当前位置: 仪器信息网 > 行业主题 > >

比热测量

仪器信息网比热测量专题为您整合比热测量相关的最新文章,在比热测量专题,您不仅可以免费浏览比热测量的资讯, 同时您还可以浏览比热测量的相关资料、解决方案,参与社区比热测量话题讨论。

比热测量相关的仪器

  • TOPEM® 是新一代温度调制DSC(TMDSC),通过一次实验就能测定样品在不同频率下随时间或温度而变化的性能。这种新TMDSC的革命性发展使TOPEM® 成为最先进的DSC技术的标志,能十分精确地测定比热值、分离可逆与不可逆过程、研究低能量转变和热性能的频率依赖性。主要特点: 1.一次测试就能在很宽频率范围内同时测试样品随温度或时间而变化的性能2.由脉冲响应能非常准确地测定与频率无关的准稳态比热3.同时以高灵敏度和高分辨率测量极小能量的效应和温度相邻很近的效应4.通过分离可逆和不可逆过程能高质量测定比热,将重叠效应分开5.提供判据从而简化解析,能非常容易地将非频率依赖效应(如吸附水失去)和6.频率依赖效应 (如玻璃化转变) 区分开来查看更多信息咨询电话:4008-878-788
    留言咨询
  • 低温比热测试系统 400-860-5168转1840
    技术参数:DHC-211低温比热测试系统 低温比热测试系统是基于比热定义的最基本方法:稳态绝热脉冲法。 本系统由恒温器、控温仪、高精度测温仪、CVM-200电输运性质测试仪、智能时间继电器等组成。实验时使恒温器真空套下半部分浸入液氮中。如果用液氮做低于-190℃的实验,则需要将杜瓦上盖板上的8毫米孔用实心堵头堵住,然后从杜瓦盖板上的出气口用机械真空泵对杜瓦中的液氮减压,获取-190℃以下的样品温度。 本恒温器采用高真空绝热,可调固体漏热和电加热相结合的方法实现变温控温。本测量系统是多功能测量系统。可以很方便地更换少量核心部件,用于热导测量,甚至变温电磁测量(需另购电磁测量恒温块与交流磁化率线圈)实验,实现一机多能。 其恒温器的控制降温冷量方法为可调固体热接触,加热热量来源于沿杆从室温传下的热量与控温仪提供的电加热。 主要技术指标 1:温度范围:90K~300K、65K~100K ; 控温精度:± 0.3K/30分钟 2:测温最小分辨率: 0.01K; 3:加热方式:定时恒流;
    留言咨询
  • HC2100低温液体比热计产品介绍HC2100低温液体比热计采用流动型量热法,是获取物质比热数据直接可靠的试验方法。具有测试精度高(高达±1%)、测温范围宽(-30~100℃)、操作简便等优点。仪器操作简单,可以实现全自动化,用户只需要通过简单的软件操作,即可完成控温,进样,加压及数据处理等一系列全自动化实验流程。适用于各类油品、液体燃料、氟化液、冷却液、化学试剂等液体物质的比热测量。2、HC2100低温液体比热计主要特点l 测量精度高:测试精度高达±1%,全量程范围内小于±3%;l 测温范围宽:可获得-30~100℃范围内的液体比热容数据;l 压力范围广:压力测量范围0.1~15MPa(可定制30MPa);l 控温精准:具有自动温度调节功能,控温波动度优于±0.05℃,保证测量结果的高准确性;l 高度自动化:可以实现自动控温、自动加压、自动数据处理,操作简便,易于维护;3、HC2100低温液体比热计适用范围HC2100低温液体比热计适用于润滑油、变压器油、航空煤油、植物油、防冻冷却液、中草药萃取液、氟化液、各类化学液体试剂等。4、HC2100低温液体比热计技术参数HC2100测量原理流动型量热法测量范围0.1~5kJ/(kgK)温度范围-30~100℃准 确 度±3%重 复 性±1.5%分辨率0.001kJ/(kgK)样品用量300mL压力范围0.1~15MPa(可定制30MPa)适用范围润滑油、变压器油、航空煤油、植物油、防冻冷却液、中草药萃取液、氟化液、各类化学液体试剂等电源220V,50Hz5、HC2100低温液体比热计典型应用l 油品:如导热油、润滑油、压缩机油、冷冻机油、真空泵油、液压油、硅油等;l 液体燃料:如汽油、煤油、柴油、含氧燃料、各种新型替代燃料等;l 其他液体:如氟化液、水溶液、甲苯、醇类、冷却液等; 6、售后服务我司为广大用户提供优质的售后服务,包括免费上门安装、技术培训;提供7*24h随时技术咨询,帮助客户解答实际应用过程中遇到的操作答疑、技术沟通、特殊样品处理等问题,并提供不定期上门回访。
    留言咨询
  • 比热测定仪 400-860-5168转1322
    Labsys Evolution Cp是法国塞塔拉姆公司推出的新一代综合同步热分析系统,该系统除了提供全面的热分析解决方案外,仪器功能还包括测量比热功能技术参数:温度范围:室温...1600℃ (单炉体)升降温速率:0.01 ... 100K/min天平最大称重量:20g天平量程:± 1000mg天平分辨率:0.02 &mu gDSC分辨率:0.4&mu W (取决于配备的传感器)比热测试误差:2%气氛:惰性、氧化、还原、静态、动态 、真空气路设计:3路载气和1路反应辅助气,气体流量由质量流量控制器精确控制自动进样器(ASC),最多可同时装载25个样品(选件)逸出气体分析(EGA):MS, FT-IR, GC主要特点:*高性能金属加热炉,具有稳定均温区,加热速率全程可达100K/min*优异的光电天平设计,无需额外水浴对天平进行保护。*独创的3D卡尔维Cp 传感器设计,比热测试准确度高达98%。*多种即插即用式测试杆(TG,TG-DSC,TG-DTA),可由客户自行切换,以满足不同实验的要求。*先进的气氛控制系统。3路载气及1路辅助/反应气,由质量流量计控制,可以任意比例混合两路气体*标准逸出气体分析接口:与质谱(MS)、傅立叶红外光谱(FT-IR)、气相色谱(GC)等设备联用*优秀的人体工程学设计,安装及操作极为简单方便。
    留言咨询
  • 液体比热测试 400-860-5168转2932
    测试条件 测试准确度:±2 % 测量范围:0.01~5 kJ/(kg• K) 温度范围:-30 ℃~300 ℃ 压力范围:0.1~15 MPa测量方法 液体比热:流动型法; 固体比热:绝热量热法 测试种类 可测量的液体种类包括各种极性和非极性流体的纯质及混合物: 油品:导热油、汽油、煤油、柴油、润滑油、压缩机油、冷冻机油、硅油等; 冷冻液:乙二醇、丙三醇、乙醚、四氯化碳、少数碳氢化合物; 制冷剂:R134a、R12、R22、R123、二甲醚等; 化学试剂:水、甲苯、醇类、离子液体等; 可测量的固体种类包括橡胶、塑料等各种合成材料以及岩土、煤炭等各种粉末状样品。样品用量 不少于500mL
    留言咨询
  • 中温比热容测试仪 400-860-5168转1840
