当前位置: 仪器信息网 > 行业主题 > >

边界层

仪器信息网边界层专题为您整合边界层相关的最新文章,在边界层专题,您不仅可以免费浏览边界层的资讯, 同时您还可以浏览边界层的相关资料、解决方案,参与社区边界层话题讨论。

边界层相关的论坛

  • 大气污染==(空气)污染预报

    污染指数公报表明现在的空气质量状况,实际还需要掌握未来会产生什么样的状况,以便采取对策。因为气象条件与空气污染密切相关,所以天气预报的副产品可以推测未来的空气污染状况,例如风速大小、冷高压的位置、强度、逆温层结是否出现等。综合上述预报出的因子,可以得到空气污染的潜势预报,指出对污染是否有利的气象条件。另一种是空气污染的数值预报,需要建立数值模式,包括:1、大气小尺度动力学,除一般的平流运动之外还能描写大气对流运动,另外要用适当方法描写大气边界层(大气边界层在对流层下部靠近地面的1.2─1.5公里范围内的薄层大气称为大气边界层或行星边界层。因为贴近地面,空气运动受到地面摩擦作用影响,又称摩擦层。

  • 氙灯耐气候试验箱湿热老化试验怎么做到的

    氙灯耐气候试验箱湿热老化试验怎么做到的

    氙灯耐气候试验箱的常用试验之一就是湿热老化试验,这是保证设备能够满足客户要求并精准获得试验结果的保障!因此我们非常有必要了解它是通过何种方式来进行湿热老化试验,以及工作原理和运作方式分别是什么?  氙灯耐气候试验箱就是通过模拟湿气加热气来对产品循环进行老化的试验仪器。试验箱在低温高湿时,由于吸入的蒸汽与空气未充分混合,或与工作室箱壁接触而出现局部冷凝,不但会减少加入的蒸汽量,而且还会释放出热量使箱内湿空气温度上升,加上前述的所以并非等温的加湿过程,箱内温度会有所升高。  市场上出现的此类温湿度循环设备一般都是采用空气与水面直接接触的湿热循环交换原理:设备蒸汽用电热加湿一般分为开启式和密闭式。开启式响应性较慢,常有滞后现象,故湿度波动较大,但结构简单可靠。闭式蒸汽压力大于大气压,在0.1~0.3MPa之间,无滞后,但需配有减压阀、电磁阀、泄水管等,结构复杂,多用于大型人工气候室中。http://ng1.17img.cn/bbsfiles/images/2016/02/201602251037_585046_2930782_3.jpg  当空气经过敞开的水面时,与水表面发生热湿交换。设备按其水温不同,可能仅发生湿热交换;也可能既有热湿交换,又能湿交换,同时还有湿热交换。湿热交换是空气与水之间存在温差,因导热、对流和辐射作用而换热,而潜热交换是空气中的水蒸汽蒸发(或凝结)而吸收(或放出)汽化潜热的结果。总热交换量为湿热交换量与潜热交换量的代数和。空气与水面直接接触时,在贴近水面上,由于水分子作不规则运动的结果,高低温交变湿热试验箱形成了一个温度等于水面温度的饱和空气边界层,且其水蒸汽分子的浓度或水汽分压力取决于边界层的饱和空气温度。  试验箱湿热原理通过电加热水,使水槽内产生蒸汽,蒸汽通过喷雾管进入湿热箱,对箱内空气进行加湿。如边界层的温度高于其上空气的温度,则由边界层向空气传热;反之则由空气向边界层传热。如边界层内水蒸汽分子浓度大于其上空气的水蒸汽分子浓度(即边界层的水蒸汽分压力大于空气的水蒸汽分压力),则空气中的水蒸汽分子数将增加;反之则将减少。前者称为蒸发,后者称为冷凝。湿热试验箱在蒸发过程中,边界层中减少了的水汽分子由水面跃出的水分子补充;在冷凝过程中,边界层中过多的水汽分子将回到水面。  氙灯耐气候试验箱中气流通过箱内的浅水盘表面,此温度等于水面温度的饱和空气边界区进行湿热交换。当边界区内蒸汽分子浓度大于流过的气流的水蒸汽分子浓度,则为加湿,反之则为降湿。由此可见,空气与水之间的湿热交换取决于边界层与其上方空气之间的温差,而湿交换及由此而引起的潜热交换取决于二者之间水蒸汽分子的浓度差或分压力差。

