当前位置: 仪器信息网 > 行业主题 > >

比热

仪器信息网比热专题为您整合比热相关的最新文章,在比热专题,您不仅可以免费浏览比热的资讯, 同时您还可以浏览比热的相关资料、解决方案,参与社区比热话题讨论。

比热相关的资讯

  • 钱义祥&曾智强 :DSC曲线的峰谷之美
    热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡, 绝妙 ! DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念是一个完整的美学体系。DSC曲线的峰谷之美,TG曲线的流淌之美和DMA曲线的激荡之美构成热分析曲线之美的三部曲。本篇是DSC曲线的峰谷之美。【热分析简明教程】第五章是热分析实验方法的标准与规范。差示扫描量热法DSC的标准与规范包括玻璃化转变温度测定、熔融和结晶温度、熔融和结晶焓的测定、比热容的测定、特定反应曲线温度、时间、反应热和转化率的测定、氧化诱导期的测定、结晶动力学的测定。本文以差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定为示例,展现DSC曲线的峰谷之美。山高人为峰,脚踏幽幻谷。迈开脚步,探索DSC峰谷之美。传热学是研究由温差引起的热能传递规律的科学。热流DSC是测定热变化引起试样与参比物温差变化的研究方法。温度差既是热量变化的反映,又是引发热传导的必要条件。当试样发生热反应时,温差引起热能传递,DSC曲线上出现了吸热峰、放热峰和和台阶。约定DSC曲线Y轴的代表的热效应方向之后(例如将Y轴正向约定为放热方向),吸热效应用凹下的谷表示;放热效应用凸起的峰表示。高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。峰、谷和向吸热方向偏离的台阶是展现DSC曲线的峰谷之美的基本形态和美姿。它反映了事物变化的本质和规律。 一.玻璃化转变曲线的阶跃之美玻璃化转变测定的标准是GB/T19466.2-2004/ISO11357-2 2020。它规定了塑料玻璃化转变温度的DSC测定法。玻璃化转变研究植根于高分子化学、高分子物理和近代研究方法(热分析)的根基上。热分析研究玻璃化转变的目的就是科学认识玻璃化转变,用高分子化学、高分子物理和凝聚态物理来解析玻璃化转变曲线中的科学问题和应用问题。玻璃化转变是高聚物的基本物理转变,研究内涵极为丰富,它涉及玻璃化转变的特征温度、状态变化、热力学参数、力学性能、滞后圈、活化能测定;玻璃化转变温度的调控;玻璃化转变与蠕变、应力松弛、屈服、界面、银纹的关联;热-力历史对Tg的影响、以及玻璃化转变与高聚物结构、性能、加工、使用的相关性等。并通过分子运动揭示分子结构与材料性能之间的内联系及基本规律。用DSC方法研究玻璃化转变,当试样发生玻璃化转变时,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物发生物理老化时,应力松弛过程使台阶转化为凹下的谷。我们从玻璃化转变曲线的阶跃和凹下的谷发现玻璃化转变的外在美和内在美。1. 玻璃化转变的简约之美和变化之美 玻璃化转变峰形 应力松弛引起的峰形变化 TMA压入模式测定导线双层涂层的Tg,呈双台阶式,如图所示: 玻璃化转变的峰形简洁优美,简静和谐,简约的形式却表达了丰富的内容。玻璃化转变反映了物质的状态、使用温度、相容性、老化温度区间、制品加工、材料稳定等信息。2. 玻璃化转变台阶演变之美物理老化是玻璃态高聚物通过链段的微布朗运动使其凝聚态结构从非平衡态向平衡态过渡的松弛过程。它一般发生在玻璃化温度和次级转变之间。高聚物的物理老化引起玻璃化转变台阶变异,应力松弛过程使台阶演变为凹下的谷形特征,甚至酷似DSC曲线上的吸热峰。这是玻璃化转变台阶演变之美。从宏观性能角度来看,高聚物的玻璃化转变是指非晶高聚物从玻璃态到高弹态的转变(温度从低到高),或从高弹态到玻璃态的转变(温度从高到低)。DSC是一个测定近似比热容的方法,高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,呈台阶形。玻璃化转变本质上是一个动力学问题,是一个松弛过程。当高聚物从熔体猝火到玻璃态后,再在低于Tg的温度下进行热处理,则会在Tg附近出现一个吸热峰。如图所示:具有不同热历史的从熔融态淬火聚对苯二甲酸乙二酯膜的DSC曲线(a) 分别在温度下热处理2小时;(b)在25℃下热处理不同的时间此曲线摘自【新编高聚物的结构与性能】 何平笙编著 科学出版社出版社 2009物理老化在DSC的升温测量中表呈现出来,如上图所示。当高聚物从熔体淬火到玻璃态后,再在低于Tg温度下进行热处理,Tg台阶演变为一个松弛峰,温度越高,松弛峰越高。淬火试样在25℃热处理不同时间,DSC吸热峰随处理时间延长而移向高温。研究具有不同热历史对玻璃化转变的影响,其本质是研究高聚物的物理老化。3. 和谐美(统一美)PET的DSC曲线如图所示。热分析曲线集玻璃化转变、冷结晶和熔融于一身,体现了多重转变的和谐(包容)之美。曲线似狼毫疾书,峰(锋)起峰(锋)落,流淌着玻璃化转变、冷结晶、熔融的变化轨迹。PET的DSC曲线在DSC曲线上,既有物理转变峰,也有化学转变峰;既有平坦峰,也有陡削峰;既有强峰,也有弱峰。它们和谐地融汇在一起。 4. 玻璃化转变台阶宽化之美玻璃化转变是非晶态高聚物(包括部分结晶高聚物中的非晶相)发生玻璃态≒高弹态的转变,其分子运动本质是链段发生“冻结”“自由”的转变。基于热运动强烈的时间依赖性和温度度依赖性,高聚物的玻璃化转变不是一个温度点,而是一个温度区间。因此科学认识玻璃化转变峰的寛化现象非常重要。玻璃化转变区一般宽达10~20℃,而且玻璃化转变区还明显地依赖于实验条件。某些高聚物体系的玻璃化转变区域发生加宽现象,加宽现象表明存在多种形式分子链段运动,这主要来源于交联高聚物中交联程度的微观差异、嵌段或接枝共聚物微相结构的差异、高聚物共混体系中相结构和相互作用的不同等因素。5. 玻璃化转变的双重峰之美非晶高聚物通常只有一个玻璃化温度。但高聚物也会出现双重玻璃化现象和双玻璃化温度。从热分析应用研究史来看,随着新型材料不断出现,热分析研究领域也不断扩展。科学认识双重玻璃化温度现象是以热分析实验为基础。在新材料的研究中,通常都需要测定玻璃化转变,常常会发现双玻璃化转变转变现象。归纳整理大量的热分析曲线,发现下列情况常常会出现双重玻璃化现象和双重玻璃化温度:1)许多部分结晶高聚物常表现出两个玻璃化温度;2)交联高聚物的两相球粒模型;微相分离;3)部分相容的共混高聚物;4)部分橡胶均聚物、树脂/基体体系;5)高聚物涂布在基体(尼龙纤维)上的双玻璃化温度;6)导线双层涂层的双玻璃化温度高聚物具有双玻璃化温度,它的DSC曲线将出现二个玻璃化转变的台阶。摘抄几个具有双玻璃化转变的高聚物:DMA也可以测定玻璃化转变,如交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象如图所示:交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象 高交联微球分散在低交联基体中的两相结构中。一个对应于高交联球的玻璃化转变,另一个对应于低交联基体的玻璃化转变。DMA和DSC是测定到双玻璃化现象和双玻璃化温度的常用方法。6. 玻璃化转变的可逆之美 玻璃化转变是一个可逆过程。从宏观性能角度看,高聚物的玻璃化转变是指非晶高聚物玻璃态转变为高弹态(温度从低到高),或从高弹态转变为玻璃态(温度从高到低)。通常,玻璃化转变测量是进行升温实验。但严格来说,玻璃化过程应是从高弹态转变为玻璃态(温度从高到低),由降温曲线求得玻璃化温度更合理。非晶高聚物由玻璃态转变为高弹态(温度从低到高)是解玻璃化过程。非晶高聚物的升温与降温的DSC曲线如图所示: 非晶高聚物的升温与降温的DSC曲线7. 玻璃化温度的调控之美物质的热变化是可调控的,玻璃化温度也是可以调控的。解读特定材料玻璃化转变的热分析曲线,研究它的特征和变化规律,进而对玻璃化温度进行调控,优化材料热物性参数、状态和特性,服务于材料研发、生产和使用,使热变化沿着确定的研究方向发展。你欲调控材料的玻璃化温度,你就要知道哪些因素会影响材料的玻璃化温度。调控玻璃化温度依赖于你对影响玻璃化温度因素的认知。高分子物理告诉我们:玻璃化温度是高分子的链段从冻结到运动(或从运动到冻结)的一个转变温度,而链段运动是通过主链的单键内旋转来实现的,因此,凡是能够影响高分子链柔性的因素,都对Tg有影响。减弱高分子链柔性或增加分子间作用力的因素,如引入刚性基团或极性基团、交联和结晶都使Tg升高,而增加高分子柔性的因素,如引入增塑剂或溶剂,引进柔性基团等都使Tg降低。基于高分子物理对玻璃化转变的认知,改变玻璃化温度的手段有:增塑、共聚、交联、结晶及改变相对分子质量可以使高聚物玻璃温度在一定范围内连续地变化。如不同结构的聚苯并噁嗪,Tg 在107 ℃—368 ℃宽的温度范围内变化;N-羟甲基丙烯酰胺(NMA),参与共聚的EVA乳液的 Tg 值可以在 -30~30℃之间调控;偏二氯乙烯与丙烯酸酯共聚,可制备得到不同Tg的两种乳液:低Tg(-50~0℃)的乳液和高Tg(0~30℃)的乳液;用于粘接水晶的 UV 固化胶,添加增塑剂来降低 Tg , 增加胶的柔韧性。8. 科学认识玻璃化转变中的“未知”人的认知是不断提高的,常常用已知来解释未知。探索未知的利器是丰富完善自身的知识体系,完善的知识结构包括雄厚的知识储备和系统、灵活地运用这些知识的科学方法。几十年来,我们已科学认识了玻璃化转变中的许多“未知”,但还有很多的“未知”需要继续探索。探索未知的前提是你要有求索的觉醒。如果一个人的思维被禁锢,视野和认知就会变狭隘,认知也就停止不前了。玻璃化转变研究中最大的“未知”是人们还是无法回答玻璃态的本质是什么这一基本问题。玻璃态本质的研究一直是凝聚态物理及软物质领域的重要内容,也是至今悬而未决的难题。迄今为止没有一个理论能解释玻璃化转变过程中的所有现象,已有的理论也只是在某些特定的过冷区间和特定的体系中才与实验或模拟结果吻合。诺贝尔奖获得者Andcrson在文章中展示了他对玻璃化转变问题的兴趣,并预言玻璃化转变问题将在21世纪得到最终解决。对玻璃化转变机制的研究,正在不断深入并逐渐逼近正确,对它的研究,既是挑战也是机遇,并将继续吸引科学家们研究下去。经过科学家们持续不断的努力,玻璃及玻璃化转变的物理本质之谜最终一定会解开!热分析方法研究高聚物材料已有几十年的历史,它不仅为材料提供了热物性参数,还为探索玻璃化转变的实验特征(玻璃化转变过程的热力学行为、动力学特征)、实验技术表征和玻璃化转变理论的演变积累了大量的数据,是探索玻璃化转变理论的实验基础。它在玻璃化转变理论研究中的作用不容忽视。热分析方法表征高聚物材料需要玻璃化转变理论指导,研究玻璃化转变理论也需要近代科学方法(包括核磁共振、热分析等)的实验基础和实验证据。玻璃化转变研究在进行中,玻璃化转变的峰谷之美将在不断研究中绽放得更灿烂。二、熔融-结晶的峰谷之美熔融和结晶温度、熔融和结晶焓测定的标准是GB/T 19466.3-2004/ISO 11357-3 2018。它规定了塑料熔融与结晶的DSC测量法。可用DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。1. 冷结晶、热结晶、等温结晶之美结晶或部分结晶聚合物的非等温结晶有冷结晶和热结晶之分。试样以适当的速率升温,熔融后淬火,淬火试样以相同速率升温,DSC曲线上的结晶峰称为冷结晶峰。把开始结晶的温度与Tg之差 ∆Tg 作为非等温冷结晶速率的度量,初略地说,∆Tg越大,则冷结晶速率越慢。 聚合物升温熔融与降温结晶的DSC曲线如图所示;可以用过冷度∆Tc来分析非等温实验数据。过冷度 ∆Tc定义为升温DSC曲线熔融峰温与降温DSC曲线开始结晶温度之差,用线性方程式中截距表示聚合物所固有的结晶能力。∆Tc随降温速率而变。 2. 熔融-结晶峰的峰、岭、谷之美DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。高聚物的DSC曲线显现结晶高聚物的熔融与结晶过程。升温测量高聚物的结晶-熔融过程,假设DSC图中约定Y轴正方向代表放热,那么冷结晶曲线呈峰的形式,熔融曲线呈谷的形式。降温测量热结晶,热结晶曲线呈峰的形式。PTFE熔融的DSC曲线如图所示:PTFE不同升温速率的DSC曲线PTFE熔融峰的峰形与升温速率有关。随升温速率的提高,熔化峰变宽,河谷越来越深。熔融峰好似平原上的河谷。结晶度高的部分结晶聚合物熔融峰的谷坡陡峻、狭而深,似大峡谷;结晶度低的结晶或部分结晶聚合物熔融峰的谷坡浅而宽。熔融双峰呈现谷—谷相连突起的“岭”,似水中的暗礁或小岛。如图示意:熔融双峰的双谷和暗礁或岛屿的示意结晶峰好似独立高耸的山峰。结晶双峰呈现山峰相连的岭和狭窄低凹的山谷。如图示意:结晶双峰的峰、岭、谷的示意3. 等温结晶峰的变化之美 结构相当规整的聚合物在玻璃化温度Tg和熔融温度Tm所限定的温度范围内出现结晶作用。结晶速率随温度而变,所以采用恒温法测定高聚物的结晶过程,结晶峰的峰形是随结晶温度而变。不同结晶温度的DSC曲线如图所示。它显现了高聚物结晶速率对温度的依赖性,也显现了不同结晶温度下结晶峰形的变化之美。PBS熔融后分别在80℃、81℃、83℃、85℃、88℃等温结晶的DSC曲线部分结晶高聚物是晶相和非晶相的混合体系。晶相最重要的特征温度是熔点Tm。非晶相最重要的特征温度是玻璃化转变温度Tg 。部分结晶高聚物结晶温度范围正是在Tg与Tm之间。实现结晶的途径有两条:一是将熔体或溶液冷却到Tg与Tm之间的温度使之结晶,称为热结晶;二是先将熔体骤冷到Tg以下形成过冷液体(即玻璃),然后再升温到Tg与Tm之间的温度下使之结晶,称为冷结晶。高聚物结晶速率对温度的依赖性取决于成核速率和晶体生长速率的温度依赖性。随温度的下降,成核速率逐渐增大;晶体生长速率的温度依赖性取决于高分子链段向晶核扩散并作规整排列的速度。温度越低,熔体黏度越大,晶体生长速率越小。因此,高聚物的结晶速率随温度的变化不是单调上升,也不是单调下降,而是在某一温度下达到最大值。在结晶温度略低于熔点时,结晶速率因成核速率很低而很慢;在接近玻璃化转变温度时,结晶速率因晶体生长速率很低而很慢;而结晶温度在(0.80 ~ 0.85)Tm附近时,因成核速率和晶体生长速率都较高,结晶速率达到极大。等温实验得到多条等温结晶曲线,绘制等温温度-等温结晶时间下的关系曲线,如图所示:等温结晶温度和结晶时间的关系由等温结晶温度-等温结晶时间下的关系曲线方便地选择等温结晶温度,具有选择之美。U字形曲线显现结晶温度和结晶时间相关性之美。三.比热容曲线的线性美及松弛峰特征比热容的DSC测定法的标准是ISO11357-4 2021和ASTM E 1269-11(2018)规定了比热容的DSC测定法。比热容是指单位温升所需的热量(热容C)除以质量m,单位为J / kg. K 。比热容的DSC曲线如图所示: 显现玻璃化转变和应力松弛特征的比热容曲线通常,比热容与温度的关系是线性增大。当试样发生玻璃化转变且有应力松弛时,比热容曲线会出现台阶和松弛峰峰形。四.特定反应的特征/特性之美 特定反应曲线温度、时间、反应热和转化率测定标准是ISO11357-5。它规定了特征反应曲线温度、时间、反应热与反应程度的DSC测定法。热分析研究特定的反应,热分析曲线就是这种特定反应的特定的形象。DSC研究的特定反应泛指氧化、还原、固化、热降解、热氧降解等。用DSC曲线来表征特定反应曲线温度、时间、反应热和转化率,也可进行剩余热的测量。依实验目的可以采用升温法或恒温法。特定反应的DSC曲线峰谷具有特定反应的特征和特性,呈现特定反应特有的特性之美。特定反应的美是建立在反应本身固有的特征和特性基础上,人们从研究特定反应中得到了快乐,为什么能从中得到快乐呢?因为特定反应的DSC曲线的峰谷具有特定反应的特性之美。特定反应的美是建立在特定反应本身,如DSC研究胶粘剂的固化反应。胶粘剂的固化反应是一个高分子化学问题。高分子链之间通过化学键连接起来形成相对分子质量无限大的三维网络,称之为交联。交联固化过程不是按化学反应平衡方程式来表示,而是以一种不均一的状态存在,交联高分子的网络结构可以是规则的,也可以是不规则的。因此固化反应的DSC曲线常出现双峰峰形和多峰峰形,如图所示。交联固化的DSC曲线示意玻璃化温度(Tg)的测定这是一个高分子物理问题,通过测定Tg来研究交联高分子网状结构和宏观性能(玻璃化转变)的相关性。胶粘剂的固化反应出现双峰,表明固化产物以不均一的状态存在。那么固化产物的DSC峰就会出现双玻璃化转变现象。限于篇幅,其它特定反应曲线温度、时间、反应热和转化率测定就不介绍了。五.氧化诱导期的蓄势之美氧化诱导期的测定标准是ISO11357-6 2018。它规定了聚合物材料氧化诱导期的DSC测定法。氧化诱导期是指稳定化材料耐氧化分解的一种相对度量。是由DSC测量材料在某一特定温度、常压氧气气氛下起始氧化放热的时间间隔来确定的。典型的热氧化稳定性曲线如图所示:热氧化稳定性曲线(切线分析法)t1氧气流切换点 t2氧化起始点 t3切线法起点 t4氧化峰时间氧化诱导期是用起始氧化放热的时间间隔来确定的。在某一特定温度下等温,试样吸附氧,是一个蓄势过程,当物理吸附和化学吸附氧的量蓄聚达到某一个值时,试样突然氧化放热,出现一个氧化放热峰。DSC方法测定聚乙烯的氧化诱导期是典型的实例。试样在氧化气流中200℃或210℃下等温,吸附氧气,蓄势诱导,氧化放热直冲峰顶。润滑油的氧化诱导期是采用压力差示扫描量热法(PDSC)。美国试验与材料协会于1998年将PDSC法测定润滑油的氧化诱导期列为ASTM D6186标准(最近版本发布于2013年。