    GHC-II-10中温比热容测试仪 固体比热容测试系统是基于混合法测试,运用现代计算机测试技术实现不同温度下固体材料的比热容自动测试。广泛应用于科研教学对于固体材料比热容的测试研究。 系统由管状立式电阻炉,恒温器、控温仪、高精度测温仪、量热计,计算机测试系统等组成。实验时先将式样在管状加热炉中加热到实验温度,然后再落入到量热计中,全过程由计算机测量系统采集到式样和量热计的温度变化。最后得出材料的比热容。对高温易氧化的样品需要配备真空系统。 主要技术指标1:测试温度范围:100—800℃可调2:比热容范围:0.05-5(kj/kg*k) 测试精确度 ≤1%±0.002;3:试样要求 固体样品尺寸(φ16-φ20)×(30-50)mm;4:测温最小分辨率:0.001℃ 5:实验方法 混合法。6:采用智能PID 调节,程序控制。7:量热器:热容约1500J/K, 温度分辩率0.001℃。8:可连接计算机自动测试,数据处理,并可生成检测报告打印输出。9:测试软件windows 10/7/xp操作环境,中文操作界面。10:测试原理满足军用标准:GJB330A-2000,GJB1715-9311:电源电压:220V/50Hz,功耗小于:2KW主要配置: ①中温比热容测试仪主机②软件、通讯接口及数据线③高精度恒温水槽壹台④计算机数据采集系统
    留言咨询
  • 下落法中温比热容测定仪 一、简介依阳公司出品的中温比热容测定仪是一种测定固态材料(包括固体、粉体、纤维和薄膜等)比热容的测试设备,采用的方法方法是下落式铜卡计混合法,依据的测试标准为国军标GJB 330A-2000 “固体材料60K~2773K比热容测试方法”和国标GB/T 3140-2005“纤维增强塑料平均比热容试验方法”,测试温度范围为50℃~1000℃。下落式铜卡计混合法作为一种经典测试方法,具有测试试样体积大、更适合块状复合材料测试的特点,而且测试周期短,对一般材料约一个小时测量一个试样,适合大批量试样的连续测量。中温比热容测定仪由计算机进行自动检测和控制,自动进行样品温度的监控、电动开关控制试样的整个下落过程、自动进行量热计温度的监控以及自动进行测试结果计算。中温比热容测定仪具有很高的测量精度,对于标准参考材料人造蓝宝石(synthetic sapphire:α-Al2O3)在50℃~1000℃范围内的测量相对误差小于±3%。下落法比热容测定仪原理图下落法中温比热容热分析测定仪下落法中温比热容热分析测定仪整机系统二、技术指标 (1)试样尺寸:最大直径14mm、高度30mm;(2)比热容温度范围:室温~1000℃;(3)比热容测量精度:优于±3%;(4)试样加热炉均温区长度:大于50mm;(5)试样加热炉均温区温度波动:±3%;(6)量热块热容量:2000J/℃;(7)量热计测温精度:优于0.01℃。三、特点1. 电动控制试样的下落,控制方式可根据不同需要进行选择,既可以单独进行试样悬丝熔断、炉门和量热计盖板的开启和闭合,也可以选择全自动联动方式,同时进行悬丝熔断、炉门和量热计盖板的操作,有效保证试样下落的准确性。 2. 全自动计算机软件控制,可以通过软件来设定加热炉温度、监测试样温度变化、量热计绝热控制情况和量热计温度变化过程,特别是能自动对试样下落后量热计的温度变化进行检测和显示,并自动计算和显示出测量结果。 3. 下落法比热容测试技术具有很强的扩展性,可以实现高温和超高温3000℃下的材料比热容测量。 4. 依阳公司的比热容测定仪特别采用了独特的仪器结构设计和灵巧的测试步骤,有效的提高了测试效率,使得单个试样在一个温度下的测试时间大大缩短,很轻易的实现快速大批量高效测试,测试效率远高于其他热分析仪器。
    留言咨询
  • 技术参数:GHC-II固体材料高温比热容测试仪 高温比热测试系统是基于混合法测试,运用现代计算机测试技术实现不同温度下固体材料的比热容自动测试。广泛应用于科研教学对于固体材料比热容的测试研究。 系统由管状立式电阻炉(1000度为电阻丝发热,1700度为钼丝发热,高于1700度为石墨炉管),恒温器、控温仪、高精度测温仪、量热计,计算机测试系统等组成。实验时先将式样在管状加热炉中加热到实验温度,然后再落入到量热计中,全过程由计算机测量系统采集到式样和量热计的温度变化。最后得出材料的比热容。对高温易氧化的样品需要配备真空系统。 主要技术指标 1:温度范围:室 温—1400℃比热容范围:大于0.5 (J/g*K) 精度≤1%2:控温精度:±0.3K/30分钟(与设置有关)3:测温最小分辨率:0.01K 4:加热方式:碳棒。5:采用智能PID 调节,程序控制。6:全过程计算机数据采集。7:量热器:热容约1500J/K, 温度分辩率0.01℃。8:绝热屏:3对热电偶,温度分辩率0.01℃。9:恒温水槽:-5.00-60.00(℃)10:试样防氧化保护:氩气11:仪器自带测试软件触摸屏操作,也可连接计算机自动测试,测试软件windows xp操作环境,中文操作界面12:样品大小:直径:11mm,高30mm,粉样配标准试样盒。13:测试原理满足军用标准:GJB330A-2000,GJB1715-9314:电源电压:220V/50Hz,功耗小于6KW
    留言咨询
  • 1、产品介绍采用流动型量热法,具有测试精度高(高达±1%)、测温范围宽(-30~ 650℃)、操作简单等优点。结合自主开发程序能够实现自动控温、自动加压和数据分析,可以测试多种流体在不同温度和不同压下的比热容,具备良好的流体适应能力,适用于保温与供热设计、工质材 料设计、储能材料的研究及开发(专利号:ZL201720325055.9) 。2、主要特点 ★ 测量准确:测试精度高达±1%,全量程范围内小于±3% ★ 测温范围宽:可获得-30~650℃ 范围内的流体比热容 ★ 压力范围广:压力测量范围0.1~15MPa (可定制30MPa) ★ 控温精准:具有自动温度调节功能,控温波动优于±0.05℃,保证测量结果的高准确性 ★ 高度自动化:可以实现自动控温、自动加压、自动数据处理,操作简便,易于维护3、适用范围 可用于测试润滑油、变压器油、航空煤油、植物油、防冻冷却液、中草药萃取液、氟化液、各类化学液体试剂的比热,能够满足科研院校、检测机构和各种企业单位的科研需求。4、技术参数HC2100HC2200测量原理流动型量热法流动型量热法测量范围0.01~5 kJ/(kgK)0.01~5 kJ/(kgK)温度范围-30~100 ℃室温+10~300 ℃分 辨 率0.001 kJ/(kgK)0.001 kJ/(kgK)准 确 度± 3 %± 3 %重 复 性± 1.5 %± 1.5 %样品用量300 mL400 mL压力范围0.1~15 MPa(可定制30MPa))适用范围润滑油、变压器油、航空煤油、植物油、防冻冷却液、中草药萃取液、氟化液、各类化学液体试剂等数据传输USB工作环境0~40 ℃,≤65% RH电 源220 V,50 Hz5、检定结果 下表列出了HC2100流动型比热计测试无水乙醇的实验结果。表中Tr 为比热容对应的实验温度,标准值Cpcal为美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)推荐的不同温度下的比热容值,Cpexp为不同温度下对应的实验数据,(Cpexp-Cpcal)/ Cpcal /%为实验值与标准值之间的偏差。结果表明,HC2100流动型比热计测试无水乙醇的准确度可高达1%、全量程范围小于3%。表1 无水乙醇的比热测量结果下图列出无水乙醇在不同温度下的实验结果趋势图:6、典型应用 氟化液宽温区比热容的测量氟化液沸点比较低,高温下轻组分易于挥发。HC2100 比热计耐压范围高,在高温下可以通过适当加压的方式防止轻组分的挥发,保证测量结果的准确性。实验利用HC2100 比热计研究了氟化液在-30~100℃ 下比热容的变化,结果如下:润滑油不同温度和不太压力比热容的测量比热容是评价润滑油热性能的重要指标之一,比热容越大,润滑油在温度变化时吸收或放出的热量就越多,其温度稳定性越好。通过HC2200 比热计研究了从室温~200℃车用润滑油比热容的变化,随着温度升高润滑油的比热容明显增大。