  • 关于高低温试验箱的设计判定——厂家花了不少心思

    关于高低温试验箱的设计判定——厂家花了不少心思

    [b]高低温试验箱[/b]空气与水之间的热湿交换原理:[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/04/202104191403050616_5401_1037_3.jpg!w348x348.jpg[/img][/align]  高低温试验箱空气通过开阔水面时,与水面发生热湿交换。根据水温的不同,只能进行显热交换,也可以同时进行显热交换、湿交换和潜热交换。显热交换是指空气与水之间的温差,由于热传导、对流和辐射而产生的热量传递,而潜热交换是水蒸气在空气中蒸发(或凝结)吸收(或释放)汽化潜热的结果。总热交换量是显热交换量和潜热交换量的代数和。  高低温试验箱中的气流通过箱体内浅水盘的表面,将温度等于水面温度的饱和空气边界区换为水分和热量。当边界区域内的蒸汽分子浓度大于通过气流中的水蒸汽分子浓度时,即为增湿,反之则为除湿。  在高低温试验箱中,在低温高湿条件下,加入的蒸汽和空气未充分混合,或与箱壁接触发生局部冷凝,不仅减少了蒸汽的加入量,而且释放热量,使箱内潮湿空气温度升高。增加;加上前面提到的ε′ε,所以这不是一个等温增湿过程,箱内的温度会有所增加。  蒸汽加湿,如电加热加湿,分为开式和闭式。敞开式响应慢,常有滞后现象,湿度波动大,但结构简单可靠。闭式蒸汽压力大于大气压,在0.1~0.3Mpa之间,无滞后现象,但需配减压阀、电磁阀、排水管等,结构复杂,多用于大型人工气候室。敞开式多用于中小型湿热箱。  如果边界层的温度高于其上方空气的温度,热量就从边界层转移到空气中;否则,热量就从空气转移到边界层中。如果边界层中水汽分子的浓度大于其上方空气中水汽分子的浓度(即边界层中水汽的分压大于空气中水汽的分压),则空气中水汽分子的数量将增加;否则,就会减少。前者称为“蒸发”,后者称为“冷凝”。在蒸发过程中,边界层中还原的水蒸气分子被跳出水面的水分子所取代;在冷凝过程中,边界层中过多的水蒸气分子会返回水面。

  • V锥流量计的优势及功能介绍

    V锥流量传感器与差压变送器组合成为V锥流量计,是目前最先进的差压式流量计之一,可精确测量宽雷诺数范围(8×103~ 5×107)内各种介质的流量。V锥流量计可耐高温,无运动部件,具有长期精度高、稳定性好、受安装条件影响小、耐磨损、测量范围宽、压损小等优点。 V锥流量计克服了一般流量仪表很难在扰动流动中取得正确测量值的缺点,在极恶劣的安装条件下,如上游有两个不在同一平面上的弯头,而且很靠近锥体,V型锥体也能使速度分布变得平坦和对称,从而确保了测量精度。V锥流量计的节流缘是钝角,流动时形成边界层,使流体离开了节流缘。边界层效应使肮脏流体不能磨损节流缘,其值长期不变。因此无需重复标定,具有长期的稳定性。 V锥流量计改善了传统差压流量计的使用局限,提高了精确度和重复性,安装时几乎无直管段要求,自清洗功能,适用于容易结垢的脏污介质,气液两项测量。V锥流量计适用于各行业的液体、气体和蒸汽流量的测量,特别适合脏污介质的测量。

  • 大气科学之气象观测==高空气象观测

    测量近地面到30公里甚至更高的自由大气的物理、化学特性的方法和技术。测量项 目主要有气温、气压、湿度、风向和风速,还有特殊项目如大气成份、臭氧、辐射、大气电等。测量方法以气球携带探空仪升空探测为主。观测时间主要在北京时7时和19时两次,少数测站还在北京时1时和13时增加观测,有的测站只测高空风。此外其他不定时探测内容有2公里以下范围的大气状况的边界层探测、测量特殊项目的气象飞机探测和气象火箭探测等。

