当前位置: 仪器信息网 > 行业主题 > >

表面形态

仪器信息网表面形态专题为您整合表面形态相关的最新文章,在表面形态专题,您不仅可以免费浏览表面形态的资讯, 同时您还可以浏览表面形态的相关资料、解决方案,参与社区表面形态话题讨论。

表面形态相关的资讯

  • 2020版药典四部增修17项标准 涉高效液相、形态、比表面
    p   2018年11月15日,国家药典委员会发布了“关于《中国药典》2020年版四部通则增修订内容(第二批)的公示”。将于2020年出台的第11版《中华人民共和国药典》预计将收载品种数6400个左右,增订品种800个,修订品种1400个。 /p p   通知显示,《中国药典》2020年版四部通则第二批增修订5项理化分析内容,包含高效液相色谱法、相对密度测定法振荡型密度计法、汞和砷元素形态及其价态测定法、比表面积测定法、固体密度测定法。其中相对密度测定法振荡型密度计法是第二次征求意见稿。 /p p   《中国药典》2020年版四部生物检定通则第二批增修订降压物质检查法、组胺类物质检查法、肝素生物测定法。 /p p   《中国药典》2020年版四部微生物通则第二批增修订微生物计数法、抑菌效力检查法、药品微生物实验室质量管理指导原则。 /p p   《中国药典》2020年版四部制剂通则第二批增修订制剂通则、片剂、注射剂、胶囊剂、颗粒剂、鼻用制剂。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 关于《中国药典》2020年版四部通则增修订内容(第二批)的公示 /strong /span /p p 各有关单位: /p p   按照《中国药典》2020年版编制大纲有关要求,我委组织开展了2020年版《中国药典》四部通则的增修订工作。在广泛征求意见及我委组织的相关科研课题研究结果基础上,完成了四部相关通则的起草工作,并经第十一届药典委员会相关专业委员会审议,形成了征求意见稿(第二批)(详见附件1),为进一步完善药典通则内容,现在我委网站公开征求意见,公示期三个月。 /p p   请相关单位认真研核,将相关意见、修改建议及具体说明反馈我委(见附件2)。来函需注明收文单位“国家药典委员会”,加盖本单位公章,并标明联系人和联系电话 同时发送来函word版到联系邮箱,邮件标题请注明“通则反馈+单位”。 /p p   联系人及联系方式 /p p   理化:徐昕怡(电话:010-67079522) /p p   制剂:尚 悦(电话:010-67079578) /p p   微生物及生物检定:许华玉(电话:010-67079521) /p p   通讯地址:北京市东城区法华南里11号楼 国家药典委员会 办公室(收文)    邮编:100061 /p p   传真:010-67152769    E-mail: ywzhc@chp.org.cn /p p   附件:1.《中国药典》2020年版四部通则征求意见稿(第二批) /p p   strong  (1)《中国药典》2020年版四部理化分析通则增修订内容 /strong /p p style=" line-height: 16px " span style=" color: rgb(0, 176, 240) "    /span a style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " href=" https://img1.17img.cn/17img/files/201811/attachment/2eadf653-9064-4d20-8cde-504cf5ce2794.pdf" title=" 0512 高效液相色谱法.pdf" span style=" color: rgb(0, 176, 240) " 0512 高效液相色谱法.pdf /span /a /p p style=" line-height: 16px " span style=" color: rgb(0, 176, 240) "    /span a style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " href=" https://img1.17img.cn/17img/files/201811/attachment/1824a93e-c58a-4827-9f80-7678b4e99520.pdf" title=" 0601 相对密度测定法振荡型密度计法(第二次征求意见稿).pdf" span style=" color: rgb(0, 176, 240) " 0601 相对密度测定法振荡型密度计法(第二次征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/efef95cb-55a5-48eb-b240-ec04980c28c7.pdf" title=" 2322 汞和砷元素形态及其价态测定法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 2322 汞和砷元素形态及其价态测定法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/afd9f3ad-2b8f-4f13-9928-1bae81a05d66.pdf" title=" 比表面积测定法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 比表面积测定法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/c06d2c57-1e8b-4eb9-af47-70e7cae1fbe6.pdf" title=" 固体密度测定法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 固体密度测定法.pdf /span /a /p p    strong (2)《中国药典》2020年版四部生物检定通则增修订内容 /strong /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/5ec7b670-0d65-43e5-b0c5-6cdd6e484221.pdf" title=" 1145 降压物质检查法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1145 降压物质检查法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/2f63aafe-7da5-4441-b85c-15067dff3b7f.pdf" title=" 1146 组胺类物质检查法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1146 组胺类物质检查法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/635a2028-71f9-4026-9782-f8f72684eb69.pdf" title=" 1208 肝素生物测定法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1208 肝素生物测定法.pdf /span /a /p p strong   (3)《中国药典》2020年版四部微生物通则增修订内容 /strong /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/ad7aeafe-dc13-41dd-a7ab-04f7455deafd.pdf" title=" 1105 微生物计数法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1105 微生物计数法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/b3c84369-eca4-4dd6-bd2a-621de41d2bad.pdf" title=" 1121 抑菌效力检查法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1121 抑菌效力检查法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/20f3779b-0efc-4309-b08d-defc2c6cdf34.pdf" title=" 9203 药品微生物实验室质量管理指导原则.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 9203 药品微生物实验室质量管理指导原则.pdf /span /a /p p strong   (4)《中国药典》2020年版四部制剂通则增修订内容 /strong /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/39415f7b-a6c9-4d96-8219-db7338d35cd2.pdf" title=" 0100 制剂通则.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0100 制剂通则.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/cf0aed1b-9413-4539-9016-3a3508be4789.pdf" title=" 0101 片剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0101 片剂.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/b3868ffa-b27d-4120-9ba5-b84c38c86e42.pdf" title=" 0102 注射剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0102 注射剂.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/fa1bd3f4-50b7-4146-936c-8c1507e1d3ab.pdf" title=" 0103 胶囊剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0103 胶囊剂.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/ea2fa6c7-c856-49c3-bbf1-1349bd70a91b.pdf" title=" 0104 颗粒剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0104 颗粒剂.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/75e8b035-312d-44c9-89a2-345502f5514e.pdf" title=" 0106 鼻用制剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0106 鼻用制剂.pdf /span /a /p p   2. a href=" https://img1.17img.cn/17img/files/201811/attachment/fce7031d-e271-4f89-addd-a91589a91f6b.doc" title=" 反馈意见单.doc" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 反馈意见单.doc /span /a /p p style=" text-align: right "   国家药典委员会 /p p style=" text-align: right "   2018年11月15日 /p
  • 新品 油品检测设备-自动表面张力测定仪
    仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析。 仪器分析方法所包括的分析方法很多,有数十种之多。每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。油品分析仪器作为仪器仪表行业的一小部分,也作出了自己的贡献,石油产品的广泛应用让油品分析仪器在各个行业也活泛起来,得利特(北京)科技有限公司为了在油品分析仪器行业站住脚,必须不断升级和研发新产品,才能满足客户的使用需求。北京得利特为客户解忧,我们工程师新研发了一款自动表/界面张力测定仪,下面跟随得利特小编来了解一下吧!A1200自动界面张力测定仪适用GB/T6541标准,分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。表面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。此方法具有操作简单,精度高的优点。广泛用于电力、石油、化工、制药、食品,教学等行业。
  • 表面活性剂:从分子到纳米粒子
    p   韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。 /p p   表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特别是作为调节液体水滴的技术可广泛应用于制药、疾病诊断、新药开发等领域。 /p p   现有调节液体水滴的技术多采用“分子表面活性剂”,是使表面活性剂包裹的液体水滴受到外部刺激的分子结构设计方式,但想实现两种以上刺激反应难度较大。此次研究组利用纳米粒子具有杀死细菌以及运送酵素等多种功能的特点,研制出可在多种刺激下控制液体水滴的“纳米粒子表面活性剂”,比现有分子表面活性剂具有更多样的功能。通过纳米表面活性剂可对电、光、磁场全部反应,磁场和光可以调节液体水滴的位置以及移动、旋转速度,并可以与电场结合。例如,使用操纵液体水滴移动或组合的工具可将活体细胞植入液体水滴里培养或将利用液体水滴还原细胞内的酵素反应等需要特殊环境的制药、生物医学领域。 /p p br/ /p
  • 智能手机上的表面力学
    如今“一部手机走天下”,已成为现实,智能手机的出现改变了我们的生活。它使我们原来许多物品逐步变得可有可无,渐渐成为我们生活中的伴侣。从1992年第一部智能手机的出现,到如今,手机已生重大革命;从触摸屏取代小键盘,再到大触摸屏手机的出现,彻底改变了手机行业。OLED智能手机显示屏的结构智能手机必须能够很好地抵抗使用过程中产生的外界应力。每次用户操作手机时,手机都会受到震动或刮擦,例如从口袋或袋子中取出手机或把他放在桌子上时。智能手机制造商正在努力实现显示屏、框架以及智能手机外壳的最佳耐刮性。人们使用各种方法来量化耐划伤性能——最合适的两种方法是划痕测试和纳米压痕测试。本应用报告将展示这两种方法在智能手机显示屏抗划擦性和能硬度表征中的应用。纳米压痕和纳米划痕测试纳米压痕测试是一种可以测量薄膜和小体积材料的硬度、弹性模量、蠕变和附着力的方法。用预先定义的载荷将金刚石棱锥压头压入被测材料表面,并记录压入深度。硬度、弹性模量和其他性能是使用ISO14577 标准通过载荷-位移曲线获得的。划痕试验是一种表征涂层附着力和耐划痕性的方法。划痕试验通常使用球形金刚石压头进行,该压头在载荷增加的情况下“划痕”涂层表面,从而产生涂层分层。临界载荷对应于分层或其他类型的粘合剂开始损伤时的载荷,并作为量化表面层或材料的附着力或耐刮擦性的方法。纳米划痕测试仪纳米压痕测试仪1划痕测试保护玻璃耐划性能测试智能手机显示屏的保护玻璃通常由Gorilla玻璃制成,它是一种铝硅酸盐玻璃,并通过浸泡在高温钾盐离子交换槽中进行增韧,防止裂纹扩展和阻止缺陷生成。Gorilla玻璃具有极高的硬度和耐刮擦性,重量轻,光学性能优异。然而,即使如此坚硬且耐划伤的玻璃也可能被划伤,因此有一项正在进行的研究旨在通过表面沉积保护陶瓷层进一步提高其耐划伤性。由于陶瓷层非常薄(~100nm),最适合表征耐划伤性的仪器是安东帕尔纳米划痕测试仪(NST3)。下图显示了在100 nm氧化铝(Al2O3)保护层的Gorilla玻璃上,使用半径为2μm的球形针尖进行高达50 mN的渐进加载试验的结果。氧化铝沉积层的典型破坏形态如图1所示。图1: 在光学显微镜下观察到的划痕后典型失效形貌图2通过临界载荷值(Lc1)下划痕深度(Pd)、残余深度(Rd)和摩擦系数(CoF)的突然变化,对失效进行了显微镜观察,得到关于氧化铝层抗划伤性的重要信息:临界载荷(Lc)越高,抗划伤性越好。图2:划痕实验过程中记录的信号智能手机屏幕上的浅划痕的自修复(恢复)智能手机显示屏上的大多数划痕都很深,肉眼可见(图3)。如果用户希望再次获得平滑的显示,通常必须更换前面板。为了验证清除过程是否有效,并确定可以修复的最大划痕深度,我们在恒定载荷下创建了几个系列的划痕。每一系列划痕都是在不同的载荷下进行的,以获得不同的划痕深度,并且可以评估恢复过程的可靠性。由于必须产生非常浅的划痕,NST3用于创建划痕。图3: 智能手机屏幕上的划痕除了产生可控划痕外,由于扫描后功能,纳米划痕测试仪 (NST3)还可以用作轮廓仪。测量受损智能手机屏幕的表面轮廓,从而评估已存在的划痕深度。测量设置的典型示例如图4所示。在划痕轮廓采集结束时,可以从划痕软件 导出数据,并直接由合适的分析软件(如TalyMap Gold)处 理,以确定预先存在的划痕深度(图5)。根据结果,制造商可以决定是否可以翻新智能手机屏幕。图 4: 使用NST3测量智能手机屏幕的表面轮廓图5: TalyMap软件分析预先存在的划痕的表面轮廓,以确定划痕深度(0.26μm)显示屏塑料/金属外壳的耐刮擦性位于智能手机显示屏旁边的显示屏框架上的油漆容易被划伤,尤其是边缘(图6)。因此,制造商希望提高显示屏框架上油漆的耐刮擦性和附着力。图6: 智能手机外壳上的磨损在这个案例研究中,比较手机外壳上两种不同薄膜的耐刮擦性能和附着力。薄膜的厚度约为30um,对此类薄膜进行划痕测试的最合适的仪器是Rvetest(RST3)或Micro CombiTester(MCT3),他们施加载荷最高达200N(RST3)30N(MCT3),最大划痕深度1mm,使用半径为200um的球形压头和渐进力载荷模式进行划痕1试验,划痕的全景成像如图7所示。图7:两种油漆划痕全景成像涂层1号和2号样品进行比较,2号的分层发生在较低的载荷且损坏也比较严重,2号的耐刮擦性能也不如1。因此,1应能抵抗较长时间的刮擦,其使用应优先于抗刮擦性较差的2。2纳米压痕测试玻璃体上有机薄膜的硬度和弹性模量智能手机显示屏的一个重要组成部分是有机薄膜,有机薄膜已经在OLED显示器中得到广泛应用。它们代表了智能手机显示屏市场的很大一部分,而且在灵活性方面具有的巨大优势,可以开发可折叠手机。有机薄膜的硬度和弹性模量等力学性能非常重要,因为它们表明了薄膜的质量,可以用来预测耐久性。有机电致发光(OLED)层的厚度在100纳米到500纳米之间,其力学性能的测量需要非常灵敏的仪器。安东帕尔超纳米压痕测试仪(UNHT3)具有合适的载荷和位移分辨率,可以可靠地测试这样的薄膜。图8显示了沉积在玻璃基板上的七种OLED薄膜的典型测量结果,每层的厚度约为100nm,最大压入深度控制在10nm。图8: 七种OLED薄膜典型载荷-位移曲线在每个样品上进行了五次最大载荷为300μN的压痕实验, 压痕载荷-位移曲线获得的每个样品的硬度和弹性模量 (图9)所示:弹性模量在33 GPa到55 GPa之间变化,硬度在280 MPa到400 MPa之间变化,标准偏差约为5%, 这证实了各层的均匀性良好,并允许安全区分各。A、B 和D层的硬度最高,C和F层的硬度最低。结果表明,UNHT3 可以用于非常薄的层的机械性能的可靠表征,从而有助于开发新的OLED层。图9: 七个OLED薄膜的硬度和弹性模量光学透明粘合剂(OCA)的机械性能光学透明粘合剂(OCA)是一种薄的粘合薄膜。例如:在智能手机行业中用于将显示器的不同组件之间连接。不仅这些薄膜的粘合性能很重要,而且它们的力学性能也很重要,因为它们决定了OCA的使用方式。安东帕尔生物压痕测试仪已用于测量此类粘合剂。生物压痕仪可以测量粘附力,还可以获得薄膜的刚度(弹性模量)和其与时间相关的特性(蠕变)。保证薄膜牢固地粘附着在基体上,以避免薄膜弯曲,这一点至关重要。在这个案例研究中,我们对三种不同的胶进行了表征:一种柔软的(a),弹性模量(E)约为0.35 MPa,两种较硬的(B,C),弹性模量约为208 MPa和约80 MPa,其中最大压入深度均控制在薄膜厚度的15%左右。图10:生物压痕仪用于测量附着在玻片上的OCA薄膜这些实验使用了半径为500μm的球形针尖,对于较薄的薄膜,建议使用半径较小的针尖,以避免基底的影响。最大压入载荷为0.5mN,最大压入深度在1μm和16μm之间变化,最大载荷下的保持时间为30秒。图11显示三种OCA薄膜的三种压痕曲线的比较,在针尖接近样品表面时,记录了粘附力。尽管在每个样品的不同区域进行了测量,但测量结果显示出良好的重复性。这表明,尽管粘合性能取决于两个接触部件的表面状态,但由于一个样品上的粘合力和所有压痕曲线非常相似,因此达到了稳定状态。图11:三种不同弹性模量OCA薄膜(A、B、C)的压痕曲线对比。4纳米压痕测试划痕测试和纳米压痕测试是智能手机显示屏的重要测试方 法,因为它们可以模拟现实生活中的情况,如冲击或硬物划伤。划痕测试适用于研究保护智能手机显示屏的覆盖玻璃的耐划痕性。该方法也有助于表征薄膜显示框上的附着力,从而选择附着力最佳的粘合剂。最后,该技术还可用于测量屏幕上预先存在的划痕的最大深度,评估其是否可以翻新。纳米压痕测试用于测量沉积在显示器玻璃上的功能薄膜的硬度和弹性模量。力学性能反映了新型显示器开发过程中 薄膜的质量。此外,纳米压痕法允许测定用于安装智能手机屏幕的光学透明粘合剂(OCA)薄膜的粘弹性和力学性。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 2013 全国表面分析科学会议主题报告
