当前位置: 仪器信息网 > 行业主题 > >

表面压力

仪器信息网表面压力专题为您整合表面压力相关的最新文章,在表面压力专题,您不仅可以免费浏览表面压力的资讯, 同时您还可以浏览表面压力的相关资料、解决方案,参与社区表面压力话题讨论。

表面压力相关的论坛

  • 【讨论】比表面仪中压力传感器的类型

    1、比表面仪中的压力传感器是不是电容式压力传感器,不同量程的传感器的类型是不是一样的?2、如果是电容式压力传感器的话是不是室温变化对其性能影响很大?

  • 测量低比表面样品如何选择气体?

    对于表面积只有几个平方米的样品,其吸附量很小,吸附引起的系统压力变化过小,因而测量的精确度变差。因此,气体吸附法测量低表面积固体不但需要选择在实验温度下饱和蒸汽压较小的吸附质,而且还要提高压力测量的灵敏度。在液氮温度下,氪和氙的饱和蒸汽压较低,现在常用来作测量低表面积固体的吸附质。

  • 比表面积测试时装样量的选择

    BET比表面积测试时,您是否遇到过:氮气脱附进行了很长时间也不结束?比表面积测试结果与经验值或理论值差距很大?吸附脱附等温线不闭合?等等实验情况,这都与样品装样量有很大关系,所以选择适当的装样量对于实验快速、准确的进行起着决定性的作用。因此在测试前应对样品的比表面积范围(超小、小、大或超大比表面积等)有个大概估计,以便确定所需样品质量范围。一般来讲,装样量遵循以下原则:http://img1.17img.cn/17img/images/201402/uepic/f950cc77-6a59-4bc8-a045-e8024cc679b4.jpg具体来讲,实验前确定装样量有什么影响呢?http://www.bjbuilder.com/zcuploadfile/20140115165040811.jpg 1、满足压力传感器的探测精度:比表面积及孔径分析仪要求氮气吸附时所测样品应能提供20-40M2的总表面积。彼奥德选用的进口高精度的压力传感器配合独有的“压力平衡点B-ST探测技术”(可参考SSA-7000系列、MFA-100系列科研型比表面积及孔径分析仪)保证压力探测时形成的吸附-脱附等温线很平滑,减小测试结果相对误差。 2、保证样品称量准确度:一般样品管的长度要大于万分之一天平的高度,称量时,天平上盖不能关闭。为了保证称量准确度,避免称量不受静电、空气干扰的影响,样品质量建议大于100mg。 3、节省实验时间:装样量过大样品提供的总表面积会过大,会增加不必要的测试时间。例如:脱附一直不结束;杜瓦瓶中的液氮没有了,但实验未完成。

  • 【原创】比表面测试方法简介与分类

    比表面测试方法根据测试思路不同分为吸附法、透气法和其它方法,透气法是将待测粉体填装在透气管内震实到一定堆积密度,根据透气速率不同来确定粉体比表面积大小,比表面测试范围和精度都很有限;其它比表面积测试方法有粒度估算法、 显微镜观测估算法,已很少使用;其中吸附法比较常用且精度相对其它方法较高; 吸附法的思路就是让一种吸附质分子吸附在待测粉末样品(吸附剂)表面,根据吸附量的多少来评价待测粉末样品的比表面大小。根据吸附质的不同,吸附法分为低温氮吸附法、吸碘法、吸汞法和吸附其它分子方法;较早使用的是后面吸碘法、吸汞法等几种方法,这几种方法在不同行业内被使用了较长时间;但由于吸碘法中使用的碘分子直径很大,不能进入许多小孔,测得的比表面积不完全,另外碘分子活性较高,对不少粉体不能适用,局限较大;吸汞法又叫压汞法,使用的吸附质--汞有毒,很少使用了,在此不详述了。吸附其它气体分子的方法使用也极少。使用最广的为以氮分子作为吸附质的氮吸附法;氮吸附法由于需要在液氮温度下进行吸附,又叫低温氮吸附法,这种方法中使用的吸附质--氮分子性质稳定、分子直径小、安全无毒、来源广泛,是理想的且是目前主要的吸附法比表面测试吸附质。 氮吸附法根据吸附过程和吸附质确定方式的不同又分为动态色谱法和静态法。 动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量; 静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量; 动态色谱法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。 由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫 BET比表面。统计吸附层厚度法主要用于计算外比表面; 动态色谱法仪器中有种常用的比表面测试方法,叫固体标样参比法或叫直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以此种简单的方法所得出的比表面值与BET多点法得到的值一致性较好的原因; 动态色谱法和静态容量法是目前常用的主要的比表面测试方法。两种方法比较而言动态色谱法比较适合测试比表面积,静态容量法比较适合孔径测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等使得测试效率相对动态色谱法低,测试结果稳定性也较动态色谱低,所以在比表面测试的效率、分辨率、稳定性方面,相对动态色谱没有优势;但静态法相对于动态色谱法由于氮气分压可以很容易的控制到1,所以比较适合做孔径分析。而动态色谱法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。作者:贝士德仪器科技技术部

  • 【原创】在小比表面样品测试方面的动态法与静态法分析

    对于小比表面积样品,如电池材料、有机材料、生物材料、金属粉体、磨料等空隙度微小的材料,由于吸附量微小,静态法测试的结果较含有风热助脱装置和检测器恒温装置的高精度动态法仪器误差大。对静态法为什么在小比表面样品测试方面精度难以保证,原因如下: 以比表面积1m2/g的样品为例,该样品0.5g对氮气的吸附量在BET分压范围内在标况下约0.1ml,在测试过程中的吸附环境液氮温度下的体积约0.03ml;样品管装样部分的剩余体积(也就是背景体积)约在3-5ml左右,要在3-5ml的样品管体积中准确定量出0.03ml的总吸附量且保证精度达到3%以内,可以算出要求压力传感器的精度要达到0.03%以上;但目前进口最好的压力传感器的精度只有0.1%,而且通常比表面及孔径分析仪用的压力传感器精度为0.15%,也就是说目前最高精度的压力传感器,即使温度场理想测定,液氮面理想恒定,环境温度理想准确条件下,对吸附量确定量的不确定度也只能达到0.003ml,即不确定度达到10%;若对于比表面再小或堆积密度小也就是装样量也难以很大的样品,其准确度就可想而知了。 但对于中大比表面样品,一般吸附量不会那么微小,静态法的精度很容易保证在2%甚至1%以内便不是问题; 所以在小比表面样品的测试方面,静态法只能通过增加装样量来降低误差,常见的是静态一般都会为小比表面积样品配备大容量样品管,但由于背景体积(吸附腔体积)也随之增大,所以准确度提高也是有限的;而有些厂家宣称静态法小比表面测试下限可以达到0.0001m2/g,是不负责任的; 对具有风热助脱、检测器恒温、低温冷阱的高精度动态法仪器,其相对不具有该装置的标准动态法比表面仪,其精度得到明显提高;动态法比表面仪,与其它分析仪器类似,其精度和灵敏度 大小主要取决于信噪比;也就是要提高精度和灵敏度,就需要从提高信号强度、抑制背景噪声、消除外界干扰三方面来控制。增加信号强度的方法一般有增加称样量、增加检测器电流,但增加 检测器电流一般噪声也会同时增大,所以检测器电流会有个最佳范围;所以在抑制噪声、消除外界干扰方面可做的工作就比较多了;其源于仪器自身的误差来源主要有:检测器温漂,信号锐度 ;以检测器恒温装置来抑制温漂,风热助脱装置可以提高信号锐度,其对于比表面1m2/g的样品0.5g对氮气的吸附量在分压0.2左右时脱附峰面积与背景可以保证在2%以内的误差; 所以对于小比表面样品,对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其灵敏度和分辨率的优势就体现出来了;但对中大比表面样品,由于信号强,普通动态法比表面积仪和静态 法比表面积仪都可以保证精度;这点就像万分之一分析天平和千分之一天平的区别; 但绝大多数含有微孔、介孔等空隙的材料,比表面不会很小;要是很小比表面的材料,其空隙度的研究价值就有限了; 综上, 一、对于小比表面样品(10m2/g以下)优先选择采具有风热助脱及检测器恒温装置的用动态色谱法比表面仪器,利用其分辨率、灵敏度高的优势; 二、对于中大比表面样品,若只测试比表面积,动态法和静态法没有明显的优劣势,动态法由于具有固体标样参比法,具有快速测定比表面的优势,静态法具有BET多点法较省时液氮消耗 小的优势; 三、需要测比表面及孔径分布的样品,建议采用静态容量法的比表面及孔径分析仪;