    留言咨询
  • 高温比热测试仪96line 400-860-5168转1322
    仪器简介:高温大样品量综合热分析平台, 3D热流测量模块和高灵敏度大容量TGA热重分析仪天平, 实现同步热分析。96Line采用滴落法及具有大容量样品室,可以精确测定大尺寸样品比热,非常适合非均质样品的物性研究。悬挂式设计保证最 大的样品适应性,并提供耐腐蚀测试套件。应用领域:用于研究样品比热、合金形成热、复合氧化物形成热航空航天材料物性、高温氧化腐蚀、合金工艺、相图绘制、耐火材料等技术参数:温度范围:室温~1600℃ /1750℃ /2100℃升温速率:0~100K/minTG样品量:100gTG最 大样品尺寸:Ф20mm H80mmTG分辨率:0.3ug量热样品量:5.7mL(Ф14.5 H35mm)比热测试精度:1%TMA量程:+/-6mmTMA分辨率:1.6nmTMA最 大样品尺寸:Ф18 H50mm主要特点:-高温,大样品量,适用大尺寸、非均质样品-三维量热传感器,精确测定样品比热-独 一无二的drop传感器,用于研究样品比热、合金形成热、复合氧化物形成热-悬挂式TG设计,满足各种形态样品测试需求-可选配相关套件,实现SO2,NH3,H2S等腐蚀性气氛下的测试-高度模块化:三维量热、TG、TG-DSC/DTA、TMA,可由客户自行切换-应用领域:航空航天材料物性、高温氧化腐蚀、合金工艺、相图绘制、耐火材料等
    留言咨询
  • 混凝土的绝热温升值对工程质量的影响十分巨大,其热学参数的准确测量是建筑工程质量的关键因素之一。北京耐尔得智能科技有限公司自主研发的NELD-TV811型混凝土绝热温升/比热试验箱,是用于测定混凝土绝热温升、比热试验的专用设备。该设备可精确的跟踪混凝土的温升,并在温升的过程中给予绝热的环境保护,实时呈现温度变化数据及曲线,有利于温度变化的监测及后期的数据分析。客户同时可以选择NELD-TA803型混凝土线膨胀导温导热系数测定仪,进行混凝土的热物理全参数的试验。产品符合国家标准 JG/T329-2011《混凝土热物理参数测定仪》、SL/T352-2020《水工混凝土试验规程》。该产品广泛应用于各大院校、科研单位、检测单位以及建筑、道桥、水坝、水库、围堰等混凝土施工单位;在大型建筑、道桥、水坝、水库、围堰等重要工程中,是各个水工实验室及相关检测单位不可或缺的仪器设备。试验温度: 5℃~100℃压缩机制冷: 进口绝热温度跟踪温度: ≤0.1℃恒温期间试验箱温度变化: ≤0.1℃比热试验: 试验温度段4段,每段温升值(10~15)℃采集间隔: 1s可以设定数据采集: 电脑实时控制采集,数据实时显示,并保存为曲线及列表箱体保温层: 85mm聚氨酯发泡保温层保温试验桶: 内外不锈钢聚氨酯发泡保温电子元器件: 施耐德、欧姆龙、台湾明伟电源控制仪表: 高精度控制仪表外形尺寸: 1200×1180×1660(mm)输入电源: AC220V±10%,50Hz设备重量: 430kg
    留言咨询
  • BRR-3系列比热容测试仪用于不同温度下比热容高准确性测量,符合GJB330A-2000固体材料比热容测试方法标准要求。此类仪器全部测量和控制均采用计算机控制,减少人为误差,提高了测试精度。主要技术参数:仪器型号规格BRR-3A(高温)BRR-3B(中温)BRR-3C(常温)BRR-3D(低温)1、比热容范围0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)2、测试精确度固体≤1%±0.002;粉体≤2%±0.002固体≤1%±0.002;粉体≤2%±0.002固体≤2%±0.008;粉体、液体≤
    留言咨询
  • BRR-3系列比热容测试仪用于不同温度下比热容高准确性测量,符合GJB330A-2000固体材料比热容测试方法标准要求。此类仪器全部测量和控制均采用计算机控制,减少人为误差,提高了测试精度。主要技术参数:仪器型号规格BRR-3A(高温)BRR-3B(中温)BRR-3C(常温)BRR-3D(低温)1、比热容范围0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)2、测试精确度固体≤1%±0.002;粉体≤2%±0.002固体≤1%±0.002;粉体≤2%±0.002固体≤2%±0.008;粉体、液体≤
    留言咨询
  • BRR-3系列比热容测试仪用于不同温度下比热容高准确性测量,符合GJB330A-2000固体材料比热容测试方法标准要求。此类仪器全部测量和控制均采用计算机控制,减少人为误差,提高了测试精度。主要技术参数:仪器型号规格BRR-3A(高温)BRR-3B(中温)BRR-3C(常温)BRR-3D(低温)1、比热容范围0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)2、测试精确度固体≤1%±0.002;粉体≤2%±0.002固体≤1%±0.002;粉体≤2%±0.002固体≤2%±0.008;粉体、液体≤
    留言咨询
  • BRR-3系列比热容测试仪用于不同温度下比热容高准确性测量,符合GJB330A-2000固体材料比热容测试方法标准要求。此类仪器全部测量和控制均采用计算机控制,减少人为误差,提高了测试精度。主要技术参数:仪器型号规格BRR-3A(高温)BRR-3B(中温)BRR-3C(常温)BRR-3D(低温)1、比热容范围0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)2、测试精确度固体≤1%±0.002;粉体≤2%±0.002固体≤1%±0.002;粉体≤2%±0.002固体≤2%±0.008;粉体、液体≤
    留言咨询