    仪器信息网讯 2013年8月20-21日,&ldquo 2013 全国表面分析科学与技术应用学术会议暨表面分析国家标准宣贯及X 射线光电子能谱(XPS)高端研修班&rdquo 在北京举行。   X射线光电子能谱仪(XPS)与俄歇电子能谱(AES)是重要的表面分析技术手段。XPS在分析材料的表面及界面微观电子结构上早已体现出了强大的作用,它可用于材料表面的元素定性分析、半定量分析、化学状态分析,微区分析以及深度剖析(1-2nm)等。俄歇电子能谱(AES)主要检测由表面激发出来的俄歇电子来获取表面信息,它不仅能定性和定量地分析物质表界面的元素组成,而且可以分析某一元素沿着深度方向的含量变化。   此外,还有二次离子质谱,辉光放电光谱、扫描探针显微镜以及全反射X射线荧光光谱等表面分析技术。 会议现场   与会专家介绍了这些分析技术在电子器件、半导体、高分子材料、纳米材料、催化剂、薄膜材料等领域的应用情况。其中以XPS方法为主。 王金淑 谢芳艳   在电子器件、半导体领域的应用,北京工业大学王金淑采用X射线光电子能谱法对添加不同含量的氧化镧掺杂钼粉的性能以及可用于电真空器件的镧钼阴极的表面元素状态进行了研究。中山大学谢芳艳利用XPS为主要研究手段,研究了半导体器件能级结构、电极功函数调制、界面电荷转移和扩散、修饰层作用与器件寿命等问题。 郝建薇 田云飞   在橡塑材料、塑料分析中的应用,北京理工大学郝建薇利用XPS以45° 掠角表征了硅橡胶/乙烯-乙烯乙酸(MVPQ/EVA28,VA含量28%)共混材料耐油耐热测试前后样品表面C、O、Si元素浓度的变化 采用变角XPS分别以10° 、45° 及80° 掠角表征了以上共混材料耐热老化前后样品表面元素浓度随深度的变化。四川大学田云飞采用X射线光电子能谱对微等离子体处理后的工程塑料聚苯硫醚材料表面进行分析,并与Ar离子刻蚀后的材料表面进行了对比。 殷志强 吴正龙   X射线光电子能谱(XPS)在分析薄膜化学组分及其分布中有着重要的作用。清华大学殷志强介绍了表面分析技术在玻璃真空管太阳集热器和能效薄膜研究中的应用。北京师范大学吴正龙介绍了超薄氧化硅薄膜包覆纳米铜的SERS 基体的初步研究。 刘义为 陆雷   广东东莞新科技术研究开发有限公司刘义为利用AES表征了微区超薄类金刚石薄膜的性质和厚度测量、SP2含量、界面分析等。中国工程物理研究院陆雷利用SEM、AFM、AES和XPS对铍薄膜的表面形貌、O含量、Be薄膜同Cu基片间的扩散现象进行了研究。 严楷 王江涌   清华大学严楷运用俄歇电子能谱、原子力显微镜等分析方法,研究经过低地球轨道环境模拟装置对Au/Cu/Si薄膜样品进行紫外辐照处理的Au/Cu复膜表面和界面结构变化,追踪表面形态和界面层产物的分布,分析原子扩散过程。汕头大学王江涌介绍了溅射深度剖析的定量分析及其应用的最新研究进展。 高飞 叶迎春   原位分析也是XPS技术的一个研究热点。南京大学高飞认为准原位XPS(Ex-situ)分析在一定程度上可以解决常规XPS分析中的&ldquo Pressure Gap&rdquo 的问题,结合相关表征手段,可以成为探究催化剂在反应条件下反应过程的有利工具。   中国石化上海石油化工研究院叶迎春利用近常压原位XPS研究了介孔氧化铈和棒状氧化铈负载贵金属在水煤气转化反应中氧化铈产生氧空位的能力。并通过原位XPS研究结合WGS催化反应数据,认识了Cu-Fe3O4-Al2O3催化剂在不同预处理条件下发生的不同化学过程。 钟发春 程斌   还有中国工程物理研究院钟发春利用XPS研究了PBX炸药、固体推进剂及锆粉点火剂的表面元素组成和结构特性 利用XPS的线扫描功能研究了不同老化时间的固体推进剂特征元素从推进剂-衬层的表面元素变化趋势 并利用XPS-MS联机技术可用于研究固体炸药材料在激光作用下的降解行为。北京化工大学程斌介绍了XPS在高分子材料鉴别、高分子共聚/共混物组成测定、高分子材料表面改性研究方面的应用。 邱丽美 徐鹏   中国石化石油化工科学研究院邱丽美利用XPS研究了稀土在分子筛笼内外的存在比例对催化性能的影响。国家纳米中心徐鹏介绍了分别将纤维状样品压片在金属In和导电胶带上进行测试,对XPS谱图的影响分析。 王海   XPS、AES、SIMS等表面分析技术因具有较强的基体效应而通常被认为是半定量的分析方法,很难对材料表面化学组成进行准确定量。因此,表面分析的量值溯源问题再国际上日益受到关注。中国计量科学研究院王海介绍说:&ldquo 我国的表面分析计量研究始于&lsquo 十一五&rsquo 期间,目前已参加了2项关键比对和3项研究性比对,都取得了不多不错的成绩。&rdquo 张增明 张毅   此外,中国科学技术大学张增明利用紫外可见分光光度计及光谱椭偏仪测量了薄膜样品在300-1000nm波长范围内的正入射时的透射谱,及68° 、78° 入射时的椭偏参数谱,并经过综合分析精确测定了不同薄膜的厚度及光学常数。薄膜厚度经过原子力显微镜测试及X射线反射等不同方法验证准确有效。   辉光放电光谱技术是基于惰性气体在低气压下放电的原理而发展起来的光谱分析技术。与其他表面分析技术如俄歇电子能谱(AES)、二次离子质谱(SIMS)相比,具有分析速度快,分析成本低等优势。宝钢集团张毅利用辉光放电光谱,通过光源条件实验,确定了最佳分析参数 选用多种基体标准样品,通过溅射率校正建立了标准工作曲线,定量分析钢铁材料表面纳米级薄膜或镀层中元素的含量及其元素分布状况。(撰稿:秦丽娟)   相关新闻:2013 全国表面分析科学与技术应用学术会议举行   X 射线光电子能谱(XPS)高端研修班在京举办   2013全国表面分析科学会议上的仪器厂商
  • 【精彩视频回放】聚焦新材料研究 多种表面分析技术各显其能——第三届表面分析技术应用论坛成功召开
    p   表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着我国新材料领域研究的深入,表面分析技术也日益发挥其重要的作用。当前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、二次离子质谱(SIMS)、扫描探针显微镜(SPM)、辉光放电光谱(GDS)、俄歇电子能谱(AES)等。 /p p   为了积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术在新材料研究中的进展,5月20日,仪器信息网联手国家大型科学仪器中心-北京电子能谱中心、中国分析测试协会高校分析测试分会举办“第三届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”网络主题研讨会,七位专家就相关的研究领域分享了高质量的报告。 /p p   此次应用研讨会内容立足表面分析技术在新材料研究中的应用,既有某一课题的科研进展综述,也有某一方向的研究成果分享、最新标准解读,以及相关仪器使用介绍等。组织方希望通过此次表面分析技术应用论坛的平台,让与会者深入交流,共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。本次会议由国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清主持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/85014051-a8d5-4da7-874c-4853820e8013.jpg" title=" 姚文清.jpg" alt=" 姚文清.jpg" / /p p style=" text-align: center " strong 国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/80a5fb64-a7ff-4e04-a2d4-f343cc70cb41.jpg" title=" 报告嘉宾.png" alt=" 报告嘉宾.png" / /p p   清华大学张强教授主要从事能源材料研究,尤其是在金属锂、锂硫电池和电催化方面开展了一系列的工作。本次报告中,他从能源存储与转化的新机遇讲起,针对工作金属锂界面上的SEI(界面层),以及如何获得稳定的SEI,如何诱导金属锂均匀沉积等多个话题给大家介绍了其所开展的研究工作。报告题目: strong 《The Working Surface of Li Metal Anode in Safe Batteries》。 /strong /p p   计量、标准、合格评定(检测和认证认可)对人类社会进步和工业发展发挥着不可或缺的基础性作用,2006年联合国与国际标准化组织(ISO)正式明确“计量、标准化、合格评定”为国家质量基础(National Quality Infrastructure,简称 NQI)的三大构成要素。石墨烯由于其独特的性能使其成为代表性的新材料而受到各国政府的产业支持。中国计量科学研究院任玲玲研究员在简要回顾计量、标准的基础上,重点介绍针对急需有序规范发展的石墨烯粉体材料开展的NQI技术研究及成果实施。 strong 报告题目:《石墨烯粉体材料计量、标准及合格评定全链条实施》。 /strong /p p   X射线光电子能谱(XPS)是表面分析领域中的一种崭新的分析技术,通过测量固体表面约10个纳米层左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量或半定量及价态分析。XPS作为一种分析各种材料表面的重要工具,目前广泛应用于与材料相关的基础科学和应用科学领域,包括各种催化材料、纳米材料、高分子材料、薄膜材料、新型光电材料、金属以及半导体等表面性能研究。岛津宋玉婷博士介绍了XPS的技术特点及应用案例。 a href=" https://www.instrument.com.cn/webinar/Video/play/105159/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《X射线光电子能谱最新应用进展》 /strong /span /a /p p   以氮化镓和砷化镓为代表的III-V族化合物,都是直接带隙半导体材料,通过掺杂或能带设计可以调控光电等物理特性,在光电领域具有独特优势。表面分析技术常被用于研究半导体材料及器件性能,分析表面形貌、组分、化学态、结构及能带等信息。本次报告,中国科学院半导体研究所赵丽霞研究员介绍了几个利用表面分析技术在研究III-V半导体光电材料和器件的典型工作。 strong 报告题目:《表面分析技术在III-V族半导体光电材料器件中的应用》 /strong 。 /p p   扫描隧道显微镜是当前表面物理和化学研究的重要实验设备。扫描隧道显微镜的基本原理是基于量子力学的隧穿效应,隧穿电流与隧穿结的高度灵敏性使扫描隧道显微镜具有原子级的空间分辨能力。扫描隧道显微镜的主要功能包括表面形貌成像、表面电子态密度测量、及原子分子操纵。中科院物理研究所陆兴华研究员的报告通过几个典型应用来展示扫描隧道显微镜的这些基本功能,并对扫描隧道显微镜技术的未来发展方向作了简单的介绍。 a href=" https://www.instrument.com.cn/webinar/Video/play/105162" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 报告视频精彩回放:《扫描隧道显微镜技术》。 /span /strong /a /p p   飞行时间二次离子质谱(TOF-SIMS)能以极高的灵敏度(ppm~ppb)探测到包括H在内的所有元素及其化合物信息,被誉为是一种普适的分析技术。清华大学分析中心李展平博士的报告介绍了TOF-SIMS的基本原理、技术特点,以及它在环境等各种领域的应用。 a href=" https://www.instrument.com.cn/webinar/Video/play/105160" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《飞行时间二次离子质谱分析技术及其应用》。 /strong /span /a /p p   三氧化钼是一种用途广泛的材料,在催化、抗菌等领域内有独特的应用。MoO sub 3 /sub @SiO sub 2 /sub 是常见三氧化钼的使用形态,几十年来已经用不少方法进行过很多研究。北京化工大学程斌分享了其实验室对MoO3@SiO2的最近研究方法与结果。 a href=" https://www.instrument.com.cn/webinar/Video/play/105161/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《氧化钼在MoO3@SiO2上分布的研究》 /strong /span /a /p p   虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者没机会参与会议直播的网友,可以点击 strong 报告视频精彩回放 /strong 进行学习与分享。 /p
  • 应用 | 一种具有防冰性能的超疏水表面的制备与研究
    研究背景凛冬将至,寒潮来袭,结冰是造成许多安全事故的重要原因。飞机防冰/除冰技术一直是航空工业的一个重要研究领域。飞机积冰主要发生在平尾、垂尾和发动机真空罩等外露表面,已成为威胁飞行安全和稳定性的严重问题。研究表明,飞机表面结冰主要是由于大量过冷水滴聚集和冻结造成的,特别是当飞机穿越过冷云层时。本文报告了通过光刻结合化学刻蚀方法制备了稳定的纳米片-微坑结构的超疏水表面,表面的防冰性和超疏水性均优于单一结构表面,且超疏水等级结构表面具有较高的非润湿性,接触角高达173°,滚动角低至4.5°,具有优异的超疏水性能和抗结冰性能,为航空工业的应用提供了一个理想的平台。实验仪器润湿性实验,使用KRÜ SS DSA100接触角分析仪。在样品表面滴落4 μl液滴测试接触角和滚动角。重复3次,计算平均值来保证接触角的准确性。为了进一步检验低温润湿性,在-18℃条件下放置样品和去离子水,直到去离子水变成过冷。然后,我们尝试通过在不同样品的表面喷洒过冷的水滴来模拟冻雨的条件。使用高速的相机拍摄,快速比较这些样品的不同润湿性。KRÜ SS DSA100接触角分析仪TC40温控腔箱:温控范围-30℃到160°C结论与讨论表面形貌在本节中,我们通过三种不同的处理方法构建了三个超疏水结构表面,目的是分析和研究表面形貌、润湿性和抗冰性能之间的相关性。此外,我们还制备了一个光滑的疏水铝表面作为标准对照,并与三种超疏水表面的抗冰性能进行了比较。三种结构形态的FESEM图像如图1所示。四种类型的表面处理如下:使用FAS-17改性的铝衬底表面(样品1),带有微坑结构FAS-17改性的铝衬底表面(样品2),带有纳米片FAS-17改性的铝衬底表面(样品3),具有分层结构(微坑规则阵列和纳米片)FAS-17改性的铝衬底表面(样品4)。 图1. 通过三种不同的处理获得的分层形态的扫描电镜图像:(a)微坑结构表面(样品2);(b)纳米片结构表面(样品3);(c)微/纳米分层结构表面(样品4)。常温和低温下的润湿性测试如图2所示,通过比较相同样品FAS-17修饰前后的接触角,改性后样品疏水性大幅提高。在光滑的衬底表面(样品1),通过降低表面自由能,液滴接触角可以增加到大约120°。这也证明了通过引入规则排列的CF3基团可以建立超疏水表面,此时表面能最低,为6.7 mJ/m2。样品3和样品4具有良好的超疏水性,使得水滴很容易从这些表面滚落,这可以用Cassie-Baxter模型来详细解释,说明表面的微观结构在提高超疏水性方面起着关键作用。超疏水纳米分层结构表面(样品4)具有较高的非润湿性,接触角高达约173°,滚动角仅仅为4.5°。与其他单结构表面相比,纳米片-微坑分层结构表面的超疏水性优于任何单结构表面,微尺度和纳米尺度结构的结合明显地捕获了更多的空气,导致在液滴下存在一个由无数空气袋构成的密封空气层。 图2. FAS-17改性前后4种表面结果的接触角和滚动角考虑到飞机的实际使用条件,将过冷水滴喷洒在低温下的测试超疏水性和防冰性能,结果表明,样品3和样品4可以防止过冷水滴的积累,表现出良好的超疏水性。相反,喷在样品1和样品2上的过冷水滴则表现出一定程度的亲水性。显然,研究结果证明,具有微/纳米结构的超疏水表面有效地排斥了被喷洒的冷冻水。结论综上所述,我们结合光刻工艺和化学蚀刻方法,巧妙地设计和制备了一种具有抗冰性能的超疏水分层结构表面。超疏水表面比其他单结构表面具有更强的非润湿性,并且具有优异的防冰性能,防止了过冷水滴的积累。因此,具有微/纳米结构的超疏水表面在航空工业中更具有作为飞机防冰材料的潜力。本文有删减,详细请参考原文。G.Wang, Y. Shen, J. Tao, X. Luo, L. Zhang and Y. Xia, Fabrication of a superhydrophobic surface with a hierarchical nanoflake–micropit structure and its anti-icing properties, RSC Adv., 2017, 7, 9981DOI: 10.1039/C6RA28298A
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 第二轮通知|第二届表面分析技术与应用主题网络研讨会