  • 【资料】关于表面压力测量与分析仪器

    对各种压力分布的测量和分析,在各行各业的研究和发展中都起着极其重要的作用。例如:汽车行业中,研究座椅的舒适性,需要测量人体对座椅的压力分布;为提高轮胎的性能,需要测量轮胎与地面的接触轮廓和压力分布;为确保车门的密封性,需要测量车门密封垫在关门时的受力分布;医疗领域中,牙科医生要诊断病人的牙齿咬合状况,需要测量病人上下牙齿间的咬合力大小和分布,等等。所以,压力分布的测量成为解决这些问题的首要条件。而解决这些问题的传统办法就是进行反复的实验,这样不但效率低,而且成本也比较高。一、SPI压力分布测量系统在座椅舒适度测量中的应用。通过对压力分布的测量结果的评估,系统可以帮助设计者或制造商优化材料的选择,分析乘客进出的过程,从而优化驾驶员的驾驶位置,另外,系统还可评估悬挂系统对驾驶员的影响等。系统的另外一个优点表现在其为非侵入式测量。将传感器放在座垫和靠背上面,并不妨碍乘客对座位的感觉。利用测得的压力分布图就可以对座椅进行评估,并进行优化设计。二、SPI压力分布测量系统测量轮胎与地面的压力分布。为设计外形和性能都优良的轮胎,既要保证它容易行驶,同时也保证它不伤害地面,而平衡这两个问题将是对工程师一个严峻的挑战。SPI压力分布测量系统可以轻松地记录下车轮和地板之间的压力情况,之后用于分析和比较。三、车门密封。漏水、风、噪音以及开关门是否轻便等是汽车制造商和门密封设计者比较关心的问题。使用SPI系统评估,观察和测量施加于密封胶条上的压力,可以确定理想的密封设计,并且找出密封的缺陷点。四、刹车片和闸瓦之间的压力分布。减少刹车的噪音、震动和刺耳的声音是对刹车设计工程师的一种挑战。SPI系统能测量交界面的动态压力分布,并且提供诊断工具以改进设计。类似的应用还有活塞、转子、卡钳等设计。五、SPI压力分布测量系统其他方面的典型应用。SPI压力分布测量系统的应用范围很广,它可以测量除剪切力之外的所有压力。下面列举一些典型应用领域:座椅设计和舒适度研究;刹车片受力分析;轮胎着地压力分布;挡风玻璃雨刷设计;造纸业、打印机等行业中卷筒位置的调整;电路板印刷压力平衡调整;紧固件和夹紧装置附和分析;垫圈和密封设计;高速碰撞研究;医疗和商业床垫的设计;人类步态分析;人类关节研究;牙齿咬合力分析;假肢的设计等。

  • 比表面积测试仪常见的测试方法有哪些

    比表面积测试仪有许多的方式供我们选用,通常我们选用的就是动态法、直接对比法、  多点BET法、静态容量法等多种方式,而今天我们所要学习的就是关于动态法的一些常见方式解决方案。  我们选用的动态法其实过程也不是那么复杂,只是需要我们更多的细心和解决方式。  比表面积测试仪首先就是将待测粉体样品装在U型的样品管内,使富含必定份额吸附质的混合气体流过样品,这样形成一种特地的测试效果,我们可以依据吸附前后气体浓度改变来断定被测样品对吸附质分子的吸附量来达到我们所要测试的成果。  比表面积测试仪静态法主要依据断定吸附吸附量办法的不一样分为分量法和容量法; 分量法是依据吸附前后样品分量改变来断定被测样品对吸附质分子的吸附量,来判断其测试的成分内容,更多的是因为分辨率低、准确度差、对设备需求很高级缺点已很少运用。所以很好的办法就是我们解决其弊端,然后达到我们所要用的要求,才能达到我们比表面的测试效果。  比表面积测试仪容量法是将待测粉体样品装在必定体积的一段关闭的试管状样品管内,然后通过向样品管内写入必定压力的吸附质气体,能给我们依据吸附前后的压力或分量改变来断定被测样品对吸附质分子的吸附量来达到我们所要进行的有效措施。  介绍了这么多关于比表面积测试仪的一些常见测试方法,更多的是要我们有效的改善我们的测试方式,达到我们更加仔细的能力,还有就是方面我们正常的工作和测试内容。www.chinazhongqi.net/93.html

  • 【原创】比表面测试方法简介与分类

    [font=楷体_GB2312][size=4][center]比表面测试方法简介与分类[/center][/size][/font][center][IMG]http://www.bibiaomian.com/Img/csfl01.jpg[/IMG][/center] [size=2]比表面测试方法根据测试思路不同分为吸附法、透气法和其它方法,透气法是将待测粉体填装在透气管内震实到一定堆积密度,根据透气速率不同来确定粉体比表面积大小,比表面测试范围和精度都很有限;其它比表面积测试方法有粒度估算法、 显微镜观测估算法,已很少使用;其中吸附法比较常用且精度相对其它方法较高; 吸附法的思路就是让一种吸附质分子吸附在待测粉末样品(吸附剂)表面,根据吸附量的多少来评价待测粉末样品的比表面大小。根据吸附质的不同,吸附法分为低温氮吸附法、吸碘法、吸汞法和吸附其它分子方法;较早使用的是后面吸碘法、吸汞法等几种方法,这几种方法在不同行业内被使用了较长时间;但由于吸碘法中使用的碘分子直径很大,不能进入许多小孔,测得的比表面积不完全,另外碘分子活性较高,对不少粉体不能适用,局限较大;吸汞法又叫压汞法,使用的吸附质--汞有毒,很少使用了,在此不详述了。吸附其它气体分子的方法使用也极少。使用最广的为以氮分子作为吸附质的氮吸附法;氮吸附法由于需要在液氮温度下进行吸附,又叫低温氮吸附法,这种方法中使用的吸附质--氮分子性质稳定、分子直径小、安全无毒、来源广泛,是理想的且是目前主要的吸附法比表面测试吸附质。 氮吸附法根据吸附过程和吸附质确定方式的不同又分为动态色谱法和静态法。 态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量; 静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量; 动态色谱法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。 由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫 BET比表面。统计吸附层厚度法主要用于计算外比表面; 动态色谱法仪器中有种常用的比表面测试方法,叫固体标样参比法或叫直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以此种简单的方法所得出的比表面值与BET多点法得到的值一致性较好的原因; 动态色谱法和静态容量法是目前常用的主要的比表面测试方法。两种方法比较而言动态色谱法比较适合测试比表面积,静态容量法比较适合孔径测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等使得测试效率相对动态色谱法低,测试结果稳定性也较动态色谱低,所以在比表面测试的效率、分辨率、稳定性方面,相对动态色谱没有优势;但静态法相对于动态色谱法由于氮气分压可以很容易的控制到1,所以比较适合做孔径分析。而动态色谱法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。[/size]作者:贝士德仪器科技技术部