润滑油是液体,易挥发,使用PDSC法测定润滑油的氧化诱导期,试验数据重复性好。氧化起始温度是另一个表示材料氧化分解的概念。动态测定是由DSC测量材料在程序升温下、常压氧气气氛下起始氧化放热的温度来确定的。典型的氧化起始温度的DSC曲线如图所示:两种不同HDPE的氧化起始温度(动态OIT)测试由DSC曲线的氧化放热峰分别求出反应起始温度、外推起始温度、最大反应速率温度、外推终止温度和反应终止温度。氧化诱导时间和氧化起始温度都是稳定化材料耐氧化分解的一种相对度量。氧化诱导时间(等温OIT),氧化诱导温度(动态OIT)分别表示开始出现氧化放热的时间或温度。氧化诱导时间与氧化起始温度是二个不同的概念。要证明材料耐氧化的时间,采用氧化诱导时间来表示;要证明材料耐氧化的温度,采用氧化起始温度来表示;氧化诱导时间长,并不表示氧化起始温度高。反之亦然。六.结晶动力学的测定 结晶动力学测定的标准是ISO11357-7 2022。它规定了利用差示扫描量热法研究部分结晶聚合物结晶动力学的等温和非等温两种方法。该方法可应用于已熔融的聚合物。如果测试过程中聚合物的分子结构有所改变,此法不适用。上面我们用图形和文字展现了差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定的DSC曲线的峰谷之美。峰谷之美的源泉是什么?源之温差引起的能量传递的热传导过程。温差引起的能量传递的热传导过程是峰谷之美的源泉。傅立叶定律是传热学中的一个基本定律,也称为热传导定律。傅立叶热传导定律与差示扫描量热法有一定的内在渊源。传热学是研究由温差(temperature difference)引起的热能传递规律的科学。热流DSC是测定由于热变化引起试样与参比物温差变化的研究方法。DSC热力学体系因温差引起热传导现象,热传导现象与能量的传递相联系,热传导过程就是热量热传递(流动)的过程。DSC测量流入(流出)试样和参比物的热流与温度或时间的关系,得到了热流随温度或时间变化的轨迹,DSC曲线上出现了吸热峰、放热峰和和台阶。热流DSC的理论基础是傅立叶热传导定律,应用傅立叶热传导理论解析热流DSC曲线的热传导现象,展现DSC曲线的峰谷之美。峰谷之美从温差、能量传递和热传导过程中绽放。人们发现美的同时,DSC曲线的峰谷也给人以美的享受。 下面我们继续探索DSC曲线的特性参数转折之美、曲线变异之美、峰-峰、谷-谷、峰-谷连绵之美。托宽思路,探索古陶瓷DSC曲线的远古之美和空间材料的遥远之美。七.特性参数转折之美DSC可以测定比热容、导热系数;TMA可以测定膨胀系数;导热仪可以测定导热系数。比热容、膨胀系数、导热系数在玻璃化转变温度的转折如图所示: 比热容、膨胀系数、导热系数在玻璃化转变前后的转折由图可以看出:比热容、膨胀系数、导热系数峰值都在玻璃化转变温度出现峰值。比热容、膨胀系数、导热系数在高聚物玻璃化转变温度出现转折点是特性参数转折之美。聚合物的比热容、热膨胀、导热系数与分子活动性直接相关。不同物质的比热容、膨胀系数、导热系数各不相同;相同物质的比热容、膨胀系数、导热系数与其结构、密度、湿度、温度、压力等因素有关。八.曲线变异之美 曲线变异是指与定势思维相侼的DSC曲线。热分析实验中出现DSC曲线变异是常见的事。如高聚物玻璃化转变峰出现应力松弛峰;固化反应的DSC曲线出现双峰或多峰时,在固化产物的DSC曲线上就会出现相应的双玻璃化现象。当测试到变异峰时,一定要溯源曲线变异的原因。避免将变异的热分析曲线当作异常峰处理,产生误读与误判。进化的基本机制是变异与选择。求异思维的逻辑内核是“敏于生疑,敢于存疑,勇于质疑”。思维的求异或求异意识是指敢于向权威或传统观念挑战,从已有思路或从相异、相逆的思路去思考变异的DSC曲线,获得新的认知。。物质世界中,唯一不变的是变化,变化是永恒的。人类对变化的认知虽然不断演进,但变化自身的哲学内涵远比我们对变化所能理解的更为深邃。人类对热变化的探索无止境,当你遇到变异的热分析曲线时,潜心研究变异的曲线。运用热变化中的哲理解析变异的热分析曲线。开智悟理,悟而生慧、悟得智慧。科学研究中,常常悟生于常规、传统、标准、经典之外,探索前行。由“悟”而后产生变则通思维具有必然性。“悟”出变幻无常的曲线变异之美是对热变化的认识深化。玻璃化转变是高聚物的一个基本转变,它常常会发生变异。如物理老化引起玻璃化转变曲线变异。物理老化使玻璃化转变峰的峰形由台阶式峰形变异为松弛峰峰形。MDSC可将可逆的玻璃化转变和不可逆的应力松弛分离。 通常,水合氧化铝脱水形成低温氧化铝(γ、δ、η、κ-Al2O3), 低温氧化铝于1250℃转型生成高温氧化铝(ɑ-Al2O3)。测试某一样品,偶然发现高温氧化铝(ɑ-Al2O3)的生成放热峰提前到1050℃。经溯源,峰的变异是由样品中加入了矿化剂之故,使转相温度提前了200℃。玻璃化转变的宽化现象和双重玻璃化现象也是DSC曲线变异的实例。探索曲线变异的原因是认识的深化。变异的DSC曲线呈现峰谷变异之美。DSC曲线的峰谷在变异中越变越美。九.峰-峰、谷-谷、峰-谷连绵之美用凹下的谷表示吸热效应;用凸起的峰表示放热效应;用向吸热方向偏离的台阶表示玻璃化转变。峰、谷和台阶是展现DSC曲线的峰谷之美的基本形态。是对事物本质和规律的反映。DSC曲线中,常常出现峰-峰、谷-谷、峰-谷相连的现象。座座山峰相连称为岭,两峰之间狭窄低凹处称为谷。峰美!谷美!峰-峰相连的山岭美!狭窄低凹的山谷美! 1. 峰-峰连绵之美Al-ZrO2体系的DSC曲线如图所示:不同升温速率下Al-ZrO2反应过程的DSC曲线Al-ZrO2体系在一定条件下(不同升温速率下)发生化学反应。图中两个放热峰分别对应于两个分步反应:Al + ZrO2 → ɑ-Al2O3 + [Zr][Zr] + Al → Al3Zr 两个分步反应在不同升温速率下的峰顶温度Tm是不同的,两个放热峰相连形成不同形状的山岭和山谷。DSC曲线因峰冠雄,因峡显幽。DSC曲线显现放热峰相连的山岭美!显现狭窄低凹的山谷美!2. 谷-谷连绵之美不同升温速率的PET的熔融双峰如图所示: 不同升温速率下PET的DSC曲线PET的结晶比较慢,因此不同的热历史可以造成不同的结晶和熔化过程。在慢速升温过程中,由于PET形成的片晶部分熔化,未熔化部分似作成核点,形成熔融再结晶,这种结晶可以在更高的温度熔化,从而形成熔融双峰。如果用TMDSC的话,还可以测到再结晶过程的放热峰。还有一种观点是,结晶过程中形成了两种不同稳态的晶体,热稳定性差的在较低温度熔化,热稳定性高的在较高温度熔化,从而形成熔融双峰。如果在120-140℃长时间退火,将试样降温到室温后再升温,DSC曲线在140℃以上还会出现第三个小峰。聚乳酸一次升温的DSC曲线如图所示: 161.0℃和167.4℃是聚乳酸的熔融峰,这个双峰现象有几种解释:1)熔融再结晶;2)晶型转变;3)分子量分布宽,片晶厚度不同。聚乳酸的熔融双峰具有紧紧相依之美。3. 3.谷-峰衔接之美 Al2O3与ZnO反应过程的DSC曲线如图所示: 图中表明:Al(OH)3脱水谷与AL2O3.ZnO生成的放热峰光滑衔接、谷-峰相连。好似造山运动,Al(OH)3脱水反应使曲线下降,形成脱水谷,AL2O3.ZnO生成的放热反应使曲线突然上升,形成雄伟的山峰。真是一幅因峡显幽,因峰冠雄,绝壁长崖的山水图。 Al2O3与B体系的DSC曲线如图所示:Al-B反应过程DSC曲线Al的熔融吸热峰形成显幽之谷,液态Al与B反应生成ALB2, 放热峰使曲线上升,熔融吸热峰与放热峰光滑衔接,谷-峰相连。好似地壳下沉后又突然升高,绝壁长崖直冲峰顶。4. 台阶与应力松弛峰的组合之美 高聚物的玻璃化转变在DSC曲线上的特征是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物在玻璃化转变温度和次级转变温度之间发生物理老化时,应力松弛过程使台阶转化为凹下的谷。 十.迷人材料热分析(DSC)研究的诗意和美“迷人的材料”是英国人马克.米尔多尼克所著。对构建现代世界的物质做了美好的描述,从细微中发现诗意和美, 是一部材料科学的颂歌, 也是对人类智慧的赞颂。“迷人的材料”是《物理世界》2014年推荐的最佳科普书。书中展现了人类需求和欲望的材料,带领人们走进神奇的材料世界。本书介绍了“迷人的材料”:钢、纸、混凝土、巧克力、发泡材料、塑料、玻璃、碳材料、瓷器、长生不死的植入物等材料。介绍迷人材料的资料还有:未来最有潜力的新材料;有能力改变整个世界的超级材料及地球上十大神奇的极端物质。如石墨烯、气凝胶、碳纳米管、富勒烯 、非晶合金、泡沫金属、离子液体、纳米纤维素、纳米点钙钛矿、3D打印材料、柔性玻璃、自组装自修复材料、可降解生物塑料、钛碳复合材料、超材料、超导材料、形状记忆合金、磁致伸缩材料、磁(电)流体材料、智能高分子凝胶。美国材料研究学会在每次年会上进行图片比赛,通过显微镜人们看到了如艺术品一般的材料组织,发现材料既有外在美,又有内在微观世界的神奇,微观世界与宏观世界具有异曲同工之妙。用热分析研究迷人的材料,可以提供许多有用的参数。DSC在材料研究中有着广泛的应用,展现了材料DSC曲线之美。 1.石墨烯的DSC曲线之美2.锂电池的的DSC曲线之美3.含能材料瞬变反应的新奇美 4.古陶瓷DSC曲线的远古之美以古陶瓷研究为例,古陶瓷是火与土的艺术,运用近代科技方法研究釉陶的的物理—化学过程,对古陶瓷样品的显微结构、物相结构进行深入研究,为推测古陶瓷的烧制工艺、揭示我国古代名瓷的呈色机理、再现我国古代名瓷的制作奥秘提供有力的数据支撑。应用近代科技方法(含热分析方法)研究古陶瓷是将今论古,今为古用,呈现远古之美。 现代陶瓷研究:先驱体裂解转化制备陶瓷,突破了火与土的传统,是突破之美。先驱体裂解转化制备陶瓷是利用有机先驱体聚合物裂解制备陶瓷材料的新方法。人们已用热分析方法(DSC方法)探索先驱体裂解转化制备陶瓷工艺中的合成过程、交联过程和裂解过程。 陶瓷反应体系Al-TiO2的DSC曲线及反应结果的X射线衍射花样如图所示: 陶瓷反应的DSC曲线的包容性陶瓷反应体系Al-TiO2的DSC曲线主要有三个峰和谷:第一个谷为吸热峰,发生在667℃,对应于Al液化吸热过程;随着温度升高,在950℃左右时出现了第二个峰,为放热峰,表明试样中发生了以下化学反应:4Al + 3TiO2→ 2ɑ-Al2O3 + 3[Ti]反应产生的活性[Ti]原子随后又与Al原子结合生成Al3Ti ,该反应为强放热反应,峰顶温度1000℃左右。因此,Al-TiO2体系在升温过程中依次经历了一个物理转变(Al的熔融)和两个化学反应,分别产生两种增强体 ɑ-Al2O3陶瓷和Al3Ti金属化合物。反应结果的X射线衍射花样进一步说明了这一点。Al-TiO2体系反应过程的DSC曲线具有强大的包容性。它包容了物理转变(Al的熔融)吸热峰的谷和两个化学反应放热峰及峰-峰相连形成的山岭和山谷。以上多图均摘自【材料科学研究与测试方法】朱和国 王新龙编著 东南大学出版社 2013 5. 空间材料DSC曲线的遥远之美国际空间站的微重力实验:空间条件下集成热分析的先进管式炉(ADV、TITUS)进行材料生长实验。最高工作温度1250℃,采用炉体移动的方式进行材料生长,其最主要的技术特点是该设备在进行材料生长实验的同时,也进行了材料的差热分析(DTA)测试。该实验即为空间材料科学与微重力下的热分析的诌型。在地球万有引力下,单晶硅生长由于重力的作用,生长单晶硅区浮液桥的直径不能超过8 mm。微重力环境实现无容器过程,增大浮区的直径没有限制,生长出比8 mm粗得多的硅单晶。结晶研究表明:具有高体积分数的样品,在有重力的地面上经过一年也不能结晶化的样品,在微重力条件下(10-6g),不到两周就全部晶化了。发挥DSC研究晶体的潜能,应用DSC开展微重力下的晶体生长实验成为可能。 空间生长的GaSb单晶(左、中)与地面生长的GaSb单晶(右)对比图微重力环境下高聚物的结晶研究:微重力环境下的结晶是为制备太空高聚物材料而进行的研究。模拟太空条件下的高真空微重力下对尼龙11、聚偏氟氯乙烯、间同聚苯乙烯、全同聚丙烯(i-PP)等做了等温结晶,发现不少与常规重力下不同的结晶现象。美国国家航空航天局在航空飞机的实验中测出了比热奇异性的趋势,验证了理论物理的预言。比热奇异性的实验曲线如图所示: 空间LPE实验的比热测量结果实线为地面的实验结果;点划线为空间微重力实验结果;虚线为重整化群理论预期结果比热测量时的相变温度控制在10-9 K以内,液体在相变点处的比热为无穷大。由于地面的重力作用使实验温度达不到要求的精度,测量不出比热奇异性。微重力环境提供了高精度的物理实验条件,测出了比热奇异性的趋势。空间LPE实验的比热测量结果如图。红框内即为比热奇异性。值得注意的是温度坐标为纳度nK。 以上均摘自【微重力科学概论】 胡文瑞等著 科学出版社 2010 十一.DSC曲线峰谷群像图DSC曲线的形态犹如地球的地貌特征,独立高耸的山峰和座座山峰相连的岭、两峰之间狭窄低凹的山谷和幽幻的大峡谷,低缓的丘陵、广阔的平原及谷坡陡峻、狭而深的河谷。山峰、山岭、山谷、丘陵、平原及河谷的特征构成了DSC曲线峰谷群像图。DSC曲线与地理地貌的相似性形象,增添了曲线的天然美(自然美)。 DSC方法研究材料的转变和热物性参数,得到各种各样的DSC曲线。DSC曲线的峰谷呈现物质变化规律之美。DSC曲线群像中,既有共性,又有特性,还有变异性。曲线有相像、相似、类似的形象;也有截然不同的形象,以及曲线变异的形象。转变峰的形状、大小、位置似水无常形,变化万千,借助文字和图形的阐释能力,揭示曲线峰谷蕴含的意义。DSC曲线与地理地貌的相似性形象图: 从DSC曲线与地理地貌的相似性形象,领略DSC曲线峰-谷的天然美。 DSC曲线转变峰群像如图所示: 从DSC转变峰群像图中看出:DSC曲线峰谷变幻无穷、群像纷呈。读懂、读透DSC曲线的峰谷不容易,那是你的理解能力。解析DSC曲线的峰谷并被别人读懂也不容易,那是你的表达能力。清乾隆蘅塘退土孙洙对《唐诗三百首》的题词是:“熟读唐诗三百首,不会做诗也会呤”。解读DSC曲线亦如此。熟读经典的DSC曲线和群像图中的应用曲线,认知DSC曲线的峰谷之美。发现美!欣赏美! 如何认知群像图中DSC曲线峰谷呢?人类学习与机器学习方法相结合。传统的方法是人类学习方法。人类对事物的认知路径经是从原始数据出发,凭借人脑拥有的科学知识去认知DSC曲线峰谷的内涵。面对同样的原始数据,拥有不同知识的人将得出不同的认知;同样,拥有相同知识的人,面对没有数据、有少量数据、有大量数据以及有充分数据等不同情况时,也将得出不同的认知。知识的拥有者占据上风。机器学习方法是一种全新的思维方式。机器学习的本质是跳出“知识”的束缚,建立原始数据与认知之间的直接映射,“数据”价值连城。机器学习方法直接建立“数据—认知”关系库,以更加深邃、更加贴近物质本来面貌的视角去认知DSC曲线的峰谷。机器学习方法已在化学、材料科学和高分子玻璃化研究中得到应用。如中国科学院长春应用化学研究所徐文生研究员和美国北达科他州立大学夏文杰教授基于在高分子玻璃化领域的多年研究经历,综述了机器学习方法在高分子玻璃化领域的研究进展。杨镇岳,聂文建,刘伦洋,徐晓雷,夏文杰,徐文生撰写了机器学习方法在高分子玻璃化研究中的应用。此文刊登于高分子学报2023,54(4)409-427运用人类学习和机器学习方法探索DSC曲线峰谷之美是人的需求。山高人为峰,脚踏幽幻谷,迈开脚步,探索DSC峰谷之美,以人为主导。科学的美是客观存在的,人对美的追求,是自然科学发展的源动力。DSC研究物质受热时发生的物理变化和化学变化,并以峰谷的外在美呈现物质变化的内在美。人,怀着对热分析的情感,自由地鉴赏DSC曲线峰谷的美感,发现美,享受物质变化之美。美使人感到愉悦的同时,也揭示了隐含在曲线中的物质热变化规律。
  • 借助FLIR T640,意大利建筑团队成功分析和诊断外部隔热系统
