当前位置: 仪器信息网 > 行业主题 > >

铂铑合金

仪器信息网铂铑合金专题为您整合铂铑合金相关的最新文章,在铂铑合金专题,您不仅可以免费浏览铂铑合金的资讯, 同时您还可以浏览铂铑合金的相关资料、解决方案,参与社区铂铑合金话题讨论。

铂铑合金相关的资讯

  • 力学所在钛合金超高周疲劳研究中取得新进展
    长寿命高可靠是重大工程装备的重要指标,特别是以先进航空发动机和高铁车轴为代表的关键部件,服役寿命内承受了超过107甚至1010周次的循环载荷作用,进入了超高周疲劳(即107周次以上的疲劳)研究范畴,这颠覆了传统基于疲劳极限(对应107周次)的疲劳强度与寿命设计理念,成为近年来疲劳研究的前沿和热点。因此,揭示超高周疲劳的微观机理和规律等科学问题,建立疲劳寿命与疲劳强度的准确预测模型,将具有重要的科学意义和工程应用价值。力学所非线性力学国家重点实验室微结构计算力学课题组以航空发动机用TC17钛合金和增材TC4钛合金为研究对象,揭示了疲劳载荷过程中形成的形变孪晶和纳米晶是钛合金超高周疲劳裂纹萌生和演化的重要因素(图1),提出了钛合金超高周疲劳裂纹萌生和初始扩展机理(图2);通过巧妙的变幅加载设计,测得超高周疲劳裂纹萌生和初始扩展区域的等效裂纹扩展速率在10-13~10-11 m/cyc量级(图3a和3b),进而对超高周疲劳寿命进行了预测,预测结果与实验结果吻合(图3c)。图1 TC17钛合金扫描电子显微镜和电子背散射衍射观测结果(σα=588 MPa, R=–1, Nf=1.4×108 cyc). a: 试样局部区域扫描电子显微镜图像. b-d: 分别是图a中方框区域的反极图、相图以及母体晶粒和孪晶变体基面的施密特因子. e: 微裂纹附近扫描电子显微镜图像. f-h: 分别是图e中方框区域的反极图、相图以及母体晶粒和孪晶变体基面的施密特因子. 加载方向沿着纸面向上和向下.图2 钛合金超高周疲劳裂纹萌生和初始扩展机理示意图. (i)疲劳载荷过程中位错塞积引起的局部高应力诱导孪晶、滑移或微裂纹的形成. (ii) 孪晶系统或位错之间的相互作用导致位错胞或位错墙的形成,进而形成微尺度滑移带和亚微米晶粒,最终形成纳米晶粒 然后,微裂纹沿着纳米晶粒-粗晶粒界面或在纳米晶粒区域内形成. 此过程中,由于微结构不均匀或变形不协调,微裂纹的形成也可以与晶粒细化无关,即微裂纹形成于α相团簇、较大的α相或α-β界面. (iii) 微裂纹增长或联接,并在疲劳载荷过程中进一步诱导晶粒细化或微裂纹的形成. (iv) 过程(iii)继续,直到裂纹萌生和初始扩展阶段结束.图3 增材TC4钛合金超高周疲劳裂纹萌生和初始扩展速率与寿命预测. a: 变幅加载下SEM照片(σα,H= 600 MPa, σα,L= 400 MPa, R=–1, σα,L下累积1.6×108周次). b: 裂纹萌生和初始扩展区域(Fine Granular Area, FGA)内等效裂纹扩展速率与文献中裂纹扩展速率的比较. c: 不同应力比下S–N数据以及R=–1下疲劳寿命预测结果与实验结果的比较.研究发现,材料缺陷不仅会显著降低钛合金的疲劳性能,而且缺陷对高周和超高周疲劳行为的影响与其引入形式密切有关。对于材料内部缺陷,高周和超高周疲劳S–N曲线呈现连续下降特征,而表面人工缺陷试样S–N曲线具有平台区特征(图4)。原位显微镜观测以及扫描电子显微镜和透射电子显微镜观测表明,与内部缺陷诱导的超高周疲劳失效不同,表面人工缺陷诱导的超高周疲劳未呈现伴随纳米晶粒形成的、缓慢的裂纹萌生和初始扩展过程;一旦裂纹萌生,裂纹将快速增长,试样在很少周次内发生失效(图5)。认为这种失效是疲劳载荷与时间相关过程(如水气影响、氢的作用等)的协同作用所致。进一步提出试样几何形状和表面缺陷对钛合金高周和超高周疲劳强度的影响模型。该模型不但能用于关联缺陷对钛合金疲劳强度的影响(图6a),而且也有效用于文献中缺陷(包括裂纹)对一些金属材料高周疲劳强度的影响(图6b-6f)。图4 缺陷引入形式和缺陷尺寸对疲劳性能的影响. (a) 缺陷引入形式对增材TC4疲劳性能影响. (b) 人工表面缺陷对TC17钛合金疲劳性能影响. 实线表示双对数坐标下线性拟合得到的中值S–N曲线.图5 含表面人工缺陷TC17钛合金超高周疲劳原位显微镜观测(σα=368 MPa, R=–1, Nf=1.95×107). 加载方向沿着纸面向上和向下.图6 缺陷对高周和超高周疲劳强度影响的模型结果与实验结果比较.对几种常用的应力比对高周疲劳强度影响模型在超高周疲劳范畴的预测能力也进行了对比研究。多种材料实验数据表明,Walker公式σα,R=σα,-1[(1–R)/2]γ相比Goodman公式σa,R=σα,-1[1–(σm/σb)]和Smith-Watson-Topper公式σa,R=σα,-1[(1–R)/2]1/2更好地预测应力比对超高周疲劳强度的影响(图7),其中σα,R和σα,-1分别是应力比R和–1下的疲劳强度,σm和σb是平均应力和拉伸强度,γ是材料参数。图7实验结果与不同模型预测结果的比较.相关研究得到国家自然科学基金基础科学中心“非线性力学的多尺度力学研究”项目(11988102)、国家自然科学基金重大研究计划“航空发动机高温材料/先进制造及故障诊断科学基础”培育项目(91860112)等支持。部分研究结果是与北交大等合作完成,主要研究成果发表在Int. J. Fatigue 2023, 166: 107299 2023, 167: 107331 2022, 160: 106862 Eng. Fract. Mech. 2022, 259: 108136 2022, 272: 108721 2022, 276: 108940 J. Mater. Sci. Technol. 2022, 122: 128-140 Theor. Appl. Fract. Mech. 2022, 119: 103380。
  • 3D打印钛合金抗疲劳设计制备取得突破性进展
    3D打印,又名增材制造(Additive manufacturing,AM),因其得天独厚的自由成形能力极大地满足了高端装备和构件对高集成性、多功能性、轻量化、一体化的需求,被认为是制造领域的颠覆性技术。因而,3D打印材料在航空航天等领域得到极大关注和初步应用。然而,与传统制造技术相比,3D打印制备的材料在循环载荷下的疲劳性能普遍较差,严重制约了其作为结构承力件的广泛应用。因此,如何提升3D打印材料与构件的疲劳性能是国内外学术界与工程界热切关注的焦点问题。近期,中国科学院金属研究所材料疲劳与断裂团队带头人张哲峰研究员在前期疲劳损伤机制和疲劳预测理论指导下,与轻质高强材料研究部杨锐研究员团队开展合作,在3D打印钛合金抗疲劳设计制备方面取得了突破性进展,制备出具有优异疲劳性能的3D打印钛合金材料。该项研究成果于2024年2月29日以题为“High fatigue resistance in a titanium alloy via near void-free 3D printing”发表在Nature杂志上,金属所博士研究生曲展为论文第一作者,张振军研究员、美国加州大学伯克利分校Robert O. Ritchie教授、张哲峰研究员为论文通讯作者。在文中,研究人员首次明确提出:理想状态下3D打印技术直接制备出的钛合金组织本身(称为Net-AM组织)应具有天然优异的疲劳性能,而打印过程中产生的气孔等缺陷掩盖了其自身组织抗疲劳的优点,导致实际测量的3D打印材料疲劳性能大幅降低。因此,提升3D打印材料疲劳性能的关键在于消除打印气孔的同时,尽可能保留原始打印的组织状态。然而,目前消除气孔的工艺往往伴随组织粗化,而细化组织的处理又会带来气孔复现,甚至引发晶界α相富集等新的不利因素,可谓进退两难。幸运的是,研究人员在Ti-6Al-4V合金中首次发现,高温下3D打印态组织的晶界迁移及气孔长大与相转变过程表现出异步的特性;这意味着,存在一个宝贵的热处理工艺窗口,既可实现板条组织细化,又能有效抑制晶界α相富集及气孔复现。为此,研究人员巧妙地利用了这一工艺窗口,发明了缺陷与组织分步调控的NAMP新工艺(Net-Additive Manufacturing Process)(图1),最终制备出几乎无气孔的近Net-AM Ti-6Al-4V合金。大量疲劳实验表明这一近Net-AM钛合金有效避免了从打印气孔、粗大板条及α相富集晶界等多种疲劳短板处开裂(图2),充分展示出3D打印组织自身所特有的高疲劳抗性:其拉-拉疲劳强度从原始态的475 MPa提升至 978 MPa,增幅高达106%(图3)。通过对比发现,这种近Net-AM组织Ti-6Al-4V合金不仅在所有钛合金材料中具有最高的拉-拉疲劳强度,而且在目前已报道的材料疲劳数据中,还具有最高的比疲劳强度(疲劳强度除以密度)。这项成果更新了人们以往对3D打印材料疲劳性能不高的固有认识,揭示了3D打印技术在抗疲劳制造方面的独特优势,展现了3D打印材料作为结构承力件在航空航天等重要领域的广阔应用前景。该项研究得到了国家自然科学基金创新研究群体(52321001)、优秀青年基金(52322105)、重点基金(52130002)、叶企孙联合基金(U2241245)、中国科学院王宽诚国际合作项目(GJTD-2020-09)与中国科学院青促会(2021192)等项目资助。论文链接:https://www.nature.com/articles/s41586-024-07048-1论文DOI号:10.1038/s41586-024-07048-1图1. 打印态、NAMP态以及其他两种典型状态3D打印钛合金组织和缺陷特征:(a)打印态;(b)热等静压(HIP)态;(c)Near-net-AM态;(d)Net-AM态。图2. 不同组织疲劳裂纹萌生典型位置。(a)疲劳裂纹萌生位置表征的尖角逐层磨抛方法示意图;(b)Net-AM状态;(c)HIP状态;(d)Near net-AM状态。Net-AM状态的疲劳裂纹均从干净的初生β晶界(PBGBs)处萌生,成功避免了从缺陷和粗大组织开裂,从而表现出极高的疲劳抗力。图3. 本研究工作制备的Net-AM组织钛合金的疲劳性能(R=0.1):(a) Net-AM组织钛合金拉-拉疲劳强度与增材和锻造钛合金疲劳强度对比;(b)Net-AM组织钛合金与其他材料的比疲劳强度对比。Net-AM组织钛合金不仅在钛合金中具有最高的疲劳强度,而且在所有材料中表现出最高的比疲劳强度。
  • 中科院力学所在航空发动机用钛合金高温疲劳研究中取得进展
    航空发动机被誉为现代工业“皇冠上的明珠”。叶片是航空发动机的关键零部件,其在服役寿命内承受高温高周甚至超高周次(107)循环载荷作用。同时,实际零部件在材料的制备、加工以及使用过程中通常不可避免地存在各种类型缺陷。因此,揭示钛合金高温高周和超高周疲劳特性以及其缺陷敏感性具有重要科学意义和工程应用价值。力学所非线性力学国家重点实验室微结构计算力学课题组,研究揭示航空发动机叶片用TC17钛合金高温(200℃和400℃)高周疲劳裂纹起源于试样表面或内部(图1),表面裂纹萌生是由于富氧层开裂或氧化物脱落导致的(图1a-1g),内部裂纹萌生是位错相互作用导致晶粒细化进而诱导的(图2)。在实验结果基础上,提出400℃时TC17钛合金表面裂纹萌生和内部裂纹萌生竞争模型(图3)。进一步研究表明,含表面缺陷TC17钛合金应力-寿命数据在高周和超高周(107)阶段具有平台区特征。表面缺陷显著降低TC17钛合金室温和高温疲劳强度,但高温并未降低含缺陷试样的疲劳强度(图4a),一个重要原因是高温下形成较硬的氧化层抑制了表面裂纹萌生,提升了疲劳性能。研究还发现,高温和缺陷对TC17钛合金高周和超高周疲劳强度的影响可以近似表示成(图4b):其中σfs疲劳强度(单位:MPa),t是温度(单位:℃),是缺陷垂直于主应力轴的投影面积(单位:μm),。研究成果对于理解钛合金高温高周和超高周疲劳失效机制以及含缺陷钛合金的疲劳强度预测具有重要价值。图1光滑试样疲劳断口SEM图像。a-c:氧化物入侵诱导的表面裂纹萌生(200℃,σa=650 MPa,R=-1,Nf=2.7×104 cyc),b和c分别是a中上面和右侧裂纹萌生区域的放大图。d-g:氧化物脱落诱导的表面裂纹萌生(400℃,σa=520 MPa,R=-1,Nf=7.6×105 cyc),e是d中裂纹萌生区域的放大图,f和g分别是e中相应区域的放大图。h-j:内部裂纹萌生(400℃,σa=520 MPa,R=-1,Nf=1.0×106 cyc),i和j分别是h和i中裂纹萌生区域的放大图。图2 400℃光滑试样(σa=520 MPa,R=-1,Nf=1.0×106)疲劳断口粗糙区域微结构观测结果。a:SEM图像,短线为提取位置。b:a中位置b沿主应力方向剖面SEM观测结果。c-e:a中位置c沿主应力方向剖面的反极图、相图和TEM图片。f和g:分别为e中区域1的暗场像和区域2的放大图。图3 400℃时TC17钛合金表面裂纹萌生和内部裂纹萌生竞争模型。a和b:富氧部位脆性断裂引发表面裂纹萌生的横截面图和侧面图。c和d:氧化物脱落引发表面裂纹萌生的横截面图和侧面图。e和f:内部裂纹萌生的横截面图和侧面图。图4 a: 光滑试样和缺陷试样疲劳强度(2×107 cyc)与温度之间关系. b: 高温和缺陷对TC17钛合金超高周(2×107 cyc)疲劳强度的影响模型与实验数据比较,空心符号表示光滑试样的疲劳强度. 这里应力均为名义应力, 计算截面为试样最小截面相关研究成果发表在J Mater Sci Technol 2022, 122: 128–140. 力学所特别研究助理李根为论文第一作者,孙成奇研究员为通讯作者。研究得到基金委重大研究计划“航空发动机高温材料/先进制造及故障诊断科学基础”培育项目(91860112)支持。
  • 王春生教授:离子注入对高温合金蠕变/疲劳性能的影响及寿命预测
    仪器信息网讯 为提高广大试验机用户的应用水平,并促进用专家、用户、厂商之间的相互交流,2012年5月16日,在CISILE 2012召开期间,由中国仪器仪表行业协会试验机分会与仪器信息网主办、北京材料分析测试服务联盟与我要测网协办的“第一届中国试验机技术论坛”在中国国际展览中心综合楼二楼204会议室成功举办。   如下为北京航空航天大学材料科学与工程学院王春生教授所作报告的精彩内容: 北京航空航天大学材料科学与工程学院王春生教授 报告题目:离子注入对高温合金蠕变/疲劳性能的影响及寿命预测   对于疲劳断裂与试验技术发展历程,王春生教授在报告中首先回顾到,19世纪40年代,由于火车轴在轴肩处常发生断裂,德国人Wohler通过车轴疲劳模拟试验提出了S-N曲线及疲劳极限概念;20世纪初,伴随着光学金相显微镜问世,科学家们对疲劳机理进行了更深入的研究;1920年,Griffich提出了著名的裂纹体脆断强度理论,为断裂力学新学科发展奠定了基础;20世纪50年代,英国两架喷气式客机“慧星”号坠毁事故使人们意识到,看上去静止的飞机结构一旦承受反复载荷作用就会发生疲劳破坏。   随之,各种用于疲劳断裂测试的试验机新产品不断推出,如1987年,美国英斯特朗推出32位数字控制的电流伺服试验系统;1938年,瑞士首次推出频率范围在35-300Hz的高频疲劳试验机;20世纪90年代美国MTS推出了试验频率为1000Hz的电液伺服系统等。发展到今天,疲劳试验机的种类已日益繁多,如轴向拉压、弯曲、扭转、拉扭、单轴、双轴、多轴、低循环机械疲劳、低循环热疲劳等。   此外,王春生教授还重点介绍了离子注入对高温合金蠕变/疲劳性能的影响及寿命预测,众所周知,航空发动机的涡轮盘、叶片等热端转动部件,长期在高温、高应力及环境介质条件下服役,这使得零件材料承受着蠕变/疲劳或蠕变/疲劳/环境的交互作用,即时间相关疲劳。   对此,王春生教授采用金属蒸汽真空弧离子源(MEVVA )离子注入技术,将载能离子注入材料表面,引起材料表层成分和结构的改变,以提高材料的使用寿命。最后经试验验证得出,在650℃条件下,GH4169合金的CP型蠕变/疲劳寿命比PP型寿命损伤严重,寿命下降约70-80%,而经离子注入后的CP型蠕变/疲劳寿命仅下降20-30%;此外,采用SEP法预测GH4169合金650℃的疲劳及蠕变/疲劳寿命,可以得到满意的结果,其分散带B≤1.5,标准差S=0.08周。 会议现场