  • 【原创】高校应如何选择国产比表面及孔径分布测定仪

    1. 引言微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,其中表面效应来源于表面原子的状态与特性的特殊性以及材料的使用性能往往与其表面最相关,表面特性主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化;微纳米材料的表面特性具有极为重要的意义,因为材料的许多功能直接取决于表面原子的特性,例如催化功能、吸附功能、吸波功能、抗腐蚀功能、烧结功能、补强功能等等。比表面仪就是测定这两个指标的分析仪器。由于微纳米材料已成为近代材料科学的前沿之一,因此“比表面及孔径分布的测定”已作为基础实验列入我国高等院校的教学计划中,为此很多院校都面临选购比表面及孔径分布测定仪的问题,下面就如何选择国产比表面仪提出一些分析意见,供老师们参考。2. 我国比表面及孔径分析仪概况2.1比表面及孔径分析仪分类对于微纳米材料而言,其颗粒尺寸本来很小,加上形状千差万别,比表面及孔尺寸不可能直接测量,必须借助于更小尺度的“量具”,氮吸附法就是借助于氮分子作为一个“量具”或“标尺”来度量粉体的表面积以及表面的孔容积,这是一个很巧妙、很科学的方法。按测量氮吸附量的方法不同及功能不同,我国常用的比表面及孔径分析仪分类如下: 动态直接对比法比表面仪连续流动色谱法氮吸附仪 动态BET比表面仪 动态比表面及孔径分布测定仪 静态容量法比表面及孔径分布测定仪“连续流动色谱法”是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,这种方法可以实现直接对比法快速测定比表面,BET比表面测定和介孔孔径分布测定,目前国内动态仪器趋向于一机多能,在仪器结构基本相同的情况下,只要配备适当软件,就可实现既测比表面又测孔径分布的功能,而且能基本实现自动化;“静态容量法”测量氮吸附量与动态法不同,他是在一个密闭的真空系统中,精密的改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国已有少数公司可以生产。2.2国产静态容量法比表面及孔径分布测定仪的介绍国产静态容量法氮吸附仪在我国只有2、3年历史,一般了解较少,先通过下列两个表格的对照来介绍。表 静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪国产静态容量法比表面及孔径分析仪1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙BET比表面测3~5点,重复精度≤2%孔径分布只测定(脱附过程)~12点 测量的压力点多,表明测试更为精确可靠,BET比表面一般测7~9点,重复精度≤1%孔径分布测定,吸附过程≥26点,脱附过程≥26点,最高都可测到100点[/font

  • 【资料 】钛的表面处理技术工艺

    钛在高温下易于与空气中的O、H、N等元素及包埋料中的Si、Al、Mg等元素发生反应,在铸件表面形成表面污染层,使其优良的理化性能变差,硬度增加、塑性、弹性降低,脆性增加。 钛的密度小,故钛液流动时惯性小,熔钛流动性差致使铸流率低。铸造温度与铸型温差(300℃)较大,冷却快,铸造在保护性气氛中进行,钛铸件表面和内部难免有气孔等缺陷出现,对铸件的质量影响很大。 因此,钛铸件的表面处理与其它牙用合金相比显得更为重要,由于钛的独特的理化性能,如导热系数小、表面硬度、及弹性模量低,粘性大,电导率低、易氧化等,这对钛的表面处理带来了很大的难度,采用常规的表面处理方法很难达到理想的效果。必须采用特殊的加工方法和操作手段。 铸件的后期表面处理不仅是为了得到平滑光亮的表面,减少食物及菌斑等的积聚和粘附,维持患者的正常的口腔微生态的平衡,同时也增加了义齿的美感;更重要的是通过这些表面处理和改性过程,改善铸件的表面性状和适合性,提高义齿的耐磨、耐蚀和抗应力疲劳等理化特性。 一、 表面反应层的去除 表面反应层是影响钛铸件理化性能的主要因素,在钛铸件研磨抛光前,必须达到完全去除表面污染层,才能达到满意的抛光效果。通过喷砂后酸洗的方法可完全去除钛的表面反应层。 1. 喷砂: 钛铸件的喷砂处理一般选用白刚玉粗喷较好,喷砂的压力要比非贵金属者较小,一般控制在0.45Mpa以下。因为,喷射压力过大时,砂粒冲击钛表面产生激烈火花,温度升高可与钛表面发生反应,形成二次污染,影响表面质量。时间为15~30秒,仅去除铸件表面的粘砂、表面烧结层和部分和氧化层即可。其余的表面反应层结构宜采用化学酸洗的方法快速去除。 2. 酸洗: 酸洗能够快速完全去除表面反应层,而表面不会产生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用于钛的酸洗,但HF—HCl系酸洗液吸氢量较大,而HF—HNO3系酸洗液吸氢量小,可控制HNO3的浓度减少吸氢,并可对表面进行光亮处理,一般HF的浓度在3%~5%左右,HNO3的浓度在15%~30%左右为宜。 二、铸造缺陷的处理 内部气孔和缩孔内部缺陷:可等热静压技术(hot isostatic pressing)去除, 但对义齿的精度会产生影响,最好用X线探伤后,表面磨除暴露气孔,用激光补焊。表面气孔缺陷可直接用激光局部焊接修补。 三、研磨与抛光 1. 机械研磨: 钛的化学反应性高,导热系数低,粘性大,机械研磨研削比低,且易于磨料磨具发生反应,普通磨料不宜用于钛的研磨与抛光,最好采用导热性好的超硬磨料,如金刚石、立方氮化硼等,抛光线速度一般为900~1800m/min.为宜,否则,钛表面易发生研削烧伤和微裂纹。 2. 超声波研磨: 通过超声振动作用,使磨头和被研磨面间的磨粒与被研磨面产生相对运动而达到研磨、抛光的目的。其优点在于常规旋转工具研磨不到的沟、窝和狭窄部位变得容易了,但较大的铸件研磨效果还不能令人满意。 3. 电解机械复合研磨: 采用导电磨具,在磨具与研磨面之间施加电解液和电压,通过机械和电化学抛光的共同作用下,降低表面粗糙度提高表面光泽度。电解液为0.9NaCl,电压为5v,转速为3000rpm/min.,此方法只能研磨平面,对复杂的义齿支架的研磨还处于研究阶段。 4. 桶研磨: 利用研磨桶的公转与自转所产生的离心力,使桶内的义齿与磨料相对摩擦运动而起到降低表面粗糙度的研磨目的。研磨自动化、效率高,但只能降低表面粗糙度而不能提高表面光泽度,研磨的精度较差,可用与义齿精抛光前的去毛刺和粗研磨。 5. 化学抛光: 化学抛光是通过金属在化学介质中的氧化还原反应而达到整平抛光的目的。其优点是化学抛光与金属的硬度、抛光面积与结构形状无关,凡与抛光液接触的部位均被抛光,不须特殊复杂设备,操作简便,较适合于复杂结构钛义齿支架的抛光。但化学抛光的工艺参数较难控制,要求在不影响义齿精度的情况下能够对义齿有良好的抛光效果。较好的钛化学抛光液是HF和HNO3 按一定比例配制,HF是还原剂,能溶解钛金属,起到整平作用,浓度10%, HNO3起氧化作用,防止钛的溶解过度和吸氢,同时可产生光亮作用。钛抛光液要求浓度高,温度低,抛光时间短(1~2min.)。 6. 电解抛光: 又称为电化学抛光或者阳极溶解抛光,由于钛的电导率较低,氧化性能极强,采用有水酸性电解液如HF—H3PO4、HF—H2SO系电解液对钛几乎不能抛光,施加外电压后,钛阳极立刻发生氧化,而使阳极溶解不能进行。但采用无水氯化物电解液在低电压下,对钛有良好的抛光效果,小型试件可得到镜面抛光,但对于复杂修复体仍不能达到完全抛光的目的,也许采用改变阴极形状和附加阴极的方法能解决这一难题,还有待于进一步研究。 四、钛的表面改性 1. 氮化: 采用等离子体渗氮、多弧离子镀、离子注入和激光氮化的等化学热处理技术, 在钛义齿表面形成金黄色TiN渗镀层,从而提高钛的耐磨性、耐腐蚀性和耐疲劳性。但技术复杂,设备昂贵,用于钛义齿的表面改性很难达到临床实用化。 2. 阳极氧化: 钛的阳极氧化技术较为容易,在一些氧化性介质中,外加电压的作用下,钛阳极可形成较厚的氧化膜,从而提高其耐腐蚀性和耐磨性和耐候性。阳极氧化的电解液一般采用H2SO4、H3PO4和有机酸水溶液。 3. 大气氧化: 钛在高温大气中可形成较厚坚固的无水氧化膜,对钛的全面腐蚀、间隙腐蚀都有效,方法比较简便。 五、 着色 为了增加钛义齿的美感、防止钛义齿在自然条件下的继续氧化的变色,可采用表面氮化处理、大气氧化和阳极氧化法表面着色处理,使表面形成淡黄色或金黄色,提高钛义齿的美感。 阳极氧化法利用钛的氧化膜对光的干涉作用,自然发色,可通过改变槽电压在钛表面形成多彩的颜色。 六、 其他表面处理 1: 表面粗化: 为了提高钛与饰面树脂的粘结性能,必须对钛表面进行粗化处理,提高其粘结面积。临床上常采用喷砂粗化处理,但喷砂会造成钛表面的氧化铝的污染,我们采用草酸刻蚀的方法,得到良好的粗化效果,刻蚀1h表面粗糙度(Ra)可达到1.50±0.30μm,刻蚀2h Ra为2.99±0.57μm,比单独喷砂的Ra(1.42±0.14μm)提高一倍多,其粘结强度提高了30%。 2: 抗高温氧化的表面处理: 为了防止钛在高温下的急剧氧化,在钛表面形成钛硅化合物及钛铝化合物,可防止钛在700℃以上温度下的氧化。这种表面处理对钛的高温氧化非常有效,也许钛表面涂覆这类化合物,对钛瓷结合有利,仍须进一步研究。