    随着城市建设的高速发展,我国的建筑能耗逐年大幅度上升,建筑总能耗已达全国能源总消耗量的45%。其中空调、采暖造成的能耗约占60%~70%。因此,建筑外部隔热系统在施工领域变得日趋重要。为了检测新建或已有建筑上大面积外部隔热系统是否安装,以及评估这些隔热产品的热性能,由意大利隔热隔音协会(ANIT)在内的多家公司组成的团队,在FLIR红外热像仪的帮助下,开展了一个研究项目。ANIT与该组织的两个会员企业(即:Caparol与FLIR Systems)发起了一项关于辨识隔热系统与安装异常现象的研究。该研究由Tep srl进行统筹,该公司是一家专业从事建筑物无损能效测试的工程服务公司。01建立测试样本为了研究以外部隔热系统安装为特色的热现象,建立了一份测试样本,在样本三侧覆盖隔热面板(带有石墨添加剂的EPS)。在样本的顶部,墙体采用常见的错误铺设方法进行覆盖,而底部采用正确的铺设方法(有/无EPS合板钉)。涂层前的试样布局02主动热成像分析在太阳能蓄热与放热循环期间,对一面虚拟墙体进行监控与分析,定期记录并存储热图像。借助主动热成像技术,蓄热通过影响测试样本表面的太阳能辐射实现。在放热阶段,已聚集能量的结构在阴凉处开始释放能量时,对其进行监控。在该项测试中,ANIT选择了FLIR T640红外热像仪,经证明是最适用于本项目的工具。上图显示了在热负荷期间试样上部出现的温差,其中存在故意设置的安装错误03各种条件下的热传递为了正确分析由热成像分析突显的各种情况,掌握可能存在的铺设异常情况,需要了解不同条件下隔热表面热传递的基本知识。在不同条件下的热传递中(拥有不同的表面温度),每一种材料的热阻、传导率与厚度已不足以定义各隔热层的热性能。事实上,必须考虑材料的密度与比热。蓄热系数是一种表示不同条件下材料属性的参数,该系数与覆盖有外部隔热层结构的表面辐射率有关。呈现试样上部的温度图显示,存在热传导率低、比热容有限的隔热材料,以及热传导率高、比热容大的粘合剂和PVC合板钉。考虑到由于太阳辐射而储存的能量,保温层冷却得更快,因为储存的能量较小,即其体积比热容较小。热辐射率是衡量材料热能穿透力的一项参数:受太阳辐射影响的外部隔热层,其表面温度与材料表面向子层传导热量的方式有关,借助材料的比热来蓄热,进而得以升温。在这种条件下,热辐射率表示材料经过太阳辐射后,内部升温的容易程度:值越低,表示加热该材料需要的能量越小。测试样本包含拥有不同热发射率值(eff.)的多种材料:粘合剂(eff.=906),带有石墨添加剂的EPS(eff.=27),合板钉上的PVC(eff.=530)。04FLIR T640红外热像仪ANIT选择FLIR T640,是因为其可满足各种技术要求。样本研究需要检测温差在0.5℃的情形,在不同的时间段,能够自动记录和控制表面温度的变化。热像仪同样需要生成优质的视频图像,能够证实表面热性能的有效研究。利用平均太阳吸收系数对外墙表面放电时的热像图分析FLIR T640红外热像仪是一款性能优质的高质量产品。作为一款高性能的红外热像仪,其配备500万像素的可见光相机、可互换镜头选件、自动对焦功能,以及宽大的4.3英寸液晶触摸屏。本产品集卓越的人体工程设计以及优质成像功能于一身,提供高质量的图像清晰度与精确度,以及可扩展的通信可行性。检测完成后,使用FLIR T640还可以通过Wi-Fi连接至FLIR Tools Mobile进行图像分析和分享,或通过METERLiNK® 传输测试和测量数据至热像仪。05测试样本分析对材料的特性分析表明了由辐射引起的储能,以及在阴凉处进行后续放热的不同行为。对具有平均太阳吸收系数的外墙表面充电时的热成像分析热分析清楚地表明:存在两种截然不同的表面层,一类是具有低热传导率及有限比热容的隔热材料,一类是拥有较高热传导率及比热容的粘合剂和PVC合板钉。在进行热像图分析时,热像师必须清楚,哪些为表面异常现象:此外,还必须熟悉外部隔热系统,以及在合适环境条件下观测时,哪些现象可认为是存在缺陷。除此之外,FLIR T640还有助于您发现隐藏的电阻、机械磨损和其它热相关问题的迹象。FLIR T640拥有307,200(640×480)像素,提供MSX® 丰富细节和FLIR UltraMax® 增强分辨率,可达2000℃的温度校准,具有快速诊断问题和立即开始维修所需的出色图像质量和清晰度。
  • ADVANCE RIKO发布激光闪光法热常数测量系统新品
    激光闪光法热常数测量系统TC-1200RH采用符合JIS/ISO标准的激光闪光法测定材料的三个重要热物理常数:热导率(导热系数)、热扩散系数及比热容。使用红外金面炉替代传统电阻炉加热,大大缩短测量时间。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 仅需1/4的时间(与使用电阻炉的传统型号相比)。因控温灵敏度提高,温度稳定性大大增加。设备特点红外金面炉的使用使得加热和冷却速度大大提高1. 使用红外线直接加热样品可以迅速使温度稳定;2. 控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而太高测量精度。符合JIS/ISO标准要求1. 激光闪光法测定精细陶瓷的热扩散系数、比热容及热导率(JIS R 1611) 2. 精细陶瓷热电材料的测定方法 – 第3部分:热扩散系数、比热容及热导率(JIS R 1650-3) 3. 激光闪光法测定铁的热扩散系数(JIS H 7801)应用方向• 热电材料的研究与开发 • 陶瓷、金属及有机材料的研究与开发 • FPD散热材料的热扩散率和比热容评价 • 半导体器件和模制器件的材料热扩散研究设备参数1. 测量参数:热扩散系数,比热容2. 样品尺寸:φ10mm×1mm~3mm(厚度)测量方向:厚度方向3. 测量氛围:真空(*不高于150℃时,可在大气下测量)4. 温度范围:室温至1150℃(最高1200℃)最大升温速度目标温度~100℃~300℃~1150℃升温速度10℃/min20℃/min50℃/min安装条件1. 主机尺寸:约 W900mm×D1050mm×H1700mm2. 主机质量:约 350kg3. 电源:AC200V 单相 8kVA(主机) AC100V 单相 1kVA(PC)4. 冷却水:城市用水 >5L/min 压力>0.15MPa可选件• 方形样品托 • 多样品上样装置:最多3个样品 • 基体测量附件 室温:SB-1 200℃:SB-2• 多层材料分析软件FML系列 如果其中一层材料的热物理参数已知,可根据测量结果分析多层材料 (多层材料分析的模型在JIS H8453中已列出) • 高温炉:最高可达1500℃创新点:使用红外加热炉直接加热样品可以迅速使温度稳定,大大缩短测量时间;控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而提高测量精度。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 激光闪光法热常数测量系统
  • 追求完美,我们始终在路上!——PPMS最全测量功能概览
    说起综合物性测量系统-PPMS大家都不陌生,自从1994年台PPMS诞生以来,已经有超过1000台PPMS工作在全球各大实验室。科学领域的许多重要工作背后都有PPMS的贡献。从初的湿式系统到现在的全干式系统,从磁学、电学测量到多领域高精度测量,PPMS诞生以来从未停下过前进的脚步。无论您是我们PPMS的用户还是关注者,可能您尚未了解PPMS的全部功能。今天我们将为您列举目前PPMS所有测量功能,敬请收藏。图1 综合物性测量系统-PPMS一、 主机系统——兼容并蓄、博采众长基于有的快速扫场和连续控温技术(PPMS拥有快速、稳定的变温、扫场技术),PPMS主机已成为性能好的低温磁场平台。但是Quantum Design的追求远不止于此,PPMS的主机系统自从诞生以来不断的根据用户需求进行优化。目前,PPMS DynaCool主机已经集成了高真空和磁屏蔽,全新的CAN式模块结构设计摆脱了系统对电脑的过度依赖。针对LabVIEW预留的开放接口使得PPMS系统兼具了MultiVu的稳定性与LabVIEW的拓展性。为了满足不同需求,PPMS的系统已经包含9T、12T、14T、16T等多种场强以及湿式、Reliquefire、EverCool和DynaCool多种型号。从综合测量系统到好的通用平台,PPMS在雄厚的技术基础上兼容并蓄、博采众长,坚持以市场需求为导向,广泛采纳用户的建议,以开放的胸怀为全球客户打造好的实验平台。图2 完全无液氦综合物性测量系统PPMS® DynaCool™ 二、 磁学功能振动样品磁强计——电磁马达,智能测量PPMS的振动样品磁强计采用磁悬浮马达,完全避免了机械振动马达带来的测量噪音,同时避免了机械磨损。采用高精度的光学编码定位技术使得振幅、振动频率连续可调,并且在测量过程中自动校准中心位置。的设计、智能的软件、先进的算法使得磁矩测量精度能够真正的达到10-7量。VSM高温炉选件——炉火纯青、万分传统的磁性测量设备只能测量样品在室温附近或低温的磁学特性。少有的高温设备要么温度不能太高,要么结构复杂精度太差。Quantum Design专门为磁性测量设计的高温炉选件可以将磁性测量的温度提高到1000K,控温精度可达0.5K,可以快速升降温,轻松测量镍等高Tc材料的居里温度。磁性测量精度优于10-6emu.光诱导磁测量选件——波长可调,洞察秋毫为了研究光敏材料在光激发下磁性的变化,QuantumDesign推出了高精度的光磁测量选件。采用高色温的氙灯光源,利用波片滤波。高性能的光纤样品杆可以轻松将聚焦光引入样品腔。利用该选件可以测量变温、变场环境中,不同波长光激发下样品的磁性变化。这对于研究材料中能带分布对磁性的影响,以及磁性的机理具有重要意义。新型交流磁化率选件——超高灵敏度,频率可调全新的ACMS II采用特的探测线圈和VSM线性磁力驱动马达,一次测量就可以获得实部虚部分开的交流磁化率以及直流磁化强度的信号。采用锁相技术和五点测量模式,有效地消除了温度漂移对测量的影响,一次降温可以同时测量多个频率的磁性。10Hz-10KHz频率范围,15Oe的交流场,高达10-8emu的测量精度使得ACMS II的测量精度可以媲美SQUID。稀释制冷机交流磁化率选件——低温的磁性测量方案低至50mK的限低温、0.002 - 4Oe的交流场幅值、10Hz-10KHz可变频率、10-7emu的灵敏度使得稀释制冷机交流磁化率选件成为上低温的磁性测量方案,更是目前自旋液体等领域的有力测量手段。扭矩磁强计——磁矩与各向异性的测定对磁性材料的研究除了磁矩测量以外对磁各向异性的测量也具有重要意义,特别对于单晶或薄膜材料而言磁各向异性尤为重要。该选件由Quantum Design与IBM联合设计,采用超高灵敏度的压电传感器和平衡电桥来测量样品在磁场中受到的力矩。样品托芯片可产生标准扭矩来校准重力影响和温度漂移产生的影响。扭矩测量时可以进行温度扫描得到扭矩随温度的变化。扭矩磁强计的扭矩精度可达10-9Nm,磁矩灵敏度可达10-8emu,灵敏度可以媲美SQUID。一阶翻转曲线——测量材料磁结构、定量分析材料的组分基于智能化控制技术,Quantum Design全新推出的一阶翻转曲线功能省去了传统人工测量方案的繁琐。高精度的测量数据为后续分析提供了坚实保障。该功能可以定性/定量测量材料的磁翻转机制、计算各磁性翻转相的比例、计算矫顽场与相互作用场的强度分布。对于矿物、混合物、复合相、Vortex等材料的研究具有重要意义。磁性测量高压腔——测量材料高压磁性的利器采用等静压装置在材料上施加稳定的压力,利用PPMS测量样品的磁性。增加了用压力来调控材料特性的维度。是目前较为热门的材料高压特性研究的工具,高压腔采用螺旋式加压、液体传压媒介,可轻松实现1.3GPa或更高的压强。三、 电学功能直流电阻率——使用简单,测量快速直流电阻率是PPMS基本的测量功能之一,以其方便快捷、数据可靠、智能测试深得广大用户的喜爱。与普通的仪表相比,直流电阻率选件以其特有的智能测量方案在测量过程中避免了普通仪表不同量程临界处数据的不连贯和不准确。直流电阻率选件可在μΩ到MΩ范围内自动测量。电输运选件——功能更多,精度更高电输运测量选件(ETO),是专门为精细电学测量而开发的多功能电学测量选件,可以自动测量样品的IV特性曲线、微分电阻、霍尔效应。由于采用高精度的锁相技术,ETO可以测量从nΩ到GΩ量的电阻,电流输出nA-mA。光电测量选件——光场激发,多维调控PPMS采用全波段的氙灯作为光源,利用可调光栅滤波技术测量不同波长光激发下的样品电阻。在温度、磁场调控的基础上加入光激发调控,形成对样品特性的多维度调控和测量。电学测量高压腔——超硬材料,超导材料的研究利器目前在高压下测量材料的电学性能已经成为研究超导材料、超硬材料以及其他特殊材料的常用手段之一。PPMS的电学测量高压腔可以在变场、变温环境中测量不同压强下材料的电学性能。高压腔预留10跟电学引线,方便用户高压下的电学连接。高压腔已集成温度计,测量样品的实时温度。四、 热学测量功能比热测量选件——技术,全球材料的比热是一个重要的物理量,但是在实验上很难测到高质量的比热数据。Quantum Design采用技术的比热测量选件,从诞生起就代表了比热测量的高水准。比热选件采用双τ模型、可对驰豫曲线进行自动拟合计算、系统自动扣除背景比热,得到变温、变场条件下的高质量比热数据,并对每一个测量数据点自动计算和记录德拜温度。专用比热样品托、智能化的测量引导程序,使得初学者也能快速上手操作。完备的数据采集和分析功能使得比热研究更为简单。热输运选件——数据,功能全面热输运选件可以同时测量样品的热传导系数、Seebeck系数(热电势)和交流电阻率,并根据这三个数据计算出热点材料的品质因子。专门的样品托和四点法引线方式可以消除接触电阻和热阻的影响。软件可以的建立动态热流量模型补偿各种可能的系统误差。可在变温过程中自动进行连续测量得到高密度的数据。热输运选件使得热学测量像电学测量一样简单和。五、 低温选件He3制冷机选件——使用方便,智能控制基于PPMS主机系统的He3制冷机具有连续运转和单程两种模式,自动控制程序使得样品可在3小时之内由室温降至0.5K,单程模式可将样品的温度降至0.4K。目前已经在He3制冷机温度下能够进行的测量是电输运(ETO)和比热。He3选件是目前使用方便的He3制冷机。稀释制冷机选件——磁、电、热都能测的稀释制冷机基于PPMS主基系统的稀释制冷机选件可以将样品的温度进一步降低到50mK。该稀释制冷机与传统稀释制冷机的主要区别是具有高度自动化的控制软件和引导式的操作操作界面。即使没有低温工作经验的用户也可以轻松掌握低温物性测量,目前稀释制冷机可以实现比热、电输运、和交流磁化率测量。热去磁电测量选件——灵巧的mK低温选件为小巧的解热去磁电测量选件,不需要任何额外操作可以在3小时以内轻松将样品由室温降到150mK以下。该选件在无需购买较为昂贵的He3和稀释制冷机的情况下可以轻松实现mK量的电学测量,是性价比较高的低温选件。六、 光学测量功能拉曼与荧光光谱测量选件——低温强磁场光谱学突破Quantum Design推出的光谱学系统集拉曼和光致发光测量于一身,利用PPMS的变温和磁场环境可以测量气态、液态、薄膜和块体材料的性质。该选件多种波长光源可选、多维度位移旋转样品台、VHG全息光栅与超窄带滤波系统。高性能的拉曼光谱选件是变温、磁场光谱测量的。利用PPMS的拉曼光谱学选件和软件系统可以更加方便的研究强关联体系材料中自旋-轨道耦合随温度和磁场的变化。七、 拓展功能选件多功能样品杆——重剑无锋,大巧不工看似普通的样品杆却是PPMS拓展性能的又一典范,多功能样品杆为用户提供了集成温度计的样品台和用于立引线的样品杆。样品杆拥有非常高的加工精度,并且具有抗强磁场的能力,预留的部接口可供用户引入各种导线和光纤。用户可根据自己的需求利用多功能样品杆来搭建自己特的实验装置,实现自定义的实验方案。目前,用户已经利用多功能样品杆实现光电测量、强关联体系的光激发、铁电测量、介电测量、铁磁共振等多个领域的测量实验。高精度铁磁共振——锦上添花,如虎添翼图3 高精度铁磁共振仪(FMR)由瑞典NanOsc公司开发的高精度铁磁共振仪,能够对纳米别的磁性薄膜进行高精度的测量。该系统采用高精度波导探测芯片与全自动测量分析软件,可以直接测量得到饱和磁化强度、本征阻尼、非均匀展宽和回磁比。由Quantum Design团队设计的高质量波导样品杆和集成服务为高达40GHz的变温铁磁共振测量提供了雄厚的技术支撑。膨胀测量选件——原子,行业翘楚PPMS的膨胀率测量选件可以测量出0.1埃的尺寸变化,是目前上精密的膨胀率测量选件之一。该选件可以在全温区范围内测量热膨胀和磁致伸缩效应。特殊样品托设计可以测量样品相对磁场成不同角度情况下的磁致伸缩效应。扫描探针显微镜、共聚焦显微镜——秋毫之末,一览无余图4 PPMS- ReliquefierAttocube公司专门为PPMS生产的扫描探针显微镜和共聚焦显微镜可以很好的兼容湿式系统和Reliquefier系统。特有的音叉式AFM在Z方向上的分辨力高达7.6pm。基于低温AFM功能的MFM可以在不同温度、磁场下测量材料的磁畴结构,分辨率优于50nm。系统还可升KPFM、PFM、C-AFM等多种显微镜系统。更有扫描霍尔探针显微镜可以定量材料的测量微区磁场分布。共聚焦显微镜拥有自由光束和光纤两种模式可选择。用户可以将共聚焦显微系统搭配各种光谱仪使用来测量变温、变场环境下样品的多种光谱。开放的PPMS平台与22个测量选件以及时刻不停的研发,Quantum Design始终以开放进取的态度努力打造更好的综合测量系统与通用平台。用户的建议,市场的需求更是我们努力的方向。Quantum Design 希望能够与您携手共创科研辉煌。相关产品及链接:1、 PPMS 综合物性测量系统:https://www.instrument.com.cn/netshow/C17086.htm 2、 完全无液氦综合物性测量系统 DynaCool:https://www.instrument.com.cn/netshow/C18553.htm 3、 高精度铁磁共振仪(FMR):https://www.instrument.com.cn/netshow/C221410.htm 4、 attocube无液氦低温强磁场扫描探针显微镜attoDRY Lab:https://www.instrument.com.cn/netshow/C273802.htm 5、 无液氦低温强磁场共聚焦显微镜attoCFM:https://www.instrument.com.cn/netshow/C159541.htm
  • 梅特勒托利多新推出先进的TOPEM-多频温度调制DSC(TMDSC)
    TOPEM是新一代温度调制DSC(TMDSC),通过一次实验就能测定样品在不同频率下随时间或温度而变化的性能。这种新TMDSC的革命性发展使TOPEM,成为最先进的DSC技术的标志,能十分精确地测定比热值、分离可逆与不可逆过程、研究低能量转变和热性能的频率依赖性。 特点与优势: 一次测试就能在很宽频率范围内同时测试样品随温度或时间而变化的性能 由脉冲响应能非常准确地测定与频率无关的准稳态比热 同时以高灵敏度和高分辨率测量极小能量的效应和温度相邻很近的效应 通过分离可逆和不可逆过程能高质量测定比热,将重叠效应分开 提供判据从而简化解析,能非常容易地将非频率依赖效应(如吸附水失去)和频率依赖效应 (如玻璃化转变) 区分开来
  • 21℃室温超导实现了?有它,你也能测!