  • 微结构敏感的增材合金超高周疲劳裂纹萌生/扩展新理论
    增材制造金属作为新一代“高设计自由度”材料,虽具有传统铸轧工艺无法比拟的优势,但其长期服役疲劳性能仍有不足。航空发动机、燃气轮机和高铁等关键零件,在服役过程中承受107~1010及以上的循环载荷,材料微结构敏感性显著增强,实验寿命分散性大,传统基于疲劳极限(107)的疲劳强度与寿命设计理论不再适用。因此研究增材制造金属材料的超高周疲劳(VHCF)失效机理,建立量化内部缺陷和微结构的超高周疲劳裂纹萌生/扩展理论框架具有重要的科学意义和工程应用价值。增材制造金属超高周疲劳裂纹通常萌生于内部缺陷,裂纹萌生阶段通常占总寿命的95%以上。对于内部裂纹尚无合适的原位观测手段捕捉纳米级的裂纹长度变化,同时由于缺陷尺寸与晶粒在同一数量级,材料的各向同性假设不再适用。在理论层面,现有循环内聚区模型难以处理低于应力强度因子阈值的损伤演化,同时塑性变形和损伤是历史相关的内变量,现有数值模拟方法无法处理超高周次的循环载荷数。本研究旨在发展考虑材料微结构的超高周裂纹萌生/扩展机理的力学模型及超高周次循环载荷下的数值加速等效方法。本研究建立了耦合的晶体塑性/循环内聚区模型,引入单元通信机制,建立裂纹萌生演化准则,提出适用于超高周疲劳载荷的加速算法,对增材制造铝合金疲劳裂纹萌生和扩展过程进行预测,并通过实验验证了该方法的有效性。主要成果如下:(1)捕捉到了超高周疲劳早期的裂纹萌生/扩展过程。揭示了增材制造铝合金的VHCF裂纹萌生/扩展机理,建立了1:1还原实验的缺陷、晶粒织构和载荷条件的有限元模型。图1 (a)早期裂纹捕捉,(b)由内部缺陷诱发的次生裂纹,(c)早期裂纹形貌,对应载荷循环数3.63×108,(d)有限元模型及边界条件,(e)内聚区单元网络,(f)缺陷附近的内聚区单元(2)构建了超高周疲劳裂纹萌生及扩展的理论框架。首次将裂纹萌生过程中实体单元计算得到的晶体滑移内变量作为损伤参量引入内聚区模型,建立裂纹萌生和扩展准则,提出了基于向前欧拉法和频率等效的加速算法,实现超高周疲劳裂纹萌生和扩展的全过程模拟,很好地模拟了裂纹萌生早期缺陷附近最大激活滑移系的演化。图2 裂纹萌生早期缺陷附近最大激活滑移系的演化(a) N=1×104, (b) N=5×105, (c) N=2.5×106, (d) N=4.5×106, (e) N=6.5×106, (f) N=8.5×106(3)验证了模型在超高周疲劳载荷下的有效性。计算结果表明由于裂纹表面的相互挤压,裂纹面附近产生大量高局部累积塑性区,有力地支撑了大数往复挤压模型(NCP)所预测的FGA细晶区形成机理。同时模型可以有效地计算裂纹闭合效应,预测的裂纹扩展速率与实验结果吻合很好。图3 模型验证:(a)KAM图, (b)计算结果, (c)裂纹扩展速率该研究成果近期以“A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy”为题,发表在固体力学旗舰期刊Journal of the Mechanics and Physics of Solids 2023,175, 105293上(https://doi.org/10.1016/j.jmps.2023.105293),论文作者为中国科学院力学研究所孙经雨、钱桂安、洪友士等人。该项研究工作得到了国家自然科学基金(12002185,12272377,12072345,11932020)的资助。
  • 又是金属疲劳!聊一聊美国波音777引擎故障“元凶”的那些事儿
    2021年2月,美国联合航空公司从丹佛飞往夏威夷的一架波音777客机在起飞不久后,机上的普惠发动机着火且有零件开始掉落,随即折返丹佛。幸运的是,这起事件没有造成人员伤亡。经过调查,美国国家运输安全委员会表示,出现故障的波音777客机的引擎风扇叶片受损与金属疲劳有关。资料图:当地时间2月21日,在科罗拉多州丹佛市郊外的布鲁姆菲尔德附近的居民区,发现从美国联合航空公司飞机引擎上掉落的碎片。在航空领域,金属疲劳导致的事故并不罕见早在1954年,英国海外航空781号班机由一架彗星型客机执行由罗马至伦敦的飞行,行至地中海上空时,飞机突然爆炸解体,机上29名乘客及6名机组人员无一生还。据调查,发生事故的彗星型客机存在严重设计问题,当飞机长期处于高空、高速环境下,机内外气压不平衡,会导致金属疲劳,最终从机顶天窗的铆钉处爆裂。这是民航历史上首次发生因金属疲劳导致的空难事件。事故最终导致彗星型客机退出市场,而顶替它的,正是波音公司的707客机。但波音客机同样也没能摆脱金属疲劳的阴影。1985年8月,执飞日本航空123号航班的波音747飞机发生空难,造成超过500人遇难,这是世界航空史上最严重的空难之一。事后调查发现,该飞机在失事7年前发生机尾擦地,波音人员在机体受损部位的维修方法错误,导致事发时尾端机体因金属疲劳而爆开、连带损毁尾翼与液压系统,最终飞机失控,迫降不及坠毁。可以看出,对于飞行安全来说,金属疲劳带来的威胁是致命的。那么,什么是金属疲劳?所谓金属疲劳,是指一种在交变应力作用下,金属材料发生破坏的现象。机械零件在交变压力作用下,经过一段时间后,在局部高应力区形成微小裂纹,再由微小裂纹逐渐扩展以致断裂。疲劳破坏具有在时间上的突发、位置上的局部性及对环境和缺陷的敏感性等特点,不易被及时发现。关于金属疲劳损伤方面的研究记载,可追溯到1828年,德国矿业工程师Albert发现矿山机械用的升降链条多次在低于它的极限强度下发生破坏,对此进行了研究从而首次提出金属疲劳的概念。1850年,德国工程师Wohler设计出第一台疲劳试验机,对疲劳问题进行了进一步研究。1884年,德国学者Bauschinger发现“循环软化”现象,并提出循环应力-应变滞回曲线概念。20世纪初,随着宏观-细观的力学理论及其实验方法的发展,人们开始使用金相显微镜来研究疲劳机制。1945年,美国学者Miner在Palmgren工作的基础上提出了线性累积损伤的理论公式,得到了目前实际工程中应用广泛的Palmgren-Miner模型。1958年,苏联科学家Kachanov提出利用连续性变量描述材料性能退化或材质受损的连续性过程,后来Rabothnow提出有效应力和损伤因子的概念,为损伤力学的建立作了开创性工作。1977年,Janson和Hult等人提出损伤力学这一概念。从20世纪80年代至今,对金属疲劳问题的研究进入了一个快速发展的阶段。世界各国的科学工作者对疲劳破坏的研究都十分重视并取得极大的发展。但是,影响疲劳破坏的因素众多且彼此相互影响,还与结构件实际情况紧密关联,导致应用性成果远不能满足工程设计以及生产应用。研究金属疲劳需要用到哪些仪器?回顾金属疲劳的发展历程,可以看到,随着疲劳研究的深入,出现了如疲劳试验机、金相显微镜等不同的仪器设备以满足研究者们的使用需求。接下来,就盘点一下金属疲劳研究常用的一些仪器设备。疲劳试验机疲劳试验机,是一种主要用于测定金属及其合金材料在室温状态下的拉伸、压缩或拉、压交变负荷的疲劳性能试验的机器。目前市场上疲劳试验机品牌有MTS、英斯特朗、Zwick、万测、斯特普、三思纵横等。金相显微镜金相显微镜,主要通过对组织形貌的检查来分析金属的组织与其化学成分的关系,可以确定各类钢材通过不一样的加工和热处理后的显微组织,以此来判断钢材质量的好坏,如各类型的钢材夹杂物在组织中的分布情况和数量以及金属晶粒度的大小。该仪器品牌有徕卡、蔡司、奥林巴斯等。超景深显微镜超景深显微镜,主要用于观察传统光学显微镜因景深不够而不能看到的显微世界,其应用领域拓展到光学显微镜和扫描电子显微镜之间。产品品牌有基恩士、徕卡、浩视和蔡司等。扫描电子显微镜扫描电子显微镜,用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子、背散射电子等对样品表面或断口形貌进行观察和分析。其与能谱组合,还可以进行材料的成分分析。该仪器品牌有赛默飞、日本电子、泰思肯、欧波同、聚束科技、蔡司等。3D轮廓测量仪3D轮廓测量仪,是测量各种机械零件素线形状和截面轮廓形状参数的精密设备,如角度处理、圆处理、点线处理、直线度、凸度、对数曲线、槽深、沟曲率半径、沟边距、沟心距、轮廓度、水平距离等参数。该仪器品牌有基恩士、布鲁克等。以上列举了金属疲劳研究过程中常用的5类仪器,实际上,金属疲劳试验多样,所涉及到的仪器远不止这些。随着研究者工作的深入,对相关仪器设备的性能要求也越来越高。鉴于金属疲劳研究涉及内容的广泛性,疲劳损伤影响因素的多样性和金属构件自身的复杂性和不确定性,金属疲劳评估仍是一项长期而艰巨的工作。
  • 艾克第三代手持光谱分析仪 | 合金模式及技术参数介绍
    艾克(i-CHEQ)第三代手持X射线荧光光谱分析仪——将改变你的材料分析方式!创新再升级!艾克第三代手持式光谱分析仪新品正式发布,从未知到精确,将为您解锁新的可能性。无论您的需求是回收行业还是精密制造行业,只要需要对材料元素的检测,艾克新品—第三代手持式光谱分析仪都是您的不二选择!艾克第三代手持光谱仪应用于金属回收及未知材料、贵重及特种合金等检测,轻巧便携、坚固耐用,人体工学设计,只需轻轻扣动板机,即可进行无损的元素分析,告别高成本、耗时长的实验室检测,让你真正体验到“口袋中的实验室”所带来的便捷。 金属回收及未知材料现场检测和快速分类,1-3秒即可测出合金牌号和成分含量,精度可达0.01%。常规钢材金牌号识别200、300、400、500、600系列不锈钢及模具钢牌号;铝合金牌号鉴定及成份分析,常见的1-7系列铝合金的分析。高温合金牌号识别GH2132、GH4169、GH3128、GH4145、GH3030、GH3039、GH4140、GH3600、GH3625,等系列合金。三元锂电池正极材料检测NCM523、NCM622、NCM811等材料。贵金属检测快速检测:金、银、铂、铑、钯、钌、铱、锇等贵金属。优势及配置:"一键式"开机并检测,减少人为错误操作;一体式供电,超大容量电池,无续航焦虑;智能化体验,结果中英文显示;全息地理信息标注(GPS);高清摄像头,自动对焦;(选配)通过 WiFi,4G/5G、手机热点、USB、蓝牙、APP进行数据及报告输出;5.5寸高分辨率主流电容屏,自动感光清晰可见;Intel 高性能四核处理器,256GB 固态硬盘,DDR内存,Windows 10系统,运行速度碾压同类仪器;1/3机身为轻质铝合金结构,具有优良的防辐射和散热效果;最新 FP 算法,测试速度快,2-3秒内身份等级鉴定;优秀的架构,高低温环境使用无任何差异,舒适的人体工学设计,使用更轻松便捷;无操作待机时自动关机,减轻元器件的消耗;(用户可自定义关机时间)符合IP65标准。技术参数:重量基本重量不超过1.5kg;(带电池)电池10200 mA;尺寸245mm x 86mm x 310mm;(长宽高)激发源大功率高性能X射线管;靶材:5种可选择 金(Au)、银(Ag)、钨(W)、钽(Ta),钯(Pb);电压35kv50KV(电压智能可变)滤波器多种滤波器可选择,根据不同的被检测物自动调节;探测器高灵敏度Si-Pin/SDD探测器;(解析度≦180eV)探测器制冷温度Peltier效应半导体制冷,制冷温度-35℃;标准片外置316标准片/窗口保护盖;处理器Intel 2133MHz高性能四核处理器;操作系统Microsoft Windows 10系统;数据处理256GB,固态硬盘,内存DDR4 4GB;软件模式合金、矿石、土壤、RoHS (按需选择)数据分析搭载专业智能分析软件,具有智能化、速度快、操作简单等优点。整个分析过程仅需数秒便可完成;数据显示精确到百分比(%)显示,光谱或峰强度(计数率)或;数据传输手机4G、共享热点、WiFi与手机APP进行数据传输;显示屏720x1280高分辨率5.5寸主流电容屏,自动感光清晰可见,智能化人机界面;外形设计一体化机身设计,坚固、防水防尘及防冻,有效防震,适应潮湿或低温等野外环境使用;安全操作一触式“扳机”,软件具有自锁和防空测等保护功能;分析元素Mg(镁)、Al(铝)、Si(硅)、P(磷)、S(硫)、Ti(钛)、V(钒)、Cr(铬)、Mn(锰)、Fe(铁)、Co(钴)、Ni(镍)、Cu(铜)、Zn(锌)、Hf(铪)、Ta(钽)、W(钨)、Hg(汞)、Se(硒)、Au(金)、Br(溴)、Pb(铅)、Bi(铋)、Zr(锆)、Nb(铌)、Mo(钼)、Ag(银)、Cd(镉)、Sn(锡)、Sb(锑)、Re(钛)、Ir(依)、Pt(铂)、Ru(钌)、Rh(铑)、Pd(钯)等元素;测试环境条件温度-20~+40℃,湿度<80%RH。售后服务:24/7服务热线;两小时内响应回复;远程在线故障诊断排除;长期备品备件保有库存;新机免费安装及培训;新机15天内包换;(除人为毁坏外)可根据客户需求定制保修期限;新机保修一年,长期维护(含软件升级)
  • 元素小百科丨世界上最昂贵的贵金属—铑
    铑俗称“黑金”,是铂族金属中资源量及产量最少的那一个,在地壳中的含量仅有十亿分之一,大多分散在不同的矿石中,很少聚集在一起。所以物以稀为贵,论身价,铑的身价可一点也不比黄金低。据报道,2022年贵金属铑的人民币标价,约为黄金价格的10倍、铂金的19倍,那么是谁发现了这么贵重的金属呢?铑的发现在1803年英国化学家和物理学家威廉海德沃拉斯顿通过溶解、沉淀和过滤等一系列操作提取出一种红色溶液,并在蒸发和分析后首次获得铑这种金属。在化学元素周期表中,钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、铂(Pt)称为铂系金属。铑(Rh),原子序数45,原子量102.9055,希腊文是Rhodium,意为“玫瑰”。铑的沸点为3695℃,密度为12.41gcm−3。铑的特征铑是一种坚硬的银色金属,非常稳定且熔点高。铑金属耐腐蚀,并且作为一种铂族金属,它具有该组卓越的催化性能。该金属具有高反射率,坚硬耐用,同时具有低电阻以及稳定的接触电阻。铑的分布在我国铂系资源比较缺乏,储量仅约占全球0.4%,而且铂族金属通常与铜、铁、铝、铅、锌、镍等共伴生。铑在地壳中的含量极低,其质量分数仅为0.001*10-6,主要生产国:南非,俄罗斯,加拿大和其他生产国。我国的铂族金属资源95%以上分布于甘肃、云南、四川、黑龙江和河北5省,其中仅甘肃省就占全国储量的57.5%。铑的应用铑具有催化活性高,抗氧化、耐腐蚀性强的特点,在航空航天、玻璃纤维、电气工业珠宝首饰表面的制造等多领域都发挥着重要的作用。根据美国地质调查局的数据,汽车催化剂占2010年所有铑需求的77%。汽油发动机的三元催化转化器使用铑催化将氮氧化物还原为氮。全球大约5%到7%的铑消耗量用于化学行业。铑和铂-铑催化剂用于生产羰基合成醇以及生产一氧化氮,它是化肥、炸药和硝酸的原料。玻璃生产每年占铑消耗量的3%至6%。由于它们的高熔点、强度和耐腐蚀性,铑和铂可以合金化以形成容纳和成型熔融玻璃的容器。同样重要的是,含铑合金在高温下不会与玻璃反应或氧化玻璃。其他用途:作为镜子的饰面 在光学仪器中 在电气连接中 在热电偶中 作为珠宝饰面(电镀白金) 在核反应堆中作为中子通量水平的探测器 在航空航天领域中,用于飞机涡轮发动机和火花塞的合金 在医药领域,可以形成一种高活性的反应中间体,从而促进反应的进程。