  • 比表面积测定仪特点

    比表面积测定仪以表面物理吸附相关理论为基础,采用连续流动法作为测定方法,用氦氮混合气(氦:氮=4:1,氦气为载气,氮气为吸附气体)流过被测样品,并利用氮气在液氮温度下的吸附及脱液氮环境下的脱附,精确测量氮气前后的比例变化的标准化仪器。利用固体标样参比法作为测试软件分析模型,计算出样品的比表面积。 1 比表面测定仪具有双工作站,测试效率提高一倍,多点BET比表面测定,每样平均15min 2 比表面测定仪具有国内唯一通过国家级技术鉴定的产品,控制和测试精度达到国际先进水平; 3 比表面测定仪具有独有的抽气与充气速度精密控制技术,超微粉样品也不会被抽飞; 4 比表面测定仪具有独特的多途径液氮面控制与校正技术,连续测试10小时也不需添加液氮; 5 比表面测定仪具有完善的标准等温线数据库和规范的分析方法,微孔常规测试技术国内领先; 6 比表面测定仪具有专用软件功能齐全、界面友好、操作方便、实时显示样品的吸、脱附压力变化及平衡过程; 7 比表面测定仪具有实验全程自动化、智能化控制,长时间运行

  • 氮吸附法测定比表面及孔隙率的技术

    任何粉体表面都有吸附气体分子的能力,在液氮温度下,在含氮的气氛中,粉体表面会对氮气产生物理吸附,在回到室温的过程中,吸附的氮气会全部脱附出来。当粉体表面吸附了满满的一层氮分子时,粉体的比表面积(Sg)可由下式求出: Sg=4.36Vm/W (Vm为氮气单层饱和吸附量,W为样品重量)而实际的吸附量V并非是单层吸附,即所谓多层吸附理论,通过对气体吸附过程的热力学与动力学分析,发现了实际的吸附量V与单层吸附量Vm之间的关系,这就是著名的BET方程,用氮吸附法测定BET比表面及孔径分布是比较成熟而广泛采用的方法,都是利用氮气的等温吸附特性曲线:在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对压力(P/P0),当P/P0在0.050.35范围内时,吸附量与(P/P0)符合BET方程,这是氮吸附法测定比表面积的依据;当P/P00.4时,由于产生毛细凝聚现象,即氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容、孔径分布。问题的关键是用甚么方法可以准确地把吸附的氮气量测量出来