    表面分析技术是一种统称,指利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术。表面分析技术广泛应用于材料表征等领域,是目前最前沿的分析技术之一。仪器信息网将于2023年11月14-15日举办第二届表面分析技术与应用主题网络研讨会,以分享表面分析技术及应用研究的新进展,推动表面分析技术与应用领域的发展。旨在利用互联网技术为广大科研者及相关专业人员提供一个方便、高效的免费学习平台,让大家了解最新的表面分析技术及应用研究动态,与同行们交流心得,共同进步。此次表面分析技术与应用主题网络研讨会共设置了4个主题会场,分别是:光电子能谱(XPS/AES/UPS)技术与应用、扫描探针显微镜(AFM/STM)技术与应用、电子探针/原子探针技术与应用、二次离子质谱(SIMS)技术与应用等其他表面分析技术与应用。诚邀业界人士报名参会。一、主办单位仪器信息网二、会议时间2023年11月14日-15日三、会议形式线上直播,直播平台:仪器信息网3i讲堂四、会议日程1. 专场安排第二届表面分析技术与应用主题网络研讨会时间专场名称11月14日上午光电子能谱(XPS/AES/UPS)技术与应用专场11月14日下午扫描探针显微镜(AFM/STM)技术与应用专场11月15日上午电子探针/原子探针技术与应用专场11月15日下午二次离子质谱、拉曼光谱及其他表面分析技术与应用专场2. 详细日程(以会议官网最终日程为准)时间报告题目演讲嘉宾专场1:光电子能谱(XPS/AES/UPS)技术与应用专场(11月14日上午)09:00待定姚文清清华大学/国家电子能谱中心 研究员/副主任09:30待定岛津企业管理(中国)有限公司/岛津(香港)有限公司10:00XPS在材料研究中的应用程斌北京化工大学 研究员/副主任10:30XPS在纳米薄膜厚度测量中的应用刘芬中国科学院化学研究所 副研究员11:00同步辐射光电子能谱技术及其应用朱俊发中国科学技术大学 教授专场2:扫描探针显微镜(AFM/STM)技术与应用专场(11月14日下午)14:00纳米测量技术国际标准化工作的意义探讨黄文浩中国科学技术大学 教授14:30基于扫描探针的原子制造技术的探索陆兴华中国科学院物理研究所 研究员15:00多频静电力显微镜电学性质动态测量技术钱建强北京航空航天大学 教授15:30日立AFM在表面分析方面的应用刘金荣日立科学仪器(北京)有限公司 高级工程师16:00扫描探针显微镜在神经形态器件中的应用研究惠飞郑州大学材料科学与工程学院 研究员16:30原子力显微镜在高分子表征中的应用张彬郑州大学 教授专场3:电子探针/原子探针技术与应用专场(11月15日上午)09:00电子探针分析在关键金属矿产研究中的应用陈振宇中国地质科学院矿产资源研究所 研究室主任/研究员09:30待定沙刚南京理工大学 教授10:00原子探针层析技术原理及其在镍基合金中的应用李慧上海大学 副研究员10:30电子探针在材料科学中的应用刘树帅山东大学材料学院材料表征与分析中心 副主任专场4:二次离子质谱、拉曼光谱及其他表面分析技术与应用专场(11月15日下午)14:00二次离子质谱(SIMS)质量分辨的测量李展平清华大学分析中心 高级工程师14:30拉曼光谱分析技术和扫描电镜分析技术在古代陶瓷器科学研究中的应用刘松中国科学院上海光学精密机械研究所 副研究员五、参会方式1. 本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/icsa2023/#canhuijiabin 2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系1. 会议内容张编辑,15683038170,zhangxir@instrument.com.cn2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn 仪器信息网2023年11月2日附:往届会议回顾1. 首届表面分析技术与应用主题网络研讨会https://www.instrument.com.cn/webinar/meetings/icsa2022/
  • 扫描电镜的衬度信息与表面形貌像——安徽大学林中清33载经验谈(15)
    【作者按】衬度指的是图像上所存在的明、暗差异,正是存在这种差异才使得我们能看到图像。同是明、暗差异,衬度与对比度的不同在于:对比度是指图像上最亮处和最暗处的差异,是以图像整体为考量对象;衬度是指图像上每一个局部的亮、暗差异,它是以图像上的局部细节为考量对象。形貌衬度、二次电子衬度和边缘效应、电位衬度、Z衬度、晶粒取向衬度是展现扫描电镜表面形貌特征的几个主要衬度信息。形貌衬度是形貌像形成的基础,其余的衬度信息叠加在这个基础之上做为形貌像的重要组成部分,充实及完善形貌像所展现的表面形貌信息。依据辩证的观点,这些衬度信息各有其适用领域,相互之间不可能被完全替代。即便是形貌像的基础“形貌衬度”也不具有完全代替其余任何一个衬度的能力。对任何衬度呈现的缺失,都会使得表面形貌像存在程度不同的缺陷,使仪器分析能力受到一定程度的影响,这些都将在下面的探讨中通过实例予以充分的展示。在前面经验谈中有大量的实例及篇幅对以上衬度予以介绍。本文是对过去零散的介绍加以归纳总结,形成体系。下面将从形貌衬度开始,通过实例,依次介绍二次电子衬度、边缘效应、电位衬度、Z衬度以及晶粒取向衬度的成因、影响因素、所展现的样品信息以及应用实例和探讨。一、形貌衬度形貌衬度:呈现样品表面形貌空间位置差异的衬度信息。影响因素:探头接收溢出样品的电子信息的角度。形成缘由:要充分表述表面形貌三维空间的位置信息,形成图像的衬度应当包含两个基本要素:方向和大小。物体图像的空间形态取决于人眼观察物体的角度:侧向观察是立方体,顶部观察为正方形。这是由于该角度包含着形成图像空间形态的两个基本要素:方向和大小。扫描电镜测试时形貌衬度的形成也是同样道理。形貌衬度的形成与探头接收溢出样品的电子信息(二次电子、背散射电子)的角度密切相关。该接收角度发生改变,形貌衬度也将发生变化,形貌像就会跟着出现变动。接收角对形貌像的影响并不单调,而是存在一个最佳范围。不同厂家的不同类型扫描电镜,由于探头位置设计上的差异,各自都存在一个最佳工作距离以形成最佳的信息接收角,呈现出各自所能表达的样品表面形貌的最大空间形态。样品的倾斜会对接收角产生较大的影响,因此倾转样品可以发现表面形貌像的空间信息也会发生改变。任何测试条件的改变都不会带来唯一且单调的结果,而是遵循辨证法的规律,即对立统一、否定之否定和量变到质变。选择测试条件时,要针对样品特性及最终目的做到取舍有度。形貌衬度是形成形貌像的基础,但并不是形貌像的全部。形貌像中许多细小的形貌细节,会受到探头所接收的电子信息(SE和BSE)溢出区大小的影响。电子信息和电子束的能量越大对这些细节的影响也越大,当量变达到一定程度就会影响某些细节的分辨,从而对表面形貌像产生影响。要形成充足的形貌衬度,又该如何选择电子信息接收角的形成方式?依据样品特性及表面形貌特征可分为:A)低倍,低于10万倍,呈现的形貌细节大于20纳米。此时,背散射电子很难完全掩盖这些细节信息,随着所需呈现的样品表面细节的增大,背散射电子对图像清晰度的影响也会减小,图像也将越渐清晰。样品仓内的探头位于样品侧上方,与样品和电子束共同形成较大的电子信息接收角。由该接收角形成的形貌衬度能充分呈现20纳米以上的样品表面形貌细节。随着工作距离、样品台倾斜和加速电压的改变,该接收角的变化幅度较大,图像所呈现的形貌变化也较为明显。镜筒内探头位于样品顶部,与样品和电子束在一条直线上。其对信息的接收角度主要形成于电子信息的溢出角,该角度较小,形成的形貌衬度也较小,不利于充分展现大于20纳米的形貌细节。工作距离、样品台倾斜以及加速电压的改变对接收角的影响较小,图像形态变化不明显。基于以上原因:低于10万倍,观察的样品表面细节大于20纳米。以样品仓探头为主获取的形貌像,空间形态更优异。B)高倍,大于20万倍,观察的形貌细节小于20纳米。表面形貌的高低差异小,形貌衬度也小,电子信息的溢出角度即可满足衬度的形成需求。此时,低角度信息的接收效果将是主导因素,低角度信息越多,图像立体感越强烈。背散射电子因能量较高对这些细节影响较大,必须加以排除。为充分呈现这类形貌信息,应采用镜筒内探头从样品顶部接收充足的二次电子,尽量排除溢出面积较大的背散射电子信息溢出区对样品细节的影响。此时形成形貌像的关键是采用小工作距离(小于2mm),以增加镜筒内探头接收到的低角度二次电子。实例展示及探讨:A )大于20纳米的细节,以样品仓探头为主(大工作距离)形成的形貌像,立体感强、细节更优异,形貌假象较少。B)样品仓探头获取的表面形貌像对工作距离的变化、样品倾斜、加速电压的改变都十分敏感,表面形貌像的形态随之改变也较为明显。镜筒探头位于样品顶端,改变以上条件对接收角的影响不大,形貌像的空间形态变化也不明显。 B1)改变工作距离对表面形貌像的影响(钴、铁、钨合金)B2)样品倾斜对形貌像立体感的影响B3)改变加速电压对形貌像立体感的影响(合金钢)C)小于10纳米的细节,形貌衬度要求较小,溢出样品的低角度电子信息就满足这类表面细节的呈现需求。此时如何避免样品中电子信息的扩散对形貌细节产生影响是首要选择,充分选用低能量的二次电子就显得极为关键。镜筒内探头因位置和结构的特别设计,使得它接收的样品信息以二次电子为主,是展现这类几纳米细节的首选。工作距离越小,镜筒内探头接收到更为丰富的多种角度的二次电子信息,对10纳米以下细节的分辨力最强。D)处于不同位置的镜筒内探头获取的形貌衬度也不相同。位于侧向的镜筒内(U)探头相较于位于顶部的镜筒内探头(T),可获取更多的低角度信息,形貌像的立体感更强。结论:形貌衬度是形成形貌像的基础,探头接收形貌信息的角度是形成形貌衬度的关键因素。不同大小的形貌细节要求的形貌衬度不同,该接收角的形成方式也不同。低倍时,形貌像的空间跨度大,要求的形貌衬度也大,需探头、样品和电子束之间形成一定的角度才能获得充分的形貌像。该角度有一个最佳值,探头位置不同,这个值也不同,形成的形貌像空间感也存在差异。高倍时,形貌空间跨度小,低角度电子信息即可满足形貌衬度的形成需求。此时避免电子信息的扩散对形貌像的影响就极为关键,充分获取低角度二次电子将成为测试时的首选。形貌衬度虽是形成表面形貌像的基础,但并不是唯一因素,要获取充足的形貌像,其他衬度的影响也不可忽视。下面将对形成形貌像的其他衬度加以探讨。二、二次电子衬度和边缘效应一直以来的主流观点都认为:二次电子衬度和边缘效应是形成扫描电镜表面形貌像的主导因素。各电镜厂家都把如何充分获取样品的二次电子做为形成高分辨形貌像的首选,对探头位置的设计,也以充分获取二次电子为目的来展开。这一理论体系的形成依据是:1. 二次电子的溢出量与样品表面斜率相对应,在边缘处的溢出最多。而表面形貌像可看成是不同斜率的平面所组成,故二次电子衬度和边缘效应含有充分的样品表面形貌信息。2. 二次电子能量低,在样品中扩散小,对样品表面那些极细小的细节影响小,分辨能力强,图像清晰度高。 但实际情况却往往于此相反。如下图:右图中二次电子衬度及边缘效应充足,但形貌信息相较左图却十分的贫乏,并在形貌像上带有极为明显的假象。为什么会出现这种与目前主流观点完全不一样的结果?原因何在?这还是要从扫描电镜形貌像的形成因素说起。表面形貌像呈现的是表面形貌高低起伏的三维信息,图像中必须含有两个重要的参数:方向与大小。表述一个斜面,需提供与该斜面相关的两个重要参数:斜率大小和斜面指向,这是向量的概念。二次电子衬度对斜率大小的呈现极为明显,亮、暗差异大;却对斜面指向的呈现极差。对形貌像来说,斜面指向形成的衬度差异对形成形貌像往往更重要。因此由二次电子衬度和边缘效应形成的图像只具二维特性,无法呈现形貌像的三维特征,失去形貌细节也在所难免。探头对样品信息的接收角所形成的形貌衬度能充分表达形貌像的指向差异。因此下探头即便接收的背散射电子较多,对斜率大小的表现较差,但呈现的形貌形态却更充足。任何信息都有其适用范围,在适用范围内总扮演着关键角色。二次电子衬度和边缘效应虽然对斜面指向不敏感,但对斜率大小却极度敏感,该特性能强化平面和斜面区域整体的衬度差异,有利于对区域整体进行区分。区域在形貌像中占比越小,被区分的优势就越大。需要注意:此时区域之间的衬度表述,并非该区域成分和密度的不同,而是各区域中斜面数量和斜率大小的差异。观察区域在图像中面积占比越低,区域中的形貌细节越难分辨,采用形貌衬度对区域进行区分也越难。此时,二次电子衬度和边缘效应对区域进行区分的作用也就越大,如下例:以上是钢铁表面的缺陷,在500倍时采用下探头是无法区分A、B两个区域有哪些不同,很容易被误认为是两块完全相同的平面。但是采用上探头(二次电子衬度优异)发现这两个区域存在非常明显的不同,放大到2万倍,可见区域A和B在形态上的差别巨大,A区域比B区域的起伏大。二次电子衬度和边缘效应的强弱可通过探头和工作距离的选择加以调整。对这一衬度的合理利用,可拓展对样品形貌特征进行分析的手段,获得更充分的形貌信息。此外,充分的运用二次电子,还有利于利用“电位衬度”来扩展对样品表面形貌信息进行分析的方法。三、电位衬度电位衬度:样品表面由于存在少量荷电场,对样品某些电子信息的溢出量产生影响而形成的衬度。影响因素:由于荷电场较弱,受影响的主要是二次电子,背散射电子的溢出量受影响较小。实用方向:样品表面存在有机物污染、局部氧化或晶体结构的改变。这些变化采用Z衬度很难观察到,而形成荷电场强度及位置的些微差异所产生的电位衬度却较明显。该特性在进行样品失效分析时对找出性能改变的区域,作用极其明显。实例展示及分析:A)智能玻璃表面的有机物污染表面镀膜的智能玻璃,通电后总是有明显的光晕出现。该部位用扫描电镜进行微观检测。结果如下:镜筒内(上)探头,SE为主,Z衬度较差。相较于样品仓(下)探头,BSE为主,出现以上类似Z衬度所形成的光斑图案的几率和强度要低,但结果却完全与常规认识相背离。原因何在?从探头的改变对结果影响判断,该图案不是Z衬度所形成,否则下探头图案将更为明显。图案形状如同液体滴在块体上所形成,怀疑为有机液滴落在薄膜表面,造成该处漏电能力减弱,形成局部的弱荷电场,影响二次电子的溢出而酿成电位衬度。背散射电子未受到荷电场的影响,薄薄的液滴层形成的Z衬度又小,故下探头无法呈现反映液滴污染的任何电子信息。能谱分析该处的碳含量略高一些。客户清洗设备,排除任何有机污染的因素,该现象消失。B)铁、钴、镍合金框架表面的氧化斑采用能谱分析颗粒物部位,多出硅和氧的成分信息,说明这里可能存在夹杂物,但含量极少用Z衬度很难区别。而硅、氧造成了其存在区域的漏电能力下降,使得该处的电位衬度极为明显。由此我们可轻松找到材料的缺陷点。通过以上实例可见,材料的缺陷,往往会由于工艺问题使某些部位局部被氧化或污染。这类缺陷采用Z衬度往往很难观察到,而采用电位衬度就会很容易找到。只有在大工作距离下,才可轻松切换样品仓和镜筒探头以分别对某个区域进行观察,针对形貌像所表现出的电位衬度差异,往往很容易找到样品的失效点并分析原因。二次电子和背散射电子都有其善于呈现的衬度信息。二次电子在二次电子衬度、边缘效应和电位衬度的展现上优势明显,上面已经充分的探讨。背散射电子在Z衬度和晶粒取向衬度(电子通衬度ECCI)的表现上更加的优异,下面将分别加以介绍。四、Z衬度Z衬度:由样品各个组成相的平均原子序数(Z)及密度差异所形成的图像衬度。形成因素:相同条件下,SE和BSE的溢出量和散射角会随组成样品的原子序数及密度的不同而不同,造成探头对其的接收量出现差异而形成Z衬度。背散射电子在量的改变上较二次电子更强烈,因此形成的Z衬度更大,灰度差异更明晰。实例展示并探讨:A)高分辨扫描电镜的样品仓探头比镜筒内探头接收到的背散射电子更多,形成的图像中Z衬度更明显。B)样品仓、镜筒、背散射电子探头的Z衬度结果对比。合金钢,能谱图中1、2、3三个区域的色彩,绿色:铁;红色:钨;绿黄:铁、铬。拟合下探头图像所展现的灰度差。低加速电压下,三种探头所形成的Z衬度差异将减弱。五、晶粒取向衬度晶粒取向衬度:晶体材料的晶粒取向差异会造成探头获取的电子信息出现差别,形成的衬度。与EBSD表述的信息有一定的对应性,但对晶粒取向变化的敏感度要远低于EBSD。也称“电子通道衬度”(ECCI),但命名原因及依据不明。形成缘由:从晶体表面溢出的电子信息会随晶粒取向的差异而不同。表现为信息的溢出量及取向上出现差别,使处于固定位置的探头所接收到的电子信息在数量上出现区别,形成表述晶粒取向差别的衬度。背散射电子受晶粒取向不同而出现的衬度差 异较二次电子更为强烈,这与两种电子信息在Z衬度上的表现基本一致。实例展示及探讨:A)zeiss电镜采用三种探头模式观察钢的表面(倍率:×5K)B)日立Regulus8230样品仓和镜筒探头的各种组合结果六、结束语扫描电镜表面形貌像是由呈现表面各种形貌信息的形貌衬度、二次电子衬度及边缘效应、电位衬度、Z衬度及晶粒取向衬度共同形成。其中形貌衬度是形成形貌像的基础,其余衬度叠加在形貌衬度之上,形成完整的表面形貌像。形貌衬度:该衬度的缺失,形貌像将只具有二维特性。形成形貌衬度的关键在于探头接收样品信息的角度,而样品信息(SE\BSE)的能量会对形貌细节的分辨产生影响。背散射电子,因能量较高,在样品中扩散范围较大,对直径小于几十纳米的细节或10万倍以上高倍率图像的清晰度影响较大,对直径十纳米以下细节的辨析度影响极大。虽然二次电子能量较弱,但其对5纳米以下的样品细节或30万倍以上图像清晰度和辨析度还是有明显的影响。低密度样品,以上受影响的放大倍率阈值也会相应降低。探头对信息接收角度的形成方式应依据所需获取的样品信息的特性和样品本身特征来做出合理的选择。样品的表面形貌起伏大于20纳米,所需的形貌衬度较大,需要探头、样品和电子束之间形成一定夹角才能满足需求。背散射电子的扩散,不足以掩盖掉这些细节的展现,相对于形成充分的形貌衬度来说,处于次要地位。此时应选择大工作距离,充分利用样品仓探头对样品信息进行接收,再结合镜筒内探头接收的样品信息给予加持,才能充分展现样品的形貌特征。样品表面起伏越大,样品仓探头在形成形貌像中的占比也相应提高,才有利于充分获取样品的表面形貌信息,形成的表面形貌像也更为充盈。样品表面起伏小于20纳米,所需的形貌衬度较小,溢出样品表面的电子信息角度即能满足形成表面形貌像所需的形貌衬度。此时背散射电子对形貌细节影响将成为形成表面形貌像的主要障碍,必须加以排除。充分利用镜筒内探头,排除样品仓探头的影响将成为获取形貌像电子信息的唯一选择。此时,镜筒内探头能否充分获取低角度电子信息是形成形貌像的症结所在。在实际操作中,选择小工作距离及镜筒内探头的组合就极为关键。有些电镜厂家在物镜下部设置的低角度电子信息转换板,有助于镜筒内探头对低角度电子信息的接收,充分运用该转换板将使得表面形貌像的立体感更加充分,形貌信息更为充实。二次电子衬度与边缘效应:一直以来的主流观点都认为该衬度是形成表面形貌像的基础。但该衬度因缺失对斜面指向因素的呈现,故无法表现形貌像的空间位置信息。由其形成的形貌像对形貌斜面的斜率大小表现充分,而对斜面的指向却没有体现,故形貌像只具二维特性。该衬度容易与Z衬度相混淆而出现形貌假象,但也能够加强斜面区域的衬度,有利于低倍时对形貌不同但组成成分相近的区域进行区分,如多层膜的膜层分割等。电位衬度:该衬度是由样品表面形成的少量荷电场引起的电子信息溢出异常所形成。背散射电子能量较大,信息的溢出量不易受该荷电场影响,故不存在该衬度或存在的衬度值较小。利用不同探头在接收样品信息时,对电位衬度的呈现差异,可对样品中被污染、氧化或发生晶体结构改变而形成漏电能力出现变化的部位,进行区分及分析。这在样品的失效分析中意义重大。Z衬度:由样品组成相的平均原子序数及密度不同所形成的信息衬度。背散射电子从样品表面溢出的数量和角度受样品的组成成份和密度的影响较大,由其为主形成的表面形貌像中,Z衬度的差值更大,图像更锐利,边缘更明晰,但表面细节较差。以二次电子为主形成的形貌像,具有的Z衬度差值较小,图像锐利度不足但细节更丰富。晶粒取向衬度:晶体的晶粒取向差异所形成的信息衬度。主流的称谓是:电子通道衬度(ECCI),命名的原由不明。该衬度如同Z衬度,背散射电子对其的呈现更为明显。对各种衬度信息的充分认识,将有助于正确理解形貌像上各种形貌信息的形成缘由。是正确选择扫描电镜测试条件,获取充分且全面的表面形貌像的基础,必须加以重视。参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社作者简介:
  • 【赛纳斯】表面增强拉曼光谱技术是新精活现场检测的解决方案