  • 宁波材料所在高温非晶合金的腐蚀性能方面取得重要进展
    非晶合金具有组织均一、高强度、高硬度、耐磨蚀、热膨胀系数小、纳米级表面结构复写等特性,在其过冷液相区可快速实现从宏观至微米、纳米的多尺度一体化热塑成型,是制备高精密模具的理想材料。然而,传统非晶合金的玻璃转变温度低,高温强度及热稳定性差,使役温度难以超过600K,不能满足目前光学玻璃模压成型温度的要求。研发高温高强高稳定性块体非晶合金(简称“高温非晶合金”)有望将光学玻璃模压模具的磨削加工转变为热塑加工,突破磨削加工无法制备微纳米表面结构的先天限制,孕育变革性的光学玻璃元件“微纳模压成型”技术。基于此,在国家重点研发计划变革性技术关键科学问题专项的支持下,中国科学院宁波材料技术与工程研究所和中国科学院物理研究所、燕山大学、深圳大学、北京航空航天大学联合开展了“高温高强高热稳定性块体非晶合金新材料与应用基础”(项目编号:2018YFA0703600)的研究工作。其中,中科院宁波材料所非晶合金磁电功能特性团队主要负责课题“高温非晶合金的氧化与腐蚀机理研究”。近期,在王军强研究员和霍军涛研究员的指导下,该组课题生杨晓东等人围绕前期项目组开发的Ir-Ni-Ta-(B)高温非晶合金[Nature 569 (2019) 99–103]的腐蚀行为开展了深入系统的研究。研究发现在酸性溶液中Ir-Ni-Ta-(B)高温非晶合金相比于其它合金体系拥有更好的耐蚀性,归因于其可以形成由金属Ir以及Ni和Ta的氧化物组合而成的相对稳定的钝化膜。这种钝化膜具有较好的保护性,从而表现出很强的耐点蚀能力,因而腐蚀多发生于缺陷处。另外,研究发现微量添加类金属B元素可以显著提高Ir-Ni-Ta非晶合金的耐蚀性,Ir-Ni-Ta-B样品钝化电流要比Ir-Ni-Ta样品降低了一个数量级。在Ir-Ni-Ta和Ir-Ni-Ta-B非晶合金表面形成的钝化膜具有几乎相同的成分,但具有不同的厚度和孔密度。这些差异是由添加B引起的,B促进钝化膜的快速形成,同时抑制活性金属的溶解。金属Ir的表面富集和[BO3]3-的吸附进一步提高了Ir-Ni-Ta-B非晶合金的耐蚀性。相关结果表明,可以通过电化学钝化处理优先生成具有保护性的钝化膜以增加Ir基非晶合金作为模具材料的耐蚀性能,为增强高温高强高稳定性块体非晶合金在严苛服役环境中的使用寿命提供了重要实验基础和理论支撑。相关结果发表在Corrosion Science 200 (2022) 110227(https://doi.org/10.1016/j.corsci.2022.110227)。以上工作成果得到国家重点研发计划(2018YFA0703604、2018YFA0703602),国家自然科学基金(52001319、52071327、51922102、52171148),中科院青促会 (2019296), 浙江省自然科学基金 (LR22E010004、LR18E010002), 宁波市2025科技创新项目(2019B10051)和宁波市自然科学基金(202003N4354)等项目的资助。图1 左图为Ir-Ni-Ta-(B)非晶态合金与其他合金体系的晶化活化能对比图;右图为不同材料在硫酸溶液中的点蚀电位和钝化电流对比图图2 各种离子和电子在硫酸溶液中的传输和钝化膜形成示意图
  • 师昌绪:中国高温合金之父——2010年度获奖人
    人物小传:1920年生于河北省徐水县,1945年毕业于西北工学院矿冶系,1952年获美国欧丹特大学冶金博士学位,1955年回国。他是我国著名的物理冶金学家、材料科学家、战略科学家,中国科学院院士,中国工程院院士,第三世界科学院院士。曾任中科院金属所所长、中国科学院部技术科学部主任、国家自然科学基金委副主任、中国工程院副院长。   这是一位九旬老人的退休生活:每天上午8点钟离开家,9点钟到办公室,来访的客人有时一天好几拨,请他提供咨询意见的、指导科研工作的、题词的、写序的……几乎有求必应。此外,去年一年,北到哈尔滨、南到广州,他出了10次差,还在北京主持、参与了几十个学术会议。   这位乐此不疲、退而不休的老人,就是2010年度荣获国家科技奖最高奖的两位得主之一,我国高温合金材料的奠基人、在材料腐蚀、镁合金、碳纤维等多个领域贡献卓著的战略科学家师昌绪先生。   “我这样的生活很没意思,也不希望别人都像我一样。”师先生自我解嘲说:“但我已经是这么个定型了,在家反而苦恼,所以天天工作,生活很充实,觉得能对得起国家、民族,也就是这个样子。   “美国人做出来了,我们怎么做不出来?”   1月7日上午,在国家自然科学基金委(以下简称基金委)的一间会议室里,记者见到了91岁的师先生。虽然发已掉光、牙已全无,但老先生却背不驼、眼不花,步伐稳健、思维敏捷。听着后辈和老同事讲述他的往事,师先生时而会心一笑,时而神色凝重 他对数十年前的事情记得一清二楚,时不时插话补充两句 说到激动处,忍不住用手指敲得桌子“笃笃“直响。   “北京、上海,这两个地方任你选。”1955年6月,时任中科院技术科学部主任的严济慈,对刚从美国回来的师昌绪说。   结果,这位35岁的洋博士选择了沈阳,因为中科院金属所在沈阳。到金属所后,他被指定为鞍钢工作组的负责人,由物理冶金理论研究,转向炼钢、轧钢工艺开发。两年之后,师昌绪又服从国家需要,转任金属所高温合金研究组的负责人,带领一支小分队常驻抚顺钢厂,研制航空发动机的核心材料——高温合金。师昌绪带领科研人员奋力攻关,很快开发出代替镍基合金GH33的铁基高温合金GH135,用这种新材料制作的航空发动机关键部件——涡轮盘,装备了大量飞机。   更难啃的骨头在后面。1964年,中国的新型战斗机设计出来了,就差发动机用的耐高温高压涡轮叶片。此前,只有美国能研制这种空心叶片,国内的人都没见过。一天晚上八九点钟,航空材料研究所的副总工程师荣科找到师昌绪家里,问他能不能牵头搞空心叶片。“我也没见过空心叶片,也不知道怎么做。”师先生回忆说,“但我当时就想,美国人做出来了,我们怎么做不出来?中国人不比美国人笨,只要肯做,就一定能做出来。”   第二天,他与时任金属所所长的李薰先生研究决定接受这个任务。荣科听到这一消息自然高兴,但同时也“提醒”师昌绪:我可是立了军令状的,做不出来,我把脑袋割下来。师昌绪一笑:咱们就共同承担吧。   为啃下这块硬骨头,由师昌绪挂帅,从金属所的相关研究室挑选了“一百单八将”,成立了专门的项目组。他们采纳了容科“设计——材料——制造一体化”的建议,与发动机设计和制造厂等合力攻关。在当时的条件下,要在100毫米的叶片上均匀做出粗细不等、最小直径只有0.8毫米的9个小孔,谈何容易!他们攻克了型芯定位、造型、浇注、脱芯,以及断芯无损检测等一道道难关,于1965年研制出中国第一代铸造多孔空心叶片,使我国成为世界上第二个能研制这种叶片的国家。   后来,国家决定把空心叶片的生产转移到远在贵州的一个工厂,航空部点名师昌绪带队到生产第一线,帮助解决生产中的技术难题。当时从沈阳到贵阳要坐48个小时的闷罐火车,路上连喝的水都没有。工厂的条件极为艰苦,一日三餐吃的都是发霉的大米和红薯干,以至于厂里的总工程师过意不去,利用星期天到集市上买来白面,给科研人员蒸馍改善生活。师昌绪他们日夜在车间里鏖战。经过几个月的努力,他们终于克服了实际生产中的技术难关,至今所生产的数十万个叶片没出过一起质量问题。   “当时当然有压力了,但关键看你敢不敢往前冲。”忆当年,师先生雄心不改,“只要努力,肯定能做出来,除非你不努力。”   “我自己最大的特点,就是好管闲事”   “师先生,这个事您可别管!”2000年春,年近80的师昌绪找到基金委材料科学部原常务副主任李克健,说想和他一起抓一下碳纤维。李克健听后立马摇头,“这事太复杂!谁抓谁麻烦!”   李克健说的是大实话。质量轻、强度高的碳纤维是航天、航空用基础原材料,我国从1975年就开始攻关,大会战搞了不少,钱花了很多,但就是拿不出合格稳定的产品,以至于许多人避之唯恐不及。   “我们的国防太需要碳纤维了,不能总是靠进口。”师先生说,“如果碳纤维搞上不去,拖了国防的后腿,我死不瞑目。”   李克健听后深受感动,接受了师先生的邀请。这年8月,师先生召集了由原国防科工委、科技部、总装备部、基金委等相关单位58人参加的座谈会,探讨怎样把碳纤维搞上去。大家的一致意见是,碳纤维能搞上去。会议纪要里,专门写了这样一句:请师昌绪院士作为技术顾问和监督。   师先生欣然从命,很快又召集了第二次座谈会,讨论具体方法。座谈会上,有人给师先生泼凉水:上亿的资金哪里去找?就是钱弄来了,谁去协调指挥?过去几个部委联合起来都没弄好,你师老能指挥得动么?   “只要国家需要,困难再大也要干!”不服输的师先生上书中央,陈说利害。很快,这封信批转到科技部,科技部在863计划中专门增设了1亿元的碳纤维专项。在实施过程中,师先生吸取以前的教训,定了一条规矩:统一领导,谁拿专项的钱,谁就归我们管,不管你是哪个单位的。然后,专项领导小组派人到申报单位,现场取样,让第三方单位统一测试。数据出来后,大家一起讨论,优胜劣汰,结果。志在必得的一所知名大学落选,产品过硬的民营企业威海拓展一举中标。师先生一抓到底,不仅多次到威海实地指导,还专门给航空总公司写信化缘3000万元,帮助相关单位开展应用试验。现在,无论是航天还是航空,我国所需的碳纤维已可立足国内,完全依赖进口成为历史。   “我自己最大的特点,就是好管闲事”。师先生笑称。   凡是对国家有益的,对别人有益的,他都不避利害,乐于去管。   “师老很有眼光,他所管的闲事,要么是刚刚起步、困难很多,要么是涉及面广、关系复杂。只要这些闲事关系到国家的重大需求,师先生就抓住不放,该呼吁的呼吁,能扶持的扶持。”李克健说。   这样的例子还有很多。   从上世纪五六十年代开始,多个部委在全国各地陆续建立了26个材料环境腐蚀试验查与监测网站,检测材料在大气、海洋、土壤等环境中的腐蚀数据,为今后的大工程建设提供选材和防腐设计的决策依据。据基金委原秘书长袁海波回忆,80年代中期,我国开始大刀阔斧地推进科技体制和拨款制度改革,期间出现盲区,许多腐蚀监测站成为被遗忘的角落,陷入人走站亡的困境。1986年,基金委会成立,出任副主任的师昌绪力排众议,说服有关部委的领导,把腐蚀监测站的的数据检测分析建设列为基金委的重大项目,常年给予支持。后来等三峡大坝和核电站等工程上马时,大家才发现:腐蚀监测站提供的数据资料太重要了!   上世纪90年代,生物医用材料在国际上方兴未艾。由于我国起步晚,跟国外的差距很大,搞生物医用材料的学者和企业地位不高,这方面的研究没有引起应有的重视。李克健回忆说,当时师先生敏锐地觉察到,生物医用材料将是事关13亿国人健康的大产业,应该加快发展。经过他多方奔走,中国生物材料委员会在1996年宣告成立。由于该委员会的人员涉及十几个学会,关系比较复杂,找不到合适的主席人选,75岁的师先生只好勉为其难,连续干了两届。去年,中国科协批准成立中国生物材料学会 明年,世界生物材料大会明年将在成都举行。   ……   数十年“管闲事”的结果,是“管”出了一位名副其实的战略科学家。 “与师先生相处20多年,我感受最深的,就是他的亲和力。不管到哪儿,在哪个地方工作,都有很强的亲和力、吸引力和凝聚力。”说到这里,袁海波很是感慨,“作为一个大科学家,做到这一点是很不容易的。在技术科学和工程科学领域,尤其需要团队精神,需要德高望重的学术牵头人,把方方面面的力量凝聚起来。“这一点,当前在我国科技界特别重要,也特别不容易!” 亲和力来自淡泊名利的品格。国际材料联合会是世界材料学界的权威学术机构,加入该组织对促进我国材料科学的发展非常重要。据曾任中国材料研究学会副理事长的袁海波回忆,1986年国际材料联在美国举行会议,师先生与清华大学的李恒德教授应约参加,期间做了大量工作,妥善处理了与台湾相关的议题,终于在1991年底说服国际材联修改章程,接纳中国材料联合会代表中国成为其会员,台湾作为中国的一个地区与中国材料联合会并存。1991年,中国材料研究学会在中国材料联合会的基础上正式成立,许多人认为师先生是该研究会理所当然的理事长。结果,师先生主动让贤,自己只做顾问。 “师先生就是这样,以事业为重,以把大家的积极性调动起来为重,从不考虑自己的位子、自己的利益。”袁海波说。 亲和力来自尊重他人的作风。“1964年我担任师先生研究室的学术秘书,刚开始挺拘谨的,后来发现他一点架子也没有。”说起40多年前的往事,中科院金属所前所长李依依院士至今仍很动感情,“师先生非常尊重别人,从不把自己摆得很高。他带领我们研究高温合金,不像有的老师,要求你一定要照着他说的去做,而是划一个大的范围,让你放手去干;你有什么不同的想法,他也支持你做,哪怕做错了再重来都可以。跟师先生工作心情是非常愉快的,在他的团结指导下,完全可以指到哪儿就能打到哪儿。” 让李依依特别钦佩的,是师先生对每一个人都平等相待,哪怕对方只是普通的工人。“在金属所工作时,从他家到科研大楼只有一两百米的距离,5分钟的路程他要走半个小时,因为一路上老有人找他聊天。前几年,我跟师先生重回贵州叶片生产厂,老工人们都围过来跟他握手:‘师老师,您好久没来了!’。” 亲和力来自严谨求实的学风。虽然年事已高,但师先生开会做演讲、报告,不管是学术的还是管理类的,极少让别人“代劳”;凡是让他办的事情,都一丝不苟,绝不马虎。袁海波刚担任基金委秘书长不久,把大家精心编辑的《科技成果汇编》送给师先生过目。“我原以为他大的方面看一看就完了,没想到每一篇他都认真修改,改了一半多,连每一项成果的英文标题都不放过!” 1998年,鉴于师先生在高温合金材料领域的卓越贡献,包括GE等大公司在内的11个国际跨国公司联合授予他“突出贡献奖”,并称他为“中国高温合金之父”。 “这不对!”师先生听说后立即纠正,“在国内搞高温合金有人比我早,我只是做了较大的贡献。” 师先生说:“我这个人没什么本事,就在于能团结大家。”
  • 单智伟团队7月《科学》刊文一作刘博宇:原位电镜研究镁合金的应用与启发