  • 静态容量法比表面及孔隙率测定仪

    静态容量法比表面及孔隙率测定仪在努力研发动态氮吸附仪的同时,我们也一直在关注静态容量法比表面及孔隙率仪的发展,毕竟在国外一直重点发展静态容量法比表面及孔径分析仪,而且近年来改进提高很快,目前进口仪器在我国仍然有相当大的市场占有量,为了进一步提高我国仪器的水平,尽快赶上国际先进,彼奥德从06年开始研究静态容量法氮吸附仪。说实在的,有关这方面的具体资料非常缺乏,除了原理,一切均需从头开始。经过近两年的努力,终于攻下了所有技术难关,我国自有的静态容量法比表面及孔径分析仪研制成功,并迅速进入市场,我们的静态仪器性能已经接近国际先进水平,而且具有许多自己的特色,有自己的独到之处。实事求是的看,静态容量法比表面及孔径分析仪的优点还是很多的。(1)静态容量法是在真空条件下改变氮气的压力,通过压力传感器直接测量氮压力,排除了其它因素带来的影响,而动态法要通过氮气和氦气相对量的改变以及二者流量的调节才能得到;(2)容量法样品的吸附与脱附过程是在静态下进行并达到吸附平衡,符合理想的吸附平衡条件,而动态法仅为相对的动态平衡;(3)静态容量法样品在吸附与脱附过程中,固定于液氮杜瓦瓶中,不像动态法每测一个压力点样品管都需要进出液氮杯一次,静态法不但节省了时间,而且大大减少了液氮的消耗;(4)只用氮气,不用氦气,而且氮气的消耗也极少,大大减少了测试的成本;(5)静态容量法每测一个压力点只需2分钟左右,而且可以根据需要测量很多点,例如多点BET比表面可测定6~20点以上,孔径分布测定可选25~100个点,测量的点数多有利于测量精度和可靠性的提高,相比之下,动态法多点BET比表面只测定5点左右,孔径分布测定只测10个点左右,而且在测量相同点数的条件下,静态法更节省时间;(6)在进行孔径分布测试时,静态容量法具有更显著的优势,其一,动态法受热导检测器灵敏度及流量调节精度的限制,孔径测试范围较小,一般在2~100nm,而静态容量法测试范围一般可达到0.5~400nm;其二,动态法不能测试出完整的等温曲线,而且测量的点数少,对孔径分布的分析比较粗糙,而静态容量法可以完整地测试等温吸附曲线和等温脱附曲线,实现对孔径分布比较精确的分析,而且能得到样品全面的吸附特性,进而可对样品的吸附类型和孔结构作出判断;其三,只有静态法才有可能对微孔进行定量分析;(7)静态容量法的仪器可以实现真正的全自动控制,包括不需要中途人为补充液氮,而且运行、控制、数据采集与处理、以及计算机操作,均更为简便、流畅、可靠和智能化,只要把试验条件输入计算机,试验过程全部自动完成,同步得到全部试验结果;(8)样品的预处理可同机甚至同位进行,利用主机的真空条件和单独的温控装置,使预处理更为充分,操作更为简便,测试结果更为可靠。总之,静态氮吸附仪是技术上更高一档的仪器,国产静态仪器的成功,无疑又提升了我国在这一领域的国际地位。

  • 【原创】比表面 比表面测试仪

    比表面是比表面积的简称。根据实际需要,比表面积分为内比表面积、外比表面积、和总比表面积;通常未注明情况下粉体的比表面积是指单位质量粉体颗粒外部表面积和内部孔结构的表面积之和,单位m2/g。粉体材料越细,表面不光滑程度越高,其比表面积越大。由于纳米材料细度很高,一般具有比较大的比表面积;吸附剂催化剂炭黑等材料的效能与比表面积关系密切,一定效能需要一定范围的比表面要求;但并不是比表面积越大,就粉体质量越好。例如在要求粉体球形度的情况下,粒度相当的粉体材料,比表面越大,球形程度就越差。比表面积和粒径(粒径一般用中位径或目数来表示)是两个概念,没有必然联系,同样目数的两个产品不等于他们拥有相同的比表面积,也依赖与其表面光滑程度和孔结构。比表面积研究和相关数据报告中,只有采用BET方法检测出来的结果才是真实可靠的,因为国内外制定出来的比表面积标准都是以BET测试方法为基础的。(GB.T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法,而通过粒度仪估算出的比表面积通常差距都很大,无法反映实际情况。比表面积测试有专用的比表面积测试仪。 比表面分析仪是用来检测颗粒物质比表面积的专用设备,目前在高校、科研单位及生产企业中被广泛实用,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。比表面积大小性能检测在许多的行业应用中是必须的,如电池材料,催化剂,橡胶中碳黑补强剂,纳米材料等。 目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器行业的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。 精微高博(JWGB)是当代中国著名的粉体表面特性测试技术的开创者。十年来,精微高博(JWGB)的科学家革新了测试技术并设计发明了相应的物性测试仪器,使粉体及多孔材料的测试更精确、更精密、更可靠。这包括: • 比表面测试• 吸附/脱附等温线• 孔隙度、介孔与微孔孔径分布•粉体真密度•精微高博(JWGB)具有代表性的仪器: -连续流动色谱法智能型比表面分析仪 ---- JW-DA -多站静态容量法比表面及孔隙度分析仪 ---- JW-BK -静态容量法超微孔孔径分布测试仪—— JW-BK-F

  • 【分享】目前对比表面积测试方法分类的2种说法

    比表面测试方法简介与分类[color=#00008B][size=4][font=楷体_GB2312]比表面测试方法简介与分类1[/font][/size][/color] 比表面测试方法根据测试思路不同分为吸附法、透气法和其它方法,透气法是将待测粉体填装在透气管内震实到一定堆积密度,根据透气速率不同来确定粉体比表面积大小,比表面测试范围和精度都很有限;其它比表面积测试方法有粒度估算法、 显微镜观测估算法,已很少使用;其中吸附法比较常用且精度相对其它方法较高; 吸附法的思路就是让一种吸附质分子吸附在待测粉末样品(吸附剂)表面,根据吸附量的多少来评价待测粉末样品的比表面大小。根据吸附质的不同,吸附法分为低温氮吸附法、吸碘法、吸汞法和吸附其它分子方法;较早使用的是后面吸碘法、吸汞法等几种方法,这几种方法在不同行业内被使用了较长时间;但由于吸碘法中使用的碘分子直径很大,不能进入许多小孔,测得的比表面积不完全,另外碘分子活性较高,对不少粉体不能适用,局限较大;吸汞法又叫压汞法,使用的吸附质--汞有毒,很少使用了,在此不详述了。吸附其它气体分子的方法使用也极少。使用最广的为以氮分子作为吸附质的氮吸附法;氮吸附法由于需要在液氮温度下进行吸附,又叫低温氮吸附法,这种方法中使用的吸附质--氮分子性质稳定、分子直径小、安全无毒、来源广泛,是理想的且是目前主要的吸附法比表面测试吸附质。 氮吸附法根据吸附过程和吸附质确定方式的不同又分为动态色谱法和静态法。 动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量; 静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量; 动态色谱法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。 由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫 BET比表面。统计吸附层厚度法主要用于计算外比表面; 动态色谱法仪器中有种常用的比表面测试方法,叫固体标样参比法或叫直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以此种简单的方法所得出的比表面值与BET多点法得到的值一致性较好的原因; 动态色谱法和静态容量法是目前常用的主要的比表面测试方法。两种方法比较而言动态色谱法比较适合测试比表面积,静态容量法比较适合孔径测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等使得测试效率相对动态色谱法低,测试结果稳定性也较动态色谱低,所以在比表面测试的效率、分辨率、稳定性方面,相对动态色谱没有优势;但静态法相对于动态色谱法由于氮气分压可以很容易的控制到1,所以比较适合做孔径分析。而动态色谱法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。

  • 【原创】关于静态容量法比表面仪测样数和工作站的问题

    关于静态容量法比表面仪测样数和工作站的问题 中国比表面仪的发展经历了从动态流动法仪器向静态容量法仪器的改进过程,无论是从原理、测试精准度、测试成本、操作容易程度上考察,静态容量法均具有动态法不可比拟的优势,因此,国外的比表面仪基本都是静态容量法仪器,动态法仪器基本不用,如今,中国市场的静态容量法比表面仪将取代动态法仪器是不可改变的事实和发展趋势。 然而,对于静态容量法比表面仪,很多人在选购时比较关注单次测样数量,希望能够在一定的时间内尽可能多的测样,这样在选购比表面仪时,很容易走进误区,认为仪器上的样品管接入位置越多越好,实际上,关键问题并不在样品管接入位置的数量,而是仪器内部压力传感器的数量。 如果是单压力传感器,就算有再多的样品介入位置也是枉然,因为一个压力传感器在同一时间只可能测一个压力值,无法对每一个样品接入位置的压力进行测定,也就是说,同一时间进行测试的样品只可能是一个,之所以在仪器上设置多个样品接入位置,只是避免了多样品测试任务时反复的装卸更换样品的问题,并不是可以同时测定多个样品,而是多个样品逐个依次测定,也就是说如果有n个样品接入位置,每个样品位置接入一个样品管,每个样品测试时间是t,那么最后总的测试时间是nt,并不是t,因为所有样品并不能同时测试。 那么,如何做到同时测试多个样品呢,唯一的解决办法就是每个样品接入位置对应一个压力传感器,这样就可以实现同时测试的目的,但可想而之,仪器的成本必然增加,购买时的价格也会必然会增加。 因此,在购买静态容量法比表面仪时,一定要弄清楚仪器内部到底是多个传感器,还是单个传感器,不能将样品接入位置的数量当成可同时测试样品数量,这是很多人容易走入的误区。

