杂化,而且增加了待测形态丢失或玷污的可能性。而且气相和ICP-MS联接需要一个专用的接口。因此,GC与ICP&mdash MS联用应用于元素的形态分析具有一定局限性。目前,GC-ICP-MS技术仅限于烷基铅、烷基锡和烷基汞等形态的分析上。   4、毛细管电泳-ICP-MS   相对与气相和液相色谱,毛细管电泳(CE)具有分离效率高、消耗样品量少、分离时间快等特点适用范围广,可分离从简单离子、非离子性化合物到生物大分子等各类化合物。但是在分离过程中,样品中分析物的原始形态可能由于电解质或pH值的调节而发生变化,样品的组成也是影响CE分离的一个重要因素,由于CE与ICP&mdash MS的接口没有HPLC成熟,在一定程度上制约了CE-ICP&mdash MS联用技术的应用。但相关的研究还是不少,主要集中在食品中砷、硒、汞等元素形态的分析。   5、液相色谱-AFS   由于中国AFS的技术领先于世,所以该研究在国内发展也很快。由于AFS对某些元素,如As、Se、Hg等的检测灵敏度很高,而且这些元素也是形态分析所最关注的元素,所以AFS在元素形态分析上大有用武之地。如前所述,单用AFS能进行一些特定的形态分析,而要完成更好的分离和检测,就需要和色谱联用。现在主要是和液相色谱联用,已经有多款HPLC-AFS仪器上市。该技术的优势在于具备了液相分离的优点,也能利用AFS的高灵敏度和元素特异性,仪器的整体价格也不高。其缺点在于,检测元素受到AFS的限制,而且AFS检测状态的稳定性也较难保证。   食品中元素形态分析的标准:   1、砷的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中无机砷的限量标准,所以也有相关的检测方法:   GB/T 5009.11-2003 食品中总砷及无机砷的测定 :无机砷检测采用原子荧光法,前处理和总砷不一样。   GB/T 23372-2009 食品中无机砷的测定 液相色谱-电感耦合等离子体质谱法:该标准采用HPLC-ICP-MS联用技术,分离和检测能力都很强。   有机砷农药的检测方法有一个行业标准:SN/T 2316-2009 进出口动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留量检测方法 离子色谱-电感耦合等离子体质谱法   2、汞的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中有机汞(以甲基汞计)的限量标准,所以也有相关的检测方法:   GB/T 5009.15-2003 食品中总汞及有机汞的测定: 有机汞采用气相色谱法和预分离&mdash 冷原子光度法。   无机砷和有机汞的检测方法都有缺陷,修订的新方法(草案)采用液相-原子荧光联用法,但也有问题,到现在没有颁布为更新方法。   3、溴酸盐的形态分析标准   由于溴酸盐是2B类致癌物,所以已不允许作为添加剂使用。食品中溴酸盐的形态分析有两个标准,都用离子色谱法:   GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法   SN/T 3138-2012 出口面制品中溴酸盐的测定 柱后衍生离子色谱法   水中溴酸盐也有限量标准和检测方法,在相关水检测标准中,也是离子色谱法。   4、铬的形态分析标准   六价铬的检测方法有一个行业标准:   SN/T 2210-2008 保健食品中六价铬的测定 离子色谱-电感耦合等离子体质谱法   水中的六价铬也有相应标准检测方法,采用经典的比色法。在水的检测标准中。     (撰稿人:上海出入境检验检疫局 杨振宇 博士)   注:文中观点不代表本网立场,仅供读者参考
  • TOC总有机碳分析仪选型方案 | 德国元素
    近日,国家出台对高校科学研究所需重大仪器设备购置与更新、配套设施建设的鼓励政策,旨在进一步加快高校科技创新体系建设,大力提升创新能力。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。作为世界上第一批将高温燃烧法引入TOC分析仪的厂家,德国元素Elementar在TOC分析仪方面已经有五十多年的经验积累。以下是关于TOC总有机碳分析仪的选型方案,针对客户的不同应用,提供定制化的精准解决方案,为科研工作提供强有力的支持。应用领域:环境水样、废污水、浸提液、饮用水、土壤、沉积物、固废、制药用水、工艺用水、超纯水等测试项目:TOC、TIC、TC、NPOC、POC、TNb德国元素ElementarTOC总有机碳分析仪enviro TOC 总有机碳分析仪enviro TOC总有机碳分析仪采用德国元素经典的高温燃烧法,可轻松应对难氧化的所有有机物,获得良好的准确度与精确度。集液体与固体模式为一体,轻松应对水样、固体样测试困扰60位大通量自动进样器,且集成自动清洗平台,避免交叉污染SALTTRAP基体分离技术,解决高盐负荷影响燃烧炉最高温度可达1200℃,10年质保多通道宽范围红外检测器,10年质保配置智能化软件,高效、便捷典型应用:环境水样、废污水、浸提液、土壤、沉积物等Acquray TOC 总有机碳分析仪Acquray TOC总有机碳分析仪是一款采用模块化概念的总有机碳分析仪,且可配置总磷、总氮及固体测试模块。采用经典的湿化学法,检出限低至2ppb配置双波长紫外灯,超强氧化性,且质保三年可配置总磷、总氮、固体测试模块,实现多应用扩展高灵敏度、宽范围红外检测器,10年质保典型应用:超纯水、制药用水、清洁验证、工艺用水、锅炉用水、冷凝水等Soli TOC cube 碳组分分析仪Soli TOC cube是一款专业的碳组分分析仪,通过动态程序升温法,实现TOC(有机碳)、TIC(无机碳)、ROC(元素碳)、TN(总氮)的测定。程序升温,可自定义升温步骤及加热速率,实现无需酸化测定TOC89位自动进样器,实现大通量、无人值守操作先进的坩埚进样技术,无需手动,实现自动除灰专有宽范围红外检测器,10年质保典型应用:土壤、固体废弃物、沉积物等以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 微量元素分析?应力、取向分析?电镜-拉曼联用应对有妙招!