    p    strong 仪器信息网讯 /strong 北京时间7月5日凌晨,国际顶级期刊《Science》刊发西安交通大学单智伟教授团队最新研究成果:通过采用原位电镜纳米力学测试技术,表明塑性差并不是镁的固有属性,通过提高流变应力(如通过细化晶粒或提高应变速率)来促进位错形核和滑移,可能是行之有效的增塑方法。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 186px " src=" https://img1.17img.cn/17img/images/201908/uepic/d367c37d-074a-416d-bf09-fd0a12a74a7b.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 186" border=" 0" vspace=" 0" / /p p   成果刊发消息一出,便引起业界广泛的关注。西安交通大学官网关于此项成果报道的关注点击也已迅速破万。关于此次刊发成果,西安交通大学青年教师刘博宇博士为本论文的第一作者,博士研究生刘飞为共同第一作者,西安交通大学单智伟教授、澳大利亚莫纳什大学聂建峰教授和美国内华达大学李斌教授为共同通讯作者。参与该工作的科研工作者还包括西安交通大学张磊教授、博士研究生杨楠、西安科技大学翟啸波博士、美国麻省理工学院李巨教授、约翰霍普金斯大学马恩教授、内华达大学博士研究生杨洋。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/735ec5c6-2054-4877-9e5c-f6aa64e575f3.jpg" title=" DSC_0066_副本.jpg" alt=" DSC_0066_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 西安交通大学青年教师刘博宇博士进行报告 /span /p p   7月13日,该刊发成果的第一作者刘博宇博士在成都“中国材料大会”的“透射电镜材料表征与评价”专场进行了题为《原位电镜技术在镁合金腐蚀防护和强韧化设计方面的应用与启发》的演讲报告,并讲解到了7月5日刊发《Science》文章中的系列研究过程。作为大会合作媒体,仪器信息编辑全程听取了报告,受益良多。以下,笔者将刘博宇博士现场演讲内容进行整理,以期为相关领域科研工作者带来启发。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201908/uepic/8ff04357-11e9-47c1-bbbd-2d1a2289d189.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 单智伟教授与团队成员一起讨论实验结果(图自西安交大官网) /span /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong “原位透射电镜技术”之于“金属结构材料研发” /strong /span /p p   直观来看,金属结构材料的研发与应用,往往是宏观的,看得见的,以米为单位的等 而原位透射电镜的观察与测试则是微观的,纳米的,原子的。两者似乎两不相干,从微观到宏观相隔着“世界上最遥远的距离”。但是,实际并非如此,如果我们合理找到研究的领域,去找到关键研究的问题,原位电镜技术在金属结构材料研究中可以发挥到非常巨大的作用。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 为什么研究镁? /span /strong /p p   作为最轻质的金属结构材料,镁在航空航天、汽车、高铁、电子产品和医疗等领域具有广阔的应用前景。然而,相比于传统的金属材料,镁的塑性较差,型材和零件的变形加工困难,工艺成本高。这严重制约了镁作为结构材料的广泛应用。 /p p   镁,是最轻质的金属结构材料,密度与塑料相近。优点包括可降解易回收、电磁屏蔽、生物相容性、高阻尼等。在航空航天、汽车、高铁、电子产品和医疗等领域具有广阔的应用前景。各个国家也是十分重视,我国《“十三五”国家科技创新规划》也更是将镁基材料列为国家重点发展对象。 /p p   镁如此重要,为什么没有得到大家更多的关注呢?刘博宇将制约镁应用的瓶颈比喻为 strong “镁人病” /strong ,包括“皮肤病”之易腐蚀、“软骨病”之强度低、“脆骨病”之塑性差等,这些缺陷严重制约了镁作为结构材料的广泛应用。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 原位电镜技术能做什么?能有什么启发? /span /strong /p p    strong 一、原位电镜技术应用之镁/镁合金防腐蚀新技术:对材料表面改性的启发 /strong /p p   镁易腐蚀的原因包括:自身属性(最活泼的结构金属材料)、原生氧化膜不致密等。所以人们在寻找一种致密、稳定、牢固的防腐蚀膜层。 /p p   在原位电镜研究过程中,有趣的发现了电子束活化CO2与MgO可以生成MgCO3。这就给与一个 strong 启发: /strong strong 如果活化CO2与Mg的表面MgO发生反应是否可以生成MgCO3的致密膜? /strong 按照这种设计理念,进行原位电镜实验,假设Mg十分活泼,放进电镜样品室马上可以在表面生成MgO,然后加以电子束,结果确实在Mg表面生成了致密的MgCO3。(此部分工作由王悦存博士开展) /p p   那么生成的MgCO3致密膜是否防护有效?接下来进行了去离子水浸泡验证实验,发现电子束活化CO2处理过的表面更加耐腐蚀。同时,对已经腐蚀的表面进一步进行活化CO2反应处理,发现同样可以生成致密MgCO3。并表明该反应过程透射电镜电子束辐照不是关键, strong CO2的活化 /strong 才是关键。 /p p    strong 二、原位电镜技术应用之镁合金的强化/高塑性设计:对晶体结构设计的启发 /strong /p p   在镁中, strong 形变孪晶 /strong 会在极低的应力下大量产生,导致低强度。解决的方案是“ strong 时效强化 /strong ”,即引入析出相,像钉扎位错一样钉扎孪晶界,提高强度。但研究发现,镁合金的时效强化效果较弱。 /p p   借助原位电镜研究发现,镁中存在特殊的孪晶界,类似水波,逐波移动,这也导致了宏观的低强度。根据这一观察结果,设计了一系列不同形貌的析出相,选取含有不同形貌析出相的镁合金,进行原位透射电镜纳米力学测试。观察析出相对孪晶的阻碍作用,对比强化效果。最终表明,颗粒和棒状析出相对孪晶的抑制作用有限,片层和网状析出相对孪晶的抑制效果良好。(此部分工作主要由孙楠博士开展) /p p    strong 三、原位电镜技术应用之镁合金增强塑性 /strong /p p   一般来讲,均匀的变形需要 strong 5个独立滑移系 /strong 。而镁中易开动的& lt a& gt 滑移仅提供4个独立滑移系,且均不能协调& lt c& gt 沿方向的应变。理论讲, strong & lt c+a& gt 位错滑移可提供5个独立滑移系,且可协调& lt c& gt 轴应变 /strong 。(如下图) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 208px " src=" https://img1.17img.cn/17img/images/201908/uepic/23e7b5ad-d3d2-4861-9a69-089389fd9203.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 208" border=" 0" vspace=" 0" / /p p   但关于& lt c+a& gt 位错是否为有效的塑性载体,业界有不同的观点。 strong 主流观点 /strong 认为,& lt c+a& gt 位错不稳定,分解为不可动结构, strong 不承载塑性 /strong 。只能通过合金化提高塑性,加入某些特定元素,促进& lt c+a& gt 位错交滑和增殖,抑制分解。同时也有 strong 一些声音 /strong ,认为可以通过促进& lt c+a& gt 位错形核和滑移来提高镁合金的塑性。 /p p   在此背景下,高塑性镁合金的设计思路变得明了:如果主流观点是正确的,便 strong 制造更多的& lt c+a& gt /strong ;否则, strong 便放弃& lt c+a& gt ,或稳固& lt c+a& gt /strong 。但更为本质的问题,是需要解释这些性质背后的机理,这便要选择合适的研究方法。 br/ /p p    strong 为什么选择原位电镜技术的研究方法? /strong ——首先要了解传统研究方法的局限性:测试样本大都为块体、多晶材料(位错及孪晶会干扰对& lt c+a& gt 位错的分析);传统表征方法无法的到位错在三维空间的形态,导致争议性结果;无法原位观测位错行为,导致争议性结果;目前主要依赖计算机模拟,但模拟的结果与势函数、初始条件和模拟方法密切相关,可能与实施有偏差等。而结合这些局限性与实际需求,最终选择了原位电镜纳米力学测试技术。 /p p    strong 实验设计要回答哪些问题? /strong ——沿& lt c& gt 轴压缩,到底没有塑性?& lt c+a& gt 位错能滑移吗?能贡献塑性吗?& lt c+a& gt 位错究竟在哪(个滑移面上)?(此部分工作主要由刘飞博士开展) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 384px " src=" https://img1.17img.cn/17img/images/201908/uepic/c548aa6e-8b1b-49f4-93ac-f8d4a5e32304.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 384" border=" 0" vspace=" 0" / /p p   原位电镜纳米力学测试发现, strong 镁不是天生就脆 /strong !镁有很大的沿& lt c& gt 轴的塑性应变,位错应该功不可没。接着揭示了& lt c+a& gt 位错的典型滑移行为,包括:半位错环长大、刃位错滑移(主流观点认为不可滑)、位错偶极子、位错反复滑移等。(如上图)同时三维重构研究发现,& lt c+a& gt 位错既可以在锥面1上滑移,也可以在锥面2上滑移,还可以发生交滑移。(如下图) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 325px " src=" https://img1.17img.cn/17img/images/201908/uepic/df3c1cf4-90e4-448f-ae26-d1ff4fb212fe.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 325" border=" 0" vspace=" 0" / /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 小结 /strong /span /p p   原位电镜技术在材料结构研究中,并不是遥不可及,可以为微观测试与宏观性能搭建桥梁,对许多科研工作带来启发。具体应用包括实时观测材料在受外界刺激下的响应(力、电、热、气氛及多场耦合)、揭示材料微观组织和缺陷演化与力学行为和腐蚀行为的内在联系、“破译”决定材料性能的关键“基因密码”等。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 附:关于7月5日《Science》刊发文章 /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 170px " src=" https://img1.17img.cn/17img/images/201908/uepic/8dbe3bab-c34b-45d2-a233-4841e840e3c4.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 600" height=" 170" border=" 0" vspace=" 0" / /p p   当前主流观点认为,塑性差是镁的本征属性,原因是镁中的锥面位错(一种晶体缺陷)会自发地分解为不可滑移的结构,无法协调塑性变形。因此,提高塑性需要通过添加某些特定的元素来调节锥面位错的行为。但也有一些学者持不同观点,认为锥面位错是有效的塑性变形载体,只要能促进锥面位错的形核和滑移,镁的塑性就可以提高。上述争议直接影响到下一代高塑性镁合金的设计思路和技术路线,因而成为一个急需解决的科学难题。然而,由于锥面位错的几何形态和结构非常复杂,很难通过实验来全面地解析。此前的研究通常以计算机模拟为主,相关观点和推论均缺乏有力的实验证据。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 382px " src=" https://img1.17img.cn/17img/images/201908/uepic/efd7c9cd-9c6b-4af6-b057-a855d3aece05.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 450" height=" 382" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图1 亚微米尺寸镁的大塑性变形 图2 实验观测到的塑性变形是由锥面位错滑移主导的 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图3 原位电镜捕捉到单根锥面位错的滑移 图4 三维图像重构帮助解析锥面位错的形态及其滑移面 /span /p p   针对上述难题,西安交通大学单智伟教授团队采用原位电镜纳米力学测试技术来解决样品几何形变、微观结构演化以及力学曲线三者之间一一对应的难题 选取合适的加载方向来消除其它位错的干扰 采用梯度样品设计来解决捕捉和表征单根位错难的问题 运用三维图像重构技术来解决位错滑移面不易确定的难题 并通过对比力学曲线的方式澄清了电子束影响的问题。得益于这些有针对性的实验设计,研究团队以令人信服的结果,证明了最起码对亚微米尺度的纯镁而言,各种类型的锥面位错(刃、螺、混合型)不仅可以滑移,而且可以导致非常大的塑性变形。与块体材料相比,微纳米样品呈现出更高的屈服强度和流变应力。因此,研究团队推测高应力促进了锥面位错的形核和滑移,进而提高了测试样品的塑性。通过进一步深入分析,不仅确定了位错的滑移面,而且还清晰地观察到锥面位错的交滑移、位错偶极子的形成以及位错往复运动等此前尚未报道过的重要现象。 /p p   该研究为完善镁的塑性变形理论提供了重要的实验数据,并为高塑性镁合金的开发带来新的启发。 /p p   该研究得到了国家重点研发计划、国家自然科学基金委、111计划2.0、中国博士后科学基金、陕西省重点产业创新链、西安交大青年拔尖人才计划和基本科研业务费等项目的资助。( strong 论文链接 /strong : a href=" https://science.sciencemag.org/content/365/6448/73" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " https://science.sciencemag.org/content/365/6448/73 /span /a )。 /p p   近年来,单智伟研究团队依托西安交通大学材料学院、金属材料强度国家重点实验室、西安交通大学微纳中心和陕西省镁基新材料工程研究中心,开展了一系列富有成效的基础研究、技术攻关和成果转化。2014年,发现了镁中不同于位错和孪晶的室温变形新机制,成果发表于《自然· 通讯》,并荣获美国TMS学会镁分会年度最佳基础研究论文奖 系统研究了镁合金中析出相形貌对孪晶行为的影响,并进而发展了一种判断镁合金强塑性的简单判据,成果发表于《材料科学技术》(封面推荐,2018) 发现通过活化二氧化碳,可以在室温下将镁表面的氧化层或腐蚀产物转变成一种致密的保护膜层,不仅可显著提升镁及其合金的抗腐蚀性和强韧性,而且大幅提高镁的抗氧化能力,从而发明了一种绿色、低成本镁合金涂层新技术,成果发表于《自然· 通讯》(2018),并获得国家发明专利授权 针对原镁冶炼工艺落后、自动化程度低和环境污染严重的现状,提出并验证了原本需要在真空条件下进行的原镁冶炼可以在常压进行,并与华西能源公司联合攻关,开展了原镁常压生产的工业化装置的开发。针对原镁杂质元素种类多、含量高、波动大的痼疾,从原子机理出发,开发出全新的工艺流程,可在不显著增加成本的情况下,从料球直接生产出99.99%以上纯度的高纯镁,革新了此前领域内普遍认为皮江法(硅热还原法)不能直接生产高纯原镁的认知。上述成果的推广和应用,有望从整体上提升镁基产品质量和性能。 /p p br/ /p