  • 【资料】表面张力与表面活性剂

    【资料】表面张力与表面活性剂

    [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908170954_166085_1610969_3.jpg[/img][color=#00008B]多相体系中相之间存在着界面。习惯上人们仅将气-液,气-固界面称为表面。[/color]   通常,由于环境不同,处于界面的分子与处于相本体内的分子所受力是不同的。在水内部的一个水分子受到周围水分子的作用力的合力为0,但在表面的一个水分子却不如此。因上层空间[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,结果导致液体表面具有自动缩小的趋势,这种收缩力称为表面张力。将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功——表面功。显然这样的分散体系便储存着较多的表面能。   [color=#DC143C]表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。[/color]   在293K下水的表面张力为72.75×10-3 N• m-1,乙醇为22.32×10-3 N• m-1,正丁醇为24.6×10-3N• m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3 N• m-1。   表面张力的测值通常有多种方法,目前实验室及教科书中,通常采用的测试方法为最大气泡压法.由于其器材易得,操作方法相对易于学生理解表面张力的原理,因而长期以来是教学的必备方法.  [color=#00008B]作为表面张力测试仪器的测试方法,通常有白金板法\白金环法\悬滴法\滴体积法\最大气泡压法等. [/color]

  • 陶瓷墨水的稳定性与表面张力的关系

    绝大部分陶瓷企业反映,陶瓷墨水在运用过程中经常出现拉线、发色效果差等问题,这与陶瓷墨水的稳定性有极大关系。陶瓷墨水拉线经常在大面积深色喷墨打印时出现,其与喷头本身有很大的联系,但本质上还是因为墨水体系不稳定,着色剂轻易团聚、沉降,堵塞喷头或者残余油墨粘附在喷头上。可通过选择结晶度高、中位粒径小、粒度分布窄的色料,选择合适的分散系统与合适的分散剂等方法来解决此问题。  此外,陶瓷墨水的稳定性还牵涉到墨滴与坯体结合的问题。在实际生产中存在墨滴在坯体上润湿性不好以及墨滴在坯体上过度扩散的问题。润湿性不好可以添加恰当的分散剂,从而降低墨水体系的表面张力,使得陶瓷墨水中非极性的有机物能够与极性的陶瓷坯体形成润湿。至于墨水在坯上过度扩散,可能是由于墨水的表面张力过小,亦可通过控制分散剂的添加量的方法来解决。http://image.keyan.cc/data/bcs/2014/1222/w127h2685408_1419211939_188.jpg  陶瓷喷墨技术  因此,选择适合的分散剂/润湿剂以及控制其添加量显得极其重要。  一般说来,分散剂的性能和体系的润湿剂含量与其表面张力的大小有紧密的联系。所以,通常以测量分散剂的表面张力来确定分散剂的性能和体系的润湿剂含量,从而量化得出分散剂/润湿剂的性能与添加量。  表面张力的测量一般分为传统的拉环/拉板法与新兴的最大气泡法。传统的拉环/拉板法是以往较为常用的测试方法,但因其有清洗麻烦、寿命短和易受客观条件影响的弊端,特别是不能反应墨水的动态表面张力已被逐渐淘汰。而新兴的最大气泡法表面张力仪测量喷墨的动态表面张力,得出动态部份的数据与墨水的性能有密切相关, 而且操作简便、测量快捷准确、使用寿命长和不易受客观条件影响等优点,现已被陶瓷墨水行业广泛接受与认可。  德国SITA公司研发的表面张力仪是基于起泡压力法原理,和对比所提及的测试方法,它提供一个简便、实惠、可靠应用的方法。因为动态表面张力可以提供给你一个与动态时间和速度相关的数据,一边在打印质量上作出结论。http://image.keyan.cc/data/bcs/2014/1222/w140h2685408_1419211966_226.jpg  动态表面张力仪可以用于检测测量分散剂的表面张力,提高墨水的稳定性  如果需要,动态表面张力仪在选择一个长的气泡寿命时间时,也可以提供准静态的表面张力值。  同时动态表面张力仪还可作为与优质(竞争对手)产品的差异对比、选择性价比高的分散剂、进出产品质量控制、与客户沟通解决问题的有力工具。