    近日火爆全网的室温超导论文,再次将低温物理科研推到了大众的视野里。自昂内斯1911年发现汞金属的超导电性之后,各种超导材料的研究进入了爆炸式增长,从金属到合金超导体、铜氧化物超导体、重费米子超导体、有机超导体、铁基超导体以及其他氧化物超导体等,超导温度也在不断提升。然而即便是常见的高温超导材料仍要接近液氮温度才能够实现,使得超导材料距离人们生活中大规模应用仍然存有相当的距离。而近日在美国物理学会春季会议,罗彻斯特大学的兰加迪亚斯团队宣布在1GPa压强下,在镥-氮-氢体系中实现了室温超导,使整个物理学界沸腾了。这篇工作也刊登于Nature期刊,3月8日在线发表。图1. 兰加迪亚斯在美国物理学会春季会议的报告 相比于之前的氢化物超导,此次氮掺杂镥氢化物超导存在两个惊人的发现:一是该超导材料的临界超导温度达到了21度,二是压力仅需要1万个标准大气压(1Gpa)。这与之前动辄上百Gpa压力的极端高温超导条件天差地别,具有极高的应用潜力。 如此震惊世界的发现,作者在进行超导判定时也非常谨慎,分别从电、磁、热三个维度进行了超导转变实验验证。氮掺杂镥氢化物随着压力的增加,会发生两次明显的可视相变,起初样品无超导性,呈现蓝色(I相)。随着压力增加到3kbar,样品进入超导相(II相),颜色也转变为粉红色。进一步提升到32kbar以上,样品再次进入一个无超导金属相(III相),样品颜色此时也转变为鲜艳红色。图2:镥-氮-氢体系超导与可视相变 对不同压力下的超导相进行电输运测量,零外场条件下,温度依赖的电输运测量表明,随温度下降,电阻会存在一个陡然下降至零的行为,超导转变宽度与转变温度的比值ΔT/ΔTC在0.005至0.036范畴,可以在GL理论的脏极限范畴解释。零外场下,V-I特性曲线在超导转变温度上下明显不同:超导转变温度之上,材料具有线性V-I响应,符合欧姆定律;超导转变温度之下,电压几乎不可测量,并具有非线性响应。图3. 镥-氮-氢体系温度依赖的电输运测量和V-I特性曲线 对于超导转变判定,除零电阻行为外,更为关键的是迈斯纳现象的发现。本文磁学测量方面,温度依赖的磁化强度曲线和M-H曲线基于Quantum Design PPMS系统完成,并搭配了相应的磁测量高压包选件。在8kbar压强下,场冷、零场冷条件下磁化强度的测量表明了一个清晰明确的迈斯纳现象的存在,确定超导转变为277K。宽超导可能源于高压包不同压力梯度或者材料的不均匀性。磁测量获得的超导转变与电阻测量结果相吻合。除直流磁化率外,交流磁化率也明显观测到超导转变带来的抗磁性。图4. 镥-氮-氢体系直流与交流磁化率测量 而热输运方面,比热测量同样是验证超导转变的重要途径,根据BCS理论,超导转变伴随有能带打开能隙,会导致比热激增。本文采用了新型交流量热技术,获得了不同压力下,材料比热随温度的演变关系,可以看出,比热具有明显的不连续特征,由此获得的超导转变温度也与电、磁测量相吻合。图5. 镥-氮-氢体系的高压比热测量 本文通过电、磁、热三个维度的实验验证了镥-氮-氢体系在1GPa下接近室温的超导电性,但关于其内容见解,各路大神众说纷纭。此篇文章中,使用了PPMS磁测量高压腔组件,能够实现1.3GPa压力下的等静压磁学测量。相信在未来的超导探索工作中,PPMS的磁学测量和电学测量高压腔能够发挥更多更重要的贡献。图6:Quantum Design 高压磁学和电学测量功能组件
  • 【实验室动态】QD中国北京实验室引进完全无液氦综合物性测量系统 Dynacool样机
    只争朝夕,不负韶华,翻开2020年新的篇章,为满足国内日益增长的测试需求,更好的为广大科研工作者服务,Quantum Design中国子公司北京总部的样机实验室迎来了一个崭新而又熟悉的伙伴—PPMS DynaCool无液氦综合物性测量系统。 此次引进的DynaCool样机拥有9T的强磁场和1.9K-400K的变温环境,同时配备了常用的电学、磁学、热学测量功能,并会在未来继续增加更丰富的测量选件。为方便大家了解PPMS DynaCool系统的功能以及之后的测试申请,我们将对此套PPMS DynaCool系统目前配备的选件及应用进行介绍: PPMS 直流电输运测量选件(DCR)直流电输运测量选件采用样品托设计,用标准4引线法测量样品的直流电阻,每次可同时测量三个样品,并能够针对每个通道的样品分别设定激励电流或大功率。能够在全温区全磁场范围内测量?10 μΩ - 5 MΩ的材料电阻。 直流电输运选件测量的NbTi合金在不同磁场下的Tc相变点变化 振动样品磁强计选件(VSM) 与传统的电磁铁VSM相比,PPMS系统上的VSM在很多方面都更具优越性。先,PPMS系统选取了磁场方向与样品振动方向平行的VSM,与传统电磁铁中磁场方向垂直于样品振动方向的VSM相比,其测量精度大幅度提升。其次, PPMS系统的VSM采用线性电磁驱动马达,测量速率快、精度高且振动频率幅度连续可调,能在1秒内采集到灵敏度 热输运测量选件(TTO)可同时连续地测量热传导系数、Seebeck系数(热电势)和交流电阻率,并由此得出热电性能指数(ZT)的指标。在高真空环境下,选件通过给样品施加方波脉冲加热功率,并记录其温度和电压响应来实现对样品热输运性能的连续测量。 进一步基于热电路模型的拟合算法从测量曲线中计算出样品的热导率和热功率,同时进行电阻测量。该选件可以在 PPMS提供的整个温度和磁场范围内自动计算样品ZT值。典型的热输运测量曲线图,包含热导率、Seebeck系数、电阻率以及通过计算得到的ZT值 比热测量选件(HC) 比热选件是一个基于样品托设计的微量热计,结合主机自带的高真空和磁场低温环境实现在全温度和磁场范围的样品比热容测量。通过脉冲热功率和温度迟豫响应建立的双τ模型能够准确拟合出被测样品的热容。该选件凭借简易而精致的实验设计方案获得了R&D100设计大奖。 NbTi合金在9K附近超导相变的比热测量曲线
  • 仪器采购:新建材料实验室,12类仪器设备采购清单
    浙江某单位新建材料实验室,需采购12类仪器设备。所需仪器清单如下:1. 万能试验机——用于测试弹性模量,三点弯曲强度,断裂韧性2. 密度计、维氏硬度计、表面粗糙度测量仪、翘曲度仪——用于测试密度、表面粗糙度、维氏硬度3. 热膨胀仪、比热计——用于测试热膨胀系数、热传导率、比热4. 介电常数测试仪、电压击穿试验仪、体积电阻率测试仪 TDR阻抗仪——用于测试击穿强度、体积电阻率、介电常数、介电损耗因数5. 粒径分析仪——用于测试材料粒径及原材料纯度具体要求:1. 进口、国产不限,需要多家对比;2. 供应商请先报名,由仪器信息网旗下仪采通工作人员收集好供应商名录后交与采购方,采购方统一联系对接。请能提供以上任何仪器的厂商,于2022年3月11日前报名。请联系仪采通工作人员进行报名:添加仪采通工作人员微信,便于传递资料。
  • 3月23日~24日!之量科技参加第九届全国储能科学与技术大会
    会议预告会议时间:2024年3月23日-24日(22日报到)会议地点:江苏溧阳(溧阳天目湖豪生大酒店)主办单位:天目湖先进储能技术研究院、中国化工学会储能工程专业委员会、中国电机工程学会电力储能专业委员会、化学工业出版社有限公司、江苏省溧阳高新技术产业开发区管委会会议背景第九届全国储能科学与技术大会将重点围绕储能技术基础理论、核心技术、关键材料与装备、应用场景及商业模式等话题展开,并邀请来自材料、器件、装备、应用、投融资等相关行业代表参会,汇聚国内外政产学研资用等多方主体参与,共同探讨储能技术发展的关键问题,把握储能产业发展脉搏。作为浙仪旗下实验室事业群成员,仰仪科技、之量科技共同参加本届大会(展位号:3-17号),分享我们在全尺寸大容量电芯及模组热失控测试领域的技术成果——BAC系列大型电池绝热量热仪。与此同时,浙仪应用研究院的资深应用工程师王旭博士也将在“先进表征技术在储能中的应用”报告论坛分享《绝热量热技术与锂电池热安全测试》,欢迎您莅临现场,与我们进行技术交流!BAC系列大型电池绝热量热仪BAC系列大型电池绝热量热仪是专为满足超大型电芯单体及其小型模组进行热特性测试的绝热量热仪,具备最新版GB/T 36276-2023《储能用锂离子电池》绝热温升特性测试功能。该仪器通过模拟电池热失控过程绝热环境,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,可获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数,为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。在样品容量方面,BAC系列大型电池绝热量热仪已成功完成包括130Ah 9系超高镍NCM、190Ah NCM811、230Ah NCM622、320Ah LPF等在内的数百款电芯绝热热失控和热物性参数测试。仪器性能方面,BAC系列可针对长边≤1500mm范围内的电芯开展安全、精准、可靠的绝热热失控测试。与目前国内外厂家的标准产品相比,BAC系列大容量腔体的抗爆性和产气测试能力显著提升,能够承受大型电芯的热失控温压冲击。*文中样品不代表仪器最终测试能力极限,详情可咨询销售01 严密的结构设计:标准款量热腔直径 (420~1000)mm, 各自设计有泄压型与密封型结构,可承受9系锂电池热失控时的剧烈压力与冲击。02 独特的量热性能:基于半导体控温的高精密低漂移测温模块设计,提升系统测试稳定性与准确性,确保实时跟踪、环境绝热、精确量热。03 随心的定制功能:可定制1000mm以上炉腔,并自行选配集气、针刺、低温冷却、多通道测温、比热容测试等丰富的功能模组。04 专业的安全防护:泄压型炉体设置内部爆破片与外部抗爆箱双重保护,为实验构建防护屏障;密闭型炉体符合标准压力容器规范,隔绝失控危险。
  • 梅特勒托利多热分析用户会暨技术研讨会报告
    报告名称:新版国标GB/T 6425—2008《热分析术语》的制订与指要 演讲嘉宾:刘振海 中国科学院长春应用化学研究所 主要内容: * 新版国标主要变化和各点说明  - 新版热分析定义及改变原因  - 两种类型DSC及其所测物理量  - 关于温度调制式差示扫描量热法(modulated-temperature differential scanning calorimetry)的简称  - 同时与串接联用技术的符号表示  - 关于sample (样品), specimen (试样) 和specimens (试样和参比物)  - 试样质量  - 热分析曲线TA curve  - 玻璃化glass transition  - 关于“热流”和 “热流量”(heat flow)  - 动力学三参量(kinetic triplet) * 新版国标特征(创新点)  - 具有一定的原创性  - 充分反映热分析的新进展  - 对热分析的新技术给出了科学定义  - 叫法严谨  - 对某些热分析术语定义及其表达做了重新表述  - 新版国标是制订我国各种热分析标准的最基本的文件和基础 报告名称:热固性树脂固化反应的表征 演讲嘉宾:刘振海 中国科学院长春应用化学研究所 主要内容: * 固化反应的两个重要效应  - 玻璃化温度提高  - 放热反应 * Tg * 固化反应的量热测量  - 基本表达式  - 等温固化度与升温后固化  - 固化反应动力学 * 固化反应举例:以环氧树脂为例  - 影响固化反应的因素  - 影响玻璃化的因素  - 贮存效应  - 固化因子(cure factor, CF) 报告名称:氧化诱导时间(等温OIT)和氧化诱导温度(动态OIT)的测定 演讲嘉宾:仲伟霞 梅特勒托利多热分析仪器部技术应用顾问,博士 主要内容:  - STARe系统仪器  - 气体切换器  - 参考标准  - 国内外标准比较  - 标准内容  - OIT典型的温度程序  - 聚乙烯:氧化稳定性  - PE-PP共聚物:空气中测定氧化稳定性(OIT)  - PP的OIT测试  - 聚乙烯OIT的TMA测量  - HP DSC827e: 应用 报告名称:比热容的DSC测量 演讲嘉宾:唐远旺 梅特勒托利多热分析仪器部技术应用顾问 主要内容: * 比热容的介绍及测试标准 * 比热容的测试方法  - 直接法(Direct method)  - 稳态ADSC法  - 蓝宝石法  1. ISO标准中蓝宝石法细节  2. ASTM标准中蓝宝石法细节  3. DIN标准中蓝宝石法细节  - 步进扫描  - 正弦温度调制方法  1. 计算原理  2. PET的ADSC测量  3. 如何进行ADSC测量  - 多频温度调制(TOPEM® )方法  1. TOPEN的原理  2. TOPEN的计算  3. TOPEN的优点 * 比热容测试注意事项 * 比热容测试方法比较 报告名称:Tg测量的不同标准(ASTM/DIN/Richardson)和不同技术(DSC/TMA/DMA)及其比较 演讲嘉宾:陆立明 梅特勒托利多热分析仪器部经理,热分析技术应用专家 主要内容:  - Tg测量方法概述  - DSC标准方法  - TMA标准方法  - DMA标准方法  - 聚苯乙烯的Tg测试  1. DSC、TMA、DMA三种方法测试、  2. 三种方法结果比较、  - 三种测试计算方法的影响  - 循环测试  - Tg的影响因素  - DSC、调制DSC、TMA、DLTMA、DMA方法优、缺点汇总、灵敏度比较  - Tg和相应的Dcp 报告名称:DSC在聚合物结晶动力学方面的应用 演讲嘉宾:仲伟霞 梅特勒托利多热分析仪器部技术应用顾问,博士 主要内容:  - 差示扫描量热仪DSC 1  - 两种PP产品的结晶参数对比  - 非等温结晶动力学方程  - PPF401的非等温结晶DSC曲线  - PPS2040的非等温结晶DSC曲线  - 两种PP非等温结晶过程参数对比  - PPF401的相对结晶度X(T)-T曲线  - PPS2040的相对结晶度X(T)-T曲线  - 根据Ozawa方法获得的两种PP非等温结晶动力学参数  - Kissinger 的活化能公式  - PP的活化能结果  - PET 的非等温结晶动力学  - 聚合物的等温结晶动力学  - PP的等温结晶曲线  - 两种PP的等温结晶动力学参数对比 报告名称:热分析在弹性体行业的应用 演讲嘉宾:唐远旺 梅特勒托利多热分析仪器部技术应用顾问 主要内容:  - 热分析在弹性体材料领域的应用  - 差示扫描量热法(DSC)  - 热重分析法(TGA)  - 热机械分析(TMA)  - 动态热机械分析(DMA)  - 玻璃化转变的计算方法  - 软化的针入TMA测量  - 硫化度对玻璃化转变的影响  - 增塑剂对玻璃化转变的影响  - 相容性聚合物共混物的玻璃化转变  - 不相容聚合物共混物的玻璃化转变  - 不相容聚合物共混物的DMA测试  - 密封圈适用温度范围的DSC测定  - 结晶对氯丁橡胶(CR)玻璃化转变的影响  - 氯丁橡胶(CR)结晶和熔融的测量  - 氯丁橡胶(CR)的DMA测量  - 结晶对硅橡胶玻璃化转变的影响  - 硅橡胶的DMA测量  - 预处理对EPDM熔融的影响  - 不同种类EPDM的DSC比较  - 顺丁橡胶(BR)的冷结晶与熔融  - 玻璃化转变的影响因素  - 聚氨酯DSC与DMA测量的比较  - 天然橡胶(NR)的TGA  - 丁苯橡胶(SBR)的TGA  - 丁腈橡胶(NBR)的TGA  - 三元乙丙橡胶(EPDM)的TGA  - 氯丁橡胶(CR)的TGA  - 乳聚SBR和溶聚SBR的热分解区别  - 橡胶中炭黑和无机填料含量测试  - 弹性体中碳黑的TGA分析  - 含一种聚合物橡胶的组分分析  - 氯丁橡胶弹性体中碳黑的分析  - 橡胶含量分析  - 多种橡胶比较  - 含多种聚合物的橡胶的组分分析  - 组分分析方法  - Delta cp在组分分析中的作用  - EPDM/SBR共混物的TGA和DSC联合分析  - 氯醚橡胶和卤化丁基橡胶的TGA  - 含不同种类碳黑的弹性体的分析  - 不同种类碳黑的TGA比较测量  - 氟橡胶(FPR)的TGA  - 硅橡胶的TGA  - 含其它聚合物的NR共混物的TGA  - 含SBR组分的弹性体的TGA  - CR/NBR共混物的TGA分析  - 油含量的TGA测定  - 含油与不含油SBR的减压(真空)TGA  - 压力对NR/SBR共混物TGA的影响  - BR和NBR的TGA-FTIR联用鉴别  - BR/NR弹性体的TGA/FTIR分析  - 弹性体热分析参数  - 硫化反应  - 硫化动力学  - 等温硫化动力学的测量  - NBR硫化的TGA测量  - 硫化过程的TGA-MS联用气体分析  - 填料影响  - 振动阻尼  - SBR 的频率扫描测试  - 振动阻尼-交联密度的影响  - 松弛谱的温度依赖性  - 等温蠕变和回复  - 交联对蠕变和回复的影响  - 不同炭黑含量的EPDM  - 蠕变和松弛  - 热致蠕变  - 典型的TSC曲线  - TSC测试-不同硫化度的SBR  - TSC测试-不同炭黑含量的EPDM  - 橡胶在甲苯中的溶胀  - 溶胀模式  - 阻燃剂三水合铝和氢氧化镁的TGA  - 阻燃剂物质的DSC测量  - EVA中阻燃剂的TGA  - 增塑剂矿物油的DSC测量  - 弹性体的DSC测量  - CIIR弹性体的DSC测量  - SBR低分子量成分的转变  - 借助ADSC用于曲线解析 报告名称:MP超越熔点仪系列 演讲嘉宾:陆立明 梅特勒托利多热分析仪器部经理,热分析技术应用专家 主要内容: * 超越熔点仪系列 * 特点和优点  - 简单  - 高效  - 视频记录、回放  - 符合标准 - 设计优势  - 结果可靠  - 彩色触摸屏  - 文件安全 * 技术  - 光源  - 图象  - 测量方法  - 终点测定  - 炉体  - 升温速率 * MP50 – 满足基本要求 * MP70 – 最大灵活性的最佳选择 * MP90 – 最高水准的熔点测定 * MP技术指标 * MP熔点仪的应用  - 熔融  - 通过混合物熔点鉴定  - 熔融和分解  - 液晶  - 无机物熔点  - 热致变色物质  - 聚合物熔融 报告名称:热分析仪器维修保养介绍 演讲嘉宾:唐幸初 梅特勒托利多热分析仪器部服务主管、安调与维修专家 主要内容:  - DSC外壳拆卸,传感器的测量  - DSC传感器的更换  - TGA搬运的准备工作  - TGA搬运结束后的恢复  - TGA的毛细管的安装  - DSC和TGA的校准