  • 奥林巴斯合金分析仪揭秘东京奥运会奖牌成分
    众所周知,奥运会的奖牌分为金、银、铜三种,分别发给冠军、亚军以及季军。可是你知道吗?奥运会的金牌,并不是金子做的哦,其材质是“银”!国际奥委会其实对奥运会的奖牌有着详细的规定,对其原材料的规定是这样写的:第一名和第二名的奖牌主体是银质,至少纯度在92.5%之上,第一名的奖牌至少有6g的纯金镀层。从规定中我们就能够看出,奥运会金牌只是在表面镀6g以上的金而已,最终的底材依然是银。鉴别含金量其实除了奥运会的奖牌,很多号称“金银”的首饰、纪念品等都并非是纯金、纯银打造。如果将贵金属作为商品进行交易,那么有效鉴别其“真假”就显得尤为重要。XRF是一种可以迅速、轻松地确定贵金属化学成分、纯度和成色的无损检测技术,能够快速提供贵金属的克拉值。奥林巴斯的Vanta分析仪是一款手持式XRF分析仪,可以对包括黄金、铂金、白银在内的贵金属进行即时、无损的分析。Vanta分析仪可提供出色的精度和准确度,可以在购买黄金、销售或生产珠宝时,快速、准确地确定克拉值(贵金属含量)以进行质量控制和定价。Vanta的可定制的界面,使用起来简便直观,因此即使没有什么经验的用户,经过简短的培训,也可以很快掌握使用分析仪的方法。用户还可以将结果下载,快速制作成证书。据说,东京奥运会的奖牌是“从垃圾里捡出来”的,这是怎么回事呢?原来,在本届东京奥运会中,奥委会誓将”绿色环保低碳”的理念贯彻到底,将奖牌制作方式进行创新,首次使用回收的旧手机和家电来制作“绿色奖牌”,并且号召日本民众捐出自己的废旧电子产品,再从这些淘汰的“电子垃圾”中提炼奖牌所需的贵金属原料。像不像小时候经常听到门外在喊:“高价回收冰箱、彩电、洗衣机。”从2017年4月开始,日本用两年的时间在全国收集了约78985吨的小家电和621万部旧手机,从中提炼出32公斤的纯金、3500公斤纯银和2200公斤纯铜,从中已经获得制作奖牌所需的99.3%的黄金,85.4%的白银以及100%的铜。这项活动在日本收到了民众的广泛参与,日本全国放置了18000个收集箱,90%的地方当局都参与了这项活动。谈到日本制作的“绿色奖牌”,有网友调侃道:“不知运动员拿到奖牌之后,咬一口是不是有一股CPU的味道?”根据了解,电路板中除了含有30%的惰性氧化物及30%的塑料之外,还含有40%的金属,在金属含量中有0.1%的黄金量。一吨废旧的手机电路板可提取0.034g黄金,0.34g白银,25克铜等金属,而一吨的矿石也只能提取20g黄金,由此可见在废旧电路中提取的含金量非常可观。使用奥林巴斯手持式Vanta合金分析仪,用户可以对废料进行快速、准确的分拣,它可在1~2秒钟时间内对大多数合金的级别和纯金属进行可靠的辨别。Vanta合金分析仪装配有一个至少含25种元素的标准软件包,在数秒钟之内即可生成合金的化学成份信息,并确定合金的ID牌号。从简单的分拣到进一步的级别区分,Vanta都会提供极为精细的材料化学成份信息,从而快速精确地辨别纯金属和合金的级别。 (使用Vanta快速分析汽车催化剂中的铂族元素 )此外,Vanta合金分析仪还可应用于以下检测场景:基于硅和铝元素的低含量,分拣出重合金分析母板电子元件,识别含贵金属(银、金、钯等)的电子元件,分拣和辨别出有毒物质及含铅的焊料,评价细碎材料中的铜含量从回收流水线上快速分拣出含铅的玻璃与玻璃陶瓷制品,探测出有毒的元素分析含钯、铂、铑等贵金属的汽车催化剂材料在熔渣融化的过程中,监控熔渣的化学成份,从而对质量进行控制,并对熔炉的寿命进行预测。可分拣并评价从不同的融化过程中回收的熔渣。
  • 阳江合金材料实验室预算3090万元采购8套科学仪器
    阳江合金材料实验室于2019年10月挂牌成立,由广东省人民政府和阳江市人民政府共同投资建设。目前实验室科研面积8235m2,中试车间6200m2,实海腐蚀试验场20000m2,组建了合金材料智慧研发平台,合金材料孵化转化平台,以及合金材料工程化验证平台,实验研究设备投入近亿元。为进一步开展科研,阳江合金材料实验室于近日公布了一批仪器采购意向,采购品目涉及场发射电子探针、X射线显微CT、裂纹尖端位移试验机、实用大样品氢含量定量分析装置、纳米压痕等,预算金额相加达3090万元,预计采购时间为2022年6月。阳江合金材料实验室2022年6月仪器采购意向序号名称数量预算需求1热膨胀仪1200万元在一定的温度程序、负载力接近于零的情况下,测量样品的尺寸变化随温度或时间的函数关系。可测量固体、熔融金属、粉末、涂料等各类样品,广泛应用于无机陶瓷、金属材料、塑胶聚合物、建筑材料、涂层材料、耐火材料、复合材料等领域。2高温激光共聚焦显微镜1200万元高温激光共聚焦显微镜是一种用于冶金工程技术领域的原位观察分析仪器,最高观察温度1700℃,高温拉伸最高温度1200℃。3场发射电子探针1750万元可以对试样中微小区域(微米级)的化学组成进行定性或定量分析。可以进行点、线扫描(得到层成分分布信息)、面扫描分析(得到成分面分布图像)。4纳米压痕1300万元纳米尺度下的物理力学性能测试可对包括有机高分子材料在内的固体材料和薄膜材料进行连续动态载荷下纳米硬度、弹性模量、纳米划痕、摩擦系数、屈服强度以及界面结合力的测试。5实用大样品氢含量定量分析装置1350万元主要用于精确测量实用大样品钢材或零件在室温至1000℃环境下的氢含量。6高温疲劳试验机170万元可进行常温和-40℃~200℃的高低温环境条件试验。通过特殊设计推进(出)机构,可实现有高低温境条件和无高低温环境条件两用试验功能。7X射线显微CT1720万元可用于从宏观到微观的多尺度范围内得到材料内部的孔隙、裂纹、夹杂物等三维信息,为优化工艺调整提供判断依据,不仅可以进行多尺度的高分辨、高通量三维成像,也支持快速和长时间连续扫描,以及快速“4D”动态原位成像。8裂纹尖端位移试验机1500万元裂纹尖端张开位移是弹塑性断裂力学中的一个重要参量,裂纹体受载后,裂纹尖端附近存在的塑性区将导致裂纹尖端的表面张开,这个张开量就称为裂纹尖端的张开位移,通常用δ来表示。当裂纹尖端的张开位移δ达到材料的临界值δc时。裂纹即发生失稳扩展。使用高性能疲劳及断裂韧性试验系统可以测量裂纹尖端张开位移。
  • 标准解读 | 《汽车用高强韧类高真空压铸铝合金材料技术条件》
    近日,中国汽车工程学会正式发布团体标准《汽车用高强韧类高真空压铸铝合金材料技术条件》(T/CSAE 198-2021)。该标准由汽车轻量化技术创新战略联盟提出,苏州有色金属研究院有限公司牵头,联合中铝材料应用研究院有限公司、广东鸿图科技股份有限公司、安徽江淮汽车集团股份有限公司、中铝山西新材料有限公司、南通鸿劲金属铝业有限公司、重庆长安汽车股份有限公司、东风汽车集团有限公司等多家整车及材料企业共同研制。根据《中国汽车产业发展报告(2020)》的数据显示,2005年~2017年,我国交通行业的二氧化碳排放量始终保持稳定增长态势,占比从8%增长到10%。随着汽车保有量的增长,道路交通的碳排放增长速度较高。根据公安部统计的最新数据显示,2020年全国汽车保有量达2.81亿辆,已有70座城市的汽车保有量超过百万辆。汽车保有量的增长,导致交通行业碳排放量增长速度要远高于其他行业。相关预测显示,到2025年交通运输行业的碳排放量将在现有的基础上增加50%。2020年10月,由工信部指导编制的《节能与新能源汽车技术路线图2.0》明确指出,我国汽车产业碳排放将于2028年左右提前达峰,至2035年,碳排放总量较峰值下降20%以上。在汽车行业,推动节能减排首要的任务之一是实现汽车的轻量化。目前我国正加快汽车轻量化进程,大力发展新能源汽车尤其是电动汽车,主要是通过车身连接件、电池托盘等结构件的铝化实现轻量化的目标。这些结构件对强度和韧性均提出了较高的要求,采用真空压铸技术和高强韧压铸铝合金制备汽车结构件越来越被主机厂接受。但是,我国目前仅有针对传统非承载压铸件的压铸铝合金材料标准,严重制约了我国汽车轻量化特别是新能源汽车的快速发展。因此,在这种背景下,汽车轻量化技术创新战略联盟提出制定汽车用高强韧类高真空压铸铝合金材料的团体标准,旨在通过本标准规范汽车用铝合金结构零件对压铸铝合金的整体要求,推动汽车轻量化行业的快速发展。本标准规定了汽车用高强韧类高真空压铸铝合金材料的术语和定义、技术要求、试验方法、检验规则、标志、包装、贮存和运输。在术语和定义方面,通过定义一种压铸前快速抽出型腔中的气体,使模具型腔中的真空度不超过50mbar,确保液态金属在高压作用下,以极高的速度充填模具型腔,并在一定压力作用下冷却凝固而得到铸件的成形工艺,引出高强韧类高真空压铸铝合金材料,并将其定义为抗拉强度大于180MPa,屈服强度大于120MPa,同时伸长率大于8%,且适合于高真空压铸成形的铸造铝合金材料。在技术要求方面,主要从外观质量、化学成分、力学性能、含氢量、夹渣量、断口组织、显微组织七个方面对该压铸铝合金材料进行规定,其中化学成分对合金的Si、Fe、Mn、Mg、Sr、Cu、Ti等元素进行了规定,同时对杂质的单项和杂质的总和进行了规定。在力学性能方面包括金属型铸造和高真空压铸条件下单铸试棒的室温拉伸性能、硬度、冲击韧性及疲劳性能,并给出了推荐的的热处理工艺和力学性能。在含氢量方面规定了铸锭针孔度等级和含氢量的最大值,具体包括建议铸锭针孔度等级不低于二级,合金液中含氢量不超0.2ml/100gAl。在夹渣量方面,若客户对夹渣量有要求时,应在订货单或合同中注明具体等级,并规定不应低于二级,同时利用测渣仪进行定量判定,夹渣量等级满足90s内通过的铝合金液超过2200g或者夹渣统计不超过0.15mm2/kg铝液。在试验方法方面,化学成分的试验方法按照GB/T7999-2015的规定执行。力学性能的检测方法中,拉伸性能的试验方法按GB/T 228.1-2010的试验要求的规定执行,硬度的试验方法按GB/T229-2020中的规定执行,冲击韧性的试验方法按GB/T 231.1-2018的规定执行,疲劳性能的试验方法按GB/T3075-2008的规定执行。本标准充分考虑了汽车行业用到的高强韧类铸造铝合金材料,适用于汽车薄壁结构件用高强韧真空压铸铝合金材料标准,也适用于其它高强韧类铸造铝合金的评价内容、评价方法及评价标准,可为主机厂及压铸件供应商在汽车车身结构件方面提供选材及检测要求基准,对于规范其在汽车结构件上的应用有重要的指导意义。
  • 金相师的金相切割片选择要牢牢把握在自己手中!
    作为金相师,金相制样是基本功,选择金相设备和耗材更是拿手好戏。在金相切割取样时,面对琳琅满目的金相切割片该如何选择?听厂家的?听同事的?听同学的?还是听自己的?答案是,掌握相关知识,依据实际需要和技术要求,听自己的更妥当,套用一句话就是“金相师的金相切割片选择要牢牢把握在自己手中”!如何能选择到适用并良好质量的金相切割片呢,以下方法供参考!确定孔径,按金相切割机类型来选,通常情况,砂轮切割机匹配的金相切割片轴心孔径为32mm,精密切割机匹配的金相切割片轴心孔径为12.7mm。确定类型,按被切割的样品材料性能来选,通常情况,各种钢、合金、黑色金属、有色金属等,应选用砂轮金相切割片或超薄砂轮切割片;而各种复合材料、塑料、橡胶、玻璃、陶瓷等应选用金刚石金相切割片。确定尺寸,按照要切取的样品大小和要求的精度来选,被切割的样品小,要求精度高则选用外圆尺寸小,厚度薄的金相切割片;反之可选择尺寸大一点的。具体可参照厂家的技术说明书。确定供应商,在满足技术需求的前提下,优选产品质量可靠稳定、交期及时、价格合理、售前售后服务好的供应商。 总之一句话,在工作中不断学习和积累相关知识和经验,掌握金相切割片选择的方法,依据工作实际情况,多维度考量,一定会优选出好用、耐用、质优价实的好切割片的。实际上选择金相切割片很简单,只要确定了类型、孔径、外圆直径和厚度,然后再根据样品的材料分类,就可直接确定型号了,然后进入选购环节。掌握了这些方法,金相师就已经把选择金相切割片牢牢掌握在了自己手中,为提高工作质量和效率打牢了基础!可脉检测小编的分享,希望能给您带来一些帮助,也欢迎有兴趣的朋友和我们一同探讨更多、更好的制样解决方案。
  • 借助流化沙浴实现镍钛合金热定型
    借助流化沙浴实现镍钛合金热定型个#Cole-Parmer沙浴用于人体心脏支架工艺#镍钛合金是一种形状记忆合金,能将自身的塑性变形在某一特定温度下自动恢复为原始形状的特种合金,具有良好的可塑性,又称热定型能力,被广泛应用于多个领域包括医疗器械、航空航天、电子等领域。在医疗领域中,镍钛诺可以用于制造支架、人体植入设备,导丝、取石篮、过滤器、针头、牙科锉刀和其他手术器械。高纯度原料和熔融方法可以确保取得均匀的最终产品。行业常采用不同的热处理加工方法来实现最终产品成型。Cole-Parmer系列流化沙浴能够覆盖温度范围从-100°C到700°C的应用,因在超高温度下也能保持温度稳定性和均一性,并且保证温度精密,是镍钛诺热处理的理想选择。✦ ++Cole-Parmer流化沙浴床应用✦ +► 镍钛合金热处理热处理常用于设定镍钛合金的最终形状。如果镍钛合金有合理的冷加工量(大约30%或更多),400℃到 500℃的温度和适当的停留时间将产生一个直的、扁平的或成型的零件。术语“形状设置”通常用于此过程,成型零件是使用定制夹具创建的。一些常见的热处理方法是钢绞线退火(用于直线和管材)、箱式炉、熔盐浴和流化沙浴床。热处理的另一个目的是确定镍钛合金的最终机械性能和转变温度。材料经过冷加工后,适当的热处理将在材料中建立可能的最佳形状记忆或超弹性性能,同时保留足够的残余冷加工效果以抵抗循环过程中的永久变形。► 镍钛合金热处理的难点解决面临的难点:高温情况下的温度均一性合金的热处理需要在一个特定的稳定高温环境下进行,若是温度过高会导致产品的弹性功能丧失,而温度过低则会导致产品没有成功的坚硬化,不利于后期的使用处理难点解决:Cole-Parmer流化沙浴床可以在700℃的温度条件下,提供一个最高±0.01℃的高温环境浴,可以帮助客户轻松地完成各种温度条件下的高温热处理。Cole-Parmer流化沙浴床工作中► Cole-Parmer流化沙浴床更多应用推荐基本通用款高温度稳定性高流量清洗款1、温度探头校准—不规则形状传感器2、聚合物清洁快速清洗,限度地减少昂贵的生产设备停机时间,只需要烘箱1/3时间无刀具损伤、钢丝擦刷、刮伤损坏无人值守清洗,降低了劳动成本不会腐蚀磨料模具轻松处理断路板、模具、喷嘴及其他模具材料的小孔沙浴流化床的能源效率无需耗材、溶剂或任何其他有害的化学物质去除几乎所有的塑料,如PVC、PET、Flouropolymers和PEEK聚合物3、恒温加热—替代水浴盐浴等4、材料热处理—镍钛合金等
  • 《钢铁及合金 硅含量的测定 重量法》等353项国家标准即将实施!