  • 【分享】比表面积测试方法主要分动态色谱法和静态容量法

    动态色谱法  动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量;静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量;    动态色谱法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。    由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫BET比表面。统计吸附层厚度法主要用于计算外比表面;   动态色谱法仪器中有种常用的原理有固体标样参比法和BET多点法;动态色谱法之固体标样参比法  固体标样参比法也叫直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以此种简单的方法所得出的比表面值与BET多点法得到的值一致性较好的原因;动态色谱法之BET多点法  BET多点法为国标比表面测试方法,其原理是求出不同分压下待测样品对氮气的绝对吸附量,通过BET理论计算出单层吸附量,从而求出比表面积;其理论认可度相对固体标样参比法高,但实际使用中,由于测试过程相对复杂,耗时长,使得测试结果重复性、稳定性、测试效率相对固体标样参比法都不具有优势,这是也是固体标样参比法的重复性标称值比BET多点法高的原因;   动态色谱法和静态容量法是目前常用的主要的比表面测试方法。两种方法比较而言动,态色谱法比较适合测试快速比表面积测试和中小吸附量的小比表面积样品(对于中大吸附量样品,静态法和动态法都可以定量的很准确),静态容量法比较适合孔径及比表面测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等,使得测试效率相对动态色谱法的快速直读法低,对小比表面积样品测试结果稳定性也较动态色谱低,所以静态法在比表面测试的分辨率、稳定性方面,相对动态色谱并没有优势;在BET多点法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以相对动态法省时;静态法相对于动态色谱法由于氮气分压可以很容易的控制到接近1,所以比较适合做孔径分析。而动态色谱法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。静态容量法  在低温(液氮浴)条件下,向样品管内通入一定量的吸附质气体(N2),通过控制样品管中的平衡压力直接测得吸附分压,通过气体状态方程得到该分压点的吸附量;   通过逐渐投入吸附质气体增大吸附平衡压力,得到吸附等温线;通过逐渐抽出吸附质气体降低吸附平衡压力,得到脱附等温线;相对动态法,无需载气(He),无需液氮杯反复升降;   由于待测样品是在固定容积的样品管中,吸附质相对动态色谱法不流动,故叫静态容量法; 比表面积测试相关仪器简介  动态法比表面积仪测试比表面积精度影响因素   对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其相对不具有该装置的动态法比表面仪,其精度得到明显提高;动态法比表面仪,与其它分析仪器类似,其精度和灵敏度大小主要取决于信噪比;也就是要提高精度和灵敏度,就需要从提高信号强度、抑制背景噪声、消除外界干扰三方面来控制。增加信号强度的方法一般有增加称样量、增加检测器电流,但增加检测器电流一般噪声也会同时增大,所以检测器电流会有个最佳范围;所以在抑制噪声、消除外界干扰方面可做的工作就比较多了;其源于仪器自身的误差来源主要有:检测器温漂,信号锐度;以检测器恒温装置来抑制温漂,风热助脱装置可以提高信号锐度,其对于比表面1m2/g的样品0.5g对氮气的吸附量在分压0.2左右时脱附峰面积与背景可以保证在2%以内的误差;   所以对于小比表面样品,对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其灵敏度和分辨率的优势就体现出来了;但对中大比表面样品,由于信号强,普通动态法比表面积仪和静态法比表面积仪都可以保证精度;这点就像万分之一分析天平和千分之一天平的区别;   静态法比表面积仪测试小比表面积样品精度分析   以比表面积1m2/g的样品为例,该样品0.5g对氮气的吸附量在BET分压范围内在标况下约0.1ml,在测试过程中的吸附环境液氮温度下的体积约0.03ml;样品管装样部分的剩余体积(也就是背景体积)约在3-5ml左右,要在3-5ml的样品管体积中准确定量出0.03ml的总吸附量且保证精度达到3%以内,可以算出要求压力传感器的精度要达到0.03%以上;但目前进口最好的压力传感器的精度只有0.1%,而且通常比表面及孔径分析仪用的压力传感器精度为0.15%,也就是说目前最高精度的压力传感器,即使温度场理想测定,液氮面理想恒定,环境温度理想准确条件下,对吸附量确定量的不确定度也只能达到0.003ml,即不确定度达到10%;若对于比表面再小或堆积密度小也就是装样量也难以很大的样品,其准确度就可想而知了。 但对于中大比表面样品,一般吸附量不会那么微小,静态法的精度很容易保证在2%甚至1%以内便不是问题;   所以在小比表面样品的测试方面,静态法仪器测试的误差相对高精度的动态法仪器的误差大;静态法只能通过增加装样量来降低误差,常见的是静态一般都会为小比表面积样品配备大容量样品管,但由于背景体积(吸附腔体积)也随之增大,所以准确度提高也是有限的;这点是采用静态法仪器测试比表面积应考虑的因素。   比表面积计算公式    参考国标GB/T24533-2009    放到气体体系的样品,其物质表面在低温下将发生物理吸附。当吸附达到平衡时,测量平衡吸附压力和吸附的气体流量,根据BET方程式(1)求出试样单分子层吸附量,从而计算出试样的比表面积。   (P/P0 )/ V(1-P/P0) = (C-1 )/( VmC ) × P/P0 + 1/( VmC )

  • 【分享】吸附剂中孔隙结构及比表面的表征解析

    在深的吸附势阱中,对低相对压下的分子就具有相当强的捕捉能力,表现为I型吸附等温线,这是由于微孔内相对孔壁吸附势的重叠从而引起低相对压力下促进的微孔充填(Micropore Filling)。初看起来微孔充填与毛细凝聚有些类似,但实际上微孔充填是取决于吸附分子与表面之间增强的势能作用的微观现象,而毛细凝聚则是取决于吸附液体弯液面(Meniscus)特性的宏观现象,两者应区别对待;另外对于极性分子和表面官能团作用的情形,应考虑除Lennard-Jones相互作用势以外的其它相互作用。http://www.best17.cn/admin/editor/UploadFile/2007122522298474.jpg Fig.1-8 10-4-3 Potential of nitrogen in slit-like pores (Here,the zero point of z as the center of pores) 图1-8狭缝型孔隙中氮的吸附势(零点Z看作孔隙中心) 这种吸附力场的改善已经由高的吸附等容热提供了实验证据;同时Everett和Powl通过理论计算表明,在小于两个分子直径的狭缝型孔隙内以及在小于六个分子直径的圆形孔隙内会引起吸附势的增强;Gregg和Sing等表明这种改善效应可以在比Everett和Powl所预测的孔径更大的孔隙内发生。 正是由于纳米空间内分子间相互作用的增强,不仅使固体-吸附质之间的相互作用增强,而且使吸附质-吸附质之间的相互作用改善,这就使得对于吸附在纳米空间的物质表现出一些特异的现象。用α-FeOOH改性的ACF通过铁氧化物的化学助吸附(Chemisorption-Assisted)表现为对NO较高的吸附容量(303K,300mg/g),可以形成NO的二聚体(NO)_2,而且该二聚体相当稳定。在与SO_2共存的条件下,NO会发生如下歧化反应生成N_2O:3(NO)_2=2N_2O+2NO_2,而该反应在通常条件下只有在高压下才得以进行。Kaneko假设在纳米空间吸附的分子形成的分子簇(Molecular Clusters)为液滴,这时,液滴周围的蒸气与液滴之间的压差△P由Young-Laplace方程计算,液滴的大小与表面张力γ之间存在如下关系:△P = 2γ/r_m,r_m是液滴、蒸气界面的曲率半径,代表液滴大小。当液滴为lnm时,在纳米空间中的水受到约相当于1400atm的压力,对于相似条件下的液氮则受到约相当于200atm的压力,由此吸附在纳米空间内的分子可以看成是处于高压环境之中。 不仅纳米空间内的分子簇会形成特定的结构,在吸附的同时,吸附剂的固体结构也会发生变化。当沸石(Zeolite)上发生氮吸附时,沸石晶态的对称性发生改变,而活性炭上发生氮吸附时,其结构单元微晶石墨的层间距会变小。所有这些都表明吸附质分子间的相互作用也非常强。纳米空间独特的分子场,有可能会发现一些新的分子功能。 实际上由于孔隙的微观性以及纳米尺度(分子级)的原因,要想对孔隙的起源作较为理想的阐明非常困难。Dubinin认为炭质吸附剂中含有各种不同尺寸的孔隙,最大的孔隙甚至可以用光学显微镜观察出。要想提供有关孔隙的直接证据目前较为先进的分析仪器主要有扫描隧道显微镜(STM-Scanning Tunnel Microscopy)、透射电子显微镜(TEM-Transmission Electric Micros-copy)、原子力显微镜(AFM-Atom Force Microscopy)等。Illinois大学以Economy为首的研究小组通过STM建立了一套较为完整的ACF数据库,共包含有800多张图片。由STM照片可以清晰的看到ACF表面和端面上孔隙结构的差异,以及不同尺度的孔隙,进一步由STM照片可以看出在不同位置由于刻蚀程度的差异而形成不同的孔隙;当然由此也可推断孔隙的发展历程。 图1-9所示为用于表征不同孔径的方法及其简单机理。压汞法主要用来表征大孔区域和大部分中孔区域的孔隙。该法利用液态Hg在200MPa高压下压入孔体系,所填充的容积是压力的函数。中孔的容积和分布可以由毛细凝聚的蒸气吸附来进行表征,有关蒸气凝聚的压力与孔隙的半径密切相关。这些方法都利用了吸附凝聚的密度与其液相密度相一致的假设,但实际上按照t法,所形成的吸附膜其吸附相密度与正常的凝聚相密度之间存在一定的差异。http://www.best17.cn/admin/editor/UploadFile/20071225224041766.jpg 在微孔范围的孔隙填充可以用基于Polanyi势能理论的Dubinin方程来表达:W = Woexp。此处,W是吸附量;A=RTLn(Po/P)代表Polanyi的吸附势(吸附相与平衡气体间的自由能变化);Wo为微孔容积;Eo为特征吸附能,是依赖于微孔结构的参数;β是由表面-分子间相互作用所决定的系数,被称为亲和系数(β = 1,以苯为标准);n为指数(1~3)。n = l时对应孔径分布较宽的炭质吸附剂,n = 2时对应孔径分布较窄的炭质吸附剂,n = 3时对应特别结构的CMS。从Dubinin方程解析可以获得吸附模式、细孔体积以及吸附热等有关信息。依据特征吸附能Eo可以推测细孔直径,还可进一步算出微孔范围内的孔径分布。Marsh认为通过Dubinin方程对吸附等温线进行分析可以提供一些非常有价值的信息。由于极微孔的尺度与吸附质分子大小具有几乎相同的量级,故而吸附质分子要想穿透整个孔隙比较困难,尤其在较低的温度和较低的相对压力下,表现更加明显。这是受被称之为活性扩散控制的结果,如前所述活性扩散类似于化学反应需要一活化能,随着温度的升高以及相对压力的增加,吸附速率呈指数增加。这些小的孔隙对小于其尺度的分子表现出吸附而对大于其尺度的分子表现为不与吸附,呈现出狭义的筛分效应。实际上不仅这些小的孔隙,只要吸附质分子的有效直径大于吸附剂孔口尺寸,就应表现出筛分效应。利用活性扩散可以对尺寸较小的孔隙如极微孔进行分析。 另外常用于表征微孔孔隙的方法还有比较作图法,该法将吸附等温线与标准等温线(通常是表面化学组成相类似的非孔性固体的吸附等温线)进行比较。实际上前面提及的t法也是一种比较法,但由于t法在微孔体系中的实用性受到质疑,目前α_s法正成为主流。α_s法是Sing和Gregg提议的用于细孔性固体的解析方法。α_s值定义为标准等温线上各相对压力下的吸附量除以P/Po = 0.4时标准物的吸附量(W_(P/Po=0.4))而得的比值,即α_s = W/W_(P/Po=0.4),将P/Po变换为α_s表示,这样试样的吸附等温线就可与标准等温线进行比较。特别是由Kaneko等提议的从低α_s值范围获得的高分辨α_s法是对微孔固体孔隙解析非常有效的方法,图1-10所示为具有代表性的α_s图。http://www.best17.cn/admin/editor/UploadFile/2007122522440719.jpg Fig.1-10 Various α s-plots 图1-10不同类型的α -图 平坦表面(包含大孔表面)、中孔以及微孔其α_s图各不相同。一般来讲随着大孔性、 中孔性固体向微孔性固体偏移,其吸附容量增加。中孔的毛细凝聚、微孔的容积充填(F偏离F-Swing)以及协同的微孔充填(C-偏离C-Swing)出现在图1-11的上部,由此可以对孔隙的尺度进行简单的判定。微孔型固体的α_s图可分为:F偏离的F型、C偏离的C型以及两种偏离共存的FC型。F型一般认为其孔径宽度在0.7nm以下,由于受极微孔内强的分子场的影响,在比平坦表面吸附更低的分压下就发生了单分子层吸附;C型可以看作是在单分子“涂层"(即孔壁上的单层吸附)之外的残余空间内发生的促进吸附,其孔径大于1.4nm;表现为FC型的吸附剂孔径范围在.7nm到1.4nm之间。从α_s图高压端引出的外推直线的截距给出微孔容积,其斜率给出外表面积;而从原点引出的直线的斜率可获得全表面积,与全表面积相比外表面积非常小时,高压端外推直线