    《RISE大招》前情回顾:与RISE之相遇、相知、相恋和相爱。本系列前几集讲述了RISE拉曼-电镜一体化系统在传统扫描电镜“心有余而力不足”的分析困境下一跃而出到它对于无机材料分析的武功路数:无机相鉴定、金属夹杂分析、结构和结晶度分析等等。(前三集链接:点击下列文字即可快速查看)。01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!03 《RISE大招》无机材料之结构分析和结晶度分析今天呢,主要给大家讲讲RISE对于无机材料中微量元素分析、取向分析和取向应力分析的解决方案。无机材料之微量元素分析在传统的电镜中,由于EDS的检出限为0.1%,所以对于一些微量元素的分析来说较为困难。尤其是要做微量元素或者差异很小的面分布来说,EDS往往不能满足我们的需要。虽然拉曼光谱并不能直接得到元素含量和分布分析,但是有时候微量元素的变化足以引起对应的特征拉曼峰的变化。此时便可利用拉曼光谱去进行微量元素的分析。 如下图,为某矿物试样。Nd元素含量较低,EDS无法通过Mapping将其分布准确的显示。 如果要点扫描,虽然单点数据可以比mapping更准确的测出Nd的含量,但是无法得到分布。如果要仔细分析,需要用户选择很多个测试点进行分析。但是这样得到的数据工作效率很低,数据整理困难,且准确性也难以评价。 而在RISE下则可以先进行拉曼面扫描,发现Nd元素对应的特征峰的积分强度随元素含量而有变化。元素Nd含量偏高的区域的拉曼光谱和红色接近,含量偏低的和蓝色谱图接近,所以根据谱图拟合后得到了根据Nd元素含量而得到的RISE图像。很快的可以找到Nd元素含量偏高或偏低的区域。根据RISE图像,我们还可以再去进行EDS分析,对含量偏高或偏低的区域做更精确的EDS定量分析。这比没有RISE图像仅根据SEM图像随机选点采集很多个数据点,再进行后期分析,无论是准确度还是效率上均要提高很多!无机材料之取向分析取向是晶体材料的重要基本参数,拉曼光谱虽然不能像EBSD一样直接进行晶面指数的分析,但是对于很多无机材料来说,取向不同其拉曼特征峰也会产生积分强度不同或者峰位有所偏移的情况。 如下图,试样为白铁矿晶体,主要成分为FeS2,结构属斜方双锥晶类,对称性较低。在RISE系统下,SEM图像获得了明显的ECC衬度,然后再进行拉曼光谱面扫描,发现不同晶粒的拉曼特征谱线有一定的变化,其峰的积分强度和峰的位置都随取向有一定的关系。进行谱线拟合后,得到了随取向变化的RISE图像。虽然我们不能得到每个晶粒的精确的取向,但是晶粒的分布及大小却可用非常清楚的从RISE图像获得。RISE不同于EBSD识别衍射花样,它另一个角度为分析晶粒提供了一定新的方法。 无机材料之取向应力分析应力测试也是无机材料分析的重要方面,目前微区应力分布测试主要手段是EBSD,通过测试取向差的分布来间接的反应的情况下。但是EBSD分析手段又有一定的局限性。 拉曼光谱也可以间接的反应应力的情况。如果存在压缩应力,特征峰会往高波数方向移动;反之,若存在拉伸应力,特征峰会向低波数方向移动。且应力越大,特征峰的位移越大。 RISE系统的拉曼成像能力非常强大,可以用特征谱线的位移来进行成像。如下图,对做过纳米压痕的单晶硅表面进行RISE成像。发现压痕中心区,特征峰往高波数方向移动,周边往低波数方向移动。根据此规律成像后,得到了纳米压痕区域,硅表面的压缩和拉伸应力分布图。 RISE七十二般武艺,招招新奇,但一招一式,每一个路数都为更好地帮助您的科研分析而生。除了应对传统扫描电镜分析能力薄弱的问题,RISE系统还切实突破并解决了传统意义上的电镜-拉曼联用系统的种种分析弊端,采用了扫描电镜-拉曼光谱一体化的硬件和软件设计,使得综合分析更加行之有效。《RISE大招》下集看点:说了这么多,是时候总结一下啦~Hahaha...关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。↓ ↓ ↓ 观看RISE大招全系列,请戳:01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!03 《RISE大招》无机材料之结构分析和结晶度分析
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制