  • 气体比热容测试仪HC2500主要特点1、专门针对气体样品的比热测量研制!2、测量准确稳定:全量程范围内小于10% 3、压力/温度范围宽:压力测量范围1~10 MPa,温度测量范围高达650 ℃ 4、准确控温:自动温度调节功能,控温波动满足±0.05 ℃,提高测量结果的准确度 5、采用自主研发的测量软件,可以实现自动控温、自动数据处理,操作简便,易于维护,可运行于Windows操作系统。 气体比热容测试仪HC2500适用范围 HC2000系列液体比热计可用于测试各种气体的比热,能够满足苛刻条件下特殊的科研需求。 技术参数HC2500系列气体比热容测试仪主要技术参数详见如下:HC2500测量原理流动型量热法测量范围0.1~10 kJ/(kgK)温度范围室温+10~650 ℃分 辨 率0.001 kJ/(kgK)准 确 度<10 %重 复 性± 3%样品用量2L压力范围1~10 MPa适用范围气体数据传输USB工作环境0~40 ℃,≤65% RH电 源220 V,50 Hz
    留言咨询
  • 上海众路BRR-3系列全自动比热容测试仪,比热容测定仪BRR-3系列比热容测试仪用于不同温度下比热容高准确性测量,符合GJB330A-2000固体材料比热容测试方法标准要求。此类仪器全部测量和控制均采用计算机控制,减少人为误差,提高了测试精度。主要技术参数:仪器型号规格BRR-3A(高温)BRR-3B(中温)BRR-3C(常温)BRR-3D(低温)1、比热容范围0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)0.05-5(kj/kg*k)2、测试精确度固体≤1%±0.002;粉体≤2%±0.002固体≤1%±0.002/
    留言咨询
  • BAC-420B大型电池绝热量热仪BAC-420B 大型电池绝热量热仪具备符合 GB/T 36276-2023《电力储能用锂离子电池》“绝热温升特性”实验标准的专用测试模式,是研究长边 100mm~600mm 之间大型电池单体及其小型模组的绝热量热仪,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,精准获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数。仪器可为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。产品特点精准:自放热检测灵敏度远优于标准检测阈值0.02℃/min,绝热性能高,壁样温差小高效:创新加热丝辅助加热方案,实验效率最高可提升5倍安全:炉体安装爆破片及弹簧锁设计,标配抗爆箱,双重防护保证实验人员和装置安全技术规格绝热腔体有效尺寸直径420mm,深520mm自放热检测灵敏度优于0.02℃/min恒温壁样温差≤0.5℃控温范围-25~300℃,标配液氮罐制冷温度追踪速率0.02~15℃/min密封测试罐工作压力范围0~2MPa针刺最大行程行程软件可设置充放电电极柱过流能力-500A~500A参考标准GB/T 36276《电力储能用锂离子电池》UL 9540AUSABC SAND99-0497, July 1999: 3.2 Thermal Stability TestsSAE J2464-R2009: 4.4.2 Thermal Stability TestsFreedom CAR SAND 2005-3123: 4.1 Thermal stabilityASTM E1981-98(2012)SN/T 3078.1-2012 化学品热稳定性的评价指南第 1 部分:加速量热仪法UL 1973
    留言咨询
  • MP-1设计用于测试固体、液体、糊状物和粉状物的绝对热导率、热扩散率和比热,采用瞬态平面源(TPS,ISO 22007-2)和瞬态热线(THW,ASTM D7896)方法的强大组合。最适用于:液体、固体、膏体和粉末特性:规格:方法瞬态热平面源(TPS)瞬态热线法(THW)材料固体、糊剂和粉末固体、糊剂和粉末方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/MK)0.005 ~ 1800 W/mK0.01~2 W/mK样品尺寸*5 x 5 mm ~无上限20 mL样品厚度*0.01 mm ~无上限N/A附加属性热扩散率 | 比热 | 热逸散(蓄热系数)率热扩散率 | 比热接触热阻(m2K/W)热阻和热容量N/A控温平台(TP)0~300℃-160℃ |-50℃ |-20℃ |0~300℃10~200℃ | -15/0~200℃ 0~300℃ |-45℃ ~300℃ |-160~300℃ 扩展温度范围-160~1000℃N/A测试时间0.25~12801数据点(点/秒)600400准确率优于3%2%可重复性1%1%传感器配置对称(双面)| 不对称(单面)N/A标准ISO 22007-2:2015ASTM D7896-19*需根据所使用之测量模块而定方法:瞬态平面热源(TPS)和瞬态热丝法(THW)的原理相似,不同之处主要在于二者的实物设计。两者的基本原理是传感器的电源与电路保持电性连接,当电流通过传感器时,产生的升温会随着时间的推移被记录下来,产生的热量会取决于材料热传递特性的速率扩散到样品中。瞬态平面热源(TPS)传感器(图1)TPS传感器专为固体、糊剂和粉末而设计,它由封装在隔热层之间的双螺旋镍组成。该传感器(双面)的标准操作是将其夹在两块相同的样品之间;若使用单片测试模组,仅需一块样品(单面)。 Thermtest的TPS独家数据计算与分析系统可以测量传感器与样品之间的接触热阻,以及样品的热导、热扩散、比热和热逸散率。瞬态热丝(THW)传感器(图2)THW传感器专门为液体、糊剂和细颗粒粉末而设计,其是由一根长40mm的细加热丝(可更换) 组成,搭配Thermtest的特制样品置具,可以对液体施加背压,以测量超过沸点的热导率、热扩散率和比热。测量时间通常在极短的时间内完成(1秒),以降低不同黏稠度的样品的对流效应。 图1 图2
    留言咨询
  • 激光闪光法热常数测量系统日本Advance Riko公司推出的激光闪光法热常数测量系统(型号:TC-1200RH)使用红外金面炉替代传统电阻炉加热,大大缩短测量时间。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。TC-1200RH系统采用符合JIS/ISO标准的激光闪光法,可测定材料的三个重要热物理常数:热导率(导热系数)、热扩散系数及比热容。 仅需1/4的时间(与使用电阻炉的传统型号相比)。因控温灵敏度提高,温度稳定性大大增加。设备特点红外金面炉的使用使得加热和冷却速度大大提高1. 使用红外线直接加热样品可以迅速使温度稳定;2. 控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而太高测量精度。符合JIS/ISO标准要求1. 激光闪光法测定精细陶瓷的热扩散系数、比热容及热导率(JIS R 1611) 2. 精细陶瓷热电材料的测定方法 – 3部分:热扩散系数、比热容及热导率(JIS R 1650-3) 3. 