    “策划药”,英文为“Designer Drug”,是指不法分子为逃避打击而对管制dupin进行化学结构修饰得到的dupin类似物,具有与管制dupin相似或更强的兴奋、致幻、麻醉等效果。目前,也将“策划药”称为新精神活性物质(New Psychoactive Substances,缩写为NPS)。新精神活性物质的概念在2013年的《世界dupin问题报告》中首次被提出,因大多数也在实验室合成,也称“实验室dupin”。由于它的毒理作用比传统dupin更强、难以管控、善于伪装,使得它已成为继传统dupin、合成dupin之后的第三代dupin。近年来,各种新型dupin层出不穷,国家主管单位先后将芬太尼、大麻素整类列管。各种新型dupin被伪装成奶茶、开心水以饮料形式,以及邮票dupin的形式出现。新型dupin的“娱乐性”的假象在很大程度上掩盖了其“毒”的本质,很多人认为危害性不大往往会在他人的诱惑或者自身好奇心的驱使下尝试新型dupin,这是使得新型dupin迅速蔓延的原因。赛纳斯手持式芬太尼785nm拉曼光谱仪(SHINS-P700T)基于拉曼光谱及表面增强拉曼光谱(SERS)技术的新精活快速检测方案,可现场快速检测多种新精神活性物质,如迷奸水、失忆水、听话水、神仙水、咔哇潮饮、芬太尼、大麻素等不同形态、不同伪装的新型dupin。针对新型dupin层出不穷,赛纳斯基于专属数据库及先进独特算法,可快速自建谱库、直接生成并导出检测报告、支持蓝牙、WI-FI、USB等数据传输和数据管理,协助各级缉毒禁毒部门有效打击犯罪。
  • 表面增强的拉曼光谱揭示阿尔茨海默氏症细节
    p   来自塔塔基础研究所(位于印度孟买)、跨学科科学塔塔基础研究所中心(位于印度海得拉巴)、多伦多大学(位于加拿多伦多)和印度科技大学(位于印度班加罗尔)的科学家们已经利用表面加强的 a title=" " href=" http://www.instrument.com.cn/zc/34.html" target=" _self" strong 拉曼光谱 /strong /a (SERS:Surface-enhanced Raman spectroscopy)在试图钻入细胞的过程中,捕捉到阿尔茨海默氏症分子的有毒形态。这项技术是基于利用脂肪涂层的纳米银粒子和表面增强剂而完成的。 /p p style=" TEXT-ALIGN: center" img title=" Alzheimers.jpg" src=" http://img1.17img.cn/17img/images/201509/noimg/4ed1f3e0-c0e4-4c6c-9235-4043a2c05c21.jpg" / p   脂肪薄膜涂层模仿活细胞的外膜,当淀粉& amp #946 淀粉样蛋白寡聚体试图攻击“细胞膜”时被分光镜探测到了。 /p p   淀粉样& amp #946 蛋白分子有一个螺旋形状的发夹结构的空间,该项研究主撰稿人Debanjan Bhowmik说,“我们以前也这么设想过,但是我们在发夹结构中发现一个螺旋结构是我们所没有预料到的,现在变成了一个& amp #946 发夹结构——和人们想象中的经典发夹结构大不相同。这也许造成淀粉& amp #946 分子束在细胞膜里形成有毒毛孔。 /p p   研究者之一Gilber Walker表示,当淀粉& amp #946 分子被脂肪层愚弄,并且被粘到细胞膜上时,内部的银使信号增强到可检测水平,然后充当灯塔的角色,揭示胜肽特性。 /p p & nbsp /p p /p /p
  • HORIBA用户动态 | 表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移
    撰文:李俊博研究背景一般情况下利用拉曼光谱技术可以非常方便的鉴定物质成分,获得结构信息。但是,一些化学物质直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,提高拉曼信号信噪比,从而检测出待检物质。表面增强共振拉曼(SERS)活性基底的快速发展促进了人们对SERS机理的探究,这使SERS的应用范围拓宽至更广的领域。大量的研究表明SERS的增强机理主要有两种:表面等离子体共振及电荷转移机理。对于过渡金属基底来说,其增强能力取决于自身的性质及材料的表面形态,电磁场与化学增强的共同作用使之产生增强的拉曼信号。然而,目前只有几种有机小分子在过渡金属上能够被选择性的增强,这限制了过渡金属的实际应用。基于以上背景,吉林大学超分子结构与材料国家重点实验室的赵冰教授等人制备了四种SERS活性基底(两种过渡金属和两种贵金属),并通过细胞色素c (Cyt c)在基底上SERS光谱的变化,讨论了Cyt c与这些活性基底间的电子转移路径与机理。本研究中, SERS光谱的采集采用了HORIBA LabRam系列拉曼光谱仪,所有的拉曼数据则通过LabSpec软件进行分析。下面让我们走进该项研究:﹀﹀﹀1为什么选择Cyt c 细胞色素c是一种水溶性的血红素蛋白质并常作为呼吸链中的电子载体。大部分Cyt c的SERS光谱的获得是通过电化学结合拉曼光谱的方法,从而研究氧化还原蛋白质在基础及应用科学领域的结构与反应动力学。基于Cyt c的电子转移的能力,Cyt c常用作新型的探针来探究SERS活性基底与吸附生物分子之间的电子转移。图1. 细胞色素c与SERS活性材料之间的电子转移示意图。2具体的研究过程作者通过紫外光谱表征发现过渡金属镍和钴纳米粒子可将氧化态的Cyt c还原,并且通过SERS光谱发现二者与还原剂连二硫酸钠的作用相同,二者作为良好的还原剂与Cyt c之间发生了电子转移,且通过谱峰的对比证实了在过渡金属的作用下,蛋白质仍保持着良好的二级结构。另一方面,对惰性金属Au和Ag纳米粒子也进行了相同的实验,通过紫外图的表征说明二者对氧化态和还原态的Cyt c均未产生价态上的影响,而SERS光谱则表明Ag纳米粒子能使还原态Cyt c氧化,并且谱峰相对强度的变化意味着Cyt c结构的改变。基于以上现象,作者对Cyt c与金属纳米粒子之间的电子转移机理进行了探究并给出合理解释。氧化态Cyt c与Ni NWs之间的转移方向是从Ni的费米能级至Cyt c的导带,此处由于Cyt c的电导性表现出半导体的行为,因此根据肖特基势垒和欧姆接触可知,金属镍的功函与Cyt c的电子亲和能值十分接近,促移则基于SERS的电子转移机理,实验所用的激发光能量恰能够激发Cyt c HOMO能级上的电子转移至Ag的费米能级。3研究的创新点本研究将氧化还原蛋白质的电子转移与SERS中的电荷转移机理相结合,为电荷转移理论提出了新的见解。并且,Cyt c与过渡金属之间直接的电子转移行为的发现将会拓宽过渡金属在氧化还原蛋白质光谱研究领域的应用。 此项研究工作得到了国家自然科学基金项目的资金支持。相关成果近期发表在杂志《Chemistry - A European Journal》上: Junbo Li, Weina Cheng, Xiaolei Wang, Haijing Zhang, Jin Jing, Wei Ji, Xiao Xia Han, Bing Zhao, “Electron Transfer of Cytochrome c on Surface-Enhanced Raman Scattering-Active Substrates: Material Dependence and Biocompatibility”. Chem. Eur. J. 2017, DOI: 10.1002/chem.201702307HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 专注微型光谱仪等超表面光学产品,「纳境科技」获数千万元Pre-A轮融资
    「纳境科技」成立于2020年,是一家专注于超表面光学器件设计与制造的科技企业。公司以超表面光学与半导体工艺相结合为基础,为光学行业提供轻、薄、高效的新一代光学元件。目前产品主要有超透镜和光谱仪两类,应用于机器人、智能手机、XR、自动驾驶、安防监控等领域。超表面光学能够将微观结构的精密设计与光学性质的精细调控结合在一起,操控光的传播,从而实现各种各样的光学功能。「纳境科技」CEO龚永兴介绍,以超透镜为例,随着消费电子的升级,对于产品的重量、厚度、平整度、效率、温漂等方面都提出更高的要求。超透镜就是基于超表面技术,利用微纳工艺和介质材料研发而成的透镜。它颠覆了传统光学器件中繁琐的透镜组,以微米级的厚度实现了原来几毫米甚至厘米级的透镜功能,并且集多个光学元件功能于一身,大幅减小成像系统的体积、重量,使结构简化、性能优化。“在光谱仪方面,行业最大的痛点就是形态大,产品贵,一台好的光谱仪要数万到数十万不等”,而「纳境科技」利用超表面阵列对光的调制作用研制了新形态的微型光谱仪。相较于传统光谱仪,超表面光谱仪具有体积极小、成本极低、台间差小等优势,可广泛应用于手机、环保、机器人传感等领域。微型光谱仪在智能手机上的应用,意味着消费者在日常生活中凭借手机可以实现简单的测量和检测,比如检验食品和药物的成分是否安全,检测皮肤状况,判断食物的成分组成以及环境污染等等。此外,「纳境科技」为大量客户提供设计方案,积累了大量的微结构设计数据,用于支持光学器件设计,现已具备大视场衍射器件设计技术、近红外消色差设计技术以及多波段成像光谱方案设计技术。「纳境科技」团队现有40余人,研发人员占比75%。核心创始团队来自浙江大学、麻省理工学院等科研院所,平均拥有10年以上微纳光子器件和光学芯片的设计、制备经验。创始人林宏焘是麻省理工学院博士后,主攻产品战略、设计与工艺集成。首席科学家马耀光在北大、加州大学、科罗拉多大学从事博士后研究。CEO龚永兴曾任上市公司副总经理,拥有丰富的运营管理和战略设计经验。目前,「纳境科技」超透镜产品主要包括成像、DOE、光束整形等产品,目标应用于机器人、手机、XR等领域。公司透露称,其超透镜相关产品已经拿到订单并处于样品测试阶段,预计二季度可以实现量产;微型光谱仪产品预计在明年可以实现量产。龚永兴表示,当前「纳境科技」有多款应用于不同场景的产品处于在研状态,未来超透镜所在波段也会从现在的近红外向可见光拓展。公司现已启动新一轮融资,资金计划用于产品研发与产能建设。
  • 岛津EPMA超轻元素分析之六: 氮化处理工件表面缺陷的原因是什么?
    导读 氮化处理工艺应用广泛,但有时由于热处理工艺不正确或操作不当,往往造成产品的各种表面缺陷,影响了产品使用寿命。某氮化处理的工件表面出现了内氧化开裂,使用岛津电子探针EPMA对其进行了分析。 科普小课堂 氮化处理的特点:氮化处理是一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。工件进行氮化热处理可显著提高其表面硬度、耐磨性、抗腐蚀性能、抗疲劳性能以及优秀的耐高温特性,而且氮化处理的温度低、工件变形小、适用材料种类多,在生产中有着大规模应用。 氮化处理的原理:传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入表层内,形成不同含氮量的氮化铁以及各种合金氮化物,如氮化铝、氮化铬等,这些氮化物具有很高的硬度、热稳定性和很高的弥散度,从而改变了表层的化学成分和微观组织,获得了优异的表面性能。 裂纹产生的原因是什么? 电子探针分析氮化后的内氧化裂纹:通过之前的系列,已经了解了超轻元素的测试难点以及岛津电子探针在轻元素和超轻元素分析方面的特点和优势。为了查明氮化工件开裂的问题,使用岛津电子探针EPMA-1720直接对失效件的横截面进行元素的分布表征。 岛津电子探针EPMA-1720 结果显示:裂纹内部主要富集元素C和O,工件表面存在脱碳现象,工件内部存在碳化物沿晶分布,氮化层有梯度地向内扩展趋势。氮化处理前工件是不允许出现脱碳现象的,如前期原材料或前序热处理环节中出现脱碳现象,需要机械加工处理掉。内部的沿晶碳化物会造成晶界结合力的减弱,容易造成沿晶开裂。 表1 表面微裂纹横截面元素C、O、N的分布特征 对另一侧的面分析显示,渗氮处理前,试样表面也存在脱碳层。脱碳层如未全部加工掉,将会致使工件表面脱碳层中含有较高浓度的氮,从而得到较厚的针状或骨状高氮相。具有这种组织形态的渗层,脆性及对裂纹的敏感性都很大。而且在表面也有尖锐的不平整凸起,这些都可能会造成后续工艺中的应力集中导致表面微裂纹。 同时也观察到某些合金元素存在些微的分布不均匀现象,不过这些轻微的成分变化,对性能的影响应该不大。 表2 另一侧面表面微裂纹横截面元素C、Mo、O的分布特征 试样腐蚀后进行金相分析。微观组织显示,近表层存在55~85μm的内部微裂纹,氮化后出现连续的白亮层,白亮氮化层并未在内部裂纹中扩散,所以微裂纹应该出现在表面氮化工艺后的环节。 结论 使用岛津电子探针EPMA-1720对某氮化工件表面微裂纹进行了分析,确认了表面的脱碳现象、基体的碳化物晶界分布、氮化过程中氮的近表面渗透扩展以及微裂纹中氧的扩散现象。工件原材料或工件在氮化前进行调质处理的淬火加热时,都要注意防止产生氧化脱碳;如果工件表面已产生了脱碳,则在调质后氮化前的切削和磨削加工中,须将其去除。同时在氮化工艺前需要加入并做好去应力热处理工艺,否则可能内应力过大造成氮化后的表面缺陷。
  • 回放视频已上线!第二届表面分析技术与应用主题网络研讨会圆满召开
    表面分析技术是一种统称,指利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术。表面分析技术广泛应用于材料表征等领域,是目前最前沿的分析技术之一。为分享表面分析技术及应用研究的新进展,推动表面分析技术与应用领域的发展,仪器信息网于2023年11月14-15日举办了“第二届表面分析技术与应用主题网络研讨会”,大会为期2天,共设置光电子能谱(XPS/AES/UPS)技术与应用、扫描探针显微镜(AFM/STM)技术与应用、电子探针/原子探针技术与应用、二次离子质谱(SIMS)技术与应用等其他表面分析技术与应用共4个专场,吸引了近千名行业相关人士线上参会并积极讨论。为响应广大参会者的需求,报告回放视频已全部上线,欢迎大家点击回看,温故知新。第二届表面分析技术与应用主题网络研讨会回放视频报告题目演讲嘉宾光电子能谱(XPS/AES/UPS)技术与应用专场/原位电子能谱技术的应用姚文清清华大学/国家电子能谱中心 研究员/副主任点击观看 XPS在材料研究中的应用程斌北京化工大学 研究员/副主任点击观看 XPS在纳米薄膜厚度测量中的应用刘芬中国科学院化学研究所 副研究员点击观看 同步辐射光电子能谱技术及其应用朱俊发中国科学技术大学 教授扫描探针显微镜(AFM/STM)技术与应用专场点击观看 纳米测量技术国际标准化工作的意义探讨黄文浩中国科学技术大学 教授点击观看 基于扫描探针的原子制造技术的探索陆兴华中国科学院物理研究所 研究员点击观看 多频静电力显微镜电学性质动态测量技术钱建强北京航空航天大学 教授/日立AFM在表面分析方面的应用刘金荣日立科学仪器(北京)有限公司 高级工程师点击观看 扫描探针显微镜在神经形态器件中的应用研究惠飞郑州大学材料科学与工程学院 研究员点击观看 原子力显微镜在高分子表征中的应用张彬郑州大学 教授电子探针/原子探针技术与应用专场点击观看 电子探针分析在关键金属矿产研究中的应用陈振宇中国地质科学院矿产资源研究所 研究室主任/研究员点击观看 三维原子探针分析技术与应用沙刚南京理工大学 教授点击观看 原子探针层析技术原理及其在镍基合金中的应用李慧上海大学 副研究员点击观看 电子探针在材料科学中的应用刘树帅山东大学材料学院材料表征与分析中心 副主任二次离子质谱、拉曼光谱及其他表面分析技术与应用专场/二次离子质谱(SIMS)质量分辨的测量李展平清华大学分析中心 高级工程师点击观看 拉曼光谱分析技术和扫描电镜分析技术在古代陶瓷器科学研究中的应用刘松中国科学院上海光学精密机械研究所 副研究员点击观看 动态二次离子质谱仪DSIMS在半导体材料检测中的应用高钟伟甬江实验室微谱(浙江)技术服务有限公司 技术工程师
  • 为消费电子龙头检测表面缺陷,玻尔智造获数千万Pre-A轮融资
    36氪获悉,工业视觉方案提供商「玻尔智造」日前获数千万元Pre-A轮融资,领投方为浩澜资本,毅仁资本担任独家财务顾问。本轮融资资金将用于自主光学成像方案和AI技术进一步研发。玻尔智造成立于2020年,结合自研光学方案及AI算法,主要对消费电子产品进行表面缺陷检测。依靠核心技术与缺陷检测效果,如今玻尔智造已成为某消费电子龙头在外观缺陷检测领域的全球专项战略供应商。机器视觉检测此前多应用于面板、PCB、印刷等行业,主要针对单一均匀的二维平面。消费电子产品因存在异形、复杂的三维面等,外观缺陷检测仍主要由人工目检完成。这意味着相当数量的工人需要在高亮度灯光下近距离且长时间观察被检物件,既可能对人眼造成损伤,也存在准确性、稳定性、工作时长等限制。同时,消费电子产品外观缺陷检测存在诸多难点,包括需检测多种表面形态、不同材质、数百种缺陷类别等。以看似简单的手机充电器为例,不仅同时包含塑胶和金属材质,且有平面、弧面、球面等多种表面形态。其他产品如含充电仓的无线耳机等,更存在异形曲面等复杂结构。对此,玻尔智造选择结合自研自控的光学成像方案以及AI图像识别算法,进行整机集成。“打通光学和算法软件的搭配协作,整机才能灵活运用。”玻尔智造CEO&CTO陈志忠告诉36氪。其中,光学方案就像一双眼睛,面对不同材质、曲率、反射率的检测对象,需要综合打光弧度、光源波长等要素,通过光源、镜头、相机的组合应用,实现被检物品的清晰成像。完整的光学方案,需要具备一次成像能力,拍摄速度要跟上产线生产速度,并考虑设备生产和成本核算的可行性。图源企业玻尔智造团队所积累的视觉检测经验,能够在面对不同材质、结构的被检品时,短时间内提出有效的光学整体方案。对于一般方案中的缺陷成像难点,如磨砂面轻微划伤、金属麻点差异成像等,玻尔智造亦有独家技术解决,能够得到清晰、经增强的缺陷图像。基于光学方案得到的清晰影像,玻尔智造检测设备进一步通过AI图像算法对缺陷进行识别。针对部分产品及结构的检测,玻尔智造已与行业龙头客户达成独家量产合作,进一步在实际生产线中积累一手且海量的被检品图像数据库。对于集成了光学方案与软件算法的检测设备整机,玻尔智造采用了模块化设计,包括机械平台、算法平台、光学模块及机械模块。整机设备可根据实际需求对模块进行组合,配合不同产品、厂商的检测要求,以单台设备兼容多款产品检测。部分外观缺陷检测整机设备展示,图源企业面对多面、多材质、多缺陷种类的检测对象,玻尔智造设备能够在2s内完成运动、成像、识别等系列操作,相比30s标准人工工时,时长缩短至1/15。目前,玻尔智造在某龙头客户电源产品检测领域的市占率居于首位,并将拓展更多材质与结构检测,适应更多检测对象的需求。同时,结合客户的全球化布局,玻尔也将进一步开拓印度、越南市场。未来,玻尔智造计划以消费电子行业为根基,依托在中国台湾既有的资源积累,进一步向半导体领域探索,现已能完成10微米级的陶瓷基板检测。玻尔智造新的研发及组装中心将落地上海、诸暨等。玻尔智造团队研发人员占比超60%,CEO&CTO陈志忠为台湾省台湾大学化学所物理化学博士,有20余年集成视觉技术经验,拥有个人发明专利40+,发表SCI 15+,曾作为核心成员带领某台企上市,并曾任某上市工业视觉企业核心研发负责人。团队创始成员曾任职行业内全球五百强企业,具备开拓视觉检测供应商经历,拥有较强先进制造落地经验。投资方观点本轮领投方浩澜资本主管合伙人王曦表示:消费电子行业的缺陷检测,随着某龙头客户体系全面用外观缺陷检测设备取代过去的人力检测,正面临巨大的市场机会。玻尔智造作为该龙头客户战略供应商之一,在巩固消费电子行业头部位置的同时,更向半导体领域进行开拓和探索。公司积累多种材质的海量图像数据库, 更为公司技术的迭代和建立壁垒打下基础。浩澜资本会坚定持续地运用我们在先进制造和半导体行业的产业资源和资本能力,支持坚定自主创新,扎实商业落地的“硬科技”企业进入健康发展的快车道。诸暨经开区作为智能视觉“万亩千亿”新产业平台,全力支持智能视觉产业链科创企业的创新和发展,通过一系列专项政策让人才留得住、让优质项目发展得好。
  • 11月14-15日!第二届表面分析技术与应用主题网络研讨会全日程公布!