  • 梅特勒托利多热分析技术专题讲座
    在3月25至27日由全国塑料标准化技术委员会石化塑料分标委组织的“塑料差示扫描量热法(DSC)比热容测定国标制订第一次会议”上,梅特勒托利多作为合作方,在26至27日举行了为期一天的热分析技术专题讲座,以配合国标制订工作。 梅特勒托利多的技术专家们就目前最热门的热分析技术及案例进行了报告演讲。技术报告主题:《比热容的DSC测量-直接法、蓝宝石法和温度调制法及其比较》(主讲人:应用技术工程师唐远旺);《PE和PP氧化诱导时间OIT的测量》和《PP和PET的结晶动力学》(主讲人:仲伟霞博士);《随机温度调制DSC技术TOPEM-理论和实例》和《热塑性聚合物Tg的测量-不同标准(ISO、ASTM、DIN、Richardson)和不同技术(DSC、TMA、DMA)及其比较》(主讲人:陆立明经理)。 与会者反应热烈,对相关技术问题进行了深入广泛的讨论,并对梅特勒托利多在热分析应用方面的深入工作表示赞许。热分析著名专家、中科院长春应用化学研究所教授刘振海教授在会上表示“一个仪器厂商的技术应用做到这么深入,甚至走到了我们的前面,对于推动我们应用者的工作很有帮助。”
  • 新闻 | SETARAM新logo正式上线,开启品牌新时代
    法国凯璞科技集团的前身是ARAM(法国萨瓦省于日讷炼钢集团的测量仪器维修部门),创建于1948年,1965年ARAM接管DAM公司,并将公司更名为SETARAM。SETARAM成立的70多年以来,人们已经深刻地意识到其品牌下一系列的材料表征仪器所展现出的无与伦比的精确控制能力和多功能性,他们为众多科研研究者们提供了一个you秀的科研分析平台。我们的热分析,气体吸附和量热产品可满足工业和科研机构的众多应用需求。在不断创新进取过程中,SETARAM品牌已经逐步发展壮大成为法国凯璞科技集团旗下最强大的一个品牌,一跃成为全球热分析品牌的翘楚。2019年4月,法国凯璞科技集团在北京召开全球代理商大会,全球市场总监Emma Sharp女士为我们正式揭晓了SETARAM新一代logo,开启了塞塔拉姆品牌的新时代。▲SETARAM新LogoSETARM logo自成立以来经历的多次历史变迁:新logo继承了原logo基于品红,红,黄,绿,蓝,紫的色谱基础,延续了代表塞塔拉姆产品及服务的5大主要应用领域的5原色,分别代表生命科学、过程安全、能源与环境、无机材料科学及有机材料科学 五大领域。生命科学原料药,药物赋形剂,药物释放,蛋白质,酶,食品,碳氢化合物,脂肪。稳定性,晶型转变,折叠,蛋白变性,聚集,熔融,凝胶,糊化。过程安全含能材料,推进剂,炸药,反应物和危险化学品,比热,合成反应,热分解,失控反应,温度和压力变化。能源与环境储氢材料,核燃料和核废物,催化剂和吸附剂,储能材料,电池,蒸汽吸附,热容,热稳定,相转变。无机材料科学纳米材料,金属,金属合金,陶瓷,玻璃,水泥,石膏,矿物。烧结,热膨胀,腐蚀,水合,相转变,热容,热稳定性有机材料科学聚合物,热塑性塑料,热固性塑料,玻璃化转变,抗氧化性,比热,热稳定性,固化,相转变。新Logo的带有的9个原色渐变圆形代表了塞塔拉姆仪器能为客户带来定制化的服务功能,分别代表着:同步热分析、热重分析、差示扫描量热、逸出气体分析、3D卡尔维传感器、气体吸附、湿度发生器、热机械分析及腐蚀性及反应气氛,9大重要仪器功能。STA - 同步热分析TGA和DSC/DTA同步测试可进行更全面的热性能表征EGA - 逸出气体分析与DSC,TGA或STA联用的气体分析技术可定性及定量分析逸出气体。如:FTIR, MS, GC-MS, FTIR/ MS或 FTIR/GC-MS。湿度发生器可与Wetsys或其他相对湿度配件联用TGA - 热重分析测量样品重量增加和减少,热稳定性评估,热分解和气固反应。3D卡尔维传感器三维立体式热电偶堆,能收集高达95%的热量,提供无以匹敌的准确度和精度。TMA - 热机械分析测量样品受热后的尺寸变化,热膨胀和烧结。DSC - 差示扫描量热测量热流、热焓和比热。气体吸附表征材料吸附量和吸附速率等性能。腐蚀性及反应气氛能够在各种复杂气氛下进行测试。虽然我们改变了我们的logo,但我们从未改变过我们的价值主张,SETARAM始终如一地以客户利益为导向。我们专注于仪器的数据质量、致力于设备的灵活性以及重视实验管理的三个核心价值主张从未改变过,并始终贯穿于我们整个生产、销售及售后活动的过程中,成为塞塔拉姆DNA的一部分。在新到来的时代,我们将继续不断地将SETARAM秉持的概念和国际影响力遍布全球。
  • 多频温度调制DSC技术TOPEM网络研讨会(Webinar)
    2010年06月21日 15:00[中文]   温度调制DSC技术(TMDSC)通常用于研究重叠的热效应,它不仅可以在大学或研究所中应用,而且可以用于工业研究。TMDSC方法可以将温度依赖性的过程和时间依赖性的过程进行分离。   TOPEM® 的基本思路是在等温或动态的温度程序上叠加不同周期的随机温度脉冲。目前TMDSC技术通常所使用的方法为在等温或升温程序上叠加正弦的温度调制,与之对比,TOPEM® 是一种新的高级多频温度调制技术,它使用许多不同的频率(多频)。   TOPEM® 的优点是:   1. 一次测试-在比较宽的频率范围内同时测试样品的性质随时间或温度变化的函数。   2. 从脉冲响应中测定cp-非常准确地测定准稳态比热容   3. 同步高灵敏度和高分辨率-可以进行低能转变测试和/或重叠的温度依赖性效应测试。   4. 分离可逆和不可逆过程-可以非常准确地测定热容,甚至在效应重叠的情况下。   5. 简化曲线解析-可以非常容易地将频率依赖性效应(例如玻璃化转变)和非频率依赖性效应(例如失水)进行分离。   6. 扩展PEM技术-消除仪器影响,扩大测试频率范围。   得益于频率信息,您可以很容易地将随频率变化的效应与非频率依赖的效应进行分离。这大大简化了具有重叠热效应的样品的曲线解析。同时,TOPEM® 可以测试非频率依赖的准稳态比热容。   网络研讨会(webinar)   您注册参加网络研讨会后,您将获得有关这种创新性技术的必要信息。   中文讲解之后,您可以与梅特勒托利多的热分析应用技术专家直接讨论您的问题。   注册参加网络研讨会
  • 梅特勒托利多网络研讨会(Webinar)
    温度调制DSC技术(TMDSC)通常用于研究重叠的热效应,它不仅可以在大学或研究所中应用,而且可以用于工业研究。TMDSC方法可以将温度依赖性的过程和时间依赖性的过程进行分离。   TOPEM® 的基本思路是在等温或动态的温度程序上叠加不同周期的随机温度脉冲。目前TMDSC技术通常所使用的方法为在等温或升温程序上叠加正弦的温度调制,与之对比,TOPEM® 是一种新的高级多频温度调制技术,它使用许多不同的频率(多频)。   TOPEM® 的优点是:   -- 一次测试-在比较宽的频率范围内同时测试样品的性质随时间或温度变化的函数。   -- 从脉冲响应中测定cp-非常准确地测定准稳态比热容   -- 同步高灵敏度和高分辨率-可以进行低能转变测试和/或重叠的温度依赖性效应测试。   -- 分离可逆和不可逆过程-可以非常准确地测定热容,甚至在效应重叠的情况下。   -- 简化曲线解析-可以非常容易地将频率依赖性效应(例如玻璃化转变)和非频率依赖性效应(例如失水)进行分离。   -- 扩展PEM技术-消除仪器影响,扩大测试频率范围。   得益于频率信息,您可以很容易地将随频率变化的效应与非频率依赖的效应进行分离。这大大简化了具有重叠热效应的样品的曲线解析。同时,TOPEM® 可以测试非频率依赖的准稳态比热容。   请点击报名   时间:2009年12月21日 15:00   网络研讨会(webinar)   您注册参加网络研讨会后,您将获得有关这种创新性技术的必要信息。   中文讲解之后,您可以与梅特勒托利多的应用技术专家唐远旺先生直接讨论您的问题。   此活动最终解释权归梅特勒托利多所有
  • 玻璃化转变温度:定义、影响因素及应用
    玻璃化转变温度是指无定形或部分无定形的非晶态材料在熔点以下温度发生结构变化时所经历的一种状态转变。这种转变会导致材料在某一温度范围内出现明显的热胀缩现象,并伴随着比热容、热导率等物理性质的变化。玻璃化转变温度对于材料的使用性能和使用范围具有重要影响,因此被广泛应用于材料科学和工程领域。上海和晟 HS-DSC-101A 玻璃化转变温度测试仪玻璃化转变温度的定义是指非晶态材料在加热过程中,从玻璃态转变为高弹态的温度。这个转变过程通常伴随着比热容的增大和热导率的降低。玻璃化转变温度的计算方法通常采用动态力学分析法,通过测量材料的储能模量和损耗模量的变化来确定。影响玻璃化转变温度的因素有很多,其中主要包括温度、应力、压力、光照等因素。温度对玻璃化转变温度的影响最为显著,通常情况下,随着温度的升高,玻璃化转变温度会降低。应力也会对玻璃化转变温度产生影响,例如,在应力的作用下,材料的玻璃化转变温度会发生变化。压力对玻璃化转变温度的影响与应力类似。此外,光照等因素也会对某些材料的玻璃化转变温度产生影响。玻璃化转变温度在材料科学和工程领域有着广泛的应用。例如,在汽车制造业中,通过对塑料制品的玻璃化转变温度进行控制,可以实现对材料使用性能和使用范围的有效管理。在建筑材料中,通过对玻璃化转变温度的测量和分析,可以实现对建筑材料的有效监控和管理。总之,玻璃化转变温度是材料科学和工程领域中一个重要的概念。通过对玻璃化转变温度的研究和控制,可以实现对材料性能的有效管理,从而推动材料科学和工程领域的发展。未来,随着材料科学和工程领域的不断发展,玻璃化转变温度的研究和应用将会得到更加深入的拓展和应用。
  • 2019梅特勒托利多热分析应用大会圆满落幕!
    7月12日,由梅特勒托利多热分析仪器部主办的2019梅特勒托利多热分析应用大会在美丽的上海完美收官,成功落下帷幕!小饭堂从会议现场的忙碌中结束,为大家带来总结战报!2019梅特勒托利多热分析应用大会吸引了全国180家单位近300人参会,参会来宾来自对热分析感兴趣的各行业的企业朋友和科研工作者们。大会第一天首先由梅特勒托利多热分析仪器部中国区业务经理余杰先生致开幕词,随后从“技术发展前沿”、“创新与热点应用”两个主题出发,由来自国内外的13位专家与用户分别介绍了热分析技术前沿和新的相关应用动态,分享他们的成果与应用心得,帮助各与会人员开拓思路并解决实际应用中的问题。大会第二天是只对用户开放的进阶培训,邀请了四位热分析专家分别从热分析的测试技巧,曲线解析,检定校准,测试标准等方面做了专业的讲解,然后由两位梅特勒托利多技术应用顾问对重叠热效应的分离和STARe软件高级功能做了介绍,参会来宾们也积极与报告嘉宾展开互动,现场问答热烈,交流学习气氛浓厚。接下来,就带您一起走进大会现场吧签到和展台现场7月11-12日大会和培训报告,精彩满满部分报告介绍01报告题目:聚烯烃结晶的热分析研究报告人:门永锋 长春应化所研究员 本次报告中,门老师介绍了利用DSC和Flash DSC结合研究聚烯烃的结晶成核行为的应用。通过DSC测试表明,即使升温至平衡熔点以上,熔体仍然不为均相,存在记忆效应,影响随后的等温结晶; 熔体温度和制备初始样品的条件均影响记忆效应。同时通过Flash DSC研究了玻璃态聚1-丁烯的松弛时间对冷结晶的影响,研究表明,降低松弛温度至结晶温度的升温速率有利于预成核; 预成核在高于Tg时的升温过程中产生,而在非低于Tg时的松弛过程形成。门老师介绍了利用热分析、结合XRD等手段研究聚丁烯晶型转变的成核动力学,研究表明,II-I固-固转变是成核和生长两步进行的,分步退火可加速转化;片晶间联系分子、缠结等非晶相起到了稳定亚稳晶型II的作用。门老师用深入浅出的语言,介绍了热分析在高分子成核结晶和退火松弛的研究中的应用,给参会的专家和老师的研究工作带来了很多的启发。02报告题目:热分析动力学及其在含能材料领域的应用报告人:付青山 西安近代化学研究所 来自西安近代化学研究所的高红旭老师由于突发情况未能参会,但也委托同事为我们带来了精彩的关于热分析动力学的报告。 报告中介绍了热分析动力学的定义:热分析动力学的研究目的在于定量表征反应(或相变)过程,确定其遵循的最可几机理函数f(α),求出动力学参数E和A,算出速率常数k,提出模拟TA曲线的反应速率dα/dt表达式(热分析动力学方程)。以及一些主流的动力学计算方法,例如积分法、微分法、等转化率法等,着重介绍了等转化率法所涉及到的一些方程和计算方法,例如梅特勒托利多的非模型动力学所使用的Voyazovkin方法。另外还介绍了热分析动力学在含能材料研究中的一些应用,含能材料的能量和安全性始终是实际应用中关注的主要问题。热分解分析是评估热安定性的一个很好手段。无论是高能炸药的结构与配方设计、性能评估还是工程应用,炸药热分解研究都占据着重要地位。报告也给一些需要进行热安全评估的老师带来了很大的帮助和启发。03报告题目:Flash DSC测试材料热导率报告人:谢科锋 南京大学 本报告来自南京大学胡文兵教授课题组谢科锋同学,他们提出了一种测试热导率的新方法,主要采用Mettler-Toledo公司出品的Flash DSC设备,将两颗金属铟分别放置在聚乙烯薄膜样品上表面和空白参比盘上。通过采用不同升温速率加热扫描,在升温曲线上可以同时检测样品盘和参比盘上金属铟的熔融温度,从而获得薄膜样品上下表面的温度差。通过实验发现,随扫描速率变化,两个金属铟的熔融峰起始温度差符合线性关系,反映了傅里叶传热定律。因此,由该线性关系的斜率就可根据材料的比热和样品厚度获得材料的热导率。采用Flash DSC跨界方法测试材料的热导率,具有样品处理简单,测试速度快,并且可以对纳米级重量和厚度尺寸的样品热导率进行有效表征和测量,具有较广阔的应用前景。04报告题目:热分析技术在聚合物中的应用报告人:方璞 烟台万华 由万华化学中央研究院的研发工程师方璞老师带来的热分析技术在聚合物中的应用,介绍了一些他们测试研究过程的经验和成果,例如比热测试的不同方法和测试结果对比,实验证明TOPEM法与经典的蓝宝石法测量结果非常接近,而且只需一遍实验,在操作简便性和节省时间成本方面有一定优势。而ADSC法准确度有一定偏差,且需要经过空白、校正、样品三遍实验,在实验时间上比蓝宝石法还长,在比热测试方面的实用性不大。此外方璞老师还介绍了如何使用TGA进行不同类型碳含量的测定,也引起了与会老师广泛关注和讨论。另外,老师还介绍了如何使用TGA-IST-GCMS对分解产物进行定性分析、如何使用TMA测试材料的膨胀系数,以及其注意事项。同时还介绍了利用动力学研究树脂固化的过程,评估了不同的动力学方法计算和预测动力学参数的准确性。报告的内容来自于老师多年的经验积累,非常具有实用性和参考价值,也成为了本次大会提问最多的报告,受到了巨大的欢迎。欢迎晚宴 充实美好的时光总是短暂的,为期两天的2019梅特勒托利多热分析应用大会在热烈的交流中成功落下帷幕。希望各位参会者都有自己的收获,不虚此行,并期待来年的再次相聚!