  • 【原创】影响动态BET比表面测试结果的几大因素

    第一,和样品预处理时间有关。以氢氧化镍为例,它的处理时间至少需要8小时,由于其干燥过程容易板结,故处理温度不宜过高(一般90度),这样就导致处理温度不够,用加长时间来弥补。第二,和样品的处理温度有关。以氧化铝为例,它的处理温度一般是300°C。若降低其处理温度,容易造成测试结果偏小,且BET测试曲线线性很差。第三,和处理时的真空度有关。真空度偏低,使得真空室的蒸汽的饱和蒸汽压偏高,同时样品表面处理不干净,这样都造成测试结果偏小(个别样品除外)。第四,和称样量多少有关。样品量的多少和他自身的比表面的大小有关的,一般比表面越大,称样量越少,反之越多。但是在样品管体积一定的情况下,量太多容易造成管路堵塞;太少容易出现脱附峰拖尾。所以选择合适的称样量是很有必要的。第五,和测试样品的自身吸附特性有关。大部分样品处理后的比表面都是大于处理前的比表面,有的样品不处理的时候比表面很大,处理后反而变小,第六,和仪器的类型有关,一般来说,静态容量法测得结果比动态色谱法测得的结果更加准确,这个是由于前者测得是吸附数据,后者得到的是脱附数据。若样品中存在不规则的孔,氮分子进入孔内后,脱附时,由于出口很小,就有可能不出来,造成脱附的数据失真。具体的动态法和静态法的区别,请参照以下对比:静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪(以大部分国产比表面仪为例)国产静态容量法比表面及孔径分析仪(以JW-BK为例)1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙;BET比表面测3~5点,重复精度≤2%[color=#3333

  • 表面张力仪能测量范围大概是怎么样的

    表面张力仪能测量范围大概是怎么样的

    表面张力仪技术参数 ● 重量:2.2 kg; ● 外形尺寸:30 × 8 × 15 cm; ● 电压:15伏直流电(100 – 240伏交流电); ● 测量范围:0-300 mN/m; ● 精度0.1 mN/m; ● 分辨率0.01mN/m; ● 样品杯材质:聚丙烯或玻璃; ● 样品体积:3mL; ● 每次测量平均时间:≤30秒。Kibron表面张力仪测量方法的优点 ●灵敏度和精确度(微量天平分辨率超过0.2微克); ●仅需要非常少的样品体积(最低45微升);特别适用于使用昂贵材料和有限的样本的实验室;样品快速混合至均匀,热稳定更好; ●测量探针经济耐用,不变形; ●能够实时观测微小表面压力的变化和快速的变化,无信号迟滞现象; ●对震动不敏感,无需震动隔离台; ●容易清洗; ●可测粘稠样品; ●测量速度快;http://ng1.17img.cn/bbsfiles/images/2014/07/201407151600_506725_2913834_3.jpg

  • 比表面积分析仪之关键部件

    比表面积分析仪所采用的压力传感器的品质。http://www.bjbuilder.com/zcuploadfile/20120315091633847.jpg压力传感器是静态法仪器的核心检测部件,其性能决定分析仪器的精确度,目前国内物理吸附仪的供应商一般会用到国产传感器、美国精量、美国西特、德国莱宝、德国普发、德国英福康等品牌,这些传感器从几百元到一万多元不等,传感器的选型很大程度上决定仪器的成本。并非所有进口产品都拥有优良的性能和高高的售价,现在市面上就有一款低品质的美国进口压力传感器,仅仅不到千元,其性能很难保证仪器的测试精度。而美国西特、德国莱宝、德国普发、德国英福康等品牌已经在物理吸附仪行业得到了良好应用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制