  • 大气科学之气象观测==气象气球

    气象气球  用橡胶或塑料制成的球皮,充以氢气、氮气等比空气轻的气体,能携带仪器升空进行高空气象观测的观测平台。气球的大小和制作材料由它们的用途来确定,主要有以下几种:(1) 测风气球 气象上称小球,用橡胶制作,球皮重约30克,主要用于经纬仪测风或边界层探空,最大升空高度在10-15公里。(2) 探空气球 用橡胶或氯丁乳胶制作,球皮重0.8─2.0千克,携带1千克仪器升速为5─6米/秒,最大升空高度可达30公里。是日常高空观测使用的气球。(3) 系留气球 用缆绳拴在地面绞车上,能控制浮升高度的气球。通常用聚脂薄膜做成流线形,缆绳长度及与地面交角可以估算气球距地面高度,它可以携带测量仪器在指定高度作数小时连续测量,用完后收回作多次使用。特别适用于大气污染监测和研究大气边界层等。(4) 定高气球 在大气中保持在等密度面上平稳地随气流飘移的气球,也称等密度气球或等容气球。气球由塑料制成多层复合膜,耐压性强,保气性好。在地面施放时仅部分充气,升到预定高度时,因球内气体量不变因而密度不变,保持在一个等密度面上飘行,气球大小视飞行高度和所带仪器的重量而定,其直径小至一米,大至数十米不等,在空中可飘行数天至数月。大型定高气球直径22米,距地高24公里,可携带200个探空仪,能接受卫星指令,每隔一定飘浮距离投下一架探空仪,下投的探空仪带降落伞,观测数据由无线电信号发到母球,再由母球转送到卫星,最后由卫星播发到地面站接收。这种与卫星结合的定高气球称为母子定高气球系统,在测量气团属性变化和大气电学特性等方面已广泛应用。

  • 求助中文文献

    序号】:【作者】:袁松【题名】:边界层大气气溶胶和水汽的激光雷达探测与Raman-Mie激光雷达的研制【期刊】:中国科学院文献情报中心【全文链接】:https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMTA1MTkSGXh3Y2FsaXMyMDEzMDMwNTAwMDA5NjgwMzAaCDUycHQ2eGNi

  • 【我们不一YOUNG】关于共有边界的噪声预测的问题

    问题:我司为新建项目,环评阶段,进行噪声预测时发现厂房(厂区)东边界、南边界紧挨其他企业的厂房,请问,在这种情况下,是否需要对东边界、南边界进行噪声预测。回复:您好!根据《环境影响评价技术导则 声环境》(HJ 2.4—2021)8.5.2要求“预测和评价建设项目施工期和运营期厂界(场界、边界)噪声贡献值,评价其超标和达标情况”。

  • PM1.0 !站住!

    大家已经知道,以大气中颗粒物的直径来划分,有PM10、PM2.5和PM1。数值越小,表示颗粒物的“个头”越小。目前PM2.5占PM10的一半以上,而PM1占了PM2.5中颗粒物数量的绝大部分。PM1甚至可以进入人的血液,会更容易携带大气中致癌物质,进入人体内。新疆乌鲁木齐已开展对PM1的研究性监测,将为重启空气质量预报提供数据支撑。而大连市位于星海的东北第一个空气质量超级自动监测站即将试运行,“超级站”与另4个监测子站从8月底开始将盯紧PM1.0。 名词解释PM1.0    PM1.0是指大气中直径小于或等于1.0微米的颗粒物。    超级站监测项目为PM2.5、PM1.0、能见度、吸收系数、散射系数、气象参数、大气气溶胶有机碳/元素碳(EC/OC)、挥发性有机物、汞、温室气体等一次污染物化学组成监测、灰霾颗粒物粒径分布、气溶胶大气边界层高度、大气温廓线、太阳辐射等与形成光化学烟雾有关参数的监测。    灰霾站监测项目为二氧化硫、二氧化氮、一氧化碳、PM10、PM2.5、PM1.0、臭氧、能见度、吸收系数、散射系数、气象参数。