激光闪光法测定铁的热扩散系数(JIS H 7801)应用方向• 热电材料的研究与开发 • 陶瓷、金属及有机材料的研究与开发 • FPD散热材料的热扩散率和比热容评价 • 半导体器件和模制器件的材料热扩散研究设备参数1. 测量参数:热扩散系数,比热容2. 样品尺寸:φ10mm×1mm~3mm(厚度)测量方向:厚度方向3. 测量氛围:真空(*不高于150℃时,可在大气下测量)4. 温度范围:室温至1150℃(高1200℃)大升温速度目标温度~100℃~300℃~1150℃升温速度10℃/min20℃/min50℃/min安装条件1. 主机尺寸:约 W900mm×D1050mm×H1700mm2. 主机质量:约 350kg3. 电源:AC200V 单相 8kVA(主机) AC100V 单相 1kVA(PC)4. 冷却水:城市用水 >5L/min 压力>0.15MPa可选件• 方形样品托 • 多样品上样装置:多3个样品 • 基体测量附件 室温:SB-1 200℃:SB-2• 多层材料分析软件FML系列 如果其中一层材料的热物理参数已知,可根据测量结果分析多层材料 (多层材料分析的模型在JIS H8453中已列出) • 高温炉:高达1500℃用户单位清华大学武汉理工大学深圳大学燕山大学
    留言咨询
  • Trident热导率测量仪 400-860-5168转0702
    加拿大C-Therm的创新传感器技术赢得过Manning Innovation Awards和R&D100创新奖,为全球诸多国际知名企业、科研机构和院校所采用。 C-Therm推出的Trident热导率测量仪,可广泛应用于石油、化工、航空航天、建材、汽车等领域的研究中。Trident主机可选配三种测试方法,用于测试不同材料(绝热材料、聚合物、复合材料、热界面材料等等)在不同状态(固体、液体、粉末、膏体)、不同性质(各向同性与各向异性)以及不同温度范围下的导热系数、吸热系数、热扩散系数以及比热等热物性参数。 MTPS改良瞬态平面热源法 导热系数范围:0 ~ 500 W/mK 热扩散系数范围:0 ~ 300 mm2/s 比热范围:up to 5 MJ/m3K 吸热系数范围:5 ~ 40,000 Ws1/2/m2K 国际标准:ASTM D7984测试材料种类:绝热材料(包括气凝胶等),聚合物,复合材料,热界面材料TIM,热电材料,相变材料PCM,传热流体,粉末材料,含能材料,膏体 Flex TPS瞬态平面热源法 导热系数范围:0 ~ 2000 W/mK 热扩散系数范围:0 ~ 1200 mm2/s比热范围:up to 5 MJ/m3K国际标准:ISO 22007-2.2, GB/T 32064 测试材料种类:块状材料,复合材料,薄膜材料,薄板材料,各向异性材料 Needle TLS探针法导热系数范围:0.1 ~ 6 W/mK国际标准:ASTM D5334, D5930, IEEE 442测试材料种类: 颗粒材料,粉末,熔融高分子,泥浆,凝胶,胶体和土壤等 如想了解更多关于应用、参数和报价的信息,欢迎来电或留言咨询。
    留言咨询
  • 低温综合物性测量系统 CPMS-4电学性能:电导率/电阻率、热电势率/塞贝克系数热学性能:热导率、热膨胀系数、比热等温度范围:4K-300K(-269℃—室温)低温技术:低温制冷机作冷源,无需消耗液氮/液氦应用领域:低温热电材料、超导材料、低温负热膨胀/零膨胀等功能材料及其它固体材料低温物性研究概 述:本系统采用低温制冷机作冷源,无需使用液氮/液氦,实现固体材料低温区(4K-300K -269℃—室温)的电学性能(电导率/电阻率,热电势率/塞贝克Seebeck系数)和热学性能(热导率、热膨胀系数、比热等)测量。系统设计思想 在一个以单台或多台制冷机为冷源的低温平台上,集成全自动的电学和热学物性测量手段。使得整个系统的低温环境得到充分利用、极大减少了客户购买仪器的成本、避免实验的繁琐和误差。低温平台与测量平台分离设计,测试样品更换过程变得快捷、方便。基本系统硬件结构包括:样品架组件、插入管组件、真空绝热系统、制冷机、减震传热部件、控温部件、干式泵、氦气罐、测控仪表和数据采集处理系统等。基本系统平台提供低温环境,以及测量相关的软硬件控制中心。样品室样品室连接在样品架组件上,通过可拆卸方式安装不同物性测量样品台。测量时样品室处于密封的真空状态,样品冷却过程是通过减震传热部件把制冷机冷量传递给样品架组件,再通过测试平台把冷量传递给样品,使样品降温。样品测量采用样品托的方式。温度控制采用制冷机直接冷却样品的方式,通过减震传热部件既减少制冷机的轻微震动可能带来的影响,又保证了样品能够快速冷却。通过独特的设计能够实现连续快速精准温度控制。温控范围:4.0K-300K连续控温;温度稳定性:±0.1K(4.0-20K)/ ±0.3K(20-300K)。技术参数 热导率测量单元测量范围:0.1 W/ mK~600 W/mK测量精度:优于5%样品尺寸:正方体:4×4、6×6、8×8、10×10 mm×2~15mm圆柱体:Φ4~10 mm×2~15mm电导率 (电阻率)测量单元测量范围:10 μS/m~10 S/m测量精度:优于1%样品尺寸:长:4~20mm;宽:1~3mm;高:1~3mm热电势率(Seebeck系数)测量单元测量范围:1μV/K~1V/K测量精度:优于6%样品尺寸:长:5~20 mm;宽:2~3 mm;高:2~3 mm热膨胀系数测量单元测量范围:-100~100 E-6/K测量精度:优于5%样品尺寸:长:8~15 mm;宽:5~15mm;高:1~5 mm圆柱体:Φ8~15 mm×2~15mm比热测量单元测量精度:优于5%样品尺寸:0.3g-10g
    留言咨询
  • 介绍:MP-V 导热系数测量平台,可准确测量固体、液体、膏状物和粉末的热导率、热扩散率、比热和热逸散。平台由四种方法组合而成,包括瞬态平面热源法(TPS,ISO 22007-2,ISO 22007-7/ GB/T 32064),瞬态热丝法(THW,ASTM D7896-19),改良式瞬态平面热源法(MTPS,ISO22007-7)和瞬态热线法-探针式(TLS,ASTM D5334-22a,D5930, IEEE-442)。特点:瞬态方法在理论上有相似之处,但在主要设计上具有特定的差异。传感器与电源和感应电路电连接,电流通过传感器,使温度升高并随时间记录变化。产生的热量根据材料热传输特性的速率扩散到样品中。iTransient智慧化检测流程,实现测试和分析的自动化。原始数据可永久保留,以利于結果的确认及分析。只需将样品命名,一键启动后,iTransient会完成测试及数据分析的工作。方法:MP-V 可用于测试导热系数、热扩散系数、比热和热逸散系数,其主要的测试方法包括瞬态平面热源法(TPS) 和瞬态热丝法(THW),分别符合ISO以及ASTM国际标准测试法,也专为个别主要的应用设计而成。不论哪种测试方法,皆为 ”绝对测试法”,因此测试结果是根据原始数据计算,不需校准以及介质,方可直接进行测试。