    关于批准发布《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单的公告国家市场监督管理总局(国家标准化管理委员会)批准《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-04-25序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 223.60—2024钢铁及合金 硅含量的测定 重量法GB/T 223.60—19972024-11-012GB/T 754—2024发电用汽轮机参数系列GB/T 754—20072024-11-013GB/T 1361—2024铁矿石分析方法总则及一般规定GB/T 1361—20082024-11-014GB/T 1503—2024铸钢轧辊GB/T 1503—20082024-11-015GB/T 3428—2024架空导线用镀锌钢线GB/T 3428—20122024-11-016GB/T 3594—2024渔船用电子设备电源技术要求GB/T 3594—20072024-11-017GB/T 3648—2024钨铁GB/T 3648—20132024-11-018GB/T 3880.2—2024一般工业用铝及铝合金板、带材 第2部分:力学性能GB/T 3880.2—20122024-11-019GB/T 3880.3—2024一般工业用铝及铝合金板、带材 第3部分:尺寸偏差GB/T 3880.3—20122024-11-0110GB/T 4074.1—2024绕组线试验方法 第1部分:一般规定GB/T 4074.1—20082024-11-0111GB/T 4074.2—2024绕组线试验方法 第2部分:尺寸测量GB/T 4074.2—20082024-11-0112GB/T 4074.3—2024绕组线试验方法 第3部分:机械性能GB/T 4074.3—20082024-11-0113GB/T 4074.4—2024绕组线试验方法 第4部分:化学性能GB/T 4074.4—20082024-11-0114GB/T 4074.5—2024绕组线试验方法 第5部分:电性能GB/T 4074.5—20082024-11-0115GB/T 4074.6—2024绕组线试验方法 第6部分:热性能GB/T 4074.6—20082024-11-0116GB/T 4103.18—2024铅及铅合金化学分析方法 第18部分:银、铜、铋、砷、锑、锡、锌、铁、镉、镍、镁、铝、钙、硒和碲含量的测定 电感耦合等离子体质谱法2024-11-0117GB/T 4137—2024稀土硅铁合金GB/T 4137—20152024-11-0118GB/T 4138—2024稀土镁硅铁合金GB/T 4138—20152024-11-0119GB/T 4330—2024农用挂车GB/T 4330—20032024-11-0120GB/T 4331—2024农用挂车 试验方法GB/T 4331—20032024-11-0121GB/T 4701.12—2024钛铁 钛含量的测定 二安替吡啉甲烷分光光度法2024-11-0122GB/T 4701.13—2024钛铁 硅、锰、磷、铬、铝、镁、铜、钒、镍含量的测定 电感耦合等离子体原子发射光谱法2024-11-0123GB/T 4797.3—2024环境条件分类 自然环境条件 第3部分:生物GB/T 4797.3—20142024-11-0124GB/T 5121.8—2024铜及铜合金化学分析方法 第8部分:氧、氮、氢含量的测定GB/T 5121.8—20082024-11-0125GB/T 5324—2024棉与涤纶混纺本色纱线GB/T 5324—20092024-11-0126GB/T 5484—2024石膏化学分析方法GB/T 5484—20122024-11-0127GB/T 5683—2024铬铁GB/T 5683—20082024-11-0128GB/T 5762—2024建材用石灰石、生石灰和熟石灰化学分析方法GB/T 5762—20122024-11-0129GB/T 6730.73—2024铁矿石 全铁含量的测定 EDTA光度滴定法GB/T 6730.73—20162024-11-0130GB/T 8122—2024内径指示表GB/T 8122—20042024-11-0131GB/T 8177—2024两点内径千分尺GB/T 8177—20042024-11-0132GB/T 8492—2024一般用途耐热钢及合金铸件GB/T 8492—20142024-04-2533GB/T 9058—2024奇数沟千分尺GB/T 9058—20042024-11-0134GB/T 9442—2024铸造用硅砂GB/T 9442—20102024-04-2535GB/T 10395.28—2024农业机械 安全 第28部分:移动式谷物螺旋输送机2024-11-0136GB/T 10932—2024螺纹千分尺GB/T 10932—20042024-11-0137GB/T 11066.12—2024金化学分析方法 第12 部分: 银、铜、铁、铅、铋、锑、镁、镍、锰、钯、铬、铂、铑、钛、锌、砷、锡、硅、钴、钙、钾、锂、钠、碲、钒、锆、镉、钼、铼、铝含量的测定 电感耦合等离子体原子发射光谱法2024-11-0138GB/T 11091—2024电缆用铜带箔材GB/T 11091—20142024-11-0139GB/T 11420—2024搪瓷制品和瓷釉 光泽度测试方法GB/T 11420—19892024-11-0140GB/T 12690.12—2024稀土金属及其氧化物中非稀土杂质 化学分析方法 第12部分:钍、铀量的测定 电感耦合等离子体质谱法GB/T 12690.12—20032024-11-0141GB/T 12705.2—2024纺织品 防钻绒性试验方法 第2部分:转箱法GB/T 12705.2—20092024-11-0142GB/T 12916—2024船用金属螺旋桨技术条件GB/T 12916—20102024-08-0143GB/T 12959—2024水泥水化热测定方法GB/T 12959—20082024-11-0144GB/T 13077—2024铝合金无缝气瓶定期检验与评定GB/T 13077—20042024-11-0145GB/T 13210—2024柑橘罐头质量通则GB/T 13210—20142024-11-0146GB/T 13539.6—2024低压熔断器 第6部分:太阳能光伏系统保护用熔断体的补充要求GB/T 13539.6—20132024-11-0147GB/T 13539.7—2024低压熔断器 第7部分:电池和电池系统保护用熔断体的补充要求2024-11-0148GB/T 13748.20—2024镁及镁合金化学分析方法 第20部分:元素含量的测定 电感耦合等离子体原子发射光谱法GB/T 13748.20—2009GB/T 13748.5—20052024-11-0149GB/T 13818—2024压铸锌合金GB/T 13818—20092024-04-2550GB/T 13929—2024水环真空泵和水环压缩机 试验方法GB/T 13929—20102024-08-0151GB/T 13930—2024水环真空泵和水环压缩机 气量测定方法GB/T 13930—20102024-08-0152GB/T 14048.11—2024低压开关设备和控制设备 第6-1部分:多功能电器 转换开关电器GB/T 14048.11—20162024-11-0153GB/T 14207—2024夹层结构或芯子吸水性试验方法GB/T 14207—20082024-11-0154GB/T 14264—2024半导体材料术语GB/T 14264—20092024-11-0155GB/T 14408—2024一般工程与结构用低合金钢铸件GB/T 14408—20142024-04-2556GB/T 14949.7—2024锰矿石 钠和钾含量的测定 火焰原子吸收光谱法GB/T 14949.7—19942024-11-0157GB/T 15115—2024压铸铝合金GB/T 15115—20092024-04-2558GB/T 15148—2024电力负荷管理系统技术规范GB/T 15148—20082024-11-0159GB/T 15579.1—2024弧焊设备 第1部分:焊接电源GB/T 15579.1—20132024-11-0160GB/T 16477.1—2024稀土硅铁合金及镁硅铁合金化学分析方法 第1部分:稀土总量、十五个稀土元素含量的测定GB/T 16477.1—20102024-04-2561GB/T 16659—2024煤中汞的测定方法GB/T 16659—20082024-11-0162GB/T 17215.301—2024电测量设备(交流) 特殊要求 第1部分:多功能电能表GB/T 17215.301—20072024-11-0163GB/T 17215.302—2024电测量设备(交流) 特殊要求 第2部分:静止式谐波有功电能表GB/T 17215.302—20132024-11-0164GB/T 17241.1—2024铸铁管法兰 第1部分:PN系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0165GB/T 17241.2—2024铸铁管法兰 第2部分:Class系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0166GB/T 17259—2024机动车用液化石油气钢瓶GB/T 17259—20092024-11-0167GB/T 17737.10—2024同轴通信电缆 第10部分:含氟聚合物绝缘半硬电缆分规范GB/T 17737.2—20002024-11-0168GB/T 17737.11—2024同轴通信电缆 第11部分:聚乙烯绝缘半硬电缆分规范2024-11-0169GB/T 17737.119—2024同轴通信电缆 第1-119部分:电气试验方法 同轴电缆及电缆组件的射频功率2024-11-0170GB/T 17737.9—2024同轴通信电缆 第9部分:柔软射频同轴电缆分规范2024-11-0171GB/T 17937—2024电工用铝包钢线GB/T 17937—20092024-11-0172GB/T 18153—2024机械安全 用于确定可接触热表面温度限值的安全数据GB/T 18153—20002024-04-2573GB/T 18222.2—2024小艇 用操纵速度确定最大推进额定功率 第2部分:艇体长度在8m~24m之间的艇2025-05-0174GB/T 18336.1—2024网络安全技术 信息技术安全评估准则 第1部分:简介和一般模型GB/T 18336.1—20152024-11-0175GB/T 18336.2—2024网络安全技术 信息技术安全评估准则 第2部分:安全功能组件GB/T 18336.2—20152024-11-0176GB/T 18336.3—2024网络安全技术 信息技术安全评估准则 第3部分:安全保障组件GB/T 18336.3—2015[部]2024-11-0177GB/T 18336.4—2024网络安全技术 信息技术安全评估准则 第4部分:评估方法和活动的规范框架GB/T 18336.3—2015[部]2024-11-0178GB/T 18336.5—2024网络安全技术 信息技术安全评估准则 第5部分:预定义的安全要求包GB/T 18336.3—2015[部]GB/T 18336.3—2015[代完]2024-11-0179GB/T 18891—2024三相交流系统相位差的钟时序数标识GB/T 18891—20092024-11-0180GB/T 18910.11—2024液晶显示器件 第1-1部分:总规范GB/T 18910.1—20122024-08-0181GB/T 18910.12—2024液晶显示器件 第1-2部分:术语和符号GB/T 18910.11—20122024-04-2584GB/T 18910.22—2024液晶显示器件 第2-2部分:彩色矩阵液晶显示模块 空白详细规范GB/T 18910.22—20082024-04-2585GB/T 18910.3—2024液晶显示器件 第3部分:液晶显示屏 分规范GB/T 18910.3—2008197GB/T 43866—2024企业能源计量器具配备率检查方法2024-11-01198GB/T 43867—2024电气运输设备 术语和分类2024-11-01199
  • 深圳三思纵横试验机|论坛参展:聚焦首届先进合金材料青年论坛
    2024年4月13-14日,湖北宜昌举办了以“青年科学家:先进合金材料的未来”为主题的首届先进合金材料青年论坛暨第二届青年编委交流会。此次论坛汇聚了国内外铸造行业的青年才俊,共同探讨先进合金材料的科研进展、技术趋势和应用前景,旨在推动我国合金材料科学的发展。在论坛的开幕式上,多位行业领袖和知名学者发表了精彩致辞,强调了本次论坛对于促进国内外合作、支持我国先进合金材料发展的重大意义。世界铸造组织主席、中国机械工程学会铸造分会理事长娄延春研究员,三峡大学党委书记何伟军教授,以及中国科学院院士、《特种铸造及有色合金》杂志编委会主任陈光教授等人均对论坛给予了高度评价。如此背景下,专业研发生产材料力学试验机的领军企业——三思纵横,也应邀参展。三思纵横的亮相不仅是对论坛主题的深度呼应,更是其在合金材料领域地位和影响力的体现。公司展出的UTM6000系列桌面型电子万能试验机及疲劳试验机模型,以其精确的测试结果和稳定的性能,成为与会专家学者关注的焦点。展位现场,三思纵横团队不仅展示了核心产品,还为与会专家提供了个性化的试验机解决方案,确保用户能够全面掌握并高效利用这些先进设备。茶歇期间,众多专家学者与三思纵横的工作人员进行了深入交流,探讨力学试验机在材料性能测试中的应用和挑战。三思纵横的参与不仅加强了公司与学术界的联系,更为未来的技术合作和产品创新奠定了坚实基础。湖北区域销售总监代表公司承诺,三思纵横将持续关注并支持先进合金材料领域的发展,为客户提供更优质的产品和服务,助力我国合金材料科研及产业的繁荣发展。
  • 如何使金属合金的晶粒度分析符合您的需求(下)
    使用半自动和自动分析来确定平均晶粒度 半自动或自动分析(软件)可用于评估合金的平均粒度,方法见于标准ASTM E1382 - 97(2015)[6]中。平均晶粒度和晶粒度分布可通过上述的截距法或平面测量法来评估。结果的精度和准确性取决于合金样品的质量、样品制备方法、成像系统和图像分析软件。图12为利用平面测量法进行评估的示例。 图12:直方图(左)显示了钢合金的晶粒度数的分布情况。直方图的数据是通过自动图像分析获得的。分析后,钢合金图像中的部分晶粒根据直方图中的G值区间范围进行了颜色编码(右)。 晶粒度的准确性: 自动、半自动或手动分析 一般来说,相比半自动分析或对比目镜标线覆盖图或挂图,自动分析获得的结果更准确、精确、迅速。同样,半自动分析也比用目镜标线覆盖图的人工分析更加准确、迅速。搭载LAS X晶粒专家软件的徕卡显微镜可执行自动分析,该软件能够利用平面测量法和截距法进行评估。LAS X标线软件通过叠加显示器上显示的数字标线,可进行半自动化分析。图13对比了这些方法的准确程度。 图13:自动(LAS X晶粒专家)、半自动(LAS X标线)和手动(目镜标线或挂图比较)分析方法测量合金晶粒度时的准确性和精确度对比图。 双相晶粒度的表征部分合金在经过热机械加工后会表现出双相晶粒度。合金中的双相晶粒度包括系统性的晶粒度变化、项链和带状结构,以及在有临界应变的区域的发芽性晶粒生长。为了更好地了解合金的机械性能,表征双相晶粒度非常重要。标准ISO 14250:2000和ASTM E1181 - 02(2015)规定了确定合金中是否存在双相晶粒的准则[7,8]。其中还阐明了如何将双相晶粒度划分为2个不同等级中的1个,以及这些等级中的具体类型。图14显示了一个具有双相晶粒度的钢合金示例。 图14:通过双相晶粒度分析得到的直方图(左)显示了钢合金的晶粒度数的双峰分布情况。平均G值约为7和9。钢合金的图像(中)。图像中的部分晶粒根据直方图的G值区间范围进行了颜色编码(右)。 确定最大的晶粒度: ALA(As-Large-As)晶粒度分析 合金中过大的晶粒与有关裂纹起始和扩展,以及材料疲劳的异常行为相关。因此,合金表征使用了ALA晶粒度。标准ASTM E930 - 99(2015)规定了用于确定ALA晶粒度的方法[9],即测量合金中尺寸过大的晶粒,其尺寸明显均匀分布。请参考图15和表3,了解ALA分析的示例。 图15:钢合金的图像(左),晶粒按尺寸用颜色编码。直方图(右)显示了从ALA晶粒度分析中获得的钢材的晶粒度数分布情况。请注意,与小颗粒(G7)相比,大颗粒(G 表3:使用ALA分析对钢材进行的晶粒度测量数据。 晶粒度分析的困难案例 在合金晶粒度分析过程中,可能会出现下列困难: 样品制备出现伪影; 晶粒边界显示不清楚; 样品过度蚀刻; 微观结构复杂; 孪晶 为确保LAS X晶粒专家能得出准确的结果,选择优质的合金样品和样品制备方法非常重要[6]。如果样品制备不能提供良好的结果,或者微观结构偏离正常预期,则用户可以应用LAS X标线解决方案,对平均晶粒度进行估计,精度为±0.5G。 实用解决方案: 徕卡显微镜与LAS X晶粒专家软件 检测晶界的算法 在LAS X晶粒专家软件中,共有5种不同的算法可用于检测晶界: 1 单相; 2 双相; 3 双重晶粒度; 4 暗场; 5 偏振光。 用户选择与他们的实际合金样品最相似的处理后的图像(见图16)。 图16:与LAS X晶粒专家一起使用的参考图像,帮助用户选择最合适的算法(1-5)来检测晶界。 详细的晶粒度分析 LAS X晶粒专家软件能够用G(晶粒度数)来表示平均晶粒度,并计算出: 晶粒度数分布、标准偏差和其他统计值; 平均晶粒面积; 置信水平(P值); 结果的相对准确性。 请参考表4和图17,了解利用LAS X晶粒专家软件进行分析的示例。 表4:利用LAS X晶粒专家软件分析钢材晶粒度的数据。 图17:直方图显示了钢合金的晶粒度数分布情况。数据来自于LAS X晶粒专家软件的分析结果。平均晶粒数 = 10.76,标准偏差(σ)= 1.63,平均晶粒面积 = 134.55μm2,平均晶粒直径 = 11.23μm。 总结 本报告介绍了晶粒度分析对汽车和运输行业中使用的合金的重要性,并讨论了使用自动化、数字显微镜的方法进行分析的解决方案,这些方案实用,可得出精确的结果。 徕卡显微镜通过搭载LAS X晶粒专家软件,可为获得晶粒度结果和评估数据提供准确、可靠和高效的方法。