  • 传热学三类边界条件的新定义及其背后的物理意义和应用

    传热学三类边界条件的新定义及其背后的物理意义和应用

    [size=16px][color=#339999][b]摘要:针对传热学三类边界条件目前常见的定义,本文从导热、对流和辐射三种传热机理出发介绍了三类边界条件的物理意义及其拓展。另外,本文重点介绍了三类边界条件更直观的温度形式的定义,以及这些边界条件温度形式在热物性测量中的实际应用。[/b][/color][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px][color=#339999][b]1. 传热学三类边界条件的常规定义[/b][/color][/size][size=16px] 在常规条件下,固体物体的热传递有导热、对流和辐射三种形式。依据热传递的这三种基本形式,现有教科书和网络资料对物体传热过程中的三类边界条件定义,可以归纳为:[/size][size=16px] (1)第一类边界条件:规定了物体边界上的温度值。[/size][size=16px] (2)第二类边界条件:规定了物体边界上的热流密度(也称之为热通量)。[/size][size=16px] (3)第三类边界条件:规定了物体边界与周围流体间的表面传热系数和周围流体的温度。[/size][size=16px] 三类边界条件下物体内部的温度变化和传热形式如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.三类边界条件传热示意图,690,223]https://ng1.17img.cn/bbsfiles/images/2023/03/202303301739128668_1088_3221506_3.jpg!w690x223.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 物体的三类边界条件及其内部温度变化形式[/b][/color][/size][/align][size=16px] 对于第一类边界条件很容易理解,就是物体在边界处的内外温度相同。[/size][size=16px] 同样,依据能量守恒定律,对于第二类边界条件,则是物体在边界处的热流密度相同,即进入物体表面单位面积上的热量等于在物体内部(边界内)单位面积上传导的热量。由于物体中进入热量并进行热传导,自然会形成温度梯度,这样就会与物体的导热系数发生关系,而这种热流密度与导热系数之间的关系则在很多热计算和导热系数测量中得到应用。[/size][size=16px] 从图1所示的三类边界条件可知,第一和第二类边界条件实际上是对物体导热传热时的描述,而第三类边界条件是对辐射或对流传热时的描述。这里之所以将辐射与对流归为一起,是因为辐射传热可以进行线性化处理近似为对流形式。[/size][size=16px] 当有流体通过或热源辐照物体边界,会使用对流或辐射边界条件,这在许多热工程应用中非常普遍,如散热器、热交换器、发动机和涡轮机等,这种第三类边界条件也会常被用来在对流和辐射条件下对物体的换热系数和热辐射系数进行测量。[/size][size=18px][color=#339999][b]2. 传热学三类边界条件的温度形式定义[/b][/color][/size][size=16px] 在传热学的实际应用中,无论是哪一种边界条件的实现和测量,最基本、最简单也是最直观的是物体边界的温度变化。因此,我们就以温度形式来对这三种边界条件进行说明和补充。[/size][size=16px] (1)第一类边界条件[/size][size=16px] 当物体在恒定的介质温度(T=常数)条件下进行加热时,物体表面温度随时间变化是一条直线,如图2所示,这一类加热(或冷却)的边界条件就是第一类边界条件,也称之为第一类正规工况。[/size][align=center][size=16px][color=#339999][b][img=02.以温度形式表达的三类边界条件示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/03/202303301739299894_6022_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 以温度形式表达的三类边界条件示意图[/b][/color][/size][/align][size=16px] (2)第二类边界条件[/size][size=16px] 如果介质温度按线性规律变化,物体以恒定的速率被加热或冷却,或者物体是以恒定的热流加热或冷却,此时物体内任一点的温度是时间的线性函数,如图2所示,这就是第二类边界条件,也称之为第二类正规工况。[/size][size=16px] 在第二类边界条件下,经过短暂的初始时间后,物体内部任意点温度会呈线性变化,这使得物体内任意两点之间的温差始终保持不变,这种动态形式称之为准稳态,因此第二类边界条件也称为准稳态边界条件或准稳态工况。[/size][size=16px] 由于第二类边界条件的这种准稳态特性以及简便易操作,只需对物体进行线性加热或冷却就可实现,从而使得这类准稳态边界条件在热物性测试中得到较多应用。通过对被测样品加载恒定的升降温速率,理论上可用于测量任意温度范围内的高低温热物理性能参数,如ASTM E2584量热计法 。这种方法也常被用于各种热分析仪器,如差热量热仪(DTA)、差热扫描量热仪(DSC)和绝热量热仪等。[/size][size=16px] (3)第三类边界条件[/size][size=16px] 常规定义的第三类边界条件,是对实际对流和辐射传热的一种描述,但在传热性能试验测试中较难实现。这是由于第三类边界条件的实验模拟,很难获得稳定的对流环境,特别是实现高低温对流环境的准确控制更为复杂和困难。[/size][size=16px] 为此,可以将第三类边界条件同样转换成温度形式,温度变化呈正弦波形式,如图2所示。这种正弦波形式温度变化的第三类边界条件可以有两种基本形式,一种是纯正弦波变化形式,另一种是在纯正弦波上叠加一个现象变化,即温度在正弦波变化的同时还在线性升温,而温度的线性拟合曲线为一直线。[/size][size=16px] 这种温度形式的第三类边界条件在实际应用经常可以看到,如对于各种薄膜材料的热物性参数测量中,如Angstrom法、ISO 22007-3温度波法、ISO 22007-6温度调节比较法、3Omega法和交流量热法等。这种第三类边界条件在热分析中的重要应用是温度调制式差示扫描量热仪(MTDSC),这是一种在线性温度程序上叠加一个正弦波形式的温度程序,形成热流速率和温度信号的非线性调制的差示扫描量热法。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 通过以上描述和分析可以看出,传热学中的三类边界条件其背后的物理意义分别代表了物体的导热、对流和辐射三种传热机理,但在实际应用中,特别是在材料的热性能测试分析过程中,可将这三类边界条件分别转换为不同的温度变化形式,这将非常便于三类边界条件的工程实现。[/size][size=16px] 实际应用中采用温度形式的第二和第三类边界条件时,尽管测试模型的数学求解相对比较复杂,但除了工程实现简单之外,更重要的优势是可以保证测量的准确性和宽泛的温度范围,这是很多其他方法很难具备的测试能力。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 中朝边界丹东市 8