瞬态平面热源法 (TPS, ISO 22007-2, ISO 22007-7 / GB/T 32064)TPS(双螺旋)传感器放置在两块相同材质与尺寸的样品之间(如图1所示)。此方法中,样品假定为半无限体,Thermtest独家 iTPS 功能可协助判定测试所需时间与功率 (MP-V可选的测试时间范围为2 至 160 秒)。此外, 多样的传感器尺寸可供选择,以灵活应变不同的样品尺寸。其他可选的测试模组包括各向异性、薄膜和比热。瞬态热丝法 (THW, ASTM D7896-19)THW传测器插入液体样品置具中(如图2所示)。小直径的传测器线丝和短测试时间,可有效减少对流的影响,且提升准确度。因此,THW方法被公认且广泛被用于液体测试。改良式瞬态平面热源法 (MTPS, ISO 22007-7)MTPS 传测器(如图3所示)遵循与 TPS 相同的工作原理。此传测器配置用于非对称(单面)测试,非常适合只有单件样品可用或者不易分割之大件样品的情况。测试模组包括块体、各向异性、板材和一维,以用于不同表征的材料。瞬态热线法-探针式 (TLS, ASTM D5334-22a, D5930, IEEE-442)TLS传测器(如图4所示)由细电热丝和温度感测器所组成。测试时,只需将传测器完全没入待测样品中。 图1 图2 图3 图4方法瞬态平面热源(TPS)瞬态热丝法(THW)材料固体、膏状物和粉末液体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.01 ~ 500 W/m&bull K0.01~2 W/mK样品尺寸*10 x 10 mm ~无上限20 mL样品厚度*0.05 mm ~无上限N/A其他属性热扩散率 | 比热 | 热逸散(蓄热系数)率热扩散率 | 比热温度范围-75~300℃-50~100℃准确率优于5%优于2%可重复性优于1%优于1%标准ISO 22007-2, ISO 22007-7/ GB/T 32064ASTM D7896-19方法改良式瞬态平面热源法(MTPS)瞬态热线法(TLS)材料固体、膏状物和粉末土壤和高分子聚合物方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.03 ~ 500 W/m&bull K0.1~8 W/mK样品尺寸*25 x 25 mm ~无上限50mm~无上限样品厚度*0.1 mm ~无上限100mm~无上限其他属性热扩散率| 比热 | 热逸散(蓄热系数)率N/A温度范围-50~200℃-40~100℃准确率优于5%优于5%可重复性优于2%优于2%标准ISO 22007-7ASTM D5334-22a, D5930, IEEE-442
    留言咨询
  • MP-V 导热系数测量平台,用于测试固体、液体、糊状物和粉状物的导热系数、热扩散率和比热,平台由四种方法组合而成,包括瞬态平面源(TPS,ISO 22007-2),瞬态热线(THW,ASTM D7896),改良版瞬态平面热源(MTPS)和瞬态线热源(TLS,ASTM D5334, ASTM D5930, IEEE-442)。方法瞬态热平面源(TPS)瞬态热线法(THW)材料 固体、糊剂和粉末液体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.01 ~ 500 W/m&bull K0.01~2 W/mK样品尺寸*10 x 10 mm ~无上限20 mL 样品厚度*0.05 mm ~无上限N/A其他属性热扩散率| 比热 | 热逸散(蓄热系数)率热扩散率| 比热温度范围-75~300 °C-50~100 °C准确率优于5%优于2%可重复性优于1%优于1%标准 ISO 22007-2, GB/T 32064ASTM D7896-19方法MTPS瞬态线热源(TLS)材料固体、糊剂和粉末固体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.03 ~ 500 W/m&bull K0.1~8 W/mK样品尺寸*25 x 25 mm ~无上限50mm~无上限样品厚度*0.1 mm ~无上限100mm~无上限其他属性热扩散率| 比热 | 热逸散(蓄热系数)率N/A温度范围-50~200 ℃-40~100 °C准确率优于5%优于5%可重复性优于2%优于2%标准N/AASTM D5334, ASTM D5930, IEEE-442
    留言咨询
  • Physical Property Measurement System (PPMS) 综合物性测量系统PPMS系统的设计理念是在一个精细控制的低温和强磁场平台上,集成全自动的磁学、电学、热学和形貌,甚至铁电和介电等各种物性测量手段。这样的设计使得整个系统的低温和强磁场环境得到了充分的利用,大大减少了客户购买仪器的成本,避免了自己搭建实验的繁琐和误差,可以迅速地实现研究人员珍贵的研究思路。 一个PPMS系统由基本系统和各种测量和拓展功能选件构成:基本系统提供低温和强磁场的环境,以及整个系统的软硬件控制中心;用户在基本系统平台的基础上选择自己感兴趣的各种测量选件和拓展功能选件。 对于大多数常规实验项目,PPMS已经设计好了全自动的测量软件,和具有标准测量功能的硬件,如交直流电阻率、磁电阻、微分电阻、霍尔系数、伏安特性、临界电流、交流磁化率、磁滞回线、热磁曲线、比热、热电效应、塞贝克系数、热导率和形貌表征等等。这些测量方法的可靠性和便捷性在过去的十几年中已经得到科学界的认可。经过特而巧妙设计,PPMS系统上的各种测量选件之间能够互不干扰,且能够简单快速地相互切换。温控范围: 1.9K - 400K连续控制温度拓展: 50mK 稀释制冷机 0.4K He3制冷机 1000K VSM高温炉温度扫描速率:0.01 - 8 K/min(非自循环型号)温度稳定性: ±0.2% T 10K ±0.02% T 10K温度控制模式:快速模式 非过冲模式 扫描模式磁场范围: 所含超导磁体大场(可选): ±9T;±14T;±16T磁场分辨率: 0.02 mT to 1 T 0.2 mT to 9 T磁场稳定性: 1PPM/hour变场速率: 10-200 Oe/s剩磁: 5 Oe(9T以振荡模式降场)磁体操作模式:闭环模式和驱动模式磁场逼近模式:振荡模式 非过冲模式 线性模式 扫描模式 PPMS 平台提供多种测量选件 PPMS系统的主机 超导磁体系统 Superconducting Magnet System 温控系统 Temperature Control System 实验杜瓦 Research Dewar 硬件控制中心 Model 6000 系统控制软件 MultiVu Software Interface PPMS系统的选件 电输运测量选件 直流电阻率 (DC Resistivity) 高电输运 (ETO, Electrical Transport Option) 磁学测量选件 交直流磁强计 (ACMS, AC Magnetometer System) 振动样品磁强计 (VSM) VSM光诱导磁测量(VSM Mag-Opt) 扭矩磁强计 (Torque Magnetometer) 热学测量选件 比热 (HC, Heat Capacity Option) 热输运 (TTO, Thermal Transport Option) 拓展功能选件 He3制冷机 (Helium-3 Refrigerator System) 稀释制冷机 (DR, Dilution Refrigerator System) 超低场选件 (Ultra Low Field Option) 高真空选件 (Cryopump High Vacuum Option) 样品旋转杆选件 (HR, Horizontal Rotator Option) 多功能样品杆选件 (MFP, Multi Function Probe Option) 高压腔选件 (High Pressure Cell Option) 原子力/磁力显微镜选件 (AFM/MFM Option) 扫描霍尔探针显微镜选件 (SHPM Option) 共聚焦显微镜选件 (CFM Option) 液氦解决方案 带液氮夹层的大容量液氦杜瓦 (Nitrogen Jacketed Dewar) 新一代氦气启动循环杜瓦系统 (EverCool II) 液氦自循环杜瓦 (Reliquefier)
    留言咨询
  • Physical Property Measurement System (PPMS)综合物性测量系统 PPMS系统的设计理念是在一个完美控制的低温和强磁场平台上,集成全自动的磁学、电学、热学和形貌,甚至铁电和介电等各种物性测量手段。这样的设计使得整个系统的低温和强磁场环境得到了充分的利用,极大减少了客户购买仪器的成本,避免了自己搭建实验的繁琐和误差,可以迅速地实现研究人员珍贵的研究思路。 一个PPMS系统由基本系统和各种测量和拓展功能选件构成:基本系统提供低温和强磁场的环境,以及整个系统的软硬件控制中心;用户在基本系统平台的基础上选择自己感兴趣的各种测量选件和拓展功能选件。 对于绝大多数常规实验项目,PPMS已经设计好了全自动的测量软件,和具有标准测量功能的硬件,如交直流电阻率、磁电阻、微分电阻、霍尔系数、伏安特性、临界电流、交流磁化率、磁滞回线、热磁曲线、比热、热电效应、塞贝克系数、热导率和形貌表征等等。这些测量方法的可靠性和便捷性在过去的十几年中已经得到世界科学界的认可。经过独特而巧妙设计,PPMS系统上的各种测量选件之间能够互不干扰,且能够简单快速地相互切换。 PPMS 平台提供多种测量选件
    留言咨询
  • MP-1 导热系数测量平台,用于测试固体、液体、糊状物和粉状物的导热系数、热扩散率和比热,平台由四种方法组合而成,包括瞬态平面源(TPS,ISO 22007-2),瞬态热线(THW,ASTM D7896),改良版瞬态平面热源(MTPS)和瞬态线热源(TLS,ASTM D5334, ASTM D5930, IEEE-442)。方法瞬态热平面源(TPS)瞬态热线法(THW)材料固体、糊剂和粉末液体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.005 ~ 1800 W/m&bull K0.01~2 W/mK样品尺寸*5 x 5 mm ~无上限20 mL样品厚度*0.01 mm ~无上限N/A其他属性热扩散率| 比热 | 热逸散(蓄热系数)率热扩散率| 比热温度范围-160~1000 °C-160~300 °C准确率优于5%优于2%可重复性优于1%优于1%标准ISO 22007-2, GB/T 32064ASTM D7896-19方法MTPS瞬态线热源(TLS)材料固体、糊剂和粉末固体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.03 ~ 500 W/m&bull K0.1~8 W/mK样品尺寸*25 x 25 mm ~无上限50mm~无上限样品厚度*0.1 mm ~无上限100mm~无上限其他属性热扩散率| 比热 | 热逸散(蓄热系数)率N/A温度范围-50~200 ℃-40~100 °C 准确率优于5%优于5%可重复性优于2%优于2%标准N/AASTM D5334, ASTM D5930, IEEE-442
    留言咨询
  • 耐驰 LFA427 激光导热系数测量仪 应用领域:精确地直接测量热扩散系数和比热,进一步计算得到导热系数 耐驰 LFA427 激光导热系数测量仪 产品特点:- 主机可同时安装双炉体- 光源脉冲宽度软件控制,连续可调- 专利PulseMapping技术- 可提供适用于特殊材料、特殊应用的样品支架 耐驰 LFA427 激光导热系数测量仪 技术参数:LFA 427温度范围-120 … 2800°C(不同炉体)激光源Nd:Glass激光,能量可调导热系数0.1 ... 2000W/mK真空度10-5mbar样品尺寸方形 8X8,10X10mm圆形 ? 6,?10,?12.7,?20mm厚度 0.1 … 6mm测试气氛真空、惰性或反应气体支架类型石墨、氧化铝、碳化硅样品形态固体、液体、粉末、薄膜详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 产品详情DynaCool 全新一代完全无液氦综合物性测量系统 美国Quantum Design公司近期隆重推出最新产品-完全无液氦综合物性测量系统PPMSDynaCool™ 。它是继多功能振动样品磁强计VersaLab(3T,50K-400K)之后,Quantum Design公司推出的第二款完全无需液氦等任何制冷剂的测量系统。 PPMS DynaCool在功能上仍然是一台PPMS系统,具有以往PPMS系统的所有测量功能。然而由于其杜瓦内部的重新优化设计,使得PPMS DynaCool系统完全不需要液氦等任何制冷剂,系统使用一个二级脉冲管制冷机同时为超导磁体和样品测量提供超低振动的低温环境。并且系统主机就已经集成了产生10-4Torr高真空的冷泵,从而使PPMS DynaCool能与所有相关选件升级兼容。 系统原理图 温度参数: 温度范围:1.85K-400K VSM高温炉可扩展高温至1000K He3制冷机可扩展低温至0.5K 稀释制冷机可扩展低温至50mK 降温时间:从300K降至1.9K并稳定40min 温度稳定性:±0.1% for T20K(典型值) ±0.02% for T20K(典型值) 控温模式:连续低温控制和温度扫描模式 PPMS DynaCool温度扫描曲线,300K降至1.9K少于40分钟 磁场参数: 9T磁体 磁场范围:±90000 Oe 达到满场时间:8min 扫场速率:0.1——200 Oe/S 初次启动时间:~16小时 14T磁体磁场范围:±140000 Oe达到满场时间:40min扫场速率:0.2——120 Oe/S(低场时更快)初次启动时间:~40小时 PPMS 平台提供多种测量手段 功能选件——磁学测量振动样品磁强计选件(VSM) 采用长程电磁力驱动马达,比传统VSM马达噪音更低。