  • 低温物理世界的“追梦者”——访复旦大学李世燕研究员、北京大学王健研究员
    日前,在第十四届全国低温物理学术研讨会的开幕式上,复旦大学李世燕研究员和北京大学王健研究员因在低温物理学研究领域取得的突破性研究成果,获得了2015马丁&bull 伍德爵士中国物理科学奖。   对于此次获奖,李世燕和王健均表示很荣幸能够获得这个奖项,目前国内低温物理研究领域优秀的年轻学者非常多,能够获得这个奖项并不代表自己是最优秀的。同时,他们也为我国低温物理学研究水平与欧美国家的差距越来越小,并逐步走到世界前列感到骄傲和高兴。   他们对于我国低温物理学的发展、低温设备的技术发展、科学家与仪器厂商之间的合作,以及低温物理学研究的热点和实际应用都有怎样的见解和看法呢?会议期间,仪器信息网编辑特别采访了两位老师,并将他们的精彩观点整理成章,以飨读者。 北京大学王健研究员(左)、复旦大学李世燕研究员(右)   低温设备技术发展助力低温物理学研究   Instrument:首先,请您们结合自身的经历谈谈近年来我国低温物理学的发展情况?   李世燕:2002年我在中国科学技术大学陈仙辉教授的指导下完成了博士阶段的学习,当时在国内我们基本没有见过极低温设备,只有中科大和物理所有两台非常庞大的稀释制冷机。后来我到加拿大多伦多大学Louis Taillefer教授的实验室做博士后,接触到两台新型稀释制冷机,研究的低温环境一下子从2K直接降到了mK级别,看到了许多以前从未看到过的本征物理现象,立刻觉得整个物理世界都不一样了。   2007年我回国加入复旦大学,当时获得了400万元的启动经费,我就采购了一台新型稀释制冷机。这个时候国内小型易用的新型稀释制冷机仍然比较少,全国也就两三台。之后随着国家对基础科学研究投入的加大,而且低温物理研究的内容也很丰富,逐渐有越来越多的研究组开始采购极低温设备,并做出了优秀的成果。   王健:2001年到2006年我在中科院物理所师从薛其坤院士完成硕士、博士阶段的学习,当时主要做超高真空系统,也涉及一些低温研究。但当时稀释制冷机的确非常少,我们接触的低温也就是液氦温度或是再稍微低一点的温度。2006年到2010年,我在美国宾夕法尼亚州立大学纳米科学中心和物理系做博士后,师从国际低温物理专家Moses Chan院士,开始接触稀释制冷机,做纳米超导方面的研究。   2011年我回到北大,以前国内做极低温物理研究的人特别少,但在我回来的这几年里,仅北大就有好几个研究组采购了极低温设备做这方面的研究,而且国内涌现出了许多国际一流的研究成果。   Instrument:请问近年来,低温设备的技术发展有哪些趋势?技术的发展对于科学研究有着怎样的影响和帮助?   李世燕:如今一些大的低温设备公司,如牛津仪器、Quantum Design,都能够提供非常好的低温磁场环境,稀释制冷机达到mK级的低温已经比较成熟。技术的主要发展方向是无液氦化和简单易用。   以前的稀释制冷机外围设备包括管道、泵等等,操作特别复杂,我当年做博士后的时候,花了整整一年时间才完全掌握如何使用。而现在的新型稀释制冷机,一个学生基本花半年时间就能很好地掌握。   还有过去测比热,大家觉得这是一个非常专门的测量手段,尤其是极低温下的比热,往往需要一个拥有10年到20年比热测量经验的人,才能获取准确的测量结果。但现在就拿Quantum Design PPMS系统的比热测量选件来说,它的最低测量温度可以达到50mK,而且非常好用,学生只要简单学习就能将极低温下的比热测好,这非常不容易。   王健:无液氦化是一个发展方向,以前大家觉得无液氦化很难达到,但现在已经成为了一种通用技术,而且仪器价格较之前有了大幅的下降,我相信以后低温设备的价格会更低,因此低温物理的研究队伍也会更加壮大。   商品化科学仪器的简单易用对于我们的科研起到了极大的促进作用。让一个新手能够很快的掌握测量技术,使大家有更多的精力和注意力集中在科学问题上,而不是技术手段上,这是对科学方面生产力的释放。   Instrument:对于和仪器公司合作开发低温设备的新功能,您们有什么看法?   王健:其实科学家和仪器公司的交流是非常密切的,如果我们在具体的实验上遇到需要改进仪器来实现一定功能,此时和一些有能力的仪器公司建立良好的合作非常重要。科学家根据实际研究需要提出设想,然后与仪器公司一起开发新功能,我觉得这会是今后的一个趋势。   实际上日本在这方面的合作就已经做的很好,Quantum Design的PPMS系统中采用的高压腔选件就是日本科学家与他们合作开发的。我觉得这是推动技术发展的一个很好的模式,如果有机会,我们希望能够和仪器公司合作拓展仪器的功能,让自己的实验手段更强大。   低温物理学研究改变百姓生活   Instrument:低温物理学研究目前有哪些热点研究方向?我国在该研究领域都有哪些创新性成果?   王健:在低温条件下,由于减少了热等因素的干扰,更多本征的物理现象能够被观测到,这对于基础研究以及新材料的本征特性研究十分重要。低温物理涉及的领域特别广,实际上很多研究方向都需要用到低温物理。   超导方面的探索就离不开低温,虽然我们希望能够实现室温超导,但首先得从低温超导开始,这也是全世界凝聚态物理研究人员最关注的一个方向。我们和薛其坤院士合作研究的二维极限下的界面增强超导,尤其是高温界面超导研究,就是当前极少数由中国人先做出来,外国人去跟进的研究方向。   李世燕:另外,拓扑材料的物性研究也是低温物理最近比较热的一个研究方向,薛其坤院士发现的量子反常霍尔效应大概是最近几年拓扑新材料研究最重大的突破,要在30mK的温度下才能看到量子现象。   我国在低温物理研究领域取得的创新性成果还有中科大的陈仙辉教授课题组与复旦大学张远波教授课题组合作,成功制备出了基于具有能隙的二维黑磷单晶场效应晶体管。可以看出我国现在已经逐渐在一两个点上引领低温物理的研究趋势,如果有越来越多这样的点,我们的研究水平就会有很大的提升。   王健:对于我国低温物理研究的发展,我还是比较乐观的,目前像北大、复旦、清华还有南京大学、中科大,上海交大、浙江大学等许多学校在低温物理研究领域做得是越来越好,如果我国的科研政策持续不变,大家一起努力,我想十年以后,在低温物理这个研究方向我们赶超发达国家是没有问题的。   Instrument:低温物理的研究成果在生活中会有哪些实际应用?   李世燕:低温下的物理现象更明显,更容易表现出来,我们在低温下发现新的物性,一些在实际应用中只要能提供低温环境,就能够实现很好的应用,其中最典型的应用就是医院里核磁共振超导磁体。   另外我们可以在低温下发现物性,然后再通过研究使得它能够在室温或者高温下表现出同样的性能。比如巨磁阻效应,最初是在低温下发现的,后来发现改进材料后,在室温下也有明显的效应,人们因此研究出了基于巨磁阻效应的读出磁头,引发了硬盘的&ldquo 大容量、小型化&rdquo 革命,到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3播放器的标准技术。这是一个很典型的低温物理研究成果最终应用到大家生活中的例子。巨磁阻效应的发现者也因此获得了2007年的诺贝尔物理学奖。   王健:其实目前高温超导也得到了一定的实际应用,比如甘肃白银的超导变电站,采用了高温超导限流器、高温超导储能系统、高温超导变压器和高温超导电缆等多种超导电力装置,能有效降低系统损耗。高温超导技术也被日本和美国等国家考虑作为城市储能系统的一种方案。  还有现在大家研究的拓扑材料,由于它的低耗散性,还有它的一些自旋特性和磁性相关联,因而可以实现一些特殊性能。如我们现在做的拓扑半金属Cd3As2体系载流子迁移率非常高,也许有一天这个体系可以用到高速器件上。另外,如果能实现拓扑超导,就可以用于量子计算,它要比现在所说的量子计算机更进一步,叫做拓扑量子计算机。   实际上低温物理的研究应用已经走入了老百姓的日常生活当中,只是还没有像半导体一样让整个社会都发生变化。如果有一天我们能够实现室温超导,那样整个人类社会将会从信息时代进入超导时代,因为它无能耗,而且能实现许多量子态,将会是非常好的工具,比如现在最可行的一种量子计算就是用超导的约瑟夫森结实现的。所以一旦实现室温超导,带来的变化将不可估量。   后记   近年来,我国低温物理学研究取得了快速的发展,这不仅仅是由于国家对于基础科研投入的持续加大,更重要的是老一辈科研人员不懈的努力,以及许多像李世燕、王健这样优秀的年轻学者,他们对于低温物理的研究充满热情,对于我国低温物理研究的未来满怀希望,努力在自己的研究领域做出了国际一流的研究成果,脚踏实地的践行着科技强国的梦想。   但有一件事情让他们感到遗憾。李世燕说:&ldquo 我们现在所用的设备绝大部分都是从国外进口的,这是我一直觉得比较遗憾的地方。&rdquo 王健说:&ldquo 其实低温设备的技术含量也没有那么高,希望今后有国产仪器厂商能够提供相应的设备,只要国产设备测量结果可靠,能够获得国际认可,我们会非常乐意选择使用国产仪器的。&rdquo   让我们期待,在不久的将来,我们能够在低温物理研究领域赶超发达国家,同时我们也能拥有性能优异的国产低温设备,助力科学家们做出更多国际一流的研究成果。   采访编辑:秦丽娟   相关新闻:2015马丁&bull 伍德爵士中国物理科学奖获奖者公布
  • 干货分享 | 热分析原理及介绍(DTA,DSC,TGA,TMA,DMA)
    药物冻干,电池爆炸;耐低温橡胶是如何在高寒环境下使用,哪种巧克力甜甜味美还不会在夏天熔化?纵观我们身边的任何物质都会经历温度变化的过程,材料随着温度变化其性质也会发生变化,影响制备工艺和使用性能,生产生活中无时无刻不都在上演着材料的“冰与火之歌”。为了对材料进行表征分析,热分析技术已经成为一种强有力不可或缺的分析手段。梅特勒托利多作为主要的热分析仪器制造商之一,将为大家详细介绍热分析技术及其应用。1 热分析技术概述物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出定性和定量的分析,还可以被用来确定物质的组分及种类,测定比热容、热膨胀系数等热物性参数。图1-1 材料随温度变化发生的反应国际热分析和量热协会(ICTAC, International confederation for thermal analysis and calorimetry)于2004年对热分析提出新的定义:热分析是研究样品性质与温度间关系的一类技术。我国于2008年实施的国家标准《热分析术语》(GB/T6425-2008)中对热分析技术定义为:热分析是在程序控制温度下(和一定气氛中),测量物质的物理性质与温度或时间关系的一类技术。经过一百多年的发展,热分析技术凭借其快速、高效、低成本的优异特点,应用领域不断扩展,已逐渐成为新材料研究、产品设计和质量控制的必备的常规分析测试手段。根据测定的物理性质不同,国际热分析与量热协会ICTAC将热分析技术分为9类17种,如表1所示:表1-1 热分析技术分类在实际应用中,热分析技术还和其他分析仪器进行联用,例如红外光谱、拉曼光谱、气相色谱、质谱等分析方法,通过多种方式对物质在一定温度或时间变化过程内对材料进行结构和成分进行分析判断。2 重点热分析技术介绍2.1 差热分析(DTA, Differential thermal analysis)差热分析(DTA)是一种利用试样和参比物之间的温差与温度或时间的关系来评价试样的热效应。DTA曲线的纵坐标为试样和参比样的温度差(∆T),理论上单位应该为℃或者K。但因为记录的测量值通常为输出的电势差E,根据温度差与E的关系(公式(1)),转换因子b不是常数,而是温度T的函数,且其他传感器系统也存在类似的情况。公式(1)中,测量的温度差与热电偶输出的电势差E成正比,一些分析软件中DTA采集的信号经常为电势差的单位(μV)表示。现在DTA主要用于热重分析仪(TGA)等的同步测量,市场上已经难觅单独的DTA仪器。2.2 差示扫描量热法(DSC, Differential Scanning Calorimetry)2.2.1 DSC原理及规定差示扫描量热法(DSC)是在程序控制温度下和一定气氛中,测量输送给试样和参比物的热流速率或加热功率(差)与温度或时间关系的一类热分析技术。测量信号是被样品吸收或者放出的热流量,单位为毫瓦(mW),热流指的是单位时间内传递的热量,也就是热量交换的速率,热流越大热量交换的越快,热流越小热量交换的越慢,热流可由式(2)得到公式(2)中,∆T为试样与参比物的温度差,R_th为系统热阻,系统的热阻对于特定的坩埚、方法等是确定的。通过该公式就可以测得热流曲线,也就是DSC曲线。对DSC曲线上的峰进行积分就能够得到某个转变过程中样品吸收或者放出的热量。DSC信号的方向根据ICTA规则(∆T=Ts-Tr),规定为吸热朝下放热朝上,一般图片上标有^exo。反-ICTA(∆T=Tr-Ts)规则为吸热朝上,放热朝下,一般图片上标有^endo,不同规则的DSC曲线如图2-1所示。当样品吸收能量,这个过程被称作是吸热的,例如熔融和挥发过程。当样品放出能量,这个过程被称作是放热的,例如结晶和氧化分解过程。图2-1 DSC曲线:(a) ICTA规则,吸热向下; (b) 反-ICTA规则,吸热向上相比之下,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测得热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。通过DSC可以检测吸热或放热效应、测得峰面积(转变或反应焓值∆H)、确认所表征的峰或其他热效应所对应的温度(如玻璃化温度Tg、结晶点Tc、熔点Tm)以及测试比热容Cp,也可利用调制DSC测得潜热、显热以及可逆热流和不可逆热流,通过动力学可以计算得到活化能Ea。公式(3)中,DSC测得的总热流是由两部分组成的,一部分是由于温度升高引起的显热流,样品没有发生结构的变化;热流的第二部分是由于样品内部结构变化引起的潜热流,ΔHp表示这个反应完全发生所吸收或放出的热量。其中,C_p为样品的比热容,β为升温速率,ΔH_p为反应过程的焓变, dα/dt表示这个反应进行的程度。通常我们把没有发生反应时的热流曲线叫做DSC的基线,其实就是显热流曲线。由于物质的比热容都会随着温度的升高而增大,因此随着温度的升高DSC曲线应该向吸热方向倾斜,这个斜率就取决于样品的比热容随温度的变化率。图2-2 DSC热流曲线示意图2.2.2 DSC分类DSC分为热流式和功率补偿式,当前热流式DSC较为普遍,梅特勒托利多DSC均为热流式。热流式差示扫描量热法(Heat-flux type Differential Scanning Calorimetry, 简称热流式DSC),又称为热通量式DSC,是在按程序控制温度和一定气氛下,给样品和参比品输送相同的功率,测定样品和参比品两端的温差∆T,然后根据热流方程,将温差换算成热流差作为信号进行输出。功率补偿式DSC是在程序控温和一定气氛下,使样品与参比物的温差不变,测量输给样品和参比物功率(热流)与温度或时间的关系。热流式DSC采用单炉体,而功率补偿式DSC采用两个独立的炉体,分别对试样和参比物进行加热,并有独立的传感装置。图2-3 (a)热流式DSC和(b)功率补偿式DSC测量单元示意图2.2.3 DSC典型曲线图2-4为典型的DSC测试曲线示意图。在测试开始曲线出现了“1 启动偏移”。在该区域温度状态发生瞬时改变,有恒温变为升温,启动偏移的大小与样品热容及升温速率有关。在“3 玻璃化转变”区,试样热容增大,出现了吸热台阶。“4 冷结晶”区产生放热峰,“5 熔融”产生吸热峰,通过对峰面积的积分可以得到结晶焓和熔融焓。随着温度升高后为“6 分解”。图2-4 典型的DSC测试曲线示意图:1 初始基线漂移与样品热容成正比;2 无热效应时的DSC曲线(基线);3 无定形部分的玻璃化转变; 4 冷结晶; 5 结晶部分的熔融; 6 在空气气氛中氧化降解了解更多,请点击链接差示扫描量热仪(DSC)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC.html2.3 热重分析(TGA, Thermogravimetric Analysis)热重分析(TGA)是在一定控温程序和气氛下,测量试样质量与温度和时间之间的关系,可以获得样品质量随温度的函数。在此之前,人们使用TG作为这项技术的缩写。通过TGA可以检测样品质量的变化(增重或失重),分析质量变化台阶,以及在失重或增重曲线中确认某一台阶所对应的温度。TGA信号对温度和时间的一阶微变,表示为质量变化的速率为DTG曲线,是对热重信号的重要补充,当DTG曲线峰向上时试样质量增加,曲线峰向下试样质量会减小。热天平是热重分析仪中的重要部件,热天平具有三种不同的设计:上置式设计:天平位于炉体下方,试样支架垂直托起试样坩埚;悬挂式设计:天平位于测试炉体上方,测试坩埚放在下垂的支架上;水平式设计:天平与炉体处于同一水平位置,坩埚支架水平插入炉体。根据天平可达到的分辨率,可将天平分为半微量天平(10 μg)、微量天平(1 μg)、超微量天平(0.1 μg)。当样品以不同方式失去物质或与环境气氛发生反应时,质量发生变化,在TGA曲线上产生台阶或在DTG曲线上产生峰。典型的热重曲线如图2-5所示。在“1 挥发”区可为部分组分(水、溶剂、单体)的挥发;“2 分解”具有明显的失重台阶为聚合物的分解;“3 切换气氛”后,在“4 炭燃烧”表现为炭黑或碳纤维的燃烧台阶;“5 残留物”区质量变化微弱,主要为灰分、填料、玻璃纤维等残留。图2-5 典型的TGA测试曲线示意图:1 挥发;2 聚合物分解;3 气氛切换; 4 炭燃烧台阶; 5 残留物了解详情,请点击链接热重分析仪(TGA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html2.4 热机械分析(TMA, Thermomechanical Analysis)热机械分析TMA测量样品在设定应力/负载条件,样品尺寸变化与温度变化的关系。在TMA测试中,样品受恒定的力、增加的力或调制的力;而膨胀法测量尺寸变化则是使用能实现的小载荷来测量的。TMA具有不同的形变模式如图2-6所示,依据试样尺寸和特性进行选择:膨胀模式(A):是TMA常用的测量模式。测试基于温度的膨胀系数。通常测试时探头施加一个非常小的力于样品上。压缩模式(A):这种模式下,样品受力更大。穿透模式(B):其目的在于测试样品的软化点。拉伸模式(C):薄膜和纤维套件用于进行拉伸模式测试。可以测试由于收缩或者膨胀产生的较长形变。三点弯曲模式(D):用来研究刚性样品弹性行为的理想模式溶胀模式(E):许多样品在接触液体时会产生溶胀。通过溶胀套件可以测定样品在溶胀时发生的体积或长度变化。体积膨胀(F):液体同固体一样也会发生膨胀。图2-6 TMA不同形变模式根据不同的测试模式,我们可以使用TMA检测热效应(溶胀、收缩、软化、膨胀系数的变化),确定某表征的热效应的温度、测量形变台阶高度以及测定膨胀系数。TMA的典型测试曲线示意图如图2-7所示。图2-7 典型的TGA测试曲线示意图:1 玻璃化转变温度以下的热膨胀;2 玻璃化转变温度(斜率改变);3 玻璃化转变温度以上的热膨胀;4 塑性变形了解更多信息,请点击链接热机械分析仪(TMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TMA_SDTA_1.html2.5 动态机械分析(DMA, Dynamic Mechanical Analysis)动态热机械分析(DMA)是一种测试材料机械性能和粘弹性能的重要技术,可用于热塑性树脂、热固性树脂、弹性体、陶瓷和金属等材料的研究。DMA测试在程序控温和周期性变化的应力下,测试动态模量和力学损耗与时间温度的关系。在DMA测试中,试样受到周期变化的振动应力,随之发生相应的振动相变。除了完全弹性的试样外,测得的应变都表现为滞后与施加应力的变化。这种滞后成为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅以及相位差这三个物理量。图2-8 周期性的力作用下应力与应变的关系应力与应变之比称为模量,DMA分析得到的结果为复合模量M^*,复合模量由储能模量和损耗模量组成:储能模量(M^' ):试样弹性特性的反应,是试样能否完全恢复形变的尺度损耗模量(M^”):试样粘性特性的反应,是试样在形变过程中热量的消耗(损失);损耗模量大表明粘性大,阻尼强。损耗因子(tanδ):损耗模量和储能模量之比,反映的是振动吸收性,也称振动吸收因数。梅特勒托利多的DMA 1提供了六种不同的形变模式。对于特定的应用,适合的模式取决于测试需求、样品的性质和几何因子。包括以下六种测试模式:3-点弯曲模式(A):这种模式用于准确测试非常刚硬的样品,例如复合材料或热固性树脂,尤其适合于玻璃化转变温度以下的测试。单悬臂(B):这种模式非常适合于条形高刚度材料(金属或聚合物)。单悬臂模式是玻璃化转变温度以下的理想测试方法,而且是测试粉末材料损耗因子的推荐模式。双悬臂模式(C):这种模式适合于低刚度的软材料,特别是比较薄的样品,例如膜材料。拉伸(D):它是薄膜或纤维的常规形变模式。压缩(E):压缩模式用于测试泡沫、凝胶、食品以及静态(TMA)测试。剪切(F):剪切模式适合于测试软样品,例如弹性体,压敏胶,以及研究固化反应。2.6 热分析技术应用总结针对不同的材料以及想要测试的属性或热效应,所采用的热分析方法也存在差异,未得到理想的结果需要根据实际样品情况和测试需求来选择不同的热分析方法。表2-1合适的热分析技术选择作者:热分析技术应用顾问 邵艳茹参考文献J.O. Hill. For Better Thermal Analysis and Calorimetry III [M]. ICTA, 1991.热分析术语[S]. GB/T 6425-2008.陆立明. 热分析应用基础[M]. 东华大学版社.E. Ezm, M.B. Zakaria. State of the art and definitions of various thermal analysis techniques. [in] Thermal Analysis, 2021, 1-39.刘振海, 陆立明, 唐远旺. 热分析简明教程[M]. 科学出版社.UserCom, Mettler Toledo International Inc.