它还支持一键批量处理和生成报告,操作非常简单。请参阅图18,了解徕卡显微系统的LAS X晶粒专家软件的各项优势。 图18:利用LAS X晶粒专家软件进行晶粒度分析的优势概述。 解决方案▶▶▶ 点击链接:下载关于 LAS-X 相关资料 Further Reading:(上下滑动查看更多) 1.M. Cavallini, V. Di Cocco, F. Iacoviello, Materiali Metallici, Terza Edizione, ISBN 978-88-909748-0-9, Luglio 2014. 2.Dionis Diez, Metallography – an Introduction: How to Reveal Microstructural Features of Metals and Alloys, Science Lab, Leica Microsystems. 3.Ursula Christian, Norbert Jost, Metallography with Color and Contrast: The Possibilities of Microstructural Contrasting, Science Lab, Leica Microsystems. 4.ASTM E112 – 13: Standard Test Methods for Determining Average, Grain Size, ASTM International. 5.ISO 643:2012: Steels -- Micrographic determination of the apparent grain size, International Organization for Standardization. 6.ASTM E1382-97(2015): Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis, ASTM International. 7.ISO 14250:2000: Steel -- Metallographic characterization of duplex grain size and distributions, International Organization for Standardization. 8.ASTM E1181-02(2015): Standard Test Methods for Characterizing Duplex Grain Sizes, ASTM International. 9.ASTM E930 - 99(2015): Standard Test Methods for Estimating the Largest Grain Observed in a Metallographic Section (ALA Grain Size), ASTM International. 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 小载荷疲劳测试,那都不是事儿~
    疲劳性能作为材料的一项基本性能指标,在日常的测试中,我们会碰到各种各样的挑战。其中有一些材料:如生物材料、电子元器件等,所用到的载荷较小,因此对试验设备配置的要求也更高。您是否还在苦苦找寻如何进行小载荷疲劳测试的配置?您是否还在担心小载荷疲劳测试结果不稳定且易受影响?别慌!英斯特朗给你支招!一般来说,低于10N的测试我们称之为小载荷测试。此类测试中有各种因素影响测试结果,如试样的制备、夹持和测量误差都有可能会导致测试结果的显著差异。英斯特朗Eletropuls动静态万能试验机结合专利的Dynacell动态载荷传感器以及基于刚度的调谐方式可实现精确的小载荷疲劳测试。另外,可配置高低温环境箱、水浴槽和非接触式视频引伸计等进行试样在特定环境条件下的材料力学性能。那么英斯特朗Eletropuls动静态万能试验机到底可以做哪些小载荷疲劳测试呢?让我们一起来一睹为快!英斯特朗小载荷测试应用案例1软组织测试一般而言,软组织材料如水凝胶、硅胶、树脂等,测试力值相对较低,因此,测试设备的配置和测试方法对测试结果的准确性至关重要。Instron电子动静态万能试验机E1000非常适用于对软组织材料的循环或疲劳测试。在此类测试中,E1000将会配合小载荷传感器如250N Dynacell载荷传感器、100N、50N或10N静态载荷传感器用于更精确的载荷测试。以下为使用E1000配合250N Dyancell载荷传感器及水浴箱进行的水凝胶的动态拉伸测试,测试条件为载荷1±0.5N,2Hz。此测试优势在于应用250N Dynacell载荷传感器消除惯性力,并使用高级幅度控制方式确保载荷峰值。同时如需要消除测试过程中的外部噪音,可在软件中设置过滤消除噪音功能,确保得到您想要的测试数据。2金属薄片测试此测试是根据标准ASTM B593对电子元器件如电路板上、插座上的铜合金材料进行弯曲疲劳性能进行验证,确认其疲劳寿命。ASTM B593在该测试中,由于加载链运动会产生惯性力,使用Instron专利Dynacell载荷传感器可以减轻这种影响。由于惯性力和加载链共振问题,在任何试验机上实现对柔性样品的纯载荷控制历来都具有挑战性。ElectroPuls基于刚度的调谐考虑了这些因素,可以更好地实现柔性样品的载荷控制测试。3该测试是对一种较小较薄的电子元器件材料进行循环测试。
  • News|欧波同亮相2018上海国际粉末冶金、硬质合金与先进陶瓷展览会
    3月27日,“2018上海国际粉末冶金、硬质合金与先进陶瓷展览会”在上海光大会展中心圆满落幕。此次展会由上海机械工程学会粉末冶金专委会和上海市新材料协会粉末冶金分会等多家机构联合举办。展览会为期三天(3月25日至27日),聚集了粉末冶金行业相关的数百家单位参展,旨在促进我国在新型材料领域的学科进步和技术提升,加强粉末冶金制造商、设备制造商、高等学府和科研院所、终端客户群之间的沟通与合作。欧波同(中国)有限公司在展会上隆重亮相,吸引了大批观众围在展台前,咨询了解光镜和电镜产品。欧波同现场进行展示的蔡司(Zeiss)光学显微镜,可应用于材料分析、冶金、电力、石化、航天、机械等多个领域。扫描电镜的突出优势吸引了众多冶金、合金领域的工程师前来咨询交流,并在现场进行样机体验,用电镜进行样品拍摄。在试用之后,工程师们纷纷给出高度评价,与欧波同的工作人员进行了更深层次的合作意向沟通。作为科研领域不可或缺的工具,欧波同推出的产品,发挥着越来越突出的作用,尖端品质获得专业级的充分肯定,在粉末冶金领域新材料、新技术、新工艺产业界的科技创新、发展中做出诸多贡献,促进了新型材料领域的学科进步和技术提升。 随着十三五规划的全面实施,科研领域新技术飞速发展,光学显微镜和电子显微镜应用领域也在不断地扩大。欧波同紧随市场脚步,在各应用领域的专业展览及高峰论坛上震撼亮相,提升品牌形象。并且致力于与科研机构和企业的交流共赢,为中国制造加油助力,更为广大用户提供全方位的实验室解决方案和优质服务。
  • 车仁超教授课题组在电镜中观察到坡莫合金吸波微球的三维磁耦合
    p   日前,复旦大学先进材料实验室车仁超教授课题组成功制备了坡莫合金复合吸波材料并运用洛伦兹透射电镜观察到了三维磁耦合。 /p p   随着电磁波在军事、工业及民用产品中的应用迅速增加,电磁干扰已经成为一种新的社会污染,因此亟待发展高效的微波吸收材料。如何设计合成一种高性能的微波吸收材料并理解分析其微观吸收机理一直是微波吸收领域的关键问题和难点所在。针对这一难点,车仁超教授课题组开展了富有创新性的工作,并取得重要进展。 /p p   首先,该工作中首次利用具有强磁损耗能力的坡莫合金微球为“核”和具有偶极极化和弛豫现象介电损耗的氧化钛为“壳”来构建三明治型复合吸波微球,得到介电损耗和磁损耗协同效应协同吸波的新颖吸收剂,可解决一些现存在于微波吸收剂设计的缺陷,从而满足对高性能微波吸收应用的技术要求。其次,通过利用先进的透射电镜电子全息分析建立了复合微球的微磁特性和宏观吸波性质的物理关联。电镜电子全息证实磁核的高密度杂散磁力线可以穿透氧化硅和氧化钛外壳,并与相邻微球建立耦合,由此来消耗了入射微波能量,高达-58.2 分贝。 /p p   该结果日前在线发表于国际权威期刊《先进材料》(Advanced Materials,影响因子17.493)上,题目为CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption。本工作得到了科技部973计划,国家自然基金委员会的资助,并得到了先进材料实验室的大力支持。 /p p   链接: a href=" http://onlinelibrary.wiley.com/doi/10.1002/adma.201503149/full" target=" _blank" title=" " 点击浏览 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/31a7b173-ce8c-41e4-b526-8cbe51e7f430.jpg" title=" 图.jpg" / /p p   CoNi@SiO2@TiO2微球的(a)杂散磁场 (b)相邻微球的磁耦合 (c)三维模型 /p
  • 红外碳硫分析仪器在测定合金钢中超低碳硫的应用
    红外碳硫分析仪器在测定合金钢中超低碳硫的应用 南京麒麟分析仪器的老客户-----福州金嘉利有限公司主要生产管机接头,检测钢,合金钢等材料,多年前购买了南京麒麟的电弧红外碳硫分析仪器QL- HW2000E(C)型, 此款产品采用红外吸收峰,根据CO2与SO2能选择性地吸收红外光这一原理,以标准样品通过测量池探测器接收的能量为参比,经计算机数据处理后得到试样中碳跟硫的含量。 碳是钢铁中的重要元素,是区别铁与钢,决定钢号、品级的主要标志。随着C的增加,钢铁的硬度和强度提高,而韧性和塑性却变差,使钢变脆且难于加工;随着C的减少,钢的韧性得到增强。碳的测定方法有气体容量法、吸收重量法、电导法、电量法、非水滴定法、光度滴定及红外吸收法等。 硫是钢中的有害元素,可引起钢的热脆性,降低钢的机械性能,使疲劳极限、塑性和耐磨性下降,影响钢件的使用寿命。测定硫的方法有滴定法、电导法、红外线法等。 南京麒麟的此款电弧红外碳硫分析仪主要就是利用红外吸收法,针对于测量含量较低或较高的碳元素跟硫元素,具有测量范围宽、抗干扰能力强、功能齐全、操作简单、分析结果快速准确等特点, 2009年认定为江苏省名牌产品。更多产品资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com南京麒麟科学仪器集团有限公司检测中心马工
  • 展会预告|欧波同与您相约 2018上海国际粉末冶金、硬质合金与先进陶瓷展览会
    欧波同邀请函2018上海国际粉末冶金、硬质合金与先进陶瓷展览会,将于2018年3月25日-27日在上海光大会展中心西馆举行。届时,欧波同(中国)有限公司将携coxem台式电镜、蔡司光学显微镜华丽亮相,诚邀新老客户莅临参观!作为实验室系统解决方案供应商,此次展会欧波同以“开放、分享、合作、共赢”为主题,全方位向观众呈现微纳米实验室分析解决方案的新技术与新方法,与观众交流、分享最新的微纳米测试相关产品与技术。活动预告欧波同展 位:b638时 间:2018年3月25日-27日地 点:上海光大会展中心西馆地 址:上海市徐汇区漕宝路88号欧波同参展设备
  • 先进合金材料,“能力”永不过时
    先进材料产业是制造业转型提升的核心领域和重要支撑之一,主要解决国家重大战略需求和产业发展瓶颈,提升关键战略材料的保障能力,服务国家战略,政府主管部门出台了一系列支持新材料行业发展的政策。《中国制造2025》、《新材料产业发展的政策》等产业政策为相关产业发展提供了稳定的支持。先进铜及铜合金作为核心导体材料,广泛用于电子信息产业超大规模集成电路引线框架,国防装备的电子对抗、雷达、大功率微波管,高脉冲磁场导体材料,高速轨道交通用架空导线、大功率调频调速异步牵引电动机导条与端环,新能源汽车用电阻焊电极、电池材料、充电桩弹性材料,冶金工业用连铸机结晶器、电真空器件,电气工程用开关触桥和各种导线等。我国军用飞机配套的航空发动机及涉及发动机的维修包括涡轮叶片、涡轮盘等。这些部件主要由高温合金和钛合金制造。先进航空发动机高温合金使用量达到 50%以上,中信证券研究部预测我国军用航空发动机 2025 年对高温合金需求量将达到 16,578 吨。高熵合金是近年来发展起来的新型合金材料,有望突破传统材料的性能极限,已经成为近年来材料科学发展新的热点和方向之一。为促进国内先进合金材料的研究与发展,仪器信息网将于2022年8月10日组织召开 “先进合金材料”主题网络研讨会。依托成熟的网络会议平台,为先进合金材料相关研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。会议日程报告时间报告题目演讲嘉宾9:30-10:00电子薄膜和集成电路用高纯铜及铜合金靶材及其检测技术冯先进(北京矿冶研究总院 研究员/高级工程师)10:00-10:30TBD程书莉(珀金埃尔默公司 首席无机分析应用科学家)10:30-11:00高熵合金加工成形技术张勇(北京科技大学 教授)11:00-11:30镍基单晶高温合金中拓扑密排相的形成机制杜奎(中国科学院金属研究所 研究员)演讲嘉宾(排名不分先后)参会方式本次会议免费参会,参会报名请点击会议官网或扫描二维码:https://www.instrument.com.cn/webinar/meetings/alloy2022/ 扫码报名赞助参会:扫码联系
  • 中国科学院金属研究所1.79亿元采购疲劳试验机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 [材料设备][沈抚新区]中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目[重发第1次公告] 辽宁省-沈阳市-和平区 状态:公告 更新时间: 2023-05-12 [材料设备][沈抚新区]中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目[重发第1次公告] 一、招标条件 中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目已经由辽宁省﹒沈抚新区﹒沈抚新区备案。以辽示范区备2022】9号批准建设,招标人为中国科学院金属研究所,工程所需资金来源为自筹。项目出资比例100,项目已具备招标条件,现对该项目的中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目D-4厂房配电柜采购及安装进行公开招标。 二、项目概况与招标范围 1.项目名称:中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目 2.建设地点:辽宁省沈抚改革示范区沈东七路33号 3.项目规模:本项目利用原有厂房改造成特殊合金与高端轴承试验基地,占地面积约35220平方米,总建筑面积约36500平方米。厂房内拟安置激光粒度仪、水冷 单晶炉、液态金属冷却单晶炉、接触疲劳试验机、轴承振动测量仪、气体雾化设备、 粉末热压设备、高速圆度仪等设备,拟开展以先进高温合金及叶片制备技术、单晶高温合金设计与制备、高端轴承研制、气体雾化机理研究、铝基复合材料等科研单元研究,并配套循环冷却水泵房系统、配电所、换热站等设备用房和围墙。 4.项目投资估算:17900.1万元 5.标段(包)合同估算:中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目D-4厂房配电柜采购及安装:460.0万元 6.工期要求:2023年06月10日 开工至 2023年08月31日 竣工 7.本招标项目的标段划分: 标段编号 标段名称 招标范围 工期(天) 保证金金额(万元) 210101TP003001225001002 中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目D-4厂房配电柜采购及安装 包括D-4厂房配电柜的供应、装卸运输、保险、安装、调试、验收、向发包人交钥匙使用、保修及伴随服务等全部内容,详见供货要求部分内容。 82 80000.0 8.招标范围:包括D-4厂房配电柜的供应、装卸运输、保险、安装、调试、验收、向发包人交钥匙使用、保修及伴随服务等全部内容,详见供货要求部分内容。 三、投标人资格要求 1.本次招标要求投标人须具备 [施工总承包﹒机电工程﹒机电工程三级](含)以上或者[专业承包﹒建筑机电安装工程﹒建筑机电安装工程三级](含)以上资质 2.投标人拟派项目经理/总监理工程师/负责人须具 资格 3.本次招标不接受联合体投标。 4.其它要求:1在中华人民共和国境内注册、具有独立承担民事责任能力的配电柜制造商; 2具有建筑机电设备安装工程专业承包三级及以上资质或者机电安装工程施工总承包三级及以上资质,并具有有效的安全生产许可证; 3投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的投标人; 4不接受联合体投标,不接受代理商投标。 5.允许互跨专业承接同等级业务:否 四、招标文件的领取 1.领取时间:2023年05月12日 08时30分至2023年05月18日 23时59分 2.领取地点:请到辽宁省沈抚改革创新示范区综合交易平台https://www.lnzbtb.com/BPSystem文件领取菜单资格确认并领取文件 五、投标文件的递交 1、投标文件递交的截止时间(投标截止时间):2023年06月02日 09时30分。 投标文件递交方式: 通过辽宁省沈抚改革创新示范区综合交易平台https://www.lnzbtb.com/BPSystem网上递交。 2、开标方式: 远程开标(不见面交易) 远程开标(不见面交易): 请按招标文件规定时间登录“辽宁省电子招标投标交易综合服务系统(“不见面交易”综合服务系统)http://nmts.lnwlzb.com/bidopening” 进行远程、在线解密。 3、逾期送达的投标文件,招标人不予受理。 六、发布公告的媒介 本次招标公告同时在辽宁省沈抚改革创新示范区综合交易平台、中国招标投标公共服务平台、辽宁省招标投标监管网、辽宁建设工程信息网上发布 注:招标公告发布时间不得少于5日。 