    [b][color=#cc0000]中朝边界丹东市 8[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202038279650_1305_1841897_3.jpg!w690x517.jpg[/img][/color][/b]

  • 中朝边界丹东市 10

    [b][color=#cc0000]中朝边界丹东市 10[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202040167246_2200_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 4

    [b][color=#cc0000]中朝边界丹东市 4[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202035049562_1570_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 2

    [b][color=#cc0000]中朝边界丹东市 2[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202033062285_4680_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 13

    [b][color=#cc0000]中朝边界丹东市 13[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202044171982_1731_1841897_3.jpg!w690x517.jpg[/img][/color][/b]

  • 中朝边界丹东市 1

    [b][color=#cc0000]中朝边界丹东市 1[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202032043189_7404_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 【分享】触摸太阳系的边界

    在太阳系的深处,阳光已远没有那么的耀眼,无尽的黑暗几乎吞噬了一切。但就在这黑暗的背后,有一场事关地球上生命生死存亡的“拉据战”已经上演了数十亿年。这里就是太阳系的边界——太阳系最后的高地。

  • 企业边界噪声监测

    我们现在做一个第三方检测企业的边界噪声,他们夜间没人上班,但是有时候仪器有再走,那这种情况算不算在工作时段呢,夜间还需要测量噪声吗

  • 中朝边界丹东市 12

    [b][color=#cc0000]中朝边界丹东市 12[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202042273854_1533_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 11

    [b][color=#cc0000]中朝边界丹东市 11[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202041267195_5763_1841897_3.jpg!w690x517.jpg[/img][/color][/b]

  • 中朝边界丹东市 5

    [b][color=#cc0000]中朝边界丹东市 5[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202036000896_8192_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 微涡轮的结构原理

    主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。 流体力学是力学的一个分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。流体力学的发展简史 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。 对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 直到15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,法国皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。 普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。 20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基、恰普雷金、普朗克等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。 机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。 以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。 这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。 20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。近年来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和差分方法的互相渗透和融合。 从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。

  • 中朝边界丹东市 6

    [b][color=#cc0000]中朝边界丹东市 6[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202036518700_8263_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 7

    [b][color=#cc0000]中朝边界丹东市 7[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202037410118_3723_1841897_3.jpg!w690x517.jpg[/img][/color][/b]

  • 中朝边界丹东市 9

    [b][color=#cc0000]中朝边界丹东市 9[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202039284049_263_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 14

    [b][color=#cc0000]中朝边界丹东市 14[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202045192999_4797_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 3

    [b][color=#cc0000]中朝边界丹东市 3[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202033596899_9383_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 全自动发动机油边界泵送温度仪GB/T 9171-1988

    SH9171(SH416)全自动发动机油边界泵送温度测定仪是根据中华人民共和国国标《 GB/T 9171-1988发动机油边界泵送温度测定法》要求设计制造的,同时也满足石化行标ASTM D3829 D4684;用来测定机动车发动机油边界泵送温度、(低温)屈服应力和表观粘度的仪器,试验温控范围宽,从-5℃~ -40℃。试验过程全部用计算机自动控制。性能特点1、温度范围:温度范围-5℃到-40℃,温控精度±0.1℃2、全封闭式压缩机制冷,冷量大3、由计算机监控温度、周期及转子运动4、改进型滑轮组件,增强滑轮的稳定性和灵敏度,光电传感器测试5、5支转子可同时检测,多样性6、转子上带有保温透明有机玻璃罩7、微机控制,Windows 操作系统,全中文界面8、程序自动进行非线性曲线控温,测定屈服应力和表观粘度9、清洗控温和温度校准功能 10、粘度计常数校准并储存11、测试结果可储存并打印12、气阻型"和"流动受限型"边界泵送温度的计算及打印功能13、配备专用低温恒温设备14、配备研发的除霜系统 技术参数1、适用标准:ASTM D3829 D4684 GB/T 91712、制冷方式:进口压缩机制冷3、工作温度:80~-40℃4、控温方式:程序控温5、加热方式:电热管加热6、检测方式:光电管检测7、控制方式:计算机全自动控制8、工作单元:5单元9、工作电源:AC220V 50HZ

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制