  • Advanced Materials:高压制备首个兼具大电极化和强磁电耦合的单相多铁性材料
    磁电多铁性材料是指同时具有磁有序与电化有序的一类多功能材料,利用两种有序的共存和相互耦合,可以实现磁场调控电化或者电场改变磁性质。多铁性材料作为具有重要应用前景的自旋电子学材料体系获得了广泛研究,有望用于实现下一代信息存储器、可调微波信号处理器、超灵敏磁电传感器等领域。而实际应用要求材料同时具备大的电化强度以及强的磁电耦合效应,且这种兼容性在以往的单相多铁材料中很难存在。因此,寻找兼具这两种优异性能的单相多铁性材料是十分迫切但又具挑战的科学问题。 近期,中国科学院物理研究所/北京凝聚态物理实验室龙有文研究员(Quantum Design公司用户)团队,利用特的高温高压技术,次成功制备了具有A位有序钙钛矿结构的BiMn3Cr4O12体系,并罕见地发现该单相材料同时具备大电化强度以及强磁电耦合效应。 图1 BiMn3Cr4O12的一系列磁电测试结果(a)磁化率及其居里-外斯定律拟合;(b)比热与介电常数;(c)热释电与电化强度;(d)磁化曲线;(e)低温热释电;(f)低温电化强度 通过磁化率、磁化强度、比热、介电常数、电化强度、电滞回线、高分辨电镜、同步辐射X光衍射与吸收谱、中子衍射等一系列综合结构表征与物性测试,龙有文团队发现,随着温度降低,BiMn3Cr4O12在135 K经历了一个铁电相变,在该铁电相变温度以下可观察到显著的电滞回线,并导致大电化强度的出现。 图2 BiMn3Cr4O12不同温度下的电滞回线,展示了大电化强度 当温度降低到125 K时,BiMn3Cr4O12经历了一个反铁磁相变,中子衍射证明该反铁磁转变源于B位Cr3+离子的G-型长程反铁磁有序,而A' 位的Mn3+离子仍未形成磁有序。在125 K以下,长程磁有序与铁电化共存,但该反铁磁序不能诱导电化相变,因此材料进入到具有大电化强度的类多铁相(电化强度可能会比较大,但磁电耦合很小)。 图3 磁场对BiMn3Cr4O12电化的调控,展示了强的磁电耦合效应 当温度继续降低至48 K时,A' 位的Mn3+离子也实现G-型长程反铁磁有序,并且A' 位Mn3+离子与B位Cr3+离子一起组成的自旋有序结构导致化磁点群的形成,可以打破空间反演对称性。因此,48K时的反铁磁相变诱导另一个铁电相变,伴随强的磁电耦合效应的出现,此时材料同时呈现二类多铁相(材料具有较强的磁电耦合,但电化强度往往很弱)。由此可见,低温下BiMn3Cr4O12既包含类多铁相又包含二类多铁相,从而大的电化强度与强的磁电耦合效应在这一单相多铁材料中同时实现,突破了以往这两种效应在单相材料中难以兼容的瓶颈,大大推进多铁性材料的潜在应用。 相关研究结果于近期发表在Adv. Mater. 29, 1703435(2017), 并被该期刊选为Inside Cover。该工作获得了国内外同行的广泛合作,同时获得了科技部、自然科学基金委、中国科学院等项目的支持。 文章来源:(中国科学院物理研究所 | 北京凝聚态物理实验室,终解释权归中国科学院物理研究所 | 北京凝聚态物理实验室官网所有) 相关产品:SuperME 多铁材料磁电测量系统:http://www.instrument.com.cn/netshow/SH100980/C148929.htm TEGeta 多功能热电材料测量系统:http://www.instrument.com.cn/netshow/SH100980/C277658.htm完全无液氦综合物性测量系统 DynaCool:http://www.instrument.com.cn/netshow/SH100980/C18553.htmMPMS3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/SH100980/C17089.htm多功能振动样品磁强计 VersaLab 系统:http://www.instrument.com.cn/netshow/SH100980/C19330.htm
  • 加拿大专利型快速导热系数测定仪投入运行
    中科院上海硅酸盐所购买的我公司独家代理的加拿大MATHIS公司生产的专利型快速导热系数测定仪已于2006年12月安装完毕投入实验使用。该仪器可进行实验室及现场应用,可快速方便地测定固体、液体、粉沫、薄膜及粘稠物等多种不同材料的导热系数,热传导率及比热(需其它参数配合)精度为世界上最高,准确度优于5%,测试一个样品时间约为10-15分钟(包括冷却时间8-10分钟)。已有感兴趣的其它用户去参观了解该仪器。
  • 改性石墨烯增强有机硅涂层及其性能研究
    HS-DSC-101差示扫描量热仪是一种测量参比端与样品端的热流差与温度参数关系的热分析仪器,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度Tg、氧化诱导期OIT、熔融温度、结晶温度、比热容及热焓等。改性石墨烯增强有机硅涂层及其性能研究【齐鲁工业大学 姚凯 】改性石墨烯增强有机硅涂层及其性能研究上海和晟 HS-DSC-101 差示扫描量热仪
  • 钒基“笼目”金属CsV3Sb5登上Nature正刊!
    在今年7月推出的钒基“笼目”金属的新闻中,我们介绍了国内多个课题组在新型准二维钒基笼目金属AV3Sb5 (A = K, Rb, Cs) 体系中取得的重要进展,该体系具有丰富的物理性质,是研究几何阻挫、非平庸拓扑能带、超导态以及多种电子序耦合竞争的重要平台。其中要数CsV3Sb5的研究为广泛,之前针对该材料的研究主要集中在利用高压手段探究电荷密度波(CDW)和超导态(SC)之间的非平庸的竞争关系(详细介绍:从编织篮到新型准二维钒基Kagome金属的前沿研究)。近日,钒基笼目金属CsV3Sb5的研究成果登上Nature正刊,该工作阐述了CsV3Sb5超导态中配对密度波的发现,对研究配对密度波的形成机制以及揭示其与非常规超导体超导机理的关联具有重大意义。下面我们将结合这篇文章对CsV3Sb5超导态非平庸物理机制以及其采用的研究手段一探究竟。 作者:中科院物理所的陈辉、杨海涛和物理所/国科大博士生胡彬 通讯作者:汪自强、高鸿钧 主要研究组:中国科学院物理研究所/北京凝聚态物理研究中心高鸿钧研究团队 合作研究组:美国波士顿学院汪自强教授、以色列科学研究所颜炳海教授、 中国人民大学雷和畅教授、中科院物理所董晓莉研究员等01. 背景介绍 超导是电子在微观里两两配对组成库珀对后集体凝聚形成的宏观量子态。在传统的超导体中,动量相反电子两两配对,组成动量为零的库珀对,在超导体内部均匀分布,不会在平衡态中呈现波动特性。而在特殊情况下,电子配对形成动量不为零的库珀对,相应的超导态被称为配对密度波(Pair Density Wave)。理论预言配对密度波可以在非常规超导体中出现;实验方面,经过多年的努力,只在铜基高温超导体中寻找到支持配对密度波存在的证据。近备受关注的新型层状笼目结构超导体,具有非常规超导性以及反常的手性电荷密度波,这两者的同时出现预示着这类笼目超导体可能是配对密度波出现的理想载体。近期物理所高鸿钧研究团队利用自主设计组装的、居国际水平的低温强磁场扫描隧道显微镜/谱(STM/S)联合系统对高品质笼目超导体CsV3Sb5开展了系统的研究,不仅观测到配对密度波的存在,而且发现这种配对密度波与超流态中的旋子(roton)激发态行为类似,因而称为旋子-配对密度波。这些配对密度波的性质不同于铜基高温超导体中的配对密度波性质,预示着这类笼目超导体中有着新颖的配对密度波形成机制。(摘自:中科院物理所官网)02. 图文导读图1. CsV3Sb5 的原子结构与解理面的STM图像 CsV3Sb5 的晶体结构为Cs-Sb2-VSb1-Sb2-Cs层状堆叠(图1a),具有六度对称性,空间群为P6/mmm。其中中间VSb1层,是由V原子构成的笼目格子与Sb1原子构成的简单6角格子相互嵌套形成(图1b)。4.2K温度下的原子分辨STM图像表明,解离面存在多种端面,其中图1c的明暗区域分别对应了×R30°重构的Cs表面和1×1的 Sb表面(图1c, d)。由于Cs原子表面的不稳定性,本论文的后续有关密度波研究均在大而干净的Sb表面(图1e)展开。非平庸强耦合超导体图2. CsV3Sb5 的微分电导谱中的V形超导能隙以及应用超导针观测到的约瑟夫森效应本文先在Cs、Sb原子表面分别研究了300mK电子温度下的空间平均微分电导(dI/dV)谱线(图2a),可以看出谱线展现出明显的V型特征且两相干峰能量位置关于费米能EF对称,但零偏置下非零局域密度态(LDOS)的存在(Sb原子表面更低)表明能隙中线节点的存在或者费米面未完全打开能隙。为进一步研究能隙性质,采用了超导Nb针替换了W针,观测到了显著的库珀对隧穿的约瑟夫森效应(图2d),从而进一步验证了CsV3Sb5表面确为超导相。两种针能隙随温度的演变均表明CsV3Sb5表面超导转变温度为Tc~2.3K(图2b, f)。V型能隙以及EF处非零的LDOS都表明CsV3Sb5表面非平庸超导体的特征。又因为超导能隙(~0.5 meV)与Tc比值2/kBTc~5.2,处于强耦合非平庸超导体区域。超导态与电荷密度波共存图3. CsV3Sb5 在±5 meV能量内伴随有超导能隙、相干峰和隧穿电导的能隙深度的双向4/3倍晶格空间调制电子温度300mK(Tc以下)的大范围70 nm×70 nm STM形貌图(图3a)具有明显的空间调制特征,相应的傅里叶转换多出两套衍射斑点(如图3b绿色,红色衍射斑),分别对应2a0×2a0双向和4a0 单向条纹电荷密度波。不仅如此,这两套衍射斑点在不同偏压、不同位置的dI/dV图谱的傅里叶转换中都存在(图3c-f),表明这两种电荷密度波具有长程序,进而说明CsV3Sb5表面非常规超导态与两种电荷密度波(CDW)共存,具有smectic超导序。配对密度波与超导能隙特征的空间调制让人惊奇的是除原子分辨STM图外,所有dI/dV图谱的傅里叶转换中都额外又多出一套衍射斑(图3c-f 粉色衍射斑),对应4a0/3双向电子晶格空间调制,但仅存在于超导能隙偏压范围内,说明这种密度波与长程序的 CDW具有明显差别,暗示的SC凝聚时产生了次要4a0/3双向配对密度波(PDW)(图3h)。为探究PDW对材料超导性质影响,作者沿图3i蓝线测量了一系列dI/dV谱图,发现超导能隙、相干峰高度和能隙深度均受到PDW波矢调制(图3l-n)。不同于普通超导体中的配对密度波,这种配对密度波与超流态中的旋子(roton)激发态行为类似,因而称之为旋子-配对密度波。配对密度波可视为赝能隙的“母态”图4. 在300mK施加垂直磁场以及4.2 K零磁场下观测到的配对密度波以及赝能隙 沿c轴方向施加外磁场,发现材料的上临界场为2T ,0.04T已经观测到Sb原子表面dI/dV图谱出现明显的场诱导涡旋(图4a)。选择位于涡旋晕的区域(图4a中蓝色格子)获得dI/dV (r, -5mV)图谱,相应的傅里叶转换(图4c)中可以发现4a0 /3 PDW衍射斑仍然存在。同样区域,保持温度不变、磁场提升至上临界场2T,或者磁场退到零、温度提升到超导温度之上,dI/dV (r, -5mV)图谱相应的傅里叶转换仍然观测到了PDW衍射斑,说明配对密度波对应波矢并没有随超导态的消失而消失。从图4h区域平均dI/dV谱随温度和磁场的演变可以看出,超导态移除后赝能隙的能量范围(~±5meV)与PDW观测能量区间相吻合,暗示超导态的配对密度波可以诱导产生具有相同空间调制的二次电荷密度波,可视为赝能隙形成的“母态”。这篇研究成果不仅次在原子尺度揭示了AV3Sb5家族的非常规超导态的特性质,也是实验上次在铜基超导体外的超导体系发现非常规配对密度波具有重大意义,于2021年9月29日以“加快发表”形式在Nature杂志在线发表。图5. CsV3Sb5单晶基本性质表征。a,c,e 磁化率、比热和霍尔电阻测量表明CDW转变发生在90-97K之间。b,d,f 低温区磁化率、比热和电阻率测量表明超导转变温度在2.8K,高于文献中的2.5K是因为生长样品的超高品质。磁化率的测量能够对样品的磁性变化做出非常灵敏的判定,文中的CDW转变与超导转变处均观察到了非常明显的抗磁信号,并且与比热和电输运测量数据能够较好的吻合。磁、电、热等基本性质表征能够帮助用户迅速定位样品的相变区间从而展开更为细致的分析。PPMS综合物性测量系统以及MPMS磁学测量系统优异的温度稳定性和精细磁场控制是其测量的基础。经过几十年发展,PPMS和MPMS已成为可靠实验数据标准,遍布几乎所有实验室,广泛应用于物理、化学和材料科学等众多研究领域,是各课题组开展拓展测量的开放实验平台。图6. 全新一代综合物性测量系统PPMS DynaCool和磁性测量系统MPMS3
  • 上海科技大学720.00万元采购低温恒温器
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 极低温物性测量系统国际招标公告(2) 上海市-浦东新区 状态:公告 更新时间: 2023-02-23 极低温物性测量系统国际招标公告(2) 发布时间:2023-02-23 14:55 项目编号: 1639-234122190011/04 公告类型: 招标公告 招标方式: 国际公开 截止时间: 2023-03-16 09:30:00 招标机构: 上海市机械设备成套(集团)有限公司 招标地区: 上海市 招标产品: 物性测量系统 所属行业: 量仪 上海市机械设备成套(集团)有限公司受招标人委托对下列产品及服务进行国际公开竞争性招标,于2023-02-23在中国国际招标网公告。本次招标采用传统招标方式,现邀请合格投标人参加投标。 1、招标条件 项目概况:上海科技大学拟采购极低温物性测量系统 资金到位或资金来源落实情况:招标人资金已到位 项目已具备招标条件的说明:具备招标条件 2、招标内容 招标项目编号:1639-234122190011/04 招标项目名称:极低温物性测量系统 项目实施地点:中国上海市 招标产品列表(主要设备): 序号 产品名称 数量 简要技术规格 备注 1 极低温物性测量系统 1 *温度范围:1.9K - 400K 连续变温 *降温时间:从 300K 降至稳定在 1.9K ≤ 60min(典型值40min)*温度稳定性:±0.1% for T 20K(典型值) *纵向磁体,最大磁场强度:±14T *振动样品磁强计灵敏度(1秒数据平均): ≤1×10e-6 emu *比热测量精度: ≤5% @2K - 300K(典型值 300 K *稀释制冷机极低温测量兼容比热测试模块 最低温度:≥50 mK *稀释制冷机专用交流磁化率测量组件灵敏度:5 x 10e-7 emu@10 kHz; 频率范围:10 Hz to 10 kHz *磁学测量用水平旋转样品杆 转角精度≤0.1°(典型值) *范德堡测量控制模块 兼容设备控制软件 3、投标人资格要求 投标人应具备的资格或业绩:1) 独立法人资格或其他组织。 2) 投标人是专业生产本次所需设备的制造商,或由制造商指定一个代理商作为本次投标的唯一授权代理。 3) 投标人提供的投标机型应是原产地的全新产品; 4)投标人或投标货物的制造商须具有从事类似货物生产销售的经验; 5)本项目预算为720万元。(项目预算包含设备交付使用前的一切相关费用,投标单位的投标报价须充分考虑包括设备本身费用以及相伴随的外贸进口等费用,同时须充分考虑汇率波动风险等可能导致超预算的因素)。 是否接受联合体投标:不接受 未领购招标文件是否可以参加投标:不可以 4、招标文件的获取 招标文件领购开始时间:2023-02-23 招标文件领购结束时间:2023-03-02 是否在线售卖标书:否 获取招标文件方式:现场领购 招标文件领购地点:上海市长寿路285号恒达广场16楼 招标文件售价:¥500/$85 其他说明:获取采购文件将采用线上获取方式:潜在供应商写明申请购买项目的名称,提供报名单位名称、 具体项目联系人的联系方式(姓名、手机、地址及邮箱)发送至邮箱zhutian_h@163.com,收到邮件回复后,请完整填写《购标书登记表》并电汇缴纳标书款。 5、投标文件的递交 投标截止时间(开标时间):2023-03-16 09:30 投标文件送达地点:上海市长寿路285号恒达广场10楼 开标地点:上海市长寿路285号恒达广场10楼 6、投标人在投标前应在____( https://____)或机电产品招标投标电子交易平台( https://www.chinabidding.com)完成注册及信息核验。评标结果将在____和中国国际招标网公示。 7、联系方式 招标人:上海科技大学 地址:上海市浦东新区中科路1号 联系人:陈老师 联系方式:86-21-20685182 招标代理机构:上海市机械设备成套(集团)有限公司 地址:上海市长寿路285号恒达广场16楼 联系人:朱老师 李老师 联系方式:86-21-32557710 86-21-32557767 zhutian_h@163.com 8、汇款方式: 招标代理机构开户银行(人民币): 招标代理机构开户银行(美元): 账号(人民币): 账号(美元): × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:低温恒温器 开标时间:2023-03-16 09:30 预算金额:720.00万元 采购单位:上海科技大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海市机械设备成套(集团)有限公司代理联系人:点击查看 代理联系方式:点击查看 详细信息 极低温物性测量系统国际招标公告(2) 上海市-浦东新区 状态:公告 更新时间: 2023-02-23 极低温物性测量系统国际招标公告(2) 发布时间:2023-02-23 14:55 项目编号: 1639-234122190011/04 公告类型: 招标公告 招标方式: 国际公开 截止时间: 2023-03-16 09:30:00 招标机构: 上海市机械设备成套(集团)有限公司 招标地区: 上海市 招标产品: 物性测量系统所属行业: 量仪 上海市机械设备成套(集团)有限公司受招标人委托对下列产品及服务进行国际公开竞争性招标,于2023-02-23在中国国际招标网公告。本次招标采用传统招标方式,现邀请合格投标人参加投标。 1、招标条件 项目概况:上海科技大学拟采购极低温物性测量系统 资金到位或资金来源落实情况:招标人资金已到位 项目已具备招标条件的说明:具备招标条件 2、招标内容 招标项目编号:1639-234122190011/04 招标项目名称:极低温物性测量系统 项目实施地点:中国上海市 招标产品列表(主要设备): 序号 产品名称 数量 简要技术规格 备注 1 极低温物性测量系统 1 *温度范围:1.9K - 400K 连续变温 *降温时间:从 300K 降至稳定在 1.9K ≤ 60min(典型值40min)*温度稳定性:±0.1% for T 20K(典型值) *纵向磁体,最大磁场强度:±14T *振动样品磁强计灵敏度(1秒数据平均): ≤1×10e-6 emu *比热测量精度: ≤5% @2K - 300K(典型值 300 K *稀释制冷机极低温测量兼容比热测试模块 最低温度:≥50 mK *稀释制冷机专用交流磁化率测量组件灵敏度:5 x 10e-7 emu@10 kHz; 频率范围:10 Hz to 10 kHz *磁学测量用水平旋转样品杆 转角精度≤0.1°(典型值) *范德堡测量控制模块 兼容设备控制软件 3、投标人资格要求 投标人应具备的资格或业绩:1) 独立法人资格或其他组织。 2) 投标人是专业生产本次所需设备的制造商,或由制造商指定一个代理商作为本次投标的唯一授权代理。 3) 投标人提供的投标机型应是原产地的全新产品; 4)投标人或投标货物的制造商须具有从事类似货物生产销售的经验; 5)本项目预算为720万元。(项目预算包含设备交付使用前的一切相关费用,投标单位的投标报价须充分考虑包括设备本身费用以及相伴随的外贸进口等费用,同时须充分考虑汇率波动风险等可能导致超预算的因素)。 是否接受联合体投标:不接受 未领购招标文件是否可以参加投标:不可以 4、招标文件的获取 招标文件领购开始时间:2023-02-23 招标文件领购结束时间:2023-03-02 是否在线售卖标书:否 获取招标文件方式:现场领购 招标文件领购地点:上海市长寿路285号恒达广场16楼 招标文件售价:¥500/$85 其他说明:获取采购文件将采用线上获取方式:潜在供应商写明申请购买项目的名称,提供报名单位名称、 具体项目联系人的联系方式(姓名、手机、地址及邮箱)发送至邮箱zhutian_h@163.com,收到邮件回复后,请完整填写《购标书登记表》并电汇缴纳标书款。 5、投标文件的递交 投标截止时间(开标时间):2023-03-16 09:30 投标文件送达地点:上海市长寿路285号恒达广场10楼 开标地点:上海市长寿路285号恒达广场10楼 6、投标人在投标前应在____( https://____)或机电产品招标投标电子交易平台( https://www.chinabidding.com)完成注册及信息核验。评标结果将在____和中国国际招标网公示。 7、联系方式 招标人:上海科技大学 地址:上海市浦东新区中科路1号 联系人:陈老师 联系方式:86-21-20685182 招标代理机构:上海市机械设备成套(集团)有限公司 地址:上海市长寿路285号恒达广场16楼 联系人:朱老师 李老师 联系方式:86-21-32557710 86-21-32557767 zhutian_h@163.com 8、汇款方式: 招标代理机构开户银行(人民币): 招标代理机构开户银行(美元): 账号(人民币): 账号(美元):
  • 南京大展的同步热分析仪在中南大学完成调试
    同步热分析仪是一款热分析仪器,应用领域广泛,主要包括:陶瓷、玻璃、金属/合金、矿物、催化剂、含能材料、塑料高分子、涂料、医药等等,不仅很多制造型企业采购,还有国内的高校。相比于国外品牌,国产的同步热分析仪,优势在于性价比高,售后服务完善,同时从技术参数对比,也相差不大,因此,受到很多高校的欢迎。  中南大学采购的是南京大展的同步热分析仪,这款同步热分析仪可用于玻璃化转变温度、氧化稳定性、热焓、比热、结晶度和材料的氧化诱导期等热重与差热相关数据,用于不同材料的研究和实验。   同步热分析仪是将DSC和TG结合,一次测试可获得两种曲线,因此,大大节省了实验的时间。同时采用一体化的机型设计,仪器两路气体自动切换;进口的芯片,测量速度快;全新的炉体设计,保温性高。
  • 中国人民解放军军事科学院军事医学研究院选购和晟仪器差示扫描量热仪
    中国人民解放军军事医学科学院是中国人民解放军的最高医学研究机构,1951年8月创建于上海,1958年迁至北京。2003年,遵照中央军委决定承建解放军疾病预防控制中心。中国人民解放军军事医学科学院选购和晟仪器HS-DSC-101差示扫描量热仪,现已安装调试完毕。差示扫描量热仪是一种测量参比端与样品端的热流差与温度参数关系的热分析仪器,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度Tg、氧化诱导期OIT、熔融温度、结晶温度、比热容及热焓等。中国人民解放军军事科学院军事医学研究院上海和晟HS-DSC-101差示扫描量热仪
  • 德国林赛斯linseis产品培训回顾
    在上周二、周三两天时间里,我司诚邀了德国林赛斯linseis热分析仪器公司总裁claus linseis先生 和总经理 florianlinseis先生一行到上海办事处进行产品培训。全体业务员参加了为期两天的培训。 此次培训的主要内容包括介绍德国林赛斯linseis产品的性能特点,应用范围,讲述产品的工作原理等方面并讲述了热分析技术在材料研究中的应用及最新进展如热分析系统联用技术(与ms和ftir)、激光热导和导热系数分析系统等在热扩散系数、导热系数和比热等热物理性能的测量中的应用技术,特别介绍了该公司新近研发成功的赛贝克系数分析仪和原位热分析逸出气体-elif(激光诱导荧光光谱)分析技术。在培训中,公司成员在德国林赛斯linseis总经理的精彩讲解下学习气氛良好。业务员针对产品的功能与林赛斯linseis总经理进行了交流互动,双方对产品认识及销售中所遇到的问题进行了深入讨论。
  • 2019年热分析技术及应用研讨会
    我公司将于2019年7月13~15日参加在昆明举办热分析技术及应用研讨会诚挚邀请您来参观交流! 会议时间:2019年7月13日~15日会议地点:云南省昆明市官渡区环城南路39号泰丽国际大酒店 展会介绍:大会将邀请国内外从事热分析研究的著名科学家和学者、从事热分析科研和检测技术的专家、仪器生产厂商等参加学术交流和技术探讨,以促进热分析技术在材料、化学、化工、物理、环境、生物、医药、仪器测试技术等多学科领域的应用与交叉,提高热分析技术及设备应用水平,提高热分析技术为基础研究、应用研究及科技成果转化的服务水平。夏溪电子致力于为化工、石油、材料、能源动力等各行业提供高精度的理化性质测试仪器、温度测量和控制仪器仪表、恒温环境的设计开发和设备的定制等。公司研发中心拥有一支专业的研发团队,目前拥有多项国家发明专利。公司测试中心为用户提供导热系数、粘度、密度、比热、互溶性、PVT、饱和蒸汽压和临界参数等多种热物性测试服务。 诚挚欢迎您的莅临指导!