七、其他说明 八、招标人信息 招标工作负责人 制定招标文件主要条款人 姓名: 张老师 姓名: 于阳 单位: 中国科学院金属研究所单位: 辽宁工程招标有限公司 职务: 职务: 职称: 职称: 九、联系方式 招标人: 中国科学院金属研究所 招标代理机构: 辽宁工程招标有限公司 地址: 沈阳市沈河区文化路72号 地址: 辽宁省沈阳市和平区南九马路47号 邮编: 邮编: 110005 联系人: 张老师 联系人:于阳 电话: 024-23971635 电话: 024-23389240 传真: 传真: 024-23398678 异议联系人: 王天甲 异议联系人电话: 024-23389240 电子邮件: 电子邮件: lngczbyxgs@163.com × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:疲劳试验机 开标时间:2023-06-02 09:30 预算金额:1.79亿元 采购单位:中国科学院金属研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:辽宁工程招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [材料设备][沈抚新区]中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目[重发第1次公告] 辽宁省-沈阳市-和平区 状态:公告 更新时间: 2023-05-12 [材料设备][沈抚新区]中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目[重发第1次公告] 一、招标条件 中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目已经由辽宁省﹒沈抚新区﹒沈抚新区备案。以辽示范区备2022】9号批准建设,招标人为中国科学院金属研究所,工程所需资金来源为自筹。项目出资比例100,项目已具备招标条件,现对该项目的中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目D-4厂房配电柜采购及安装进行公开招标。 二、项目概况与招标范围 1.项目名称:中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目 2.建设地点:辽宁省沈抚改革示范区沈东七路33号 3.项目规模:本项目利用原有厂房改造成特殊合金与高端轴承试验基地,占地面积约35220平方米,总建筑面积约36500平方米。厂房内拟安置激光粒度仪、水冷 单晶炉、液态金属冷却单晶炉、接触疲劳试验机、轴承振动测量仪、气体雾化设备、 粉末热压设备、高速圆度仪等设备,拟开展以先进高温合金及叶片制备技术、单晶高温合金设计与制备、高端轴承研制、气体雾化机理研究、铝基复合材料等科研单元研究,并配套循环冷却水泵房系统、配电所、换热站等设备用房和围墙。 4.项目投资估算:17900.1万元 5.标段(包)合同估算:中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目D-4厂房配电柜采购及安装:460.0万元 6.工期要求:2023年06月10日 开工至 2023年08月31日 竣工 7.本招标项目的标段划分: 标段编号 标段名称 招标范围 工期(天) 保证金金额(万元) 210101TP003001225001002 中国科学院金属研究所沈抚园区特殊合金与高端轴承试验基地项目D-4厂房配电柜采购及安装 包括D-4厂房配电柜的供应、装卸运输、保险、安装、调试、验收、向发包人交钥匙使用、保修及伴随服务等全部内容,详见供货要求部分内容。 82 80000.0 8.招标范围:包括D-4厂房配电柜的供应、装卸运输、保险、安装、调试、验收、向发包人交钥匙使用、保修及伴随服务等全部内容,详见供货要求部分内容。三、投标人资格要求 1.本次招标要求投标人须具备 [施工总承包﹒机电工程﹒机电工程三级](含)以上或者[专业承包﹒建筑机电安装工程﹒建筑机电安装工程三级](含)以上资质 2.投标人拟派项目经理/总监理工程师/负责人须具 资格 3.本次招标不接受联合体投标。 4.其它要求:1在中华人民共和国境内注册、具有独立承担民事责任能力的配电柜制造商; 2具有建筑机电设备安装工程专业承包三级及以上资质或者机电安装工程施工总承包三级及以上资质,并具有有效的安全生产许可证; 3投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的投标人; 4不接受联合体投标,不接受代理商投标。 5.允许互跨专业承接同等级业务:否 四、招标文件的领取 1.领取时间:2023年05月12日 08时30分至2023年05月18日 23时59分 2.领取地点:请到辽宁省沈抚改革创新示范区综合交易平台https://www.lnzbtb.com/BPSystem文件领取菜单资格确认并领取文件 五、投标文件的递交 1、投标文件递交的截止时间(投标截止时间):2023年06月02日 09时30分。 投标文件递交方式: 通过辽宁省沈抚改革创新示范区综合交易平台https://www.lnzbtb.com/BPSystem网上递交。 2、开标方式: 远程开标(不见面交易) 远程开标(不见面交易): 请按招标文件规定时间登录“辽宁省电子招标投标交易综合服务系统(“不见面交易”综合服务系统)http://nmts.lnwlzb.com/bidopening” 进行远程、在线解密。 3、逾期送达的投标文件,招标人不予受理。 六、发布公告的媒介 本次招标公告同时在辽宁省沈抚改革创新示范区综合交易平台、中国招标投标公共服务平台、辽宁省招标投标监管网、辽宁建设工程信息网上发布 注:招标公告发布时间不得少于5日。 七、其他说明 八、招标人信息 招标工作负责人 制定招标文件主要条款人 姓名: 张老师 姓名: 于阳 单位: 中国科学院金属研究所 单位: 辽宁工程招标有限公司 职务: 职务: 职称: 职称: 九、联系方式 招标人: 中国科学院金属研究所 招标代理机构: 辽宁工程招标有限公司 地址: 沈阳市沈河区文化路72号 地址: 辽宁省沈阳市和平区南九马路47号 邮编: 邮编: 110005 联系人: 张老师 联系人: 于阳 电话: 024-23971635 电话: 024-23389240 传真: 传真: 024-23398678 异议联系人: 王天甲 异议联系人电话: 024-23389240 电子邮件: 电子邮件: lngczbyxgs@163.com
  • 赛默飞推出Niton XL5手持式合金分析仪
    p   日前,赛默飞推出了一款比市场上现有的手持式合金分析仪( a href=" http://www.instrument.com.cn/zc/75.html" target=" _self" title=" " strong x射线荧光光谱仪,XRF /strong /a )更小、更轻的仪器Niton XL5,适用于制造业、材料鉴定和废金属行业中的管理者、经营者和质量控制人员用于检测金属中的化学成分。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201509/insimg/fb391124-cbb1-4f32-821c-032634b2ce20.jpg" title=" Thermo_Scientific_Niton_XL5_analyzer.jpg" width=" 300" height=" 319" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 319px " / /p p   赛默飞Niton XL5测量速度快,且结果准确性高。该仪器仅重2.8磅(1.3千克),这种紧凑设计使得Niton XL5能够被带到难以到达的地区,测试覆盖率最大化,减少用户疲劳,并提供极低的检出限。另外,它还采用了一个新的电子处理器,能够实时显示结果 并提供了热插拔电池和旅行充电器,使得操作效率大幅提高。 /p p   “金属化学精确的质量控制测试正变得越来越重要,特别是在高增长的金属制造市场。” 赛默飞便携式分析仪器总经理兼副总裁Howard Kopech说,“Niton XL5提高了用户的工作效率,同时提供了一个强大的解决方案,帮助我们的客户提高了质量保证、质量控制和分析性能的水平。” /p p   Niton XL5通过蓝牙和GPS连接提供了增强的通信能力 当仪器被安装在测试站上的时候,赛默飞的NitonConnect companion PC软件能够提供简单的数据传输和遥视功能。 /p p   Niton XL5还提供: /p p   一个新的5 w的 x射线管,改进了轻元素的检测; /p p   同时具备微观和宏观相机,加强了数据收集; /p p   测试前,可以为不同的应用创建定制化的配置文件; /p p   一个新的用户界面,包括具有刷卡功能的触摸屏; /p p   提高了恶劣环境下的防护等级。 /p p   赛默飞手持式XRF“家族”包括现有的Niton XL2和NitonXL3系列,Niton XL5是其中的一份子。此外,新的Niton XL2 100G补充了金属快速识别仪器产品组合,旨在为客户提供经济、可靠和实时的结果。 /p p br/ /p
  • Progress in Materials Science | 张哲峰团队孪晶界面疲劳开裂机制研究取得新进展
    晶界在金属晶体材料中分布广泛,对金属材料各项力学性能具有重要影响,其中晶界可以强化材料,但界面处应力集中会导致疲劳损伤开裂。1984年日本东北大学Watanabe教授提出晶界设计(GBD: Grain-boundary Design)和晶界工程(GBE: Grain-boundary Engineering)的概念,希望通过在延性多晶体中引入性能好的界面来提高材料的综合性能,这为通过调控晶界类型和分布来设计高性能材料提供了新的思路。 为了揭示各种不同晶界对金属材料疲劳损伤机制的影响,中国科学院金属研究所张哲峰研究员团队前期借助于铜双晶体对各种大角晶界和小角晶界疲劳开裂机制进行了系统研究(Zhang ZF and Wang ZG, Prog. Mater. Sci. 53 (2008) 1025-1099)。鉴于孪晶界面与位错交互作用的特殊性,孪晶界面是否具有较高的疲劳抗力值得期待。然而,由于含有孪晶界面大块样品制备困难,对孪晶界面疲劳开裂机制的认识十分有限。过去十余年,张哲峰团队设计和制备了含有不同生长孪晶界面大块铜双晶体,同时,开展了大量含有退火孪晶界面铜及铜合金多晶体的疲劳研究。近期,孪晶界面疲劳损伤开裂机制的研究进展受邀发表在材料科学综述刊物Progress in Materials Science上,其中李琳琳为论文第一作者,张振军项目研究员和张哲峰研究员为论文通讯作者。本文对孪晶界面疲劳开裂机制的新认识如下: 双晶共格孪晶界面疲劳开裂机制:共格孪晶界面与加载轴的夹角决定了两侧晶粒内开动的主滑移系,对其界面疲劳损伤机制起决定性作用。当共格孪晶界面与加载轴成20°-70°时,受附加应力及特殊位错滑移的影响,滑移带易于集中在共格孪晶界面附近,因而疲劳裂纹优先沿共格孪晶界面萌生和扩展(如图1(II-IV)所示);而当共格孪晶界面近似平行或垂直于加载轴时,滑移带或完全穿过共格孪晶界面,或因取向较硬受限与界面附近,塑性变形主要集中于晶内滑移带处,使滑移带优先萌生疲劳裂纹(如图1(I)、(V)所示)。 双晶非共格孪晶界面疲劳开裂机制:非共格孪晶界疲劳开裂也表现出一定的取向性,当非共格孪晶界垂直于加载轴时(图2(a,b)),孪晶界面两侧晶粒内位错滑移方向相同但滑移面相交,位错易于在非共格孪晶界处塞积而优先疲劳开裂;当非共格孪晶界平行或倾斜于加载轴一定角度时(图2(c,d)),界面两侧位错滑移可以穿过非共格孪晶界,并且非共格孪晶界面自身可发生迁移,因而非共格孪晶界处应变相容性较好,此时,滑移带优先发生疲劳开裂。 多晶体孪晶界面疲劳开裂机制:多晶体疲劳过程中孪晶界附近应力状态复杂,与双晶中孪晶开裂稍有不同。团队利用原创的晶体滑移形貌定取向方法,对不同成分或层错能的铜合金多晶体中孪晶界疲劳开裂行为进行了系统研究,结果发现:铜合金的层错能越低,孪晶界两侧的取向差越大,位错越容易在孪晶界处产生塞积,因而孪晶界越容易疲劳开裂,反之,则是滑移带更容易疲劳开裂。通过提炼晶体取向Schmid因子差和合金层错能,结合位错塞积理论,建立了层错能和取向为参数的孪晶界面疲劳开裂定量判据(图3)。 结合对大、小角晶界疲劳开裂行为的前期研究结果,可以给出各种不同晶界疲劳开裂阻力从大到小顺序为:小角晶界>孪晶界>大角晶界,其中孪晶界面疲劳开裂阻力取决于两侧晶体取向差和合金层错能大小。当孪晶界面对两侧位错运动阻碍较强时,会对材料产生明显的强化作用,孪晶界面容易发生疲劳开裂,因此接近于大角晶界特征;当孪晶界面对两侧位错运动阻碍较小时,孪晶界面不容易发生疲劳开裂,但对材料也几乎不产生强化作用,因此与小角晶界作用相似(图4)。 上述研究工作得到了国家自然科学基金重大、杰青、重点和面上项目的长期资助(50571104、50625103、50890173、51171194、51471170、51501197)以及中国科学院青年促进会(2021192)项目及教育部科研业务费的资助。 全文链接图1 铜双晶体共格孪晶界与加载轴呈不同倾角时对应的疲劳损伤机制。图2 铜双晶体中非共格孪晶界与加载轴呈不同倾角时疲劳损伤行为。界面垂直于加载轴时(a) 界面疲劳裂纹与(b)主滑移系;界面倾斜一定角度时(c)主滑移系与(d)滑移带裂纹。图3 层错能和晶体取向对铜合金多晶体滑移带与孪晶界疲劳开裂转变机制的协同影响。图4 大角晶界、孪晶界、小角晶界低周疲劳损伤开裂难易程度比较。
  • 试验机论坛:疲劳测试已成为当前的研究热点
    仪器信息网讯 2013年5月16日,在CISILE 2013召开期间,由中国仪器仪表行业协会试验仪器分会与仪器信息网主办的“第二届中国试验机技术论坛”在中国国际展览中心成功举办。本次论坛围绕试验机最新技术进展、试验机技术最前沿应用等主题,特别邀请了3位试验机的资深用户以及厂商代表作了精彩报告,近40位试验机行业的专家、用户、厂商代表参加了会议。   中国建筑材料科学研究总院包亦望教授   报告题目:超高温极端环境下的力学性能评价   中国建筑材料科学研究总院包亦望介绍到,航空航天领域的很多材料构件工作在高超声速流、超高温氧化、高低温腐蚀等极端特殊环境下,因此对这些条件下的材料构件性能评价难度极大。   同时,包亦望指出,超高温力学性能评价是关系航空航天飞行器成败的关键,目前国内极端特殊环境下材料构件性能评价存在两个问题:第一没有科学的测试装置,具体表现在缺少服役过程在线检测数据,试验夹具不能承受极端环境,样品支撑和加载很困难 第二,没有测试方法标准,具体变现在现有技术和标准无法满足极端环境应用,缺少材料构件性能评价表征方法,缺少材料/构件失效机理评价准则。   最后,包亦望总结到,解决超高温极端环境下的力学性能评价的关键是采用模块化组合式的试验设备、进行非接触式的位移测量与易位加载、在氧化、高温与腐蚀的耦合环境下保护好夹具。   清华大学航天航空学院工程力学系教授王习术   报告题目:湿度对材料疲劳强度影响的试验与评估方法   清华大学航空学院工程力学系教授王习术介绍到,疲劳研究的工程领域主要有高速与城市交通车辆、普通轿车,航空飞机、微电子,大型水利,风力发电等,这些领域的疲劳测试又各有特色,比如,普通轿车的结构疲劳试验要求控制联动,根据情况进行比例加载或非比例加载,此外加载类型须根据不同路况进行变更。   报告中还指出,相对湿度大于60%的环境对铝合金材料的高周(³ 105)疲劳强度影响不能忽视,而微弧氧化+封孔工艺制备的陶瓷涂层能有效增强铝合金的疲劳强度,减少湿度对其的影响。此外,王习术强调,疲劳导致工程结构的失效及断裂事故时有发生,相对湿度降低铝合金疲劳强度的失效机制还有待进一步研究,研究队伍尚需科研人员和工程技术人员以及试验机厂商共同努力。   丹东奥龙射线仪器集团有限公司技术总监姜盛杰   报告题目:工业X射线的发展趋势   丹东奥龙射线仪器集团有限公司技术总监姜盛杰谈到,目前市场上常规的射线检测仪器主要有X射线探伤机、共频固定式X射线衍射仪、X射线成像衍射系统、在线检测系统等。其中,便携式X射线探伤机主要应用于野外。此外,从便携式X射线探伤机的发展情况来看,纵频、横频、高频固定式的、数字成像便携式的、工业CT是目前的研究热点。   北京工业大学机电学院尚德广   报告题目:复杂载荷下高温多轴多轴疲劳强度评估与寿命预测研究   北京工业大学机电学院尚德光指出,重大装备寿命—安全服役技术一直以来都被列入国家的中长期科技发展规划当中,因此重大装备的疲劳测试一直都是研究热点。在工程设计中会遇到很多疲劳测试设计,但是在一些方面还存在不足,目前拟需要解决的问题是结构细节抗疲劳设计、重大机械装备结构定寿、高温服役环境下关键结构零部件寿命损耗监测、服役中重大装备结构延寿等。 会议现场
  • 上海硬质合金展邀请函-新诺仪器要您2024第十六届中国国际粉末冶金及硬质合金展览会
    2024第十六届中国国际粉末冶金及硬质合金展览会上海新诺仪器集团有限公司诚意邀请您参观将于2024年3月6-8日在上海世博展览馆隆重举行的中国国际粉末冶金及硬质合金展览会。备受瞩目的2024第十六届中国国际粉末冶金及硬质合金展览会将比上一届届展览会规模更大,专业性、国际性更强,亮点更多,活动更为精彩纷呈,为您提供更多学习交流机会和无限商机。新诺邀请函上海新诺仪器集团有限公司是一家专注于粉末成型解决方案供应商,位于上海闵行区。公司主营:压片机、热压机、等静压机、红外压片机、荧光压样机、纽扣电池封口机、以及冷热压模具等红外荧光光谱仪配套设备。旗下医诺凯生物公司致力于高端实验室箱体设备的研发智造,主营:干燥箱、培养箱、试验箱、电阻炉等实验室常规设备。 源头工厂,可提供OEM,上海新诺仪器集团有限公司,上海医诺凯生物技术有限公司期待您更多合作!上海硬质合金展中国国际粉末冶金及硬质合金展览会(PM CHINA)是全球粉末冶金行业的旗舰级展会,自2008年创办之初的数百平方米,到2023年增长到40,000平方米,以年均增长30%的速度发展壮大,拥有广泛的国际知名度和全球影响力。本届展会(2024年)展览面积将超过45,000平方米,中外展商约900家,参展品牌1500+个,国内外观众预计将达到65,000+人次。PM CHINA将搭建技术交流与商贸合作的优质平台,汇聚国内外优秀企业和业界精英,分享世界前沿技术、创新应用和解决方案,为行业高质量发展注入磅礴动力。展品范围五展联动展馆:上海世博展览馆地址:上海市浦东新区国展路1099号(近世博轴西侧)地铁:8号线中华艺术宫站(3号口出)、7号线/8号线 耀华路站(4号口出)、13号线 世博大道站(4号口出)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制