    表面分析技术是一种统称,指利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术。表面分析技术广泛应用于材料表征等领域,是目前最前沿的分析技术之一。仪器信息网将于2023年11月14日-15日举办第二届表面分析技术与应用主题网络研讨会,以分享表面分析技术及应用研究的新进展,推动表面分析技术与应用领域的发展。旨在利用互联网技术为广大科研者及相关专业人员提供一个方便、高效的免费学习平台,让大家了解最新的表面分析技术及应用研究动态,与同行们交流心得,共同进步。此次表面分析技术与应用主题网络研讨会共设置了4个主题会场,分别是:光电子能谱(XPS/AES/UPS)技术与应用、扫描探针显微镜(AFM/STM)技术与应用、电子探针/原子探针技术与应用、二次离子质谱(SIMS)技术与应用等其他表面分析技术与应用。诚邀业界人士报名参会。点击免费报名 以下为会议全日程第二届表面分析技术与应用主题网络研讨会时间报告题目演讲嘉宾11月14日上午 光电子能谱(XPS/AES/UPS)技术与应用专场点击报名 》》》 09:3010:00原位电子能谱技术的应用姚文清清华大学/国家电子能谱中心 研究员/副主任10:0010:30XPS在材料研究中的应用程斌北京化工大学 研究员/副主任10:3011:00XPS在纳米薄膜厚度测量中的应用刘芬中国科学院化学研究所 副研究员11:0011:30同步辐射光电子能谱技术及其应用朱俊发中国科学技术大学 教授11月14日下午 扫描探针显微镜(AFM/STM)技术与应用专场点击报名 》》》14:0014:30纳米测量技术国际标准化工作的意义探讨黄文浩中国科学技术大学 教授14:3015:00基于扫描探针的原子制造技术的探索陆兴华中国科学院物理研究所 研究员15:0015:30多频静电力显微镜电学性质动态测量技术钱建强北京航空航天大学 教授15:3016:00日立AFM在表面分析方面的应用刘金荣日立科学仪器(北京)有限公司 高级工程师16:0016:30扫描探针显微镜在神经形态器件中的应用研究惠飞郑州大学材料科学与工程学院 研究员16:3017:00原子力显微镜在高分子表征中的应用张彬郑州大学 教授11月15日上午 电子探针/原子探针技术与应用专场点击报名 》》》09:3010:00电子探针分析在关键金属矿产研究中的应用陈振宇中国地质科学院矿产资源研究所 研究室主任/研究员10:0010:30三维原子探针分析技术与应用沙刚南京理工大学 教授10:3011:00原子探针层析技术原理及其在镍基合金中的应用李慧上海大学 副研究员11:0011:30电子探针在材料科学中的应用刘树帅山东大学材料学院材料表征与分析中心 副主任11月15日下午 二次离子质谱、拉曼光谱及其他表面分析技术与应用专场点击报名 》》》14:0014:30二次离子质谱(SIMS)质量分辨的测量李展平清华大学分析中心 高级工程师14:3015:00拉曼光谱分析技术和扫描电镜分析技术在古代陶瓷器科学研究中的应用刘松中国科学院上海光学精密机械研究所 副研究员15:0015:30动态二次离子质谱仪DSIMS在半导体材料检测中的应用高钟伟甬江实验室微谱(浙江)技术服务有限公司 技术工程师
  • 应用:通过表面能表征等离子体对聚合物表面的处理效果
    研究背景等离子体处理是聚合物表面改性的一种常用方法,一方面等离子体中的高能态粒子通过轰击作用打断聚合物表面的化学键,等离子体中的自由基则与断开的化学键结合形成极性基团,从而提高了聚合物表面活性;另一方面,高能态粒子的轰击作用也会使聚合物表面微观形貌发生改变 。本文提出通过等离子体处理提高 PP的胶粘接强度。利用KRÜ SS光学接触角测量仪DSA100分析了等离子体处理对于PP表面的接触角、自由能的影响。利用胶粘剂将 PP薄膜与铝箔粘接到一起,采用T剥离强度试验方法对PP的胶粘接强度进行了测试,结果表明等离子体处理可以显著提高 PP的胶粘接强度。DSA100型液滴形状分析仪试验样品制备由于PP薄膜表面可能会有油污、脱模剂等残留物,本文采用超声清洗方法对其表面进行实验前的处理。结果与讨论1.PP表面接触角系统分析了等离子体改性的射频功率和处理时间对于PP表面接触角的影响。首先,将处理时间恒定为 120 s,射频功率分别选取了 80 W、120 W、180 W、240 W 和300 W。如图1(a) 所示,PP表面经等离子体处理后,去离子水和二碘甲烷的接触角均有较明显的下降。当射频功率超过120 W时,接触角下降趋势缓慢,此时去离子水的接触角由99.08°降到了79.25°,二碘甲烷的接触角则由69.31°降到了59.39°。当射频功率达到300 W时,去离子水的接触角为 74.88°,二碘甲烷的接触角为55.88°。去离子水属于极性溶液,它的接触角越小表明PP表面润湿性越好,PP与胶粘剂的粘接强度将越高。 图1.薄膜表面接触角的变化其次,将射频功率恒定为 80 W,处理时间分别为30 s、60 s、120 s、300 s和600 s,PP表面的接触角与处理时间的关系如图1(b)所示。可见,随着处理时间的增长,接触角逐渐减小。当处理时间长于120 s时,接触角变化缓慢,此时去离子水的接触角由 99.08°降到了77.39°,二碘甲烷的接触角由69.31°降到了56.05°。结合上述两个实验结果,本文选择射频功率120 W和处理时间120 s作为后续的PP等离子体改性工艺参数数值。2.PP表面自由能本文采用Owens二液法 ,通过测量去离子水和二碘甲烷在 PP表面的接触角,计算出PP表面的自由能。PP表面自由能与射频功率和处理时间的关系如图2所示。从图中可以看出,PP在等离子体处理后,色散分量和极性分量均有所提升,其中极性分量的提升更显著,PP的表面自由能得到了较大提高。经计算,未经等离子体处理的 PP表面色散分量、极性分量和自由能分别为18.68 mJ/m 2 、12.12 mJ/m 2 、30.8 mJ/m 2 ,经等离子体处理后的PP表面色散分量、极性分量和自由能分别为22.27mJ/m 2 、26.64 mJ/m 2 、48.91 mJ/m 2 。即,经等离子体处理后,PP表面色散分量增加了 19.22%,极性分量增加了119.8%,自由能增加了58.8%。可见,PP表面自由能的提高主要归因于极性分量的增加,而极性分量的增加则是由于等离子体处理使得PP表面形成了极性基团,从而有助于提高PP的胶粘接强度。 图2.PP表面自由能3.PP胶接强度根据T剥离强度试验记录的最大剥离力和最小剥离力计算得到平均剥离力(FT),而剥离强度(σT)为 式中:B为测试样品的宽度 ,本文测试样品的宽度为25 mm。在剥离过程中,可以看到胶粘剂形成的胶膜完全保留在铝箔表面,证明胶粘剂对铝箔的粘附性远高于对PP薄膜的粘附性,即通过该实验测试到的剥离强度为PP与胶粘剂之间的粘接强度。未改性的 PP薄膜和改性后的PP薄膜的剥离力与剥离长度的关系曲线如图3所示,由于夹持位置的差异,PP薄膜与铝箔之间开始出现分离的位置稍有不同。在二者刚出现分离时,剥离力较大,之后剥离力逐渐下降并保持稳定。根据上述公式可以计算出,未改性的PP薄膜最小剥离强度为588 kN/m,最大剥离强度为 661.2 kN/m,平均剥离强度为 624.8 kN/m;与之对应,改性后的PP薄膜最小剥离强度为734 kN/m,最大剥离强度为810.8 kN/m,平均剥离强度为775.2 kN/m。即,PP薄膜经过等离子体改性处理后最小剥离强度提高了24.83%,最大剥离强度提高了22.63%,平均剥离强度提高了24.07%。 图3.剥离长度和剥离力的关系结论本文从接触角、表面自由能等方面揭示了等离子体处理提高PP材料胶粘接强度的机理。实验结果表明,经过等离子体改性处理后,PP表面由疏水性变为亲水性,去离子水的接触角由99°减小到了75°,PP表面自由能由31 mJ/m 2 增大到了49 mJ/m 2 ,同时PP表面整体上变得凸凹不平,且出现了大量纳米级凸起和凹坑。PP表面发生的这些化学和物理变化共同作用,使得PP的胶粘接强度提高了24%。参考文献隋裕,吴梦希,刘军山.等离子体处理对于聚丙烯胶粘接强度的影响[J].机电工程技术,2023,52(01):30-32.
  • 超细粉体表面包覆处理14方法 你get几种?
    p style=" margin-top:0 margin-right:0 margin-bottom:16px margin-left: 0 text-align:justify text-justify:inter-ideograph text-indent:32px line-height:28px" span style=" font-size: 14px" 超细粉体通常是指粒径在微米级或纳米级的粒子。和大块常规材料相比具有更大比表面积、表面活性及更高的表面能,因而表现出优异的光、热、电、磁、催化等性能。超细粉体作为一种功能材料近些年得到人们的广泛研究,并在国民经济发展各领域得到越来越广泛的应用。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 然而由于超细粉体独有的团聚及分散问题使其失去了许多优异性能,严重制约了超细粉体的工业化应用。因此,如何避免超细粉体的团聚失效已成为超细粉体发展应用所面临的难题。通过对超细粉体进行一定的表面包覆,使颗粒表面获得新的物理、化学及其他新的功能,从而大大改善了粒子的分散性及与其他物质的相容性。表面包覆技术有效地解决了超细粉体团聚这一难题。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体表面包覆的机理 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 关于包覆机理,目前还在研究之中,尚无定论。主要的观点有以下几种: /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 1 /span )库仑静电引力相互吸引机理。这种观点认为,包覆剂带有与基体表面相反的电荷,靠库仑引力使包覆剂颗粒吸附到被包覆颗粒表面。 /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 2 /span )化学键机理。通过化学反应使基体和包覆物之间形成牢固的化学键,从而生成均匀致密的包覆层。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 3 /span )过饱和度机理。这种机理从结晶学角度出发,认为在某一 span pH /span 值下,有异相物质存在时,如溶液超过它的过饱和度就会有大量的晶核立即生成,沉积到异相颗粒表面形成包覆层。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体表面包覆的方法 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 1 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 机械混合法 /span /strong 。利用挤压、冲击、剪切、摩擦等机械力将改性剂均匀分布在粉体颗粒外表面,使各种组分相互渗入和扩散,形成包覆。目前主要应用的有球石研磨法、搅拌研磨法和高速气流冲击法。该方法的优点是处理时间短,反应过程容易控制,可连续批量生产,较有利于实现各种树脂、石蜡类物质以及流动性改性剂对粉体颗粒的包覆。但此法仅用于微米级粉体的包覆,且要求粉体具有单一分散性。 /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" & nbsp /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/970202c4-22d6-4884-b41b-d5ae59c230bb.jpg" title=" 1.jpg" alt=" 1.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体材料改性包覆机 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 2 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 固相反应法 /span /strong 。把几种金属盐或金属氧化物按配方充分混合、研磨,再进行煅烧,经固相反应直接得到超细包覆粉。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 3 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 水热法 /span /strong 。在高温高压的密闭体系中以水为媒介,得到常压条件下无法得到的特殊的物理化学环境,使反应前驱体得到充分的溶解,并达到一定的过饱和度,从而形成生长基元,进而成核、结晶制得复合粉体。水热法的优越性有:合成的核 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 壳型纳米粉体纯度高,粒度分布窄,晶粒组分和形态可控,晶粒发育完整,团聚程度轻,制得的产品壳层致密均匀,制备的纳米粉体不需要后期的晶化热处理。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 4 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 溶胶 /span /strong /span strong span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span /strong strong span style=" font-size: 14px font-family: 宋体" 凝胶法 /span /strong span style=" font-size: 14px" 。首先将改性剂前驱体溶于水 span ( /span 或有机溶剂 span ) /span 形成均匀溶液,溶质与溶剂经水解或醇解反应得到改性剂 span ( /span 或其前驱体 span ) /span 溶胶;再将经过预处理的被包覆颗粒与溶胶均匀混合,使颗粒均匀分散于溶胶中,溶胶经处理转变为凝胶,在高温下煅烧得到外表面包覆有改性剂的粉体,从而实现粉体的表面改性。溶胶 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 凝胶法制备的包覆复合粒子具有纯度高、化学均匀性好、颗粒细小、粒径分布窄等优点,且该技术操作容易、设备简单,能在较低温度下制备各种功能材料,在磁性复合材料、发光复合材料、催化复合材料和传感器制备等方面获得了较好的应用。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/cfdf281f-6370-4925-bded-830ee0436006.jpg" title=" 2.jpg" alt=" 2.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 一种石墨烯包覆稀土掺杂纳米氧化物 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 5 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 沉淀法 /span /strong 。向含有粉体颗粒的溶液中加入沉淀剂,或者加入可以引发反应体系中沉淀剂生成的物质,使改性离子发生沉淀反应,在颗粒表面析出,从而对颗粒进行包覆。沉淀反应包覆往往是在纳米粒子表面包覆无机氧化物,可以便捷地控制体系中的金属离子浓度以及沉淀剂的释放速度和剂量,特别适合对微纳米粉体进行无机改性剂包覆。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/e593175d-8805-4d80-9f97-225c609d5773.jpg" title=" 3.jpg" alt=" 3.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 一种粉煤灰空心微珠表面包覆纳米氢氧化镁复合粉体材料 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 6 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 非均相凝聚法 /span /strong (又称“杂絮凝法”)。根据表面带有相反电荷的微粒能相互吸引而凝聚的原理提出的一种方法。如果一种微粒的直径远小于另一种电荷微粒的直径,那么在凝聚过程中,小微粒就会吸附在大微粒的外表面形成包覆层。其关键在于对微粒表面进行修饰,或直接调节溶液的 span pH /span 值,从而改变微粒的表面电荷。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 7 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 微乳液包覆法 /span /strong 。首先通过 span W/O( /span 油包水 span ) /span 型微乳液提供的微小水核来制备需要包覆的超细粉体,然后通过微乳聚合对粉体进行包覆改性。与其他纳米材料的制备方法相比,微乳液法制备纳米材料具有以下特点:( span 1 /span )粒径分布窄且较易控制;( span 2 /span )由于粒子表面包覆一层 span ( /span 或几层 span ) /span 表面活性剂分子,不易聚结,得到的有机溶胶稳定性好,可较长时间放置;( span 3 /span )在常压下进行反应,反应温度较温和,装置简单,易于实现。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 8 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 非均匀形核法 /span /strong 。根据 span LAMER /span 结晶过程理论,利用改性剂微粒在被包覆颗粒基体上的非均匀形核与生长来形成包覆层。该方法可以精确控制包覆层的厚度及化学组分。非均匀形核包覆中,改性剂的质量浓度介于非均匀形核临界浓度与临界饱和浓度之间,所以非均匀形核法包覆是一种发生在非均匀形核临界浓度与均相成核临界浓度之间的沉淀包覆。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 9 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 化学镀法 /span /strong 。指不外加电流而用化学法进行金属沉淀的过程,有置换法、接触镀法和还原法三种。化学镀法主要用于陶瓷粉体表面包覆金属或复合涂层,实现陶瓷与金属的均匀混合,从而制备金属陶瓷复合材料。