  • 2009全国高分子学术论文报告会在津召开
    2009年8月19日,中国高分子界学者盛会——2009年全国高分子学术论文报告会在天津大礼堂隆重召开。本次会议由中国化学会高分子学科委员会主办,南开大学功能高分子材料教育部重点实验室与高分子化学研究所、天津大学材料科学与工程学院、天津工业大学、河北工业大学化工学院、天津理工大学和天津科技大学承办,来自全国各地的2500多名学者参加了此次盛会,提交论文近3000余篇。 2009年全国高分子学术论文报告会开幕式现场   中国科学院院士、中国化学会高分子学科委员会主任王佛松、南开大学党委书记薛进文出席并致辞。薛进文向大会致辞中指出,经过几代人的努力,高分子学科已经成为我国化学化工和材料科学技术发展的重要推动力量,每两年召开一次的学术年会更是该学科的盛会,并希望此次盛会为高分子领域专家的广泛交流、前沿研究的相互促进提供良好交互平台,以此来推动我国高分子学科的进步与发展。   同时,本次论文报告会邀请了多位专家、学者围绕高分子领域研究进展等内容进行了报告。 美国Akon大学程正迪教授 报告题目:Self-assembly of nanoparticle/organic hybrids   中国石油天然气股份有限公司炼油与化工分公司胡杰总工程师 报告题目:中国石油高分子合成材料领域技术发展趋势  上海交通大学化学化工学院颜德岳教授 报告题目:探索大自然的奥秘——大分子自组装   除开幕式和大会报告外,大会还举办了分会(论文专题)报告和墙报另外两种报告形式,并有天津中环、天津港东、赛默飞世尔、马尔文、岛津、梅特勒、珀金埃尔默等国内外知名仪器厂商举办了高分子领域相关产品展示会。 产品展示会现场   展会中,部分仪器公司展示了其在高分子领域最新产品:   精工电子推出的EXSTAR系列DSC产品,其中DSC7020及标准型DSC6220可以提供高灵敏度,高分辨率及可重现性的稳定的平直的基线,独一无二的椭圆形结构,有效地缩短加热距离,使样品和参照物之间保持理想的温度平衡。   天津中环推出的真空/气氛管式炉:以U字型硅钼棒为发热元件;采用氧化铝纤维板材拼装炉膛,保温性能好,炉温均匀,升温速度快,40分钟升到额定温度,空栽损耗低,节能,比传统电炉节能50%;智能温度控制系统PID控制,控温精度高,有超温保护功能,可选配升温速率可设定的可编程序仪表;具有电流隔幅,缓启动功能及专用的电力调整器;采用空气隔热技术,炉体表面温升低,配有漏电保护装置,使用安全;电炉与控制器一体,操作方便。   此外,一些仪器公司代表还在分会中就最新的技术进展向广大参会人员做了精彩的专题报告:   瑞士梅特勒-托利多公司《随机温度调制DSC技术TOPEM》:TOPEM是在线温度程序上叠加随机温度脉冲频率宽带实行温度调制的DSC新技术,是瑞士梅特勒-托利多公司的专利。该技术在单次实验中就能测定准稳态比热和宽频范围的频率依赖的符合比热,由热流与加热速率的相关性分析分别得到可逆和不可逆热流。并在热力学上将这两个热流分别与显热流和潜热流相关联,从而克服了正弦调制温度DSC测定的不可逆热流具有频率依赖性因而无法获得热力学定律支持的缺陷。   法国HORIBA Jobin Yvon S.A.S.公司《拉曼光谱仪技术最新进展及在高分子材料表征中的应用》:法国HORIBA Jobin Yvon S.A.S.公司今年来先后推出高分辨拉曼光谱仪,全自动高分辨拉曼光谱仪以及精巧型可移动全自动拉曼光谱仪。同时在光谱成像技术上,针对不同的用户推出线扫描光谱成像,DuoScan快速光谱成像和Swift高速光谱成像技术,使得分析测量更快、更灵敏、更灵活。   创腾科技有限公司上海分公司《应用最新的Material Studio分子模拟技术研究高分子材料》:分子模拟技术Material Studio紧跟高分子材料科学发展趋势,不断发展,满足高分子材料学家的要求。基于粗粒度模拟方法的,可对广泛体系进行模拟研究的两种工具-----MS Mesocite和MS Mesotek。它们分别基于分子力学方法和Helfand自洽场理论,模拟对象遍及多种工业领域。MS Mesocite 突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法-----比如MS Martini力场---来描述粗粒度之间的相互作用,得到诸多能够反映内部结构细节的物性 而借助MS Mesotek,不仅可以对一般性软凝聚态、流体材料进行研究,更可以研究它们与球形纳米粒子之间的相互作用,从而给出这些体系的介观相自由能以及相图。   附录:   各分会会议主题:   主题A 聚合反应及新型聚合物的合成   主题B 高分子结构、表征与性能   主题C 高分子材料成型加工新理论、新技术   主题D 微纳米材料和技术   主题E 功能高分子   主题F 生物医用高分子   主题G 天然高分子及环境友好高分子材料   主题H 高分子改性、共混与复合   主题I 高分子与工业   主题J 高分子与教育
  • 2013梅特勒托利多热分析用户培训会报名
    尊敬的客户:您好! 2013年梅特勒托利多热分析用户培训会将于今年7月17-19日在有着&ldquo 百岛之市&rdquo 之称的美丽海滨城市-珠海举办,在此诚邀您的参与! 热分析是仪器分析的一个重要分支,对材料的表征发挥着不可替代的作用,目前成为越来越多的科研机构和企业实验室使用的通用仪器。热分析试验方法较多,并且测量结果受多种因素的影响,因此深入了解仪器特点并使用正确的方法开展实验,正确的结果分析对于技术人员非常重要。为了让更多技术人员掌握热分析技术,更好的进行各类材料的研究及质量控制,梅特勒托利多公司每年都举办针对用户的大型技术交流会,今年我们将重点放在技术应用、仪器和软件使用以及结果分析上,届时将邀请长期支持梅特勒托利多热分析事业的专家和资深技术顾问与大家现场交流与讨论,欢迎所有对热分析技术感兴趣的人士踊跃参与! 培训会报名地址: http://cn.mt.com/cn/zh/home/events/seminars/cn_ta_user_tech_seminarinvitation2013.html?cq_ck=1369300478036 【会议内容】 热分析论著的规范表达:实例辨析; 热分析应用概述 热分析在高分子材料中的应用; 热分析在制药行业的应用; 玻璃化转变Tg的测定; 低温/高温比热容测试技巧及注意事项; DSC及TGA曲线解析; 仪器实验技巧(DSC、TGA、TMA、DMA); 热分析STARe软件操作技巧; 热分析仪器的维护、保养; 【会议时间】2013年7月17~19日(16日报到) 【会议地点】珠海星城大酒店 多功能厅 (珠海市商业文化中心区吉大景山路 88号,) 【注意事项】1)16日报到时请携带此通知单,出示您的名片,在签到处免费领取会议资料; 2)如果您有事不能前来,可推荐您的同事代为参加,并出示被邀请人名片和本人名片,我们将协调其参会; 3)会务费2000元/人(含培训费、资料、餐饮等),住宿可统一安排,费用自 理; 会议日程 7月17日 06:30 - 08:30 Breakfast 早餐 09:00 - 09:30 欢迎词与热分析简介 陆立明 梅特勒托利多中国区经理 09:30 - 10:30 热分析论著的规范表达:实例辨析 刘振海 中科院长春应用化学研究所教授 10:30 - 10:45 Tea Break 茶歇 10:45 - 12:00 热分析应用概述 唐远旺 梅特勒托利多热分析技术主管 12:00 - 13:00 Lunch & Break 午餐&午休 13:00 - 13:30 合影 酒店内 全体人员 13:30 - 14:30 热分析在制药行业的应用 范玲婷 梅特勒托利多热分析应用顾问 14:30 - 14:45 Tea Break 茶歇 14:45 - 16:00 热分析在高分子材料中的应用 孔鹏飞 梅特勒托利多热分析应用顾问 16:00 - 17:00 低温/高温比热容测试技巧及注意事项 唐远旺 梅特勒托利多热分析技术主管 17:00 - 17:30 FAQ 问题交流 18:00 - 20:30 Dinner 外出晚餐 全体人员 7月18日 06:30 - 08:30 Breakfast 早餐 09:00 - 10:30 DSC及TGA曲线解析 Craig Gordon 梅特勒托利多热分析亚太区经理 10:30 - 10:45 Tea Break 茶歇 10:45 - 12:00 DSC 及TGA实验技巧 孔鹏飞 梅特勒托利多热分析应用顾问 12:00 - 13:00 Lunch & Break 午餐&午休 13:00 - 13:45 玻璃化转变Tg测定 李焱 梅特勒托利多热分析应用顾问 13:45 - 14:30 TMA和DMA操作技巧 孔鹏飞 梅特勒托利多热分析应用顾问 14:30 - 14:45 Tea Break 茶歇 14:45- 15:45 热分析STARe软件操作技巧 李焱 梅特勒托利多热分析应用顾问 15:45 - 16:45 热分析仪器维护及保养 唐幸初 梅特勒托利多热分析服务主管 16:45 - 17:00 F&A 问题交流 17:00 - 17:30 Lucky draw 幸运抽奖 18:00 - 20:30 Dinner 外出晚餐 全体人员 7月19日 Team Building 全体人员 如有疑问或交流详情,请联系如下: 联 系 人:杨献玲 邮 箱:thermalanalysis@mt.com 联系电话:021-64850435*1733 手 机:13818489304 梅特勒托利多(中国) 热分析仪器部 2013年5月 培训会报名地址: http://cn.mt.com/cn/zh/home/events/seminars/cn_ta_user_tech_seminarinvitation2013.html?cq_ck=1369300478036 更多信息,请访问 梅特勒托利多热分析仪器部 梅特勒托利多官网
  • 冻干测试汇总:冻干前产品关键温度及冻干后产品机械强度测试
    1.塌陷温度Tc定义:塌陷温度 (Tc)是产品粘度降低到无法支撑自身的三维结构的临界温度。检测设备:冻干显微镜方法简介:冻干显微镜是一台“微型冷冻干燥机”,测量过程模拟冷冻干燥过程,在一个特殊的冷冻干燥阶段利用受控的低压条件,允许水蒸气从样品中升华。冻干显微镜是在光学显微镜下观察特定样品或制剂的结构。除了能够确定塌陷温度 (Tc),Biopharma Lyostat5 冻干显微镜还能够测定共晶熔化温度 (Tm),识别结晶现象、表皮/结皮形成以及退火对冰晶生长的影响和溶质结构。 2.玻璃态转变温度(Tg’)定义:玻璃态转变温度(glasstransition temperature,Tg)是无定形的冻结混合物从脆性状态变为柔性状态的临界温度。检测设备:Lyotherm3冷冻状态分析仪(灵敏度更高)/DSC方法简介:Lyotherm是最新的分析技术、阻抗分析(Impedance analysis)与传统差热分析(Differential thermal analysis, DTA)的独特组合。该仪器可以识别样品中的电和热变化,通过结合差热分析 (DTA) 和阻抗分析来得到Tg' ,这使得研究者可以更完整地了解样品的热和电特性。这些技术使用两种不同的视角来增强分析数据,为分析提供额外的维度,从而允许使用者进行更详细和更准确的分析。● 电阻抗:阻抗(Zsinφ)是一个将电容、电感和电阻信息相结合,组成的与样品内分子迁移率相关的指标。阻抗的变化可以识别样品软化、稳定化、结晶、玻璃化转变、熔化和其他相变。● DTA:通过将比较样品温度与参考物温度来识别关键事件的热分析方法。对放热/吸热、玻璃化转变和熔化事件的识别收集了有关阻抗事件的更多信息。方法比较:聚合物在发生玻璃化转变时,力学性能、比热、比热容等发生变化, 因此玻璃转化温度可以通过差示扫描量热法(DSC)、调制差示扫描量热法(MDSC)、热机械分析法(TMA)、动态热机械分析(DMA)来检测 目前药物的Tg’常用DSC来进行检测,它测量的是伴随玻璃化转变的热容变化。但软化和等温相变,或非常小的热足迹的相变,就其性质而言用热分析技术很难看到。然而,大多数相变都伴随着分子迁移率的变化,这是由于物理或化学重新定向导致溶液中的电感、电容和电阻中的一种或多种产生大的波动。由于电阻和热技术的协作,Lyotherm可在复杂的解决方案中发现更多的事件,并且经常比DSC识别更多信息。3.固体玻璃态转变温度Tg定义:材料从硬脆的玻璃态转变为柔软的,类似橡胶的高弹态时的温度。检测设备:DSC方法简介:通过程序控制温度的变化,在温度变化的同时,测量试样和参比物的功率差(热流率)与温度的关系,进而得到测试材料的玻璃化转变温度。4.共晶温度Teu/共熔温度Tm定义:制品预冻过程中,对于结晶体系,随着温度降低,当制品达到冰点以下时,体系中形成冰核,冰核逐渐增长,其余溶液中溶质的浓度逐渐提高,并在达到过饱和时析出结晶,温度持续降低直至剩余溶液完全固化为冰和溶质的结晶混合体,此时的温度即为共晶点。制品干燥过程中,随温度逐渐升高,完全凝固的溶质和溶剂开始融化,此时温度即为共熔点。检测设备:1. DSC(常用)2.冷冻状态分析仪Lyotherm方法简介:1. 差示扫描量热法,通过程序控制温度的变化,在温度变化的同时,测量试样和参比物的功率差(热流率)与温度的关系,进而得到测试材料的共晶共熔温度。 冷冻状态分析仪Lyotherm采用差热分析法(DTA)法是利用制品在冻结(或融化)时,因放热(或吸热)而使其自身温度发生变化。根据物料的这种物理现象,测得制品的共晶点(共熔点)5.冻干饼/冻干珠机械强度检测检测设备:Micropress机械强度测试仪方法简介:MicroPress是一种可以原位定量测定冻干饼强度和物理特性的仪器。通过设置参数和分析方法,MicroPress将能够分析您的冻干饼和冻干珠机械强度。通过机械挤压样品,测得应力和应变数据,从而获得杨氏模量和破坏时的*应力。研究杨氏模量和破坏时的*应力的意义:● 冻干珠/冻干蛋糕在运输过程中保持完好。● 筛选合适的工艺条件(例如在冷冻过程中使用的冷却速度)。● 筛选合适的辅料成分,使蛋糕更坚固耐用。● 蛋糕属性的定量测量可以用于比较,批内/批间一致性。● 对技术转移和放大至关重要。● 为遵循QbD方法的法规文件提供丰富数据支持。 6.莱奥德创冻干课程关注“莱奥德创冻干工场”官方公众号,获取冻干讲堂线上培训课程。莱奥德创冻干工场上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供先进的冻干设备应用和制剂开发相关服务。莱奥德创冻干工场专注于提供先进的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干培训平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题培训课程。课程结合了来自Biopharma的冻干理论培训课程体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题培训内容。课程获取方式Step 1:关注公众号搜索关注“莱奥德创冻干工厂”公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的课程Banner Step 4:开始学习7、寻求冻干服务解决方案?莱奥德创还专注于提供先进的冻干设备应用和制剂开发相关服务。提供冻干前后产品性能测试,配方和工艺开发,冻干工艺优化,冻干工艺转移/放大,小批量冻干生产,金字塔冻干系统培训等全方位冻干相关服务。