采用超导磁体,磁场均匀度比传统电磁铁更好。采用新型控温技术,比传统VSM控温更好。 高温炉组件可将VSM的高温扩展至1000KVSM测量参数:灵敏度: 10-6 emu/tesla噪音基: 6 x 10-7 emu rms精确度: 5 x 10-6 emu/tesla振动频率: 40 Hz振动幅值: 0.5 to 10 mm最大可测磁矩: ~ 40 emu最大可测量磁矩: ~ 75 emu探测线圈内径: 6.3 mm I.D. 12 mm I.D.(可选) 长程电磁驱动高精度马达 新型交流磁学性质测量选件ACMS II可同时测AC和DC的磁学性质,而且测交流磁化率精度很高,可与SQUID媲美。 交流磁化率 灵敏度: 1 x 10-8 emu交流场: 0.005 Oe – 15 Oe (peak)频率: 10 Hz – 10 KHz特有的校准线圈组逐点测量并消除了背景相漂移 直流磁化强度灵敏度: 5 x 10-6 emu 交流磁化率线圈原理图 光诱导磁测量选件(VSM FOSH) 该组件为研究光激发情况下物质磁性变化的最佳选择。可选波长连续可调的光源。单色光源 (MLS) 波长范围: 360 nm to 845 nm光源: 氙灯 – 150 W光纤:325 - 900 nm (D320-UV) 375-2250 nm (D320-IR)样品尺寸: 1.6 mm (max)灵敏度: 1 x 10-4 emu可控电子快门 光磁样品杆 扭矩磁强计选件(Torque Magnetometer) 磁各向异性的高精度测量首选组件。扭矩背景噪音: 1×10-9 Nm磁矩灵敏度: 1×10-7 emu @ 9T 1×10-8 emu @ 14T扭矩测量范围: ±10-5 Nm芯片尺寸: 6×6×1 mm3安装样品区域: 2×2 mm2最大样品尺寸: 1.5×1.5×0.5 mm3最大样品质量: 10 mg角速度(度/秒): 0.05 - 10(标准型) 0.0045 - 1(高精度 型)角度步长: 0.05°(标准型)0.0045°(高精度型) 磁扭矩高精度芯片 磁各向异性测量所用旋转样品杆 功能选件——电学测量 直流电输运选件( DC Resistivity ) 电流范围: 5nA - 5mA最高电压: 95mV电压灵敏度: 20nV (典型值)电阻测量范围: 4μΩ - 4MΩ测量精度: 0.01% (典型值) 高级电输运测量选件(ETO) 噪声基:1 nV/rtHz电压输出范围:± 4.5 V (一倍增益时)电流范围:10nA-100mA 持续操作频率范围:直流或交流(0.1Hz-200Hz)电阻测量精度:0.1% (R 200 kΩ) 0.2% (R 200 kΩ)相对灵敏度:± 10 nΩ RMS (典型值)电阻测量范围:四线法10-8Ω-106Ω 二线法106Ω-1010Ω 电测量用样品托 范德堡法测电阻 channel1四点法测电阻 channel2霍尔测量 功能选件——热学测量 比热测量选件(Heat Capacity)l 高精度、高自动化程度的设计l 便捷的样品安装装置l 具有自动驰豫的精密量热学技术l 具有完备的数据收集电子设备和数据分析软件l 采用出色的双 ι (two tau model™ )模型拟合技术l 对于每一个测量点系统自动计算和记录德拜温度测量温度范围:1.9K - 400K(从2K开始出点) 配合He3 制冷机可达0.4 K 配合稀释制冷机可达50 mK可测比热范围:1μJ/K – 100mJ/K样品尺寸: 1mg - 500mg(典型值20mg)测量灵敏度: 10nJ/K @2K测量精度: 5% @2K - 300K(典型值2%) 比热专用样品托 不同磁场下比热随温度的变化曲线 热输运测量选件(TTO) 独特的设计使得PPMS配合该选件, 能够进行以下参数的测量: AC 电阻率 热导 热导率 塞贝克系数 热电品质因数 利用专用的样品托进行样品安装和固定, 不需要特殊的样品杆 四端头引线法将接线头的热阻和电阻效应降到最低 在温度不断变化的情况下进行连续测量,能够得到高密度的数据 特有的系统自适应测量方案非常适合研究陌生材料 软件可以精确的动态建立热流量模型,补偿各种 可能的系统误差 全自动的测量过程,操作简单热传导测量精度 ± 5 %或± 2 μW/K, T 15 K ± 5 %或± 20 μW/K, 15 K T 200 K ± 5 %或± 0.5 mW/K,200 K T 300 K ± 5 %或± 1 mW/K, T 300 KSeebeck 系数 测量精度:± 5 %或± 0.5μV/K 或± 2 μV 测量范围:1 μV/K - 1 V/K 热输运测量样品示意图 热输运腔外检测装置 电阻率测量 最大电流200mA品质因子测量 测量精度:±15%(取决于S) 测量速度(典型值) ±0.5 K/min,T20 K;±0.2 K/min,T20 K QuantumDesign2017年全新推出AC-DR、膨胀系数、光电输运选件AC-DR稀释制冷机专用交流磁化率选件 全新AC-DR选件配合PPMS稀释制冷机使用,能够实现50mk极限低温下的交流磁化率测量。频率范围:10Hz-10kHz温度范围:50mK-4K Dilatometer膨胀系数选件(Beta) S. Ran et. al (2015 Dec). Thermal expansion and high magnetic field electrical transport measurementson Fe substituted URu2Si2. Poster session at the Big Ideas, San Diego, Ca. 光电输运选件
    留言咨询
  • 用途:激光闪射法(LFA)是一种快速灵活的测量方法,近年来发展十分迅速,不仅能精确地直接测量热扩散系数,也可通过比热的测量或输入进一步计算得到导热系数。耐驰公司提供三种LFA型号,覆盖各类测试材料与极为宽广的温度范围。其遵从的国际标准包括:ASTM E 1461, ASTM E 2585, ISO 22007-4, ISO 18755, ISO 13826, DIN EN 821-2, DIN 30905, DIN EN 1159-2等。性能:-无须更换检测器或炉体,在同一台仪器上可实现-100°C到500°C的宽广温度范围。 -进样器附有16个样品位,可在整个温度范围内连续测量16个样品,大大缩短了测量时间。 -液氮补给系统可以实现对检测器与炉体的自动补充液氮,保证仪器全天候不间断测量。 -专利技术的ZoomOptics优化了检测器的检测范围,从而消除了孔径光阑的影响。显著增加了测量结果的精度。 -2MHz的数据采集速率,满足薄膜样品及高导热材料的高数据采集速率,精确地记录样品上表面的升温过程。*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制