其实质是镀液中的金属离子在催化作用下被还原剂还原成金属粒子沉积在粉体表面,是一种自动催化氧化 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 还原反应过程,因此可以获得一定厚度的金属镀层,且镀层厚度均匀、孔隙率低。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 10 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 超临界流体法 /span /strong 。是尚在研究的一种新技术。在超临界情况下,降低压力可以导致过饱和的产生,而且可达到高过饱和速率,使固体溶质从超临界溶液中结晶出来。由于结晶过程是在准均匀介质中进行的,能够得到更准确的控制。因此,从超临界溶液中进行固体沉积是一种很有前途的新技术,能够产生平均粒径很小的细微粒子,而且还可控制其粒度分布。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 11 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 化学气相沉积法 /span /strong 。在相当高的温度下,混合气体与基体的表面相互作用,使混合气体中的某些成分分解,并在基体上形成一种金属或化合物的包覆层。它一般包括 span 3 /span 个步骤:产生挥发性物质;将挥发性物质输送到沉淀区;与基体发生化学反应生成固态产物。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 12 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 高能量法 /span /strong 。利用红外线、紫外线、γ射线、电晕放电、等离子体等对纳米颗粒进行包覆的方法,统称高能量法。高能量法常常是利用一些具有活性官能团的物质在高能粒子作用下实现在纳米颗粒的表面包覆。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 13 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 喷雾热分解法 /span /strong 。其工艺原理是将含有所需正离子的几种盐类的混合溶液喷成雾状,送入加热至设定温度的反应室内,通过反应,生成微细的复合粉末颗粒。在该工艺中,从原料到产品粉末,包括配溶液、喷雾、反应和收集等 span 4 /span 个基本环节。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/b8e57be4-5a08-48ba-8c26-8382485ea891.jpg" title=" 4.jpg" alt=" 4.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 二氧化硅包覆二硼化锆 span - /span 碳化硅的复合粉体 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 14 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 微胶囊化法 /span /strong 。在粉体表面覆盖均质且有一定厚度薄膜的一种表面改性方法。通常制备的微胶囊粒子大小在 span 2 /span ~ span 1000 /span μ span m /span ,壁材厚度为 span 0.2 /span ~ span 10 /span μ span m /span 。微胶囊可改变囊芯物质的外观形态而不改变它的性质,还可控制芯物质的放出条件;对在相间起反应的物质可起到隔离作用,以备长期保存;对有毒物质可以起到隐蔽作用。微胶囊技术在制药、食品、涂料、粘接剂、印刷、催化剂等行业都已得到了广泛的应用。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 结语 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px " span style=" font-size: 14px" 表面包覆技术的选用,应根据核心粉体和包膜材料的特性以及改性后复合粉体的应用场合来综合考虑。随着科学技术的发展,超细粉体包覆技术将进一步完善,有望制备出多功能、多组分、稳定性更强的超细复合粒子,这将为复合粒子开辟更广阔的应用前景。目前关于超细粉表面包覆机制及通过多种包覆方法结合制备性能更优异的超细粉体将是未来该领域的研究发展方向。 /span /p
  • 扫描白光干涉表面形貌测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    高附加值产品中元器件的表面形貌,包括几何形状和微观纹理,对于其公差、装配和功能至关重要。表面形貌对制造工艺的变化非常敏感,由不同工艺形成的表面复杂且多样。表面形貌会影响零件的摩擦学特性、磨损和使用寿命,例如航发叶片的表面会影响飞机的空气动力学性能和燃料使用效率。扫描白光干涉术(SWLI),也称为相干扫描干涉术(CSI),是用于测量材料表面形貌最精确的技术之一。作为一种光学测量手段,扫描白光干涉术先天具有高精度、快速、高数据密度和非接触式测量等优势,被广泛应用于精密光学、半导体、汽车及航天等先进制造与研究领域。扫描白光干涉仪光路结构与成像原理示意图扫描白光干涉术经过30多年发展,在制造和科研领域得到验证,成为表面形貌高精度测量技术的标杆,尤其在半导体、精密光学和消费电子等产业的推动下,其测量功能和性能得到了持续提升。以扫描白光干涉术为代表的光学测量技术,充分利用了光的波动属性以及干涉和全息成像的优势,以光的波长作为“尺子”,在先进的光学、电子和机械元器件的支撑下,将在先进制造与智能制造中充当越来越重要的角色。第二届精密测量技术与先进制造网络会议期间,两位专家将现场分享扫描白光干涉技术及其在半导体行业的典型应用。部分报告预告如下,点击报名  》》》中国科学院上海光学精密机械研究所研究员 苏榕《扫描白光干涉表面形貌测量技术:原理及应用》(点击报名)苏榕博士,研究员,博士生导师,中国科学院及上海市海外高层次人才引进。长期致力于超精密光学干涉成像与散射测量仪器与技术研究,聚焦基础理论、核心算法、校准技术、工业应用及相关国际标准制定。主持多项国家和省部级重点研发项目;发表论文40余篇,书籍章节2章,部分技术被国际顶尖仪器制造商采用。担任期刊《Light: Advanced Manufacturing》和《Nanomanufacturing and Metrology》编委及《激光与光电子学进展》青年编委,SPIE-Photonics Europe、EOSAM和ASPE技术委员会委员,全国产品几何技术规范标准化技术委员会委员,中国计量测试学会计量仪器专业委员会委员,中国仪器仪表学会显微分会委员。【报告摘要】扫描白光干涉术是目前最精确的表面形貌测量技术之一,被广泛应用于各种工业与科研领域。从发明至今的三十余年间,在精密光学、半导体、汽车及航天等先进制造领域的需求牵引下,该技术不断取得新的进展与突破。本报告将介绍白光干涉技术的原理与应用,以及近年来的技术创新。布鲁克(北京)科技有限公司应用经理 黄鹤《先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案》(点击报名)黄鹤博士现任布鲁克公司纳米表面仪器部中国区应用经理。服务于工艺设备和测量仪器行业超过15年,尤其在半导体、数据存储和材料表面工程研究领域拥有丰富经验,是一名材料学博士。黄鹤博士先后在香港理工大学任助研;在应用材料公司任高级应用工程师,负责化学机械抛光工艺和缺陷检测应用;在维易科公司任应用科学家,负责白光干涉三维形貌技术推广与导入。【报告摘要】在半导体行业路线图对不断缩小晶体管几何尺寸的快速追求的推动下,PCB/HDI尤其载板制造商正在通过更薄的高密度互连,将多芯片模块(包含芯粒)借由基板上开发更小、更密集的功能。在大批量生产过程中,对于更细线宽的铜线(Line)、更小开口的孔洞(Via)和深沟槽(Trench)及层间对位偏差(Overlay)等三维几何尺寸的测量面临多种新的挑战。而具备计量功能的 ContourSP 大型面板高效测量系统专门设计用于在制造过程中测量载板面板的每一层,确保在生产过程中最短的工艺开发时间、最高的产量、最长的正常运行时间和最稳定的测量结果。此外,本报告也会简略介绍白光干涉技术在晶圆封装时再布线工艺(RDL)监控中的典型应用。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • OPTON微观世界|第34期 从荷叶效应到超疏水表面——从自然到人工合成
    前 言在盛夏时节安静的池塘边,正是观赏荷花的好时候。在红花绿叶的点缀下,夏日仿佛多了一丝清凉舒缓。每当提到荷花(莲花),总能想起周敦颐在《爱莲说》中 “予独爱莲之出淤泥而不染,濯清涟而不妖”的诗句。荷花历来被佛教尊为神圣净洁之花,并且极力宣传并倡导学习荷花这种清白、圣洁的精神。另外,李白的诗句“清水出芙蓉,天然去雕饰”,也表明荷花具有天然之美。荷花即青莲,青莲与“清廉”谐音,因此荷花也被用以比喻为官清正,不与人同流合污,这主要是指在仕途中。比如,有一幅由青莲和白鹭组成的名为“一路清廉”的图画,就被很多文人置于自己的书房中。可是,莲为什么可以出淤泥而不染呢?这就要讲到莲花的“自清洁”和“不沾湿”特性了。荷叶效应如果留心观察莲花的叶子,你就会发现荷叶上总是干干净净的,好似不留一点灰尘。这是因为荷叶表面的特殊结构有自我清洁的功能,即荷叶的“自清洁”特性。此外,我们经常会看到这样的场景:当水滴在荷叶上时,水并没有完全铺展开,而是以水珠的形式停留在荷叶上,而且只要叶面稍微倾斜,水珠就会滚离叶面。这就是荷叶的“不沾湿”特性。荷叶的“自清洁”和“不沾湿”特性被统称为“荷叶效应”。这一概念最早是由德国波恩大学的植物学家巴特洛特提出的。图1荷叶效应超疏水特性其实,荷叶的“不沾湿”特性也被称为“超疏水”特性。那么,如何界定“超疏水”这一概念呢?在明确“超疏水”这一概念前,我们要先了解表面化学中的一个概念——接触角。如下图所示,接触角指的是“液-固”界面的水平线与“气-液”界面切线之间通过液体内部的夹角θ。有了这一概念,我们可以很方便地表示液体对固体的润湿情况。当夹角θ小于90°时,我们称该液体可以湿润固体。当θ大于90°时,该液体不能湿润固体。当θ大于150°时,该固体表面具有超疏水特性。通俗地讲,我们可以认为这种固体表面有很强的排斥水的能力。图2 浸润与不浸润的特征在自然界中,奇异的性质往往是其独特的结构决定的。那么,你肯定会问:“荷叶的特性是否与它的结构有关呢?”答案是肯定的。扫描电子显微镜的发展给我们的科学研究带来了更多的可能,也使得我们能够观察到荷叶的微观结构。通过电子显微镜的成像结果,我们可以清晰地看到荷叶表面有许多突起的“小山包”(这类结构被称为“乳突”如图3(a))。这些乳突的尺寸通常在6微米左右,这些乳突的平均间距在12微米左右。而这些乳突是由许多直径在100纳米左右的纳米蜡质晶体组成。由此可见,荷叶表面存在复杂的“微米-纳米”双重结构,正是这些结构使得荷叶产生了“超疏水”和“自清洁”的双重特性。图3 荷花叶片的sem图像 (a)低倍图像(b) “乳突”高倍图像(c)叶片底部高倍图像(d)“乳突”尺寸对应的接触角曲线分布由荷叶到仿生技术自然界的生物都经历了漫长的演化过程,在物竞天择下,生物自身的结构和功能都经过了长期的筛选、发展和优化,具有极高的效能。荷叶的“自清洁”性能,并不是简单的美观功效,清洁程度直接影响叶片的光合作用效率。那么不仅仅是荷叶,在自然界中具有自清洁功能的生物还有很多种,比如蝴蝶的翅膀具有的超疏水结构,保证蝴蝶翅膀不会粘连露水影响飞行。水黾的脚具有绒毛结构,确保了水黾在水面上能以每秒钟滑行100倍于自身长度的距离,这都由于水黾腿部上有数千根按同一方向排列的多层微米尺寸的刚毛。而这些像针一样的微米刚毛的直径不足3微米,表面上形成螺旋状纳米结构的构槽,吸附在构槽中的气泡形成气垫,从而让水黾能够在水面上自由地穿梭滑行,却不会将腿弄湿。还有蚊子的复眼,它是由许多尺寸均一的微米半球组成,其表面还覆盖有无数精细的纳米乳突结构,这种纳米乳突结构的尖端与雾滴接触的面积无限小,具有理想的超疏水特性,从而确保了蚊子的复眼具有理想的超疏水防雾性能。图4 蝴蝶翅膀,水黾足,蚊子复眼的超疏水结构对自然界演化生成的超疏水结构,科学家们也做了进一步的研究,其超疏水表面的制备方法有多种:溶胶-凝胶法、相分离法、模板法、蚀刻法、化学气相沉积法、自组装法等等,下图为具有独特形状的表面微米阵列(如图5)纳米阵列(如图6),使得它们具有很好的疏水特性。图5不同形态的人工合成的超疏水结构图6 超疏水结构碳纳米管阵列经过先进结构材料的表面改性,我们常见的水也可以变得很有趣,比如我们可以用手切割水珠(图7),利用涂有超疏水材料的刀片对水滴进行切割(图8)。日常生活上,通过先进疏水材料的应用我们可以使得衣物不再被水或者油污污染,减少洗涤衣物的麻烦。在军事上,由于疏水材料的使用使得水的阻力明显下降,有效地提升了舰载的行驶速度。
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 【瑞士步琦】基于喷雾干燥技术的表面增强拉曼光谱研究进展
    基于喷雾干燥技术的表面增强拉曼光谱研究进展水污染是一个全球性问题,威胁着人类健康并损害生态系统的健康。水污染物含有多种对人体健康和生态系统产生不利影响的重金属和有机化合物,需要及时发现和分析以维持环境,同时可以尽量减少对人类健康的危害和对生态系统健康的损害。水样中重金属的检测常用检测方法如下原子吸收光谱法(AAS)阳极溶出伏安法(ASV)电感耦合等离子体质谱法(ICP-MS)电化学检测除了以上常用检测方法外,还可以利用喷雾干燥方法结合拉曼光谱技术-表面增强拉曼光谱(SERS)来测定水中污染物。SERS 技术是一种简便、快速进行有机化合物痕量分析的技术。与传统的拉曼光谱相比,它可以获得信号得到显著增强的拉曼光谱。SERS 中的拉曼增强发生在两个或多个聚集的金属纳米颗粒的连接处,即所谓的热点;贵金属纳米颗粒的聚集程度是 SERS 中拉曼信号增强效果的关键决定因素。喷雾干燥法是将储存溶液中的微小液滴雾化,研究者可以通过改变液滴的大小和液滴内纳米颗粒的浓度来控制纳米微粒的聚集程度。纳米微粒的形成是由于液滴内部溶剂蒸发的结果(图1)。同时,喷雾干燥法也可以在不添加表活物质的情况下制备纳米微粒。该方法获得的纳米微粒可以在使用中将探针分子困在热点中,获得比使用传统 SERS 衬底的方法更有效的信号增强效果。在使用传统 SERS 方法时,通常需要通过将待分析溶液滴到衬底上的方式使探针分子分散到热点附近。也可以将 SERS 制备成溶胶,在测试过程中需要添加表面活性剂,这导致在目标物质信号被放大的同时,表面活性剂的拉曼信号也被放大,会干扰测试。而采用喷雾干燥法制备的纳米微粒可避免这些情况的发生。▲图1,用于制备纳米银微粒的喷雾干燥系统示意图本研究采用喷雾干燥方法制备纳米微粒用于探针分子的痕量分析。首先,研究者采用定制化的喷雾干燥系统制备纳米微粒。之后研究制备的银纳米微粒的大小如何影响探针分子(罗丹明B)的 SERS 信号。最后,我们雾化了银纳米粒子和探针分子罗丹明 B 的预混合溶液,以促进探针分子在热点的捕获,从而进一步增强探针分子拉曼信号。1材料在本研究中选择银纳米颗粒(AgNPs)。购买主粒径为 30 nm的AgNP颗粒(Ag Nanocolloid H-1, Mitsubishi Materials Corporation),用超纯水(18.2 MΩ cm)稀释,得到 0.01wt% 和 0.1wt% AgNP 溶胶。罗丹明 B (RhB)作为探针分子。所有材料均未经进一步提纯使用。2采用喷雾干燥法制备 AgNP 微粒用含有 AgNP 的雾化液滴制备用于 SERS 测试的 AgNP 微粒。实验装置示意图如图1所示。液滴雾化使用了一个定制的系统,该系统带有加压双流体喷嘴。当加压气体被引入时,液体样品通过喷嘴内出现的负压被吸入系统。在喷嘴内形成一层液体膜,然后在剪切应力的作用下分解成液滴。在雾化之前,将超纯水与 AgNPs 溶胶混合,以进一步稀释溶胶中任何浓度的潜在污染物。使用氮气作为干燥气和雾化气,将雾化后的液滴从喷嘴输送到加热区。再以 4.5 L/min 的流量将 N2 气体引入加热区,将雾化后的液滴加热至 150℃,促进溶剂蒸发,使 AgNP 气溶胶干燥。雾化系统总流量为 6.9 L/min,液滴停留时间为 0.93s。最后,使用定制的冲击器将干燥气溶胶形式的 AgNPs 沉积在直径为 14mm 的铜制圆形基板上。撞击喷嘴直径为 1mm,因此 AgNPs 以 17L/min 的流速加速撞击。在 SERS 实验前,将沉积的 AgNP 在常温常压下保存 24h。本次共制备四种不同粒径的 AgNPs 微粒,并对其在 SERS 分析中的敏感性进行了检验。雾化 0.01wt.% 的溶胶得到的 AgNP 微粒粒径最小,雾化 0.1wt.% 的溶胶得到的 AgNP 微粒粒径最大。溶胶中 AgNP 的浓度直接影响单个液滴中 AgNPs 的数量。此外,采用差分迁移率分析仪对制备的四种 AgNPs 微粒进行颗粒度分析,四种微粒的平均粒径分别为 48、86、151 和 218nm。3SERS 分析将制备的四种不同大小的 AgNPs 微粒用于微量罗丹明 B 溶液的 SERS 信号获取。 将 100μL 一定浓度的罗丹明 B 标准水溶液滴在铜基底上制备的 AgNP 微粒上。采用 532nm 激光器,在激光功率为 0.157mW,曝光时间为 1s 的条件下获得 SERS 谱图。每个样品在不同位置获得十几张 SERS 光谱。利用数据处理软件对所得光谱进行背景减除,并获得罗丹明 B 位于 1649 cm&minus 1 处的峰强度。4尺寸和形态表征图2 显示了用浓度分别为 0.01wt% 和 0.1wt% 的 AgNg 溶胶喷雾制备的微粒的尺寸分布。可以看到二者的平均尺寸分别约为 38nm 和 66nm,前者微粒的大小与纯 AgNP 颗粒(~ 30nm)的大小大致一致,这证明前者微粒中主要为纯 AgNP 颗粒。后者微粒增大可归因于 AgNPs 浓度的增加,即溶胶浓度的增加。这表明由 0.1wt% 溶胶喷雾干燥得到的微粒中有聚集。由此可知,用该喷雾干燥系统得到的微粒大小可通过气溶胶浓度的大小控制。▲ 图2,由 0.01wt%、0.1wt% 和 0wt% 的纳米银溶胶喷雾干燥获得的纳米银微粒的粒径大小▲ 图3,沉积后纳米银微粒的SEM图像和尺寸分布。(a, e) 48 nm, (b, f) 86 nm, (c, g) 151 nm, (d, h) 218 nm图3 的 SEM 图像分别显示了在未添加探针分子(即RhB)情况下沉积在铜板上的四种纳米银微粒的相应尺寸分布。由 0.01wt% 的纳米银溶胶喷雾干燥获得的微粒形成了亚单层膜(图3a),颗粒的平均测量尺寸为 48nm(图3e),与制备溶胶前的纯颗粒尺寸(30nm)和气溶胶颗粒尺寸(38nm)基本一致,这表明滴在铜板上的纳米银微粒并未明显聚集。如 图3f 和 图3g 所示 3b 和 3c 的纳米银微粒的尺寸为 86 和 151nm。由 0.1wt% 溶胶制备得到的纳米银微粒形成了更大的球形聚集体(图3d),尺寸为 218nm (图3h),是气相测量中发现的 AgNP 气溶胶(图2)的两倍多。气相测量和 SEM 观察之间的这种尺寸差异可能归因于颗粒反弹效应。只有大的 AgNPs 微粒才能更好地沉积,因为微粒与基底之间的接触面积较大,所以具有较高的附着力。最终使用两种浓度的溶胶和 DMA,我们制备了四种不同尺寸的微粒:48、86、151 和 218 nm。5拉曼增强效果与微粒尺寸大小有关图4 显示了不同浓度的罗丹明 B(分别为 10&minus 6、10&minus 8 和 10&minus 10 M),用四种纳米银微粒(尺寸分别为 48、86、151 和 218nm 时)获得的 SERS 光谱。在罗丹明浓度为 10&minus 6 M 时,采用四种纳米银微粒获得的谱图在 500-1700 cm&minus 1 处都均能清晰地观察到罗丹明 B 的所有特征峰(图4a)。表1 列出了罗丹明 B 的拉曼特征峰归属。其中,1649 cm&minus 1 处的 C-C 伸缩振动信号最为强烈,因此被用作计算 AEF,用于评价拉曼信号的增强情况。在未采用 SERS 增强时,没有观察到罗丹明 B 的特征峰(图4a),这证实了纳米银微粒对罗丹明 B 的拉曼信号起到了增强作用。▲ 图4,(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 浓度下罗丹明 B 溶液的 SERS 光谱。箭头表示罗丹明 B 的拉曼特征峰(表1)表1,罗丹明 B 的主要特征峰及特征峰归属拉曼位移(cm-1)特征峰归属1199C-C 键的伸缩振动1281C-H 键的弯曲振动1360芳香基 C-C 键的弯曲振动1528C-H 键的伸缩振动1649C-C 键的伸缩振动6AgNPs 溶胶和探针分子混合后喷雾干燥图4 和 图5 表明,尺寸为 86nm 的 AgNP 微粒是信号增强效果是最好的。研究者又过在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶进行预混合(即采用预混合雾化途径),制备微粒。进一步探索了微粒的拉曼增强效果。图6显示了浓度为 10&minus 6、10&minus 8 和 10&minus 10 M 的罗丹明 B 溶液在 86nm AgNP 微粒中的 SERS 光谱。▲图5,粒径为 48、86、151和 218nm 的 AgNP 微粒在 浓度为 10-6 和 10-8 M 罗丹明 B 的 AEF 值。部分测试未获得罗丹明 B 特征峰,因此未计算 AEF 值▲图6 采用 AgNP 溶胶与罗丹明 B 预混后获得的微粒对浓度分别为(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 的罗丹明 B 溶液进行信号放大获得的 SERS 光谱▲图7 喷雾干燥制得 86nm 纳米银颗粒后加入罗丹明 B 溶液和罗丹明 B 溶液与 86nm 纳米银微粒预混后喷雾干燥后的 AEF 值▲图8 (a)喷雾干燥后滴入罗丹明B溶液 (b)罗丹明B 溶液与微粒预混后喷雾干燥7结论本研究采用喷雾干燥方法制备高灵敏度的纳米银微粒。使用定制的系统制备了粒径为 48、86、151 和 218nm 的 AgNP 微粒。滴入10&minus 6 M 罗丹明 B 溶液后,48、86、151 和 218nm AgNP 微粒的 AEF 值分别为 2.4 × 103、4.2 × 103、3.3 × 103 和 4.0 × 103,而滴入 10&minus 8 M 罗丹明 B 溶液后,86和 151nm 微粒的 AEFs 为 3.4 × 104 和 2.2 × 104。我们发现 86nm 的 AgNP 微粒是本研究中最敏感的纳米结构。与 218nm AgNP 微粒相比,86nm AgNP 微粒的拉曼增强效果更好,这是由于高浓度溶胶制备的 AgNPs 微粒中电子云变形,降低了它的拉曼增强效果。在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶预混后获得的拉曼增强效果较喷雾干燥后加入罗丹明 B 溶液更强。在测试浓度为 10&minus 6 M 和 10&minus 8 M 的罗丹明 B 溶液时,预混后喷雾干燥得到 86nm 微粒的 AEF 值分别为 5.1 × 104 和 3.7 × 106。该方式获得的 AEF 值分别是喷雾干燥后加入方式的 12 倍和 110 倍。该方法应该是更适合用于环境污染物痕量分析的方法。8文献引用Chigusa M. etc. Development of spray‐drying‐based surface‐enhanced Raman spectroscopy. Scientific Reports (2022)12:4511雷尼绍公司总部位于英国,自上世纪九十年代 开始提供显微拉曼光谱仪,是最早的商用显微拉曼供应商之一,一直在拉曼光谱领域是公认的领导者。雷尼绍为一系列应用生产高性能拉曼系统,具有完备的光谱产品系列:inVia 系列显微共焦拉曼光谱仪、 RA802 药物分析仪、 RA816 生物组织分析仪、Virsa 高性能光纤拉曼系统、Raman-AFM 联用系统接口、 Raman-SEM 联用系统等。 凭借优越的产品性能及完善的售后服务, 雷尼绍光谱产品系列极大地提高了客户的研发能力和科研水平,被广泛应用于高校科研和制药、材料、新能源、光伏等多个领域研发中。瑞士步琦公司是全球旋转蒸发技术的市场领先者,并且在中压分离纯化制备色谱,平行反应,喷雾干燥仪和冷冻干燥仪,熔点仪,凯氏定氮仪和萃取仪以及实验室/在线近红外等方面是全球市场主要的供货商。我们相信通过提供高质量的产品和优质的服务,我们能给广大的客户在研究开发创新和生产上提供强有力的支持。我们的所有产品均符合“Quality in your hands” (质量在您手中) 理念。我们始终致力于开发坚固耐用、设计巧妙、便于使用的产品与解决方案,以便满足客户的最高需求。凭借小型喷雾干燥仪 B-290 和 S-300,瑞士步琦巩固了其 40 多年来作为全球市场领导者的地位。实验室喷雾干燥仪融合卓越的产品设计与独特的仪器功能,可为用户提供极佳的使用体验。使用实验室喷雾干燥仪可安全处理有机溶剂;S-300 配备的自动模式可节省大量时间,让整个实验过程调节和可重现性更高;远程控制可以带来极致的灵活性,同时方法编程让操作变得对用户更友好。
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • 自主研发国产仪器助力 江颖、王恩哥等揭示冰表面原子结构和预融化机制
    近日,北京大学物理学院量子材料科学中心、北京怀柔综合性国家科学中心轻元素量子材料交叉平台江颖教授、徐莉梅教授、田野特聘研究员、王恩哥院士等紧密合作,利用自主研发并商业化的国产qPlus型扫描探针显微镜,首次获得了自然界最常见的六角冰表面的原子级分辨图像。研究团队发现冰表面在零下153摄氏度就会开始融化,并结合理论计算揭示了该过程的微观机制,结束了有关冰表面预融化问题长达170多年的争论。该工作以“冰表面结构和预融化过程的原子分辨成像”(Imaging surface structure and premelting of ice Ih with atomic resolution)为题,于5月22日发表在《自然》(Nature)杂志上。《自然》杂志编辑部还以“从原子尺度揭示冰表面融化的奥秘”(Atomic-scale insights into the mystery of how ice surfaces melt)为题配发研究简报(Research Briefing),对文章进行专题报道。熟悉又神秘的冰表面水是生命之源,而冰作为水重要的固体形态,广泛存在于自然界中。全球冰川面积约占陆地面积的十分之一,且近半数的地表上空被含有大量冰晶的云层所覆盖。作为自然界中最普遍的表面之一,冰面承载着多种重要的大气反应,并影响着众多自然现象,如:冰的形成、臭氧的分解、雷云的带电等。此外,在星际空间中,被冰覆盖的尘埃颗粒是复杂有机分子生成的关键载体,因此,冰表面的研究对探索生命起源和物质来源具有重要意义。然而,由于缺乏原子尺度的实验表征手段,我们对冰表面的了解仍处于非常初步的阶段,甚至连一个基本问题——冰的表面结构是什么,也尚未弄清楚。此外,冰表面常在低于其熔点(0 ℃)的温度下开始融化,这一现象称为冰的预融化。预融化现象对于理解冰面的润滑现象、云的形成与寿命、以及冰川的消融过程等至关重要。自从19世纪中期法拉第首次提出预融化层的概念以来,围绕其结构和机制的争论已经持续了170多年。这种持续的争论原因在于相关研究主要依赖于谱学手段,而这些手段受到衍射极限的限制,无法得到准确的原子尺度信息。因此,在实空间中对体相冰表面和预融化过程进行原子级分辨成像,是理解预融化层的关键,也是科学家们一直以来追求的目标。揭开冰表面的神秘面纱江颖课题组长期致力于高分辨扫描探针显微镜的自主研发和应用,创新性发展出了一套基于高阶静电力的qPlus扫描探针技术,并在国际上率先实现氢核的成像。2022年,课题组完成了qPlus型扫描探针显微镜的国产化样机 [Cheng et al., Rev. Sci. Instrum. 93, 043701 (2022)],随后将相关核心专利转让给中科艾科米(北京)科技有限公司,通过校企联合攻关,实现了该系统的整机国产化(图1)。在本工作中,研究团队进一步突破了绝缘体表面无法进行原位针尖修饰的限制,开发了一种通用的一氧化碳分子修饰针尖技术,可对各种绝缘体表面实现稳定的原子级分辨成像。值得一提的是,国产扫描探针显微镜得到了比进口设备更高质量的数据,为冰表面的结构解析提供了关键支撑。基于该国产化设备,研究人员首次得到了自然界最常见的六角冰(ice Ih)表面的原子级分辨图像,实现了对表面氢键网络的精确识别和氢核分布的精准定位。图1. 自行研制的qPlus型光耦合扫描探针显微镜国产化样机(左)和正式上市设备(右)该研究发现六角冰的基面(basal plane)存在六角密堆积(Ih)和立方密堆积(Ic) 两种堆叠方式(图2),不同于过去普遍认为的只存在Ih一种堆叠方式的理想冰表面。Ih和Ic 晶畴通过水分子五、八元环缺陷连接,在纳米尺度上实现无缝的层内堆叠。通过精确控制冰的生长温度与气压,研究人员在冰表面发现了一种长程有序的周期性超结构,其中大小规则的Ic和Ih纳米晶畴交替排列(图2)。通过分析超结构表面的氢核分布,并结合第一性原理计算,研究人员发现这种独特的氢键网络结构能显著减少冰表面悬挂氢核之间的静电排斥能,从而使其比理想冰表面更加稳定。这一突破性发现刷新了人们对冰表面的传统认知,结束了关于冰表面结构及氢序的长期争论。图2. 冰表面的Ih和Ic 晶畴的原子力显微镜实验图(a),对应的结构模型示意图(b),以及周期性超结构的原子力显微镜实验图(c)捕捉预融化的微观过程为了进一步探究冰表面的预融化过程,研究人员进行了系统的变温生长实验,发现冰表面在零下153 ℃(120 K)时就开始融化(图3)。在融化初期,原本长程有序的超结构中局部开始出现大小不一的晶畴。随着生长温度的进一步升高,冰表面的超结构序完全消失。与此同时,在畴界附近,出现了大面积的表面无序,这些区域中经常可以观察到一种局域的平面化团簇结构。理论计算表明,该结构是一种亚稳态,其形成过程涉及到表面水分子层内氢键网络的调整和层间氢键的断裂,从而引起大面积的表面无序。在冰表面的初期预融化过程中,这种结构起到了关键作用。图3. 随着温度升高冰表面预融化过程的原子级分辨成像意义和展望该工作颠覆了长期以来人们对冰表面结构和预融化机制的传统认识。冰表面重构所引入的高密度分布的畴界,促进了预融化的发生,使得冰表面在极低的温度(120 K)下就开始变得无序,这个温度远低于之前研究普遍认为的预融化起始温度(大于200 K)。考虑到预融化开始的温度与大气层中的地球最低温度相当,这表明在自然环境中,大多数冰表面已经处于预融化的无序状态或者准液态。因此,理解地球上与冰相关的各种物理和化学性质,需考虑预融化过程中形成的表面缺陷和亚稳态的作用。这些发现开启了冰科学研究的新篇章,将对材料学、摩擦学、生物学、大气科学、星际化学等众多学科领域产生深刻的影响。该工作在审稿过程中获得三位审稿人高度评价,认为它是“多年来阅读过的最令人印象深刻且完整的论文之一”。他们肯定了“采用qPlus型低温原子力显微镜技术对冰表面进行原子级成像是一项重大技术创新”“所获得的分辨率在冰表面成像中是前所未有的”,同时指出该工作的广泛意义,“这些发现可能对大气科学、材料科学等多个领域产生深远的影响”。北京大学物理学院量子材料科学中心2018级博士研究生洪嘉妮(现为北京大学物理学院博士后,入选中国博士后创新人才支持计划)、2016级博士研究生田野(现为北京大学物理学院特聘研究员)、2020级博士研究生梁天成和2020级博士研究生刘心萌为文章的共同第一作者,江颖、徐莉梅、田野和王恩哥为文章的共同通讯作者。其中洪嘉妮、田野、刘心萌、江颖主要贡献为扫描探针实验,梁天成、潘鼎、徐莉梅、王恩哥主要贡献为第一性原理计算和模拟。上述工作得到了国家自然科学基金委、科学技术部、教育部、北京市科学技术委员会、北京市发展和改革委员会和新基石科学基金会的经费支持。
  • 两种表面分析技术对比:X射线光电能谱(XPS)和俄歇电子能谱(AES)
    一、概念1. X光电子能谱法(XPS)是一种表面分析方法,提供的是样品表面的元素含量与形态,而不是样品整体的成分。其信息深度约为3-5nm。如果利用离子作为剥离手段,利用XPS作为分析方法,则可以实现对样品的深度分析。固体样品中除氢、氦之外的所有元素都可以进行XPS分析。2. 俄歇电子能谱法(AES)作为一种最广泛使用的分析方法而显露头角。这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的所有元素。虽然最初俄歇电子能谱单纯作为一种研究手段,但现在它已成为常规分析手段了。它可以用于许多领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。俄歇效应虽然是在1925年时发现的,但真正使俄歇能谱仪获得应用却是在1968年以后。二、相似与区别:1.相同之处:它们都是得到元素的价电子和内层电子的信息,从而对原子化器表面的元素进行定性或定量分析,也可以通过氦离子对表面的刻蚀来分析原子化器近表面的元素,得到原子化器材料和分析物渗透方面的信息。2.相比之下,XPS通过元素的结合能位移能更方便地对元素的价态进行分析,定量能力也更好,使用更为广泛。但由于其不易聚焦,照射面积大,得到的是毫米级直径范围内的平均值,其检测极限一般只有0.1%,因此要求原子化器表面的被测物比实际分析的量要大几个数量级。AES有很高的微区分析能力和较强的深度剖面分析能力。现在最小入射电子束径可达30nm。但是文献还没有报道原子化器表面的俄歇电子象。另外,对于同时出现两个以上价态的元素,或同时处于不同的化学环境中时,用电子能谱法进行价态分析是比较复杂的。一、特点:X射线光电子能谱法的特点:① 是一种无损分析方法(样品不被X射线分解);② 是一种超微量分析技术(分析时所需样品量少);③ 是一种痕量分析方法(绝对灵敏度高)。但X射线光电子能谱分析相对灵敏度不高,只能检测出样品中含量在0.1%以上的组分。俄歇电子的特点是:① 俄歇电子的能量是靶物质所特有的,与入射电子束的能量无关。大多数元素和一些化合物的俄歇电子能量可以从手册中查到。② 俄歇电子只能从20埃以内的表层深度中逃逸出来,因而带有表层物质的信息,即对表面成份非常敏感。正因如此,俄歇电子特别适用于作表面化学成份分析。局限性:① 不能分析氢和氦元素;② 定量分析的准确度不高;③ 对多数元素的探测灵敏度为原子摩尔分数0.1%~1.0%;④ 电子束轰击损伤和电荷积累问题限制其在有机材料、生物样品和某些陶瓷材料中的应用;⑤ 对样品要求高,表面必须清洁(最好光滑)等。三、两者的应用X射线光电子能谱分析与应用1.元素(及其化学状态)定性分析方法:以实测光电子谱图与标准谱图相对照,根据元素特征峰位置(及其化学位移)确定样品(固态样品表面)中存在哪些元素(及这些元素存在于何种化合物中)。定性分析原则上可以鉴定除氢、氦以外的所有元素。分析时首先通过对样品(在整个光电子能量范围)进行全扫描,以确定样品中存在的元素;然后再对所选择的峰峰进行窄扫,以确定化学状态。2.在固体研究方面的应用对于固体样品,X射线光电子平均自由程只有0.5~2.5nm(对于金属及其氧化物)或4~10nm(对于有机物和 聚合材料),因而X射线光电子能谱法是一种表面分析方法。以表面元素定性分析、定量分析、表面化学结构分析等基本应用为基础,可以广泛应用于表面科学与工程领域的分析、研究工作,如表面氧化(硅片氧化层厚度的测定等)、表面涂层、表面催化机理等的研究,表面能带结构分析(半导体能带结构测定等)以及高聚物的摩擦带电现象分析等。Cr、Fe合金表面涂层——碳氟材料X射线光电子谱图X射线光电子能谱分析表明,该涂层是碳氟材料。俄歇能谱应用通过正确测定和解释AES的特征能量、强度、峰位移、谱线形状和宽度等信息,能直接或间接地获得固体表面的组成、浓度、化学状态等多种情报。1. 定性分析定性分析主要是利用俄歇电子的特征能量值来确定固体表面的元素组成。能量的确定在积分谱中是指扣除背底后谱峰的最大值,在微分谱中通常规定负峰对应的能量值。习惯上用微分谱进行定性分析。因此由测得的俄歇谱来鉴定探测体积内的元素组成是比较方便的。在与标准谱进行对照时,除重叠现象外还需注意如下情况:①由于化学效应或物理因素引起峰位移或谱线形状变化引起的差异;②由于与大气接触或在测量过程中试样表面被沾污而引起的沾污元素的峰。2. 状态分析对元素的结合状态的分析称为状态分析。AES的状态分析是利用俄歇峰的化学位移,谱线变化(包括峰的出现或消失),谱线宽度和特征强度变化等信息。根据这些变化可以推知被测原子的化学结合状态。3. 深度剖面分析利用AES可以得到元素在原子尺度上的深度方向的分布。为此通常采用惰性气体离子溅射的深度剖面法。由于溅射速率取决于被分析的元素,离子束的种类、入射角、能量和束流密度等多种因素,溅射速率数值很难确定,一般经常用溅射时间表示深度变化。4. 界面分析用 AES研究元素的界面偏聚时,首先必须暴露界面(如晶界面,相界面,颗粒和基体界面等等。一般是利用样品冲断装置,在超高真空中使试样沿界面断裂,得到新鲜的清洁断口,然后以尽量短的时间间隔,对该断口进行俄歇分析。 对于在室温不易沿界面断裂的试样,可以采用充氢、或液氮冷却等措施。如果还不行,则只能采取金相法切取横截面,磨平,抛光或适当腐蚀显示组织特征,然后再进行俄歇图像分析。5. 定量分析AES定量分析的依据是俄歇谱线强度。表示强度的方法有:在微分谱中一般指正、负两峰间距离,称峰到峰高度,也有人主张用负峰尖和背底间距离表示强度。6. 俄歇电子能谱在材料科学研究中的应用① 材料表面偏析、表面杂质分布、晶界元素分析;② 金属、半导体、复合材料等界面研究;③ 薄膜、多层膜生长机理的研究;④ 表面的力学性质(如摩擦、磨损、粘着、断裂等)研究;⑤ 表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研究;⑥ 集成电路掺杂的三维微区分析;⑦ 固体表面吸附、清洁度、沾染物鉴定等。
  • 表面张力,你了解多少?
    什么是表面张力?我们生活中经常会跟表面张力打交道,却清楚认知它。它在清洁洗涤中扮演者象汽车、化妆品中的润滑剂那样的角色。水甲虫之所以不被淹死只不过是因为表面张力在作怪。液体中分子之间的吸引力是产生表面张力的原因。如果我们观察某种介质的内部分子结构的时候,会发现分子间的吸引力是相同的。因此,分子所受到的各个方向的力是相同的,合力为零。另一方面,如果分子处于液体表面,液体内部的吸引力作用在一边,另外一边却没有分子作用力的存在。因此,合力的方向是指向液体内部的。从宏观来看,液体表面积会趋向最小华,液滴将因此趋向变圆。测量表面张力的方法:拉环法:利用一个初始浸在液体的环从液体中拉出一个液体膜,测量环脱离液面时需要施加的力来计算出表面张力。吊片法:又称Wilhelmy法、吊板法。采用盖玻片、云母片、滤纸或铂箔平板插入液体,使其底边与液面接触,测定吊片脱离液体所需与表面张力相抗衡的最大拉力F,也可将液面缓慢地上升至刚好与吊片接触。吊片法直观可靠,不需要校正因子,这与其他脱离法不同,还可以测量液-液界面张力。棒法:与吊片法差不多,以Wilhelmy 板法为基础,用圆柱棒代替吊板,测量表面张力。滴体积法:液体在毛细管口成滴下落前的瞬间,落滴所受的重力与管口半径及液体的表面张力有关。悬滴法:英文名为Pendant Drop method,通过测量一悬滴的轮廓来获得液体的表面张力。气泡压力法:通过液体分子间的吸引力,液体里面的空气气泡同样会受到这些吸引力的作用,譬如气泡在液体中形成会受到表面张力的挤压。气泡的半径越小,它所有的压力就越大。通过与外部气泡相比,增加的压力可用于测量表面张力。空气经由毛细管进入液体,随着气泡形成外凸,气泡的半径也随之连续不断的减小。这个过程压力会上升到最大值,气泡半径最小。此时气泡的半径等于毛细管半径,气泡成半球状。此后,气泡破裂并脱离毛细管,新气泡继续形成。把过程中的气泡压力特征曲线描绘出来,我们就可以用它来计算出表面张力。测量表面张力的意义研究表面张力主要是为了确定:1.液体的自身性质;2.环境对表面张力的影响;3.具有特殊功能的活性剂的浓度。目前,无论是科研还是工业应用,对加入特殊功能活性剂的研究和应用,表面张力已成为主要的参考项目之一,如日化行业的增泡剂、增粘剂等,喷墨和油墨行业的润湿剂、流平剂等,化工的树脂、乳液等,清洗行业的清洁剂、除污剂等等。目前市场上已经有多种测量液体表面张力的仪器,有的测的是静态的、有的测的是动态的,那么动态表面张力和静态表面张力有什么区别呢?让我们一起往下看了解。静态表面张力 VS 动态表面张力静态表面张力如拉环法,是利用一个初始浸在液体的环从液体中拉出一个液体膜,测量环脱离液面时需要施加的力来计算出表面张力。而当表面活性剂浓度大于临界胶束浓度CMC值时,表面活性剂不会在气液界面上增加排布,而会在液体内部形成胶束或游离等状态,因此拉环法方法不能测出浓度增大时表面张力的区别。测试表面张力的方法,包括:最大气泡发,拉板拉环法,毛细管上升法,界面夹角法,旋滴法等等。而测动态的只有最大气泡法,它的优势是,在几十毫秒到几十秒之间,可以产生一系列的气泡,每个气泡代表一个新界面,每个新界面都有相应的一个表面张力读数,此过程可得到一系列动态的表面张力值。而静态测试方法是一个界面上的变化,最终所取的是一个最佳值,最佳值通常都在十几秒或以后产生的,此过程是测出一个值,而这个值是可以在鼓泡法中的曲线中寻找出来的。对于有特殊功能活性剂的研究,往往是需要在很短时间内达到相应的效果,例如,喷墨和印刷行业大部分需要在70ms-150ms之间要求墨水的表面张力达到35mN/m左右。日化行业龙头企业要求增泡剂在300ms内达到32mN/m。测动态表面张力,除了可以达到某些特殊效果外,还可以通过测试得出动态CMC值(包括最佳CMC和应用CMC),研究溶液和活性剂的特性。不同品牌表面张力仪的对比指标传统表面张力仪SITA动态表面张力仪原理铂金环法、铂金板法气泡法测量值只能测得静态表面张力;传统的表面张力测试仪采用铂金环法/铂金板法原理,而这种方式不能反映表面活性剂的迁移到界面过程,因此也就不能测出动态表面张力。可兼顾测得动态表面张力与静态表面张力数据;SITA析塔公司生产的表面张力仪通过智能控制气泡年龄(bubble lifetime),可以测出液体中表面活性剂分子迁移到界面过程中表面张力的变化过程,即连续的一系列的的动态表面张力值以及静态表面张力值。表面活性剂浓度测量仅适合低于CMC值的表面活性剂浓度的测量:用传统表面张力仪只能在低于CMC值时反映表面活性剂随浓度的变化(建立表面活性剂浓度与表面张力的关系图)适合低于CMC值以及更高浓度表面活性剂浓度的测量:在有关CMC值的研发时,当表面活性剂的浓度远远超过临界胶束浓度时,改变表面活性剂的浓度不改变平衡态的表面张力(静态表面张力),而通过动态表面张力测量时即使浓度达到四倍的临界胶束浓度也能看出它的显著作用。因此,在高于CMC值时,通过气泡法原理的表面张力仪也可以反映表面活性剂随浓度的变化(建立表面活性剂浓度与表面张力的关系图)操作过程人工或自动自动读数人工或自动自动,并可通过软件传输到电脑,生成各样品曲线对比图。抗污染性弱;因为污染物及环变形的影响可能会对测试数据产生影响。强;每测一个样品只需清洗PEEK材质毛细管即可,易清洗测量对象要求铂金板测量阳离子表面活性剂会有误差,因为阳离子表面活性剂吸附在板上,影响其他样品的测试。铂金环不适合测量中高粘度液体样品表面张力。适用于1000cps以下粘度液体样品的表面张力测量实验重现性弱;综上所述,当读数有偏离预期标准时,操作人员很难判断是由于仪器本身的问题,还是由于液体样品的问题而导致读数不合格! 会浪费大量时间与成本重现实验。强;析塔表面张力仪可通过动态表面张力数据放大不同样品之间的差异(静态表面张力值差异不大的情况下)。有了更宽的容差后,可以覆盖因为温度波动、仪器波动历等因素造成的干扰, 使制程中监控更准确,更安全,更可靠。耗材铂金板/铂金环易变形,需不定期更换,价格大概2000RMB。不需耗材,每次测完样品只需清洗毛细管即可校准用过蒸馏水和纯乙醇为标准物进行校准用纯水为标准物进行校准举例说明喷墨打印机的打印头喷墨到纸张上只需要十几毫秒(或更短时间),汽车漆喷涂到工件上乳胶漆滚涂到墙面上或需要几十到几千毫秒,不同的表面活性剂迁移到新的界面需要的时间不同,所以对产品的润湿,流平性能的影响也有所不同。如下图所示,图1是析塔SITA表面张力仪的毛细管刚形成新的气泡(即新的界面)时,表面活性剂只有少量聚集到新的界面上。随界面形成的时间越久(即气泡寿命越长),表面活剂剂聚集到界面上就越多。析塔SITA表面张力仪可以测出从15毫秒到15秒的动态表面张力。表面张力分析仪介绍德国析塔SITA是液体动态表面张力测试方法的领导者,1993年创立了新一代表面张力计的理论基础。点击图片查看更多关于德国析塔SITA表面张力仪型号详情德国析塔SITA表面张力主要有以下几个型号:指标/型号SITA Dynotester+动态表面张力仪SITA Pro Line t15全自动动态及静态表面张力仪SITA Science Line t100实验室表面张力仪SITA Clean Line ST在线表面张力仪简介手持式/便携式,快速简便的测量生产过程中的连续测量研发型/实验室型集成式,与生产控制系统相连,使之自动添加表面活性剂。表面张力范围10-100 mN/m10-100 mN/m10-100 mN/m10-100 mN/m气泡寿命范围(ms)15-2000015-10000015-10000015-15000测试模式单次模式单次/连续测量/自动测量模式单次/连续测量/自动测量模式单次/连续测量/自动测量模式测量液体温度(0-100)℃(-20-125)℃(0-100)℃(0-80)℃翁开尔是德国析塔SITA中国总代理,近40年行业经验,能根据你的需求为您提供专业的解决方案。
  • 材料表面与界面分析技术及应用
    表面和界面的性质在材料制备、性能及应用等方面都起着重要作用,是材料科学领域研究的重要课题。2023年12月18-21日,由仪器信息网主办的第五届材料表征与分析检测技术网络会议将于线上召开,会议聚焦成分分析、微区结构与形貌分析、表面和界面分析、物相及热性能分析等内容,设置六个专场,旨在帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作。其中,在表面和界面分析专场,北京师范大学教授级高工吴正龙、国家纳米科学中心研究员陈岚、暨南大学 实验中心主任/教授谢伟广、上海交通大学分析测试中心中级工程师张南南、岛津企业管理(中国)有限公司应用工程师吴金齐等多位嘉宾将为大家带来精彩报告。部分报告内容预告如下(按报告时间排序):北京师范大学教授级高工 吴正龙《X射线光电子能谱(XPS)定量分析》点击报名听会吴正龙,在北京师范大学分析测试中心长期从事电子能谱、荧光和拉曼光谱分析测试、教学及实验室管理工作。熟悉表面分析和光谱分析技术,积累了丰富实验测试经验。主要从事薄膜材料、稀土发光材料研究及石墨烯材料表征技术、表面增强拉曼光谱技术的研究,在国内外期刊发标多篇学术论文。现任全国表面化学析技术委员会副主任委员,主持和参与多项电子能谱分析方法标准。近年来,在多场国内电子能谱应用技术交流培训会上担任主讲人。报告摘要:X射线光电子能谱(XPS)作为最常用的表面分析技术,表面探测灵敏度高,可以检测表面化学态物种的表面平均含量、表面偏析;分析薄膜组成结构;评估表面覆盖、表面分散、表面损伤、表面吸附污染等。本报告在简要介绍XPS表面定量分析原理基础上,通过实际工作中的一些实例,探讨XPS定量结果解释,帮助大家正确理解XPS定量分析结果,更好地利用XPS技术分析表面。岛津企业管理(中国)有限公司应用工程师 吴金齐《岛津XPS技术在材料表面分析中的应用》点击报名听会吴金齐,岛津分析中心应用工程师,博士毕业于中山大学物理化学专业,博士毕业后加入岛津公司,主要负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展不同行业材料表征相关研究,具有多年XPS仪器使用经验,熟悉XPS数据处理及解析,合作发表多篇SCI论文。报告摘要:介绍相关表面分析技术及XPS在材料表面分析中的应用。国家纳米科学中心研究员 陈岚《纳米气泡气液界面的检测》点击报名听会陈岚,爱尔兰国立科克大学理学博士,剑桥大学居里学者,2014年至今,先后任国家纳米科学中心副研究员、研究员及博士研究生(合作)导师;主要从事纳米界面微观检测及纳米界面光电化学性能调控方面的研究;ISO/TC281注册专家,全国微细气泡技术标准化技术委员会(SAC/TC584)委员,中国颗粒学会微纳气泡、气溶胶专委会委员,Frontiers in Materials及Catalysts客座编辑,科技部在库专家,北京市科委项目评审专家;主持科技部发展中国家杰出青年科学家来华工作计划1项,参与国家重点研发计划“纳米科技”重点专项、“纳米前沿”重点专项各1项;共发表论文近60篇,授权专利9项,编制国家标准10部。报告摘要:体相纳米气泡具有超常的稳定性及超高的内压,高内压的纳米气泡在溶液中稳定存在的机制一直众说纷纭。因此,研究纳米气泡边界层对于解释纳米气泡的稳定性具有重要的意义。由于纳米气泡气液界面的特点,检测体相纳米气泡边界层十分困难,常规的方法和技术手段很难实现。在本工作中,首次采用低场核磁共振技术(LF-NMR)对体相纳米气泡边界层中水分子的弛豫规律进行了系统研究,提出了纳米气泡边界层测量的数学模型,并成功地测得了不同尺寸纳米气泡的边界层厚度。研究发现,纳米气泡粒径越小,边界层所占比例越高,因而也越可以对更高内压的气核进行有效保护,纳米气泡的稳定性也可以据此进行定量解释。暨南大学 实验中心主任/教授谢伟广《范德华异质结光电探测及光电存储器件》点击报名听会谢伟广,暨南大学物理与光电工程学院教授,博导。2007年博士毕业于中山大学凝聚态物理专业,导师为许宁生院士;研究方向是微纳尺度多场耦合行为及应用,半导体光电转换过程、器件及集成;在Advanced Materials, ACS Nano等期刊发表SCI论文80多篇,代表性成果包括:实现了多种二维半导体氧化物的CVD制备,首次发现了极性二维氧化物长波红外低损耗双曲声子极化激元现象;发展了钙钛矿薄膜的真空气相制备方法,实现了高效气相太阳能电池及光电探测阵列的制备。研究团队发展的多项方法已被国内外同行广泛采纳,并在Nature、Sciecne等著名期刊正面评价。主持国家基金面上项目、重点项目子课题、广东省自然科学基金杰出青年基金项目等多项项目;于2022年(排名第一)获得中国分析测试协会科学技术(CAIA)奖一等奖。报告摘要:二维钙钛矿(2DPVK)具有独特的晶体结构和突出的光电特性,设计2DPVK与其他二维材料的范德华异质结,可以实现具有优异性能的各类光电器件。本报告主要介绍下面两种异质结器件:(1)光电探测器:制备了2DPVK/MoS2范德华异质结器件,由于II型能带排列中层间电荷转移所诱导的亚带隙光吸收,器件在近红外区域表现出了单一材料均不具备的光电响应。在此基础上引入石墨烯(Gr)夹层,借助Gr的有效宽光谱吸收和异质结中光生载流子的快速分离和输运,2DPVK/Gr/MoS2器件的近红外探测性能进一步得到了大幅提升。(2)光电存储器:开发了基于MoS2/h-BN/2DPVK浮栅型光电存储器,其中2DVPK由于其高光吸收系数,能同时作为光电活性层与电荷存储层,器件展现了独特的光诱导多位存储效应以及可调谐的正/负光电导模式。上海交通大学分析测试中心中级工程师 张南南《紫外光电子能谱(UPS)样品制备、数据处理及应用分享》点击报名听会张南南,博士,2019年毕业于吉林大学无机化学系,同年入职上海交通大学分析测试中心,研究方向为材料的表界面研究,主要负责表面化学分析方向的X射线光电子能谱仪(XPS)及飞行时间二次离子质谱(ToF-SIMS)方面的测试工作。获得上海交通大学决策咨询课题资助,授权一项发明专利,并在 J. Colloid Interf. Sci., Catal. Commun.等期刊发表了相关学术论文。报告摘要:紫外光电子能谱(UPS),能够在高能量分辨率水平上探测价层电子能级的亚结构和分子振动能级的精细结构,广泛应用在表/界面的电子结构表征方面。本报告主要介绍UPS原理、样品制备、数据处理以及在钙钛矿太阳能电池、有机半导体、催化材料等领域的应用。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 岛津原子力显微镜-从表面到界面
    人类认识真理的过程就像剥洋葱,由表及里一层层递进。 反映到对化学反应过程的认识,一开始,人们通过物质的形、色等外在表象认识化学反应。正如现代化学之父拉瓦锡重复的经典“氧化汞加热”实验一样,氧化汞由红色粉末变为液态的金属汞,这个显著的变化意味着反应的发生。即使到了近现代,仪器分析手段越来越多样,我们做常用的分析手段也是通过物质外在状态的变化进行观察,或者利用各类显微镜及X射线衍射仪观察物质的结构变化。 拉瓦锡之匙拉瓦锡对化学反应中物质的质量、颜色、状态变化的观察,犹如在重重黑暗中,找到了打卡化学之门的那把钥匙。 元素周期表 到19世纪,道尔顿和阿伏加德罗的原子、分子理论确立,门捷列夫编列了元素周期表。原子、分子、元素概念的建立令化学豁然开朗 自从用原子-分子论来研究化学,化学才真正被确立为一门科学。正是随着对不同元素的各种微粒组合变化的认识发展,化学的大门终于被打开。伴随金属键、共价键、离子键、氢键等各种“键”概念的提出,人们逐渐认识到各种反应的本质是原子或分子等微粒间的力学变化。于是,对反应的观测需要微观下的力学测量工作。 作为专门利用极近距离下极小颗粒间作用力工作的原子力显微镜,此事展现了自身巨大优势。无论是直接测试不同分子间的作用力,还是利用力的测量完成表面形貌的表征,原子力显微镜以高分辨率出色地完成了任务。 对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,因此其表面作用力极其微弱。从测试曲线上可以看出,脂质膜对探针的力只有约1pN,但是原子力显微镜的测试曲线上可以很清晰地捕捉到这个变化。 有趣的是,人们对真理的发掘,是由表及里的。但是利用原子力显微镜对化学反应本质的发现,却是由内而外的。 原子力显微镜基本是被作为一种表面分析工具使用的。这使其只能用来观察反应前后固相表面的结构变化,或者通过固相表面的各种属性,如机械性能、电磁学性能等侧面论证反应的发生。而要真正观察到反应的过程,是要对界面层进行观测的。因为几乎所有的反应,都是发生在两相界面处的,表面只是最终反应结果的呈现。 在界面处,反应发生时,原有的原子/分子间的作用力——也就是各种“键”,因为电子的状态变化(得失或者偏移)无法维持原有的稳定性,从而导致了原子/分子的重新排列,直到形成了新的力学稳定态——也就是新的“键”形成后,反应结束。这个过程的核心就是原子/分子间的“力的变化”。 反应的本质——微粒间力的分分合合 当化学科学的车轮推进到纳米时代,当探索的前锋触摸了两相界面,当理论的深度深入到动力学的研究。原子力显微镜是否能够当此重任呢? 能。但是需要一番蜕变。 界面处的力梯度有两个特点。一是更为集中,一般在0.3nm-1nm左右的范围内会有2-4个梯度变化;二是更为微弱,现在的原子力显微镜可以有效捕捉皮牛级的力变化,但是在表征界面时依然分辨率不足,需要的分辨率要提高1-2个数量级。 新的需求引导了新的技术蜕变。调频模式的成熟化,几乎完美应对了界面处的力梯度特点。一方面,只有几个埃的振幅可以有效对整个界面区进行表征,另一方面,检测噪音压低到20 fm/√Hz以内,保证了极高的分辨率。 岛津调频型原子力显微镜SPM-8100FM 例如对固液界面的观察。我们都知道,因为在固液界面处,因为液体分子和固体表面分子的距离不同,会形成不同的作用力,如氢键、偶极矩、色散力等。因此形成的液体分子的堆积密度会有不同。这种液体分子的分层模型,是润滑、浸润、表面张力等领域的底层原理。但是长期以来,这些理论只存在于数理模型和宏观现象解释之中,没有一个合适的直观观测工具。 界面观测之牛刀小试 岛津的SPM-8100FM的出现,将固液界面的高效表征变成了现实。上图右侧就是云母和水的界面处,水分子的分层结构,在约0.6nm的范围内,可以清楚看到3个分层。 具体到现实应用中,对表面润滑的研究很适合采用这种分析工具进行定性定量化测试。使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析。 图示为4组对照实验,分别是仅使用PAO(聚α-烯烃)和添加了不同浓度的C18AP(正磷酸油酸酯)的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向结构被C18AP取代,在基片上形成了吸附膜。随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。和微观界面表征的结果非常吻合。 由此可见,使用SPM-8100FM对润滑油-氧化铁界面实施滑动表面摩擦特性分析评估,可有效加快润滑油开发进度。 技术的发展推动了科学的进步,科学的发展也渴求更多的技术发展。原子力显微镜表征技术由表面向界面的延伸,一定会有力地推动对化学由表象向本质的探索。岛津将一如既往地尽其所能,提供帮助。 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制